1/* SCTP kernel implementation
2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
3 *
4 * This file is part of the SCTP kernel implementation
5 *
6 * This SCTP implementation is free software;
7 * you can redistribute it and/or modify it under the terms of
8 * the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
11 *
12 * This SCTP implementation is distributed in the hope that it
13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 *                 ************************
15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16 * See the GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with GNU CC; see the file COPYING.  If not, see
20 * <http://www.gnu.org/licenses/>.
21 *
22 * Please send any bug reports or fixes you make to the
23 * email address(es):
24 *    lksctp developers <linux-sctp@vger.kernel.org>
25 *
26 * Written or modified by:
27 *   Vlad Yasevich     <vladislav.yasevich@hp.com>
28 */
29
30#include <linux/slab.h>
31#include <linux/types.h>
32#include <linux/crypto.h>
33#include <linux/scatterlist.h>
34#include <net/sctp/sctp.h>
35#include <net/sctp/auth.h>
36
37static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
38	{
39		/* id 0 is reserved.  as all 0 */
40		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
41	},
42	{
43		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
44		.hmac_name = "hmac(sha1)",
45		.hmac_len = SCTP_SHA1_SIG_SIZE,
46	},
47	{
48		/* id 2 is reserved as well */
49		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
50	},
51#if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
52	{
53		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
54		.hmac_name = "hmac(sha256)",
55		.hmac_len = SCTP_SHA256_SIG_SIZE,
56	}
57#endif
58};
59
60
61void sctp_auth_key_put(struct sctp_auth_bytes *key)
62{
63	if (!key)
64		return;
65
66	if (atomic_dec_and_test(&key->refcnt)) {
67		kzfree(key);
68		SCTP_DBG_OBJCNT_DEC(keys);
69	}
70}
71
72/* Create a new key structure of a given length */
73static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
74{
75	struct sctp_auth_bytes *key;
76
77	/* Verify that we are not going to overflow INT_MAX */
78	if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
79		return NULL;
80
81	/* Allocate the shared key */
82	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
83	if (!key)
84		return NULL;
85
86	key->len = key_len;
87	atomic_set(&key->refcnt, 1);
88	SCTP_DBG_OBJCNT_INC(keys);
89
90	return key;
91}
92
93/* Create a new shared key container with a give key id */
94struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
95{
96	struct sctp_shared_key *new;
97
98	/* Allocate the shared key container */
99	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
100	if (!new)
101		return NULL;
102
103	INIT_LIST_HEAD(&new->key_list);
104	new->key_id = key_id;
105
106	return new;
107}
108
109/* Free the shared key structure */
110static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
111{
112	BUG_ON(!list_empty(&sh_key->key_list));
113	sctp_auth_key_put(sh_key->key);
114	sh_key->key = NULL;
115	kfree(sh_key);
116}
117
118/* Destroy the entire key list.  This is done during the
119 * associon and endpoint free process.
120 */
121void sctp_auth_destroy_keys(struct list_head *keys)
122{
123	struct sctp_shared_key *ep_key;
124	struct sctp_shared_key *tmp;
125
126	if (list_empty(keys))
127		return;
128
129	key_for_each_safe(ep_key, tmp, keys) {
130		list_del_init(&ep_key->key_list);
131		sctp_auth_shkey_free(ep_key);
132	}
133}
134
135/* Compare two byte vectors as numbers.  Return values
136 * are:
137 * 	  0 - vectors are equal
138 * 	< 0 - vector 1 is smaller than vector2
139 * 	> 0 - vector 1 is greater than vector2
140 *
141 * Algorithm is:
142 * 	This is performed by selecting the numerically smaller key vector...
143 *	If the key vectors are equal as numbers but differ in length ...
144 *	the shorter vector is considered smaller
145 *
146 * Examples (with small values):
147 * 	000123456789 > 123456789 (first number is longer)
148 * 	000123456789 < 234567891 (second number is larger numerically)
149 * 	123456789 > 2345678 	 (first number is both larger & longer)
150 */
151static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
152			      struct sctp_auth_bytes *vector2)
153{
154	int diff;
155	int i;
156	const __u8 *longer;
157
158	diff = vector1->len - vector2->len;
159	if (diff) {
160		longer = (diff > 0) ? vector1->data : vector2->data;
161
162		/* Check to see if the longer number is
163		 * lead-zero padded.  If it is not, it
164		 * is automatically larger numerically.
