1/*
2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2.  This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
11 *
12 *
13 * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
14 *
15 * The i.MX SSI core has some nasty limitations in AC97 mode. While most
16 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
17 * one FIFO which combines all valid receive slots. We cannot even select
18 * which slots we want to receive. The WM9712 with which this driver
19 * was developed with always sends GPIO status data in slot 12 which
20 * we receive in our (PCM-) data stream. The only chance we have is to
21 * manually skip this data in the FIQ handler. With sampling rates different
22 * from 48000Hz not every frame has valid receive data, so the ratio
23 * between pcm data and GPIO status data changes. Our FIQ handler is not
24 * able to handle this, hence this driver only works with 48000Hz sampling
25 * rate.
26 * Reading and writing AC97 registers is another challenge. The core
27 * provides us status bits when the read register is updated with *another*
28 * value. When we read the same register two times (and the register still
29 * contains the same value) these status bits are not set. We work
30 * around this by not polling these bits but only wait a fixed delay.
31 */
32
33#include <linux/init.h>
34#include <linux/io.h>
35#include <linux/module.h>
36#include <linux/interrupt.h>
37#include <linux/clk.h>
38#include <linux/device.h>
39#include <linux/delay.h>
40#include <linux/slab.h>
41#include <linux/spinlock.h>
42#include <linux/of.h>
43#include <linux/of_address.h>
44#include <linux/of_irq.h>
45#include <linux/of_platform.h>
46
47#include <sound/core.h>
48#include <sound/pcm.h>
49#include <sound/pcm_params.h>
50#include <sound/initval.h>
51#include <sound/soc.h>
52#include <sound/dmaengine_pcm.h>
53
54#include "fsl_ssi.h"
55#include "imx-pcm.h"
56
57/**
58 * FSLSSI_I2S_RATES: sample rates supported by the I2S
59 *
60 * This driver currently only supports the SSI running in I2S slave mode,
61 * which means the codec determines the sample rate.  Therefore, we tell
62 * ALSA that we support all rates and let the codec driver decide what rates
63 * are really supported.
64 */
65#define FSLSSI_I2S_RATES SNDRV_PCM_RATE_CONTINUOUS
66
67/**
68 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
69 *
70 * The SSI has a limitation in that the samples must be in the same byte
71 * order as the host CPU.  This is because when multiple bytes are written
72 * to the STX register, the bytes and bits must be written in the same
73 * order.  The STX is a shift register, so all the bits need to be aligned
74 * (bit-endianness must match byte-endianness).  Processors typically write
75 * the bits within a byte in the same order that the bytes of a word are
76 * written in.  So if the host CPU is big-endian, then only big-endian
77 * samples will be written to STX properly.
78 */
79#ifdef __BIG_ENDIAN
80#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
81	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
82	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
83#else
84#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
85	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
86	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
87#endif
88
89#define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \
90		CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \
91		CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN)
92#define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \
93		CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \
94		CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN)
95
96enum fsl_ssi_type {
97	FSL_SSI_MCP8610,
98	FSL_SSI_MX21,
99	FSL_SSI_MX35,
100	FSL_SSI_MX51,
101};
102
103struct fsl_ssi_reg_val {
104	u32 sier;
105	u32 srcr;
106	u32 stcr;
107	u32 scr;
108};
109
110struct fsl_ssi_rxtx_reg_val {
111	struct fsl_ssi_reg_val rx;
112	struct fsl_ssi_reg_val tx;
113};
114
115static const struct reg_default fsl_ssi_reg_defaults[] = {
116	{0x10, 0x00000000},
117	{0x18, 0x00003003},
118	{0x1c, 0x00000200},
119	{0x20, 0x00000200},
120	{0x24, 0x00040000},
121	{0x28, 0x00040000},
122	{0x38, 0x00000000},
123	{0x48, 0x00000000},
124	{0x4c, 0x00000000},
125	{0x54, 0x00000000},
126	{0x58, 0x00000000},
127};
128
129static bool fsl_ssi_readable_reg(struct device *dev, unsigned int reg)
130{
131	switch (reg) {
132	case CCSR_SSI_SACCEN:
133	case CCSR_SSI_SACCDIS:
134		return false;
135	default:
136		return true;
137	}
138}
139
140static bool fsl_ssi_volatile_reg(struct device *dev, unsigned int reg)
141{
142	switch (reg) {
143	case CCSR_SSI_STX0:
144	case CCSR_SSI_STX1:
145	case CCSR_SSI_SRX0:
146	case CCSR_SSI_SRX1:
147	case CCSR_SSI_SISR:
148	case CCSR_SSI_SFCSR:
149	case CCSR_SSI_SACADD:
150	case CCSR_SSI_SACDAT:
151	case CCSR_SSI_SATAG:
152	case CCSR_SSI_SACCST:
153		return true;
154	default:
155		return false;
156	}
157}
158
159static bool fsl_ssi_writeable_reg(struct device *dev, unsigned int reg)
160{
161	switch (reg) {
162	case CCSR_SSI_SRX0:
163	case CCSR_SSI_SRX1:
164	case CCSR_SSI_SACCST:
165		return false;
166	default:
167		return true;
168	}
169}
170
171static const struct regmap_config fsl_ssi_regconfig = {
172	.max_register = CCSR_SSI_SACCDIS,
173	.reg_bits = 32,
174	.val_bits = 32,
175	.reg_stride = 4,
176	.val_format_endian = REGMAP_ENDIAN_NATIVE,
177	.reg_defaults = fsl_ssi_reg_defaults,
178	.num_reg_defaults = ARRAY_SIZE(fsl_ssi_reg_defaults),
179	.readable_reg = fsl_ssi_readable_reg,
180	.volatile_reg = fsl_ssi_volatile_reg,
181	.writeable_reg = fsl_ssi_writeable_reg,
182	.cache_type = REGCACHE_RBTREE,
183};
184
185struct fsl_ssi_soc_data {
186	bool imx;
187	bool offline_config;
188	u32 sisr_write_mask;
189};
190
191/**
192 * fsl_ssi_private: per-SSI private data
193 *
194 * @reg: Pointer to the regmap registers
195 * @irq: IRQ of this SSI
196 * @cpu_dai_drv: CPU DAI driver for this device
197 *
198 * @dai_fmt: DAI configuration this device is currently used with
199 * @i2s_mode: i2s and network mode configuration of the device. Is used to
200 * switch between normal and i2s/network mode
201 * mode depending on the number of channels
202 * @use_dma: DMA is used or FIQ with stream filter
203 * @use_dual_fifo: DMA with support for both FIFOs used
204 * @fifo_deph: Depth of the SSI FIFOs
205 * @rxtx_reg_val: Specific register settings for receive/transmit configuration
206 *
207 * @clk: SSI clock
208 * @baudclk: SSI baud clock for master mode
209 * @baudclk_streams: Active streams that are using baudclk
210 * @bitclk_freq: bitclock frequency set by .set_dai_sysclk
211 *
212 * @dma_params_tx: DMA transmit parameters
213 * @dma_params_rx: DMA receive parameters
214 * @ssi_phys: physical address of the SSI registers
215 *
216 * @fiq_params: FIQ stream filtering parameters
217 *
218 * @pdev: Pointer to pdev used for deprecated fsl-ssi sound card
219 *
220 * @dbg_stats: Debugging statistics
221 *
222 * @soc: SoC specific data
223 */
224struct fsl_ssi_private {
225	struct regmap *regs;
226	int irq;
227	struct snd_soc_dai_driver cpu_dai_drv;
228
229	unsigned int dai_fmt;
230	u8 i2s_mode;
231	bool use_dma;
232	bool use_dual_fifo;
233	bool has_ipg_clk_name;
234	unsigned int fifo_depth;
235	struct fsl_ssi_rxtx_reg_val rxtx_reg_val;
236
237	struct clk *clk;
238	struct clk *baudclk;
239	unsigned int baudclk_streams;
240	unsigned int bitclk_freq;
241
242	/*regcache for SFCSR*/
243	u32 regcache_sfcsr;
244
245	/* DMA params */
246	struct snd_dmaengine_dai_dma_data dma_params_tx;
247	struct snd_dmaengine_dai_dma_data dma_params_rx;
248	dma_addr_t ssi_phys;
249
250	/* params for non-dma FIQ stream filtered mode */
251	struct imx_pcm_fiq_params fiq_params;
252
253	/* Used when using fsl-ssi as sound-card. This is only used by ppc and
254	 * should be replaced with simple-sound-card. */
255	struct platform_device *pdev;
256
257	struct fsl_ssi_dbg dbg_stats;
258
259	const struct fsl_ssi_soc_data *soc;
260};
261
262/*
263 * imx51 and later SoCs have a slightly different IP that allows the
264 * SSI configuration while the SSI unit is running.
