1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/pci.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140 
141 #include "net-sysfs.h"
142 
143 /* Instead of increasing this, you should create a hash table. */
144 #define MAX_GRO_SKBS 8
145 
146 /* This should be increased if a protocol with a bigger head is added. */
147 #define GRO_MAX_HEAD (MAX_HEADER + 128)
148 
149 static DEFINE_SPINLOCK(ptype_lock);
150 static DEFINE_SPINLOCK(offload_lock);
151 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
152 struct list_head ptype_all __read_mostly;	/* Taps */
153 static struct list_head offload_base __read_mostly;
154 
155 static int netif_rx_internal(struct sk_buff *skb);
156 static int call_netdevice_notifiers_info(unsigned long val,
157 					 struct net_device *dev,
158 					 struct netdev_notifier_info *info);
159 
160 /*
161  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
162  * semaphore.
163  *
164  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
165  *
166  * Writers must hold the rtnl semaphore while they loop through the
167  * dev_base_head list, and hold dev_base_lock for writing when they do the
168  * actual updates.  This allows pure readers to access the list even
169  * while a writer is preparing to update it.
170  *
171  * To put it another way, dev_base_lock is held for writing only to
172  * protect against pure readers; the rtnl semaphore provides the
173  * protection against other writers.
174  *
175  * See, for example usages, register_netdevice() and
176  * unregister_netdevice(), which must be called with the rtnl
177  * semaphore held.
178  */
179 DEFINE_RWLOCK(dev_base_lock);
180 EXPORT_SYMBOL(dev_base_lock);
181 
182 /* protects napi_hash addition/deletion and napi_gen_id */
183 static DEFINE_SPINLOCK(napi_hash_lock);
184 
185 static unsigned int napi_gen_id;
186 static DEFINE_HASHTABLE(napi_hash, 8);
187 
188 static seqcount_t devnet_rename_seq;
189 
dev_base_seq_inc(struct net * net)190 static inline void dev_base_seq_inc(struct net *net)
191 {
192 	while (++net->dev_base_seq == 0);
193 }
194 
dev_name_hash(struct net * net,const char * name)195 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
196 {
197 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
198 
199 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
200 }
201 
dev_index_hash(struct net * net,int ifindex)202 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
203 {
204 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
205 }
206 
rps_lock(struct softnet_data * sd)207 static inline void rps_lock(struct softnet_data *sd)
208 {
209 #ifdef CONFIG_RPS
210 	spin_lock(&sd->input_pkt_queue.lock);
211 #endif
212 }
213 
rps_unlock(struct softnet_data * sd)214 static inline void rps_unlock(struct softnet_data *sd)
215 {
216 #ifdef CONFIG_RPS
217 	spin_unlock(&sd->input_pkt_queue.lock);
218 #endif
219 }
220 
221 /* Device list insertion */
list_netdevice(struct net_device * dev)222 static void list_netdevice(struct net_device *dev)
223 {
224 	struct net *net = dev_net(dev);
225 
226 	ASSERT_RTNL();
227 
228 	write_lock_bh(&dev_base_lock);
229 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
230 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
231 	hlist_add_head_rcu(&dev->index_hlist,
232 			   dev_index_hash(net, dev->ifindex));
233 	write_unlock_bh(&dev_base_lock);
234 
235 	dev_base_seq_inc(net);
236 }
237 
238 /* Device list removal
239  * caller must respect a RCU grace period before freeing/reusing dev
240  */
unlist_netdevice(struct net_device * dev)241 static void unlist_netdevice(struct net_device *dev)
242 {
243 	ASSERT_RTNL();
244 
245 	/* Unlink dev from the device chain */
246 	write_lock_bh(&dev_base_lock);
247 	list_del_rcu(&dev->dev_list);
248 	hlist_del_rcu(&dev->name_hlist);
249 	hlist_del_rcu(&dev->index_hlist);
250 	write_unlock_bh(&dev_base_lock);
251 
252 	dev_base_seq_inc(dev_net(dev));
253 }
254 
255 /*
256  *	Our notifier list
257  */
258 
259 static RAW_NOTIFIER_HEAD(netdev_chain);
260 
261 /*
262  *	Device drivers call our routines to queue packets here. We empty the
263  *	queue in the local softnet handler.
264  */
265 
266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
267 EXPORT_PER_CPU_SYMBOL(softnet_data);
268 
269 #ifdef CONFIG_LOCKDEP
270 /*
271  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
272  * according to dev->type
273  */
274 static const unsigned short netdev_lock_type[] =
275 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
287 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
288 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
289 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
290 
291 static const char *const netdev_lock_name[] =
292 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
304 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
305 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
306 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
307 
308 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
310 
netdev_lock_pos(unsigned short dev_type)311 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
312 {
313 	int i;
314 
315 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
316 		if (netdev_lock_type[i] == dev_type)
317 			return i;
318 	/* the last key is used by default */
319 	return ARRAY_SIZE(netdev_lock_type) - 1;
320 }
321 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)322 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
323 						 unsigned short dev_type)
324 {
325 	int i;
326 
327 	i = netdev_lock_pos(dev_type);
328 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
329 				   netdev_lock_name[i]);
330 }
331 
netdev_set_addr_lockdep_class(struct net_device * dev)332 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
333 {
334 	int i;
335 
336 	i = netdev_lock_pos(dev->type);
337 	lockdep_set_class_and_name(&dev->addr_list_lock,
338 				   &netdev_addr_lock_key[i],
339 				   netdev_lock_name[i]);
340 }
341 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)342 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
343 						 unsigned short dev_type)
344 {
345 }
netdev_set_addr_lockdep_class(struct net_device * dev)346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348 }
349 #endif
350 
351 /*******************************************************************************
352 
353 		Protocol management and registration routines
354 
355 *******************************************************************************/
356 
357 /*
358  *	Add a protocol ID to the list. Now that the input handler is
359  *	smarter we can dispense with all the messy stuff that used to be
360  *	here.
361  *
362  *	BEWARE!!! Protocol handlers, mangling input packets,
363  *	MUST BE last in hash buckets and checking protocol handlers
364  *	MUST start from promiscuous ptype_all chain in net_bh.
365  *	It is true now, do not change it.
366  *	Explanation follows: if protocol handler, mangling packet, will
367  *	be the first on list, it is not able to sense, that packet
368  *	is cloned and should be copied-on-write, so that it will
369  *	change it and subsequent readers will get broken packet.
370  *							--ANK (980803)
371  */
372 
ptype_head(const struct packet_type * pt)373 static inline struct list_head *ptype_head(const struct packet_type *pt)
374 {
375 	if (pt->type == htons(ETH_P_ALL))
376 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
377 	else
378 		return pt->dev ? &pt->dev->ptype_specific :
379 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
380 }
381 
382 /**
383  *	dev_add_pack - add packet handler
384  *	@pt: packet type declaration
385  *
386  *	Add a protocol handler to the networking stack. The passed &packet_type
387  *	is linked into kernel lists and may not be freed until it has been
388  *	removed from the kernel lists.
389  *
390  *	This call does not sleep therefore it can not
391  *	guarantee all CPU's that are in middle of receiving packets
392  *	will see the new packet type (until the next received packet).
393  */
394 
dev_add_pack(struct packet_type * pt)395 void dev_add_pack(struct packet_type *pt)
396 {
397 	struct list_head *head = ptype_head(pt);
398 
399 	spin_lock(&ptype_lock);
400 	list_add_rcu(&pt->list, head);
401 	spin_unlock(&ptype_lock);
402 }
403 EXPORT_SYMBOL(dev_add_pack);
404 
405 /**
406  *	__dev_remove_pack	 - remove packet handler
407  *	@pt: packet type declaration
408  *
409  *	Remove a protocol handler that was previously added to the kernel
410  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
411  *	from the kernel lists and can be freed or reused once this function
412  *	returns.
413  *
414  *      The packet type might still be in use by receivers
415  *	and must not be freed until after all the CPU's have gone
416  *	through a quiescent state.
417  */
__dev_remove_pack(struct packet_type * pt)418 void __dev_remove_pack(struct packet_type *pt)
419 {
420 	struct list_head *head = ptype_head(pt);
421 	struct packet_type *pt1;
422 
423 	spin_lock(&ptype_lock);
424 
425 	list_for_each_entry(pt1, head, list) {
426 		if (pt == pt1) {
427 			list_del_rcu(&pt->list);
428 			goto out;
429 		}
430 	}
431 
432 	pr_warn("dev_remove_pack: %p not found\n", pt);
433 out:
434 	spin_unlock(&ptype_lock);
435 }
436 EXPORT_SYMBOL(__dev_remove_pack);
437 
438 /**
439  *	dev_remove_pack	 - remove packet handler
440  *	@pt: packet type declaration
441  *
442  *	Remove a protocol handler that was previously added to the kernel
443  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
444  *	from the kernel lists and can be freed or reused once this function
445  *	returns.
446  *
447  *	This call sleeps to guarantee that no CPU is looking at the packet
448  *	type after return.
449  */
dev_remove_pack(struct packet_type * pt)450 void dev_remove_pack(struct packet_type *pt)
451 {
452 	__dev_remove_pack(pt);
453 
454 	synchronize_net();
455 }
456 EXPORT_SYMBOL(dev_remove_pack);
457 
458 
459 /**
460  *	dev_add_offload - register offload handlers
461  *	@po: protocol offload declaration
462  *
463  *	Add protocol offload handlers to the networking stack. The passed
464  *	&proto_offload is linked into kernel lists and may not be freed until
465  *	it has been removed from the kernel lists.
466  *
467  *	This call does not sleep therefore it can not
468  *	guarantee all CPU's that are in middle of receiving packets
469  *	will see the new offload handlers (until the next received packet).
470  */
dev_add_offload(struct packet_offload * po)471 void dev_add_offload(struct packet_offload *po)
472 {
473 	struct packet_offload *elem;
474 
475 	spin_lock(&offload_lock);
476 	list_for_each_entry(elem, &offload_base, list) {
477 		if (po->priority < elem->priority)
478 			break;
479 	}
480 	list_add_rcu(&po->list, elem->list.prev);
481 	spin_unlock(&offload_lock);
482 }
483 EXPORT_SYMBOL(dev_add_offload);
484 
485 /**
486  *	__dev_remove_offload	 - remove offload handler
487  *	@po: packet offload declaration
488  *
489  *	Remove a protocol offload handler that was previously added to the
490  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
491  *	is removed from the kernel lists and can be freed or reused once this
492  *	function returns.
493  *
494  *      The packet type might still be in use by receivers
495  *	and must not be freed until after all the CPU's have gone
496  *	through a quiescent state.
497  */
__dev_remove_offload(struct packet_offload * po)498 static void __dev_remove_offload(struct packet_offload *po)
499 {
500 	struct list_head *head = &offload_base;
501 	struct packet_offload *po1;
502 
503 	spin_lock(&offload_lock);
504 
505 	list_for_each_entry(po1, head, list) {
506 		if (po == po1) {
507 			list_del_rcu(&po->list);
508 			goto out;
509 		}
510 	}
511 
512 	pr_warn("dev_remove_offload: %p not found\n", po);
513 out:
514 	spin_unlock(&offload_lock);
515 }
516 
517 /**
518  *	dev_remove_offload	 - remove packet offload handler
519  *	@po: packet offload declaration
520  *
521  *	Remove a packet offload handler that was previously added to the kernel
522  *	offload handlers by dev_add_offload(). The passed &offload_type is
523  *	removed from the kernel lists and can be freed or reused once this
524  *	function returns.
525  *
526  *	This call sleeps to guarantee that no CPU is looking at the packet
527  *	type after return.
528  */
dev_remove_offload(struct packet_offload * po)529 void dev_remove_offload(struct packet_offload *po)
530 {
531 	__dev_remove_offload(po);
532 
533 	synchronize_net();
534 }
535 EXPORT_SYMBOL(dev_remove_offload);
536 
537 /******************************************************************************
538 
539 		      Device Boot-time Settings Routines
540 
541 *******************************************************************************/
542 
543 /* Boot time configuration table */
544 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
545 
546 /**
547  *	netdev_boot_setup_add	- add new setup entry
548  *	@name: name of the device
549  *	@map: configured settings for the device
550  *
551  *	Adds new setup entry to the dev_boot_setup list.  The function
552  *	returns 0 on error and 1 on success.  This is a generic routine to
553  *	all netdevices.
