1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3#include <linux/workqueue.h> 4#include <linux/rtnetlink.h> 5#include <linux/cache.h> 6#include <linux/slab.h> 7#include <linux/list.h> 8#include <linux/delay.h> 9#include <linux/sched.h> 10#include <linux/idr.h> 11#include <linux/rculist.h> 12#include <linux/nsproxy.h> 13#include <linux/fs.h> 14#include <linux/proc_ns.h> 15#include <linux/file.h> 16#include <linux/export.h> 17#include <linux/user_namespace.h> 18#include <linux/net_namespace.h> 19#include <net/sock.h> 20#include <net/netlink.h> 21#include <net/net_namespace.h> 22#include <net/netns/generic.h> 23 24/* 25 * Our network namespace constructor/destructor lists 26 */ 27 28static LIST_HEAD(pernet_list); 29static struct list_head *first_device = &pernet_list; 30DEFINE_MUTEX(net_mutex); 31 32LIST_HEAD(net_namespace_list); 33EXPORT_SYMBOL_GPL(net_namespace_list); 34 35struct net init_net = { 36 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head), 37}; 38EXPORT_SYMBOL(init_net); 39 40#define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 41 42static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 43 44static struct net_generic *net_alloc_generic(void) 45{ 46 struct net_generic *ng; 47 size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]); 48 49 ng = kzalloc(generic_size, GFP_KERNEL); 50 if (ng) 51 ng->len = max_gen_ptrs; 52 53 return ng; 54} 55 56static int net_assign_generic(struct net *net, int id, void *data) 57{ 58 struct net_generic *ng, *old_ng; 59 60 BUG_ON(!mutex_is_locked(&net_mutex)); 61 BUG_ON(id == 0); 62 63 old_ng = rcu_dereference_protected(net->gen, 64 lockdep_is_held(&net_mutex)); 65 ng = old_ng; 66 if (old_ng->len >= id) 67 goto assign; 68 69 ng = net_alloc_generic(); 70 if (ng == NULL) 71 return -ENOMEM; 72 73 /* 74 * Some synchronisation notes: 75 * 76 * The net_generic explores the net->gen array inside rcu 77 * read section. Besides once set the net->gen->ptr[x] 78 * pointer never changes (see rules in netns/generic.h). 79 * 80 * That said, we simply duplicate this array and schedule 81 * the old copy for kfree after a grace period. 82 */ 83 84 memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*)); 85 86 rcu_assign_pointer(net->gen, ng); 87 kfree_rcu(old_ng, rcu); 88assign: 89 ng->ptr[id - 1] = data; 90 return 0; 91} 92 93static int ops_init(const struct pernet_operations *ops, struct net *net) 94{ 95 int err = -ENOMEM; 96 void *data = NULL; 97 98 if (ops->id && ops->size) { 99 data = kzalloc(ops->size, GFP_KERNEL); 100 if (!data) 101 goto out; 102 103 err = net_assign_generic(net, *ops->id, data); 104 if (err) 105 goto cleanup; 106 } 107 err = 0; 108 if (ops->init) 109 err = ops->init(net); 110 if (!err) 111 return 0; 112 113cleanup: 114 kfree(data); 115 116out: 117 return err; 118} 119 120static void ops_free(const struct pernet_operations *ops, struct net *net) 121{ 122 if (ops->id && ops->size) { 123 int id = *ops->id; 124 kfree(net_generic(net, id)); 125 } 126} 127 128static void ops_exit_list(const struct pernet_operations *ops, 129 struct list_head *net_exit_list) 130{ 131 struct net *net; 132 if (ops->exit) { 133 list_for_each_entry(net, net_exit_list, exit_list) 134 ops->exit(net); 135 } 136 if (ops->exit_batch) 137 ops->exit_batch(net_exit_list); 138} 139 140static void ops_free_list(const struct pernet_operations *ops, 141 struct list_head *net_exit_list) 142{ 143 struct net *net; 144 if (ops->size && ops->id) { 145 list_for_each_entry(net, net_exit_list, exit_list) 146 ops_free(ops, net); 147 } 148} 149 150/* should be called with nsid_lock held */ 151static int alloc_netid(struct net *net, struct net *peer, int reqid) 152{ 153 int min = 0, max = 