1/*
2 * Copyright (c) 2006 Oracle.  All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33#include <linux/kernel.h>
34#include <linux/moduleparam.h>
35#include <linux/gfp.h>
36#include <net/sock.h>
37#include <linux/in.h>
38#include <linux/list.h>
39#include <linux/ratelimit.h>
40#include <linux/export.h>
41#include <linux/sizes.h>
42
43#include "rds.h"
44
45/* When transmitting messages in rds_send_xmit, we need to emerge from
46 * time to time and briefly release the CPU. Otherwise the softlock watchdog
47 * will kick our shin.
48 * Also, it seems fairer to not let one busy connection stall all the
49 * others.
50 *
51 * send_batch_count is the number of times we'll loop in send_xmit. Setting
52 * it to 0 will restore the old behavior (where we looped until we had
53 * drained the queue).
54 */
55static int send_batch_count = SZ_1K;
56module_param(send_batch_count, int, 0444);
57MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
58
59static void rds_send_remove_from_sock(struct list_head *messages, int status);
60
61/*
62 * Reset the send state.  Callers must ensure that this doesn't race with
63 * rds_send_xmit().
64 */
65void rds_send_reset(struct rds_connection *conn)
66{
67	struct rds_message *rm, *tmp;
68	unsigned long flags;
69
70	if (conn->c_xmit_rm) {
71		rm = conn->c_xmit_rm;
72		conn->c_xmit_rm = NULL;
73		/* Tell the user the RDMA op is no longer mapped by the
74		 * transport. This isn't entirely true (it's flushed out
75		 * independently) but as the connection is down, there's
76		 * no ongoing RDMA to/from that memory */
77		rds_message_unmapped(rm);
78		rds_message_put(rm);
79	}
80
81	conn->c_xmit_sg = 0;
82	conn->c_xmit_hdr_off = 0;
83	conn->c_xmit_data_off = 0;
84	conn->c_xmit_atomic_sent = 0;
85	conn->c_xmit_rdma_sent = 0;
86	conn->c_xmit_data_sent = 0;
87
88	conn->c_map_queued = 0;
89
90	conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
91	conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
92
93	/* Mark messages as retransmissions, and move them to the send q */
94	spin_lock_irqsave(&conn->c_lock, flags);
95	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
96		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
97		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
98	}
99	list_splice_init(&conn->c_retrans, &conn->c_send_queue);
100	spin_unlock_irqrestore(&conn->c_lock, flags);
101}
102
103static int acquire_in_xmit(struct rds_connection *conn)
104{
105	return test_and_set_bit(RDS_IN_XMIT, &conn->c_flags) == 0;
106}
107
108static void release_in_xmit(struct rds_connection *conn)
109{
110	clear_bit(RDS_IN_XMIT, &conn->c_flags);
111	smp_mb__after_atomic();
112	/*
113	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
114	 * hot path and finding waiters is very rare.  We don't want to walk
115	 * the system-wide hashed waitqueue buckets in the fast path only to
116	 * almost never find waiters.
117	 */
118	if (waitqueue_active(&conn->c_waitq))
119		wake_up_all(&conn->c_waitq);
120}
121
122/*
123 * We're making the conscious trade-off here to only send one message
124 * down the connection at a time.
125 *   Pro:
126 *      - tx queueing is a simple fifo list
127 *   	- reassembly is optional and easily done by transports per conn
128 *      - no per flow rx lookup at all, straight to the socket
129 *   	- less per-frag memory and wire overhead
130 *   Con:
131 *      - queued acks can be delayed behind large messages
132 *   Depends:
133 *      - small message latency is higher behind queued large messages
134 *      - large message latency isn't starved by intervening small sends
135 */
136int rds_send_xmit(struct rds_connection *conn)
137{
138	struct rds_message *rm;
139	unsigned long flags;
140	unsigned int tmp;
141	struct scatterlist *sg;
142	int ret = 0;
143	LIST_HEAD(to_be_dropped);
144	int batch_count;
145	unsigned long send_gen = 0;
146
147restart:
148	batch_count = 0;
149
150	/*
151	 * sendmsg calls here after having queued its message on the send
152	 * queue.  We only have one task feeding the connection at a time.  If
153	 * another thread is already feeding the queue then we back off.  This
154	 * avoids blocking the caller and trading per-connection data between
155	 * caches per message.