554  */
netdev_boot_setup_add(char * name,struct ifmap * map)555 static int netdev_boot_setup_add(char *name, struct ifmap *map)
556 {
557 	struct netdev_boot_setup *s;
558 	int i;
559 
560 	s = dev_boot_setup;
561 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
562 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
563 			memset(s[i].name, 0, sizeof(s[i].name));
564 			strlcpy(s[i].name, name, IFNAMSIZ);
565 			memcpy(&s[i].map, map, sizeof(s[i].map));
566 			break;
567 		}
568 	}
569 
570 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
571 }
572 
573 /**
574  *	netdev_boot_setup_check	- check boot time settings
575  *	@dev: the netdevice
576  *
577  * 	Check boot time settings for the device.
578  *	The found settings are set for the device to be used
579  *	later in the device probing.
580  *	Returns 0 if no settings found, 1 if they are.
581  */
netdev_boot_setup_check(struct net_device * dev)582 int netdev_boot_setup_check(struct net_device *dev)
583 {
584 	struct netdev_boot_setup *s = dev_boot_setup;
585 	int i;
586 
587 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
588 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
589 		    !strcmp(dev->name, s[i].name)) {
590 			dev->irq 	= s[i].map.irq;
591 			dev->base_addr 	= s[i].map.base_addr;
592 			dev->mem_start 	= s[i].map.mem_start;
593 			dev->mem_end 	= s[i].map.mem_end;
594 			return 1;
595 		}
596 	}
597 	return 0;
598 }
599 EXPORT_SYMBOL(netdev_boot_setup_check);
600 
601 
602 /**
603  *	netdev_boot_base	- get address from boot time settings
604  *	@prefix: prefix for network device
605  *	@unit: id for network device
606  *
607  * 	Check boot time settings for the base address of device.
608  *	The found settings are set for the device to be used
609  *	later in the device probing.
610  *	Returns 0 if no settings found.
611  */
netdev_boot_base(const char * prefix,int unit)612 unsigned long netdev_boot_base(const char *prefix, int unit)
613 {
614 	const struct netdev_boot_setup *s = dev_boot_setup;
615 	char name[IFNAMSIZ];
616 	int i;
617 
618 	sprintf(name, "%s%d", prefix, unit);
619 
620 	/*
621 	 * If device already registered then return base of 1
622 	 * to indicate not to probe for this interface
623 	 */
624 	if (__dev_get_by_name(&init_net, name))
625 		return 1;
626 
627 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
628 		if (!strcmp(name, s[i].name))
629 			return s[i].map.base_addr;
630 	return 0;
631 }
632 
633 /*
634  * Saves at boot time configured settings for any netdevice.
635  */
netdev_boot_setup(char * str)636 int __init netdev_boot_setup(char *str)
637 {
638 	int ints[5];
639 	struct ifmap map;
640 
641 	str = get_options(str, ARRAY_SIZE(ints), ints);
642 	if (!str || !*str)
643 		return 0;
644 
645 	/* Save settings */
646 	memset(&map, 0, sizeof(map));
647 	if (ints[0] > 0)
648 		map.irq = ints[1];
649 	if (ints[0] > 1)
650 		map.base_addr = ints[2];
651 	if (ints[0] > 2)
652 		map.mem_start = ints[3];
653 	if (ints[0] > 3)
654 		map.mem_end = ints[4];
655 
656 	/* Add new entry to the list */
657 	return netdev_boot_setup_add(str, &map);
658 }
659 
660 __setup("netdev=", netdev_boot_setup);
661 
662 /*******************************************************************************
663 
664 			    Device Interface Subroutines
665 
666 *******************************************************************************/
667 
668 /**
669  *	dev_get_iflink	- get 'iflink' value of a interface
670  *	@dev: targeted interface
671  *
672  *	Indicates the ifindex the interface is linked to.
673  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
674  */
675 
dev_get_iflink(const struct net_device * dev)676 int dev_get_iflink(const struct net_device *dev)
677 {
678 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
679 		return dev->netdev_ops->ndo_get_iflink(dev);
680 
681 	return dev->ifindex;
682 }
683 EXPORT_SYMBOL(dev_get_iflink);
684 
685 /**
686  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
687  *	@dev: targeted interface
688  *	@skb: The packet.
689  *
690  *	For better visibility of tunnel traffic OVS needs to retrieve
691  *	egress tunnel information for a packet. Following API allows
692  *	user to get this info.
693  */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)694 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
695 {
696 	struct ip_tunnel_info *info;
697 
698 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
699 		return -EINVAL;
700 
701 	info = skb_tunnel_info_unclone(skb);
702 	if (!info)
703 		return -ENOMEM;
704 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
705 		return -EINVAL;
706 
707 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
708 }
709 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
710 
711 /**
712  *	__dev_get_by_name	- find a device by its name
713  *	@net: the applicable net namespace
714  *	@name: name to find
715  *
716  *	Find an interface by name. Must be called under RTNL semaphore
717  *	or @dev_base_lock. If the name is found a pointer to the device
718  *	is returned. If the name is not found then %NULL is returned. The
719  *	reference counters are not incremented so the caller must be
720  *	careful with locks.
721  */
722 
__dev_get_by_name(struct net * net,const char * name)723 struct net_device *__dev_get_by_name(struct net *net, const char *name)
724 {
725 	struct net_device *dev;
726 	struct hlist_head *head = dev_name_hash(net, name);
727 
728 	hlist_for_each_entry(dev, head, name_hlist)
729 		if (!strncmp(dev->name, name, IFNAMSIZ))
730 			return dev;
731 
732 	return NULL;
733 }
734 EXPORT_SYMBOL(__dev_get_by_name);
735 
736 /**
737  *	dev_get_by_name_rcu	- find a device by its name
738  *	@net: the applicable net namespace
739  *	@name: name to find
740  *
741  *	Find an interface by name.
742  *	If the name is found a pointer to the device is returned.
743  * 	If the name is not found then %NULL is returned.
744  *	The reference counters are not incremented so the caller must be
745  *	careful with locks. The caller must hold RCU lock.
746  */
747 
dev_get_by_name_rcu(struct net * net,const char * name)748 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
749 {
750 	struct net_device *dev;
751 	struct hlist_head *head = dev_name_hash(net, name);
752 
753 	hlist_for_each_entry_rcu(dev, head, name_hlist)
754 		if (!strncmp(dev->name, name, IFNAMSIZ))
755 			return dev;
756 
757 	return NULL;
758 }
759 EXPORT_SYMBOL(dev_get_by_name_rcu);
760 
761 /**
762  *	dev_get_by_name		- find a device by its name
763  *	@net: the applicable net namespace
764  *	@name: name to find
765  *
766  *	Find an interface by name. This can be called from any
767  *	context and does its own locking. The returned handle has
768  *	the usage count incremented and the caller must use dev_put() to
769  *	release it when it is no longer needed. %NULL is returned if no
770  *	matching device is found.
771  */
772 
dev_get_by_name(struct net * net,const char * name)773 struct net_device *dev_get_by_name(struct net *net, const char *name)
774 {
775 	struct net_device *dev;
776 
777 	rcu_read_lock();
778 	dev = dev_get_by_name_rcu(net, name);
779 	if (dev)
780 		dev_hold(dev);
781 	rcu_read_unlock();
782 	return dev;
783 }
784 EXPORT_SYMBOL(dev_get_by_name);
785 
786 /**
787  *	__dev_get_by_index - find a device by its ifindex
788  *	@net: the applicable net namespace
789  *	@ifindex: index of device
790  *
791  *	Search for an interface by index. Returns %NULL if the device
792  *	is not found or a pointer to the device. The device has not
793  *	had its reference counter increased so the caller must be careful
794  *	about locking. The caller must hold either the RTNL semaphore
795  *	or @dev_base_lock.
796  */
797 
__dev_get_by_index(struct net * net,int ifindex)798 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
799 {
800 	struct net_device *dev;
801 	struct hlist_head *head = dev_index_hash(net, ifindex);
802 
803 	hlist_for_each_entry(dev, head, index_hlist)
804 		if (dev->ifindex == ifindex)
805 			return dev;
806 
807 	return NULL;
808 }
809 EXPORT_SYMBOL(__dev_get_by_index);
810 
811 /**
812  *	dev_get_by_index_rcu - find a device by its ifindex
813  *	@net: the applicable net namespace
814  *	@ifindex: index of device
815  *
816  *	Search for an interface by index. Returns %NULL if the device
817  *	is not found or a pointer to the device. The device has not
818  *	had its reference counter increased so the caller must be careful
819  *	about locking. The caller must hold RCU lock.
820  */
821 
dev_get_by_index_rcu(struct net * net,int ifindex)822 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
823 {
824 	struct net_device *dev;
825 	struct hlist_head *head = dev_index_hash(net, ifindex);
826 
827 	hlist_for_each_entry_rcu(dev, head, index_hlist)
828 		if (dev->ifindex == ifindex)
829 			return dev;
830 
831 	return NULL;
832 }
833 EXPORT_SYMBOL(dev_get_by_index_rcu);
834 
835 
836 /**
837  *	dev_get_by_index - find a device by its ifindex
838  *	@net: the applicable net namespace
839  *	@ifindex: index of device
840  *
841  *	Search for an interface by index. Returns NULL if the device
842  *	is not found or a pointer to the device. The device returned has
843  *	had a reference added and the pointer is safe until the user calls
844  *	dev_put to indicate they have finished with it.
845  */
846 
dev_get_by_index(struct net * net,int ifindex)847 struct net_device *dev_get_by_index(struct net *net, int ifindex)
848 {
849 	struct net_device *dev;
850 
851 	rcu_read_lock();
852 	dev = dev_get_by_index_rcu(net, ifindex);
853 	if (dev)
854 		dev_hold(dev);
855 	rcu_read_unlock();
856 	return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859 
860 /**
861  *	netdev_get_name - get a netdevice name, knowing its ifindex.
862  *	@net: network namespace
863  *	@name: a pointer to the buffer where the name will be stored.
864  *	@ifindex: the ifindex of the interface to get the name from.
865  *
866  *	The use of raw_seqcount_begin() and cond_resched() before
867  *	retrying is required as we want to give the writers a chance
868  *	to complete when CONFIG_PREEMPT is not set.
869  */
netdev_get_name(struct net * net,char * name,int ifindex)870 int netdev_get_name(struct net *net, char *name, int ifindex)
871 {
872 	struct net_device *dev;
873 	unsigned int seq;
874 
875 retry:
876 	seq = raw_seqcount_begin(&devnet_rename_seq);
877 	rcu_read_lock();
878 	dev = dev_get_by_index_rcu(net, ifindex);
879 	if (!dev) {
880 		rcu_read_unlock();
881 		return -ENODEV;
882 	}
883 
884 	strcpy(name, dev->name);
885 	rcu_read_unlock();
886 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
887 		cond_resched();
888 		goto retry;
889 	}
890 
891 	return 0;
892 }
893 
894 /**
895  *	dev_getbyhwaddr_rcu - find a device by its hardware address
896  *	@net: the applicable net namespace
897  *	@type: media type of device
898  *	@ha: hardware address
899  *
900  *	Search for an interface by MAC address. Returns NULL if the device
901  *	is not found or a pointer to the device.
902  *	The caller must hold RCU or RTNL.
903  *	The returned device has not had its ref count increased
904  *	and the caller must therefore be careful about locking
905  *
906  */
907 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)908 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
909 				       const char *ha)
910 {
911 	struct net_device *dev;
912 
913 	for_each_netdev_rcu(net, dev)
914 		if (dev->type == type &&
915 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
916 			return dev;
917 
918 	return NULL;
919 }
920 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
921 
__dev_getfirstbyhwtype(struct net * net,unsigned short type)922 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
923 {
924 	struct net_device *dev;
925 
926 	ASSERT_RTNL();
927 	for_each_netdev(net, dev)
928 		if (dev->type == type)
929 			return dev;
930 
931 	return NULL;
932 }
933 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
934 
dev_getfirstbyhwtype(struct net * net,unsigned short type)935 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
936 {
937 	struct net_device *dev, *ret = NULL;
938 
939 	rcu_read_lock();
940 	for_each_netdev_rcu(net, dev)
941 		if (dev->type == type) {
942 			dev_hold(dev);
943 			ret = dev;
944 			break;
945 		}
946 	rcu_read_unlock();
947 	return ret;
948 }
949 EXPORT_SYMBOL(dev_getfirstbyhwtype);
950 
951 /**
952  *	__dev_get_by_flags - find any device with given flags
953  *	@net: the applicable net namespace
954  *	@if_flags: IFF_* values
955  *	@mask: bitmask of bits in if_flags to check
956  *
957  *	Search for any interface with the given flags. Returns NULL if a device
958  *	is not found or a pointer to the device. Must be called inside
959  *	rtnl_lock(), and result refcount is unchanged.