0; 154 155 if (reqid >= 0) { 156 min = reqid; 157 max = reqid + 1; 158 } 159 160 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 161} 162 163/* This function is used by idr_for_each(). If net is equal to peer, the 164 * function returns the id so that idr_for_each() stops. Because we cannot 165 * returns the id 0 (idr_for_each() will not stop), we return the magic value 166 * NET_ID_ZERO (-1) for it. 167 */ 168#define NET_ID_ZERO -1 169static int net_eq_idr(int id, void *net, void *peer) 170{ 171 if (net_eq(net, peer)) 172 return id ? : NET_ID_ZERO; 173 return 0; 174} 175 176/* Should be called with nsid_lock held. If a new id is assigned, the bool alloc 177 * is set to true, thus the caller knows that the new id must be notified via 178 * rtnl. 179 */ 180static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc) 181{ 182 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 183 bool alloc_it = *alloc; 184 185 *alloc = false; 186 187 /* Magic value for id 0. */ 188 if (id == NET_ID_ZERO) 189 return 0; 190 if (id > 0) 191 return id; 192 193 if (alloc_it) { 194 id = alloc_netid(net, peer, -1); 195 *alloc = true; 196 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED; 197 } 198 199 return NETNSA_NSID_NOT_ASSIGNED; 200} 201 202/* should be called with nsid_lock held */ 203static int __peernet2id(struct net *net, struct net *peer) 204{ 205 bool no = false; 206 207 return __peernet2id_alloc(net, peer, &no); 208} 209 210static void rtnl_net_notifyid(struct net *net, int cmd, int id); 211/* This function returns the id of a peer netns. If no id is assigned, one will 212 * be allocated and returned. 213 */ 214int peernet2id_alloc(struct net *net, struct net *peer) 215{ 216 unsigned long flags; 217 bool alloc; 218 int id; 219 220 spin_lock_irqsave(&net->nsid_lock, flags); 221 alloc = atomic_read(&peer->count) == 0 ? false : true; 222 id = __peernet2id_alloc(net, peer, &alloc); 223 spin_unlock_irqrestore(&net->nsid_lock, flags); 224 if (alloc && id >= 0) 225 rtnl_net_notifyid(net, RTM_NEWNSID, id); 226 return id; 227} 228EXPORT_SYMBOL(peernet2id_alloc); 229 230/* This function returns, if assigned, the id of a peer netns. */ 231int peernet2id(struct net *net, struct net *peer) 232{ 233 unsigned long flags; 234 int id; 235 236 spin_lock_irqsave(&net->nsid_lock, flags); 237 id = __peernet2id(net, peer); 238 spin_unlock_irqrestore(&net->nsid_lock, flags); 239 return id; 240} 241 242/* This function returns true is the peer netns has an id assigned into the 243 * current netns. 244 */ 245bool peernet_has_id(struct net *net, struct net *peer) 246{ 247 return peernet2id(net, peer) >= 0; 248} 249 250struct net *get_net_ns_by_id(struct net *net, int id) 251{ 252 unsigned long flags; 253 struct net *peer; 254 255 if (id < 0) 256 return NULL; 257 258 rcu_read_lock(); 259 spin_lock_irqsave(&net->nsid_lock, flags); 260 peer = idr_find(&net->netns_ids, id); 261 if (peer) 262 get_net(peer); 263 spin_unlock_irqrestore(&net->nsid_lock, flags); 264 rcu_read_unlock(); 265 266 return peer; 267} 268 269/* 270 * setup_net runs the initializers for the network namespace object. 271 */ 272static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 273{ 274 /* Must be called with net_mutex held */ 275 const struct pernet_operations *ops, *saved_ops; 276 int error = 0; 277 LIST_HEAD(net_exit_list); 278 279 atomic_set(&net->count, 1); 280 atomic_set(&net->passive, 1); 281 net->dev_base_seq = 1; 282 net->user_ns = user_ns; 283 idr_init(&net->netns_ids); 284 spin_lock_init(&net->nsid_lock); 285 286 list_for_each_entry(ops, &pernet_list, list) { 287 error = ops_init(ops, net); 288 if (error < 0) 289 goto out_undo; 290 } 291out: 292 return