265 *
266 * More important, it is necessary on those SoCs to configure the
267 * sperate TX/RX DMA bits just before starting the stream
268 * (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi
269 * sends any DMA requests to the SDMA unit, otherwise it is not defined
270 * how the SDMA unit handles the DMA request.
271 *
272 * SDMA units are present on devices starting at imx35 but the imx35
273 * reference manual states that the DMA bits should not be changed
274 * while the SSI unit is running (SSIEN). So we support the necessary
275 * online configuration of fsl-ssi starting at imx51.
276 */
277
278static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
279	.imx = false,
280	.offline_config = true,
281	.sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
282			CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
283			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
284};
285
286static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
287	.imx = true,
288	.offline_config = true,
289	.sisr_write_mask = 0,
290};
291
292static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
293	.imx = true,
294	.offline_config = true,
295	.sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
296			CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
297			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
298};
299
300static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
301	.imx = true,
302	.offline_config = false,
303	.sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
304		CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
305};
306
307static const struct of_device_id fsl_ssi_ids[] = {
308	{ .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
309	{ .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
310	{ .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
311	{ .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
312	{}
313};
314MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
315
316static bool fsl_ssi_is_ac97(struct fsl_ssi_private *ssi_private)
317{
318	return (ssi_private->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) ==
319		SND_SOC_DAIFMT_AC97;
320}
321
322static bool fsl_ssi_is_i2s_master(struct fsl_ssi_private *ssi_private)
323{
324	return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
325		SND_SOC_DAIFMT_CBS_CFS;
326}
327
328static bool fsl_ssi_is_i2s_cbm_cfs(struct fsl_ssi_private *ssi_private)
329{
330	return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
331		SND_SOC_DAIFMT_CBM_CFS;
332}
333/**
334 * fsl_ssi_isr: SSI interrupt handler
335 *
336 * Although it's possible to use the interrupt handler to send and receive
337 * data to/from the SSI, we use the DMA instead.  Programming is more
338 * complicated, but the performance is much better.
339 *
340 * This interrupt handler is used only to gather statistics.
341 *
342 * @irq: IRQ of the SSI device
343 * @dev_id: pointer to the ssi_private structure for this SSI device
344 */
345static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
346{
347	struct fsl_ssi_private *ssi_private = dev_id;
348	struct regmap *regs = ssi_private->regs;
349	__be32 sisr;
350	__be32 sisr2;
351
352	/* We got an interrupt, so read the status register to see what we
353	   were interrupted for.  We mask it with the Interrupt Enable register
354	   so that we only check for events that we're interested in.
355	 */
356	regmap_read(regs, CCSR_SSI_SISR, &sisr);
357
358	sisr2 = sisr & ssi_private->soc->sisr_write_mask;
359	/* Clear the bits that we set */
360	if (sisr2)
361		regmap_write(regs, CCSR_SSI_SISR, sisr2);
362
363	fsl_ssi_dbg_isr(&ssi_private->dbg_stats, sisr);
364
365	return IRQ_HANDLED;
366}
367
368/*
369 * Enable/Disable all rx/tx config flags at once.
370 */
371static void fsl_ssi_rxtx_config(struct fsl_ssi_private *ssi_private,
372		bool enable)
373{
374	struct regmap *regs = ssi_private->regs;
375	struct fsl_ssi_rxtx_reg_val *vals = &ssi_private->rxtx_reg_val;
376
377	if (enable) {
378		regmap_update_bits(regs, CCSR_SSI_SIER,
379				vals->rx.sier | vals->tx.sier,
380				vals->rx.sier | vals->tx.sier);
381		regmap_update_bits(regs, CCSR_SSI_SRCR,
382				vals->rx.srcr | vals->tx.srcr,
383				vals->rx.srcr | vals->tx.srcr);
384		regmap_update_bits(regs, CCSR_SSI_STCR,
385				vals->rx.stcr | vals->tx.stcr,
386				vals->rx.stcr | vals->tx.stcr);
387	} else {
388		regmap_update_bits(regs, CCSR_SSI_SRCR,
389				vals->rx.srcr | vals->tx.srcr, 0);
390		regmap_update_bits(regs, CCSR_SSI_STCR,
391				vals->rx.stcr | vals->tx.stcr, 0);
392		regmap_update_bits(regs, CCSR_SSI_SIER,
393				vals->rx.sier | vals->tx.sier, 0);
394	}
395}
396
397/*
398 * Calculate the bits that have to be disabled for the current stream that is
399 * getting disabled. This keeps the bits enabled that are necessary for the
400 * second stream to work if 'stream_active' is true.
401 *
402 * Detailed calculation:
403 * These are the values that need to be active after disabling. For non-active
404 * second stream, this is 0:
405 *	vals_stream * !!stream_active
406 *
407 * The following computes the overall differences between the setup for the
408 * to-disable stream and the active stream, a simple XOR:
409 *	vals_disable ^ (vals_stream * !!(stream_active))
410 *
411 * The full expression adds a mask on all values we care about
412 */
413#define fsl_ssi_disable_val(vals_disable, vals_stream, stream_active) \
414	((vals_disable) & \
415	 ((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active))))
416
417/*
418 * Enable/Disable a ssi configuration. You have to pass either
419 * ssi_private->rxtx_reg_val.rx or tx as vals parameter.