156	 */
157	if (!acquire_in_xmit(conn)) {
158		rds_stats_inc(s_send_lock_contention);
159		ret = -ENOMEM;
160		goto out;
161	}
162
163	/*
164	 * we record the send generation after doing the xmit acquire.
165	 * if someone else manages to jump in and do some work, we'll use
166	 * this to avoid a goto restart farther down.
167	 *
168	 * The acquire_in_xmit() check above ensures that only one
169	 * caller can increment c_send_gen at any time.
170	 */
171	conn->c_send_gen++;
172	send_gen = conn->c_send_gen;
173
174	/*
175	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
176	 * we do the opposite to avoid races.
177	 */
178	if (!rds_conn_up(conn)) {
179		release_in_xmit(conn);
180		ret = 0;
181		goto out;
182	}
183
184	if (conn->c_trans->xmit_prepare)
185		conn->c_trans->xmit_prepare(conn);
186
187	/*
188	 * spin trying to push headers and data down the connection until
189	 * the connection doesn't make forward progress.
190	 */
191	while (1) {
192
193		rm = conn->c_xmit_rm;
194
195		/*
196		 * If between sending messages, we can send a pending congestion
197		 * map update.
198		 */
199		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
200			rm = rds_cong_update_alloc(conn);
201			if (IS_ERR(rm)) {
202				ret = PTR_ERR(rm);
203				break;
204			}
205			rm->data.op_active = 1;
206
207			conn->c_xmit_rm = rm;
208		}
209
210		/*
211		 * If not already working on one, grab the next message.
212		 *
213		 * c_xmit_rm holds a ref while we're sending this message down
214		 * the connction.  We can use this ref while holding the
215		 * send_sem.. rds_send_reset() is serialized with it.
216		 */
217		if (!rm) {
218			unsigned int len;
219
220			batch_count++;
221
222			/* we want to process as big a batch as we can, but
223			 * we also want to avoid softlockups.  If we've been
224			 * through a lot of messages, lets back off and see
225			 * if anyone else jumps in
226			 */
227			if (batch_count >= send_batch_count)
228				goto over_batch;
229
230			spin_lock_irqsave(&conn->c_lock, flags);
231
232			if (!list_empty(&conn->c_send_queue)) {
233				rm = list_entry(conn->c_send_queue.next,
234						struct rds_message,
235						m_conn_item);
236				rds_message_addref(rm);
237
238				/*
239				 * Move the message from the send queue to the retransmit
240				 * list right away.
241				 */
242				list_move_tail(&rm->m_conn_item, &conn->c_retrans);
243			}
244
245			spin_unlock_irqrestore(&conn->c_lock, flags);
246
247			if (!rm)
248				break;
249
250			/* Unfortunately, the way Infiniband deals with
251			 * RDMA to a bad MR key is by moving the entire
252			 * queue pair to error state. We cold possibly
253			 * recover from that, but right now we drop the
254			 * connection.
255			 * Therefore, we never retransmit messages with RDMA ops.
256			 */
257			if (rm->rdma.op_active &&
258			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
259				spin_lock_irqsave(&conn->c_lock, flags);
260				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
261					list_move(&rm->m_conn_item, &to_be_dropped);
262				spin_unlock_irqrestore(&conn->c_lock, flags);
263				continue;
264			}
265
266			/* Require an ACK every once in a while */
267			len = ntohl(rm->m_inc.i_hdr.h_len);
268			if (conn->c_unacked_packets == 0 ||
269			    conn->c_unacked_bytes < len) {
270				__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
271
272				conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
273				conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
274				rds_stats_inc(s_send_ack_required);
275			} else {
276				conn->c_unacked_bytes -= len;
277				conn->c_unacked_packets--;
278			}
279
280			conn->c_xmit_rm = rm;
281		}
282
283		/* The transport either sends the whole rdma or none of it */
284		if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) {
285			rm->m_final_op = &rm->rdma;
286			/* The transport owns the mapped memory for now.
287			 * You can't unmap it while it's on the send queue
288			 */
289			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
290			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
291			if (ret) {
292				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
293				wake_up_interruptible(&rm->m_flush_wait);
294				break;
295			}
296			conn->c_xmit_rdma_sent = 1;
297
298		}
299
300		if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
301			rm->m_final_op = &rm->atomic;
302			/* The transport owns the mapped memory for now.
303			 * You can't unmap it while it's on the send queue
304			 */
305			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
306			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
307			if (ret) {
308				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
309				wake_up_interruptible(&rm->m_flush_wait);
310				break;
311			}
312			conn->c_xmit_atomic_sent = 1;
313
314		}
315
316		/*
317		 * A number of cases require an RDS header to be sent
318		 * even if there is no data.