error; 293 294out_undo: 295 /* Walk through the list backwards calling the exit functions 296 * for the pernet modules whose init functions did not fail. 297 */ 298 list_add(&net->exit_list, &net_exit_list); 299 saved_ops = ops; 300 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 301 ops_exit_list(ops, &net_exit_list); 302 303 ops = saved_ops; 304 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 305 ops_free_list(ops, &net_exit_list); 306 307 rcu_barrier(); 308 goto out; 309} 310 311 312#ifdef CONFIG_NET_NS 313static struct kmem_cache *net_cachep; 314static struct workqueue_struct *netns_wq; 315 316static struct net *net_alloc(void) 317{ 318 struct net *net = NULL; 319 struct net_generic *ng; 320 321 ng = net_alloc_generic(); 322 if (!ng) 323 goto out; 324 325 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 326 if (!net) 327 goto out_free; 328 329 rcu_assign_pointer(net->gen, ng); 330out: 331 return net; 332 333out_free: 334 kfree(ng); 335 goto out; 336} 337 338static void net_free(struct net *net) 339{ 340 kfree(rcu_access_pointer(net->gen)); 341 kmem_cache_free(net_cachep, net); 342} 343 344void net_drop_ns(void *p) 345{ 346 struct net *ns = p; 347 if (ns && atomic_dec_and_test(&ns->passive)) 348 net_free(ns); 349} 350 351struct net *copy_net_ns(unsigned long flags, 352 struct user_namespace *user_ns, struct net *old_net) 353{ 354 struct net *net; 355 int rv; 356 357 if (!(flags & CLONE_NEWNET)) 358 return get_net(old_net); 359 360 net = net_alloc(); 361 if (!net) 362 return ERR_PTR(-ENOMEM); 363 364 get_user_ns(user_ns); 365 366 mutex_lock(&net_mutex); 367 rv = setup_net(net, user_ns); 368 if (rv == 0) { 369 rtnl_lock(); 370 list_add_tail_rcu(&net->list, &net_namespace_list); 371 rtnl_unlock(); 372 } 373 mutex_unlock(&net_mutex); 374 if (rv < 0) { 375 put_user_ns(user_ns); 376 net_drop_ns(net); 377 return ERR_PTR(rv); 378 } 379 return net; 380} 381 382static DEFINE_SPINLOCK(cleanup_list_lock); 383static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */ 384 385static void cleanup_net(struct work_struct *work) 386{ 387 const struct pernet_operations *ops; 388 struct net *net, *tmp; 389 struct list_head net_kill_list; 390 LIST_HEAD(net_exit_list); 391 392 /* Atomically snapshot the list of namespaces to cleanup */ 393 spin_lock_irq(&cleanup_list_lock); 394 list_replace_init(&cleanup_list, &net_kill_list); 395 spin_unlock_irq(&cleanup_list_lock); 396 397 mutex_lock(&net_mutex); 398 399 /* Don't let anyone else find us. */ 400 rtnl_lock(); 401 list_for_each_entry(net, &net_kill_list, cleanup_list) { 402 list_del_rcu(&net->list); 403 list_add_tail(&net->exit_list, &net_exit_list); 404 for_each_net(tmp) { 405 int id; 406 407 spin_lock_irq(&tmp->nsid_lock); 408 id = __peernet2id(tmp, net); 409 if (id >= 0) 410 idr_remove(&tmp->netns_ids, id); 411 spin_unlock_irq(&tmp->nsid_lock); 412 if (id >= 0) 413 rtnl_net_notifyid(tmp, RTM_DELNSID, id); 414 } 415 spin_lock_irq(&net->nsid_lock); 416 idr_destroy(&net->netns_ids); 417 spin_unlock_irq(&net->nsid_lock); 418 419 } 420 rtnl_unlock(); 421 422 /* 423 * Another CPU might be rcu-iterating the list, wait for it. 424 * This needs to be before calling the exit() notifiers, so 425 * the rcu_barrier() below isn't sufficient alone. 426 */ 427 synchronize_rcu(); 428 429 /* Run all of the network namespace exit methods */ 430 list_for_each_entry_reverse(ops, &pernet_list, list) 431 ops_exit_list(ops, &net_exit_list); 432 433 /* Free the net generic variables */ 434 list_for_each_entry_reverse(ops, &pernet_list, list) 435 ops_free_list(ops, &net_exit_list); 436 437 mutex_unlock(&net_mutex); 438 439 /* Ensure there are no outstanding rcu callbacks using this 440 * network namespace. 