420 */
421static void fsl_ssi_config(struct fsl_ssi_private *ssi_private, bool enable,
422		struct fsl_ssi_reg_val *vals)
423{
424	struct regmap *regs = ssi_private->regs;
425	struct fsl_ssi_reg_val *avals;
426	int nr_active_streams;
427	u32 scr_val;
428	int keep_active;
429
430	regmap_read(regs, CCSR_SSI_SCR, &scr_val);
431
432	nr_active_streams = !!(scr_val & CCSR_SSI_SCR_TE) +
433				!!(scr_val & CCSR_SSI_SCR_RE);
434
435	if (nr_active_streams - 1 > 0)
436		keep_active = 1;
437	else
438		keep_active = 0;
439
440	/* Find the other direction values rx or tx which we do not want to
441	 * modify */
442	if (&ssi_private->rxtx_reg_val.rx == vals)
443		avals = &ssi_private->rxtx_reg_val.tx;
444	else
445		avals = &ssi_private->rxtx_reg_val.rx;
446
447	/* If vals should be disabled, start with disabling the unit */
448	if (!enable) {
449		u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr,
450				keep_active);
451		regmap_update_bits(regs, CCSR_SSI_SCR, scr, 0);
452	}
453
454	/*
455	 * We are running on a SoC which does not support online SSI
456	 * reconfiguration, so we have to enable all necessary flags at once
457	 * even if we do not use them later (capture and playback configuration)
458	 */
459	if (ssi_private->soc->offline_config) {
460		if ((enable && !nr_active_streams) ||
461				(!enable && !keep_active))
462			fsl_ssi_rxtx_config(ssi_private, enable);
463
464		goto config_done;
465	}
466
467	/*
468	 * Configure single direction units while the SSI unit is running
469	 * (online configuration)
470	 */
471	if (enable) {
472		regmap_update_bits(regs, CCSR_SSI_SIER, vals->sier, vals->sier);
473		regmap_update_bits(regs, CCSR_SSI_SRCR, vals->srcr, vals->srcr);
474		regmap_update_bits(regs, CCSR_SSI_STCR, vals->stcr, vals->stcr);
475	} else {
476		u32 sier;
477		u32 srcr;
478		u32 stcr;
479
480		/*
481		 * Disabling the necessary flags for one of rx/tx while the
482		 * other stream is active is a little bit more difficult. We
483		 * have to disable only those flags that differ between both
484		 * streams (rx XOR tx) and that are set in the stream that is
485		 * disabled now. Otherwise we could alter flags of the other
486		 * stream
487		 */
488
489		/* These assignments are simply vals without bits set in avals*/
490		sier = fsl_ssi_disable_val(vals->sier, avals->sier,
491				keep_active);
492		srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr,
493				keep_active);
494		stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr,
495				keep_active);
496
497		regmap_update_bits(regs, CCSR_SSI_SRCR, srcr, 0);
498		regmap_update_bits(regs, CCSR_SSI_STCR, stcr, 0);
499		regmap_update_bits(regs, CCSR_SSI_SIER, sier, 0);
500	}
501
502config_done:
503	/* Enabling of subunits is done after configuration */
504	if (enable)
505		regmap_update_bits(regs, CCSR_SSI_SCR, vals->scr, vals->scr);
506}
507
508
509static void fsl_ssi_rx_config(struct fsl_ssi_private *ssi_private, bool enable)
510{
511	fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.rx);
512}
513
514static void fsl_ssi_tx_config(struct fsl_ssi_private *ssi_private, bool enable)
515{
516	fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.tx);
517}
518
519/*
520 * Setup rx/tx register values used to enable/disable the streams. These will
521 * be used later in fsl_ssi_config to setup the streams without the need to
522 * check for all different SSI modes.
523 */
524static void fsl_ssi_setup_reg_vals(struct fsl_ssi_private *ssi_private)
525{
526	struct fsl_ssi_rxtx_reg_val *reg = &ssi_private->rxtx_reg_val;
527
528	reg->rx.sier = CCSR_SSI_SIER_RFF0_EN;
529	reg->rx.srcr = CCSR_SSI_SRCR_RFEN0;
530	reg->rx.scr = 0;
531	reg->tx.sier = CCSR_SSI_SIER_TFE0_EN;
532	reg->tx.stcr = CCSR_SSI_STCR_TFEN0;
533	reg->tx.scr = 0;
534
535	if (!fsl_ssi_is_ac97(ssi_private)) {
536		reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE;
537		reg->rx.sier |= CCSR_SSI_SIER_RFF0_EN;
538		reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE;
539		reg->tx.sier |= CCSR_SSI_SIER_TFE0_EN;
540	}
541
542	if (ssi_private->use_dma) {
543		reg->rx.sier |= CCSR_SSI_SIER_RDMAE;
544		reg->tx.sier |= CCSR_SSI_SIER_TDMAE;
545	} else {
546		reg->rx.sier |= CCSR_SSI_SIER_RIE;
547		reg->tx.sier |= CCSR_SSI_SIER_TIE;
548	}
549
550	reg->rx.sier |= FSLSSI_SIER_DBG_RX_FLAGS;
551	reg->tx.sier |= FSLSSI_SIER_DBG_TX_FLAGS;
552}
553
554static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private)
555{
556	struct regmap *regs = ssi_private->regs;
557
558	/*
559	 * Setup the clock control register
560	 */
561	regmap_write(regs, CCSR_SSI_STCCR,
562			CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
563	regmap_write(regs, CCSR_SSI_SRCCR,
564			CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
565
566	/*
567	 * Enable AC97 mode and startup the SSI
568	 */
569	regmap_write(regs, CCSR_SSI_SACNT,
570			CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV);
571	regmap_write(regs, CCSR_SSI_SACCDIS, 0xff);
572	regmap_write(regs, CCSR_SSI_SACCEN, 0x300);
573
574	/*
575	 * Enable SSI, Transmit and Receive. AC97 has to communicate with the
576	 * codec before a stream is started.
577	 */
578	regmap_update_bits(regs, CCSR_SSI_SCR,
579			CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE,
580			CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
581
582	regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_WAIT(3));
583}
584
585/**
586 * fsl_ssi_startup: create a new substream
587 *
588 * This is the first function called when a stream is opened.
589 *
590 * If this is the first stream open, then grab the IRQ and program most of
591 * the SSI registers.
592 */
593static int fsl_ssi_startup(struct snd_pcm_substream *substream,
594			   struct snd_soc_dai *dai)
595{
596	struct snd_soc_pcm_runtime *rtd = substream->private_data;
597	struct fsl_ssi_private *ssi_private =
598		snd_soc_dai_get_drvdata(rtd->cpu_dai);
599	int ret;
600
601	ret = clk_prepare_enable(ssi_private->clk);
602	if (ret)
603		return ret;
604
605	/* When using dual fifo mode, it is safer to ensure an even period
606	 * size. If appearing to an odd number while DMA always starts its
607	 * task from fifo0, fifo1 would be neglected at the end of each
608	 * period. But SSI would still access fifo1 with an invalid data.
