1/*
2 *	Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5 *			Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 *	Fixes:
8 *		Alan Cox	:	Fixed the worst of the load
9 *					balancer bugs.
10 *		Dave Platt	:	Interrupt stacking fix.
11 *	Richard Kooijman	:	Timestamp fixes.
12 *		Alan Cox	:	Changed buffer format.
13 *		Alan Cox	:	destructor hook for AF_UNIX etc.
14 *		Linus Torvalds	:	Better skb_clone.
15 *		Alan Cox	:	Added skb_copy.
16 *		Alan Cox	:	Added all the changed routines Linus
17 *					only put in the headers
18 *		Ray VanTassle	:	Fixed --skb->lock in free
19 *		Alan Cox	:	skb_copy copy arp field
20 *		Andi Kleen	:	slabified it.
21 *		Robert Olsson	:	Removed skb_head_pool
22 *
23 *	NOTE:
24 *		The __skb_ routines should be called with interrupts
25 *	disabled, or you better be *real* sure that the operation is atomic
26 *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27 *	or via disabling bottom half handlers, etc).
28 *
29 *	This program is free software; you can redistribute it and/or
30 *	modify it under the terms of the GNU General Public License
31 *	as published by the Free Software Foundation; either version
32 *	2 of the License, or (at your option) any later version.
33 */
34
35/*
36 *	The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41#include <linux/module.h>
42#include <linux/types.h>
43#include <linux/kernel.h>
44#include <linux/kmemcheck.h>
45#include <linux/mm.h>
46#include <linux/interrupt.h>
47#include <linux/in.h>
48#include <linux/inet.h>
49#include <linux/slab.h>
50#include <linux/tcp.h>
51#include <linux/udp.h>
52#include <linux/netdevice.h>
53#ifdef CONFIG_NET_CLS_ACT
54#include <net/pkt_sched.h>
55#endif
56#include <linux/string.h>
57#include <linux/skbuff.h>
58#include <linux/splice.h>
59#include <linux/cache.h>
60#include <linux/rtnetlink.h>
61#include <linux/init.h>
62#include <linux/scatterlist.h>
63#include <linux/errqueue.h>
64#include <linux/prefetch.h>
65#include <linux/if_vlan.h>
66
67#include <net/protocol.h>
68#include <net/dst.h>
69#include <net/sock.h>
70#include <net/checksum.h>
71#include <net/ip6_checksum.h>
72#include <net/xfrm.h>
73
74#include <asm/uaccess.h>
75#include <trace/events/skb.h>
76#include <linux/highmem.h>
77#include <linux/capability.h>
78#include <linux/user_namespace.h>
79
80struct kmem_cache *skbuff_head_cache __read_mostly;
81static struct kmem_cache *skbuff_fclone_cache __read_mostly;
82int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83EXPORT_SYMBOL(sysctl_max_skb_frags);
84
85/**
86 *	skb_panic - private function for out-of-line support
87 *	@skb:	buffer
88 *	@sz:	size
89 *	@addr:	address
90 *	@msg:	skb_over_panic or skb_under_panic
91 *
92 *	Out-of-line support for skb_put() and skb_push().
93 *	Called via the wrapper skb_over_panic() or skb_under_panic().
94 *	Keep out of line to prevent kernel bloat.
95 *	__builtin_return_address is not used because it is not always reliable.
96 */
97static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98		      const char msg[])
99{
100	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101		 msg, addr, skb->len, sz, skb->head, skb->data,
102		 (unsigned long)skb->tail, (unsigned long)skb->end,
103		 skb->dev ? skb->dev->name : "<NULL>");
104	BUG();
105}
106
107static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108{
109	skb_panic(skb, sz, addr, __func__);
110}
111
112static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113{
114	skb_panic(skb, sz, addr, __func__);
115}
116
117/*
118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119 * the caller if emergency pfmemalloc reserves are being used. If it is and
120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121 * may be used. Otherwise, the packet data may be discarded until enough
122 * memory is free
123 */
124#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126
127static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128			       unsigned long ip, bool *pfmemalloc)
129{
130	void *obj;
131	bool ret_pfmemalloc = false;
132
133	/*
134	 * Try a regular allocation, when that fails and we're not entitled
135	 * to the reserves, fail.
136	 */
137	obj = kmalloc_node_track_caller(size,
138					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139					node);
140	if (obj || !(gfp_pfmemalloc_allowed(flags)))
141		goto out;
142
143	/* Try again but now we are using pfmemalloc reserves */
144	ret_pfmemalloc = true;
145	obj = kmalloc_node_track_caller(size, flags, node);
146
147out:
148	if (pfmemalloc)
149		*pfmemalloc = ret_pfmemalloc;
150
151	return obj;
152}
153
154/* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
155 *	'private' fields and also do memory statistics to find all the
156 *	[BEEP] leaks.
157 *
158 */
159
160struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
161{
162	struct sk_buff *skb;
163
164	/* Get the HEAD */
165	skb = kmem_cache_alloc_node(skbuff_head_cache,
166				    gfp_mask & ~__GFP_DMA, node);
167	if (!skb)
168		goto out;
169
170	/*
171	 * Only clear those fields we need to clear, not those that we will
172	 * actually initialise below. Hence, don't put any more fields after
173	 * the tail pointer in struct sk_buff!
174	 */
175	memset(skb, 0, offsetof(struct sk_buff, tail));
176	skb->head = NULL;
177	skb->truesize = sizeof(struct sk_buff);
178	atomic_set(&skb->users, 1);
179
180	skb->mac_header = (typeof(skb->mac_header))~0U;
181out:
182	return skb;
183}
184
185/**
186 *	__alloc_skb	-	allocate a network buffer
187 *	@size: size to allocate
188 *	@gfp_mask: allocation mask
189 *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
190 *		instead of head cache and allocate a cloned (child) skb.
191 *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
192 *		allocations in case the data is required for writeback
193 *	@node: numa node to allocate memory on
194 *
195 *	Allocate a new &sk_buff. The returned buffer has no headroom and a
196 *	tail room of at least size bytes. The object has a reference count
197 *	of one. The return is the buffer. On a failure the return is %NULL.
198 *
199 *	Buffers may only be allocated from interrupts using a @gfp_mask of
200 *	%GFP_ATOMIC.
201 */
202struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
203			    int flags, int node)
204{
205	struct kmem_cache *cache;
206	struct skb_shared_info *shinfo;
207	struct sk_buff *skb;
208	u8 *data;
209	bool pfmemalloc;
210
211	cache = (flags & SKB_ALLOC_FCLONE)
212		? skbuff_fclone_cache : skbuff_head_cache;
213
214	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
215		gfp_mask |= __GFP_MEMALLOC;
216
217	/* Get the HEAD */
218	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
219	if (!skb)
220		goto out;
221	prefetchw(skb);
222
223	/* We do our best to align skb_shared_info on a separate cache
224	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
225	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
226	 * Both skb->head and skb_shared_info are cache line aligned.
227	 */
228	size = SKB_DATA_ALIGN(size);
229	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
230	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
231	if (!data)
232		goto nodata;
233	/* kmalloc(size) might give us more room than requested.
234	 * Put skb_shared_info exactly at the end of allocated zone,
235	 * to allow max possible filling before reallocation.
236	 */
237	size = SKB_WITH_OVERHEAD(ksize(data));
238	prefetchw(data + size);
239
240	/*
241	 * Only clear those fields we need to clear, not those that we will
242	 * actually initialise below. Hence, don't put any more fields after
243	 * the tail pointer in struct sk_buff!
244	 */
245	memset(skb, 0, offsetof(struct sk_buff, tail));
246	/* Account for allocated memory : skb + skb->head */
247	skb->truesize = SKB_TRUESIZE(size);
248	skb->pfmemalloc = pfmemalloc;
249	atomic_set(&skb->users, 1);
250	skb->head = data;
251	skb->data = data;
252	skb_reset_tail_pointer(skb);
253	skb->end = skb->tail + size;
254	skb->mac_header = (typeof(skb->mac_header))~0U;
255	skb->transport_header = (typeof(skb->transport_header))~0U;
256
257	/* make sure we initialize shinfo sequentially */
258	shinfo = skb_shinfo(skb);
259	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
260	atomic_set(&shinfo->dataref, 1);
261	kmemcheck_annotate_variable(shinfo->destructor_arg);
262
263	if (flags & SKB_ALLOC_FCLONE) {
264		struct sk_buff_fclones *fclones;
265
266		fclones = container_of(skb, struct sk_buff_fclones, skb1);
267
268		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
269		skb->fclone = SKB_FCLONE_ORIG;
270		atomic_set(&fclones->fclone_ref, 1);
271
272		fclones->skb2.fclone = SKB_FCLONE_CLONE;
273		fclones->skb2.pfmemalloc = pfmemalloc;
274	}
275out:
276	return skb;
277nodata:
278	kmem_cache_free(cache, skb);
279	skb = NULL;
280	goto out;
281}
282EXPORT_SYMBOL(__alloc_skb);
283
284/**
285 * __build_skb - build a network buffer
286 * @data: data buffer provided by caller
287 * @frag_size: size of data, or 0 if head was kmalloced
288 *
289 * Allocate a new &sk_buff. Caller provides space holding head and
290 * skb_shared_info. @data must have been allocated by kmalloc() only if
291 * @frag_size is 0, otherwise data should come from the page allocator
292 *  or vmalloc()
293 * The return is the new skb buffer.
294 * On a failure the return is %NULL, and @data is not freed.
295 * Notes :
296 *  Before IO, driver allocates only data buffer where NIC put incoming frame
297 *  Driver should add room at head (NET_SKB_PAD) and
298 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
299 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
300 *  before giving packet to stack.
301 *  RX rings only contains data buffers, not full skbs.
302 */
303struct sk_buff *__build_skb(void *data, unsigned int frag_size)
304{
305	struct skb_shared_info *shinfo;
306	struct sk_buff *skb;
307	unsigned int size = frag_size ? : ksize(data);
308
309	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
310	if (!skb)
311		return NULL;
312
313	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
314
315	memset(skb, 0, offsetof(struct sk_buff, tail));
316	skb->truesize = SKB_TRUESIZE(size);
317	atomic_set(&skb->users, 1);
318	skb->head = data;
319	skb->data = data;
320	skb_reset_tail_pointer(skb);
321	skb->end = skb->tail + size;
322	skb->mac_header = (typeof(skb->mac_header))~0U;
323	skb->transport_header = (typeof(skb->transport_header))~0U;
324
325	/* make sure we initialize shinfo sequentially */
326	shinfo = skb_shinfo(skb);
327	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
328	atomic_set(&shinfo->dataref, 1);
329	kmemcheck_annotate_variable(shinfo->destructor_arg);
330
331	return skb;
332}
333
334/* build_skb() is wrapper over __build_skb(), that specifically
335 * takes care of skb->head and skb->pfmemalloc
336 * This means that if @frag_size is not zero, then @data must be backed
337 * by a page fragment, not kmalloc() or vmalloc()
338 */
339struct sk_buff *build_skb(void *data, unsigned int frag_size)
340{
341	struct sk_buff *skb = __build_skb(data, frag_size);
342
343	if (skb && frag_size) {
344		skb->head_frag = 1;
345		if (page_is_pfmemalloc(virt_to_head_page(data)))
346			skb->pfmemalloc = 1;
347	}
348	return skb;
349}
350EXPORT_SYMBOL(build_skb);
351
352static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
353static DEFINE_PER_CPU(struct page_frag_cache, napi_alloc_cache);
354
355static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
356{
357	struct page_frag_cache *nc;
358	unsigned long flags;
359	void *data;
360
361	local_irq_save(flags);
362	nc = this_cpu_ptr(&netdev_alloc_cache);
363	data = __alloc_page_frag(nc, fragsz, gfp_mask);
364	local_irq_restore(flags);
365	return data;
366}
367
368/**
369 * netdev_alloc_frag - allocate a page fragment
370 * @fragsz: fragment size
371 *
372 * Allocates a frag from a page for receive buffer.
373 * Uses GFP_ATOMIC allocations.
374 */
375void *netdev_alloc_frag(unsigned int fragsz)
376{
377	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
378}
379EXPORT_SYMBOL(netdev_alloc_frag);
380
381static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
382{
383	struct page_frag_cache *nc = this_cpu_ptr(&napi_alloc_cache);
384
385	return __alloc_page_frag(nc, fragsz, gfp_mask);
386}
387
388void *napi_alloc_frag(unsigned int fragsz)
389{
390	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
391}
392EXPORT_SYMBOL(napi_alloc_frag);
393
394/**
395 *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
396 *	@dev: network device to receive on
397 *	@len: length to allocate
398 *	@gfp_mask: get_free_pages mask, passed to alloc_skb
399 *
400 *	Allocate a new &sk_buff and assign it a usage count of one. The
401 *	buffer has NET_SKB_PAD headroom built in. Users should allocate
402 *	the headroom they think they need without accounting for the
403 *	built in space. The built in space is used for optimisations.
404 *
405 *	%NULL is returned if there is no free memory.
406 */
407struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
408				   gfp_t gfp_mask)
409{
410	struct page_frag_cache *nc;
411	unsigned long flags;
412	struct sk_buff *skb;
413	bool pfmemalloc;
414	void *data;
415
416	len += NET_SKB_PAD;
417
418	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
419	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
420		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
421		if (!skb)
422			goto skb_fail;
423		goto skb_success;
424	}
425
426	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
427	len = SKB_DATA_ALIGN(len);
428
429	if (sk_memalloc_socks())
430		gfp_mask |= __GFP_MEMALLOC;
431
432	local_irq_save(flags);
433
434	nc = this_cpu_ptr(&netdev_alloc_cache);
435	data = __alloc_page_frag(nc, len, gfp_mask);
436	pfmemalloc = nc->pfmemalloc;
437
438	local_irq_restore(flags);
439
440	if (unlikely(!data))
441		return NULL;
442
443	skb = __build_skb(data, len);
444	if (unlikely(!skb)) {
445		skb_free_frag(data);
446		return NULL;
447	}
448
449	/* use OR instead of assignment to avoid clearing of bits in mask */
450	if (pfmemalloc)
451		skb->pfmemalloc = 1;
452	skb->head_frag = 1;
453
454skb_success:
455	skb_reserve(skb, NET_SKB_PAD);
456	skb->dev = dev;
457
458skb_fail:
459	return skb;
460}
461EXPORT_SYMBOL(__netdev_alloc_skb);
462
463/**
464 *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
465 *	@napi: napi instance this buffer was allocated for
466 *	@len: length to allocate
467 *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
468 *
469 *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
470 *	attempt to allocate the head from a special reserved region used
471 *	only for NAPI Rx allocation.  By doing this we can save several
472 *	CPU cycles by avoiding having to disable and re-enable IRQs.
473 *
474 *	%NULL is returned if there is no free memory.
475 */
476struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
477				 gfp_t gfp_mask)
478{
479	struct page_frag_cache *nc = this_cpu_ptr(&napi_alloc_cache);
480	struct sk_buff *skb;
481	void *data;
482
483	len += NET_SKB_PAD + NET_IP_ALIGN;
484
485	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
486	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
487		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
488		if (!skb)
489			goto skb_fail;
490		goto skb_success;
491	}
492
493	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
494	len = SKB_DATA_ALIGN(len);
495
496	if (sk_memalloc_socks())
497		gfp_mask |= __GFP_MEMALLOC;
498
499	data = __alloc_page_frag(nc, len, gfp_mask);
500	if (unlikely(!data))
501		return NULL;
502
503	skb = __build_skb(data, len);
504	if (unlikely(!skb)) {
505		skb_free_frag(data);
506		return NULL;
507	}
508
509	/* use OR instead of assignment to avoid clearing of bits in mask */
510	if (nc->pfmemalloc)
511		skb->pfmemalloc = 1;
512	skb->head_frag = 1;
513
514skb_success:
515	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
516	skb->dev = napi->dev;
517
518skb_fail:
519	return skb;
520}
521EXPORT_SYMBOL(__napi_alloc_skb);
522
523void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
524		     int size, unsigned int truesize)
525{
526	skb_fill_page_desc(skb, i, page, off, size);
527	skb->len += size;
528	skb->data_len += size;
529	skb->truesize += truesize;
530}
531EXPORT_SYMBOL(skb_add_rx_frag);
532
533void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
534			  unsigned int truesize)
535{
536	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
537
538	skb_frag_size_add(frag, size);
539	skb->len += size;
540	skb->data_len += size;
541	skb->truesize += truesize;
542}
543EXPORT_SYMBOL(skb_coalesce_rx_frag);
544
545static void skb_drop_list(struct sk_buff **listp)
546{
547	kfree_skb_list(*listp);
548	*listp = NULL;
549}
550
551static inline void skb_drop_fraglist(struct sk_buff *skb)
552{
553	skb_drop_list(&skb_shinfo(skb)->frag_list);
554}
555
556static void skb_clone_fraglist(struct sk_buff *skb)
557{
558	struct sk_buff *list;
559
560	skb_walk_frags(skb, list)
561		skb_get(list);
562}
563
564static void skb_free_head(struct sk_buff *skb)
565{
566	unsigned char *head = skb->head;
567
568	if (skb->head_frag)
569		skb_free_frag(head);
570	else
571		kfree(head);
572}
573
574static void skb_release_data(struct sk_buff *skb)
575{
576	struct skb_shared_info *shinfo = skb_shinfo(skb);
577	int i;
578
579	if (skb->cloned &&
580	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
581			      &shinfo->dataref))
582		return;
583
584	for (i = 0; i < shinfo->nr_frags; i++)
585		__skb_frag_unref(&shinfo->frags[i]);
586
587	/*
588	 * If skb buf is from userspace, we need to notify the caller
589	 * the lower device DMA has done;
590	 */
591	if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
592		struct ubuf_info *uarg;
593
594		uarg = shinfo->destructor_arg;
595		if (uarg->callback)
596			uarg->callback(uarg, true);
597	}
598
599	if (shinfo->frag_list)
600		kfree_skb_list(shinfo->frag_list);
601
602	skb_free_head(skb);
603}
604
605/*
606 *	Free an skbuff by memory without cleaning the state.