165		 */
166		for (i = 0; i < abs(diff); i++) {
167			if (longer[i] != 0)
168				return diff;
169		}
170	}
171
172	/* lengths are the same, compare numbers */
173	return memcmp(vector1->data, vector2->data, vector1->len);
174}
175
176/*
177 * Create a key vector as described in SCTP-AUTH, Section 6.1
178 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
179 *    parameter sent by each endpoint are concatenated as byte vectors.
180 *    These parameters include the parameter type, parameter length, and
181 *    the parameter value, but padding is omitted; all padding MUST be
182 *    removed from this concatenation before proceeding with further
183 *    computation of keys.  Parameters which were not sent are simply
184 *    omitted from the concatenation process.  The resulting two vectors
185 *    are called the two key vectors.
186 */
187static struct sctp_auth_bytes *sctp_auth_make_key_vector(
188			sctp_random_param_t *random,
189			sctp_chunks_param_t *chunks,
190			sctp_hmac_algo_param_t *hmacs,
191			gfp_t gfp)
192{
193	struct sctp_auth_bytes *new;
194	__u32	len;
195	__u32	offset = 0;
196	__u16	random_len, hmacs_len, chunks_len = 0;
197
198	random_len = ntohs(random->param_hdr.length);
199	hmacs_len = ntohs(hmacs->param_hdr.length);
200	if (chunks)
201		chunks_len = ntohs(chunks->param_hdr.length);
202
203	len = random_len + hmacs_len + chunks_len;
204
205	new = sctp_auth_create_key(len, gfp);
206	if (!new)
207		return NULL;
208
209	memcpy(new->data, random, random_len);
210	offset += random_len;
211
212	if (chunks) {
213		memcpy(new->data + offset, chunks, chunks_len);
214		offset += chunks_len;
215	}
216
217	memcpy(new->data + offset, hmacs, hmacs_len);
218
219	return new;
220}
221
222
223/* Make a key vector based on our local parameters */
224static struct sctp_auth_bytes *sctp_auth_make_local_vector(
225				    const struct sctp_association *asoc,
226				    gfp_t gfp)
227{
228	return sctp_auth_make_key_vector(
229				    (sctp_random_param_t *)asoc->c.auth_random,
230				    (sctp_chunks_param_t *)asoc->c.auth_chunks,
231				    (sctp_hmac_algo_param_t *)asoc->c.auth_hmacs,
232				    gfp);
233}
234
235/* Make a key vector based on peer's parameters */
236static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
237				    const struct sctp_association *asoc,
238				    gfp_t gfp)
239{
240	return sctp_auth_make_key_vector(asoc->peer.peer_random,
241					 asoc->peer.peer_chunks,
242					 asoc->peer.peer_hmacs,
243					 gfp);
244}
245
246
247/* Set the value of the association shared key base on the parameters
248 * given.  The algorithm is:
249 *    From the endpoint pair shared keys and the key vectors the
250 *    association shared keys are computed.  This is performed by selecting
251 *    the numerically smaller key vector and concatenating it to the
252 *    endpoint pair shared key, and then concatenating the numerically
253 *    larger key vector to that.  The result of the concatenation is the
254 *    association shared key.
255 */
256static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
257			struct sctp_shared_key *ep_key,
258			struct sctp_auth_bytes *first_vector,
259			struct sctp_auth_bytes *last_vector,
260			gfp_t gfp)
261{
262	struct sctp_auth_bytes *secret;
263	__u32 offset = 0;
264	__u32 auth_len;
265
266	auth_len = first_vector->len + last_vector->len;
267	if (ep_key->key)
268		auth_len += ep_key->key->len;
269
270	secret = sctp_auth_create_key(auth_len, gfp);
271	if (!secret)
272		return NULL;
273
274	if (ep_key->key) {
275		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
276		offset += ep_key->key->len;
277	}
278
279	memcpy(secret->data + offset, first_vector->data, first_vector->len);
280	offset += first_vector->len;
281
282	memcpy(secret->data + offset, last_vector->data, last_vector->len);
283
284	return secret;
285}
286
287/* Create an association shared key.  Follow the algorithm
288 * described in SCTP-AUTH, Section 6.1
289 */
290static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
291				 const struct sctp_association *asoc,
292				 struct sctp_shared_key *ep_key,
293				 gfp_t gfp)
294{
295	struct sctp_auth_bytes *local_key_vector;
296	struct sctp_auth_bytes *peer_key_vector;
297	struct sctp_auth_bytes	*first_vector,
298				*last_vector;
299	struct sctp_auth_bytes	*secret = NULL;
300	int	cmp;
301
302
303	/* Now we need to build the key vectors
304	 * SCTP-AUTH , Section 6.1
305	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
306	 *    parameter sent by each endpoint are concatenated as byte vectors.