609	 */
610	if (ssi_private->use_dual_fifo)
611		snd_pcm_hw_constraint_step(substream->runtime, 0,
612				SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
613
614	return 0;
615}
616
617/**
618 * fsl_ssi_shutdown: shutdown the SSI
619 *
620 */
621static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
622				struct snd_soc_dai *dai)
623{
624	struct snd_soc_pcm_runtime *rtd = substream->private_data;
625	struct fsl_ssi_private *ssi_private =
626		snd_soc_dai_get_drvdata(rtd->cpu_dai);
627
628	clk_disable_unprepare(ssi_private->clk);
629
630}
631
632/**
633 * fsl_ssi_set_bclk - configure Digital Audio Interface bit clock
634 *
635 * Note: This function can be only called when using SSI as DAI master
636 *
637 * Quick instruction for parameters:
638 * freq: Output BCLK frequency = samplerate * 32 (fixed) * channels
639 * dir: SND_SOC_CLOCK_OUT -> TxBCLK, SND_SOC_CLOCK_IN -> RxBCLK.
640 */
641static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
642		struct snd_soc_dai *cpu_dai,
643		struct snd_pcm_hw_params *hw_params)
644{
645	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
646	struct regmap *regs = ssi_private->regs;
647	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates, ret;
648	u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
649	unsigned long clkrate, baudrate, tmprate;
650	u64 sub, savesub = 100000;
651	unsigned int freq;
652	bool baudclk_is_used;
653
654	/* Prefer the explicitly set bitclock frequency */
655	if (ssi_private->bitclk_freq)
656		freq = ssi_private->bitclk_freq;
657	else
658		freq = params_channels(hw_params) * 32 * params_rate(hw_params);
659
660	/* Don't apply it to any non-baudclk circumstance */
661	if (IS_ERR(ssi_private->baudclk))
662		return -EINVAL;
663
664	baudclk_is_used = ssi_private->baudclk_streams & ~(BIT(substream->stream));
665
666	/* It should be already enough to divide clock by setting pm alone */
667	psr = 0;
668	div2 = 0;
669
670	factor = (div2 + 1) * (7 * psr + 1) * 2;
671
672	for (i = 0; i < 255; i++) {
673		tmprate = freq * factor * (i + 1);
674
675		if (baudclk_is_used)
676			clkrate = clk_get_rate(ssi_private->baudclk);
677		else
678			clkrate = clk_round_rate(ssi_private->baudclk, tmprate);
679
680		/*
681		 * Hardware limitation: The bclk rate must be
682		 * never greater than 1/5 IPG clock rate
683		 */
684		if (clkrate * 5 > clk_get_rate(ssi_private->clk))
685			continue;
686
687		clkrate /= factor;
688		afreq = clkrate / (i + 1);
689
690		if (freq == afreq)
691			sub = 0;
692		else if (freq / afreq == 1)
693			sub = freq - afreq;
694		else if (afreq / freq == 1)
695			sub = afreq - freq;
696		else
697			continue;
698
699		/* Calculate the fraction */
700		sub *= 100000;
701		do_div(sub, freq);
702
703		if (sub < savesub && !(i == 0 && psr == 0 && div2 == 0)) {
704			baudrate = tmprate;
705			savesub = sub;
706			pm = i;
707		}
708
709		/* We are lucky */
710		if (savesub == 0)
711			break;
712	}
713
714	/* No proper pm found if it is still remaining the initial value */
715	if (pm == 999) {
716		dev_err(cpu_dai->dev, "failed to handle the required sysclk\n");
717		return -EINVAL;
718	}
719
720	stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) |
721		(psr ? CCSR_SSI_SxCCR_PSR : 0);
722	mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 |
723		CCSR_SSI_SxCCR_PSR;
724
725	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || synchronous)
726		regmap_update_bits(regs, CCSR_SSI_STCCR, mask, stccr);
727	else
728		regmap_update_bits(regs, CCSR_SSI_SRCCR, mask, stccr);
729
730	if (!baudclk_is_used) {
731		ret = clk_set_rate(ssi_private->baudclk, baudrate);
732		if (ret) {
733			dev_err(cpu_dai->dev, "failed to set baudclk rate\n");
734			return -EINVAL;
735		}
736	}
737
738	return 0;
739}
740
741static int fsl_ssi_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
742		int clk_id, unsigned int freq, int dir)
743{
744	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
745
746	ssi_private->bitclk_freq = freq;
747
748	return 0;
749}
750
751/**
752 * fsl_ssi_hw_params - program the sample size
753 *
754 * Most of the SSI registers have been programmed in the startup function,
755 * but the word length must be programmed here.  Unfortunately, programming
756 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
757 * cause a problem with supporting simultaneous playback and capture.  If
758 * the SSI is already playing a stream, then that stream may be temporarily
759 * stopped when you start capture.
760 *
761 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
762 * clock master.
763 */
764static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
765	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
766{
767	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
768	struct regmap *regs = ssi_private->regs;
769	unsigned int channels = params_channels(hw_params);
770	unsigned int sample_size =
771		snd_pcm_format_width(params_format(hw_params));
772	u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
773	int ret;
774	u32 scr_val;
775	int enabled;
776
777	regmap_read(regs, CCSR_SSI_SCR, &scr_val);
778	enabled = scr_val & CCSR_SSI_SCR_SSIEN;
779
780	/*
781	 * If we're in synchronous mode, and the SSI is already enabled,
782	 * then STCCR is already set properly.
783	 */
784	if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
785		return 0;
786
787	if (fsl_ssi_is_i2s_master(ssi_private)) {
788		ret = fsl_ssi_set_bclk(substream, cpu_dai, hw_params);
789		if (ret)
790			return ret;
791
792		/* Do not enable the clock if it is already enabled */
793		if (!(ssi_private->baudclk_streams & BIT(substream->stream))) {
794			ret = clk_prepare_enable(ssi_private->baudclk);
795			if (ret)
796				return ret;
797
798			ssi_private->baudclk_streams |= BIT(substream->stream);
799		}
800	}
801
802	if (!fsl_ssi_is_ac97(ssi_private)) {
803		u8 i2smode;
804		/*
805		 * Switch to normal net mode in order to have a frame sync
806		 * signal every 32 bits instead of 16 bits
807		 */
808		if (fsl_ssi_is_i2s_cbm_cfs(ssi_private) && sample_size == 16)
809			i2smode = CCSR_SSI_SCR_I2S_MODE_NORMAL |
810				CCSR_SSI_SCR_NET;
811		else
812			i2smode = ssi_private->i2s_mode;
813
814		regmap_update_bits(regs, CCSR_SSI_SCR,
815				CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
816				channels == 1 ? 0 : i2smode);
817	}
818
819	/*
820	 * FIXME: The documentation says that SxCCR[WL] should not be
821	 * modified while the SSI is enabled.  The only time this can
822	 * happen is if we're trying to do simultaneous playback and
823	 * capture in asynchronous mode.  Unfortunately, I have been enable
824	 * to get that to work at all on the P1022DS.  Therefore, we don't
825	 * bother to disable/enable the SSI when setting SxCCR[WL], because
826	 * the SSI will stop anyway.  Maybe one day, this will get fixed.