441 */ 442 rcu_barrier(); 443 444 /* Finally it is safe to free my network namespace structure */ 445 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 446 list_del_init(&net->exit_list); 447 put_user_ns(net->user_ns); 448 net_drop_ns(net); 449 } 450} 451static DECLARE_WORK(net_cleanup_work, cleanup_net); 452 453void __put_net(struct net *net) 454{ 455 /* Cleanup the network namespace in process context */ 456 unsigned long flags; 457 458 spin_lock_irqsave(&cleanup_list_lock, flags); 459 list_add(&net->cleanup_list, &cleanup_list); 460 spin_unlock_irqrestore(&cleanup_list_lock, flags); 461 462 queue_work(netns_wq, &net_cleanup_work); 463} 464EXPORT_SYMBOL_GPL(__put_net); 465 466struct net *get_net_ns_by_fd(int fd) 467{ 468 struct file *file; 469 struct ns_common *ns; 470 struct net *net; 471 472 file = proc_ns_fget(fd); 473 if (IS_ERR(file)) 474 return ERR_CAST(file); 475 476 ns = get_proc_ns(file_inode(file)); 477 if (ns->ops == &netns_operations) 478 net = get_net(container_of(ns, struct net, ns)); 479 else 480 net = ERR_PTR(-EINVAL); 481 482 fput(file); 483 return net; 484} 485 486#else 487struct net *get_net_ns_by_fd(int fd) 488{ 489 return ERR_PTR(-EINVAL); 490} 491#endif 492EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 493 494struct net *get_net_ns_by_pid(pid_t pid) 495{ 496 struct task_struct *tsk; 497 struct net *net; 498 499 /* Lookup the network namespace */ 500 net = ERR_PTR(-ESRCH); 501 rcu_read_lock(); 502 tsk = find_task_by_vpid(pid); 503 if (tsk) { 504 struct nsproxy *nsproxy; 505 task_lock(tsk); 506 nsproxy = tsk->nsproxy; 507 if (nsproxy) 508 net = get_net(nsproxy->net_ns); 509 task_unlock(tsk); 510 } 511 rcu_read_unlock(); 512 return net; 513} 514EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 515 516static __net_init int net_ns_net_init(struct net *net) 517{ 518#ifdef CONFIG_NET_NS 519 net->ns.ops = &netns_operations; 520#endif 521 return ns_alloc_inum(&net->ns); 522} 523 524static __net_exit void net_ns_net_exit(struct net *net) 525{ 526 ns_free_inum(&net->ns); 527} 528 529static struct pernet_operations __net_initdata net_ns_ops = { 530 .init = net_ns_net_init, 531 .exit = net_ns_net_exit, 532}; 533 534static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 535 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 536 [NETNSA_NSID] = { .type = NLA_S32 }, 537 [NETNSA_PID] = { .type = NLA_U32 }, 538 [NETNSA_FD] = { .type = NLA_U32 }, 539}; 540 541static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh) 542{ 543 struct net *net = sock_net(skb->sk); 544 struct nlattr *tb[NETNSA_MAX + 1]; 545 unsigned long flags; 546 struct net *peer; 547 int nsid, err; 548 549 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, 550 rtnl_net_policy); 551 if (err < 0) 552 return err; 553 if (!tb[NETNSA_NSID]) 554 return -EINVAL; 555 nsid = nla_get_s32(tb[NETNSA_NSID]); 556 557 if (tb[NETNSA_PID]) 558 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 559 else if (tb[NETNSA_FD]) 560 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 561 else 562 return -EINVAL; 563 if (IS_ERR(peer)) 564 return PTR_ERR(peer); 565 566 spin_lock_irqsave(&net->nsid_lock, flags); 567 if (__peernet2id(net, peer) >= 0) { 568 spin_unlock_irqrestore(&net->nsid_lock, flags); 569 err = -EEXIST; 570 goto out; 571 } 572 573 err = alloc_netid(net, peer, nsid); 574 spin_unlock_irqrestore(&net->nsid_lock, flags); 575 if (err >= 0) { 576 rtnl_net_notifyid(net, RTM_NEWNSID, err); 577 err = 0; 578 } 579out: 580 put_net(peer); 581 return err; 582} 583 584static int rtnl_net_get_size(void) 585{ 586 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 587 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 