960  */
961 
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)962 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
963 				      unsigned short mask)
964 {
965 	struct net_device *dev, *ret;
966 
967 	ASSERT_RTNL();
968 
969 	ret = NULL;
970 	for_each_netdev(net, dev) {
971 		if (((dev->flags ^ if_flags) & mask) == 0) {
972 			ret = dev;
973 			break;
974 		}
975 	}
976 	return ret;
977 }
978 EXPORT_SYMBOL(__dev_get_by_flags);
979 
980 /**
981  *	dev_valid_name - check if name is okay for network device
982  *	@name: name string
983  *
984  *	Network device names need to be valid file names to
985  *	to allow sysfs to work.  We also disallow any kind of
986  *	whitespace.
987  */
dev_valid_name(const char * name)988 bool dev_valid_name(const char *name)
989 {
990 	if (*name == '\0')
991 		return false;
992 	if (strlen(name) >= IFNAMSIZ)
993 		return false;
994 	if (!strcmp(name, ".") || !strcmp(name, ".."))
995 		return false;
996 
997 	while (*name) {
998 		if (*name == '/' || *name == ':' || isspace(*name))
999 			return false;
1000 		name++;
1001 	}
1002 	return true;
1003 }
1004 EXPORT_SYMBOL(dev_valid_name);
1005 
1006 /**
1007  *	__dev_alloc_name - allocate a name for a device
1008  *	@net: network namespace to allocate the device name in
1009  *	@name: name format string
1010  *	@buf:  scratch buffer and result name string
1011  *
1012  *	Passed a format string - eg "lt%d" it will try and find a suitable
1013  *	id. It scans list of devices to build up a free map, then chooses
1014  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1015  *	while allocating the name and adding the device in order to avoid
1016  *	duplicates.
1017  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1018  *	Returns the number of the unit assigned or a negative errno code.
1019  */
1020 
__dev_alloc_name(struct net * net,const char * name,char * buf)1021 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1022 {
1023 	int i = 0;
1024 	const char *p;
1025 	const int max_netdevices = 8*PAGE_SIZE;
1026 	unsigned long *inuse;
1027 	struct net_device *d;
1028 
1029 	p = strnchr(name, IFNAMSIZ-1, '%');
1030 	if (p) {
1031 		/*
1032 		 * Verify the string as this thing may have come from
1033 		 * the user.  There must be either one "%d" and no other "%"
1034 		 * characters.
1035 		 */
1036 		if (p[1] != 'd' || strchr(p + 2, '%'))
1037 			return -EINVAL;
1038 
1039 		/* Use one page as a bit array of possible slots */
1040 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1041 		if (!inuse)
1042 			return -ENOMEM;
1043 
1044 		for_each_netdev(net, d) {
1045 			if (!sscanf(d->name, name, &i))
1046 				continue;
1047 			if (i < 0 || i >= max_netdevices)
1048 				continue;
1049 
1050 			/*  avoid cases where sscanf is not exact inverse of printf */
1051 			snprintf(buf, IFNAMSIZ, name, i);
1052 			if (!strncmp(buf, d->name, IFNAMSIZ))
1053 				set_bit(i, inuse);
1054 		}
1055 
1056 		i = find_first_zero_bit(inuse, max_netdevices);
1057 		free_page((unsigned long) inuse);
1058 	}
1059 
1060 	if (buf != name)
1061 		snprintf(buf, IFNAMSIZ, name, i);
1062 	if (!__dev_get_by_name(net, buf))
1063 		return i;
1064 
1065 	/* It is possible to run out of possible slots
1066 	 * when the name is long and there isn't enough space left
1067 	 * for the digits, or if all bits are used.
1068 	 */
1069 	return -ENFILE;
1070 }
1071 
1072 /**
1073  *	dev_alloc_name - allocate a name for a device
1074  *	@dev: device
1075  *	@name: name format string
1076  *
1077  *	Passed a format string - eg "lt%d" it will try and find a suitable
1078  *	id. It scans list of devices to build up a free map, then chooses
1079  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1080  *	while allocating the name and adding the device in order to avoid
1081  *	duplicates.
1082  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1083  *	Returns the number of the unit assigned or a negative errno code.
1084  */
1085 
dev_alloc_name(struct net_device * dev,const char * name)1086 int dev_alloc_name(struct net_device *dev, const char *name)
1087 {
1088 	char buf[IFNAMSIZ];
1089 	struct net *net;
1090 	int ret;
1091 
1092 	BUG_ON(!dev_net(dev));
1093 	net = dev_net(dev);
1094 	ret = __dev_alloc_name(net, name, buf);
1095 	if (ret >= 0)
1096 		strlcpy(dev->name, buf, IFNAMSIZ);
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL(dev_alloc_name);
1100 
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1101 static int dev_alloc_name_ns(struct net *net,
1102 			     struct net_device *dev,
1103 			     const char *name)
1104 {
1105 	char buf[IFNAMSIZ];
1106 	int ret;
1107 
1108 	ret = __dev_alloc_name(net, name, buf);
1109 	if (ret >= 0)
1110 		strlcpy(dev->name, buf, IFNAMSIZ);
1111 	return ret;
1112 }
1113 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1114 static int dev_get_valid_name(struct net *net,
1115 			      struct net_device *dev,
1116 			      const char *name)
1117 {
1118 	BUG_ON(!net);
1119 
1120 	if (!dev_valid_name(name))
1121 		return -EINVAL;
1122 
1123 	if (strchr(name, '%'))
1124 		return dev_alloc_name_ns(net, dev, name);
1125 	else if (__dev_get_by_name(net, name))
1126 		return -EEXIST;
1127 	else if (dev->name != name)
1128 		strlcpy(dev->name, name, IFNAMSIZ);
1129 
1130 	return 0;
1131 }
1132 
1133 /**
1134  *	dev_change_name - change name of a device
1135  *	@dev: device
1136  *	@newname: name (or format string) must be at least IFNAMSIZ
1137  *
1138  *	Change name of a device, can pass format strings "eth%d".
1139  *	for wildcarding.
1140  */
dev_change_name(struct net_device * dev,const char * newname)1141 int dev_change_name(struct net_device *dev, const char *newname)
1142 {
1143 	unsigned char old_assign_type;
1144 	char oldname[IFNAMSIZ];
1145 	int err = 0;
1146 	int ret;
1147 	struct net *net;
1148 
1149 	ASSERT_RTNL();
1150 	BUG_ON(!dev_net(dev));
1151 
1152 	net = dev_net(dev);
1153 	if (dev->flags & IFF_UP)
1154 		return -EBUSY;
1155 
1156 	write_seqcount_begin(&devnet_rename_seq);
1157 
1158 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1159 		write_seqcount_end(&devnet_rename_seq);
1160 		return 0;
1161 	}
1162 
1163 	memcpy(oldname, dev->name, IFNAMSIZ);
1164 
1165 	err = dev_get_valid_name(net, dev, newname);
1166 	if (err < 0) {
1167 		write_seqcount_end(&devnet_rename_seq);
1168 		return err;
1169 	}
1170 
1171 	if (oldname[0] && !strchr(oldname, '%'))
1172 		netdev_info(dev, "renamed from %s\n", oldname);
1173 
1174 	old_assign_type = dev->name_assign_type;
1175 	dev->name_assign_type = NET_NAME_RENAMED;
1176 
1177 rollback:
1178 	ret = device_rename(&dev->dev, dev->name);
1179 	if (ret) {
1180 		memcpy(dev->name, oldname, IFNAMSIZ);
1181 		dev->name_assign_type = old_assign_type;
1182 		write_seqcount_end(&devnet_rename_seq);
1183 		return ret;
1184 	}
1185 
1186 	write_seqcount_end(&devnet_rename_seq);
1187 
1188 	netdev_adjacent_rename_links(dev, oldname);
1189 
1190 	write_lock_bh(&dev_base_lock);
1191 	hlist_del_rcu(&dev->name_hlist);
1192 	write_unlock_bh(&dev_base_lock);
1193 
1194 	synchronize_rcu();
1195 
1196 	write_lock_bh(&dev_base_lock);
1197 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1198 	write_unlock_bh(&dev_base_lock);
1199 
1200 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1201 	ret = notifier_to_errno(ret);
1202 
1203 	if (ret) {
1204 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1205 		if (err >= 0) {
1206 			err = ret;
1207 			write_seqcount_begin(&devnet_rename_seq);
1208 			memcpy(dev->name, oldname, IFNAMSIZ);
1209 			memcpy(oldname, newname, IFNAMSIZ);
1210 			dev->name_assign_type = old_assign_type;
1211 			old_assign_type = NET_NAME_RENAMED;
1212 			goto rollback;
1213 		} else {
1214 			pr_err("%s: name change rollback failed: %d\n",
1215 			       dev->name, ret);
1216 		}
1217 	}
1218 
1219 	return err;
1220 }
1221 
1222 /**
1223  *	dev_set_alias - change ifalias of a device
1224  *	@dev: device
1225  *	@alias: name up to IFALIASZ
1226  *	@len: limit of bytes to copy from info
1227  *
1228  *	Set ifalias for a device,
1229  */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1230 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1231 {
1232 	char *new_ifalias;
1233 
1234 	ASSERT_RTNL();
1235 
1236 	if (len >= IFALIASZ)
1237 		return -EINVAL;
1238 
1239 	if (!len) {
1240 		kfree(dev->ifalias);
1241 		dev->ifalias = NULL;
1242 		return 0;
1243 	}
1244 
1245 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1246 	if (!new_ifalias)
1247 		return -ENOMEM;
1248 	dev->ifalias = new_ifalias;
1249 
1250 	strlcpy(dev->ifalias, alias, len+1);
1251 	return len;
1252 }
1253 
1254 
1255 /**
1256  *	netdev_features_change - device changes features
1257  *	@dev: device to cause notification
1258  *
1259  *	Called to indicate a device has changed features.
1260  */
netdev_features_change(struct net_device * dev)1261 void netdev_features_change(struct net_device *dev)
1262 {
1263 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1264 }
1265 EXPORT_SYMBOL(netdev_features_change);
1266 
1267 /**
1268  *	netdev_state_change - device changes state
1269  *	@dev: device to cause notification
1270  *
1271  *	Called to indicate a device has changed state. This function calls
1272  *	the notifier chains for netdev_chain and sends a NEWLINK message
1273  *	to the routing socket.
1274  */
netdev_state_change(struct net_device * dev)1275 void netdev_state_change(struct net_device *dev)
1276 {
1277 	if (dev->flags & IFF_UP) {
1278 		struct netdev_notifier_change_info change_info;
1279 
1280 		change_info.flags_changed = 0;
1281 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1282 					      &change_info.info);
1283 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1284 	}
1285 }
1286 EXPORT_SYMBOL(netdev_state_change);
1287 
1288 /**
1289  * 	netdev_notify_peers - notify network peers about existence of @dev
1290  * 	@dev: network device
1291  *
1292  * Generate traffic such that interested network peers are aware of
1293  * @dev, such as by generating a gratuitous ARP. This may be used when
1294  * a device wants to inform the rest of the network about some sort of
1295  * reconfiguration such as a failover event or virtual machine
1296  * migration.
1297  */
netdev_notify_peers(struct net_device * dev)1298 void netdev_notify_peers(struct net_device *dev)
1299 {
1300 	rtnl_lock();
1301 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1302 	rtnl_unlock();
1303 }
1304 EXPORT_SYMBOL(netdev_notify_peers);
1305 
__dev_open(struct net_device * dev)1306 static int __dev_open(struct net_device *dev)
1307 {
1308 	const struct net_device_ops *ops = dev->netdev_ops;
1309 	int ret;
1310 
1311 	ASSERT_RTNL();
1312 
1313 	if (!netif_device_present(dev))
1314 		return -ENODEV;
1315 
1316 	/* Block netpoll from trying to do any rx path servicing.
1317 	 * If we don't do this there is a chance ndo_poll_controller
1318 	 * or ndo_poll may be running while we open the device
1319 	 */
1320 	netpoll_poll_disable(dev);
1321 
1322 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1323 	ret = notifier_to_errno(ret);
1324 	if (ret)
1325 		return ret;
1326 
1327 	set_bit(__LINK_STATE_START, &dev->state);
1328 
1329 	if (ops->ndo_validate_addr)
1330 		ret = ops->ndo_validate_addr(dev);
1331 
1332 	if (!ret && ops->ndo_open)
1333 		ret = ops->ndo_open(dev);
1334 
1335 	netpoll_poll_enable(dev);
1336 
1337 	if (ret)
1338 		clear_bit(__LINK_STATE_START, &dev->state);
1339 	else {
1340 		dev->flags |= IFF_UP;
1341 		dev_set_rx_mode(dev);
1342 		dev_activate(dev);
1343 		add_device_randomness(dev->dev_addr, dev->addr_len);
1344 	}
1345 
1346 	return ret;
1347 }
1348 
1349 /**
1350  *	dev_open	- prepare an interface for use.