319		 * We permit 0-byte sends; rds-ping depends on this.
320		 * However, if there are exclusively attached silent ops,
321		 * we skip the hdr/data send, to enable silent operation.
322		 */
323		if (rm->data.op_nents == 0) {
324			int ops_present;
325			int all_ops_are_silent = 1;
326
327			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
328			if (rm->atomic.op_active && !rm->atomic.op_silent)
329				all_ops_are_silent = 0;
330			if (rm->rdma.op_active && !rm->rdma.op_silent)
331				all_ops_are_silent = 0;
332
333			if (ops_present && all_ops_are_silent
334			    && !rm->m_rdma_cookie)
335				rm->data.op_active = 0;
336		}
337
338		if (rm->data.op_active && !conn->c_xmit_data_sent) {
339			rm->m_final_op = &rm->data;
340			ret = conn->c_trans->xmit(conn, rm,
341						  conn->c_xmit_hdr_off,
342						  conn->c_xmit_sg,
343						  conn->c_xmit_data_off);
344			if (ret <= 0)
345				break;
346
347			if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
348				tmp = min_t(int, ret,
349					    sizeof(struct rds_header) -
350					    conn->c_xmit_hdr_off);
351				conn->c_xmit_hdr_off += tmp;
352				ret -= tmp;
353			}
354
355			sg = &rm->data.op_sg[conn->c_xmit_sg];
356			while (ret) {
357				tmp = min_t(int, ret, sg->length -
358						      conn->c_xmit_data_off);
359				conn->c_xmit_data_off += tmp;
360				ret -= tmp;
361				if (conn->c_xmit_data_off == sg->length) {
362					conn->c_xmit_data_off = 0;
363					sg++;
364					conn->c_xmit_sg++;
365					BUG_ON(ret != 0 &&
366					       conn->c_xmit_sg == rm->data.op_nents);
367				}
368			}
369
370			if (conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
371			    (conn->c_xmit_sg == rm->data.op_nents))
372				conn->c_xmit_data_sent = 1;
373		}
374
375		/*
376		 * A rm will only take multiple times through this loop
377		 * if there is a data op. Thus, if the data is sent (or there was
378		 * none), then we're done with the rm.
379		 */
380		if (!rm->data.op_active || conn->c_xmit_data_sent) {
381			conn->c_xmit_rm = NULL;
382			conn->c_xmit_sg = 0;
383			conn->c_xmit_hdr_off = 0;
384			conn->c_xmit_data_off = 0;
385			conn->c_xmit_rdma_sent = 0;
386			conn->c_xmit_atomic_sent = 0;
387			conn->c_xmit_data_sent = 0;
388
389			rds_message_put(rm);
390		}
391	}
392
393over_batch:
394	if (conn->c_trans->xmit_complete)
395		conn->c_trans->xmit_complete(conn);
396	release_in_xmit(conn);
397
398	/* Nuke any messages we decided not to retransmit. */
399	if (!list_empty(&to_be_dropped)) {
400		/* irqs on here, so we can put(), unlike above */
401		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
402			rds_message_put(rm);
403		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
404	}
405
406	/*
407	 * Other senders can queue a message after we last test the send queue
408	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
409	 * not try and send their newly queued message.  We need to check the
410	 * send queue after having cleared RDS_IN_XMIT so that their message
411	 * doesn't get stuck on the send queue.
412	 *
413	 * If the transport cannot continue (i.e ret != 0), then it must
414	 * call us when more room is available, such as from the tx
415	 * completion handler.
416	 *
417	 * We have an extra generation check here so that if someone manages
418	 * to jump in after our release_in_xmit, we'll see that they have done
419	 * some work and we will skip our goto
420	 */
421	if (ret == 0) {
422		smp_mb();
423		if ((test_bit(0, &conn->c_map_queued) ||
424		     !list_empty(&conn->c_send_queue)) &&
425		    send_gen == conn->c_send_gen) {
426			rds_stats_inc(s_send_lock_queue_raced);
427			if (batch_count < send_batch_count)
428				goto restart;
429			queue_delayed_work(rds_wq, &conn->c_send_w, 1);
430		}
431	}
432out:
433	return ret;
434}
435EXPORT_SYMBOL_GPL(rds_send_xmit);
436
437static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
438{
439	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
440
441	assert_spin_locked(&rs->rs_lock);
442
443	BUG_ON(rs->rs_snd_bytes < len);
444	rs->rs_snd_bytes -= len;
445
446	if (rs->rs_snd_bytes == 0)
447		rds_stats_inc(s_send_queue_empty);
448}
449
450static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
451				    is_acked_func is_acked)
452{
453	if (is_acked)
454		return is_acked(rm, ack);
455	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
456}
457
458/*
459 * This is pretty similar to what happens below in the ACK
460 * handling code - except that we call here as soon as we get
461 * the IB send completion on the RDMA op and the accompanying
462 * message.