607 */
608static void kfree_skbmem(struct sk_buff *skb)
609{
610	struct sk_buff_fclones *fclones;
611
612	switch (skb->fclone) {
613	case SKB_FCLONE_UNAVAILABLE:
614		kmem_cache_free(skbuff_head_cache, skb);
615		return;
616
617	case SKB_FCLONE_ORIG:
618		fclones = container_of(skb, struct sk_buff_fclones, skb1);
619
620		/* We usually free the clone (TX completion) before original skb
621		 * This test would have no chance to be true for the clone,
622		 * while here, branch prediction will be good.
623		 */
624		if (atomic_read(&fclones->fclone_ref) == 1)
625			goto fastpath;
626		break;
627
628	default: /* SKB_FCLONE_CLONE */
629		fclones = container_of(skb, struct sk_buff_fclones, skb2);
630		break;
631	}
632	if (!atomic_dec_and_test(&fclones->fclone_ref))
633		return;
634fastpath:
635	kmem_cache_free(skbuff_fclone_cache, fclones);
636}
637
638static void skb_release_head_state(struct sk_buff *skb)
639{
640	skb_dst_drop(skb);
641#ifdef CONFIG_XFRM
642	secpath_put(skb->sp);
643#endif
644	if (skb->destructor) {
645		WARN_ON(in_irq());
646		skb->destructor(skb);
647	}
648#if IS_ENABLED(CONFIG_NF_CONNTRACK)
649	nf_conntrack_put(skb->nfct);
650#endif
651#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
652	nf_bridge_put(skb->nf_bridge);
653#endif
654}
655
656/* Free everything but the sk_buff shell. */
657static void skb_release_all(struct sk_buff *skb)
658{
659	skb_release_head_state(skb);
660	if (likely(skb->head))
661		skb_release_data(skb);
662}
663
664/**
665 *	__kfree_skb - private function
666 *	@skb: buffer
667 *
668 *	Free an sk_buff. Release anything attached to the buffer.
669 *	Clean the state. This is an internal helper function. Users should
670 *	always call kfree_skb
671 */
672
673void __kfree_skb(struct sk_buff *skb)
674{
675	skb_release_all(skb);
676	kfree_skbmem(skb);
677}
678EXPORT_SYMBOL(__kfree_skb);
679
680/**
681 *	kfree_skb - free an sk_buff
682 *	@skb: buffer to free
683 *
684 *	Drop a reference to the buffer and free it if the usage count has
685 *	hit zero.
686 */
687void kfree_skb(struct sk_buff *skb)
688{
689	if (unlikely(!skb))
690		return;
691	if (likely(atomic_read(&skb->users) == 1))
692		smp_rmb();
693	else if (likely(!atomic_dec_and_test(&skb->users)))
694		return;
695	trace_kfree_skb(skb, __builtin_return_address(0));
696	__kfree_skb(skb);
697}
698EXPORT_SYMBOL(kfree_skb);
699
700void kfree_skb_list(struct sk_buff *segs)
701{
702	while (segs) {
703		struct sk_buff *next = segs->next;
704
705		kfree_skb(segs);
706		segs = next;
707	}
708}
709EXPORT_SYMBOL(kfree_skb_list);
710
711/**
712 *	skb_tx_error - report an sk_buff xmit error
713 *	@skb: buffer that triggered an error
714 *
715 *	Report xmit error if a device callback is tracking this skb.
716 *	skb must be freed afterwards.
717 */
718void skb_tx_error(struct sk_buff *skb)
719{
720	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
721		struct ubuf_info *uarg;
722
723		uarg = skb_shinfo(skb)->destructor_arg;
724		if (uarg->callback)
725			uarg->callback(uarg, false);
726		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
727	}
728}
729EXPORT_SYMBOL(skb_tx_error);
730
731/**
732 *	consume_skb - free an skbuff
733 *	@skb: buffer to free
734 *
735 *	Drop a ref to the buffer and free it if the usage count has hit zero
736 *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
737 *	is being dropped after a failure and notes that
738 */
739void consume_skb(struct sk_buff *skb)
740{
741	if (unlikely(!skb))
742		return;
743	if (likely(atomic_read(&skb->users) == 1))
744		smp_rmb();
745	else if (likely(!atomic_dec_and_test(&skb->users)))
746		return;
747	trace_consume_skb(skb);
748	__kfree_skb(skb);
749}
750EXPORT_SYMBOL(consume_skb);
751
752/* Make sure a field is enclosed inside headers_start/headers_end section */
753#define CHECK_SKB_FIELD(field) \
754	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
755		     offsetof(struct sk_buff, headers_start));	\
756	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
757		     offsetof(struct sk_buff, headers_end));	\
758
759static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
760{
761	new->tstamp		= old->tstamp;
762	/* We do not copy old->sk */
763	new->dev		= old->dev;
764	memcpy(new->cb, old->cb, sizeof(old->cb));
765	skb_dst_copy(new, old);
766#ifdef CONFIG_XFRM
767	new->sp			= secpath_get(old->sp);
768#endif
769	__nf_copy(new, old, false);
770
771	/* Note : this field could be in headers_start/headers_end section
772	 * It is not yet because we do not want to have a 16 bit hole
773	 */
774	new->queue_mapping = old->queue_mapping;
775
776	memcpy(&new->headers_start, &old->headers_start,
777	       offsetof(struct sk_buff, headers_end) -
778	       offsetof(struct sk_buff, headers_start));
779	CHECK_SKB_FIELD(protocol);
780	CHECK_SKB_FIELD(csum);
781	CHECK_SKB_FIELD(hash);
782	CHECK_SKB_FIELD(priority);
783	CHECK_SKB_FIELD(skb_iif);
784	CHECK_SKB_FIELD(vlan_proto);
785	CHECK_SKB_FIELD(vlan_tci);
786	CHECK_SKB_FIELD(transport_header);
787	CHECK_SKB_FIELD(network_header);
788	CHECK_SKB_FIELD(mac_header);
789	CHECK_SKB_FIELD(inner_protocol);
790	CHECK_SKB_FIELD(inner_transport_header);
791	CHECK_SKB_FIELD(inner_network_header);
792	CHECK_SKB_FIELD(inner_mac_header);
793	CHECK_SKB_FIELD(mark);
794#ifdef CONFIG_NETWORK_SECMARK
795	CHECK_SKB_FIELD(secmark);
796#endif
797#ifdef CONFIG_NET_RX_BUSY_POLL
798	CHECK_SKB_FIELD(napi_id);
799#endif
800#ifdef CONFIG_XPS
801	CHECK_SKB_FIELD(sender_cpu);
802#endif
803#ifdef CONFIG_NET_SCHED
804	CHECK_SKB_FIELD(tc_index);
805#ifdef CONFIG_NET_CLS_ACT
806	CHECK_SKB_FIELD(tc_verd);
807#endif
808#endif
809
810}
811
812/*
813 * You should not add any new code to this function.  Add it to
814 * __copy_skb_header above instead.
815 */
816static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
817{
818#define C(x) n->x = skb->x
819
820	n->next = n->prev = NULL;
821	n->sk = NULL;
822	__copy_skb_header(n, skb);
823
824	C(len);
825	C(data_len);
826	C(mac_len);
827	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
828	n->cloned = 1;
829	n->nohdr = 0;
830	n->destructor = NULL;
831	C(tail);
832	C(end);
833	C(head);
834	C(head_frag);
835	C(data);
836	C(truesize);
837	atomic_set(&n->users, 1);
838
839	atomic_inc(&(skb_shinfo(skb)->dataref));
840	skb->cloned = 1;
841
842	return n;
843#undef C
844}
845
846/**
847 *	skb_morph	-	morph one skb into another
848 *	@dst: the skb to receive the contents
849 *	@src: the skb to supply the contents
850 *
851 *	This is identical to skb_clone except that the target skb is
852 *	supplied by the user.
853 *
854 *	The target skb is returned upon exit.
855 */
856struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
857{
858	skb_release_all(dst);
859	return __skb_clone(dst, src);
860}
861EXPORT_SYMBOL_GPL(skb_morph);
862
863/**
864 *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
865 *	@skb: the skb to modify
866 *	@gfp_mask: allocation priority
867 *
868 *	This must be called on SKBTX_DEV_ZEROCOPY skb.
869 *	It will copy all frags into kernel and drop the reference
870 *	to userspace pages.
871 *
872 *	If this function is called from an interrupt gfp_mask() must be
873 *	%GFP_ATOMIC.
874 *
875 *	Returns 0 on success or a negative error code on failure
876 *	to allocate kernel memory to copy to.
877 */
878int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
879{
880	int i;
881	int num_frags = skb_shinfo(skb)->nr_frags;
882	struct page *page, *head = NULL;
883	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
884
885	for (i = 0; i < num_frags; i++) {
886		u8 *vaddr;
887		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
888
889		page = alloc_page(gfp_mask);
890		if (!page) {
891			while (head) {
892				struct page *next = (struct page *)page_private(head);
893				put_page(head);
894				head = next;
895			}
896			return -ENOMEM;
897		}
898		vaddr = kmap_atomic(skb_frag_page(f));
899		memcpy(page_address(page),
900		       vaddr + f->page_offset, skb_frag_size(f));
901		kunmap_atomic(vaddr);
902		set_page_private(page, (unsigned long)head);
903		head = page;
904	}
905
906	/* skb frags release userspace buffers */
907	for (i = 0; i < num_frags; i++)
908		skb_frag_unref(skb, i);
909
910	uarg->callback(uarg, false);
911
912	/* skb frags point to kernel buffers */
913	for (i = num_frags - 1; i >= 0; i--) {
914		__skb_fill_page_desc(skb, i, head, 0,
915				     skb_shinfo(skb)->frags[i].size);
916		head = (struct page *)page_private(head);
917	}
918
919	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
920	return 0;
921}
922EXPORT_SYMBOL_GPL(skb_copy_ubufs);
923
924/**
925 *	skb_clone	-	duplicate an sk_buff
926 *	@skb: buffer to clone
927 *	@gfp_mask: allocation priority
928 *
929 *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
930 *	copies share the same packet data but not structure. The new
931 *	buffer has a reference count of 1. If the allocation fails the
932 *	function returns %NULL otherwise the new buffer is returned.
933 *
934 *	If this function is called from an interrupt gfp_mask() must be
935 *	%GFP_ATOMIC.
936 */
937
938struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
939{
940	struct sk_buff_fclones *fclones = container_of(skb,
941						       struct sk_buff_fclones,
942						       skb1);
943	struct sk_buff *n;
944
945	if (skb_orphan_frags(skb, gfp_mask))
946		return NULL;
947
948	if (skb->fclone == SKB_FCLONE_ORIG &&
949	    atomic_read(&fclones->fclone_ref) == 1) {
950		n = &fclones->skb2;
951		atomic_set(&fclones->fclone_ref, 2);
952	} else {
953		if (skb_pfmemalloc(skb))
954			gfp_mask |= __GFP_MEMALLOC;
955
956		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
957		if (!n)
958			return NULL;
959
960		kmemcheck_annotate_bitfield(n, flags1);
961		n->fclone = SKB_FCLONE_UNAVAILABLE;
962	}
963
964	return __skb_clone(n, skb);
965}
966EXPORT_SYMBOL(skb_clone);
967
968static void skb_headers_offset_update(struct sk_buff *skb, int off)
969{
970	/* Only adjust this if it actually is csum_start rather than csum */
971	if (skb->ip_summed == CHECKSUM_PARTIAL)
972		skb->csum_start += off;
973	/* {transport,network,mac}_header and tail are relative to skb->head */
974	skb->transport_header += off;
975	skb->network_header   += off;
976	if (skb_mac_header_was_set(skb))
977		skb->mac_header += off;
978	skb->inner_transport_header += off;
979	skb->inner_network_header += off;
980	skb->inner_mac_header += off;
981}
982
983static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
984{
985	__copy_skb_header(new, old);
986
987	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
988	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
989	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
990}
991
992static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
993{
994	if (skb_pfmemalloc(skb))
995		return SKB_ALLOC_RX;
996	return 0;
997}
998
999/**
1000 *	skb_copy	-	create private copy of an sk_buff
1001 *	@skb: buffer to copy
1002 *	@gfp_mask: allocation priority
1003 *
1004 *	Make a copy of both an &sk_buff and its data. This is used when the
1005 *	caller wishes to modify the data and needs a private copy of the
1006 *	data to alter. Returns %NULL on failure or the pointer to the buffer
1007 *	on success. The returned buffer has a reference count of 1.
1008 *
1009 *	As by-product this function converts non-linear &sk_buff to linear
1010 *	one, so that &sk_buff becomes completely private and caller is allowed
1011 *	to modify all the data of returned buffer. This means that this
1012 *	function is not recommended for use in circumstances when only
1013 *	header is going to be modified. Use pskb_copy() instead.
1014 */
1015
1016struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1017{
1018	int headerlen = skb_headroom(skb);
1019	unsigned int size = skb_end_offset(skb) + skb->data_len;
1020	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1021					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1022
1023	if (!n)
1024		return NULL;
1025
1026	/* Set the data pointer */
1027	skb_reserve(n, headerlen);
1028	/* Set the tail pointer and length */
1029	skb_put(n, skb->len);
1030
1031	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1032		BUG();
1033
1034	copy_skb_header(n, skb);
1035	return n;
1036}
1037EXPORT_SYMBOL(skb_copy);
1038
1039/**
1040 *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1041 *	@skb: buffer to copy
1042 *	@headroom: headroom of new skb
1043 *	@gfp_mask: allocation priority
1044 *	@fclone: if true allocate the copy of the skb from the fclone
1045 *	cache instead of the head cache; it is recommended to set this
1046 *	to true for the cases where the copy will likely be cloned
1047 *
1048 *	Make a copy of both an &sk_buff and part of its data, located
1049 *	in header. Fragmented data remain shared. This is used when
1050 *	the caller wishes to modify only header of &sk_buff and needs
1051 *	private copy of the header to alter. Returns %NULL on failure
1052 *	or the pointer to the buffer on success.
1053 *	The returned buffer has a reference count of 1.
1054 */
1055
1056struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1057				   gfp_t gfp_mask, bool fclone)
1058{
1059	unsigned int size = skb_headlen(skb) + headroom;
1060	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1061	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1062
1063	if (!n)
1064		goto out;
1065
1066	/* Set the data pointer */
1067	skb_reserve(n, headroom);
1068	/* Set the tail pointer and length */
1069	skb_put(n, skb_headlen(skb));
1070	/* Copy the bytes */
1071	skb_copy_from_linear_data(skb, n->data, n->len);
1072
1073	n->truesize += skb->data_len;
1074	n->data_len  = skb->data_len;
1075	n->len	     = skb->len;
1076
1077	if (skb_shinfo(skb)->nr_frags) {
1078		int i;
1079
1080		if (skb_orphan_frags(skb, gfp_mask)) {
1081			kfree_skb(n);
1082			n = NULL;
1083			goto out;
1084		}
1085		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1086			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1087			skb_frag_ref(skb, i);
1088		}
1089		skb_shinfo(n)->nr_frags = i;
1090	}
1091
1092	if (skb_has_frag_list(skb)) {
1093		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1094		skb_clone_fraglist(n);
1095	}
1096
1097	copy_skb_header(n, skb);
1098out:
1099	return n;
1100}
1101EXPORT_SYMBOL(__pskb_copy_fclone);
1102
1103/**
1104 *	pskb_expand_head - reallocate header of &sk_buff
1105 *	@skb: buffer to reallocate
1106 *	@nhead: room to add at head
1107 *	@ntail: room to add at tail
1108 *	@gfp_mask: allocation priority
1109 *
1110 *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1111 *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1112 *	reference count of 1. Returns zero in the case of success or error,
1113 *	if expansion failed. In the last case, &sk_buff is not changed.
