1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3#include <linux/workqueue.h>
4#include <linux/rtnetlink.h>
5#include <linux/cache.h>
6#include <linux/slab.h>
7#include <linux/list.h>
8#include <linux/delay.h>
9#include <linux/sched.h>
10#include <linux/idr.h>
11#include <linux/rculist.h>
12#include <linux/nsproxy.h>
13#include <linux/fs.h>
14#include <linux/proc_ns.h>
15#include <linux/file.h>
16#include <linux/export.h>
17#include <linux/user_namespace.h>
18#include <linux/net_namespace.h>
19#include <net/sock.h>
20#include <net/netlink.h>
21#include <net/net_namespace.h>
22#include <net/netns/generic.h>
23
24/*
25 *	Our network namespace constructor/destructor lists
26 */
27
28static LIST_HEAD(pernet_list);
29static struct list_head *first_device = &pernet_list;
30DEFINE_MUTEX(net_mutex);
31
32LIST_HEAD(net_namespace_list);
33EXPORT_SYMBOL_GPL(net_namespace_list);
34
35struct net init_net = {
36	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37};
38EXPORT_SYMBOL(init_net);
39
40#define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
41
42static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
43
44static struct net_generic *net_alloc_generic(void)
45{
46	struct net_generic *ng;
47	size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
48
49	ng = kzalloc(generic_size, GFP_KERNEL);
50	if (ng)
51		ng->len = max_gen_ptrs;
52
53	return ng;
54}
55
56static int net_assign_generic(struct net *net, int id, void *data)
57{
58	struct net_generic *ng, *old_ng;
59
60	BUG_ON(!mutex_is_locked(&net_mutex));
61	BUG_ON(id == 0);
62
63	old_ng = rcu_dereference_protected(net->gen,
64					   lockdep_is_held(&net_mutex));
65	ng = old_ng;
66	if (old_ng->len >= id)
67		goto assign;
68
69	ng = net_alloc_generic();
70	if (ng == NULL)
71		return -ENOMEM;
72
73	/*
74	 * Some synchronisation notes:
75	 *
76	 * The net_generic explores the net->gen array inside rcu
77	 * read section. Besides once set the net->gen->ptr[x]
78	 * pointer never changes (see rules in netns/generic.h).
79	 *
80	 * That said, we simply duplicate this array and schedule
81	 * the old copy for kfree after a grace period.
82	 */
83
84	memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
85
86	rcu_assign_pointer(net->gen, ng);
87	kfree_rcu(old_ng, rcu);
88assign:
89	ng->ptr[id - 1] = data;
90	return 0;
91}
92
93static int ops_init(const struct pernet_operations *ops, struct net *net)
94{
95	int err = -ENOMEM;
96	void *data = NULL;
97
98	if (ops->id && ops->size) {
99		data = kzalloc(ops->size, GFP_KERNEL);
100		if (!data)
101			goto out;
102
103		err = net_assign_generic(net, *ops->id, data);
104		if (err)
105			goto cleanup;
106	}
107	err = 0;
108	if (ops->init)
109		err = ops->init(net);
110	if (!err)
111		return 0;
112
113cleanup:
114	kfree(data);
115
116out:
117	return err;
118}
119
120static void ops_free(const struct pernet_operations *ops, struct net *net)
121{
122	if (ops->id && ops->size) {
123		int id = *ops->id;
124		kfree(net_generic(net, id));
125	}
126}
127
128static void ops_exit_list(const struct pernet_operations *ops,
129			  struct list_head *net_exit_list)
130{
131	struct net *net;
132	if (ops->exit) {
133		list_for_each_entry(net, net_exit_list, exit_list)
134			ops->exit(net);
135	}
136	if (ops->exit_batch)
137		ops->exit_batch(net_exit_list);
138}
139
140static void ops_free_list(const struct pernet_operations *ops,
141			  struct list_head *net_exit_list)
142{
143	struct net *net;
144	if (ops->size && ops->id) {
145		list_for_each_entry(net, net_exit_list, exit_list)
146			ops_free(ops, net);
147	}
148}
149
150/* should be called with nsid_lock held */
151static int alloc_netid(struct net *net, struct net *peer, int reqid)
152{
153	int min = 0, max = 0;
154
155	if (reqid >= 0) {
156		min = reqid;
157		max = reqid + 1;
158	}
159
160	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
161}
162
163/* This function is used by idr_for_each(). If net is equal to peer, the
164 * function returns the id so that idr_for_each() stops. Because we cannot
165 * returns the id 0 (idr_for_each() will not stop), we return the magic value
166 * NET_ID_ZERO (-1) for it.