463 */
464void rds_rdma_send_complete(struct rds_message *rm, int status)
465{
466	struct rds_sock *rs = NULL;
467	struct rm_rdma_op *ro;
468	struct rds_notifier *notifier;
469	unsigned long flags;
470
471	spin_lock_irqsave(&rm->m_rs_lock, flags);
472
473	ro = &rm->rdma;
474	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
475	    ro->op_active && ro->op_notify && ro->op_notifier) {
476		notifier = ro->op_notifier;
477		rs = rm->m_rs;
478		sock_hold(rds_rs_to_sk(rs));
479
480		notifier->n_status = status;
481		spin_lock(&rs->rs_lock);
482		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
483		spin_unlock(&rs->rs_lock);
484
485		ro->op_notifier = NULL;
486	}
487
488	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
489
490	if (rs) {
491		rds_wake_sk_sleep(rs);
492		sock_put(rds_rs_to_sk(rs));
493	}
494}
495EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
496
497/*
498 * Just like above, except looks at atomic op
499 */
500void rds_atomic_send_complete(struct rds_message *rm, int status)
501{
502	struct rds_sock *rs = NULL;
503	struct rm_atomic_op *ao;
504	struct rds_notifier *notifier;
505	unsigned long flags;
506
507	spin_lock_irqsave(&rm->m_rs_lock, flags);
508
509	ao = &rm->atomic;
510	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
511	    && ao->op_active && ao->op_notify && ao->op_notifier) {
512		notifier = ao->op_notifier;
513		rs = rm->m_rs;
514		sock_hold(rds_rs_to_sk(rs));
515
516		notifier->n_status = status;
517		spin_lock(&rs->rs_lock);
518		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
519		spin_unlock(&rs->rs_lock);
520
521		ao->op_notifier = NULL;
522	}
523
524	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
525
526	if (rs) {
527		rds_wake_sk_sleep(rs);
528		sock_put(rds_rs_to_sk(rs));
529	}
530}
531EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
532
533/*
534 * This is the same as rds_rdma_send_complete except we
535 * don't do any locking - we have all the ingredients (message,
536 * socket, socket lock) and can just move the notifier.
537 */
538static inline void
539__rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
540{
541	struct rm_rdma_op *ro;
542	struct rm_atomic_op *ao;
543
544	ro = &rm->rdma;
545	if (ro->op_active && ro->op_notify && ro->op_notifier) {
546		ro->op_notifier->n_status = status;
547		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
548		ro->op_notifier = NULL;
549	}
550
551	ao = &rm->atomic;
552	if (ao->op_active && ao->op_notify && ao->op_notifier) {
553		ao->op_notifier->n_status = status;
554		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
555		ao->op_notifier = NULL;
556	}
557
558	/* No need to wake the app - caller does this */
559}
560
561/*
562 * This is called from the IB send completion when we detect
563 * a RDMA operation that failed with remote access error.
564 * So speed is not an issue here.
565 */
566struct rds_message *rds_send_get_message(struct rds_connection *conn,
567					 struct rm_rdma_op *op)
568{
569	struct rds_message *rm, *tmp, *found = NULL;
570	unsigned long flags;
571
572	spin_lock_irqsave(&conn->c_lock, flags);
573
574	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
575		if (&rm->rdma == op) {
576			atomic_inc(&rm->m_refcount);
577			found = rm;
578			goto out;
579		}
580	}
581
582	list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
583		if (&rm->rdma == op) {
584			atomic_inc(&rm->m_refcount);
585			found = rm;
586			break;
587		}
588	}
589
590out:
591	spin_unlock_irqrestore(&conn->c_lock, flags);
592
593	return found;
594}
595EXPORT_SYMBOL_GPL(rds_send_get_message);
596
597/*
598 * This removes messages from the socket's list if they're on it.  The list
599 * argument must be private to the caller, we must be able to modify it
600 * without locks.  The messages must have a reference held for their
601 * position on the list.  This function will drop that reference after
602 * removing the messages from the 'messages' list regardless of if it found
603 * the messages on the socket list or not.