1114 *
1115 *	All the pointers pointing into skb header may change and must be
1116 *	reloaded after call to this function.
1117 */
1118
1119int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1120		     gfp_t gfp_mask)
1121{
1122	int i;
1123	u8 *data;
1124	int size = nhead + skb_end_offset(skb) + ntail;
1125	long off;
1126
1127	BUG_ON(nhead < 0);
1128
1129	if (skb_shared(skb))
1130		BUG();
1131
1132	size = SKB_DATA_ALIGN(size);
1133
1134	if (skb_pfmemalloc(skb))
1135		gfp_mask |= __GFP_MEMALLOC;
1136	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1137			       gfp_mask, NUMA_NO_NODE, NULL);
1138	if (!data)
1139		goto nodata;
1140	size = SKB_WITH_OVERHEAD(ksize(data));
1141
1142	/* Copy only real data... and, alas, header. This should be
1143	 * optimized for the cases when header is void.
1144	 */
1145	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1146
1147	memcpy((struct skb_shared_info *)(data + size),
1148	       skb_shinfo(skb),
1149	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1150
1151	/*
1152	 * if shinfo is shared we must drop the old head gracefully, but if it
1153	 * is not we can just drop the old head and let the existing refcount
1154	 * be since all we did is relocate the values
1155	 */
1156	if (skb_cloned(skb)) {
1157		/* copy this zero copy skb frags */
1158		if (skb_orphan_frags(skb, gfp_mask))
1159			goto nofrags;
1160		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1161			skb_frag_ref(skb, i);
1162
1163		if (skb_has_frag_list(skb))
1164			skb_clone_fraglist(skb);
1165
1166		skb_release_data(skb);
1167	} else {
1168		skb_free_head(skb);
1169	}
1170	off = (data + nhead) - skb->head;
1171
1172	skb->head     = data;
1173	skb->head_frag = 0;
1174	skb->data    += off;
1175#ifdef NET_SKBUFF_DATA_USES_OFFSET
1176	skb->end      = size;
1177	off           = nhead;
1178#else
1179	skb->end      = skb->head + size;
1180#endif
1181	skb->tail	      += off;
1182	skb_headers_offset_update(skb, nhead);
1183	skb->cloned   = 0;
1184	skb->hdr_len  = 0;
1185	skb->nohdr    = 0;
1186	atomic_set(&skb_shinfo(skb)->dataref, 1);
1187	return 0;
1188
1189nofrags:
1190	kfree(data);
1191nodata:
1192	return -ENOMEM;
1193}
1194EXPORT_SYMBOL(pskb_expand_head);
1195
1196/* Make private copy of skb with writable head and some headroom */
1197
1198struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1199{
1200	struct sk_buff *skb2;
1201	int delta = headroom - skb_headroom(skb);
1202
1203	if (delta <= 0)
1204		skb2 = pskb_copy(skb, GFP_ATOMIC);
1205	else {
1206		skb2 = skb_clone(skb, GFP_ATOMIC);
1207		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1208					     GFP_ATOMIC)) {
1209			kfree_skb(skb2);
1210			skb2 = NULL;
1211		}
1212	}
1213	return skb2;
1214}
1215EXPORT_SYMBOL(skb_realloc_headroom);
1216
1217/**
1218 *	skb_copy_expand	-	copy and expand sk_buff
1219 *	@skb: buffer to copy
1220 *	@newheadroom: new free bytes at head
1221 *	@newtailroom: new free bytes at tail
1222 *	@gfp_mask: allocation priority
1223 *
1224 *	Make a copy of both an &sk_buff and its data and while doing so
1225 *	allocate additional space.
1226 *
1227 *	This is used when the caller wishes to modify the data and needs a
1228 *	private copy of the data to alter as well as more space for new fields.
1229 *	Returns %NULL on failure or the pointer to the buffer
1230 *	on success. The returned buffer has a reference count of 1.
1231 *
1232 *	You must pass %GFP_ATOMIC as the allocation priority if this function
1233 *	is called from an interrupt.
1234 */
1235struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1236				int newheadroom, int newtailroom,
1237				gfp_t gfp_mask)
1238{
1239	/*
1240	 *	Allocate the copy buffer
1241	 */
1242	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1243					gfp_mask, skb_alloc_rx_flag(skb),
1244					NUMA_NO_NODE);
1245	int oldheadroom = skb_headroom(skb);
1246	int head_copy_len, head_copy_off;
1247
1248	if (!n)
1249		return NULL;
1250
1251	skb_reserve(n, newheadroom);
1252
1253	/* Set the tail pointer and length */
1254	skb_put(n, skb->len);
1255
1256	head_copy_len = oldheadroom;
1257	head_copy_off = 0;
1258	if (newheadroom <= head_copy_len)
1259		head_copy_len = newheadroom;
1260	else
1261		head_copy_off = newheadroom - head_copy_len;
1262
1263	/* Copy the linear header and data. */
1264	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1265			  skb->len + head_copy_len))
1266		BUG();
1267
1268	copy_skb_header(n, skb);
1269
1270	skb_headers_offset_update(n, newheadroom - oldheadroom);
1271
1272	return n;
1273}
1274EXPORT_SYMBOL(skb_copy_expand);
1275
1276/**
1277 *	skb_pad			-	zero pad the tail of an skb
1278 *	@skb: buffer to pad
1279 *	@pad: space to pad
1280 *
1281 *	Ensure that a buffer is followed by a padding area that is zero
1282 *	filled. Used by network drivers which may DMA or transfer data
1283 *	beyond the buffer end onto the wire.
1284 *
1285 *	May return error in out of memory cases. The skb is freed on error.
1286 */
1287
1288int skb_pad(struct sk_buff *skb, int pad)
1289{
1290	int err;
1291	int ntail;
1292
1293	/* If the skbuff is non linear tailroom is always zero.. */
1294	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1295		memset(skb->data+skb->len, 0, pad);
1296		return 0;
1297	}
1298
1299	ntail = skb->data_len + pad - (skb->end - skb->tail);
1300	if (likely(skb_cloned(skb) || ntail > 0)) {
1301		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1302		if (unlikely(err))
1303			goto free_skb;
1304	}
1305
1306	/* FIXME: The use of this function with non-linear skb's really needs
1307	 * to be audited.
1308	 */
1309	err = skb_linearize(skb);
1310	if (unlikely(err))
1311		goto free_skb;
1312
1313	memset(skb->data + skb->len, 0, pad);
1314	return 0;
1315
1316free_skb:
1317	kfree_skb(skb);
1318	return err;
1319}
1320EXPORT_SYMBOL(skb_pad);
1321
1322/**
1323 *	pskb_put - add data to the tail of a potentially fragmented buffer
1324 *	@skb: start of the buffer to use
1325 *	@tail: tail fragment of the buffer to use
1326 *	@len: amount of data to add
1327 *
1328 *	This function extends the used data area of the potentially
1329 *	fragmented buffer. @tail must be the last fragment of @skb -- or
1330 *	@skb itself. If this would exceed the total buffer size the kernel
1331 *	will panic. A pointer to the first byte of the extra data is
1332 *	returned.
1333 */
1334
1335unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1336{
1337	if (tail != skb) {
1338		skb->data_len += len;
1339		skb->len += len;
1340	}
1341	return skb_put(tail, len);
1342}
1343EXPORT_SYMBOL_GPL(pskb_put);
1344
1345/**
1346 *	skb_put - add data to a buffer
1347 *	@skb: buffer to use
1348 *	@len: amount of data to add
1349 *
1350 *	This function extends the used data area of the buffer. If this would
1351 *	exceed the total buffer size the kernel will panic. A pointer to the
1352 *	first byte of the extra data is returned.
1353 */
1354unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1355{
1356	unsigned char *tmp = skb_tail_pointer(skb);
1357	SKB_LINEAR_ASSERT(skb);
1358	skb->tail += len;
1359	skb->len  += len;
1360	if (unlikely(skb->tail > skb->end))
1361		skb_over_panic(skb, len, __builtin_return_address(0));
1362	return tmp;
1363}
1364EXPORT_SYMBOL(skb_put);
1365
1366/**
1367 *	skb_push - add data to the start of a buffer
1368 *	@skb: buffer to use
1369 *	@len: amount of data to add
1370 *
1371 *	This function extends the used data area of the buffer at the buffer
1372 *	start. If this would exceed the total buffer headroom the kernel will
1373 *	panic. A pointer to the first byte of the extra data is returned.
1374 */
1375unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1376{
1377	skb->data -= len;
1378	skb->len  += len;
1379	if (unlikely(skb->data<skb->head))
1380		skb_under_panic(skb, len, __builtin_return_address(0));
1381	return skb->data;
1382}
1383EXPORT_SYMBOL(skb_push);
1384
1385/**
1386 *	skb_pull - remove data from the start of a buffer
1387 *	@skb: buffer to use
1388 *	@len: amount of data to remove
1389 *
1390 *	This function removes data from the start of a buffer, returning
1391 *	the memory to the headroom. A pointer to the next data in the buffer
1392 *	is returned. Once the data has been pulled future pushes will overwrite
1393 *	the old data.
1394 */
1395unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1396{
1397	return skb_pull_inline(skb, len);
1398}
1399EXPORT_SYMBOL(skb_pull);
1400
1401/**
1402 *	skb_trim - remove end from a buffer
1403 *	@skb: buffer to alter
1404 *	@len: new length
1405 *
1406 *	Cut the length of a buffer down by removing data from the tail. If
1407 *	the buffer is already under the length specified it is not modified.
1408 *	The skb must be linear.
1409 */
1410void skb_trim(struct sk_buff *skb, unsigned int len)
1411{
1412	if (skb->len > len)
1413		__skb_trim(skb, len);
1414}
1415EXPORT_SYMBOL(skb_trim);
1416
1417/* Trims skb to length len. It can change skb pointers.
1418 */
1419
1420int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1421{
1422	struct sk_buff **fragp;
1423	struct sk_buff *frag;
1424	int offset = skb_headlen(skb);
1425	int nfrags = skb_shinfo(skb)->nr_frags;
1426	int i;
1427	int err;
1428
1429	if (skb_cloned(skb) &&
1430	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1431		return err;
1432
1433	i = 0;
1434	if (offset >= len)
1435		goto drop_pages;
1436
1437	for (; i < nfrags; i++) {
1438		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1439
1440		if (end < len) {
1441			offset = end;
1442			continue;
1443		}
1444
1445		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1446
1447drop_pages:
1448		skb_shinfo(skb)->nr_frags = i;
1449
1450		for (; i < nfrags; i++)
1451			skb_frag_unref(skb, i);
1452
1453		if (skb_has_frag_list(skb))
1454			skb_drop_fraglist(skb);
1455		goto done;
1456	}
1457
1458	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1459	     fragp = &frag->next) {
1460		int end = offset + frag->len;
1461
1462		if (skb_shared(frag)) {
1463			struct sk_buff *nfrag;
1464
1465			nfrag = skb_clone(frag, GFP_ATOMIC);
1466			if (unlikely(!nfrag))
1467				return -ENOMEM;
1468
1469			nfrag->next = frag->next;
1470			consume_skb(frag);
1471			frag = nfrag;
1472			*fragp = frag;
1473		}
1474
1475		if (end < len) {
1476			offset = end;
1477			continue;
1478		}
1479
1480		if (end > len &&
1481		    unlikely((err = pskb_trim(frag, len - offset))))
1482			return err;
1483
1484		if (frag->next)
1485			skb_drop_list(&frag->next);
1486		break;
1487	}
1488
1489done:
1490	if (len > skb_headlen(skb)) {
1491		skb->data_len -= skb->len - len;
1492		skb->len       = len;
1493	} else {
1494		skb->len       = len;
1495		skb->data_len  = 0;
1496		skb_set_tail_pointer(skb, len);
1497	}
1498
1499	return 0;
1500}
1501EXPORT_SYMBOL(___pskb_trim);
1502
1503/**
1504 *	__pskb_pull_tail - advance tail of skb header
1505 *	@skb: buffer to reallocate
1506 *	@delta: number of bytes to advance tail
1507 *
1508 *	The function makes a sense only on a fragmented &sk_buff,
1509 *	it expands header moving its tail forward and copying necessary
1510 *	data from fragmented part.
1511 *
1512 *	&sk_buff MUST have reference count of 1.
1513 *
1514 *	Returns %NULL (and &sk_buff does not change) if pull failed
1515 *	or value of new tail of skb in the case of success.
1516 *
1517 *	All the pointers pointing into skb header may change and must be
1518 *	reloaded after call to this function.
1519 */
1520
1521/* Moves tail of skb head forward, copying data from fragmented part,
1522 * when it is necessary.
1523 * 1. It may fail due to malloc failure.
1524 * 2. It may change skb pointers.
1525 *
1526 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1527 */
1528unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1529{
1530	/* If skb has not enough free space at tail, get new one
1531	 * plus 128 bytes for future expansions. If we have enough
1532	 * room at tail, reallocate without expansion only if skb is cloned.
1533	 */
1534	int i, k, eat = (skb->tail + delta) - skb->end;
1535
1536	if (eat > 0 || skb_cloned(skb)) {
1537		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1538				     GFP_ATOMIC))
1539			return NULL;
1540	}
1541
1542	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1543		BUG();
1544
1545	/* Optimization: no fragments, no reasons to preestimate
1546	 * size of pulled pages. Superb.
1547	 */
1548	if (!skb_has_frag_list(skb))
1549		goto pull_pages;
1550
1551	/* Estimate size of pulled pages. */
1552	eat = delta;
1553	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1554		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1555
1556		if (size >= eat)
1557			goto pull_pages;
1558		eat -= size;
1559	}
1560
1561	/* If we need update frag list, we are in troubles.
1562	 * Certainly, it possible to add an offset to skb data,
1563	 * but taking into account that pulling is expected to
1564	 * be very rare operation, it is worth to fight against
1565	 * further bloating skb head and crucify ourselves here instead.
1566	 * Pure masohism, indeed. 8)8)
1567	 */
1568	if (eat) {
1569		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1570		struct sk_buff *clone = NULL;
1571		struct sk_buff *insp = NULL;
1572
1573		do {
1574			BUG_ON(!list);
1575
1576			if (list->len <= eat) {
1577				/* Eaten as whole. */
1578				eat -= list->len;
1579				list = list->next;
1580				insp = list;
1581			} else {
1582				/* Eaten partially. */
1583
1584				if (skb_shared(list)) {
1585					/* Sucks! We need to fork list. :-( */
1586					clone = skb_clone(list, GFP_ATOMIC);
1587					if (!clone)
1588						return NULL;
1589					insp = list->next;
1590					list = clone;
1591				} else {
1592					/* This may be pulled without
1593					 * problems. */
1594					insp = list;
1595				}
1596				if (!pskb_pull(list, eat)) {
1597					kfree_skb(clone);
1598					return NULL;
1599				}
1600				break;
1601			}
1602		} while (eat);
1603
1604		/* Free pulled out fragments. */
1605		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1606			skb_shinfo(skb)->frag_list = list->next;
1607			kfree_skb(list);
1608		}
1609		/* And insert new clone at head. */
1610		if (clone) {
1611			clone->next = list;
1612			skb_shinfo(skb)->frag_list = clone;
1613		}
1614	}
1615	/* Success! Now we may commit changes to skb data. */
1616
1617pull_pages:
1618	eat = delta;
1619	k = 0;
1620	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1621		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1622
1623		if (size <= eat) {
1624			skb_frag_unref(skb, i);
1625			eat -= size;
1626		} else {
1627			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1628			if (eat) {
1629				skb_shinfo(skb)->frags[k].page_offset += eat;
1630				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1631				eat = 0;
1632			}
1633			k++;
1634		}
1635	}
1636	skb_shinfo(skb)->nr_frags = k;
1637
1638	skb->tail     += delta;
1639	skb->data_len -= delta;
1640
1641	return skb_tail_pointer(skb);
1642}
1643EXPORT_SYMBOL(__pskb_pull_tail);
1644
1645/**
1646 *	skb_copy_bits - copy bits from skb to kernel buffer
1647 *	@skb: source skb
1648 *	@offset: offset in source
1649 *	@to: destination buffer
1650 *	@len: number of bytes to copy
1651 *
1652 *	Copy the specified number of bytes from the source skb to the
1653 *	destination buffer.
1654 *
1655 *	CAUTION ! :
1656 *		If its prototype is ever changed,
1657 *		check arch/{*}/net/{*}.S files,
1658 *		since it is called from BPF assembly code.