167 */
168#define NET_ID_ZERO -1
169static int net_eq_idr(int id, void *net, void *peer)
170{
171	if (net_eq(net, peer))
172		return id ? : NET_ID_ZERO;
173	return 0;
174}
175
176/* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
177 * is set to true, thus the caller knows that the new id must be notified via
178 * rtnl.
179 */
180static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
181{
182	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
183	bool alloc_it = *alloc;
184
185	*alloc = false;
186
187	/* Magic value for id 0. */
188	if (id == NET_ID_ZERO)
189		return 0;
190	if (id > 0)
191		return id;
192
193	if (alloc_it) {
194		id = alloc_netid(net, peer, -1);
195		*alloc = true;
196		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
197	}
198
199	return NETNSA_NSID_NOT_ASSIGNED;
200}
201
202/* should be called with nsid_lock held */
203static int __peernet2id(struct net *net, struct net *peer)
204{
205	bool no = false;
206
207	return __peernet2id_alloc(net, peer, &no);
208}
209
210static void rtnl_net_notifyid(struct net *net, int cmd, int id);
211/* This function returns the id of a peer netns. If no id is assigned, one will
212 * be allocated and returned.
213 */
214int peernet2id_alloc(struct net *net, struct net *peer)
215{
216	unsigned long flags;
217	bool alloc;
218	int id;
219
220	spin_lock_irqsave(&net->nsid_lock, flags);
221	alloc = atomic_read(&peer->count) == 0 ? false : true;
222	id = __peernet2id_alloc(net, peer, &alloc);
223	spin_unlock_irqrestore(&net->nsid_lock, flags);
224	if (alloc && id >= 0)
225		rtnl_net_notifyid(net, RTM_NEWNSID, id);
226	return id;
227}
228EXPORT_SYMBOL(peernet2id_alloc);
229
230/* This function returns, if assigned, the id of a peer netns. */
231int peernet2id(struct net *net, struct net *peer)
232{
233	unsigned long flags;
234	int id;
235
236	spin_lock_irqsave(&net->nsid_lock, flags);
237	id = __peernet2id(net, peer);
238	spin_unlock_irqrestore(&net->nsid_lock, flags);
239	return id;
240}
241
242/* This function returns true is the peer netns has an id assigned into the
243 * current netns.
244 */
245bool peernet_has_id(struct net *net, struct net *peer)
246{
247	return peernet2id(net, peer) >= 0;
248}
249
250struct net *get_net_ns_by_id(struct net *net, int id)
251{
252	unsigned long flags;
253	struct net *peer;
254
255	if (id < 0)
256		return NULL;
257
258	rcu_read_lock();
259	spin_lock_irqsave(&net->nsid_lock, flags);
260	peer = idr_find(&net->netns_ids, id);
261	if (peer)
262		get_net(peer);
263	spin_unlock_irqrestore(&net->nsid_lock, flags);
264	rcu_read_unlock();
265
266	return peer;
267}
268
269/*
270 * setup_net runs the initializers for the network namespace object.
271 */
272static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
273{
274	/* Must be called with net_mutex held */
275	const struct pernet_operations *ops, *saved_ops;
276	int error = 0;
277	LIST_HEAD(net_exit_list);
278
279	atomic_set(&net->count, 1);
280	atomic_set(&net->passive, 1);
281	net->dev_base_seq = 1;
282	net->user_ns = user_ns;
283	idr_init(&net->netns_ids);
284	spin_lock_init(&net->nsid_lock);
285
286	list_for_each_entry(ops, &pernet_list, list) {
287		error = ops_init(ops, net);
288		if (error < 0)
289			goto out_undo;
290	}
291out:
292	return error;
293
294out_undo:
295	/* Walk through the list backwards calling the exit functions
296	 * for the pernet modules whose init functions did not fail.