307	 *    These parameters include the parameter type, parameter length, and
308	 *    the parameter value, but padding is omitted; all padding MUST be
309	 *    removed from this concatenation before proceeding with further
310	 *    computation of keys.  Parameters which were not sent are simply
311	 *    omitted from the concatenation process.  The resulting two vectors
312	 *    are called the two key vectors.
313	 */
314
315	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
316	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
317
318	if (!peer_key_vector || !local_key_vector)
319		goto out;
320
321	/* Figure out the order in which the key_vectors will be
322	 * added to the endpoint shared key.
323	 * SCTP-AUTH, Section 6.1:
324	 *   This is performed by selecting the numerically smaller key
325	 *   vector and concatenating it to the endpoint pair shared
326	 *   key, and then concatenating the numerically larger key
327	 *   vector to that.  If the key vectors are equal as numbers
328	 *   but differ in length, then the concatenation order is the
329	 *   endpoint shared key, followed by the shorter key vector,
330	 *   followed by the longer key vector.  Otherwise, the key
331	 *   vectors are identical, and may be concatenated to the
332	 *   endpoint pair key in any order.
333	 */
334	cmp = sctp_auth_compare_vectors(local_key_vector,
335					peer_key_vector);
336	if (cmp < 0) {
337		first_vector = local_key_vector;
338		last_vector = peer_key_vector;
339	} else {
340		first_vector = peer_key_vector;
341		last_vector = local_key_vector;
342	}
343
344	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
345					    gfp);
346out:
347	sctp_auth_key_put(local_key_vector);
348	sctp_auth_key_put(peer_key_vector);
349
350	return secret;
351}
352
353/*
354 * Populate the association overlay list with the list
355 * from the endpoint.
356 */
357int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
358				struct sctp_association *asoc,
359				gfp_t gfp)
360{
361	struct sctp_shared_key *sh_key;
362	struct sctp_shared_key *new;
363
364	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
365
366	key_for_each(sh_key, &ep->endpoint_shared_keys) {
367		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
368		if (!new)
369			goto nomem;
370
371		new->key = sh_key->key;
372		sctp_auth_key_hold(new->key);
373		list_add(&new->key_list, &asoc->endpoint_shared_keys);
374	}
375
376	return 0;
377
378nomem:
379	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
380	return -ENOMEM;
381}
382
383
384/* Public interface to create the association shared key.
385 * See code above for the algorithm.
386 */
387int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
388{
389	struct sctp_auth_bytes	*secret;
390	struct sctp_shared_key *ep_key;
391	struct sctp_chunk *chunk;
392
393	/* If we don't support AUTH, or peer is not capable
394	 * we don't need to do anything.
395	 */
396	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
397		return 0;
398
399	/* If the key_id is non-zero and we couldn't find an
400	 * endpoint pair shared key, we can't compute the
401	 * secret.
402	 * For key_id 0, endpoint pair shared key is a NULL key.
403	 */
404	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
405	BUG_ON(!ep_key);
406
407	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
408	if (!secret)
409		return -ENOMEM;
410
411	sctp_auth_key_put(asoc->asoc_shared_key);
412	asoc->asoc_shared_key = secret;
413
414	/* Update send queue in case any chunk already in there now
415	 * needs authenticating
416	 */
417	list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
418		if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc))
419			chunk->auth = 1;
420	}
421
422	return 0;
423}
424
425
426/* Find the endpoint pair shared key based on the key_id */
427struct sctp_shared_key *sctp_auth_get_shkey(
428				const struct sctp_association *asoc,
429				__u16 key_id)
430{
431	struct sctp_shared_key *key;
432
433	/* First search associations set of endpoint pair shared keys */
434	key_for_each(key, &asoc->endpoint_shared_keys) {
435		if (key->key_id == key_id)
436			return key;
437	}
438
439	return NULL;
440}
441
442/*
443 * Initialize all the possible digest transforms that we can use.  Right now
444 * now, the supported digests are SHA1 and SHA256.  We do this here once
445 * because of the restrictiong that transforms may only be allocated in
446 * user context.  This forces us to pre-allocated all possible transforms
447 * at the endpoint init time.