1659 */
1660int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1661{
1662	int start = skb_headlen(skb);
1663	struct sk_buff *frag_iter;
1664	int i, copy;
1665
1666	if (offset > (int)skb->len - len)
1667		goto fault;
1668
1669	/* Copy header. */
1670	if ((copy = start - offset) > 0) {
1671		if (copy > len)
1672			copy = len;
1673		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1674		if ((len -= copy) == 0)
1675			return 0;
1676		offset += copy;
1677		to     += copy;
1678	}
1679
1680	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1681		int end;
1682		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1683
1684		WARN_ON(start > offset + len);
1685
1686		end = start + skb_frag_size(f);
1687		if ((copy = end - offset) > 0) {
1688			u8 *vaddr;
1689
1690			if (copy > len)
1691				copy = len;
1692
1693			vaddr = kmap_atomic(skb_frag_page(f));
1694			memcpy(to,
1695			       vaddr + f->page_offset + offset - start,
1696			       copy);
1697			kunmap_atomic(vaddr);
1698
1699			if ((len -= copy) == 0)
1700				return 0;
1701			offset += copy;
1702			to     += copy;
1703		}
1704		start = end;
1705	}
1706
1707	skb_walk_frags(skb, frag_iter) {
1708		int end;
1709
1710		WARN_ON(start > offset + len);
1711
1712		end = start + frag_iter->len;
1713		if ((copy = end - offset) > 0) {
1714			if (copy > len)
1715				copy = len;
1716			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1717				goto fault;
1718			if ((len -= copy) == 0)
1719				return 0;
1720			offset += copy;
1721			to     += copy;
1722		}
1723		start = end;
1724	}
1725
1726	if (!len)
1727		return 0;
1728
1729fault:
1730	return -EFAULT;
1731}
1732EXPORT_SYMBOL(skb_copy_bits);
1733
1734/*
1735 * Callback from splice_to_pipe(), if we need to release some pages
1736 * at the end of the spd in case we error'ed out in filling the pipe.
1737 */
1738static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1739{
1740	put_page(spd->pages[i]);
1741}
1742
1743static struct page *linear_to_page(struct page *page, unsigned int *len,
1744				   unsigned int *offset,
1745				   struct sock *sk)
1746{
1747	struct page_frag *pfrag = sk_page_frag(sk);
1748
1749	if (!sk_page_frag_refill(sk, pfrag))
1750		return NULL;
1751
1752	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1753
1754	memcpy(page_address(pfrag->page) + pfrag->offset,
1755	       page_address(page) + *offset, *len);
1756	*offset = pfrag->offset;
1757	pfrag->offset += *len;
1758
1759	return pfrag->page;
1760}
1761
1762static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1763			     struct page *page,
1764			     unsigned int offset)
1765{
1766	return	spd->nr_pages &&
1767		spd->pages[spd->nr_pages - 1] == page &&
1768		(spd->partial[spd->nr_pages - 1].offset +
1769		 spd->partial[spd->nr_pages - 1].len == offset);
1770}
1771
1772/*
1773 * Fill page/offset/length into spd, if it can hold more pages.
1774 */
1775static bool spd_fill_page(struct splice_pipe_desc *spd,
1776			  struct pipe_inode_info *pipe, struct page *page,
1777			  unsigned int *len, unsigned int offset,
1778			  bool linear,
1779			  struct sock *sk)
1780{
1781	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1782		return true;
1783
1784	if (linear) {
1785		page = linear_to_page(page, len, &offset, sk);
1786		if (!page)
1787			return true;
1788	}
1789	if (spd_can_coalesce(spd, page, offset)) {
1790		spd->partial[spd->nr_pages - 1].len += *len;
1791		return false;
1792	}
1793	get_page(page);
1794	spd->pages[spd->nr_pages] = page;
1795	spd->partial[spd->nr_pages].len = *len;
1796	spd->partial[spd->nr_pages].offset = offset;
1797	spd->nr_pages++;
1798
1799	return false;
1800}
1801
1802static bool __splice_segment(struct page *page, unsigned int poff,
1803			     unsigned int plen, unsigned int *off,
1804			     unsigned int *len,
1805			     struct splice_pipe_desc *spd, bool linear,
1806			     struct sock *sk,
1807			     struct pipe_inode_info *pipe)
1808{
1809	if (!*len)
1810		return true;
1811
1812	/* skip this segment if already processed */
1813	if (*off >= plen) {
1814		*off -= plen;
1815		return false;
1816	}
1817
1818	/* ignore any bits we already processed */
1819	poff += *off;
1820	plen -= *off;
1821	*off = 0;
1822
1823	do {
1824		unsigned int flen = min(*len, plen);
1825
1826		if (spd_fill_page(spd, pipe, page, &flen, poff,
1827				  linear, sk))
1828			return true;
1829		poff += flen;
1830		plen -= flen;
1831		*len -= flen;
1832	} while (*len && plen);
1833
1834	return false;
1835}
1836
1837/*
1838 * Map linear and fragment data from the skb to spd. It reports true if the
1839 * pipe is full or if we already spliced the requested length.
1840 */
1841static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1842			      unsigned int *offset, unsigned int *len,
1843			      struct splice_pipe_desc *spd, struct sock *sk)
1844{
1845	int seg;
1846
1847	/* map the linear part :
1848	 * If skb->head_frag is set, this 'linear' part is backed by a
1849	 * fragment, and if the head is not shared with any clones then
1850	 * we can avoid a copy since we own the head portion of this page.
1851	 */
1852	if (__splice_segment(virt_to_page(skb->data),
1853			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1854			     skb_headlen(skb),
1855			     offset, len, spd,
1856			     skb_head_is_locked(skb),
1857			     sk, pipe))
1858		return true;
1859
1860	/*
1861	 * then map the fragments
1862	 */
1863	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1864		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1865
1866		if (__splice_segment(skb_frag_page(f),
1867				     f->page_offset, skb_frag_size(f),
1868				     offset, len, spd, false, sk, pipe))
1869			return true;
1870	}
1871
1872	return false;
1873}
1874
1875ssize_t skb_socket_splice(struct sock *sk,
1876			  struct pipe_inode_info *pipe,
1877			  struct splice_pipe_desc *spd)
1878{
1879	int ret;
1880
1881	/* Drop the socket lock, otherwise we have reverse
1882	 * locking dependencies between sk_lock and i_mutex
1883	 * here as compared to sendfile(). We enter here
1884	 * with the socket lock held, and splice_to_pipe() will
1885	 * grab the pipe inode lock. For sendfile() emulation,
1886	 * we call into ->sendpage() with the i_mutex lock held
1887	 * and networking will grab the socket lock.
1888	 */
1889	release_sock(sk);
1890	ret = splice_to_pipe(pipe, spd);
1891	lock_sock(sk);
1892
1893	return ret;
1894}
1895
1896/*
1897 * Map data from the skb to a pipe. Should handle both the linear part,
1898 * the fragments, and the frag list. It does NOT handle frag lists within
1899 * the frag list, if such a thing exists. We'd probably need to recurse to
1900 * handle that cleanly.
1901 */
1902int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1903		    struct pipe_inode_info *pipe, unsigned int tlen,
1904		    unsigned int flags,
1905		    ssize_t (*splice_cb)(struct sock *,
1906					 struct pipe_inode_info *,
1907					 struct splice_pipe_desc *))
1908{
1909	struct partial_page partial[MAX_SKB_FRAGS];
1910	struct page *pages[MAX_SKB_FRAGS];
1911	struct splice_pipe_desc spd = {
1912		.pages = pages,
1913		.partial = partial,
1914		.nr_pages_max = MAX_SKB_FRAGS,
1915		.flags = flags,
1916		.ops = &nosteal_pipe_buf_ops,
1917		.spd_release = sock_spd_release,
1918	};
1919	struct sk_buff *frag_iter;
1920	int ret = 0;
1921
1922	/*
1923	 * __skb_splice_bits() only fails if the output has no room left,
1924	 * so no point in going over the frag_list for the error case.
1925	 */
1926	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1927		goto done;
1928	else if (!tlen)
1929		goto done;
1930
1931	/*
1932	 * now see if we have a frag_list to map
1933	 */
1934	skb_walk_frags(skb, frag_iter) {
1935		if (!tlen)
1936			break;
1937		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1938			break;
1939	}
1940
1941done:
1942	if (spd.nr_pages)
1943		ret = splice_cb(sk, pipe, &spd);
1944
1945	return ret;
1946}
1947EXPORT_SYMBOL_GPL(skb_splice_bits);
1948
1949/**
1950 *	skb_store_bits - store bits from kernel buffer to skb
1951 *	@skb: destination buffer
1952 *	@offset: offset in destination
1953 *	@from: source buffer
1954 *	@len: number of bytes to copy
1955 *
1956 *	Copy the specified number of bytes from the source buffer to the
1957 *	destination skb.  This function handles all the messy bits of
1958 *	traversing fragment lists and such.
1959 */
1960
1961int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1962{
1963	int start = skb_headlen(skb);
1964	struct sk_buff *frag_iter;
1965	int i, copy;
1966
1967	if (offset > (int)skb->len - len)
1968		goto fault;
1969
1970	if ((copy = start - offset) > 0) {
1971		if (copy > len)
1972			copy = len;
1973		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1974		if ((len -= copy) == 0)
1975			return 0;
1976		offset += copy;
1977		from += copy;
1978	}
1979
1980	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1981		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1982		int end;
1983
1984		WARN_ON(start > offset + len);
1985
1986		end = start + skb_frag_size(frag);
1987		if ((copy = end - offset) > 0) {
1988			u8 *vaddr;
1989
1990			if (copy > len)
1991				copy = len;
1992
1993			vaddr = kmap_atomic(skb_frag_page(frag));
1994			memcpy(vaddr + frag->page_offset + offset - start,
1995			       from, copy);
1996			kunmap_atomic(vaddr);
1997
1998			if ((len -= copy) == 0)
1999				return 0;
2000			offset += copy;
2001			from += copy;
2002		}
2003		start = end;
2004	}
2005
2006	skb_walk_frags(skb, frag_iter) {
2007		int end;
2008
2009		WARN_ON(start > offset + len);
2010
2011		end = start + frag_iter->len;
2012		if ((copy = end - offset) > 0) {
2013			if (copy > len)
2014				copy = len;
2015			if (skb_store_bits(frag_iter, offset - start,
2016					   from, copy))
2017				goto fault;
2018			if ((len -= copy) == 0)
2019				return 0;
2020			offset += copy;
2021			from += copy;
2022		}
2023		start = end;
2024	}
2025	if (!len)
2026		return 0;
2027
2028fault:
2029	return -EFAULT;
2030}
2031EXPORT_SYMBOL(skb_store_bits);
2032
2033/* Checksum skb data. */
2034__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2035		      __wsum csum, const struct skb_checksum_ops *ops)
2036{
2037	int start = skb_headlen(skb);
2038	int i, copy = start - offset;
2039	struct sk_buff *frag_iter;
2040	int pos = 0;
2041
2042	/* Checksum header. */
2043	if (copy > 0) {
2044		if (copy > len)
2045			copy = len;
2046		csum = ops->update(skb->data + offset, copy, csum);
2047		if ((len -= copy) == 0)
2048			return csum;
2049		offset += copy;
2050		pos	= copy;
2051	}
2052
2053	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2054		int end;
2055		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2056
2057		WARN_ON(start > offset + len);
2058
2059		end = start + skb_frag_size(frag);
2060		if ((copy = end - offset) > 0) {
2061			__wsum csum2;
2062			u8 *vaddr;
2063
2064			if (copy > len)
2065				copy = len;
2066			vaddr = kmap_atomic(skb_frag_page(frag));
2067			csum2 = ops->update(vaddr + frag->page_offset +
2068					    offset - start, copy, 0);
2069			kunmap_atomic(vaddr);
2070			csum = ops->combine(csum, csum2, pos, copy);
2071			if (!(len -= copy))
2072				return csum;
2073			offset += copy;
2074			pos    += copy;
2075		}
2076		start = end;
2077	}
2078
2079	skb_walk_frags(skb, frag_iter) {
2080		int end;
2081
2082		WARN_ON(start > offset + len);
2083
2084		end = start + frag_iter->len;
2085		if ((copy = end - offset) > 0) {
2086			__wsum csum2;
2087			if (copy > len)
2088				copy = len;
2089			csum2 = __skb_checksum(frag_iter, offset - start,
2090					       copy, 0, ops);
2091			csum = ops->combine(csum, csum2, pos, copy);
2092			if ((len -= copy) == 0)
2093				return csum;
2094			offset += copy;
2095			pos    += copy;
2096		}
2097		start = end;
2098	}
2099	BUG_ON(len);
2100
2101	return csum;
2102}
2103EXPORT_SYMBOL(__skb_checksum);
2104
2105__wsum skb_checksum(const struct sk_buff *skb, int offset,
2106		    int len, __wsum csum)
2107{
2108	const struct skb_checksum_ops ops = {
2109		.update  = csum_partial_ext,
2110		.combine = csum_block_add_ext,
2111	};
2112
2113	return __skb_checksum(skb, offset, len, csum, &ops);
2114}
2115EXPORT_SYMBOL(skb_checksum);
2116
2117/* Both of above in one bottle. */
2118
2119__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2120				    u8 *to, int len, __wsum csum)
2121{
2122	int start = skb_headlen(skb);
2123	int i, copy = start - offset;
2124	struct sk_buff *frag_iter;
2125	int pos = 0;
2126
2127	/* Copy header. */
2128	if (copy > 0) {
2129		if (copy > len)
2130			copy = len;
2131		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2132						 copy, csum);
2133		if ((len -= copy) == 0)
2134			return csum;
2135		offset += copy;
2136		to     += copy;
2137		pos	= copy;
2138	}
2139
2140	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2141		int end;
2142
2143		WARN_ON(start > offset + len);
2144
2145		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2146		if ((copy = end - offset) > 0) {
2147			__wsum csum2;
2148			u8 *vaddr;
2149			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2150
2151			if (copy > len)
2152				copy = len;
2153			vaddr = kmap_atomic(skb_frag_page(frag));
2154			csum2 = csum_partial_copy_nocheck(vaddr +
2155							  frag->page_offset +
2156							  offset - start, to,
2157							  copy, 0);
2158			kunmap_atomic(vaddr);
2159			csum = csum_block_add(csum, csum2, pos);
2160			if (!(len -= copy))
2161				return csum;
2162			offset += copy;
2163			to     += copy;
2164			pos    += copy;
2165		}
2166		start = end;
2167	}
2168
2169	skb_walk_frags(skb, frag_iter) {
2170		__wsum csum2;
2171		int end;
2172
2173		WARN_ON(start > offset + len);
2174
2175		end = start + frag_iter->len;
2176		if ((copy = end - offset) > 0) {
2177			if (copy > len)
2178				copy = len;
2179			csum2 = skb_copy_and_csum_bits(frag_iter,
2180						       offset - start,
2181						       to, copy, 0);
2182			csum = csum_block_add(csum, csum2, pos);
2183			if ((len -= copy) == 0)
2184				return csum;
2185			offset += copy;
2186			to     += copy;
2187			pos    += copy;
2188		}
2189		start = end;
2190	}
2191	BUG_ON(len);
2192	return csum;
2193}
2194EXPORT_SYMBOL(skb_copy_and_csum_bits);
2195
2196 /**
2197 *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2198 *	@from: source buffer
2199 *
2200 *	Calculates the amount of linear headroom needed in the 'to' skb passed
2201 *	into skb_zerocopy().
2202 */
2203unsigned int
2204skb_zerocopy_headlen(const struct sk_buff *from)
2205{
2206	unsigned int hlen = 0;
2207
2208	if (!from->head_frag ||
2209	    skb_headlen(from) < L1_CACHE_BYTES ||
2210	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2211		hlen = skb_headlen(from);
2212
2213	if (skb_has_frag_list(from))
2214		hlen = from->len;
2215
2216	return hlen;
2217}
2218EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2219
2220/**
2221 *	skb_zerocopy - Zero copy skb to skb
2222 *	@to: destination buffer
2223 *	@from: source buffer
2224 *	@len: number of bytes to copy from source buffer
2225 *	@hlen: size of linear headroom in destination buffer
2226 *
2227 *	Copies up to `len` bytes from `from` to `to` by creating references
2228 *	to the frags in the source buffer.
2229 *
2230 *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2231 *	headroom in the `to` buffer.