297	 */
298	list_add(&net->exit_list, &net_exit_list);
299	saved_ops = ops;
300	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
301		ops_exit_list(ops, &net_exit_list);
302
303	ops = saved_ops;
304	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
305		ops_free_list(ops, &net_exit_list);
306
307	rcu_barrier();
308	goto out;
309}
310
311
312#ifdef CONFIG_NET_NS
313static struct kmem_cache *net_cachep;
314static struct workqueue_struct *netns_wq;
315
316static struct net *net_alloc(void)
317{
318	struct net *net = NULL;
319	struct net_generic *ng;
320
321	ng = net_alloc_generic();
322	if (!ng)
323		goto out;
324
325	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
326	if (!net)
327		goto out_free;
328
329	rcu_assign_pointer(net->gen, ng);
330out:
331	return net;
332
333out_free:
334	kfree(ng);
335	goto out;
336}
337
338static void net_free(struct net *net)
339{
340	kfree(rcu_access_pointer(net->gen));
341	kmem_cache_free(net_cachep, net);
342}
343
344void net_drop_ns(void *p)
345{
346	struct net *ns = p;
347	if (ns && atomic_dec_and_test(&ns->passive))
348		net_free(ns);
349}
350
351struct net *copy_net_ns(unsigned long flags,
352			struct user_namespace *user_ns, struct net *old_net)
353{
354	struct net *net;
355	int rv;
356
357	if (!(flags & CLONE_NEWNET))
358		return get_net(old_net);
359
360	net = net_alloc();
361	if (!net)
362		return ERR_PTR(-ENOMEM);
363
364	get_user_ns(user_ns);
365
366	mutex_lock(&net_mutex);
367	rv = setup_net(net, user_ns);
368	if (rv == 0) {
369		rtnl_lock();
370		list_add_tail_rcu(&net->list, &net_namespace_list);
371		rtnl_unlock();
372	}
373	mutex_unlock(&net_mutex);
374	if (rv < 0) {
375		put_user_ns(user_ns);
376		net_drop_ns(net);
377		return ERR_PTR(rv);
378	}
379	return net;
380}
381
382static DEFINE_SPINLOCK(cleanup_list_lock);
383static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
384
385static void cleanup_net(struct work_struct *work)
386{
387	const struct pernet_operations *ops;
388	struct net *net, *tmp;
389	struct list_head net_kill_list;
390	LIST_HEAD(net_exit_list);
391
392	/* Atomically snapshot the list of namespaces to cleanup */
393	spin_lock_irq(&cleanup_list_lock);
394	list_replace_init(&cleanup_list, &net_kill_list);
395	spin_unlock_irq(&cleanup_list_lock);
396
397	mutex_lock(&net_mutex);
398
399	/* Don't let anyone else find us. */
400	rtnl_lock();
401	list_for_each_entry(net, &net_kill_list, cleanup_list) {
402		list_del_rcu(&net->list);
403		list_add_tail(&net->exit_list, &net_exit_list);
404		for_each_net(tmp) {
405			int id;
406
407			spin_lock_irq(&tmp->nsid_lock);
408			id = __peernet2id(tmp, net);
409			if (id >= 0)
410				idr_remove(&tmp->netns_ids, id);
411			spin_unlock_irq(&tmp->nsid_lock);
412			if (id >= 0)
413				rtnl_net_notifyid(tmp, RTM_DELNSID, id);
414		}
415		spin_lock_irq(&net->nsid_lock);
416		idr_destroy(&net->netns_ids);
417		spin_unlock_irq(&net->nsid_lock);
418
419	}
420	rtnl_unlock();
421
422	/*
423	 * Another CPU might be rcu-iterating the list, wait for it.
424	 * This needs to be before calling the exit() notifiers, so
425	 * the rcu_barrier() below isn't sufficient alone.