448 */
449int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
450{
451	struct crypto_hash *tfm = NULL;
452	__u16   id;
453
454	/* If AUTH extension is disabled, we are done */
455	if (!ep->auth_enable) {
456		ep->auth_hmacs = NULL;
457		return 0;
458	}
459
460	/* If the transforms are already allocated, we are done */
461	if (ep->auth_hmacs)
462		return 0;
463
464	/* Allocated the array of pointers to transorms */
465	ep->auth_hmacs = kzalloc(
466			    sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
467			    gfp);
468	if (!ep->auth_hmacs)
469		return -ENOMEM;
470
471	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
472
473		/* See is we support the id.  Supported IDs have name and
474		 * length fields set, so that we can allocated and use
475		 * them.  We can safely just check for name, for without the
476		 * name, we can't allocate the TFM.
477		 */
478		if (!sctp_hmac_list[id].hmac_name)
479			continue;
480
481		/* If this TFM has been allocated, we are all set */
482		if (ep->auth_hmacs[id])
483			continue;
484
485		/* Allocate the ID */
486		tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
487					CRYPTO_ALG_ASYNC);
488		if (IS_ERR(tfm))
489			goto out_err;
490
491		ep->auth_hmacs[id] = tfm;
492	}
493
494	return 0;
495
496out_err:
497	/* Clean up any successful allocations */
498	sctp_auth_destroy_hmacs(ep->auth_hmacs);
499	return -ENOMEM;
500}
501
502/* Destroy the hmac tfm array */
503void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
504{
505	int i;
506
507	if (!auth_hmacs)
508		return;
509
510	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
511		if (auth_hmacs[i])
512			crypto_free_hash(auth_hmacs[i]);
513	}
514	kfree(auth_hmacs);
515}
516
517
518struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
519{
520	return &sctp_hmac_list[hmac_id];
521}
522
523/* Get an hmac description information that we can use to build
524 * the AUTH chunk
525 */
526struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
527{
528	struct sctp_hmac_algo_param *hmacs;
529	__u16 n_elt;
530	__u16 id = 0;
531	int i;
532
533	/* If we have a default entry, use it */
534	if (asoc->default_hmac_id)
535		return &sctp_hmac_list[asoc->default_hmac_id];
536
537	/* Since we do not have a default entry, find the first entry
538	 * we support and return that.  Do not cache that id.
539	 */
540	hmacs = asoc->peer.peer_hmacs;
541	if (!hmacs)
542		return NULL;
543
544	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
545	for (i = 0; i < n_elt; i++) {
546		id = ntohs(hmacs->hmac_ids[i]);
547
548		/* Check the id is in the supported range. And
549		 * see if we support the id.  Supported IDs have name and
550		 * length fields set, so that we can allocate and use
551		 * them.  We can safely just check for name, for without the
552		 * name, we can't allocate the TFM.
553		 */
554		if (id > SCTP_AUTH_HMAC_ID_MAX ||
555		    !sctp_hmac_list[id].hmac_name) {
556			id = 0;
557			continue;
558		}
559
560		break;
561	}
562
563	if (id == 0)
564		return NULL;
565
566	return &sctp_hmac_list[id];
567}
568
569static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
570{
571	int  found = 0;
572	int  i;
573
574	for (i = 0; i < n_elts; i++) {
575		if (hmac_id == hmacs[i]) {
576			found = 1;
577			break;
578		}
579	}
580
581	return found;
582}
583
584/* See if the HMAC_ID is one that we claim as supported */
585int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
586				    __be16 hmac_id)
587{
588	struct sctp_hmac_algo_param *hmacs;
589	__u16 n_elt;
590
591	if (!asoc)
592		return 0;
593
594	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
595	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
596
597	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
598}
599
600
601/* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
602 * Section 6.1:
603 *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
604 *   algorithm it supports.