2232 *
2233 *	Return value:
2234 *	0: everything is OK
2235 *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2236 *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2237 */
2238int
2239skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2240{
2241	int i, j = 0;
2242	int plen = 0; /* length of skb->head fragment */
2243	int ret;
2244	struct page *page;
2245	unsigned int offset;
2246
2247	BUG_ON(!from->head_frag && !hlen);
2248
2249	/* dont bother with small payloads */
2250	if (len <= skb_tailroom(to))
2251		return skb_copy_bits(from, 0, skb_put(to, len), len);
2252
2253	if (hlen) {
2254		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2255		if (unlikely(ret))
2256			return ret;
2257		len -= hlen;
2258	} else {
2259		plen = min_t(int, skb_headlen(from), len);
2260		if (plen) {
2261			page = virt_to_head_page(from->head);
2262			offset = from->data - (unsigned char *)page_address(page);
2263			__skb_fill_page_desc(to, 0, page, offset, plen);
2264			get_page(page);
2265			j = 1;
2266			len -= plen;
2267		}
2268	}
2269
2270	to->truesize += len + plen;
2271	to->len += len + plen;
2272	to->data_len += len + plen;
2273
2274	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2275		skb_tx_error(from);
2276		return -ENOMEM;
2277	}
2278
2279	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2280		if (!len)
2281			break;
2282		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2283		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2284		len -= skb_shinfo(to)->frags[j].size;
2285		skb_frag_ref(to, j);
2286		j++;
2287	}
2288	skb_shinfo(to)->nr_frags = j;
2289
2290	return 0;
2291}
2292EXPORT_SYMBOL_GPL(skb_zerocopy);
2293
2294void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2295{
2296	__wsum csum;
2297	long csstart;
2298
2299	if (skb->ip_summed == CHECKSUM_PARTIAL)
2300		csstart = skb_checksum_start_offset(skb);
2301	else
2302		csstart = skb_headlen(skb);
2303
2304	BUG_ON(csstart > skb_headlen(skb));
2305
2306	skb_copy_from_linear_data(skb, to, csstart);
2307
2308	csum = 0;
2309	if (csstart != skb->len)
2310		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2311					      skb->len - csstart, 0);
2312
2313	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2314		long csstuff = csstart + skb->csum_offset;
2315
2316		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2317	}
2318}
2319EXPORT_SYMBOL(skb_copy_and_csum_dev);
2320
2321/**
2322 *	skb_dequeue - remove from the head of the queue
2323 *	@list: list to dequeue from
2324 *
2325 *	Remove the head of the list. The list lock is taken so the function
2326 *	may be used safely with other locking list functions. The head item is
2327 *	returned or %NULL if the list is empty.
2328 */
2329
2330struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2331{
2332	unsigned long flags;
2333	struct sk_buff *result;
2334
2335	spin_lock_irqsave(&list->lock, flags);
2336	result = __skb_dequeue(list);
2337	spin_unlock_irqrestore(&list->lock, flags);
2338	return result;
2339}
2340EXPORT_SYMBOL(skb_dequeue);
2341
2342/**
2343 *	skb_dequeue_tail - remove from the tail of the queue
2344 *	@list: list to dequeue from
2345 *
2346 *	Remove the tail of the list. The list lock is taken so the function
2347 *	may be used safely with other locking list functions. The tail item is
2348 *	returned or %NULL if the list is empty.
2349 */
2350struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2351{
2352	unsigned long flags;
2353	struct sk_buff *result;
2354
2355	spin_lock_irqsave(&list->lock, flags);
2356	result = __skb_dequeue_tail(list);
2357	spin_unlock_irqrestore(&list->lock, flags);
2358	return result;
2359}
2360EXPORT_SYMBOL(skb_dequeue_tail);
2361
2362/**
2363 *	skb_queue_purge - empty a list
2364 *	@list: list to empty
2365 *
2366 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2367 *	the list and one reference dropped. This function takes the list
2368 *	lock and is atomic with respect to other list locking functions.
2369 */
2370void skb_queue_purge(struct sk_buff_head *list)
2371{
2372	struct sk_buff *skb;
2373	while ((skb = skb_dequeue(list)) != NULL)
2374		kfree_skb(skb);
2375}
2376EXPORT_SYMBOL(skb_queue_purge);
2377
2378/**
2379 *	skb_queue_head - queue a buffer at the list head
2380 *	@list: list to use
2381 *	@newsk: buffer to queue
2382 *
2383 *	Queue a buffer at the start of the list. This function takes the
2384 *	list lock and can be used safely with other locking &sk_buff functions
2385 *	safely.
2386 *
2387 *	A buffer cannot be placed on two lists at the same time.
2388 */
2389void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2390{
2391	unsigned long flags;
2392
2393	spin_lock_irqsave(&list->lock, flags);
2394	__skb_queue_head(list, newsk);
2395	spin_unlock_irqrestore(&list->lock, flags);
2396}
2397EXPORT_SYMBOL(skb_queue_head);
2398
2399/**
2400 *	skb_queue_tail - queue a buffer at the list tail
2401 *	@list: list to use
2402 *	@newsk: buffer to queue
2403 *
2404 *	Queue a buffer at the tail of the list. This function takes the
2405 *	list lock and can be used safely with other locking &sk_buff functions
2406 *	safely.
2407 *
2408 *	A buffer cannot be placed on two lists at the same time.
2409 */
2410void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2411{
2412	unsigned long flags;
2413
2414	spin_lock_irqsave(&list->lock, flags);
2415	__skb_queue_tail(list, newsk);
2416	spin_unlock_irqrestore(&list->lock, flags);
2417}
2418EXPORT_SYMBOL(skb_queue_tail);
2419
2420/**
2421 *	skb_unlink	-	remove a buffer from a list
2422 *	@skb: buffer to remove
2423 *	@list: list to use
2424 *
2425 *	Remove a packet from a list. The list locks are taken and this
2426 *	function is atomic with respect to other list locked calls
2427 *
2428 *	You must know what list the SKB is on.
2429 */
2430void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2431{
2432	unsigned long flags;
2433
2434	spin_lock_irqsave(&list->lock, flags);
2435	__skb_unlink(skb, list);
2436	spin_unlock_irqrestore(&list->lock, flags);
2437}
2438EXPORT_SYMBOL(skb_unlink);
2439
2440/**
2441 *	skb_append	-	append a buffer
2442 *	@old: buffer to insert after
2443 *	@newsk: buffer to insert
2444 *	@list: list to use
2445 *
2446 *	Place a packet after a given packet in a list. The list locks are taken
2447 *	and this function is atomic with respect to other list locked calls.
2448 *	A buffer cannot be placed on two lists at the same time.
2449 */
2450void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2451{
2452	unsigned long flags;
2453
2454	spin_lock_irqsave(&list->lock, flags);
2455	__skb_queue_after(list, old, newsk);
2456	spin_unlock_irqrestore(&list->lock, flags);
2457}
2458EXPORT_SYMBOL(skb_append);
2459
2460/**
2461 *	skb_insert	-	insert a buffer
2462 *	@old: buffer to insert before
2463 *	@newsk: buffer to insert
2464 *	@list: list to use
2465 *
2466 *	Place a packet before a given packet in a list. The list locks are
2467 * 	taken and this function is atomic with respect to other list locked
2468 *	calls.
2469 *
2470 *	A buffer cannot be placed on two lists at the same time.
2471 */
2472void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2473{
2474	unsigned long flags;
2475
2476	spin_lock_irqsave(&list->lock, flags);
2477	__skb_insert(newsk, old->prev, old, list);
2478	spin_unlock_irqrestore(&list->lock, flags);
2479}
2480EXPORT_SYMBOL(skb_insert);
2481
2482static inline void skb_split_inside_header(struct sk_buff *skb,
2483					   struct sk_buff* skb1,
2484					   const u32 len, const int pos)
2485{
2486	int i;
2487
2488	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2489					 pos - len);
2490	/* And move data appendix as is. */
2491	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2492		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2493
2494	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2495	skb_shinfo(skb)->nr_frags  = 0;
2496	skb1->data_len		   = skb->data_len;
2497	skb1->len		   += skb1->data_len;
2498	skb->data_len		   = 0;
2499	skb->len		   = len;
2500	skb_set_tail_pointer(skb, len);
2501}
2502
2503static inline void skb_split_no_header(struct sk_buff *skb,
2504				       struct sk_buff* skb1,
2505				       const u32 len, int pos)
2506{
2507	int i, k = 0;
2508	const int nfrags = skb_shinfo(skb)->nr_frags;
2509
2510	skb_shinfo(skb)->nr_frags = 0;
2511	skb1->len		  = skb1->data_len = skb->len - len;
2512	skb->len		  = len;
2513	skb->data_len		  = len - pos;
2514
2515	for (i = 0; i < nfrags; i++) {
2516		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2517
2518		if (pos + size > len) {
2519			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2520
2521			if (pos < len) {
2522				/* Split frag.
2523				 * We have two variants in this case:
2524				 * 1. Move all the frag to the second
2525				 *    part, if it is possible. F.e.
2526				 *    this approach is mandatory for TUX,
2527				 *    where splitting is expensive.
2528				 * 2. Split is accurately. We make this.
2529				 */
2530				skb_frag_ref(skb, i);
2531				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2532				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2533				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2534				skb_shinfo(skb)->nr_frags++;
2535			}
2536			k++;
2537		} else
2538			skb_shinfo(skb)->nr_frags++;
2539		pos += size;
2540	}
2541	skb_shinfo(skb1)->nr_frags = k;
2542}
2543
2544/**
2545 * skb_split - Split fragmented skb to two parts at length len.
2546 * @skb: the buffer to split
2547 * @skb1: the buffer to receive the second part
2548 * @len: new length for skb
2549 */
2550void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2551{
2552	int pos = skb_headlen(skb);
2553
2554	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2555	if (len < pos)	/* Split line is inside header. */
2556		skb_split_inside_header(skb, skb1, len, pos);
2557	else		/* Second chunk has no header, nothing to copy. */
2558		skb_split_no_header(skb, skb1, len, pos);
2559}
2560EXPORT_SYMBOL(skb_split);
2561
2562/* Shifting from/to a cloned skb is a no-go.
2563 *
2564 * Caller cannot keep skb_shinfo related pointers past calling here!
2565 */
2566static int skb_prepare_for_shift(struct sk_buff *skb)
2567{
2568	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2569}
2570
2571/**
2572 * skb_shift - Shifts paged data partially from skb to another
2573 * @tgt: buffer into which tail data gets added
2574 * @skb: buffer from which the paged data comes from
2575 * @shiftlen: shift up to this many bytes
2576 *
2577 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2578 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2579 * It's up to caller to free skb if everything was shifted.
2580 *
2581 * If @tgt runs out of frags, the whole operation is aborted.
2582 *
2583 * Skb cannot include anything else but paged data while tgt is allowed
2584 * to have non-paged data as well.
2585 *
2586 * TODO: full sized shift could be optimized but that would need
2587 * specialized skb free'er to handle frags without up-to-date nr_frags.
2588 */
2589int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2590{
2591	int from, to, merge, todo;
2592	struct skb_frag_struct *fragfrom, *fragto;
2593
2594	BUG_ON(shiftlen > skb->len);
2595	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2596
2597	todo = shiftlen;
2598	from = 0;
2599	to = skb_shinfo(tgt)->nr_frags;
2600	fragfrom = &skb_shinfo(skb)->frags[from];
2601
2602	/* Actual merge is delayed until the point when we know we can
2603	 * commit all, so that we don't have to undo partial changes
2604	 */
2605	if (!to ||
2606	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2607			      fragfrom->page_offset)) {
2608		merge = -1;
2609	} else {
2610		merge = to - 1;
2611
2612		todo -= skb_frag_size(fragfrom);
2613		if (todo < 0) {
2614			if (skb_prepare_for_shift(skb) ||
2615			    skb_prepare_for_shift(tgt))
2616				return 0;
2617
2618			/* All previous frag pointers might be stale! */
2619			fragfrom = &skb_shinfo(skb)->frags[from];
2620			fragto = &skb_shinfo(tgt)->frags[merge];
2621
2622			skb_frag_size_add(fragto, shiftlen);
2623			skb_frag_size_sub(fragfrom, shiftlen);
2624			fragfrom->page_offset += shiftlen;
2625
2626			goto onlymerged;
2627		}
2628
2629		from++;
2630	}
2631
2632	/* Skip full, not-fitting skb to avoid expensive operations */
2633	if ((shiftlen == skb->len) &&
2634	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2635		return 0;
2636
2637	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2638		return 0;
2639
2640	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2641		if (to == MAX_SKB_FRAGS)
2642			return 0;
2643
2644		fragfrom = &skb_shinfo(skb)->frags[from];
2645		fragto = &skb_shinfo(tgt)->frags[to];
2646
2647		if (todo >= skb_frag_size(fragfrom)) {
2648			*fragto = *fragfrom;
2649			todo -= skb_frag_size(fragfrom);
2650			from++;
2651			to++;
2652
2653		} else {
2654			__skb_frag_ref(fragfrom);
2655			fragto->page = fragfrom->page;
2656			fragto->page_offset = fragfrom->page_offset;
2657			skb_frag_size_set(fragto, todo);
2658
2659			fragfrom->page_offset += todo;
2660			skb_frag_size_sub(fragfrom, todo);
2661			todo = 0;
2662
2663			to++;
2664			break;
2665		}
2666	}
2667
2668	/* Ready to "commit" this state change to tgt */
2669	skb_shinfo(tgt)->nr_frags = to;
2670
2671	if (merge >= 0) {
2672		fragfrom = &skb_shinfo(skb)->frags[0];
2673		fragto = &skb_shinfo(tgt)->frags[merge];
2674
2675		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2676		__skb_frag_unref(fragfrom);
2677	}
2678
2679	/* Reposition in the original skb */
2680	to = 0;
2681	while (from < skb_shinfo(skb)->nr_frags)
2682		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2683	skb_shinfo(skb)->nr_frags = to;
2684
2685	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2686
2687onlymerged:
2688	/* Most likely the tgt won't ever need its checksum anymore, skb on
2689	 * the other hand might need it if it needs to be resent
2690	 */
2691	tgt->ip_summed = CHECKSUM_PARTIAL;
2692	skb->ip_summed = CHECKSUM_PARTIAL;
2693
2694	/* Yak, is it really working this way? Some helper please? */
2695	skb->len -= shiftlen;
2696	skb->data_len -= shiftlen;
2697	skb->truesize -= shiftlen;
2698	tgt->len += shiftlen;
2699	tgt->data_len += shiftlen;
2700	tgt->truesize += shiftlen;
2701
2702	return shiftlen;
2703}
2704
2705/**
2706 * skb_prepare_seq_read - Prepare a sequential read of skb data
2707 * @skb: the buffer to read
2708 * @from: lower offset of data to be read
2709 * @to: upper offset of data to be read
2710 * @st: state variable
2711 *
2712 * Initializes the specified state variable. Must be called before
2713 * invoking skb_seq_read() for the first time.
2714 */
2715void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2716			  unsigned int to, struct skb_seq_state *st)
2717{
2718	st->lower_offset = from;
2719	st->upper_offset = to;
2720	st->root_skb = st->cur_skb = skb;
2721	st->frag_idx = st->stepped_offset = 0;
2722	st->frag_data = NULL;
2723}
2724EXPORT_SYMBOL(skb_prepare_seq_read);
2725
2726/**
2727 * skb_seq_read - Sequentially read skb data
2728 * @consumed: number of bytes consumed by the caller so far
2729 * @data: destination pointer for data to be returned
2730 * @st: state variable
2731 *
2732 * Reads a block of skb data at @consumed relative to the
2733 * lower offset specified to skb_prepare_seq_read(). Assigns
2734 * the head of the data block to @data and returns the length
2735 * of the block or 0 if the end of the skb data or the upper
2736 * offset has been reached.
2737 *
2738 * The caller is not required to consume all of the data
2739 * returned, i.e. @consumed is typically set to the number
2740 * of bytes already consumed and the next call to
2741 * skb_seq_read() will return the remaining part of the block.
2742 *
2743 * Note 1: The size of each block of data returned can be arbitrary,
2744 *       this limitation is the cost for zerocopy sequential
2745 *       reads of potentially non linear data.
2746 *
2747 * Note 2: Fragment lists within fragments are not implemented
2748 *       at the moment, state->root_skb could be replaced with
2749 *       a stack for this purpose.
2750 */
2751unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2752			  struct skb_seq_state *st)
2753{
2754	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2755	skb_frag_t *frag;
2756
2757	if (unlikely(abs_offset >= st->upper_offset)) {
2758		if (st->frag_data) {
2759			kunmap_atomic(st->frag_data);
2760			st->frag_data = NULL;
2761		}
2762		return 0;
2763	}
2764
2765next_skb:
2766	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2767
2768	if (abs_offset < block_limit && !st->frag_data) {
2769		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2770		return block_limit - abs_offset;
2771	}
2772
2773	if (st->frag_idx == 0 && !st->frag_data)
2774		st->stepped_offset += skb_headlen(st->cur_skb);
2775
2776	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2777		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2778		block_limit = skb_frag_size(frag) + st->stepped_offset;
2779
2780		if (abs_offset < block_limit) {
2781			if (!st->frag_data)
2782				st->frag_data = kmap_atomic(skb_frag_page(frag));
2783
2784			*data = (u8 *) st->frag_data + frag->page_offset +
2785				(abs_offset - st->stepped_offset);
2786
2787			return block_limit - abs_offset;
2788		}
2789
2790		if (st->frag_data) {
2791			kunmap_atomic(st->frag_data);
2792			st->frag_data = NULL;
2793		}
2794
2795		st->frag_idx++;
2796		st->stepped_offset += skb_frag_size(frag);
2797	}
2798
2799	if (st->frag_data) {
2800		kunmap_atomic(st->frag_data);
2801		st->frag_data = NULL;
2802	}
2803
2804	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2805		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2806		st->frag_idx = 0;
2807		goto next_skb;
2808	} else if (st->cur_skb->next) {
2809		st->cur_skb = st->cur_skb->next;
2810		st->frag_idx = 0;
2811		goto next_skb;
2812	}
2813
2814	return 0;
2815}
2816EXPORT_SYMBOL(skb_seq_read);
2817
2818/**
2819 * skb_abort_seq_read - Abort a sequential read of skb data
2820 * @st: state variable
2821 *
2822 * Must be called if skb_seq_read() was not called until it
2823 * returned 0.