827	 */
828
829	/* In synchronous mode, the SSI uses STCCR for capture */
830	if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
831	    ssi_private->cpu_dai_drv.symmetric_rates)
832		regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_WL_MASK,
833				wl);
834	else
835		regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_WL_MASK,
836				wl);
837
838	return 0;
839}
840
841static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
842		struct snd_soc_dai *cpu_dai)
843{
844	struct snd_soc_pcm_runtime *rtd = substream->private_data;
845	struct fsl_ssi_private *ssi_private =
846		snd_soc_dai_get_drvdata(rtd->cpu_dai);
847
848	if (fsl_ssi_is_i2s_master(ssi_private) &&
849			ssi_private->baudclk_streams & BIT(substream->stream)) {
850		clk_disable_unprepare(ssi_private->baudclk);
851		ssi_private->baudclk_streams &= ~BIT(substream->stream);
852	}
853
854	return 0;
855}
856
857static int _fsl_ssi_set_dai_fmt(struct device *dev,
858				struct fsl_ssi_private *ssi_private,
859				unsigned int fmt)
860{
861	struct regmap *regs = ssi_private->regs;
862	u32 strcr = 0, stcr, srcr, scr, mask;
863	u8 wm;
864
865	ssi_private->dai_fmt = fmt;
866
867	if (fsl_ssi_is_i2s_master(ssi_private) && IS_ERR(ssi_private->baudclk)) {
868		dev_err(dev, "baudclk is missing which is necessary for master mode\n");
869		return -EINVAL;
870	}
871
872	fsl_ssi_setup_reg_vals(ssi_private);
873
874	regmap_read(regs, CCSR_SSI_SCR, &scr);
875	scr &= ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK);
876	scr |= CCSR_SSI_SCR_SYNC_TX_FS;
877
878	mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR |
879		CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL |
880		CCSR_SSI_STCR_TEFS;
881	regmap_read(regs, CCSR_SSI_STCR, &stcr);
882	regmap_read(regs, CCSR_SSI_SRCR, &srcr);
883	stcr &= ~mask;
884	srcr &= ~mask;
885
886	ssi_private->i2s_mode = CCSR_SSI_SCR_NET;
887	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
888	case SND_SOC_DAIFMT_I2S:
889		switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
890		case SND_SOC_DAIFMT_CBM_CFS:
891		case SND_SOC_DAIFMT_CBS_CFS:
892			ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_MASTER;
893			regmap_update_bits(regs, CCSR_SSI_STCCR,
894					CCSR_SSI_SxCCR_DC_MASK,
895					CCSR_SSI_SxCCR_DC(2));
896			regmap_update_bits(regs, CCSR_SSI_SRCCR,
897					CCSR_SSI_SxCCR_DC_MASK,
898					CCSR_SSI_SxCCR_DC(2));
899			break;
900		case SND_SOC_DAIFMT_CBM_CFM:
901			ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_SLAVE;
902			break;
903		default:
904			return -EINVAL;
905		}
906
907		/* Data on rising edge of bclk, frame low, 1clk before data */
908		strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP |
909			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
910		break;
911	case SND_SOC_DAIFMT_LEFT_J:
912		/* Data on rising edge of bclk, frame high */
913		strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP;
914		break;
915	case SND_SOC_DAIFMT_DSP_A:
916		/* Data on rising edge of bclk, frame high, 1clk before data */
917		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
918			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
919		break;
920	case SND_SOC_DAIFMT_DSP_B:
921		/* Data on rising edge of bclk, frame high */
922		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
923			CCSR_SSI_STCR_TXBIT0;
924		break;
925	case SND_SOC_DAIFMT_AC97:
926		ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_NORMAL;
927		break;
928	default:
929		return -EINVAL;
930	}
931	scr |= ssi_private->i2s_mode;
932
933	/* DAI clock inversion */
934	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
935	case SND_SOC_DAIFMT_NB_NF:
936		/* Nothing to do for both normal cases */
937		break;
938	case SND_SOC_DAIFMT_IB_NF:
939		/* Invert bit clock */
940		strcr ^= CCSR_SSI_STCR_TSCKP;
941		break;
942	case SND_SOC_DAIFMT_NB_IF:
943		/* Invert frame clock */
944		strcr ^= CCSR_SSI_STCR_TFSI;
945		break;
946	case SND_SOC_DAIFMT_IB_IF:
947		/* Invert both clocks */
948		strcr ^= CCSR_SSI_STCR_TSCKP;
949		strcr ^= CCSR_SSI_STCR_TFSI;
950		break;
951	default:
952		return -EINVAL;
953	}
954
955	/* DAI clock master masks */
956	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
957	case SND_SOC_DAIFMT_CBS_CFS:
958		strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR;
959		scr |= CCSR_SSI_SCR_SYS_CLK_EN;
960		break;
961	case SND_SOC_DAIFMT_CBM_CFM:
962		scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
963		break;
964	case SND_SOC_DAIFMT_CBM_CFS:
965		strcr &= ~CCSR_SSI_STCR_TXDIR;
966		strcr |= CCSR_SSI_STCR_TFDIR;
967		scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
968		break;
969	default:
970		if (!fsl_ssi_is_ac97(ssi_private))
971			return -EINVAL;
972	}
973
974	stcr |= strcr;
975	srcr |= strcr;
976
977	if (ssi_private->cpu_dai_drv.symmetric_rates
978			|| fsl_ssi_is_ac97(ssi_private)) {
979		/* Need to clear RXDIR when using SYNC or AC97 mode */
980		srcr &= ~CCSR_SSI_SRCR_RXDIR;
981		scr |= CCSR_SSI_SCR_SYN;
982	}
983
984	regmap_write(regs, CCSR_SSI_STCR, stcr);
985	regmap_write(regs, CCSR_SSI_SRCR, srcr);
986	regmap_write(regs, CCSR_SSI_SCR, scr);
987
988	/*
989	 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
990	 * use FIFO 1. We program the transmit water to signal a DMA transfer
991	 * if there are only two (or fewer) elements left in the FIFO. Two
992	 * elements equals one frame (left channel, right channel). This value,
993	 * however, depends on the depth of the transmit buffer.
994	 *
995	 * We set the watermark on the same level as the DMA burstsize.  For
996	 * fiq it is probably better to use the biggest possible watermark
997	 * size.
998	 */
999	if (ssi_private->use_dma)
1000		wm = ssi_private->fifo_depth - 2;
1001	else
1002		wm = ssi_private->fifo_depth;
1003
1004	regmap_write(regs, CCSR_SSI_SFCSR,
1005			CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
1006			CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm));
1007
1008	if (ssi_private->use_dual_fifo) {
1009		regmap_update_bits(regs, CCSR_SSI_SRCR, CCSR_SSI_SRCR_RFEN1,
1010				CCSR_SSI_SRCR_RFEN1);
1011		regmap_update_bits(regs, CCSR_SSI_STCR, CCSR_SSI_STCR_TFEN1,
1012				CCSR_SSI_STCR_TFEN1);
1013		regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_TCH_EN,
1014				CCSR_SSI_SCR_TCH_EN);
1015	}
1016
1017	if ((fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_AC97)
1018		fsl_ssi_setup_ac97(ssi_private);
1019
1020	return 0;
1021
1022}
1023
1024/**
1025 * fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
1026 */
1027static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
1028{
1029	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
1030
1031	return _fsl_ssi_set_dai_fmt(cpu_dai->dev, ssi_private, fmt);
1032}
1033
1034/**
1035 * fsl_ssi_set_dai_tdm_slot - set TDM slot number
1036 *
1037 * Note: This function can be only called when using SSI as DAI master
1038 */
1039static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
1040				u32 rx_mask, int slots, int slot_width)
1041{
1042	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
1043	struct regmap *regs = ssi_private->regs;
1044	u32 val;
1045
1046	/* The slot number should be >= 2 if using Network mode or I2S mode */
1047	regmap_read(regs, CCSR_SSI_SCR, &val);
1048	val &= CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET;
1049	if (val && slots < 2) {
1050		dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n");
1051		return -EINVAL;
1052	}
1053
1054	regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_DC_MASK,
1055			CCSR_SSI_SxCCR_DC(slots));
1056	regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_DC_MASK,
1057			CCSR_SSI_SxCCR_DC(slots));
1058
1059	/* The register SxMSKs needs SSI to provide essential clock due to
1060	 * hardware design. So we here temporarily enable SSI to set them.