1351  *	@dev:	device to open
1352  *
1353  *	Takes a device from down to up state. The device's private open
1354  *	function is invoked and then the multicast lists are loaded. Finally
1355  *	the device is moved into the up state and a %NETDEV_UP message is
1356  *	sent to the netdev notifier chain.
1357  *
1358  *	Calling this function on an active interface is a nop. On a failure
1359  *	a negative errno code is returned.
1360  */
dev_open(struct net_device * dev)1361 int dev_open(struct net_device *dev)
1362 {
1363 	int ret;
1364 
1365 	if (dev->flags & IFF_UP)
1366 		return 0;
1367 
1368 	ret = __dev_open(dev);
1369 	if (ret < 0)
1370 		return ret;
1371 
1372 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1373 	call_netdevice_notifiers(NETDEV_UP, dev);
1374 
1375 	return ret;
1376 }
1377 EXPORT_SYMBOL(dev_open);
1378 
__dev_close_many(struct list_head * head)1379 static int __dev_close_many(struct list_head *head)
1380 {
1381 	struct net_device *dev;
1382 
1383 	ASSERT_RTNL();
1384 	might_sleep();
1385 
1386 	list_for_each_entry(dev, head, close_list) {
1387 		/* Temporarily disable netpoll until the interface is down */
1388 		netpoll_poll_disable(dev);
1389 
1390 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1391 
1392 		clear_bit(__LINK_STATE_START, &dev->state);
1393 
1394 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1395 		 * can be even on different cpu. So just clear netif_running().
1396 		 *
1397 		 * dev->stop() will invoke napi_disable() on all of it's
1398 		 * napi_struct instances on this device.
1399 		 */
1400 		smp_mb__after_atomic(); /* Commit netif_running(). */
1401 	}
1402 
1403 	dev_deactivate_many(head);
1404 
1405 	list_for_each_entry(dev, head, close_list) {
1406 		const struct net_device_ops *ops = dev->netdev_ops;
1407 
1408 		/*
1409 		 *	Call the device specific close. This cannot fail.
1410 		 *	Only if device is UP
1411 		 *
1412 		 *	We allow it to be called even after a DETACH hot-plug
1413 		 *	event.
1414 		 */
1415 		if (ops->ndo_stop)
1416 			ops->ndo_stop(dev);
1417 
1418 		dev->flags &= ~IFF_UP;
1419 		netpoll_poll_enable(dev);
1420 	}
1421 
1422 	return 0;
1423 }
1424 
__dev_close(struct net_device * dev)1425 static int __dev_close(struct net_device *dev)
1426 {
1427 	int retval;
1428 	LIST_HEAD(single);
1429 
1430 	list_add(&dev->close_list, &single);
1431 	retval = __dev_close_many(&single);
1432 	list_del(&single);
1433 
1434 	return retval;
1435 }
1436 
dev_close_many(struct list_head * head,bool unlink)1437 int dev_close_many(struct list_head *head, bool unlink)
1438 {
1439 	struct net_device *dev, *tmp;
1440 
1441 	/* Remove the devices that don't need to be closed */
1442 	list_for_each_entry_safe(dev, tmp, head, close_list)
1443 		if (!(dev->flags & IFF_UP))
1444 			list_del_init(&dev->close_list);
1445 
1446 	__dev_close_many(head);
1447 
1448 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1449 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1450 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1451 		if (unlink)
1452 			list_del_init(&dev->close_list);
1453 	}
1454 
1455 	return 0;
1456 }
1457 EXPORT_SYMBOL(dev_close_many);
1458 
1459 /**
1460  *	dev_close - shutdown an interface.
1461  *	@dev: device to shutdown
1462  *
1463  *	This function moves an active device into down state. A
1464  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1465  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1466  *	chain.
1467  */
dev_close(struct net_device * dev)1468 int dev_close(struct net_device *dev)
1469 {
1470 	if (dev->flags & IFF_UP) {
1471 		LIST_HEAD(single);
1472 
1473 		list_add(&dev->close_list, &single);
1474 		dev_close_many(&single, true);
1475 		list_del(&single);
1476 	}
1477 	return 0;
1478 }
1479 EXPORT_SYMBOL(dev_close);
1480 
1481 
1482 /**
1483  *	dev_disable_lro - disable Large Receive Offload on a device
1484  *	@dev: device
1485  *
1486  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1487  *	called under RTNL.  This is needed if received packets may be
1488  *	forwarded to another interface.
1489  */
dev_disable_lro(struct net_device * dev)1490 void dev_disable_lro(struct net_device *dev)
1491 {
1492 	struct net_device *lower_dev;
1493 	struct list_head *iter;
1494 
1495 	dev->wanted_features &= ~NETIF_F_LRO;
1496 	netdev_update_features(dev);
1497 
1498 	if (unlikely(dev->features & NETIF_F_LRO))
1499 		netdev_WARN(dev, "failed to disable LRO!\n");
1500 
1501 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1502 		dev_disable_lro(lower_dev);
1503 }
1504 EXPORT_SYMBOL(dev_disable_lro);
1505 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1506 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1507 				   struct net_device *dev)
1508 {
1509 	struct netdev_notifier_info info;
1510 
1511 	netdev_notifier_info_init(&info, dev);
1512 	return nb->notifier_call(nb, val, &info);
1513 }
1514 
1515 static int dev_boot_phase = 1;
1516 
1517 /**
1518  *	register_netdevice_notifier - register a network notifier block
1519  *	@nb: notifier
1520  *
1521  *	Register a notifier to be called when network device events occur.
1522  *	The notifier passed is linked into the kernel structures and must
1523  *	not be reused until it has been unregistered. A negative errno code
1524  *	is returned on a failure.
1525  *
1526  * 	When registered all registration and up events are replayed
1527  *	to the new notifier to allow device to have a race free
1528  *	view of the network device list.
1529  */
1530 
register_netdevice_notifier(struct notifier_block * nb)1531 int register_netdevice_notifier(struct notifier_block *nb)
1532 {
1533 	struct net_device *dev;
1534 	struct net_device *last;
1535 	struct net *net;
1536 	int err;
1537 
1538 	rtnl_lock();
1539 	err = raw_notifier_chain_register(&netdev_chain, nb);
1540 	if (err)
1541 		goto unlock;
1542 	if (dev_boot_phase)
1543 		goto unlock;
1544 	for_each_net(net) {
1545 		for_each_netdev(net, dev) {
1546 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1547 			err = notifier_to_errno(err);
1548 			if (err)
1549 				goto rollback;
1550 
1551 			if (!(dev->flags & IFF_UP))
1552 				continue;
1553 
1554 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1555 		}
1556 	}
1557 
1558 unlock:
1559 	rtnl_unlock();
1560 	return err;
1561 
1562 rollback:
1563 	last = dev;
1564 	for_each_net(net) {
1565 		for_each_netdev(net, dev) {
1566 			if (dev == last)
1567 				goto outroll;
1568 
1569 			if (dev->flags & IFF_UP) {
1570 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1571 							dev);
1572 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1573 			}
1574 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1575 		}
1576 	}
1577 
1578 outroll:
1579 	raw_notifier_chain_unregister(&netdev_chain, nb);
1580 	goto unlock;
1581 }
1582 EXPORT_SYMBOL(register_netdevice_notifier);
1583 
1584 /**
1585  *	unregister_netdevice_notifier - unregister a network notifier block
1586  *	@nb: notifier
1587  *
1588  *	Unregister a notifier previously registered by
1589  *	register_netdevice_notifier(). The notifier is unlinked into the
1590  *	kernel structures and may then be reused. A negative errno code
1591  *	is returned on a failure.
1592  *
1593  * 	After unregistering unregister and down device events are synthesized
1594  *	for all devices on the device list to the removed notifier to remove
1595  *	the need for special case cleanup code.
1596  */
1597 
unregister_netdevice_notifier(struct notifier_block * nb)1598 int unregister_netdevice_notifier(struct notifier_block *nb)
1599 {
1600 	struct net_device *dev;
1601 	struct net *net;
1602 	int err;
1603 
1604 	rtnl_lock();
1605 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1606 	if (err)
1607 		goto unlock;
1608 
1609 	for_each_net(net) {
1610 		for_each_netdev(net, dev) {
1611 			if (dev->flags & IFF_UP) {
1612 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1613 							dev);
1614 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1615 			}
1616 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1617 		}
1618 	}
1619 unlock:
1620 	rtnl_unlock();
1621 	return err;
1622 }
1623 EXPORT_SYMBOL(unregister_netdevice_notifier);
1624 
1625 /**
1626  *	call_netdevice_notifiers_info - call all network notifier blocks
1627  *	@val: value passed unmodified to notifier function
1628  *	@dev: net_device pointer passed unmodified to notifier function
1629  *	@info: notifier information data
1630  *
1631  *	Call all network notifier blocks.  Parameters and return value
1632  *	are as for raw_notifier_call_chain().
1633  */
1634 
call_netdevice_notifiers_info(unsigned long val,struct net_device * dev,struct netdev_notifier_info * info)1635 static int call_netdevice_notifiers_info(unsigned long val,
1636 					 struct net_device *dev,
1637 					 struct netdev_notifier_info *info)
1638 {
1639 	ASSERT_RTNL();
1640 	netdev_notifier_info_init(info, dev);
1641 	return raw_notifier_call_chain(&netdev_chain, val, info);
1642 }
1643 
1644 /**
1645  *	call_netdevice_notifiers - call all network notifier blocks
1646  *      @val: value passed unmodified to notifier function
1647  *      @dev: net_device pointer passed unmodified to notifier function
1648  *
1649  *	Call all network notifier blocks.  Parameters and return value
1650  *	are as for raw_notifier_call_chain().
1651  */
1652 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)1653 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1654 {
1655 	struct netdev_notifier_info info;
1656 
1657 	return call_netdevice_notifiers_info(val, dev, &info);
1658 }
1659 EXPORT_SYMBOL(call_netdevice_notifiers);
1660 
1661 #ifdef CONFIG_NET_INGRESS
1662 static struct static_key ingress_needed __read_mostly;
1663 
net_inc_ingress_queue(void)1664 void net_inc_ingress_queue(void)
1665 {
1666 	static_key_slow_inc(&ingress_needed);
1667 }
1668 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1669 
net_dec_ingress_queue(void)1670 void net_dec_ingress_queue(void)
1671 {
1672 	static_key_slow_dec(&ingress_needed);
1673 }
1674 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1675 #endif
1676 
1677 static struct static_key netstamp_needed __read_mostly;
1678 #ifdef HAVE_JUMP_LABEL
1679 /* We are not allowed to call static_key_slow_dec() from irq context
1680  * If net_disable_timestamp() is called from irq context, defer the
1681  * static_key_slow_dec() calls.
1682  */
1683 static atomic_t netstamp_needed_deferred;
1684 #endif
1685 
net_enable_timestamp(void)1686 void net_enable_timestamp(void)
1687 {
1688 #ifdef HAVE_JUMP_LABEL
1689 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1690 
1691 	if (deferred) {
1692 		while (--deferred)
1693 			static_key_slow_dec(&netstamp_needed);
1694 		return;
1695 	}
1696 #endif
1697 	static_key_slow_inc(&netstamp_needed);
1698 }
1699 EXPORT_SYMBOL(net_enable_timestamp);
1700 
net_disable_timestamp(void)1701 void net_disable_timestamp(void)
1702 {
1703 #ifdef HAVE_JUMP_LABEL
1704 	if (in_interrupt()) {
1705 		atomic_inc(&netstamp_needed_deferred);
1706 		return;
1707 	}
1708 #endif
1709 	static_key_slow_dec(&netstamp_needed);
1710 }
1711 EXPORT_SYMBOL(net_disable_timestamp);
1712 
net_timestamp_set(struct sk_buff * skb)1713 static inline void net_timestamp_set(struct sk_buff *skb)
1714 {
1715 	skb->tstamp.tv64 = 0;
1716 	if (static_key_false(&netstamp_needed))
1717 		__net_timestamp(skb);
1718 }
1719 
1720 #define net_timestamp_check(COND, SKB)			\
1721 	if (static_key_false(&netstamp_needed)) {		\
1722 		if ((COND) && !(SKB)->tstamp.tv64)	\
1723 			__net_timestamp(SKB);		\
1724 	}						\
1725 
is_skb_forwardable(struct net_device * dev,struct sk_buff * skb)1726 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1727 {
1728 	unsigned int len;
1729 
1730 	if (!(dev->flags & IFF_UP))
1731 		return false;
1732 
1733 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1734 	if (skb->len <= len)
1735 		return true;
1736 
1737 	/* if TSO is enabled, we don't care about the length as the packet
1738 	 * could be forwarded without being segmented before
1739 	 */
1740 	if (skb_is_gso(skb))
1741 		return true;
1742 
1743 	return false;
1744 }
1745 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1746 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1747 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1748 {
1749 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1750 	    unlikely(!is_skb_forwardable(dev, skb))) {
1751 		atomic_long_inc(&dev->rx_dropped);
1752 		kfree_skb(skb);
1753 		return NET_RX_DROP;
1754 	}
1755 
1756 	skb_scrub_packet(skb, true);
1757 	skb->priority = 0;
1758 	skb->protocol = eth_type_trans(skb, dev);
1759 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1760 
1761 	return 0;
1762 }
1763 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1764 
1765 /**
1766  * dev_forward_skb - loopback an skb to another netif
1767  *
1768  * @dev: destination network device
1769  * @skb: buffer to forward
1770  *
1771  * return values:
1772  *	NET_RX_SUCCESS	(no congestion)
1773  *	NET_RX_DROP     (packet was dropped, but freed)
1774  *
1775  * dev_forward_skb can be used for injecting an skb from the
1776  * start_xmit function of one device into the receive queue
1777  * of another device.