2824 */
2825void skb_abort_seq_read(struct skb_seq_state *st)
2826{
2827	if (st->frag_data)
2828		kunmap_atomic(st->frag_data);
2829}
2830EXPORT_SYMBOL(skb_abort_seq_read);
2831
2832#define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2833
2834static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2835					  struct ts_config *conf,
2836					  struct ts_state *state)
2837{
2838	return skb_seq_read(offset, text, TS_SKB_CB(state));
2839}
2840
2841static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2842{
2843	skb_abort_seq_read(TS_SKB_CB(state));
2844}
2845
2846/**
2847 * skb_find_text - Find a text pattern in skb data
2848 * @skb: the buffer to look in
2849 * @from: search offset
2850 * @to: search limit
2851 * @config: textsearch configuration
2852 *
2853 * Finds a pattern in the skb data according to the specified
2854 * textsearch configuration. Use textsearch_next() to retrieve
2855 * subsequent occurrences of the pattern. Returns the offset
2856 * to the first occurrence or UINT_MAX if no match was found.
2857 */
2858unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2859			   unsigned int to, struct ts_config *config)
2860{
2861	struct ts_state state;
2862	unsigned int ret;
2863
2864	config->get_next_block = skb_ts_get_next_block;
2865	config->finish = skb_ts_finish;
2866
2867	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2868
2869	ret = textsearch_find(config, &state);
2870	return (ret <= to - from ? ret : UINT_MAX);
2871}
2872EXPORT_SYMBOL(skb_find_text);
2873
2874/**
2875 * skb_append_datato_frags - append the user data to a skb
2876 * @sk: sock  structure
2877 * @skb: skb structure to be appended with user data.
2878 * @getfrag: call back function to be used for getting the user data
2879 * @from: pointer to user message iov
2880 * @length: length of the iov message
2881 *
2882 * Description: This procedure append the user data in the fragment part
2883 * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2884 */
2885int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2886			int (*getfrag)(void *from, char *to, int offset,
2887					int len, int odd, struct sk_buff *skb),
2888			void *from, int length)
2889{
2890	int frg_cnt = skb_shinfo(skb)->nr_frags;
2891	int copy;
2892	int offset = 0;
2893	int ret;
2894	struct page_frag *pfrag = &current->task_frag;
2895
2896	do {
2897		/* Return error if we don't have space for new frag */
2898		if (frg_cnt >= MAX_SKB_FRAGS)
2899			return -EMSGSIZE;
2900
2901		if (!sk_page_frag_refill(sk, pfrag))
2902			return -ENOMEM;
2903
2904		/* copy the user data to page */
2905		copy = min_t(int, length, pfrag->size - pfrag->offset);
2906
2907		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2908			      offset, copy, 0, skb);
2909		if (ret < 0)
2910			return -EFAULT;
2911
2912		/* copy was successful so update the size parameters */
2913		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2914				   copy);
2915		frg_cnt++;
2916		pfrag->offset += copy;
2917		get_page(pfrag->page);
2918
2919		skb->truesize += copy;
2920		atomic_add(copy, &sk->sk_wmem_alloc);
2921		skb->len += copy;
2922		skb->data_len += copy;
2923		offset += copy;
2924		length -= copy;
2925
2926	} while (length > 0);
2927
2928	return 0;
2929}
2930EXPORT_SYMBOL(skb_append_datato_frags);
2931
2932int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
2933			 int offset, size_t size)
2934{
2935	int i = skb_shinfo(skb)->nr_frags;
2936
2937	if (skb_can_coalesce(skb, i, page, offset)) {
2938		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
2939	} else if (i < MAX_SKB_FRAGS) {
2940		get_page(page);
2941		skb_fill_page_desc(skb, i, page, offset, size);
2942	} else {
2943		return -EMSGSIZE;
2944	}
2945
2946	return 0;
2947}
2948EXPORT_SYMBOL_GPL(skb_append_pagefrags);
2949
2950/**
2951 *	skb_push_rcsum - push skb and update receive checksum
2952 *	@skb: buffer to update
2953 *	@len: length of data pulled
2954 *
2955 *	This function performs an skb_push on the packet and updates
2956 *	the CHECKSUM_COMPLETE checksum.  It should be used on
2957 *	receive path processing instead of skb_push unless you know
2958 *	that the checksum difference is zero (e.g., a valid IP header)
2959 *	or you are setting ip_summed to CHECKSUM_NONE.
2960 */
2961static unsigned char *skb_push_rcsum(struct sk_buff *skb, unsigned len)
2962{
2963	skb_push(skb, len);
2964	skb_postpush_rcsum(skb, skb->data, len);
2965	return skb->data;
2966}
2967
2968/**
2969 *	skb_pull_rcsum - pull skb and update receive checksum
2970 *	@skb: buffer to update
2971 *	@len: length of data pulled
2972 *
2973 *	This function performs an skb_pull on the packet and updates
2974 *	the CHECKSUM_COMPLETE checksum.  It should be used on
2975 *	receive path processing instead of skb_pull unless you know
2976 *	that the checksum difference is zero (e.g., a valid IP header)
2977 *	or you are setting ip_summed to CHECKSUM_NONE.
2978 */
2979unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2980{
2981	unsigned char *data = skb->data;
2982
2983	BUG_ON(len > skb->len);
2984	__skb_pull(skb, len);
2985	skb_postpull_rcsum(skb, data, len);
2986	return skb->data;
2987}
2988EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2989
2990/**
2991 *	skb_segment - Perform protocol segmentation on skb.
2992 *	@head_skb: buffer to segment
2993 *	@features: features for the output path (see dev->features)
2994 *
2995 *	This function performs segmentation on the given skb.  It returns
2996 *	a pointer to the first in a list of new skbs for the segments.
2997 *	In case of error it returns ERR_PTR(err).
2998 */
2999struct sk_buff *skb_segment(struct sk_buff *head_skb,
3000			    netdev_features_t features)
3001{
3002	struct sk_buff *segs = NULL;
3003	struct sk_buff *tail = NULL;
3004	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3005	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3006	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3007	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3008	struct sk_buff *frag_skb = head_skb;
3009	unsigned int offset = doffset;
3010	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3011	unsigned int headroom;
3012	unsigned int len;
3013	__be16 proto;
3014	bool csum;
3015	int sg = !!(features & NETIF_F_SG);
3016	int nfrags = skb_shinfo(head_skb)->nr_frags;
3017	int err = -ENOMEM;
3018	int i = 0;
3019	int pos;
3020	int dummy;
3021
3022	__skb_push(head_skb, doffset);
3023	proto = skb_network_protocol(head_skb, &dummy);
3024	if (unlikely(!proto))
3025		return ERR_PTR(-EINVAL);
3026
3027	csum = !head_skb->encap_hdr_csum &&
3028	    !!can_checksum_protocol(features, proto);
3029
3030	headroom = skb_headroom(head_skb);
3031	pos = skb_headlen(head_skb);
3032
3033	do {
3034		struct sk_buff *nskb;
3035		skb_frag_t *nskb_frag;
3036		int hsize;
3037		int size;
3038
3039		len = head_skb->len - offset;
3040		if (len > mss)
3041			len = mss;
3042
3043		hsize = skb_headlen(head_skb) - offset;
3044		if (hsize < 0)
3045			hsize = 0;
3046		if (hsize > len || !sg)
3047			hsize = len;
3048
3049		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3050		    (skb_headlen(list_skb) == len || sg)) {
3051			BUG_ON(skb_headlen(list_skb) > len);
3052
3053			i = 0;
3054			nfrags = skb_shinfo(list_skb)->nr_frags;
3055			frag = skb_shinfo(list_skb)->frags;
3056			frag_skb = list_skb;
3057			pos += skb_headlen(list_skb);
3058
3059			while (pos < offset + len) {
3060				BUG_ON(i >= nfrags);
3061
3062				size = skb_frag_size(frag);
3063				if (pos + size > offset + len)
3064					break;
3065
3066				i++;
3067				pos += size;
3068				frag++;
3069			}
3070
3071			nskb = skb_clone(list_skb, GFP_ATOMIC);
3072			list_skb = list_skb->next;
3073
3074			if (unlikely(!nskb))
3075				goto err;
3076
3077			if (unlikely(pskb_trim(nskb, len))) {
3078				kfree_skb(nskb);
3079				goto err;
3080			}
3081
3082			hsize = skb_end_offset(nskb);
3083			if (skb_cow_head(nskb, doffset + headroom)) {
3084				kfree_skb(nskb);
3085				goto err;
3086			}
3087
3088			nskb->truesize += skb_end_offset(nskb) - hsize;
3089			skb_release_head_state(nskb);
3090			__skb_push(nskb, doffset);
3091		} else {
3092			nskb = __alloc_skb(hsize + doffset + headroom,
3093					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3094					   NUMA_NO_NODE);
3095
3096			if (unlikely(!nskb))
3097				goto err;
3098
3099			skb_reserve(nskb, headroom);
3100			__skb_put(nskb, doffset);
3101		}
3102
3103		if (segs)
3104			tail->next = nskb;
3105		else
3106			segs = nskb;
3107		tail = nskb;
3108
3109		__copy_skb_header(nskb, head_skb);
3110
3111		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3112		skb_reset_mac_len(nskb);
3113
3114		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3115						 nskb->data - tnl_hlen,
3116						 doffset + tnl_hlen);
3117
3118		if (nskb->len == len + doffset)
3119			goto perform_csum_check;
3120
3121		if (!sg && !nskb->remcsum_offload) {
3122			nskb->ip_summed = CHECKSUM_NONE;
3123			nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
3124							    skb_put(nskb, len),
3125							    len, 0);
3126			SKB_GSO_CB(nskb)->csum_start =
3127			    skb_headroom(nskb) + doffset;
3128			continue;
3129		}
3130
3131		nskb_frag = skb_shinfo(nskb)->frags;
3132
3133		skb_copy_from_linear_data_offset(head_skb, offset,
3134						 skb_put(nskb, hsize), hsize);
3135
3136		skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3137			SKBTX_SHARED_FRAG;
3138
3139		while (pos < offset + len) {
3140			if (i >= nfrags) {
3141				BUG_ON(skb_headlen(list_skb));
3142
3143				i = 0;
3144				nfrags = skb_shinfo(list_skb)->nr_frags;
3145				frag = skb_shinfo(list_skb)->frags;
3146				frag_skb = list_skb;
3147
3148				BUG_ON(!nfrags);
3149
3150				list_skb = list_skb->next;
3151			}
3152
3153			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3154				     MAX_SKB_FRAGS)) {
3155				net_warn_ratelimited(
3156					"skb_segment: too many frags: %u %u\n",
3157					pos, mss);
3158				goto err;
3159			}
3160
3161			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3162				goto err;
3163
3164			*nskb_frag = *frag;
3165			__skb_frag_ref(nskb_frag);
3166			size = skb_frag_size(nskb_frag);
3167
3168			if (pos < offset) {
3169				nskb_frag->page_offset += offset - pos;
3170				skb_frag_size_sub(nskb_frag, offset - pos);
3171			}
3172
3173			skb_shinfo(nskb)->nr_frags++;
3174
3175			if (pos + size <= offset + len) {
3176				i++;
3177				frag++;
3178				pos += size;
3179			} else {
3180				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3181				goto skip_fraglist;
3182			}
3183
3184			nskb_frag++;
3185		}
3186
3187skip_fraglist:
3188		nskb->data_len = len - hsize;
3189		nskb->len += nskb->data_len;
3190		nskb->truesize += nskb->data_len;
3191
3192perform_csum_check:
3193		if (!csum && !nskb->remcsum_offload) {
3194			nskb->csum = skb_checksum(nskb, doffset,
3195						  nskb->len - doffset, 0);
3196			nskb->ip_summed = CHECKSUM_NONE;
3197			SKB_GSO_CB(nskb)->csum_start =
3198			    skb_headroom(nskb) + doffset;
3199		}
3200	} while ((offset += len) < head_skb->len);
3201
3202	/* Some callers want to get the end of the list.
3203	 * Put it in segs->prev to avoid walking the list.
3204	 * (see validate_xmit_skb_list() for example)
3205	 */
3206	segs->prev = tail;
3207
3208	/* Following permits correct backpressure, for protocols
3209	 * using skb_set_owner_w().
3210	 * Idea is to tranfert ownership from head_skb to last segment.
3211	 */
3212	if (head_skb->destructor == sock_wfree) {
3213		swap(tail->truesize, head_skb->truesize);
3214		swap(tail->destructor, head_skb->destructor);
3215		swap(tail->sk, head_skb->sk);
3216	}
3217	return segs;
3218
3219err:
3220	kfree_skb_list(segs);
3221	return ERR_PTR(err);
3222}
3223EXPORT_SYMBOL_GPL(skb_segment);
3224
3225int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3226{
3227	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3228	unsigned int offset = skb_gro_offset(skb);
3229	unsigned int headlen = skb_headlen(skb);
3230	unsigned int len = skb_gro_len(skb);
3231	struct sk_buff *lp, *p = *head;
3232	unsigned int delta_truesize;
3233
3234	if (unlikely(p->len + len >= 65536))
3235		return -E2BIG;
3236
3237	lp = NAPI_GRO_CB(p)->last;
3238	pinfo = skb_shinfo(lp);
3239
3240	if (headlen <= offset) {
3241		skb_frag_t *frag;
3242		skb_frag_t *frag2;
3243		int i = skbinfo->nr_frags;
3244		int nr_frags = pinfo->nr_frags + i;
3245
3246		if (nr_frags > MAX_SKB_FRAGS)
3247			goto merge;
3248
3249		offset -= headlen;
3250		pinfo->nr_frags = nr_frags;
3251		skbinfo->nr_frags = 0;
3252
3253		frag = pinfo->frags + nr_frags;
3254		frag2 = skbinfo->frags + i;
3255		do {
3256			*--frag = *--frag2;
3257		} while (--i);
3258
3259		frag->page_offset += offset;
3260		skb_frag_size_sub(frag, offset);
3261
3262		/* all fragments truesize : remove (head size + sk_buff) */
3263		delta_truesize = skb->truesize -
3264				 SKB_TRUESIZE(skb_end_offset(skb));
3265
3266		skb->truesize -= skb->data_len;
3267		skb->len -= skb->data_len;
3268		skb->data_len = 0;
3269
3270		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3271		goto done;
3272	} else if (skb->head_frag) {
3273		int nr_frags = pinfo->nr_frags;
3274		skb_frag_t *frag = pinfo->frags + nr_frags;
3275		struct page *page = virt_to_head_page(skb->head);
3276		unsigned int first_size = headlen - offset;
3277		unsigned int first_offset;
3278
3279		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3280			goto merge;
3281
3282		first_offset = skb->data -
3283			       (unsigned char *)page_address(page) +
3284			       offset;
3285
3286		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3287
3288		frag->page.p	  = page;
3289		frag->page_offset = first_offset;
3290		skb_frag_size_set(frag, first_size);
3291
3292		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3293		/* We dont need to clear skbinfo->nr_frags here */
3294
3295		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3296		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3297		goto done;
3298	}
3299
3300merge:
3301	delta_truesize = skb->truesize;
3302	if (offset > headlen) {
3303		unsigned int eat = offset - headlen;
3304
3305		skbinfo->frags[0].page_offset += eat;
3306		skb_frag_size_sub(&skbinfo->frags[0], eat);
3307		skb->data_len -= eat;
3308		skb->len -= eat;
3309		offset = headlen;
3310	}
3311
3312	__skb_pull(skb, offset);
3313
3314	if (NAPI_GRO_CB(p)->last == p)
3315		skb_shinfo(p)->frag_list = skb;
3316	else
3317		NAPI_GRO_CB(p)->last->next = skb;
3318	NAPI_GRO_CB(p)->last = skb;
3319	__skb_header_release(skb);
3320	lp = p;
3321
3322done:
3323	NAPI_GRO_CB(p)->count++;
3324	p->data_len += len;
3325	p->truesize += delta_truesize;
3326	p->len += len;
3327	if (lp != p) {
3328		lp->data_len += len;
3329		lp->truesize += delta_truesize;
3330		lp->len += len;
3331	}
3332	NAPI_GRO_CB(skb)->same_flow = 1;
3333	return 0;
3334}
3335
3336void __init skb_init(void)
3337{
3338	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3339					      sizeof(struct sk_buff),
3340					      0,
3341					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3342					      NULL);
3343	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3344						sizeof(struct sk_buff_fclones),
3345						0,
3346						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3347						NULL);
3348}
3349
3350/**
3351 *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3352 *	@skb: Socket buffer containing the buffers to be mapped
3353 *	@sg: The scatter-gather list to map into
3354 *	@offset: The offset into the buffer's contents to start mapping
3355 *	@len: Length of buffer space to be mapped
3356 *
3357 *	Fill the specified scatter-gather list with mappings/pointers into a
3358 *	region of the buffer space attached to a socket buffer.