426	 */
427	synchronize_rcu();
428
429	/* Run all of the network namespace exit methods */
430	list_for_each_entry_reverse(ops, &pernet_list, list)
431		ops_exit_list(ops, &net_exit_list);
432
433	/* Free the net generic variables */
434	list_for_each_entry_reverse(ops, &pernet_list, list)
435		ops_free_list(ops, &net_exit_list);
436
437	mutex_unlock(&net_mutex);
438
439	/* Ensure there are no outstanding rcu callbacks using this
440	 * network namespace.
441	 */
442	rcu_barrier();
443
444	/* Finally it is safe to free my network namespace structure */
445	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
446		list_del_init(&net->exit_list);
447		put_user_ns(net->user_ns);
448		net_drop_ns(net);
449	}
450}
451static DECLARE_WORK(net_cleanup_work, cleanup_net);
452
453void __put_net(struct net *net)
454{
455	/* Cleanup the network namespace in process context */
456	unsigned long flags;
457
458	spin_lock_irqsave(&cleanup_list_lock, flags);
459	list_add(&net->cleanup_list, &cleanup_list);
460	spin_unlock_irqrestore(&cleanup_list_lock, flags);
461
462	queue_work(netns_wq, &net_cleanup_work);
463}
464EXPORT_SYMBOL_GPL(__put_net);
465
466struct net *get_net_ns_by_fd(int fd)
467{
468	struct file *file;
469	struct ns_common *ns;
470	struct net *net;
471
472	file = proc_ns_fget(fd);
473	if (IS_ERR(file))
474		return ERR_CAST(file);
475
476	ns = get_proc_ns(file_inode(file));
477	if (ns->ops == &netns_operations)
478		net = get_net(container_of(ns, struct net, ns));
479	else
480		net = ERR_PTR(-EINVAL);
481
482	fput(file);
483	return net;
484}
485
486#else
487struct net *get_net_ns_by_fd(int fd)
488{
489	return ERR_PTR(-EINVAL);
490}
491#endif
492EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
493
494struct net *get_net_ns_by_pid(pid_t pid)
495{
496	struct task_struct *tsk;
497	struct net *net;
498
499	/* Lookup the network namespace */
500	net = ERR_PTR(-ESRCH);
501	rcu_read_lock();
502	tsk = find_task_by_vpid(pid);
503	if (tsk) {
504		struct nsproxy *nsproxy;
505		task_lock(tsk);
506		nsproxy = tsk->nsproxy;
507		if (nsproxy)
508			net = get_net(nsproxy->net_ns);
509		task_unlock(tsk);
510	}
511	rcu_read_unlock();
512	return net;
513}
514EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
515
516static __net_init int net_ns_net_init(struct net *net)
517{
518#ifdef CONFIG_NET_NS
519	net->ns.ops = &netns_operations;
520#endif
521	return ns_alloc_inum(&net->ns);
522}
523
524static __net_exit void net_ns_net_exit(struct net *net)
525{
526	ns_free_inum(&net->ns);
527}
528
529static struct pernet_operations __net_initdata net_ns_ops = {
530	.init = net_ns_net_init,
531	.exit = net_ns_net_exit,
532};
533
534static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
535	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
536	[NETNSA_NSID]		= { .type = NLA_S32 },
537	[NETNSA_PID]		= { .type = NLA_U32 },
538	[NETNSA_FD]		= { .type = NLA_U32 },
539};
540
541static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
542{
543	struct net *net = sock_net(skb->sk);
544	struct nlattr *tb[NETNSA_MAX + 1];
545	unsigned long flags;
546	struct net *peer;
547	int nsid, err;
548
549	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
550			  rtnl_net_policy);
551	if (err < 0)
552		return err;
553	if (!tb[NETNSA_NSID])
554		return -EINVAL;
555	nsid = nla_get_s32(tb[NETNSA_NSID]);
556
557	if (tb[NETNSA_PID])
558		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
559	else if (tb[NETNSA_FD])
560		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
561	else
562		return -EINVAL;
563	if (IS_ERR(peer))
564		return PTR_ERR(peer);
565
566	spin_lock_irqsave(&net->nsid_lock, flags);
567	if (__peernet2id(net, peer) >= 0) {
568		spin_unlock_irqrestore(&net->nsid_lock, flags);
569		err = -EEXIST;