1778  *
1779  * The receiving device may be in another namespace, so
1780  * we have to clear all information in the skb that could
1781  * impact namespace isolation.
1782  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1783 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1784 {
1785 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1786 }
1787 EXPORT_SYMBOL_GPL(dev_forward_skb);
1788 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)1789 static inline int deliver_skb(struct sk_buff *skb,
1790 			      struct packet_type *pt_prev,
1791 			      struct net_device *orig_dev)
1792 {
1793 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1794 		return -ENOMEM;
1795 	atomic_inc(&skb->users);
1796 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1797 }
1798 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)1799 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1800 					  struct packet_type **pt,
1801 					  struct net_device *orig_dev,
1802 					  __be16 type,
1803 					  struct list_head *ptype_list)
1804 {
1805 	struct packet_type *ptype, *pt_prev = *pt;
1806 
1807 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1808 		if (ptype->type != type)
1809 			continue;
1810 		if (pt_prev)
1811 			deliver_skb(skb, pt_prev, orig_dev);
1812 		pt_prev = ptype;
1813 	}
1814 	*pt = pt_prev;
1815 }
1816 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)1817 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1818 {
1819 	if (!ptype->af_packet_priv || !skb->sk)
1820 		return false;
1821 
1822 	if (ptype->id_match)
1823 		return ptype->id_match(ptype, skb->sk);
1824 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1825 		return true;
1826 
1827 	return false;
1828 }
1829 
1830 /*
1831  *	Support routine. Sends outgoing frames to any network
1832  *	taps currently in use.
1833  */
1834 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)1835 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1836 {
1837 	struct packet_type *ptype;
1838 	struct sk_buff *skb2 = NULL;
1839 	struct packet_type *pt_prev = NULL;
1840 	struct list_head *ptype_list = &ptype_all;
1841 
1842 	rcu_read_lock();
1843 again:
1844 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1845 		/* Never send packets back to the socket
1846 		 * they originated from - MvS (miquels@drinkel.ow.org)
1847 		 */
1848 		if (skb_loop_sk(ptype, skb))
1849 			continue;
1850 
1851 		if (pt_prev) {
1852 			deliver_skb(skb2, pt_prev, skb->dev);
1853 			pt_prev = ptype;
1854 			continue;
1855 		}
1856 
1857 		/* need to clone skb, done only once */
1858 		skb2 = skb_clone(skb, GFP_ATOMIC);
1859 		if (!skb2)
1860 			goto out_unlock;
1861 
1862 		net_timestamp_set(skb2);
1863 
1864 		/* skb->nh should be correctly
1865 		 * set by sender, so that the second statement is
1866 		 * just protection against buggy protocols.
1867 		 */
1868 		skb_reset_mac_header(skb2);
1869 
1870 		if (skb_network_header(skb2) < skb2->data ||
1871 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1872 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1873 					     ntohs(skb2->protocol),
1874 					     dev->name);
1875 			skb_reset_network_header(skb2);
1876 		}
1877 
1878 		skb2->transport_header = skb2->network_header;
1879 		skb2->pkt_type = PACKET_OUTGOING;
1880 		pt_prev = ptype;
1881 	}
1882 
1883 	if (ptype_list == &ptype_all) {
1884 		ptype_list = &dev->ptype_all;
1885 		goto again;
1886 	}
1887 out_unlock:
1888 	if (pt_prev)
1889 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1890 	rcu_read_unlock();
1891 }
1892 
1893 /**
1894  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1895  * @dev: Network device
1896  * @txq: number of queues available
1897  *
1898  * If real_num_tx_queues is changed the tc mappings may no longer be
1899  * valid. To resolve this verify the tc mapping remains valid and if
1900  * not NULL the mapping. With no priorities mapping to this
1901  * offset/count pair it will no longer be used. In the worst case TC0
1902  * is invalid nothing can be done so disable priority mappings. If is
1903  * expected that drivers will fix this mapping if they can before
1904  * calling netif_set_real_num_tx_queues.
1905  */
netif_setup_tc(struct net_device * dev,unsigned int txq)1906 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1907 {
1908 	int i;
1909 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1910 
1911 	/* If TC0 is invalidated disable TC mapping */
1912 	if (tc->offset + tc->count > txq) {
1913 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1914 		dev->num_tc = 0;
1915 		return;
1916 	}
1917 
1918 	/* Invalidated prio to tc mappings set to TC0 */
1919 	for (i = 1; i < TC_BITMASK + 1; i++) {
1920 		int q = netdev_get_prio_tc_map(dev, i);
1921 
1922 		tc = &dev->tc_to_txq[q];
1923 		if (tc->offset + tc->count > txq) {
1924 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1925 				i, q);
1926 			netdev_set_prio_tc_map(dev, i, 0);
1927 		}
1928 	}
1929 }
1930 
1931 #ifdef CONFIG_XPS
1932 static DEFINE_MUTEX(xps_map_mutex);
1933 #define xmap_dereference(P)		\
1934 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1935 
remove_xps_queue(struct xps_dev_maps * dev_maps,int cpu,u16 index)1936 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1937 					int cpu, u16 index)
1938 {
1939 	struct xps_map *map = NULL;
1940 	int pos;
1941 
1942 	if (dev_maps)
1943 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1944 
1945 	for (pos = 0; map && pos < map->len; pos++) {
1946 		if (map->queues[pos] == index) {
1947 			if (map->len > 1) {
1948 				map->queues[pos] = map->queues[--map->len];
1949 			} else {
1950 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1951 				kfree_rcu(map, rcu);
1952 				map = NULL;
1953 			}
1954 			break;
1955 		}
1956 	}
1957 
1958 	return map;
1959 }
1960 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)1961 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1962 {
1963 	struct xps_dev_maps *dev_maps;
1964 	int cpu, i;
1965 	bool active = false;
1966 
1967 	mutex_lock(&xps_map_mutex);
1968 	dev_maps = xmap_dereference(dev->xps_maps);
1969 
1970 	if (!dev_maps)
1971 		goto out_no_maps;
1972 
1973 	for_each_possible_cpu(cpu) {
1974 		for (i = index; i < dev->num_tx_queues; i++) {
1975 			if (!remove_xps_queue(dev_maps, cpu, i))
1976 				break;
1977 		}
1978 		if (i == dev->num_tx_queues)
1979 			active = true;
1980 	}
1981 
1982 	if (!active) {
1983 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1984 		kfree_rcu(dev_maps, rcu);
1985 	}
1986 
1987 	for (i = index; i < dev->num_tx_queues; i++)
1988 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1989 					     NUMA_NO_NODE);
1990 
1991 out_no_maps:
1992 	mutex_unlock(&xps_map_mutex);
1993 }
1994 
expand_xps_map(struct xps_map * map,int cpu,u16 index)1995 static struct xps_map *expand_xps_map(struct xps_map *map,
1996 				      int cpu, u16 index)
1997 {
1998 	struct xps_map *new_map;
1999 	int alloc_len = XPS_MIN_MAP_ALLOC;
2000 	int i, pos;
2001 
2002 	for (pos = 0; map && pos < map->len; pos++) {
2003 		if (map->queues[pos] != index)
2004 			continue;
2005 		return map;
2006 	}
2007 
2008 	/* Need to add queue to this CPU's existing map */
2009 	if (map) {
2010 		if (pos < map->alloc_len)
2011 			return map;
2012 
2013 		alloc_len = map->alloc_len * 2;
2014 	}
2015 
2016 	/* Need to allocate new map to store queue on this CPU's map */
2017 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2018 			       cpu_to_node(cpu));
2019 	if (!new_map)
2020 		return NULL;
2021 
2022 	for (i = 0; i < pos; i++)
2023 		new_map->queues[i] = map->queues[i];
2024 	new_map->alloc_len = alloc_len;
2025 	new_map->len = pos;
2026 
2027 	return new_map;
2028 }
2029 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2030 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2031 			u16 index)
2032 {
2033 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2034 	struct xps_map *map, *new_map;
2035 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2036 	int cpu, numa_node_id = -2;
2037 	bool active = false;
2038 
2039 	mutex_lock(&xps_map_mutex);
2040 
2041 	dev_maps = xmap_dereference(dev->xps_maps);
2042 
2043 	/* allocate memory for queue storage */
2044 	for_each_online_cpu(cpu) {
2045 		if (!cpumask_test_cpu(cpu, mask))
2046 			continue;
2047 
2048 		if (!new_dev_maps)
2049 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2050 		if (!new_dev_maps) {
2051 			mutex_unlock(&xps_map_mutex);
2052 			return -ENOMEM;
2053 		}
2054 
2055 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 				 NULL;
2057 
2058 		map = expand_xps_map(map, cpu, index);
2059 		if (!map)
2060 			goto error;
2061 
2062 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2063 	}
2064 
2065 	if (!new_dev_maps)
2066 		goto out_no_new_maps;
2067 
2068 	for_each_possible_cpu(cpu) {
2069 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2070 			/* add queue to CPU maps */
2071 			int pos = 0;
2072 
2073 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2074 			while ((pos < map->len) && (map->queues[pos] != index))
2075 				pos++;
2076 
2077 			if (pos == map->len)
2078 				map->queues[map->len++] = index;
2079 #ifdef CONFIG_NUMA
2080 			if (numa_node_id == -2)
2081 				numa_node_id = cpu_to_node(cpu);
2082 			else if (numa_node_id != cpu_to_node(cpu))
2083 				numa_node_id = -1;
2084 #endif
2085 		} else if (dev_maps) {
2086 			/* fill in the new device map from the old device map */
2087 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2088 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2089 		}
2090 
2091 	}
2092 
2093 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2094 
2095 	/* Cleanup old maps */
2096 	if (dev_maps) {
2097 		for_each_possible_cpu(cpu) {
2098 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2099 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2100 			if (map && map != new_map)
2101 				kfree_rcu(map, rcu);
2102 		}
2103 
2104 		kfree_rcu(dev_maps, rcu);
2105 	}
2106 
2107 	dev_maps = new_dev_maps;
2108 	active = true;
2109 
2110 out_no_new_maps:
2111 	/* update Tx queue numa node */
2112 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2113 				     (numa_node_id >= 0) ? numa_node_id :
2114 				     NUMA_NO_NODE);
2115 
2116 	if (!dev_maps)
2117 		goto out_no_maps;
2118 
2119 	/* removes queue from unused CPUs */
2120 	for_each_possible_cpu(cpu) {
2121 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2122 			continue;
2123 
2124 		if (remove_xps_queue(dev_maps, cpu, index))
2125 			active = true;
2126 	}
2127 
2128 	/* free map if not active */
2129 	if (!active) {
2130 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2131 		kfree_rcu(dev_maps, rcu);
2132 	}
2133 
2134 out_no_maps:
2135 	mutex_unlock(&xps_map_mutex);
2136 
2137 	return 0;
2138 error:
2139 	/* remove any maps that we added */
2140 	for_each_possible_cpu(cpu) {
2141 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2142 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2143 				 NULL;
2144 		if (new_map && new_map != map)
2145 			kfree(new_map);
2146 	}
2147 
2148 	mutex_unlock(&xps_map_mutex);
2149 
2150 	kfree(new_dev_maps);
2151 	return -ENOMEM;
2152 }
2153 EXPORT_SYMBOL(netif_set_xps_queue);
2154 
2155 #endif
2156 /*
2157  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2158  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2159  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2160 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2161 {
2162 	int rc;
2163 
2164 	if (txq < 1 || txq > dev->num_tx_queues)
2165 		return -EINVAL;
2166 
2167 	if (dev->reg_state == NETREG_REGISTERED ||
2168 	    dev->reg_state == NETREG_UNREGISTERING) {
2169 		ASSERT_RTNL();
2170 
2171 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2172 						  txq);
2173 		if (rc)
2174 			return rc;
2175 
2176 		if (dev->num_tc)
2177 			netif_setup_tc(dev, txq);
2178 
2179 		if (txq < dev->real_num_tx_queues) {
2180 			qdisc_reset_all_tx_gt(dev, txq);
2181 #ifdef CONFIG_XPS
2182 			netif_reset_xps_queues_gt(dev, txq);
2183 #endif
2184 		}
2185 	}
2186 
2187 	dev->real_num_tx_queues = txq;
2188 	return 0;
2189 }
2190 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2191 
2192 #ifdef CONFIG_SYSFS
2193 /**
2194  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2195  *	@dev: Network device
2196  *	@rxq: Actual number of RX queues
2197  *
2198  *	This must be called either with the rtnl_lock held or before
2199  *	registration of the net device.  Returns 0 on success, or a
2200  *	negative error code.  If called before registration, it always
2201  *	succeeds.