3359 */
3360static int
3361__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3362{
3363	int start = skb_headlen(skb);
3364	int i, copy = start - offset;
3365	struct sk_buff *frag_iter;
3366	int elt = 0;
3367
3368	if (copy > 0) {
3369		if (copy > len)
3370			copy = len;
3371		sg_set_buf(sg, skb->data + offset, copy);
3372		elt++;
3373		if ((len -= copy) == 0)
3374			return elt;
3375		offset += copy;
3376	}
3377
3378	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3379		int end;
3380
3381		WARN_ON(start > offset + len);
3382
3383		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3384		if ((copy = end - offset) > 0) {
3385			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3386
3387			if (copy > len)
3388				copy = len;
3389			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3390					frag->page_offset+offset-start);
3391			elt++;
3392			if (!(len -= copy))
3393				return elt;
3394			offset += copy;
3395		}
3396		start = end;
3397	}
3398
3399	skb_walk_frags(skb, frag_iter) {
3400		int end;
3401
3402		WARN_ON(start > offset + len);
3403
3404		end = start + frag_iter->len;
3405		if ((copy = end - offset) > 0) {
3406			if (copy > len)
3407				copy = len;
3408			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3409					      copy);
3410			if ((len -= copy) == 0)
3411				return elt;
3412			offset += copy;
3413		}
3414		start = end;
3415	}
3416	BUG_ON(len);
3417	return elt;
3418}
3419
3420/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3421 * sglist without mark the sg which contain last skb data as the end.
3422 * So the caller can mannipulate sg list as will when padding new data after
3423 * the first call without calling sg_unmark_end to expend sg list.
3424 *
3425 * Scenario to use skb_to_sgvec_nomark:
3426 * 1. sg_init_table
3427 * 2. skb_to_sgvec_nomark(payload1)
3428 * 3. skb_to_sgvec_nomark(payload2)
3429 *
3430 * This is equivalent to:
3431 * 1. sg_init_table
3432 * 2. skb_to_sgvec(payload1)
3433 * 3. sg_unmark_end
3434 * 4. skb_to_sgvec(payload2)
3435 *
3436 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3437 * is more preferable.
3438 */
3439int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3440			int offset, int len)
3441{
3442	return __skb_to_sgvec(skb, sg, offset, len);
3443}
3444EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3445
3446int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3447{
3448	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3449
3450	sg_mark_end(&sg[nsg - 1]);
3451
3452	return nsg;
3453}
3454EXPORT_SYMBOL_GPL(skb_to_sgvec);
3455
3456/**
3457 *	skb_cow_data - Check that a socket buffer's data buffers are writable
3458 *	@skb: The socket buffer to check.
3459 *	@tailbits: Amount of trailing space to be added
3460 *	@trailer: Returned pointer to the skb where the @tailbits space begins
3461 *
3462 *	Make sure that the data buffers attached to a socket buffer are
3463 *	writable. If they are not, private copies are made of the data buffers
3464 *	and the socket buffer is set to use these instead.
3465 *
3466 *	If @tailbits is given, make sure that there is space to write @tailbits
3467 *	bytes of data beyond current end of socket buffer.  @trailer will be
3468 *	set to point to the skb in which this space begins.
3469 *
3470 *	The number of scatterlist elements required to completely map the
3471 *	COW'd and extended socket buffer will be returned.
3472 */
3473int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3474{
3475	int copyflag;
3476	int elt;
3477	struct sk_buff *skb1, **skb_p;
3478
3479	/* If skb is cloned or its head is paged, reallocate
3480	 * head pulling out all the pages (pages are considered not writable
3481	 * at the moment even if they are anonymous).
3482	 */
3483	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3484	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3485		return -ENOMEM;
3486
3487	/* Easy case. Most of packets will go this way. */
3488	if (!skb_has_frag_list(skb)) {
3489		/* A little of trouble, not enough of space for trailer.
3490		 * This should not happen, when stack is tuned to generate
3491		 * good frames. OK, on miss we reallocate and reserve even more
3492		 * space, 128 bytes is fair. */
3493
3494		if (skb_tailroom(skb) < tailbits &&
3495		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3496			return -ENOMEM;
3497
3498		/* Voila! */
3499		*trailer = skb;
3500		return 1;
3501	}
3502
3503	/* Misery. We are in troubles, going to mincer fragments... */
3504
3505	elt = 1;
3506	skb_p = &skb_shinfo(skb)->frag_list;
3507	copyflag = 0;
3508
3509	while ((skb1 = *skb_p) != NULL) {
3510		int ntail = 0;
3511
3512		/* The fragment is partially pulled by someone,
3513		 * this can happen on input. Copy it and everything
3514		 * after it. */
3515
3516		if (skb_shared(skb1))
3517			copyflag = 1;
3518
3519		/* If the skb is the last, worry about trailer. */
3520
3521		if (skb1->next == NULL && tailbits) {
3522			if (skb_shinfo(skb1)->nr_frags ||
3523			    skb_has_frag_list(skb1) ||
3524			    skb_tailroom(skb1) < tailbits)
3525				ntail = tailbits + 128;
3526		}
3527
3528		if (copyflag ||
3529		    skb_cloned(skb1) ||
3530		    ntail ||
3531		    skb_shinfo(skb1)->nr_frags ||
3532		    skb_has_frag_list(skb1)) {
3533			struct sk_buff *skb2;
3534
3535			/* Fuck, we are miserable poor guys... */
3536			if (ntail == 0)
3537				skb2 = skb_copy(skb1, GFP_ATOMIC);
3538			else
3539				skb2 = skb_copy_expand(skb1,
3540						       skb_headroom(skb1),
3541						       ntail,
3542						       GFP_ATOMIC);
3543			if (unlikely(skb2 == NULL))
3544				return -ENOMEM;
3545
3546			if (skb1->sk)
3547				skb_set_owner_w(skb2, skb1->sk);
3548
3549			/* Looking around. Are we still alive?
3550			 * OK, link new skb, drop old one */
3551
3552			skb2->next = skb1->next;
3553			*skb_p = skb2;
3554			kfree_skb(skb1);
3555			skb1 = skb2;
3556		}
3557		elt++;
3558		*trailer = skb1;
3559		skb_p = &skb1->next;
3560	}
3561
3562	return elt;
3563}
3564EXPORT_SYMBOL_GPL(skb_cow_data);
3565
3566static void sock_rmem_free(struct sk_buff *skb)
3567{
3568	struct sock *sk = skb->sk;
3569
3570	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3571}
3572
3573/*
3574 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3575 */
3576int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3577{
3578	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3579	    (unsigned int)sk->sk_rcvbuf)
3580		return -ENOMEM;
3581
3582	skb_orphan(skb);
3583	skb->sk = sk;
3584	skb->destructor = sock_rmem_free;
3585	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3586
3587	/* before exiting rcu section, make sure dst is refcounted */
3588	skb_dst_force(skb);
3589
3590	skb_queue_tail(&sk->sk_error_queue, skb);
3591	if (!sock_flag(sk, SOCK_DEAD))
3592		sk->sk_data_ready(sk);
3593	return 0;
3594}
3595EXPORT_SYMBOL(sock_queue_err_skb);
3596
3597struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3598{
3599	struct sk_buff_head *q = &sk->sk_error_queue;
3600	struct sk_buff *skb, *skb_next;
3601	unsigned long flags;
3602	int err = 0;
3603
3604	spin_lock_irqsave(&q->lock, flags);
3605	skb = __skb_dequeue(q);
3606	if (skb && (skb_next = skb_peek(q)))
3607		err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3608	spin_unlock_irqrestore(&q->lock, flags);
3609
3610	sk->sk_err = err;
3611	if (err)
3612		sk->sk_error_report(sk);
3613
3614	return skb;
3615}
3616EXPORT_SYMBOL(sock_dequeue_err_skb);
3617
3618/**
3619 * skb_clone_sk - create clone of skb, and take reference to socket
3620 * @skb: the skb to clone
3621 *
3622 * This function creates a clone of a buffer that holds a reference on
3623 * sk_refcnt.  Buffers created via this function are meant to be
3624 * returned using sock_queue_err_skb, or free via kfree_skb.
3625 *
3626 * When passing buffers allocated with this function to sock_queue_err_skb
3627 * it is necessary to wrap the call with sock_hold/sock_put in order to
3628 * prevent the socket from being released prior to being enqueued on
3629 * the sk_error_queue.
3630 */
3631struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3632{
3633	struct sock *sk = skb->sk;
3634	struct sk_buff *clone;
3635
3636	if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3637		return NULL;
3638
3639	clone = skb_clone(skb, GFP_ATOMIC);
3640	if (!clone) {
3641		sock_put(sk);
3642		return NULL;
3643	}
3644
3645	clone->sk = sk;
3646	clone->destructor = sock_efree;
3647
3648	return clone;
3649}
3650EXPORT_SYMBOL(skb_clone_sk);
3651
3652static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3653					struct sock *sk,
3654					int tstype)
3655{
3656	struct sock_exterr_skb *serr;
3657	int err;
3658
3659	serr = SKB_EXT_ERR(skb);
3660	memset(serr, 0, sizeof(*serr));
3661	serr->ee.ee_errno = ENOMSG;
3662	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3663	serr->ee.ee_info = tstype;
3664	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3665		serr->ee.ee_data = skb_shinfo(skb)->tskey;
3666		if (sk->sk_protocol == IPPROTO_TCP &&
3667		    sk->sk_type == SOCK_STREAM)
3668			serr->ee.ee_data -= sk->sk_tskey;
3669	}
3670
3671	err = sock_queue_err_skb(sk, skb);
3672
3673	if (err)
3674		kfree_skb(skb);
3675}
3676
3677static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3678{
3679	bool ret;
3680
3681	if (likely(sysctl_tstamp_allow_data || tsonly))
3682		return true;
3683
3684	read_lock_bh(&sk->sk_callback_lock);
3685	ret = sk->sk_socket && sk->sk_socket->file &&
3686	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3687	read_unlock_bh(&sk->sk_callback_lock);
3688	return ret;
3689}
3690
3691void skb_complete_tx_timestamp(struct sk_buff *skb,
3692			       struct skb_shared_hwtstamps *hwtstamps)
3693{
3694	struct sock *sk = skb->sk;
3695
3696	if (!skb_may_tx_timestamp(sk, false))
3697		return;
3698
3699	/* take a reference to prevent skb_orphan() from freeing the socket */
3700	sock_hold(sk);
3701
3702	*skb_hwtstamps(skb) = *hwtstamps;
3703	__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3704
3705	sock_put(sk);
3706}
3707EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3708
3709void __skb_tstamp_tx(struct sk_buff *orig_skb,
3710		     struct skb_shared_hwtstamps *hwtstamps,
3711		     struct sock *sk, int tstype)
3712{
3713	struct sk_buff *skb;
3714	bool tsonly;
3715
3716	if (!sk)
3717		return;
3718
3719	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3720	if (!skb_may_tx_timestamp(sk, tsonly))
3721		return;
3722
3723	if (tsonly)
3724		skb = alloc_skb(0, GFP_ATOMIC);
3725	else
3726		skb = skb_clone(orig_skb, GFP_ATOMIC);
3727	if (!skb)
3728		return;
3729
3730	if (tsonly) {
3731		skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3732		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3733	}
3734
3735	if (hwtstamps)
3736		*skb_hwtstamps(skb) = *hwtstamps;
3737	else
3738		skb->tstamp = ktime_get_real();
3739
3740	__skb_complete_tx_timestamp(skb, sk, tstype);
3741}
3742EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3743
3744void skb_tstamp_tx(struct sk_buff *orig_skb,
3745		   struct skb_shared_hwtstamps *hwtstamps)
3746{
3747	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3748			       SCM_TSTAMP_SND);
3749}
3750EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3751
3752void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3753{
3754	struct sock *sk = skb->sk;
3755	struct sock_exterr_skb *serr;
3756	int err;
3757
3758	skb->wifi_acked_valid = 1;
3759	skb->wifi_acked = acked;
3760
3761	serr = SKB_EXT_ERR(skb);
3762	memset(serr, 0, sizeof(*serr));
3763	serr->ee.ee_errno = ENOMSG;
3764	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3765
3766	/* take a reference to prevent skb_orphan() from freeing the socket */
3767	sock_hold(sk);
3768
3769	err = sock_queue_err_skb(sk, skb);
3770	if (err)
3771		kfree_skb(skb);
3772
3773	sock_put(sk);
3774}
3775EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3776
3777/**
3778 * skb_partial_csum_set - set up and verify partial csum values for packet
3779 * @skb: the skb to set
3780 * @start: the number of bytes after skb->data to start checksumming.
3781 * @off: the offset from start to place the checksum.
3782 *
3783 * For untrusted partially-checksummed packets, we need to make sure the values
3784 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3785 *
3786 * This function checks and sets those values and skb->ip_summed: if this
3787 * returns false you should drop the packet.
3788 */
3789bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3790{
3791	if (unlikely(start > skb_headlen(skb)) ||
3792	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3793		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3794				     start, off, skb_headlen(skb));
3795		return false;
3796	}
3797	skb->ip_summed = CHECKSUM_PARTIAL;
3798	skb->csum_start = skb_headroom(skb) + start;
3799	skb->csum_offset = off;
3800	skb_set_transport_header(skb, start);
3801	return true;
3802}
3803EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3804
3805static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3806			       unsigned int max)
3807{
3808	if (skb_headlen(skb) >= len)
3809		return 0;
3810
3811	/* If we need to pullup then pullup to the max, so we
3812	 * won't need to do it again.
3813	 */
3814	if (max > skb->len)
3815		max = skb->len;
3816
3817	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3818		return -ENOMEM;
3819
3820	if (skb_headlen(skb) < len)
3821		return -EPROTO;
3822
3823	return 0;
3824}
3825
3826#define MAX_TCP_HDR_LEN (15 * 4)
3827
3828static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3829				      typeof(IPPROTO_IP) proto,
3830				      unsigned int off)
3831{
3832	switch (proto) {
3833		int err;
3834
3835	case IPPROTO_TCP:
3836		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3837					  off + MAX_TCP_HDR_LEN);
3838		if (!err && !skb_partial_csum_set(skb, off,
3839						  offsetof(struct tcphdr,
3840							   check)))
3841			err = -EPROTO;
3842		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3843
3844	case IPPROTO_UDP:
3845		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3846					  off + sizeof(struct udphdr));
3847		if (!err && !skb_partial_csum_set(skb, off,
3848						  offsetof(struct udphdr,
3849							   check)))
3850			err = -EPROTO;
3851		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3852	}
3853
3854	return ERR_PTR(-EPROTO);
3855}
3856
3857/* This value should be large enough to cover a tagged ethernet header plus
3858 * maximally sized IP and TCP or UDP headers.
3859 */
3860#define MAX_IP_HDR_LEN 128
3861
3862static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3863{
3864	unsigned int off;
3865	bool fragment;
3866	__sum16 *csum;
3867	int err;
3868
3869	fragment = false;
3870
3871	err = skb_maybe_pull_tail(skb,
3872				  sizeof(struct iphdr),
3873				  MAX_IP_HDR_LEN);
3874	if (err < 0)
3875		goto out;
3876
3877	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3878		fragment = true;
3879
3880	off = ip_hdrlen(skb);
3881
3882	err = -EPROTO;
3883
3884	if (fragment)
3885		goto out;
3886
3887	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3888	if (IS_ERR(csum))
3889		return PTR_ERR(csum);
3890
3891	if (recalculate)
3892		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3893					   ip_hdr(skb)->daddr,
3894					   skb->len - off,
3895					   ip_hdr(skb)->protocol, 0);
3896	err = 0;
3897
3898out:
3899	return err;
3900}
3901
3902/* This value should be large enough to cover a tagged ethernet header plus
3903 * an IPv6 header, all options, and a maximal TCP or UDP header.