570		goto out;
571	}
572
573	err = alloc_netid(net, peer, nsid);
574	spin_unlock_irqrestore(&net->nsid_lock, flags);
575	if (err >= 0) {
576		rtnl_net_notifyid(net, RTM_NEWNSID, err);
577		err = 0;
578	}
579out:
580	put_net(peer);
581	return err;
582}
583
584static int rtnl_net_get_size(void)
585{
586	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
587	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
588	       ;
589}
590
591static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
592			 int cmd, struct net *net, int nsid)
593{
594	struct nlmsghdr *nlh;
595	struct rtgenmsg *rth;
596
597	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
598	if (!nlh)
599		return -EMSGSIZE;
600
601	rth = nlmsg_data(nlh);
602	rth->rtgen_family = AF_UNSPEC;
603
604	if (nla_put_s32(skb, NETNSA_NSID, nsid))
605		goto nla_put_failure;
606
607	nlmsg_end(skb, nlh);
608	return 0;
609
610nla_put_failure:
611	nlmsg_cancel(skb, nlh);
612	return -EMSGSIZE;
613}
614
615static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
616{
617	struct net *net = sock_net(skb->sk);
618	struct nlattr *tb[NETNSA_MAX + 1];
619	struct sk_buff *msg;
620	struct net *peer;
621	int err, id;
622
623	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
624			  rtnl_net_policy);
625	if (err < 0)
626		return err;
627	if (tb[NETNSA_PID])
628		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
629	else if (tb[NETNSA_FD])
630		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
631	else
632		return -EINVAL;
633
634	if (IS_ERR(peer))
635		return PTR_ERR(peer);
636
637	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
638	if (!msg) {
639		err = -ENOMEM;
640		goto out;
641	}
642
643	id = peernet2id(net, peer);
644	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
645			    RTM_NEWNSID, net, id);
646	if (err < 0)
647		goto err_out;
648
649	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
650	goto out;
651
652err_out:
653	nlmsg_free(msg);
654out:
655	put_net(peer);
656	return err;
657}
658
659struct rtnl_net_dump_cb {
660	struct net *net;
661	struct sk_buff *skb;
662	struct netlink_callback *cb;
663	int idx;
664	int s_idx;
665};
666
667static int rtnl_net_dumpid_one(int id, void *peer, void *data)
668{
669	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
670	int ret;
671
672	if (net_cb->idx < net_cb->s_idx)
673		goto cont;
674
675	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
676			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
677			    RTM_NEWNSID, net_cb->net, id);
678	if (ret < 0)
679		return ret;
680
681cont:
682	net_cb->idx++;
683	return 0;
684}
685
686static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
687{
688	struct net *net = sock_net(skb->sk);
689	struct rtnl_net_dump_cb net_cb = {
690		.net = net,
691		.skb = skb,
692		.cb = cb,
693		.idx = 0,
694		.s_idx = cb->args[0],
695	};
696	unsigned long flags;
697
698	spin_lock_irqsave(&net->nsid_lock, flags);
699	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
700	spin_unlock_irqrestore(&net->nsid_lock, flags);
701
702	cb->args[0] = net_cb.idx;
703	return skb->len;
704}
705
706static void rtnl_net_notifyid(struct net *net, int cmd, int id)
707{
708	struct sk_buff *msg;
709	int err = -ENOMEM;
710
711	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
712	if (!msg)
713		goto out;
714
715	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
716	if (err < 0)
717		goto err_out;
718
719	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
720	return;
721
722err_out:
723	nlmsg_free(msg);
724out:
725	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
726}
727
728static int __init net_ns_init(void)
729{
730	struct net_generic *ng;
731
732#ifdef CONFIG_NET_NS
733	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