588 ; 589} 590 591static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags, 592 int cmd, struct net *net, int nsid) 593{ 594 struct nlmsghdr *nlh; 595 struct rtgenmsg *rth; 596 597 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags); 598 if (!nlh) 599 return -EMSGSIZE; 600 601 rth = nlmsg_data(nlh); 602 rth->rtgen_family = AF_UNSPEC; 603 604 if (nla_put_s32(skb, NETNSA_NSID, nsid)) 605 goto nla_put_failure; 606 607 nlmsg_end(skb, nlh); 608 return 0; 609 610nla_put_failure: 611 nlmsg_cancel(skb, nlh); 612 return -EMSGSIZE; 613} 614 615static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh) 616{ 617 struct net *net = sock_net(skb->sk); 618 struct nlattr *tb[NETNSA_MAX + 1]; 619 struct sk_buff *msg; 620 struct net *peer; 621 int err, id; 622 623 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, 624 rtnl_net_policy); 625 if (err < 0) 626 return err; 627 if (tb[NETNSA_PID]) 628 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 629 else if (tb[NETNSA_FD]) 630 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 631 else 632 return -EINVAL; 633 634 if (IS_ERR(peer)) 635 return PTR_ERR(peer); 636 637 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 638 if (!msg) { 639 err = -ENOMEM; 640 goto out; 641 } 642 643 id = peernet2id(net, peer); 644 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0, 645 RTM_NEWNSID, net, id); 646 if (err < 0) 647 goto err_out; 648 649 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 650 goto out; 651 652err_out: 653 nlmsg_free(msg); 654out: 655 put_net(peer); 656 return err; 657} 658 659struct rtnl_net_dump_cb { 660 struct net *net; 661 struct sk_buff *skb; 662 struct netlink_callback *cb; 663 int idx; 664 int s_idx; 665}; 666 667static int rtnl_net_dumpid_one(int id, void *peer, void *data) 668{ 669 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 670 int ret; 671 672 if (net_cb->idx < net_cb->s_idx) 673 goto cont; 674 675 ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid, 676 net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI, 677 RTM_NEWNSID, net_cb->net, id); 678 if (ret < 0) 679 return ret; 680 681cont: 682 net_cb->idx++; 683 return 0; 684} 685 686static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 687{ 688 struct net *net = sock_net(skb->sk); 689 struct rtnl_net_dump_cb net_cb = { 690 .net = net, 691 .skb = skb, 692 .cb = cb, 693 .idx = 0, 694 .s_idx = cb->args[0], 695 }; 696 unsigned long flags; 697 698 spin_lock_irqsave(&net->nsid_lock, flags); 699 idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb); 700 spin_unlock_irqrestore(&net->nsid_lock, flags); 701 702 cb->args[0] = net_cb.idx; 703 return skb->len; 704} 705 706static void rtnl_net_notifyid(struct net *net, int cmd, int id) 707{ 708 struct sk_buff *msg; 709 int err = -ENOMEM; 710 711 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 712 if (!msg) 713 goto out; 714 715 err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id); 716 if (err < 0) 717 goto err_out; 718 719 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0); 720 return; 721 722err_out: 723 nlmsg_free(msg); 724out: 725 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 726} 727 728static int __init net_ns_init(void) 729{ 730 struct net_generic *ng; 731 732#ifdef CONFIG_NET_NS 733 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 734 SMP_CACHE_BYTES, 735 SLAB_PANIC, NULL); 736 737 /* Create workqueue for cleanup */ 738 netns_wq = create_singlethread_workqueue("netns"); 739 if (!netns_wq) 740 panic("Could not create netns workq"); 741#endif 742 743 ng = net_alloc_generic(); 744 if (!ng) 745 panic("Could not allocate generic netns"); 746 747 rcu_assign_pointer(init_net.gen, ng); 748 749 