3904 */
3905#define MAX_IPV6_HDR_LEN 256
3906
3907#define OPT_HDR(type, skb, off) \
3908	(type *)(skb_network_header(skb) + (off))
3909
3910static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3911{
3912	int err;
3913	u8 nexthdr;
3914	unsigned int off;
3915	unsigned int len;
3916	bool fragment;
3917	bool done;
3918	__sum16 *csum;
3919
3920	fragment = false;
3921	done = false;
3922
3923	off = sizeof(struct ipv6hdr);
3924
3925	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3926	if (err < 0)
3927		goto out;
3928
3929	nexthdr = ipv6_hdr(skb)->nexthdr;
3930
3931	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3932	while (off <= len && !done) {
3933		switch (nexthdr) {
3934		case IPPROTO_DSTOPTS:
3935		case IPPROTO_HOPOPTS:
3936		case IPPROTO_ROUTING: {
3937			struct ipv6_opt_hdr *hp;
3938
3939			err = skb_maybe_pull_tail(skb,
3940						  off +
3941						  sizeof(struct ipv6_opt_hdr),
3942						  MAX_IPV6_HDR_LEN);
3943			if (err < 0)
3944				goto out;
3945
3946			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3947			nexthdr = hp->nexthdr;
3948			off += ipv6_optlen(hp);
3949			break;
3950		}
3951		case IPPROTO_AH: {
3952			struct ip_auth_hdr *hp;
3953
3954			err = skb_maybe_pull_tail(skb,
3955						  off +
3956						  sizeof(struct ip_auth_hdr),
3957						  MAX_IPV6_HDR_LEN);
3958			if (err < 0)
3959				goto out;
3960
3961			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3962			nexthdr = hp->nexthdr;
3963			off += ipv6_authlen(hp);
3964			break;
3965		}
3966		case IPPROTO_FRAGMENT: {
3967			struct frag_hdr *hp;
3968
3969			err = skb_maybe_pull_tail(skb,
3970						  off +
3971						  sizeof(struct frag_hdr),
3972						  MAX_IPV6_HDR_LEN);
3973			if (err < 0)
3974				goto out;
3975
3976			hp = OPT_HDR(struct frag_hdr, skb, off);
3977
3978			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3979				fragment = true;
3980
3981			nexthdr = hp->nexthdr;
3982			off += sizeof(struct frag_hdr);
3983			break;
3984		}
3985		default:
3986			done = true;
3987			break;
3988		}
3989	}
3990
3991	err = -EPROTO;
3992
3993	if (!done || fragment)
3994		goto out;
3995
3996	csum = skb_checksum_setup_ip(skb, nexthdr, off);
3997	if (IS_ERR(csum))
3998		return PTR_ERR(csum);
3999
4000	if (recalculate)
4001		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4002					 &ipv6_hdr(skb)->daddr,
4003					 skb->len - off, nexthdr, 0);
4004	err = 0;
4005
4006out:
4007	return err;
4008}
4009
4010/**
4011 * skb_checksum_setup - set up partial checksum offset
4012 * @skb: the skb to set up
4013 * @recalculate: if true the pseudo-header checksum will be recalculated
4014 */
4015int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4016{
4017	int err;
4018
4019	switch (skb->protocol) {
4020	case htons(ETH_P_IP):
4021		err = skb_checksum_setup_ipv4(skb, recalculate);
4022		break;
4023
4024	case htons(ETH_P_IPV6):
4025		err = skb_checksum_setup_ipv6(skb, recalculate);
4026		break;
4027
4028	default:
4029		err = -EPROTO;
4030		break;
4031	}
4032
4033	return err;
4034}
4035EXPORT_SYMBOL(skb_checksum_setup);
4036
4037/**
4038 * skb_checksum_maybe_trim - maybe trims the given skb
4039 * @skb: the skb to check
4040 * @transport_len: the data length beyond the network header
4041 *
4042 * Checks whether the given skb has data beyond the given transport length.
4043 * If so, returns a cloned skb trimmed to this transport length.
4044 * Otherwise returns the provided skb. Returns NULL in error cases
4045 * (e.g. transport_len exceeds skb length or out-of-memory).
4046 *
4047 * Caller needs to set the skb transport header and free any returned skb if it
4048 * differs from the provided skb.
4049 */
4050static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4051					       unsigned int transport_len)
4052{
4053	struct sk_buff *skb_chk;
4054	unsigned int len = skb_transport_offset(skb) + transport_len;
4055	int ret;
4056
4057	if (skb->len < len)
4058		return NULL;
4059	else if (skb->len == len)
4060		return skb;
4061
4062	skb_chk = skb_clone(skb, GFP_ATOMIC);
4063	if (!skb_chk)
4064		return NULL;
4065
4066	ret = pskb_trim_rcsum(skb_chk, len);
4067	if (ret) {
4068		kfree_skb(skb_chk);
4069		return NULL;
4070	}
4071
4072	return skb_chk;
4073}
4074
4075/**
4076 * skb_checksum_trimmed - validate checksum of an skb
4077 * @skb: the skb to check
4078 * @transport_len: the data length beyond the network header
4079 * @skb_chkf: checksum function to use
4080 *
4081 * Applies the given checksum function skb_chkf to the provided skb.
4082 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4083 *
4084 * If the skb has data beyond the given transport length, then a
4085 * trimmed & cloned skb is checked and returned.
4086 *
4087 * Caller needs to set the skb transport header and free any returned skb if it
4088 * differs from the provided skb.
4089 */
4090struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4091				     unsigned int transport_len,
4092				     __sum16(*skb_chkf)(struct sk_buff *skb))
4093{
4094	struct sk_buff *skb_chk;
4095	unsigned int offset = skb_transport_offset(skb);
4096	__sum16 ret;
4097
4098	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4099	if (!skb_chk)
4100		goto err;
4101
4102	if (!pskb_may_pull(skb_chk, offset))
4103		goto err;
4104
4105	skb_pull_rcsum(skb_chk, offset);
4106	ret = skb_chkf(skb_chk);
4107	skb_push_rcsum(skb_chk, offset);
4108
4109	if (ret)
4110		goto err;
4111
4112	return skb_chk;
4113
4114err:
4115	if (skb_chk && skb_chk != skb)
4116		kfree_skb(skb_chk);
4117
4118	return NULL;
4119
4120}
4121EXPORT_SYMBOL(skb_checksum_trimmed);
4122
4123void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4124{
4125	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4126			     skb->dev->name);
4127}
4128EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4129
4130void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4131{
4132	if (head_stolen) {
4133		skb_release_head_state(skb);
4134		kmem_cache_free(skbuff_head_cache, skb);
4135	} else {
4136		__kfree_skb(skb);
4137	}
4138}
4139EXPORT_SYMBOL(kfree_skb_partial);
4140
4141/**
4142 * skb_try_coalesce - try to merge skb to prior one
4143 * @to: prior buffer
4144 * @from: buffer to add
4145 * @fragstolen: pointer to boolean
4146 * @delta_truesize: how much more was allocated than was requested
4147 */
4148bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4149		      bool *fragstolen, int *delta_truesize)
4150{
4151	int i, delta, len = from->len;
4152
4153	*fragstolen = false;
4154
4155	if (skb_cloned(to))
4156		return false;
4157
4158	if (len <= skb_tailroom(to)) {
4159		if (len)
4160			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4161		*delta_truesize = 0;
4162		return true;
4163	}
4164
4165	if (skb_has_frag_list(to) || skb_has_frag_list(from))
4166		return false;
4167
4168	if (skb_headlen(from) != 0) {
4169		struct page *page;
4170		unsigned int offset;
4171
4172		if (skb_shinfo(to)->nr_frags +
4173		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4174			return false;
4175
4176		if (skb_head_is_locked(from))
4177			return false;
4178
4179		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4180
4181		page = virt_to_head_page(from->head);
4182		offset = from->data - (unsigned char *)page_address(page);
4183
4184		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4185				   page, offset, skb_headlen(from));
4186		*fragstolen = true;
4187	} else {
4188		if (skb_shinfo(to)->nr_frags +
4189		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4190			return false;
4191
4192		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4193	}
4194
4195	WARN_ON_ONCE(delta < len);
4196
4197	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4198	       skb_shinfo(from)->frags,
4199	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4200	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4201
4202	if (!skb_cloned(from))
4203		skb_shinfo(from)->nr_frags = 0;
4204
4205	/* if the skb is not cloned this does nothing
4206	 * since we set nr_frags to 0.
4207	 */
4208	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4209		skb_frag_ref(from, i);
4210
4211	to->truesize += delta;
4212	to->len += len;
4213	to->data_len += len;
4214
4215	*delta_truesize = delta;
4216	return true;
4217}
4218EXPORT_SYMBOL(skb_try_coalesce);
4219
4220/**
4221 * skb_scrub_packet - scrub an skb
4222 *
4223 * @skb: buffer to clean
4224 * @xnet: packet is crossing netns
4225 *
4226 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4227 * into/from a tunnel. Some information have to be cleared during these
4228 * operations.
4229 * skb_scrub_packet can also be used to clean a skb before injecting it in
4230 * another namespace (@xnet == true). We have to clear all information in the
4231 * skb that could impact namespace isolation.
4232 */
4233void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4234{
4235	skb->tstamp.tv64 = 0;
4236	skb->pkt_type = PACKET_HOST;
4237	skb->skb_iif = 0;
4238	skb->ignore_df = 0;
4239	skb_dst_drop(skb);
4240	skb_sender_cpu_clear(skb);
4241	secpath_reset(skb);
4242	nf_reset(skb);
4243	nf_reset_trace(skb);
4244
4245	if (!xnet)
4246		return;
4247
4248	skb_orphan(skb);
4249	skb->mark = 0;
4250}
4251EXPORT_SYMBOL_GPL(skb_scrub_packet);
4252
4253/**
4254 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4255 *
4256 * @skb: GSO skb
4257 *
4258 * skb_gso_transport_seglen is used to determine the real size of the
4259 * individual segments, including Layer4 headers (TCP/UDP).
4260 *
4261 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4262 */
4263unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4264{
4265	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4266	unsigned int thlen = 0;
4267
4268	if (skb->encapsulation) {
4269		thlen = skb_inner_transport_header(skb) -
4270			skb_transport_header(skb);
4271
4272		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4273			thlen += inner_tcp_hdrlen(skb);
4274	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4275		thlen = tcp_hdrlen(skb);
4276	}
4277	/* UFO sets gso_size to the size of the fragmentation
4278	 * payload, i.e. the size of the L4 (UDP) header is already
4279	 * accounted for.
4280	 */
4281	return thlen + shinfo->gso_size;
4282}
4283EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4284
4285static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4286{
4287	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4288		kfree_skb(skb);
4289		return NULL;
4290	}
4291
4292	memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4293		2 * ETH_ALEN);
4294	skb->mac_header += VLAN_HLEN;
4295	return skb;
4296}
4297
4298struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4299{
4300	struct vlan_hdr *vhdr;
4301	u16 vlan_tci;
4302
4303	if (unlikely(skb_vlan_tag_present(skb))) {
4304		/* vlan_tci is already set-up so leave this for another time */
4305		return skb;
4306	}
4307
4308	skb = skb_share_check(skb, GFP_ATOMIC);
4309	if (unlikely(!skb))
4310		goto err_free;
4311
4312	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4313		goto err_free;
4314
4315	vhdr = (struct vlan_hdr *)skb->data;
4316	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4317	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4318
4319	skb_pull_rcsum(skb, VLAN_HLEN);
4320	vlan_set_encap_proto(skb, vhdr);
4321
4322	skb = skb_reorder_vlan_header(skb);
4323	if (unlikely(!skb))
4324		goto err_free;
4325
4326	skb_reset_network_header(skb);
4327	skb_reset_transport_header(skb);
4328	skb_reset_mac_len(skb);
4329
4330	return skb;
4331
4332err_free:
4333	kfree_skb(skb);
4334	return NULL;
4335}
4336EXPORT_SYMBOL(skb_vlan_untag);
4337
4338int skb_ensure_writable(struct sk_buff *skb, int write_len)
4339{
4340	if (!pskb_may_pull(skb, write_len))
4341		return -ENOMEM;
4342
4343	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4344		return 0;
4345
4346	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4347}
4348EXPORT_SYMBOL(skb_ensure_writable);
4349
4350/* remove VLAN header from packet and update csum accordingly. */
4351static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4352{
4353	struct vlan_hdr *vhdr;
4354	unsigned int offset = skb->data - skb_mac_header(skb);
4355	int err;
4356
4357	__skb_push(skb, offset);
4358	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4359	if (unlikely(err))
4360		goto pull;
4361
4362	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4363
4364	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4365	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
4366
4367	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4368	__skb_pull(skb, VLAN_HLEN);
4369
4370	vlan_set_encap_proto(skb, vhdr);
4371	skb->mac_header += VLAN_HLEN;
4372
4373	if (skb_network_offset(skb) < ETH_HLEN)
4374		skb_set_network_header(skb, ETH_HLEN);
4375
4376	skb_reset_mac_len(skb);
4377pull:
4378	__skb_pull(skb, offset);
4379
4380	return err;
4381}
4382
4383int skb_vlan_pop(struct sk_buff *skb)
4384{
4385	u16 vlan_tci;
4386	__be16 vlan_proto;
4387	int err;
4388
4389	if (likely(skb_vlan_tag_present(skb))) {
4390		skb->vlan_tci = 0;
4391	} else {
4392		if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
4393			      skb->protocol != htons(ETH_P_8021AD)) ||
4394			     skb->len < VLAN_ETH_HLEN))
4395			return 0;
4396
4397		err = __skb_vlan_pop(skb, &vlan_tci);
4398		if (err)
4399			return err;
4400	}
4401	/* move next vlan tag to hw accel tag */
4402	if (likely((skb->protocol != htons(ETH_P_8021Q) &&
4403		    skb->protocol != htons(ETH_P_8021AD)) ||
4404		   skb->len < VLAN_ETH_HLEN))
4405		return 0;
4406
4407	vlan_proto = skb->protocol;
4408	err = __skb_vlan_pop(skb, &vlan_tci);
4409	if (unlikely(err))
4410		return err;
4411
4412	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4413	return 0;
4414}
4415EXPORT_SYMBOL(skb_vlan_pop);
4416
4417int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4418{
4419	if (skb_vlan_tag_present(skb)) {
4420		unsigned int offset = skb->data - skb_mac_header(skb);
4421		int err;
4422
4423		/* __vlan_insert_tag expect skb->data pointing to mac header.
4424		 * So change skb->data before calling it and change back to
4425		 * original position later
4426		 */
4427		__skb_push(skb, offset);
4428		err = __vlan_insert_tag(skb, skb->vlan_proto,
4429					skb_vlan_tag_get(skb));
4430		if (err) {
4431			__skb_pull(skb, offset);
4432			return err;
4433		}
4434
4435		skb->protocol = skb->vlan_proto;
4436		skb->mac_len += VLAN_HLEN;
4437
4438		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4439		__skb_pull(skb, offset);
4440	}
4441	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4442	return 0;
4443}
4444EXPORT_SYMBOL(skb_vlan_push);
4445
4446/**
4447 * alloc_skb_with_frags - allocate skb with page frags
4448 *
4449 * @header_len: size of linear part
4450 * @data_len: needed length in frags
4451 * @max_page_order: max page order desired.
4452 * @errcode: pointer to error code if any
4453 * @gfp_mask: allocation mask
4454 *
4455 * This can be used to allocate a paged skb, given a maximal order for frags.
4456 */
4457struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4458				     unsigned long data_len,
4459				     int max_page_order,
4460				     int *errcode,
4461				     gfp_t gfp_mask)
4462{
4463	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4464	unsigned long chunk;
4465	struct sk_buff *skb;
4466	struct page *page;
4467	gfp_t gfp_head;
4468	int i;
4469
4470	*errcode = -EMSGSIZE;
4471	/* Note this test could be relaxed, if we succeed to allocate
4472	 * high order pages...
4473	 */
4474	if (npages > MAX_SKB_FRAGS)
4475		return NULL;
4476
4477	gfp_head = gfp_mask;
4478	if (gfp_head & __GFP_DIRECT_RECLAIM)
4479		gfp_head |= __GFP_REPEAT;
4480
4481	*errcode = -ENOBUFS;
4482	skb = alloc_skb(header_len, gfp_head);
4483	if (!skb)
4484		return NULL;
4485
4486	skb->truesize += npages << PAGE_SHIFT;
4487
4488	for (i = 0; npages > 0; i++) {
4489		int order = max_page_order;
4490
4491		while (order) {
4492			if (npages >= 1 << order) {
4493				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4494						   __GFP_COMP |
4495						   __GFP_NOWARN |
4496						   __GFP_NORETRY,
4497						   order);
4498				if (page)
4499					goto fill_page;
4500				/* Do not retry other high order allocations */
4501				order = 1;
4502				max_page_order = 0;
4503			}
4504			order--;
4505		}
4506		page = alloc_page(gfp_mask);
4507		if (!page)
4508			goto failure;
4509fill_page:
4510		chunk = min_t(unsigned long, data_len,
4511			      PAGE_SIZE << order);
4512		skb_fill_page_desc(skb, i, page, 0, chunk);
4513		data_len -= chunk;
4514		npages -= 1 << order;
4515	}
4516	return skb;
4517
4518failure:
4519	kfree_skb(skb);
4520	return NULL;
4521}
4522EXPORT_SYMBOL(alloc_skb_with_frags);
4523