1061	 */
1062	regmap_read(regs, CCSR_SSI_SCR, &val);
1063	val &= CCSR_SSI_SCR_SSIEN;
1064	regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN,
1065			CCSR_SSI_SCR_SSIEN);
1066
1067	regmap_write(regs, CCSR_SSI_STMSK, ~tx_mask);
1068	regmap_write(regs, CCSR_SSI_SRMSK, ~rx_mask);
1069
1070	regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN, val);
1071
1072	return 0;
1073}
1074
1075/**
1076 * fsl_ssi_trigger: start and stop the DMA transfer.
1077 *
1078 * This function is called by ALSA to start, stop, pause, and resume the DMA
1079 * transfer of data.
1080 *
1081 * The DMA channel is in external master start and pause mode, which
1082 * means the SSI completely controls the flow of data.
1083 */
1084static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
1085			   struct snd_soc_dai *dai)
1086{
1087	struct snd_soc_pcm_runtime *rtd = substream->private_data;
1088	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
1089	struct regmap *regs = ssi_private->regs;
1090
1091	switch (cmd) {
1092	case SNDRV_PCM_TRIGGER_START:
1093	case SNDRV_PCM_TRIGGER_RESUME:
1094	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1095		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1096			fsl_ssi_tx_config(ssi_private, true);
1097		else
1098			fsl_ssi_rx_config(ssi_private, true);
1099		break;
1100
1101	case SNDRV_PCM_TRIGGER_STOP:
1102	case SNDRV_PCM_TRIGGER_SUSPEND:
1103	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1104		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1105			fsl_ssi_tx_config(ssi_private, false);
1106		else
1107			fsl_ssi_rx_config(ssi_private, false);
1108		break;
1109
1110	default:
1111		return -EINVAL;
1112	}
1113
1114	if (fsl_ssi_is_ac97(ssi_private)) {
1115		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1116			regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_TX_CLR);
1117		else
1118			regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_RX_CLR);
1119	}
1120
1121	return 0;
1122}
1123
1124static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
1125{
1126	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
1127
1128	if (ssi_private->soc->imx && ssi_private->use_dma) {
1129		dai->playback_dma_data = &ssi_private->dma_params_tx;
1130		dai->capture_dma_data = &ssi_private->dma_params_rx;
1131	}
1132
1133	return 0;
1134}
1135
1136static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
1137	.startup	= fsl_ssi_startup,
1138	.shutdown       = fsl_ssi_shutdown,
1139	.hw_params	= fsl_ssi_hw_params,
1140	.hw_free	= fsl_ssi_hw_free,
1141	.set_fmt	= fsl_ssi_set_dai_fmt,
1142	.set_sysclk	= fsl_ssi_set_dai_sysclk,
1143	.set_tdm_slot	= fsl_ssi_set_dai_tdm_slot,
1144	.trigger	= fsl_ssi_trigger,
1145};
1146
1147/* Template for the CPU dai driver structure */
1148static struct snd_soc_dai_driver fsl_ssi_dai_template = {
1149	.probe = fsl_ssi_dai_probe,
1150	.playback = {
1151		.stream_name = "CPU-Playback",
1152		.channels_min = 1,
1153		.channels_max = 2,
1154		.rates = FSLSSI_I2S_RATES,
1155		.formats = FSLSSI_I2S_FORMATS,
1156	},
1157	.capture = {
1158		.stream_name = "CPU-Capture",
1159		.channels_min = 1,
1160		.channels_max = 2,
1161		.rates = FSLSSI_I2S_RATES,
1162		.formats = FSLSSI_I2S_FORMATS,
1163	},
1164	.ops = &fsl_ssi_dai_ops,
1165};
1166
1167static const struct snd_soc_component_driver fsl_ssi_component = {
1168	.name		= "fsl-ssi",
1169};
1170
1171static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
1172	.bus_control = true,
1173	.probe = fsl_ssi_dai_probe,
1174	.playback = {
1175		.stream_name = "AC97 Playback",
1176		.channels_min = 2,
1177		.channels_max = 2,
1178		.rates = SNDRV_PCM_RATE_8000_48000,
1179		.formats = SNDRV_PCM_FMTBIT_S16_LE,
1180	},
1181	.capture = {
1182		.stream_name = "AC97 Capture",
1183		.channels_min = 2,
1184		.channels_max = 2,
1185		.rates = SNDRV_PCM_RATE_48000,
1186		.formats = SNDRV_PCM_FMTBIT_S16_LE,
1187	},
1188	.ops = &fsl_ssi_dai_ops,
1189};
1190
1191
1192static struct fsl_ssi_private *fsl_ac97_data;
1193
1194static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
1195		unsigned short val)
1196{
1197	struct regmap *regs = fsl_ac97_data->regs;
1198	unsigned int lreg;
1199	unsigned int lval;
1200	int ret;
1201
1202	if (reg > 0x7f)
1203		return;
1204
1205	ret = clk_prepare_enable(fsl_ac97_data->clk);
1206	if (ret) {
1207		pr_err("ac97 write clk_prepare_enable failed: %d\n",
1208			ret);
1209		return;
1210	}
1211
1212	lreg = reg <<  12;
1213	regmap_write(regs, CCSR_SSI_SACADD, lreg);
1214
1215	lval = val << 4;
1216	regmap_write(regs, CCSR_SSI_SACDAT, lval);
1217
1218	regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1219			CCSR_SSI_SACNT_WR);
1220	udelay(100);
1221
1222	clk_disable_unprepare(fsl_ac97_data->clk);
1223}
1224
1225static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1226		unsigned short reg)
1227{
1228	struct regmap *regs = fsl_ac97_data->regs;
1229
1230	unsigned short val = -1;
1231	u32 reg_val;
1232	unsigned int lreg;
1233	int ret;
1234
1235	ret = clk_prepare_enable(fsl_ac97_data->clk);
1236	if (ret) {
1237		pr_err("ac97 read clk_prepare_enable failed: %d\n",
1238			ret);
1239		return -1;
1240	}
1241
1242	lreg = (reg & 0x7f) <<  12;
1243	regmap_write(regs, CCSR_SSI_SACADD, lreg);
1244	regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1245			CCSR_SSI_SACNT_RD);
1246
1247	udelay(100);
1248
1249	regmap_read(regs, CCSR_SSI_SACDAT, &reg_val);
1250	val = (reg_val >> 4) & 0xffff;
1251
1252	clk_disable_unprepare(fsl_ac97_data->clk);
1253
1254	return val;
1255}
1256
1257static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
1258	.read		= fsl_ssi_ac97_read,
1259	.write		= fsl_ssi_ac97_write,
1260};
1261
1262/**
1263 * Make every character in a string lower-case
1264 */
1265static void make_lowercase(char *s)
1266{
1267	char *p = s;
1268	char c;
1269
1270	while ((c = *p)) {
1271		if ((c >= 'A') && (c <= 'Z'))
1272			*p = c + ('a' - 'A');
1273		p++;
1274	}
1275}
1276
1277static int fsl_ssi_imx_probe(struct platform_device *pdev,
1278		struct fsl_ssi_private *ssi_private, void __iomem *iomem)
1279{
1280	struct device_node *np = pdev->dev.of_node;
1281	u32 dmas[4];
1282	int ret;
1283
1284	if (ssi_private->has_ipg_clk_name)
1285		ssi_private->clk = devm_clk_get(&pdev->dev, "ipg");
1286	else
1287		ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
1288	if (IS_ERR(ssi_private->clk)) {
1289		ret = PTR_ERR(ssi_private->clk);
1290		dev_err(&pdev->dev, "could not get clock: %d\n", ret);
1291		return ret;
1292	}
1293
1294	if (!ssi_private->has_ipg_clk_name) {
1295		ret = clk_prepare_enable(ssi_private->clk);
1296		if (ret) {
1297			dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
1298			return ret;
1299		}
1300	}
1301
1302	/* For those SLAVE implementations, we ignore non-baudclk cases
1303	 * and, instead, abandon MASTER mode that needs baud clock.