604 */
605static void rds_send_remove_from_sock(struct list_head *messages, int status)
606{
607	unsigned long flags;
608	struct rds_sock *rs = NULL;
609	struct rds_message *rm;
610
611	while (!list_empty(messages)) {
612		int was_on_sock = 0;
613
614		rm = list_entry(messages->next, struct rds_message,
615				m_conn_item);
616		list_del_init(&rm->m_conn_item);
617
618		/*
619		 * If we see this flag cleared then we're *sure* that someone
620		 * else beat us to removing it from the sock.  If we race
621		 * with their flag update we'll get the lock and then really
622		 * see that the flag has been cleared.
623		 *
624		 * The message spinlock makes sure nobody clears rm->m_rs
625		 * while we're messing with it. It does not prevent the
626		 * message from being removed from the socket, though.
627		 */
628		spin_lock_irqsave(&rm->m_rs_lock, flags);
629		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
630			goto unlock_and_drop;
631
632		if (rs != rm->m_rs) {
633			if (rs) {
634				rds_wake_sk_sleep(rs);
635				sock_put(rds_rs_to_sk(rs));
636			}
637			rs = rm->m_rs;
638			if (rs)
639				sock_hold(rds_rs_to_sk(rs));
640		}
641		if (!rs)
642			goto unlock_and_drop;
643		spin_lock(&rs->rs_lock);
644
645		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
646			struct rm_rdma_op *ro = &rm->rdma;
647			struct rds_notifier *notifier;
648
649			list_del_init(&rm->m_sock_item);
650			rds_send_sndbuf_remove(rs, rm);
651
652			if (ro->op_active && ro->op_notifier &&
653			       (ro->op_notify || (ro->op_recverr && status))) {
654				notifier = ro->op_notifier;
655				list_add_tail(&notifier->n_list,
656						&rs->rs_notify_queue);
657				if (!notifier->n_status)
658					notifier->n_status = status;
659				rm->rdma.op_notifier = NULL;
660			}
661			was_on_sock = 1;
662			rm->m_rs = NULL;
663		}
664		spin_unlock(&rs->rs_lock);
665
666unlock_and_drop:
667		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
668		rds_message_put(rm);
669		if (was_on_sock)
670			rds_message_put(rm);
671	}
672
673	if (rs) {
674		rds_wake_sk_sleep(rs);
675		sock_put(rds_rs_to_sk(rs));
676	}
677}
678
679/*
680 * Transports call here when they've determined that the receiver queued
681 * messages up to, and including, the given sequence number.  Messages are
682 * moved to the retrans queue when rds_send_xmit picks them off the send
683 * queue. This means that in the TCP case, the message may not have been
684 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
685 * checks the RDS_MSG_HAS_ACK_SEQ bit.
686 */
687void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
688			 is_acked_func is_acked)
689{
690	struct rds_message *rm, *tmp;
691	unsigned long flags;
692	LIST_HEAD(list);
693
694	spin_lock_irqsave(&conn->c_lock, flags);
695
696	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
697		if (!rds_send_is_acked(rm, ack, is_acked))
698			break;
699
700		list_move(&rm->m_conn_item, &list);
701		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
702	}
703
704	/* order flag updates with spin locks */
705	if (!list_empty(&list))
706		smp_mb__after_atomic();
707
708	spin_unlock_irqrestore(&conn->c_lock, flags);
709
710	/* now remove the messages from the sock list as needed */
711	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
712}
713EXPORT_SYMBOL_GPL(rds_send_drop_acked);
714
715void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
716{
717	struct rds_message *rm, *tmp;
718	struct rds_connection *conn;
719	unsigned long flags;
720	LIST_HEAD(list);
721
722	/* get all the messages we're dropping under the rs lock */
723	spin_lock_irqsave(&rs->rs_lock, flags);
724
725	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
726		if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
727			     dest->sin_port != rm->m_inc.i_hdr.h_dport))
728			continue;
729
730		list_move(&rm->m_sock_item, &list);
731		rds_send_sndbuf_remove(rs, rm);
732		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
733	}
734
735	/* order flag updates with the rs lock */
736	smp_mb__after_atomic();
737
738	spin_unlock_irqrestore(&rs->rs_lock, flags);
739
740	if (list_empty(&list))
741		return;
742
743	/* Remove the messages from the conn */
744	list_for_each_entry(rm, &list, m_sock_item) {
745
746		conn = rm->m_inc.i_conn;
747
748		spin_lock_irqsave(&conn->c_lock, flags);
749		/*
750		 * Maybe someone else beat us to removing rm from the conn.