2202  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2203 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2204 {
2205 	int rc;
2206 
2207 	if (rxq < 1 || rxq > dev->num_rx_queues)
2208 		return -EINVAL;
2209 
2210 	if (dev->reg_state == NETREG_REGISTERED) {
2211 		ASSERT_RTNL();
2212 
2213 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2214 						  rxq);
2215 		if (rc)
2216 			return rc;
2217 	}
2218 
2219 	dev->real_num_rx_queues = rxq;
2220 	return 0;
2221 }
2222 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2223 #endif
2224 
2225 /**
2226  * netif_get_num_default_rss_queues - default number of RSS queues
2227  *
2228  * This routine should set an upper limit on the number of RSS queues
2229  * used by default by multiqueue devices.
2230  */
netif_get_num_default_rss_queues(void)2231 int netif_get_num_default_rss_queues(void)
2232 {
2233 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2234 }
2235 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2236 
__netif_reschedule(struct Qdisc * q)2237 static inline void __netif_reschedule(struct Qdisc *q)
2238 {
2239 	struct softnet_data *sd;
2240 	unsigned long flags;
2241 
2242 	local_irq_save(flags);
2243 	sd = this_cpu_ptr(&softnet_data);
2244 	q->next_sched = NULL;
2245 	*sd->output_queue_tailp = q;
2246 	sd->output_queue_tailp = &q->next_sched;
2247 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2248 	local_irq_restore(flags);
2249 }
2250 
__netif_schedule(struct Qdisc * q)2251 void __netif_schedule(struct Qdisc *q)
2252 {
2253 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2254 		__netif_reschedule(q);
2255 }
2256 EXPORT_SYMBOL(__netif_schedule);
2257 
2258 struct dev_kfree_skb_cb {
2259 	enum skb_free_reason reason;
2260 };
2261 
get_kfree_skb_cb(const struct sk_buff * skb)2262 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2263 {
2264 	return (struct dev_kfree_skb_cb *)skb->cb;
2265 }
2266 
netif_schedule_queue(struct netdev_queue * txq)2267 void netif_schedule_queue(struct netdev_queue *txq)
2268 {
2269 	rcu_read_lock();
2270 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2271 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2272 
2273 		__netif_schedule(q);
2274 	}
2275 	rcu_read_unlock();
2276 }
2277 EXPORT_SYMBOL(netif_schedule_queue);
2278 
2279 /**
2280  *	netif_wake_subqueue - allow sending packets on subqueue
2281  *	@dev: network device
2282  *	@queue_index: sub queue index
2283  *
2284  * Resume individual transmit queue of a device with multiple transmit queues.
2285  */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)2286 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2287 {
2288 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2289 
2290 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2291 		struct Qdisc *q;
2292 
2293 		rcu_read_lock();
2294 		q = rcu_dereference(txq->qdisc);
2295 		__netif_schedule(q);
2296 		rcu_read_unlock();
2297 	}
2298 }
2299 EXPORT_SYMBOL(netif_wake_subqueue);
2300 
netif_tx_wake_queue(struct netdev_queue * dev_queue)2301 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2302 {
2303 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2304 		struct Qdisc *q;
2305 
2306 		rcu_read_lock();
2307 		q = rcu_dereference(dev_queue->qdisc);
2308 		__netif_schedule(q);
2309 		rcu_read_unlock();
2310 	}
2311 }
2312 EXPORT_SYMBOL(netif_tx_wake_queue);
2313 
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)2314 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2315 {
2316 	unsigned long flags;
2317 
2318 	if (likely(atomic_read(&skb->users) == 1)) {
2319 		smp_rmb();
2320 		atomic_set(&skb->users, 0);
2321 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2322 		return;
2323 	}
2324 	get_kfree_skb_cb(skb)->reason = reason;
2325 	local_irq_save(flags);
2326 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2327 	__this_cpu_write(softnet_data.completion_queue, skb);
2328 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2329 	local_irq_restore(flags);
2330 }
2331 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2332 
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)2333 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2334 {
2335 	if (in_irq() || irqs_disabled())
2336 		__dev_kfree_skb_irq(skb, reason);
2337 	else
2338 		dev_kfree_skb(skb);
2339 }
2340 EXPORT_SYMBOL(__dev_kfree_skb_any);
2341 
2342 
2343 /**
2344  * netif_device_detach - mark device as removed
2345  * @dev: network device
2346  *
2347  * Mark device as removed from system and therefore no longer available.
2348  */
netif_device_detach(struct net_device * dev)2349 void netif_device_detach(struct net_device *dev)
2350 {
2351 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2352 	    netif_running(dev)) {
2353 		netif_tx_stop_all_queues(dev);
2354 	}
2355 }
2356 EXPORT_SYMBOL(netif_device_detach);
2357 
2358 /**
2359  * netif_device_attach - mark device as attached
2360  * @dev: network device
2361  *
2362  * Mark device as attached from system and restart if needed.
2363  */
netif_device_attach(struct net_device * dev)2364 void netif_device_attach(struct net_device *dev)
2365 {
2366 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2367 	    netif_running(dev)) {
2368 		netif_tx_wake_all_queues(dev);
2369 		__netdev_watchdog_up(dev);
2370 	}
2371 }
2372 EXPORT_SYMBOL(netif_device_attach);
2373 
2374 /*
2375  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2376  * to be used as a distribution range.
2377  */
__skb_tx_hash(const struct net_device * dev,struct sk_buff * skb,unsigned int num_tx_queues)2378 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2379 		  unsigned int num_tx_queues)
2380 {
2381 	u32 hash;
2382 	u16 qoffset = 0;
2383 	u16 qcount = num_tx_queues;
2384 
2385 	if (skb_rx_queue_recorded(skb)) {
2386 		hash = skb_get_rx_queue(skb);
2387 		while (unlikely(hash >= num_tx_queues))
2388 			hash -= num_tx_queues;
2389 		return hash;
2390 	}
2391 
2392 	if (dev->num_tc) {
2393 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2394 		qoffset = dev->tc_to_txq[tc].offset;
2395 		qcount = dev->tc_to_txq[tc].count;
2396 	}
2397 
2398 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2399 }
2400 EXPORT_SYMBOL(__skb_tx_hash);
2401 
skb_warn_bad_offload(const struct sk_buff * skb)2402 static void skb_warn_bad_offload(const struct sk_buff *skb)
2403 {
2404 	static const netdev_features_t null_features = 0;
2405 	struct net_device *dev = skb->dev;
2406 	const char *name = "";
2407 
2408 	if (!net_ratelimit())
2409 		return;
2410 
2411 	if (dev) {
2412 		if (dev->dev.parent)
2413 			name = dev_driver_string(dev->dev.parent);
2414 		else
2415 			name = netdev_name(dev);
2416 	}
2417 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2418 	     "gso_type=%d ip_summed=%d\n",
2419 	     name, dev ? &dev->features : &null_features,
2420 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2421 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2422 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2423 }
2424 
2425 /*
2426  * Invalidate hardware checksum when packet is to be mangled, and
2427  * complete checksum manually on outgoing path.
2428  */
skb_checksum_help(struct sk_buff * skb)2429 int skb_checksum_help(struct sk_buff *skb)
2430 {
2431 	__wsum csum;
2432 	int ret = 0, offset;
2433 
2434 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2435 		goto out_set_summed;
2436 
2437 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2438 		skb_warn_bad_offload(skb);
2439 		return -EINVAL;
2440 	}
2441 
2442 	/* Before computing a checksum, we should make sure no frag could
2443 	 * be modified by an external entity : checksum could be wrong.
2444 	 */
2445 	if (skb_has_shared_frag(skb)) {
2446 		ret = __skb_linearize(skb);
2447 		if (ret)
2448 			goto out;
2449 	}
2450 
2451 	offset = skb_checksum_start_offset(skb);
2452 	BUG_ON(offset >= skb_headlen(skb));
2453 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2454 
2455 	offset += skb->csum_offset;
2456 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2457 
2458 	if (skb_cloned(skb) &&
2459 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2460 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2461 		if (ret)
2462 			goto out;
2463 	}
2464 
2465 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2466 out_set_summed:
2467 	skb->ip_summed = CHECKSUM_NONE;
2468 out:
2469 	return ret;
2470 }
2471 EXPORT_SYMBOL(skb_checksum_help);
2472 
skb_network_protocol(struct sk_buff * skb,int * depth)2473 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2474 {
2475 	__be16 type = skb->protocol;
2476 
2477 	/* Tunnel gso handlers can set protocol to ethernet. */
2478 	if (type == htons(ETH_P_TEB)) {
2479 		struct ethhdr *eth;
2480 
2481 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2482 			return 0;
2483 
2484 		eth = (struct ethhdr *)skb_mac_header(skb);
2485 		type = eth->h_proto;
2486 	}
2487 
2488 	return __vlan_get_protocol(skb, type, depth);
2489 }
2490 
2491 /**
2492  *	skb_mac_gso_segment - mac layer segmentation handler.
2493  *	@skb: buffer to segment
2494  *	@features: features for the output path (see dev->features)
2495  */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)2496 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2497 				    netdev_features_t features)
2498 {
2499 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2500 	struct packet_offload *ptype;
2501 	int vlan_depth = skb->mac_len;
2502 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2503 
2504 	if (unlikely(!type))
2505 		return ERR_PTR(-EINVAL);
2506 
2507 	__skb_pull(skb, vlan_depth);
2508 
2509 	rcu_read_lock();
2510 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2511 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2512 			segs = ptype->callbacks.gso_segment(skb, features);
2513 			break;
2514 		}
2515 	}
2516 	rcu_read_unlock();
2517 
2518 	__skb_push(skb, skb->data - skb_mac_header(skb));
2519 
2520 	return segs;
2521 }
2522 EXPORT_SYMBOL(skb_mac_gso_segment);
2523 
2524 
2525 /* openvswitch calls this on rx path, so we need a different check.
2526  */
skb_needs_check(struct sk_buff * skb,bool tx_path)2527 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2528 {
2529 	if (tx_path)
2530 		return skb->ip_summed != CHECKSUM_PARTIAL;
2531 	else
2532 		return skb->ip_summed == CHECKSUM_NONE;
2533 }
2534 
2535 /**
2536  *	__skb_gso_segment - Perform segmentation on skb.
2537  *	@skb: buffer to segment
2538  *	@features: features for the output path (see dev->features)
2539  *	@tx_path: whether it is called in TX path
2540  *
2541  *	This function segments the given skb and returns a list of segments.
2542  *
2543  *	It may return NULL if the skb requires no segmentation.  This is
2544  *	only possible when GSO is used for verifying header integrity.
2545  *
2546  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2547  */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)2548 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2549 				  netdev_features_t features, bool tx_path)
2550 {
2551 	if (unlikely(skb_needs_check(skb, tx_path))) {
2552 		int err;
2553 
2554 		skb_warn_bad_offload(skb);
2555 
2556 		err = skb_cow_head(skb, 0);
2557 		if (err < 0)
2558 			return ERR_PTR(err);
2559 	}
2560 
2561 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2562 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2563 
2564 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2565 	SKB_GSO_CB(skb)->encap_level = 0;
2566 
2567 	skb_reset_mac_header(skb);
2568 	skb_reset_mac_len(skb);
2569 
2570 	return skb_mac_gso_segment(skb, features);
2571 }
2572 EXPORT_SYMBOL(__skb_gso_segment);
2573 
2574 /* Take action when hardware reception checksum errors are detected. */
2575 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev)2576 void netdev_rx_csum_fault(struct net_device *dev)
2577 {
2578 	if (net_ratelimit()) {
2579 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2580 		dump_stack();
2581 	}
2582 }
2583 EXPORT_SYMBOL(netdev_rx_csum_fault);
2584 #endif
2585 
2586 /* Actually, we should eliminate this check as soon as we know, that:
2587  * 1. IOMMU is present and allows to map all the memory.