734					SMP_CACHE_BYTES,
735					SLAB_PANIC, NULL);
736
737	/* Create workqueue for cleanup */
738	netns_wq = create_singlethread_workqueue("netns");
739	if (!netns_wq)
740		panic("Could not create netns workq");
741#endif
742
743	ng = net_alloc_generic();
744	if (!ng)
745		panic("Could not allocate generic netns");
746
747	rcu_assign_pointer(init_net.gen, ng);
748
749	mutex_lock(&net_mutex);
750	if (setup_net(&init_net, &init_user_ns))
751		panic("Could not setup the initial network namespace");
752
753	rtnl_lock();
754	list_add_tail_rcu(&init_net.list, &net_namespace_list);
755	rtnl_unlock();
756
757	mutex_unlock(&net_mutex);
758
759	register_pernet_subsys(&net_ns_ops);
760
761	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
762	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
763		      NULL);
764
765	return 0;
766}
767
768pure_initcall(net_ns_init);
769
770#ifdef CONFIG_NET_NS
771static int __register_pernet_operations(struct list_head *list,
772					struct pernet_operations *ops)
773{
774	struct net *net;
775	int error;
776	LIST_HEAD(net_exit_list);
777
778	list_add_tail(&ops->list, list);
779	if (ops->init || (ops->id && ops->size)) {
780		for_each_net(net) {
781			error = ops_init(ops, net);
782			if (error)
783				goto out_undo;
784			list_add_tail(&net->exit_list, &net_exit_list);
785		}
786	}
787	return 0;
788
789out_undo:
790	/* If I have an error cleanup all namespaces I initialized */
791	list_del(&ops->list);
792	ops_exit_list(ops, &net_exit_list);
793	ops_free_list(ops, &net_exit_list);
794	return error;
795}
796
797static void __unregister_pernet_operations(struct pernet_operations *ops)
798{
799	struct net *net;
800	LIST_HEAD(net_exit_list);
801
802	list_del(&ops->list);
803	for_each_net(net)
804		list_add_tail(&net->exit_list, &net_exit_list);
805	ops_exit_list(ops, &net_exit_list);
806	ops_free_list(ops, &net_exit_list);
807}
808
809#else
810
811static int __register_pernet_operations(struct list_head *list,
812					struct pernet_operations *ops)
813{
814	return ops_init(ops, &init_net);
815}
816
817static void __unregister_pernet_operations(struct pernet_operations *ops)
818{
819	LIST_HEAD(net_exit_list);
820	list_add(&init_net.exit_list, &net_exit_list);
821	ops_exit_list(ops, &net_exit_list);
822	ops_free_list(ops, &net_exit_list);
823}
824
825#endif /* CONFIG_NET_NS */
826
827static DEFINE_IDA(net_generic_ids);
828
829static int register_pernet_operations(struct list_head *list,
830				      struct pernet_operations *ops)
831{
832	int error;
833
834	if (ops->id) {
835again:
836		error = ida_get_new_above(&net_generic_ids, 1, ops->id);
837		if (error < 0) {
838			if (error == -EAGAIN) {
839				ida_pre_get(&net_generic_ids, GFP_KERNEL);
840				goto again;
841			}
842			return error;
843		}
844		max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
845	}
846	error = __register_pernet_operations(list, ops);
847	if (error) {
848		rcu_barrier();
849		if (ops->id)
850			ida_remove(&net_generic_ids, *ops->id);
851	}
852
853	return error;
854}
855
856static void unregister_pernet_operations(struct pernet_operations *ops)
857{
858
859	__unregister_pernet_operations(ops);
860	rcu_barrier();
861	if (ops->id)
862		ida_remove(&net_generic_ids, *ops->id);
863}
864
865/**
866 *      register_pernet_subsys - register a network namespace subsystem
867 *	@ops:  pernet operations structure for the subsystem
868 *
869 *	Register a subsystem which has init and exit functions
870 *	that are called when network namespaces are created and
871 *	destroyed respectively.
872 *
873 *	When registered all network namespace init functions are
874 *	called for every existing network namespace.  Allowing kernel
875 *	modules to have a race free view of the set of network namespaces.