751		 * If we race with their flag update we'll get the lock and
752		 * then really see that the flag has been cleared.
753		 */
754		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
755			spin_unlock_irqrestore(&conn->c_lock, flags);
756			spin_lock_irqsave(&rm->m_rs_lock, flags);
757			rm->m_rs = NULL;
758			spin_unlock_irqrestore(&rm->m_rs_lock, flags);
759			continue;
760		}
761		list_del_init(&rm->m_conn_item);
762		spin_unlock_irqrestore(&conn->c_lock, flags);
763
764		/*
765		 * Couldn't grab m_rs_lock in top loop (lock ordering),
766		 * but we can now.
767		 */
768		spin_lock_irqsave(&rm->m_rs_lock, flags);
769
770		spin_lock(&rs->rs_lock);
771		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
772		spin_unlock(&rs->rs_lock);
773
774		rm->m_rs = NULL;
775		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
776
777		rds_message_put(rm);
778	}
779
780	rds_wake_sk_sleep(rs);
781
782	while (!list_empty(&list)) {
783		rm = list_entry(list.next, struct rds_message, m_sock_item);
784		list_del_init(&rm->m_sock_item);
785		rds_message_wait(rm);
786
787		/* just in case the code above skipped this message
788		 * because RDS_MSG_ON_CONN wasn't set, run it again here
789		 * taking m_rs_lock is the only thing that keeps us
790		 * from racing with ack processing.
791		 */
792		spin_lock_irqsave(&rm->m_rs_lock, flags);
793
794		spin_lock(&rs->rs_lock);
795		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
796		spin_unlock(&rs->rs_lock);
797
798		rm->m_rs = NULL;
799		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
800
801		rds_message_put(rm);
802	}
803}
804
805/*
806 * we only want this to fire once so we use the callers 'queued'.  It's
807 * possible that another thread can race with us and remove the
808 * message from the flow with RDS_CANCEL_SENT_TO.
809 */
810static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
811			     struct rds_message *rm, __be16 sport,
812			     __be16 dport, int *queued)
813{
814	unsigned long flags;
815	u32 len;
816
817	if (*queued)
818		goto out;
819
820	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
821
822	/* this is the only place which holds both the socket's rs_lock
823	 * and the connection's c_lock */
824	spin_lock_irqsave(&rs->rs_lock, flags);
825
826	/*
827	 * If there is a little space in sndbuf, we don't queue anything,
828	 * and userspace gets -EAGAIN. But poll() indicates there's send
829	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
830	 * freed up by incoming acks. So we check the *old* value of
831	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
832	 * and poll() now knows no more data can be sent.
833	 */
834	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
835		rs->rs_snd_bytes += len;
836
837		/* let recv side know we are close to send space exhaustion.
838		 * This is probably not the optimal way to do it, as this
839		 * means we set the flag on *all* messages as soon as our
840		 * throughput hits a certain threshold.
841		 */
842		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
843			__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
844
845		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
846		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
847		rds_message_addref(rm);
848		rm->m_rs = rs;
849
850		/* The code ordering is a little weird, but we're
851		   trying to minimize the time we hold c_lock */
852		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
853		rm->m_inc.i_conn = conn;
854		rds_message_addref(rm);
855
856		spin_lock(&conn->c_lock);
857		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
858		list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
859		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
860		spin_unlock(&conn->c_lock);
861
862		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
863			 rm, len, rs, rs->rs_snd_bytes,
864			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
865
866		*queued = 1;
867	}
868
869	spin_unlock_irqrestore(&rs->rs_lock, flags);
870out:
871	return *queued;
872}
873
874/*
875 * rds_message is getting to be quite complicated, and we'd like to allocate
876 * it all in one go. This figures out how big it needs to be up front.