mutex_lock(&net_mutex); 750 if (setup_net(&init_net, &init_user_ns)) 751 panic("Could not setup the initial network namespace"); 752 753 rtnl_lock(); 754 list_add_tail_rcu(&init_net.list, &net_namespace_list); 755 rtnl_unlock(); 756 757 mutex_unlock(&net_mutex); 758 759 register_pernet_subsys(&net_ns_ops); 760 761 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL); 762 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 763 NULL); 764 765 return 0; 766} 767 768pure_initcall(net_ns_init); 769 770#ifdef CONFIG_NET_NS 771static int __register_pernet_operations(struct list_head *list, 772 struct pernet_operations *ops) 773{ 774 struct net *net; 775 int error; 776 LIST_HEAD(net_exit_list); 777 778 list_add_tail(&ops->list, list); 779 if (ops->init || (ops->id && ops->size)) { 780 for_each_net(net) { 781 error = ops_init(ops, net); 782 if (error) 783 goto out_undo; 784 list_add_tail(&net->exit_list, &net_exit_list); 785 } 786 } 787 return 0; 788 789out_undo: 790 /* If I have an error cleanup all namespaces I initialized */ 791 list_del(&ops->list); 792 ops_exit_list(ops, &net_exit_list); 793 ops_free_list(ops, &net_exit_list); 794 return error; 795} 796 797static void __unregister_pernet_operations(struct pernet_operations *ops) 798{ 799 struct net *net; 800 LIST_HEAD(net_exit_list); 801 802 list_del(&ops->list); 803 for_each_net(net) 804 list_add_tail(&net->exit_list, &net_exit_list); 805 ops_exit_list(ops, &net_exit_list); 806 ops_free_list(ops, &net_exit_list); 807} 808 809#else 810 811static int __register_pernet_operations(struct list_head *list, 812 struct pernet_operations *ops) 813{ 814 return ops_init(ops, &init_net); 815} 816 817static void __unregister_pernet_operations(struct pernet_operations *ops) 818{ 819 LIST_HEAD(net_exit_list); 820 list_add(&init_net.exit_list, &net_exit_list); 821 ops_exit_list(ops, &net_exit_list); 822 ops_free_list(ops, &net_exit_list); 823} 824 825#endif /* CONFIG_NET_NS */ 826 827static DEFINE_IDA(net_generic_ids); 828 829static int register_pernet_operations(struct list_head *list, 830 struct pernet_operations *ops) 831{ 832 int error; 833 834 if (ops->id) { 835again: 836 error = ida_get_new_above(&net_generic_ids, 1, ops->id); 837 if (error < 0) { 838 if (error == -EAGAIN) { 839 ida_pre_get(&net_generic_ids, GFP_KERNEL); 840 goto again; 841 } 842 return error; 843 } 844 max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id); 845 } 846 error = __register_pernet_operations(list, ops); 847 if (error) { 848 rcu_barrier(); 849 if (ops->id) 850 ida_remove(&net_generic_ids, *ops->id); 851 } 852 853 return error; 854} 855 856static void unregister_pernet_operations(struct pernet_operations *ops) 857{ 858 859 __unregister_pernet_operations(ops); 860 rcu_barrier(); 861 if (ops->id) 862 ida_remove(&net_generic_ids, *ops->id); 863} 864 865/** 866 * register_pernet_subsys - register a network namespace subsystem 867 * @ops: pernet operations structure for the subsystem 868 * 869 * Register a subsystem which has init and exit functions 870 * that are called when network namespaces are created and 871 * destroyed respectively. 872 * 873 * When registered all network namespace init functions are 874 * called for every existing network namespace. Allowing kernel 875 * modules to have a race free view of the set of network namespaces. 876 * 877 * When a new network namespace is created all of the init 878 * methods are called in the order in which they were registered. 879 * 880 * When a network namespace is destroyed all of the exit methods 881 * are called in the reverse of the order with which they were 882 * registered. 