876 *
877 *	When a new network namespace is created all of the init
878 *	methods are called in the order in which they were registered.
879 *
880 *	When a network namespace is destroyed all of the exit methods
881 *	are called in the reverse of the order with which they were
882 *	registered.
883 */
884int register_pernet_subsys(struct pernet_operations *ops)
885{
886	int error;
887	mutex_lock(&net_mutex);
888	error =  register_pernet_operations(first_device, ops);
889	mutex_unlock(&net_mutex);
890	return error;
891}
892EXPORT_SYMBOL_GPL(register_pernet_subsys);
893
894/**
895 *      unregister_pernet_subsys - unregister a network namespace subsystem
896 *	@ops: pernet operations structure to manipulate
897 *
898 *	Remove the pernet operations structure from the list to be
899 *	used when network namespaces are created or destroyed.  In
900 *	addition run the exit method for all existing network
901 *	namespaces.
902 */
903void unregister_pernet_subsys(struct pernet_operations *ops)
904{
905	mutex_lock(&net_mutex);
906	unregister_pernet_operations(ops);
907	mutex_unlock(&net_mutex);
908}
909EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
910
911/**
912 *      register_pernet_device - register a network namespace device
913 *	@ops:  pernet operations structure for the subsystem
914 *
915 *	Register a device which has init and exit functions
916 *	that are called when network namespaces are created and
917 *	destroyed respectively.
918 *
919 *	When registered all network namespace init functions are
920 *	called for every existing network namespace.  Allowing kernel
921 *	modules to have a race free view of the set of network namespaces.
922 *
923 *	When a new network namespace is created all of the init
924 *	methods are called in the order in which they were registered.
925 *
926 *	When a network namespace is destroyed all of the exit methods
927 *	are called in the reverse of the order with which they were
928 *	registered.
929 */
930int register_pernet_device(struct pernet_operations *ops)
931{
932	int error;
933	mutex_lock(&net_mutex);
934	error = register_pernet_operations(&pernet_list, ops);
935	if (!error && (first_device == &pernet_list))
936		first_device = &ops->list;
937	mutex_unlock(&net_mutex);
938	return error;
939}
940EXPORT_SYMBOL_GPL(register_pernet_device);
941
942/**
943 *      unregister_pernet_device - unregister a network namespace netdevice
944 *	@ops: pernet operations structure to manipulate
945 *
946 *	Remove the pernet operations structure from the list to be
947 *	used when network namespaces are created or destroyed.  In
948 *	addition run the exit method for all existing network
949 *	namespaces.
950 */
951void unregister_pernet_device(struct pernet_operations *ops)
952{
953	mutex_lock(&net_mutex);
954	if (&ops->list == first_device)
955		first_device = first_device->next;
956	unregister_pernet_operations(ops);
957	mutex_unlock(&net_mutex);
958}
959EXPORT_SYMBOL_GPL(unregister_pernet_device);
960
961#ifdef CONFIG_NET_NS
962static struct ns_common *netns_get(struct task_struct *task)
963{
964	struct net *net = NULL;
965	struct nsproxy *nsproxy;
966
967	task_lock(task);
968	nsproxy = task->nsproxy;
969	if (nsproxy)
970		net = get_net(nsproxy->net_ns);
971	task_unlock(task);
972
973	return net ? &net->ns : NULL;
974}
975
976static inline struct net *to_net_ns(struct ns_common *ns)
977{
978	return container_of(ns, struct net, ns);
979}
980
981static void netns_put(struct ns_common *ns)
982{
983	put_net(to_net_ns(ns));
984}
985
986static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
987{
988	struct net *net = to_net_ns(ns);
989
990	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
991	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
992		return -EPERM;
993
994	put_net(nsproxy->net_ns);
995	nsproxy->net_ns = get_net(net);
996	return 0;
997}
998
999const struct proc_ns_operations netns_operations = {
1000	.name		= "net",
1001	.type		= CLONE_NEWNET,
1002	.get		= netns_get,
1003	.put		= netns_put,
1004	.install	= netns_install,
1005};
1006#endif
1007