877 */
878static int rds_rm_size(struct msghdr *msg, int data_len)
879{
880	struct cmsghdr *cmsg;
881	int size = 0;
882	int cmsg_groups = 0;
883	int retval;
884
885	for_each_cmsghdr(cmsg, msg) {
886		if (!CMSG_OK(msg, cmsg))
887			return -EINVAL;
888
889		if (cmsg->cmsg_level != SOL_RDS)
890			continue;
891
892		switch (cmsg->cmsg_type) {
893		case RDS_CMSG_RDMA_ARGS:
894			cmsg_groups |= 1;
895			retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
896			if (retval < 0)
897				return retval;
898			size += retval;
899
900			break;
901
902		case RDS_CMSG_RDMA_DEST:
903		case RDS_CMSG_RDMA_MAP:
904			cmsg_groups |= 2;
905			/* these are valid but do no add any size */
906			break;
907
908		case RDS_CMSG_ATOMIC_CSWP:
909		case RDS_CMSG_ATOMIC_FADD:
910		case RDS_CMSG_MASKED_ATOMIC_CSWP:
911		case RDS_CMSG_MASKED_ATOMIC_FADD:
912			cmsg_groups |= 1;
913			size += sizeof(struct scatterlist);
914			break;
915
916		default:
917			return -EINVAL;
918		}
919
920	}
921
922	size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
923
924	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
925	if (cmsg_groups == 3)
926		return -EINVAL;
927
928	return size;
929}
930
931static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
932			 struct msghdr *msg, int *allocated_mr)
933{
934	struct cmsghdr *cmsg;
935	int ret = 0;
936
937	for_each_cmsghdr(cmsg, msg) {
938		if (!CMSG_OK(msg, cmsg))
939			return -EINVAL;
940
941		if (cmsg->cmsg_level != SOL_RDS)
942			continue;
943
944		/* As a side effect, RDMA_DEST and RDMA_MAP will set
945		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
946		 */
947		switch (cmsg->cmsg_type) {
948		case RDS_CMSG_RDMA_ARGS:
949			ret = rds_cmsg_rdma_args(rs, rm, cmsg);
950			break;
951
952		case RDS_CMSG_RDMA_DEST:
953			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
954			break;
955
956		case RDS_CMSG_RDMA_MAP:
957			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
958			if (!ret)
959				*allocated_mr = 1;
960			break;
961		case RDS_CMSG_ATOMIC_CSWP:
962		case RDS_CMSG_ATOMIC_FADD:
963		case RDS_CMSG_MASKED_ATOMIC_CSWP:
964		case RDS_CMSG_MASKED_ATOMIC_FADD:
965			ret = rds_cmsg_atomic(rs, rm, cmsg);
966			break;
967
968		default:
969			return -EINVAL;
970		}
971
972		if (ret)
973			break;
974	}
975
976	return ret;
977}
978
979int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
980{
981	struct sock *sk = sock->sk;
982	struct rds_sock *rs = rds_sk_to_rs(sk);
983	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
984	__be32 daddr;
985	__be16 dport;
986	struct rds_message *rm = NULL;
987	struct rds_connection *conn;
988	int ret = 0;
989	int queued = 0, allocated_mr = 0;
990	int nonblock = msg->msg_flags & MSG_DONTWAIT;
991	long timeo = sock_sndtimeo(sk, nonblock);
992
993	/* Mirror Linux UDP mirror of BSD error message compatibility */
994	/* XXX: Perhaps MSG_MORE someday */
995	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
996		ret = -EOPNOTSUPP;
997		goto out;
998	}
999
1000	if (msg->msg_namelen) {
1001		/* XXX fail non-unicast destination IPs? */
1002		if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
1003			ret = -EINVAL;
1004			goto out;
1005		}
1006		daddr = usin->sin_addr.s_addr;
1007		dport = usin->sin_port;
1008	} else {
1009		/* We only care about consistency with ->connect() */
1010		lock_sock(sk);
1011		daddr = rs->rs_conn_addr;
1012		dport = rs->rs_conn_port;
1013		release_sock(sk);
1014	}
1015
1016	lock_sock(sk);
1017	if (daddr == 0 || rs->rs_bound_addr == 0) {
1018		release_sock(sk);
1019		ret = -ENOTCONN; /* XXX not a great errno */
1020		goto out;
1021	}
1022	release_sock(sk);
1023
1024	if (payload_len > rds_sk_sndbuf(rs)) {
1025		ret = -EMSGSIZE;
1026		goto out;
1027	}
1028
1029	/* size of rm including all sgs */
1030	ret = rds_rm_size(msg, payload_len);
1031	if (ret < 0)
1032		goto out;
1033
1034	rm = rds_message_alloc(ret, GFP_KERNEL);
1035	if (!rm) {
1036		ret = -ENOMEM;
1037		goto out;
1038	}
1039
1040	/* Attach data to the rm */
1041	if (payload_len) {
1042		rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
1043		if (!rm->data.op_sg) {
1044			ret = -ENOMEM;
1045			goto out;
1046		}
1047		ret = rds_message_copy_from_user(rm, &msg->msg_iter);
1048		if (ret)
1049			goto out;
1050	}
1051	rm->data.op_active = 1;
1052
1053	rm->m_daddr = daddr;
1054
1055	/* rds_conn_create has a spinlock that runs with IRQ off.