883 */ 884int register_pernet_subsys(struct pernet_operations *ops) 885{ 886 int error; 887 mutex_lock(&net_mutex); 888 error = register_pernet_operations(first_device, ops); 889 mutex_unlock(&net_mutex); 890 return error; 891} 892EXPORT_SYMBOL_GPL(register_pernet_subsys); 893 894/** 895 * unregister_pernet_subsys - unregister a network namespace subsystem 896 * @ops: pernet operations structure to manipulate 897 * 898 * Remove the pernet operations structure from the list to be 899 * used when network namespaces are created or destroyed. In 900 * addition run the exit method for all existing network 901 * namespaces. 902 */ 903void unregister_pernet_subsys(struct pernet_operations *ops) 904{ 905 mutex_lock(&net_mutex); 906 unregister_pernet_operations(ops); 907 mutex_unlock(&net_mutex); 908} 909EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 910 911/** 912 * register_pernet_device - register a network namespace device 913 * @ops: pernet operations structure for the subsystem 914 * 915 * Register a device which has init and exit functions 916 * that are called when network namespaces are created and 917 * destroyed respectively. 918 * 919 * When registered all network namespace init functions are 920 * called for every existing network namespace. Allowing kernel 921 * modules to have a race free view of the set of network namespaces. 922 * 923 * When a new network namespace is created all of the init 924 * methods are called in the order in which they were registered. 925 * 926 * When a network namespace is destroyed all of the exit methods 927 * are called in the reverse of the order with which they were 928 * registered. 929 */ 930int register_pernet_device(struct pernet_operations *ops) 931{ 932 int error; 933 mutex_lock(&net_mutex); 934 error = register_pernet_operations(&pernet_list, ops); 935 if (!error && (first_device == &pernet_list)) 936 first_device = &ops->list; 937 mutex_unlock(&net_mutex); 938 return error; 939} 940EXPORT_SYMBOL_GPL(register_pernet_device); 941 942/** 943 * unregister_pernet_device - unregister a network namespace netdevice 944 * @ops: pernet operations structure to manipulate 945 * 946 * Remove the pernet operations structure from the list to be 947 * used when network namespaces are created or destroyed. In 948 * addition run the exit method for all existing network 949 * namespaces. 950 */ 951void unregister_pernet_device(struct pernet_operations *ops) 952{ 953 mutex_lock(&net_mutex); 954 if (&ops->list == first_device) 955 first_device = first_device->next; 956 unregister_pernet_operations(ops); 957 mutex_unlock(&net_mutex); 958} 959EXPORT_SYMBOL_GPL(unregister_pernet_device); 960 961#ifdef CONFIG_NET_NS 962static struct ns_common *netns_get(struct task_struct *task) 963{ 964 struct net *net = NULL; 965 struct nsproxy *nsproxy; 966 967 task_lock(task); 968 nsproxy = task->nsproxy; 969 if (nsproxy) 970 net = get_net(nsproxy->net_ns); 971 task_unlock(task); 972 973 return net ? &net->ns : NULL; 974} 975 976static inline struct net *to_net_ns(struct ns_common *ns) 977{ 978 return container_of(ns, struct net, ns); 979} 980 981static void netns_put(struct ns_common *ns) 982{ 983 put_net(to_net_ns(ns)); 984} 985 986static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns) 987{ 988 struct net *net = to_net_ns(ns); 989 990 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 991 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 992 return -EPERM; 993 994 put_net(nsproxy->net_ns); 995 nsproxy->net_ns = get_net(net); 996 return 0; 997} 998 999const struct proc_ns_operations netns_operations = { 1000 .name = "net", 1001 .type = CLONE_NEWNET, 1002 .get = netns_get, 1003 .put = netns_put, 1004 .install = netns_install, 1005}; 1006#endif 1007