605 */
606void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
607				     struct sctp_hmac_algo_param *hmacs)
608{
609	struct sctp_endpoint *ep;
610	__u16   id;
611	int	i;
612	int	n_params;
613
614	/* if the default id is already set, use it */
615	if (asoc->default_hmac_id)
616		return;
617
618	n_params = (ntohs(hmacs->param_hdr.length)
619				- sizeof(sctp_paramhdr_t)) >> 1;
620	ep = asoc->ep;
621	for (i = 0; i < n_params; i++) {
622		id = ntohs(hmacs->hmac_ids[i]);
623
624		/* Check the id is in the supported range */
625		if (id > SCTP_AUTH_HMAC_ID_MAX)
626			continue;
627
628		/* If this TFM has been allocated, use this id */
629		if (ep->auth_hmacs[id]) {
630			asoc->default_hmac_id = id;
631			break;
632		}
633	}
634}
635
636
637/* Check to see if the given chunk is supposed to be authenticated */
638static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
639{
640	unsigned short len;
641	int found = 0;
642	int i;
643
644	if (!param || param->param_hdr.length == 0)
645		return 0;
646
647	len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
648
649	/* SCTP-AUTH, Section 3.2
650	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
651	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
652	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
653	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
654	 */
655	for (i = 0; !found && i < len; i++) {
656		switch (param->chunks[i]) {
657		case SCTP_CID_INIT:
658		case SCTP_CID_INIT_ACK:
659		case SCTP_CID_SHUTDOWN_COMPLETE:
660		case SCTP_CID_AUTH:
661			break;
662
663		default:
664			if (param->chunks[i] == chunk)
665				found = 1;
666			break;
667		}
668	}
669
670	return found;
671}
672
673/* Check if peer requested that this chunk is authenticated */
674int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
675{
676	if (!asoc)
677		return 0;
678
679	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
680		return 0;
681
682	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
683}
684
685/* Check if we requested that peer authenticate this chunk. */
686int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
687{
688	if (!asoc)
689		return 0;
690
691	if (!asoc->ep->auth_enable)
692		return 0;
693
694	return __sctp_auth_cid(chunk,
695			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
696}
697
698/* SCTP-AUTH: Section 6.2:
699 *    The sender MUST calculate the MAC as described in RFC2104 [2] using
700 *    the hash function H as described by the MAC Identifier and the shared
701 *    association key K based on the endpoint pair shared key described by
702 *    the shared key identifier.  The 'data' used for the computation of
703 *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
704 *    zero (as shown in Figure 6) followed by all chunks that are placed
705 *    after the AUTH chunk in the SCTP packet.
706 */
707void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
708			      struct sk_buff *skb,
709			      struct sctp_auth_chunk *auth,
710			      gfp_t gfp)
711{
712	struct scatterlist sg;
713	struct hash_desc desc;
714	struct sctp_auth_bytes *asoc_key;
715	__u16 key_id, hmac_id;
716	__u8 *digest;
717	unsigned char *end;
718	int free_key = 0;
719
720	/* Extract the info we need:
721	 * - hmac id
722	 * - key id
723	 */
724	key_id = ntohs(auth->auth_hdr.shkey_id);
725	hmac_id = ntohs(auth->auth_hdr.hmac_id);
726
727	if (key_id == asoc->active_key_id)
728		asoc_key = asoc->asoc_shared_key;
729	else {
730		struct sctp_shared_key *ep_key;
731
732		ep_key = sctp_auth_get_shkey(asoc, key_id);
733		if (!ep_key)
734			return;
735
736		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
737		if (!asoc_key)
738			return;
739
740		free_key = 1;
741	}
742
743	/* set up scatter list */
744	end = skb_tail_pointer(skb);
745	sg_init_one(&sg, auth, end - (unsigned char *)auth);
746
747	desc.tfm = asoc->ep->auth_hmacs[hmac_id];
748	desc.flags = 0;
749
750	digest = auth->auth_hdr.hmac;
751	if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
752		goto free;
753
754	crypto_hash_digest(&desc, &sg, sg.length, digest);
755
756free:
757	if (free_key)
758		sctp_auth_key_put(asoc_key);
759}
760
761/* API Helpers */
762
763/* Add a chunk to the endpoint authenticated chunk list */
764int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
765{
766	struct sctp_chunks_param *p = ep->auth_chunk_list;
767	__u16 nchunks;
768	__u16 param_len;
769
770	/* If this chunk is already specified, we are done */
771	if (__sctp_auth_cid(chunk_id, p))
772		return 0;
773
774	/* Check if we can add this chunk to the array */
775	param_len = ntohs(p->param_hdr.length);
776	nchunks = param_len - sizeof(sctp_paramhdr_t);
777	if (nchunks == SCTP_NUM_CHUNK_TYPES)
778		return -EINVAL;
779
780	p->chunks[nchunks] = chunk_id;
781	p->param_hdr.length = htons(param_len + 1);
782	return 0;
783}
784
785/* Add hmac identifires to the endpoint list of supported hmac ids */
786int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
787			   struct sctp_hmacalgo *hmacs)
788{
789	int has_sha1 = 0;
790	__u16 id;
791	int i;
792
793	/* Scan the list looking for unsupported id.  Also make sure that
794	 * SHA1 is specified.