2588  * 2. No high memory really exists on this machine.
2589  */
2590 
illegal_highdma(struct net_device * dev,struct sk_buff * skb)2591 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2592 {
2593 #ifdef CONFIG_HIGHMEM
2594 	int i;
2595 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2596 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2597 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2598 			if (PageHighMem(skb_frag_page(frag)))
2599 				return 1;
2600 		}
2601 	}
2602 
2603 	if (PCI_DMA_BUS_IS_PHYS) {
2604 		struct device *pdev = dev->dev.parent;
2605 
2606 		if (!pdev)
2607 			return 0;
2608 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2609 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2610 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2611 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2612 				return 1;
2613 		}
2614 	}
2615 #endif
2616 	return 0;
2617 }
2618 
2619 /* If MPLS offload request, verify we are testing hardware MPLS features
2620  * instead of standard features for the netdev.
2621  */
2622 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)2623 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2624 					   netdev_features_t features,
2625 					   __be16 type)
2626 {
2627 	if (eth_p_mpls(type))
2628 		features &= skb->dev->mpls_features;
2629 
2630 	return features;
2631 }
2632 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)2633 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2634 					   netdev_features_t features,
2635 					   __be16 type)
2636 {
2637 	return features;
2638 }
2639 #endif
2640 
harmonize_features(struct sk_buff * skb,netdev_features_t features)2641 static netdev_features_t harmonize_features(struct sk_buff *skb,
2642 	netdev_features_t features)
2643 {
2644 	int tmp;
2645 	__be16 type;
2646 
2647 	type = skb_network_protocol(skb, &tmp);
2648 	features = net_mpls_features(skb, features, type);
2649 
2650 	if (skb->ip_summed != CHECKSUM_NONE &&
2651 	    !can_checksum_protocol(features, type)) {
2652 		features &= ~NETIF_F_ALL_CSUM;
2653 	} else if (illegal_highdma(skb->dev, skb)) {
2654 		features &= ~NETIF_F_SG;
2655 	}
2656 
2657 	return features;
2658 }
2659 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2660 netdev_features_t passthru_features_check(struct sk_buff *skb,
2661 					  struct net_device *dev,
2662 					  netdev_features_t features)
2663 {
2664 	return features;
2665 }
2666 EXPORT_SYMBOL(passthru_features_check);
2667 
dflt_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2668 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2669 					     struct net_device *dev,
2670 					     netdev_features_t features)
2671 {
2672 	return vlan_features_check(skb, features);
2673 }
2674 
netif_skb_features(struct sk_buff * skb)2675 netdev_features_t netif_skb_features(struct sk_buff *skb)
2676 {
2677 	struct net_device *dev = skb->dev;
2678 	netdev_features_t features = dev->features;
2679 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2680 
2681 	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2682 		features &= ~NETIF_F_GSO_MASK;
2683 
2684 	/* If encapsulation offload request, verify we are testing
2685 	 * hardware encapsulation features instead of standard
2686 	 * features for the netdev
2687 	 */
2688 	if (skb->encapsulation)
2689 		features &= dev->hw_enc_features;
2690 
2691 	if (skb_vlan_tagged(skb))
2692 		features = netdev_intersect_features(features,
2693 						     dev->vlan_features |
2694 						     NETIF_F_HW_VLAN_CTAG_TX |
2695 						     NETIF_F_HW_VLAN_STAG_TX);
2696 
2697 	if (dev->netdev_ops->ndo_features_check)
2698 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2699 								features);
2700 	else
2701 		features &= dflt_features_check(skb, dev, features);
2702 
2703 	return harmonize_features(skb, features);
2704 }
2705 EXPORT_SYMBOL(netif_skb_features);
2706 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)2707 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2708 		    struct netdev_queue *txq, bool more)
2709 {
2710 	unsigned int len;
2711 	int rc;
2712 
2713 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2714 		dev_queue_xmit_nit(skb, dev);
2715 
2716 	len = skb->len;
2717 	trace_net_dev_start_xmit(skb, dev);
2718 	rc = netdev_start_xmit(skb, dev, txq, more);
2719 	trace_net_dev_xmit(skb, rc, dev, len);
2720 
2721 	return rc;
2722 }
2723 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)2724 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2725 				    struct netdev_queue *txq, int *ret)
2726 {
2727 	struct sk_buff *skb = first;
2728 	int rc = NETDEV_TX_OK;
2729 
2730 	while (skb) {
2731 		struct sk_buff *next = skb->next;
2732 
2733 		skb->next = NULL;
2734 		rc = xmit_one(skb, dev, txq, next != NULL);
2735 		if (unlikely(!dev_xmit_complete(rc))) {
2736 			skb->next = next;
2737 			goto out;
2738 		}
2739 
2740 		skb = next;
2741 		if (netif_xmit_stopped(txq) && skb) {
2742 			rc = NETDEV_TX_BUSY;
2743 			break;
2744 		}
2745 	}
2746 
2747 out:
2748 	*ret = rc;
2749 	return skb;
2750 }
2751 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)2752 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2753 					  netdev_features_t features)
2754 {
2755 	if (skb_vlan_tag_present(skb) &&
2756 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2757 		skb = __vlan_hwaccel_push_inside(skb);
2758 	return skb;
2759 }
2760 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2761 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2762 {
2763 	netdev_features_t features;
2764 
2765 	if (skb->next)
2766 		return skb;
2767 
2768 	features = netif_skb_features(skb);
2769 	skb = validate_xmit_vlan(skb, features);
2770 	if (unlikely(!skb))
2771 		goto out_null;
2772 
2773 	if (netif_needs_gso(skb, features)) {
2774 		struct sk_buff *segs;
2775 
2776 		segs = skb_gso_segment(skb, features);
2777 		if (IS_ERR(segs)) {
2778 			goto out_kfree_skb;
2779 		} else if (segs) {
2780 			consume_skb(skb);
2781 			skb = segs;
2782 		}
2783 	} else {
2784 		if (skb_needs_linearize(skb, features) &&
2785 		    __skb_linearize(skb))
2786 			goto out_kfree_skb;
2787 
2788 		/* If packet is not checksummed and device does not
2789 		 * support checksumming for this protocol, complete
2790 		 * checksumming here.
2791 		 */
2792 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2793 			if (skb->encapsulation)
2794 				skb_set_inner_transport_header(skb,
2795 							       skb_checksum_start_offset(skb));
2796 			else
2797 				skb_set_transport_header(skb,
2798 							 skb_checksum_start_offset(skb));
2799 			if (!(features & NETIF_F_ALL_CSUM) &&
2800 			    skb_checksum_help(skb))
2801 				goto out_kfree_skb;
2802 		}
2803 	}
2804 
2805 	return skb;
2806 
2807 out_kfree_skb:
2808 	kfree_skb(skb);
2809 out_null:
2810 	return NULL;
2811 }
2812 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev)2813 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2814 {
2815 	struct sk_buff *next, *head = NULL, *tail;
2816 
2817 	for (; skb != NULL; skb = next) {
2818 		next = skb->next;
2819 		skb->next = NULL;
2820 
2821 		/* in case skb wont be segmented, point to itself */
2822 		skb->prev = skb;
2823 
2824 		skb = validate_xmit_skb(skb, dev);
2825 		if (!skb)
2826 			continue;
2827 
2828 		if (!head)
2829 			head = skb;
2830 		else
2831 			tail->next = skb;
2832 		/* If skb was segmented, skb->prev points to
2833 		 * the last segment. If not, it still contains skb.
2834 		 */
2835 		tail = skb->prev;
2836 	}
2837 	return head;
2838 }
2839 
qdisc_pkt_len_init(struct sk_buff * skb)2840 static void qdisc_pkt_len_init(struct sk_buff *skb)
2841 {
2842 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2843 
2844 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2845 
2846 	/* To get more precise estimation of bytes sent on wire,
2847 	 * we add to pkt_len the headers size of all segments
2848 	 */
2849 	if (shinfo->gso_size)  {
2850 		unsigned int hdr_len;
2851 		u16 gso_segs = shinfo->gso_segs;
2852 
2853 		/* mac layer + network layer */
2854 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2855 
2856 		/* + transport layer */
2857 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2858 			hdr_len += tcp_hdrlen(skb);
2859 		else
2860 			hdr_len += sizeof(struct udphdr);
2861 
2862 		if (shinfo->gso_type & SKB_GSO_DODGY)
2863 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2864 						shinfo->gso_size);
2865 
2866 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2867 	}
2868 }
2869 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)2870 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2871 				 struct net_device *dev,
2872 				 struct netdev_queue *txq)
2873 {
2874 	spinlock_t *root_lock = qdisc_lock(q);
2875 	bool contended;
2876 	int rc;
2877 
2878 	qdisc_pkt_len_init(skb);
2879 	qdisc_calculate_pkt_len(skb, q);
2880 	/*
2881 	 * Heuristic to force contended enqueues to serialize on a
2882 	 * separate lock before trying to get qdisc main lock.
2883 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2884 	 * often and dequeue packets faster.
2885 	 */
2886 	contended = qdisc_is_running(q);
2887 	if (unlikely(contended))
2888 		spin_lock(&q->busylock);
2889 
2890 	spin_lock(root_lock);
2891 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2892 		kfree_skb(skb);
2893 		rc = NET_XMIT_DROP;
2894 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2895 		   qdisc_run_begin(q)) {
2896 		/*
2897 		 * This is a work-conserving queue; there are no old skbs
2898 		 * waiting to be sent out; and the qdisc is not running -
2899 		 * xmit the skb directly.
2900 		 */
2901 
2902 		qdisc_bstats_update(q, skb);
2903 
2904 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2905 			if (unlikely(contended)) {
2906 				spin_unlock(&q->busylock);
2907 				contended = false;
2908 			}
2909 			__qdisc_run(q);
2910 		} else
2911 			qdisc_run_end(q);
2912 
2913 		rc = NET_XMIT_SUCCESS;
2914 	} else {
2915 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2916 		if (qdisc_run_begin(q)) {
2917 			if (unlikely(contended)) {
2918 				spin_unlock(&q->busylock);
2919 				contended = false;
2920 			}
2921 			__qdisc_run(q);
2922 		}
2923 	}
2924 	spin_unlock(root_lock);
2925 	if (unlikely(contended))
2926 		spin_unlock(&q->busylock);
2927 	return rc;
2928 }
2929 
2930 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)2931 static void skb_update_prio(struct sk_buff *skb)
2932 {
2933 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2934 
2935 	if (!skb->priority && skb->sk && map) {
2936 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2937 
2938 		if (prioidx < map->priomap_len)
2939 			skb->priority = map->priomap[prioidx];
2940 	}
2941 }
2942 #else
2943 #define skb_update_prio(skb)
2944 #endif
2945 
2946 DEFINE_PER_CPU(int, xmit_recursion);
2947 EXPORT_SYMBOL(xmit_recursion);
2948 
2949 #define RECURSION_LIMIT 10
2950 
2951 /**
2952  *	dev_loopback_xmit - loop back @skb
2953  *	@net: network namespace this loopback is happening in
2954  *	@sk:  sk needed to be a netfilter okfn
2955  *	@skb: buffer to transmit
2956  */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)2957 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2958 {
2959 	skb_reset_mac_header(skb);
2960 	__skb_pull(skb, skb_network_offset(skb));
2961 	skb->pkt_type = PACKET_LOOPBACK;
2962 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2963 	WARN_ON(!skb_dst(skb));
2964 	skb_dst_force(skb);
2965 	netif_rx_ni(skb);
2966 	return 0;
2967 }
2968 EXPORT_SYMBOL(dev_loopback_xmit);
2969 
get_xps_queue(struct net_device * dev,struct sk_buff * skb)2970 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2971 {
2972 #ifdef CONFIG_XPS
2973 	struct xps_dev_maps *dev_maps;
2974 	struct xps_map *map;
2975 	int queue_index = -1;
2976 
2977 	rcu_read_lock();
2978 	dev_maps = rcu_dereference(dev->xps_maps);
2979 	if (dev_maps) {
2980 		map = rcu_dereference(
2981 		    dev_maps->cpu_map[skb->sender_cpu - 1]);
2982 		if (map) {
2983 			if (map->len == 1)
2984 				queue_index = map->queues[0];
2985 			else
2986 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2987 									   map->len)];
2988 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2989 				queue_index = -1;
2990 		}
2991 	}
2992 	rcu_read_unlock();
2993 
2994 	return queue_index;
2995 #else
2996 	return -1;
2997 #endif
2998 }
2999 
__netdev_pick_tx(struct net_device * dev,struct sk_buff * skb)3000 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3001 {
3002 	struct sock *sk = skb->sk;
3003 	int queue_index = sk_tx_queue_get(sk);
3004 
3005 	if (queue_index < 0 || skb->ooo_okay ||
3006 	    queue_index >= dev->real_num_tx_queues) {
3007 		int new_index = get_xps_queue(dev, skb);
3008 		if (new_index < 0)
3009 			new_index = skb_tx_hash(dev, skb);
3010 
3011 		if (queue_index != new_index && sk &&
3012 		    sk_fullsock(sk) &&
3013 		    rcu_access_pointer(sk->sk_dst_cache))
3014 			sk_tx_queue_set(sk, new_index);
3015 
3016 		queue_index = new_index;
3017 	}
3018 
3019 	return queue_index;
3020 }
3021 
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,void * accel_priv)3022 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3023 				    struct sk_buff *skb,
3024 				    void *accel_priv)
3025 {
3026 	int queue_index = 0;
3027 
3028 #ifdef CONFIG_XPS
3029 	if (skb->sender_cpu == 0)
3030 		skb->sender_cpu = raw_smp_processor_id() + 1;
3031 #endif
3032 
3033 	if (dev->real_num_tx_queues != 1) {
3034 		const struct net_device_ops *ops = dev->netdev_ops;
3035 		if (ops->ndo_select_queue)
3036 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3037 							    __netdev_pick_tx);
3038 		else
3039 			queue_index = __netdev_pick_tx(dev, skb);
3040 
3041 		if (!accel_priv)
3042 			queue_index = netdev_cap_txqueue(dev, queue_index);
3043 	}
3044 
3045 	skb_set_queue_mapping(skb, queue_index);
3046 	return netdev_get_tx_queue(dev, queue_index);
3047 }
3048 
3049 /**
3050  *	__dev_queue_xmit - transmit a buffer
3051  *	@skb: buffer to transmit
3052  *	@accel_priv: private data used for L2 forwarding offload
3053  *
3054  *	Queue a buffer for transmission to a network device. The caller must
3055  *	have set the device and priority and built the buffer before calling
3056  *	this function. The function can be called from an interrupt.