1304	 */
1305	ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud");
1306	if (IS_ERR(ssi_private->baudclk))
1307		dev_dbg(&pdev->dev, "could not get baud clock: %ld\n",
1308			 PTR_ERR(ssi_private->baudclk));
1309
1310	/*
1311	 * We have burstsize be "fifo_depth - 2" to match the SSI
1312	 * watermark setting in fsl_ssi_startup().
1313	 */
1314	ssi_private->dma_params_tx.maxburst = ssi_private->fifo_depth - 2;
1315	ssi_private->dma_params_rx.maxburst = ssi_private->fifo_depth - 2;
1316	ssi_private->dma_params_tx.addr = ssi_private->ssi_phys + CCSR_SSI_STX0;
1317	ssi_private->dma_params_rx.addr = ssi_private->ssi_phys + CCSR_SSI_SRX0;
1318
1319	ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1320	if (ssi_private->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL) {
1321		ssi_private->use_dual_fifo = true;
1322		/* When using dual fifo mode, we need to keep watermark
1323		 * as even numbers due to dma script limitation.
1324		 */
1325		ssi_private->dma_params_tx.maxburst &= ~0x1;
1326		ssi_private->dma_params_rx.maxburst &= ~0x1;
1327	}
1328
1329	if (!ssi_private->use_dma) {
1330
1331		/*
1332		 * Some boards use an incompatible codec. To get it
1333		 * working, we are using imx-fiq-pcm-audio, that
1334		 * can handle those codecs. DMA is not possible in this
1335		 * situation.
1336		 */
1337
1338		ssi_private->fiq_params.irq = ssi_private->irq;
1339		ssi_private->fiq_params.base = iomem;
1340		ssi_private->fiq_params.dma_params_rx =
1341			&ssi_private->dma_params_rx;
1342		ssi_private->fiq_params.dma_params_tx =
1343			&ssi_private->dma_params_tx;
1344
1345		ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
1346		if (ret)
1347			goto error_pcm;
1348	} else {
1349		ret = imx_pcm_dma_init(pdev, IMX_SSI_DMABUF_SIZE);
1350		if (ret)
1351			goto error_pcm;
1352	}
1353
1354	return 0;
1355
1356error_pcm:
1357
1358	if (!ssi_private->has_ipg_clk_name)
1359		clk_disable_unprepare(ssi_private->clk);
1360	return ret;
1361}
1362
1363static void fsl_ssi_imx_clean(struct platform_device *pdev,
1364		struct fsl_ssi_private *ssi_private)
1365{
1366	if (!ssi_private->use_dma)
1367		imx_pcm_fiq_exit(pdev);
1368	if (!ssi_private->has_ipg_clk_name)
1369		clk_disable_unprepare(ssi_private->clk);
1370}
1371
1372static int fsl_ssi_probe(struct platform_device *pdev)
1373{
1374	struct fsl_ssi_private *ssi_private;
1375	int ret = 0;
1376	struct device_node *np = pdev->dev.of_node;
1377	const struct of_device_id *of_id;
1378	const char *p, *sprop;
1379	const uint32_t *iprop;
1380	struct resource *res;
1381	void __iomem *iomem;
1382	char name[64];
1383
1384	of_id = of_match_device(fsl_ssi_ids, &pdev->dev);
1385	if (!of_id || !of_id->data)
1386		return -EINVAL;
1387
1388	ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private),
1389			GFP_KERNEL);
1390	if (!ssi_private) {
1391		dev_err(&pdev->dev, "could not allocate DAI object\n");
1392		return -ENOMEM;
1393	}
1394
1395	ssi_private->soc = of_id->data;
1396
1397	sprop = of_get_property(np, "fsl,mode", NULL);
1398	if (sprop) {
1399		if (!strcmp(sprop, "ac97-slave"))
1400			ssi_private->dai_fmt = SND_SOC_DAIFMT_AC97;
1401	}
1402
1403	ssi_private->use_dma = !of_property_read_bool(np,
1404			"fsl,fiq-stream-filter");
1405
1406	if (fsl_ssi_is_ac97(ssi_private)) {
1407		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
1408				sizeof(fsl_ssi_ac97_dai));
1409
1410		fsl_ac97_data = ssi_private;
1411
1412		ret = snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
1413		if (ret) {
1414			dev_err(&pdev->dev, "could not set AC'97 ops\n");
1415			return ret;
1416		}
1417	} else {
1418		/* Initialize this copy of the CPU DAI driver structure */
1419		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
1420		       sizeof(fsl_ssi_dai_template));
1421	}
1422	ssi_private->cpu_dai_drv.name = dev_name(&pdev->dev);
1423
1424	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1425	iomem = devm_ioremap_resource(&pdev->dev, res);
1426	if (IS_ERR(iomem))
1427		return PTR_ERR(iomem);
1428	ssi_private->ssi_phys = res->start;
1429
1430	ret = of_property_match_string(np, "clock-names", "ipg");
1431	if (ret < 0) {
1432		ssi_private->has_ipg_clk_name = false;
1433		ssi_private->regs = devm_regmap_init_mmio(&pdev->dev, iomem,
1434			&fsl_ssi_regconfig);
1435	} else {
1436		ssi_private->has_ipg_clk_name = true;
1437		ssi_private->regs = devm_regmap_init_mmio_clk(&pdev->dev,
1438			"ipg", iomem, &fsl_ssi_regconfig);
1439	}
1440	if (IS_ERR(ssi_private->regs)) {
1441		dev_err(&pdev->dev, "Failed to init register map\n");
1442		return PTR_ERR(ssi_private->regs);
1443	}
1444
1445	ssi_private->irq = platform_get_irq(pdev, 0);
1446	if (ssi_private->irq < 0) {
1447		dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
1448		return ssi_private->irq;
1449	}
1450
1451	/* Are the RX and the TX clocks locked? */
1452	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
1453		if (!fsl_ssi_is_ac97(ssi_private))
1454			ssi_private->cpu_dai_drv.symmetric_rates = 1;
1455
1456		ssi_private->cpu_dai_drv.symmetric_channels = 1;
1457		ssi_private->cpu_dai_drv.symmetric_samplebits = 1;
1458	}
1459
1460	/* Determine the FIFO depth. */