795	 */
796	for (i = 0; i < hmacs->shmac_num_idents; i++) {
797		id = hmacs->shmac_idents[i];
798
799		if (id > SCTP_AUTH_HMAC_ID_MAX)
800			return -EOPNOTSUPP;
801
802		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
803			has_sha1 = 1;
804
805		if (!sctp_hmac_list[id].hmac_name)
806			return -EOPNOTSUPP;
807	}
808
809	if (!has_sha1)
810		return -EINVAL;
811
812	for (i = 0; i < hmacs->shmac_num_idents; i++)
813		ep->auth_hmacs_list->hmac_ids[i] = htons(hmacs->shmac_idents[i]);
814	ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
815				hmacs->shmac_num_idents * sizeof(__u16));
816	return 0;
817}
818
819/* Set a new shared key on either endpoint or association.  If the
820 * the key with a same ID already exists, replace the key (remove the
821 * old key and add a new one).
822 */
823int sctp_auth_set_key(struct sctp_endpoint *ep,
824		      struct sctp_association *asoc,
825		      struct sctp_authkey *auth_key)
826{
827	struct sctp_shared_key *cur_key = NULL;
828	struct sctp_auth_bytes *key;
829	struct list_head *sh_keys;
830	int replace = 0;
831
832	/* Try to find the given key id to see if
833	 * we are doing a replace, or adding a new key
834	 */
835	if (asoc)
836		sh_keys = &asoc->endpoint_shared_keys;
837	else
838		sh_keys = &ep->endpoint_shared_keys;
839
840	key_for_each(cur_key, sh_keys) {
841		if (cur_key->key_id == auth_key->sca_keynumber) {
842			replace = 1;
843			break;
844		}
845	}
846
847	/* If we are not replacing a key id, we need to allocate
848	 * a shared key.
849	 */
850	if (!replace) {
851		cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
852						 GFP_KERNEL);
853		if (!cur_key)
854			return -ENOMEM;
855	}
856
857	/* Create a new key data based on the info passed in */
858	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
859	if (!key)
860		goto nomem;
861
862	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
863
864	/* If we are replacing, remove the old keys data from the
865	 * key id.  If we are adding new key id, add it to the
866	 * list.
867	 */
868	if (replace)
869		sctp_auth_key_put(cur_key->key);
870	else
871		list_add(&cur_key->key_list, sh_keys);
872
873	cur_key->key = key;
874	return 0;
875nomem:
876	if (!replace)
877		sctp_auth_shkey_free(cur_key);
878
879	return -ENOMEM;
880}
881
882int sctp_auth_set_active_key(struct sctp_endpoint *ep,
883			     struct sctp_association *asoc,
884			     __u16  key_id)
885{
886	struct sctp_shared_key *key;
887	struct list_head *sh_keys;
888	int found = 0;
889
890	/* The key identifier MUST correst to an existing key */
891	if (asoc)
892		sh_keys = &asoc->endpoint_shared_keys;
893	else
894		sh_keys = &ep->endpoint_shared_keys;
895
896	key_for_each(key, sh_keys) {
897		if (key->key_id == key_id) {
898			found = 1;
899			break;
900		}
901	}
902
903	if (!found)
904		return -EINVAL;
905
906	if (asoc) {
907		asoc->active_key_id = key_id;
908		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
909	} else
910		ep->active_key_id = key_id;
911
912	return 0;
913}
914
915int sctp_auth_del_key_id(struct sctp_endpoint *ep,
916			 struct sctp_association *asoc,
917			 __u16  key_id)
918{
919	struct sctp_shared_key *key;
920	struct list_head *sh_keys;
921	int found = 0;
922
923	/* The key identifier MUST NOT be the current active key
924	 * The key identifier MUST correst to an existing key
925	 */
926	if (asoc) {
927		if (asoc->active_key_id == key_id)
928			return -EINVAL;
929
930		sh_keys = &asoc->endpoint_shared_keys;
931	} else {
932		if (ep->active_key_id == key_id)
933			return -EINVAL;
934
935		sh_keys = &ep->endpoint_shared_keys;
936	}
937
938	key_for_each(key, sh_keys) {
939		if (key->key_id == key_id) {
940			found = 1;
941			break;
942		}
943	}
944
945	if (!found)
946		return -EINVAL;
947
948	/* Delete the shared key */
949	list_del_init(&key->key_list);
950	sctp_auth_shkey_free(key);
951
952	return 0;
953}
954