1056	 * Caching the conn in the socket helps a lot. */
1057	if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
1058		conn = rs->rs_conn;
1059	else {
1060		conn = rds_conn_create_outgoing(sock_net(sock->sk),
1061						rs->rs_bound_addr, daddr,
1062					rs->rs_transport,
1063					sock->sk->sk_allocation);
1064		if (IS_ERR(conn)) {
1065			ret = PTR_ERR(conn);
1066			goto out;
1067		}
1068		rs->rs_conn = conn;
1069	}
1070
1071	/* Parse any control messages the user may have included. */
1072	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1073	if (ret)
1074		goto out;
1075
1076	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1077		printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1078			       &rm->rdma, conn->c_trans->xmit_rdma);
1079		ret = -EOPNOTSUPP;
1080		goto out;
1081	}
1082
1083	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1084		printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1085			       &rm->atomic, conn->c_trans->xmit_atomic);
1086		ret = -EOPNOTSUPP;
1087		goto out;
1088	}
1089
1090	rds_conn_connect_if_down(conn);
1091
1092	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1093	if (ret) {
1094		rs->rs_seen_congestion = 1;
1095		goto out;
1096	}
1097
1098	while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
1099				  dport, &queued)) {
1100		rds_stats_inc(s_send_queue_full);
1101
1102		if (nonblock) {
1103			ret = -EAGAIN;
1104			goto out;
1105		}
1106
1107		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1108					rds_send_queue_rm(rs, conn, rm,
1109							  rs->rs_bound_port,
1110							  dport,
1111							  &queued),
1112					timeo);
1113		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1114		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1115			continue;
1116
1117		ret = timeo;
1118		if (ret == 0)
1119			ret = -ETIMEDOUT;
1120		goto out;
1121	}
1122
1123	/*
1124	 * By now we've committed to the send.  We reuse rds_send_worker()
1125	 * to retry sends in the rds thread if the transport asks us to.
1126	 */
1127	rds_stats_inc(s_send_queued);
1128
1129	ret = rds_send_xmit(conn);
1130	if (ret == -ENOMEM || ret == -EAGAIN)
1131		queue_delayed_work(rds_wq, &conn->c_send_w, 1);
1132
1133	rds_message_put(rm);
1134	return payload_len;
1135
1136out:
1137	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1138	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1139	 * or in any other way, we need to destroy the MR again */
1140	if (allocated_mr)
1141		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1142
1143	if (rm)
1144		rds_message_put(rm);
1145	return ret;
1146}
1147
1148/*
1149 * Reply to a ping packet.
1150 */
1151int
1152rds_send_pong(struct rds_connection *conn, __be16 dport)
1153{
1154	struct rds_message *rm;
1155	unsigned long flags;
1156	int ret = 0;
1157
1158	rm = rds_message_alloc(0, GFP_ATOMIC);
1159	if (!rm) {
1160		ret = -ENOMEM;
1161		goto out;
1162	}
1163
1164	rm->m_daddr = conn->c_faddr;
1165	rm->data.op_active = 1;
1166
1167	rds_conn_connect_if_down(conn);
1168
1169	ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
1170	if (ret)
1171		goto out;
1172
1173	spin_lock_irqsave(&conn->c_lock, flags);
1174	list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
1175	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1176	rds_message_addref(rm);
1177	rm->m_inc.i_conn = conn;
1178
1179	rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
1180				    conn->c_next_tx_seq);
1181	conn->c_next_tx_seq++;
1182	spin_unlock_irqrestore(&conn->c_lock, flags);
1183
1184	rds_stats_inc(s_send_queued);
1185	rds_stats_inc(s_send_pong);
1186
1187	/* schedule the send work on rds_wq */
1188	queue_delayed_work(rds_wq, &conn->c_send_w, 1);
1189
1190	rds_message_put(rm);
1191	return 0;
1192
1193out:
1194	if (rm)
1195		rds_message_put(rm);
1196	return ret;
1197}
1198