1461	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
1462	if (iprop)
1463		ssi_private->fifo_depth = be32_to_cpup(iprop);
1464	else
1465                /* Older 8610 DTs didn't have the fifo-depth property */
1466		ssi_private->fifo_depth = 8;
1467
1468	dev_set_drvdata(&pdev->dev, ssi_private);
1469
1470	if (ssi_private->soc->imx) {
1471		ret = fsl_ssi_imx_probe(pdev, ssi_private, iomem);
1472		if (ret)
1473			return ret;
1474	}
1475
1476	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
1477					      &ssi_private->cpu_dai_drv, 1);
1478	if (ret) {
1479		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1480		goto error_asoc_register;
1481	}
1482
1483	if (ssi_private->use_dma) {
1484		ret = devm_request_irq(&pdev->dev, ssi_private->irq,
1485					fsl_ssi_isr, 0, dev_name(&pdev->dev),
1486					ssi_private);
1487		if (ret < 0) {
1488			dev_err(&pdev->dev, "could not claim irq %u\n",
1489					ssi_private->irq);
1490			goto error_asoc_register;
1491		}
1492	}
1493
1494	ret = fsl_ssi_debugfs_create(&ssi_private->dbg_stats, &pdev->dev);
1495	if (ret)
1496		goto error_asoc_register;
1497
1498	/*
1499	 * If codec-handle property is missing from SSI node, we assume
1500	 * that the machine driver uses new binding which does not require
1501	 * SSI driver to trigger machine driver's probe.
1502	 */
1503	if (!of_get_property(np, "codec-handle", NULL))
1504		goto done;
1505
1506	/* Trigger the machine driver's probe function.  The platform driver
1507	 * name of the machine driver is taken from /compatible property of the
1508	 * device tree.  We also pass the address of the CPU DAI driver
1509	 * structure.
1510	 */
1511	sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
1512	/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1513	p = strrchr(sprop, ',');
1514	if (p)
1515		sprop = p + 1;
1516	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
1517	make_lowercase(name);
1518
1519	ssi_private->pdev =
1520		platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
1521	if (IS_ERR(ssi_private->pdev)) {
1522		ret = PTR_ERR(ssi_private->pdev);
1523		dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1524		goto error_sound_card;
1525	}
1526
1527done:
1528	if (ssi_private->dai_fmt)
1529		_fsl_ssi_set_dai_fmt(&pdev->dev, ssi_private,
1530				     ssi_private->dai_fmt);
1531
1532	if (fsl_ssi_is_ac97(ssi_private)) {
1533		u32 ssi_idx;
1534
1535		ret = of_property_read_u32(np, "cell-index", &ssi_idx);
1536		if (ret) {
1537			dev_err(&pdev->dev, "cannot get SSI index property\n");
1538			goto error_sound_card;
1539		}
1540
1541		ssi_private->pdev =
1542			platform_device_register_data(NULL,
1543					"ac97-codec", ssi_idx, NULL, 0);
1544		if (IS_ERR(ssi_private->pdev)) {
1545			ret = PTR_ERR(ssi_private->pdev);
1546			dev_err(&pdev->dev,
1547				"failed to register AC97 codec platform: %d\n",
1548				ret);
1549			goto error_sound_card;
1550		}
1551	}
1552
1553	return 0;
1554
1555error_sound_card:
1556	fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1557
1558error_asoc_register:
1559	if (ssi_private->soc->imx)
1560		fsl_ssi_imx_clean(pdev, ssi_private);
1561
1562	return ret;
1563}
1564
1565static int fsl_ssi_remove(struct platform_device *pdev)
1566{
1567	struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
1568
1569	fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1570
1571	if (ssi_private->pdev)
1572		platform_device_unregister(ssi_private->pdev);
1573
1574	if (ssi_private->soc->imx)
1575		fsl_ssi_imx_clean(pdev, ssi_private);
1576
1577	if (fsl_ssi_is_ac97(ssi_private))
1578		snd_soc_set_ac97_ops(NULL);
1579
1580	return 0;
1581}
1582
1583#ifdef CONFIG_PM_SLEEP
1584static int fsl_ssi_suspend(struct device *dev)
1585{
1586	struct fsl_ssi_private *ssi_private = dev_get_drvdata(dev);
1587	struct regmap *regs = ssi_private->regs;
1588
1589	regmap_read(regs, CCSR_SSI_SFCSR,
1590			&ssi_private->regcache_sfcsr);
1591
1592	regcache_cache_only(regs, true);
1593	regcache_mark_dirty(regs);
1594
1595	return 0;
1596}
1597
1598static int fsl_ssi_resume(struct device *dev)
1599{
1600	struct fsl_ssi_private *ssi_private = dev_get_drvdata(dev);
1601	struct regmap *regs = ssi_private->regs;
1602
1603	regcache_cache_only(regs, false);
1604
1605	regmap_update_bits(regs, CCSR_SSI_SFCSR,
1606			CCSR_SSI_SFCSR_RFWM1_MASK | CCSR_SSI_SFCSR_TFWM1_MASK |
1607			CCSR_SSI_SFCSR_RFWM0_MASK | CCSR_SSI_SFCSR_TFWM0_MASK,
1608			ssi_private->regcache_sfcsr);
1609
1610	return regcache_sync(regs);
1611}
1612#endif /* CONFIG_PM_SLEEP */
1613
1614static const struct dev_pm_ops fsl_ssi_pm = {
1615	SET_SYSTEM_SLEEP_PM_OPS(fsl_ssi_suspend, fsl_ssi_resume)
1616};
1617
1618static struct platform_driver fsl_ssi_driver = {
1619	.driver = {
1620		.name = "fsl-ssi-dai",
1621		.of_match_table = fsl_ssi_ids,
1622		.pm = &fsl_ssi_pm,
1623	},
1624	.probe = fsl_ssi_probe,
1625	.remove = fsl_ssi_remove,
1626};
1627
1628module_platform_driver(fsl_ssi_driver);
1629
1630MODULE_ALIAS("platform:fsl-ssi-dai");
1631MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1632MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1633MODULE_LICENSE("GPL v2");
1634