3057  *
3058  *	A negative errno code is returned on a failure. A success does not
3059  *	guarantee the frame will be transmitted as it may be dropped due
3060  *	to congestion or traffic shaping.
3061  *
3062  * -----------------------------------------------------------------------------------
3063  *      I notice this method can also return errors from the queue disciplines,
3064  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3065  *      be positive.
3066  *
3067  *      Regardless of the return value, the skb is consumed, so it is currently
3068  *      difficult to retry a send to this method.  (You can bump the ref count
3069  *      before sending to hold a reference for retry if you are careful.)
3070  *
3071  *      When calling this method, interrupts MUST be enabled.  This is because
3072  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3073  *          --BLG
3074  */
__dev_queue_xmit(struct sk_buff * skb,void * accel_priv)3075 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3076 {
3077 	struct net_device *dev = skb->dev;
3078 	struct netdev_queue *txq;
3079 	struct Qdisc *q;
3080 	int rc = -ENOMEM;
3081 
3082 	skb_reset_mac_header(skb);
3083 
3084 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3085 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3086 
3087 	/* Disable soft irqs for various locks below. Also
3088 	 * stops preemption for RCU.
3089 	 */
3090 	rcu_read_lock_bh();
3091 
3092 	skb_update_prio(skb);
3093 
3094 	/* If device/qdisc don't need skb->dst, release it right now while
3095 	 * its hot in this cpu cache.
3096 	 */
3097 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3098 		skb_dst_drop(skb);
3099 	else
3100 		skb_dst_force(skb);
3101 
3102 #ifdef CONFIG_NET_SWITCHDEV
3103 	/* Don't forward if offload device already forwarded */
3104 	if (skb->offload_fwd_mark &&
3105 	    skb->offload_fwd_mark == dev->offload_fwd_mark) {
3106 		consume_skb(skb);
3107 		rc = NET_XMIT_SUCCESS;
3108 		goto out;
3109 	}
3110 #endif
3111 
3112 	txq = netdev_pick_tx(dev, skb, accel_priv);
3113 	q = rcu_dereference_bh(txq->qdisc);
3114 
3115 #ifdef CONFIG_NET_CLS_ACT
3116 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3117 #endif
3118 	trace_net_dev_queue(skb);
3119 	if (q->enqueue) {
3120 		rc = __dev_xmit_skb(skb, q, dev, txq);
3121 		goto out;
3122 	}
3123 
3124 	/* The device has no queue. Common case for software devices:
3125 	   loopback, all the sorts of tunnels...
3126 
3127 	   Really, it is unlikely that netif_tx_lock protection is necessary
3128 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3129 	   counters.)
3130 	   However, it is possible, that they rely on protection
3131 	   made by us here.
3132 
3133 	   Check this and shot the lock. It is not prone from deadlocks.
3134 	   Either shot noqueue qdisc, it is even simpler 8)
3135 	 */
3136 	if (dev->flags & IFF_UP) {
3137 		int cpu = smp_processor_id(); /* ok because BHs are off */
3138 
3139 		if (txq->xmit_lock_owner != cpu) {
3140 
3141 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3142 				goto recursion_alert;
3143 
3144 			skb = validate_xmit_skb(skb, dev);
3145 			if (!skb)
3146 				goto drop;
3147 
3148 			HARD_TX_LOCK(dev, txq, cpu);
3149 
3150 			if (!netif_xmit_stopped(txq)) {
3151 				__this_cpu_inc(xmit_recursion);
3152 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3153 				__this_cpu_dec(xmit_recursion);
3154 				if (dev_xmit_complete(rc)) {
3155 					HARD_TX_UNLOCK(dev, txq);
3156 					goto out;
3157 				}
3158 			}
3159 			HARD_TX_UNLOCK(dev, txq);
3160 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3161 					     dev->name);
3162 		} else {
3163 			/* Recursion is detected! It is possible,
3164 			 * unfortunately
3165 			 */
3166 recursion_alert:
3167 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3168 					     dev->name);
3169 		}
3170 	}
3171 
3172 	rc = -ENETDOWN;
3173 drop:
3174 	rcu_read_unlock_bh();
3175 
3176 	atomic_long_inc(&dev->tx_dropped);
3177 	kfree_skb_list(skb);
3178 	return rc;
3179 out:
3180 	rcu_read_unlock_bh();
3181 	return rc;
3182 }
3183 
dev_queue_xmit(struct sk_buff * skb)3184 int dev_queue_xmit(struct sk_buff *skb)
3185 {
3186 	return __dev_queue_xmit(skb, NULL);
3187 }
3188 EXPORT_SYMBOL(dev_queue_xmit);
3189 
dev_queue_xmit_accel(struct sk_buff * skb,void * accel_priv)3190 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3191 {
3192 	return __dev_queue_xmit(skb, accel_priv);
3193 }
3194 EXPORT_SYMBOL(dev_queue_xmit_accel);
3195 
3196 
3197 /*=======================================================================
3198 			Receiver routines
3199   =======================================================================*/
3200 
3201 int netdev_max_backlog __read_mostly = 1000;
3202 EXPORT_SYMBOL(netdev_max_backlog);
3203 
3204 int netdev_tstamp_prequeue __read_mostly = 1;
3205 int netdev_budget __read_mostly = 300;
3206 int weight_p __read_mostly = 64;            /* old backlog weight */
3207 
3208 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)3209 static inline void ____napi_schedule(struct softnet_data *sd,
3210 				     struct napi_struct *napi)
3211 {
3212 	list_add_tail(&napi->poll_list, &sd->poll_list);
3213 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3214 }
3215 
3216 #ifdef CONFIG_RPS
3217 
3218 /* One global table that all flow-based protocols share. */
3219 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3220 EXPORT_SYMBOL(rps_sock_flow_table);
3221 u32 rps_cpu_mask __read_mostly;
3222 EXPORT_SYMBOL(rps_cpu_mask);
3223 
3224 struct static_key rps_needed __read_mostly;
3225 
3226 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)3227 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3228 	    struct rps_dev_flow *rflow, u16 next_cpu)
3229 {
3230 	if (next_cpu < nr_cpu_ids) {
3231 #ifdef CONFIG_RFS_ACCEL
3232 		struct netdev_rx_queue *rxqueue;
3233 		struct rps_dev_flow_table *flow_table;
3234 		struct rps_dev_flow *old_rflow;
3235 		u32 flow_id;
3236 		u16 rxq_index;
3237 		int rc;
3238 
3239 		/* Should we steer this flow to a different hardware queue? */
3240 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3241 		    !(dev->features & NETIF_F_NTUPLE))
3242 			goto out;
3243 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3244 		if (rxq_index == skb_get_rx_queue(skb))
3245 			goto out;
3246 
3247 		rxqueue = dev->_rx + rxq_index;
3248 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3249 		if (!flow_table)
3250 			goto out;
3251 		flow_id = skb_get_hash(skb) & flow_table->mask;
3252 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3253 							rxq_index, flow_id);
3254 		if (rc < 0)
3255 			goto out;
3256 		old_rflow = rflow;
3257 		rflow = &flow_table->flows[flow_id];
3258 		rflow->filter = rc;
3259 		if (old_rflow->filter == rflow->filter)
3260 			old_rflow->filter = RPS_NO_FILTER;
3261 	out:
3262 #endif
3263 		rflow->last_qtail =
3264 			per_cpu(softnet_data, next_cpu).input_queue_head;
3265 	}
3266 
3267 	rflow->cpu = next_cpu;
3268 	return rflow;
3269 }
3270 
3271 /*
3272  * get_rps_cpu is called from netif_receive_skb and returns the target
3273  * CPU from the RPS map of the receiving queue for a given skb.
3274  * rcu_read_lock must be held on entry.
3275  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)3276 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3277 		       struct rps_dev_flow **rflowp)
3278 {
3279 	const struct rps_sock_flow_table *sock_flow_table;
3280 	struct netdev_rx_queue *rxqueue = dev->_rx;
3281 	struct rps_dev_flow_table *flow_table;
3282 	struct rps_map *map;
3283 	int cpu = -1;
3284 	u32 tcpu;
3285 	u32 hash;
3286 
3287 	if (skb_rx_queue_recorded(skb)) {
3288 		u16 index = skb_get_rx_queue(skb);
3289 
3290 		if (unlikely(index >= dev->real_num_rx_queues)) {
3291 			WARN_ONCE(dev->real_num_rx_queues > 1,
3292 				  "%s received packet on queue %u, but number "
3293 				  "of RX queues is %u\n",
3294 				  dev->name, index, dev->real_num_rx_queues);
3295 			goto done;
3296 		}
3297 		rxqueue += index;
3298 	}
3299 
3300 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3301 
3302 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3303 	map = rcu_dereference(rxqueue->rps_map);
3304 	if (!flow_table && !map)
3305 		goto done;
3306 
3307 	skb_reset_network_header(skb);
3308 	hash = skb_get_hash(skb);
3309 	if (!hash)
3310 		goto done;
3311 
3312 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3313 	if (flow_table && sock_flow_table) {
3314 		struct rps_dev_flow *rflow;
3315 		u32 next_cpu;
3316 		u32 ident;
3317 
3318 		/* First check into global flow table if there is a match */
3319 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3320 		if ((ident ^ hash) & ~rps_cpu_mask)
3321 			goto try_rps;
3322 
3323 		next_cpu = ident & rps_cpu_mask;
3324 
3325 		/* OK, now we know there is a match,
3326 		 * we can look at the local (per receive queue) flow table
3327 		 */
3328 		rflow = &flow_table->flows[hash & flow_table->mask];
3329 		tcpu = rflow->cpu;
3330 
3331 		/*
3332 		 * If the desired CPU (where last recvmsg was done) is
3333 		 * different from current CPU (one in the rx-queue flow
3334 		 * table entry), switch if one of the following holds:
3335 		 *   - Current CPU is unset (>= nr_cpu_ids).
3336 		 *   - Current CPU is offline.
3337 		 *   - The current CPU's queue tail has advanced beyond the
3338 		 *     last packet that was enqueued using this table entry.
3339 		 *     This guarantees that all previous packets for the flow
3340 		 *     have been dequeued, thus preserving in order delivery.
3341 		 */
3342 		if (unlikely(tcpu != next_cpu) &&
3343 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3344 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3345 		      rflow->last_qtail)) >= 0)) {
3346 			tcpu = next_cpu;
3347 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3348 		}
3349 
3350 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3351 			*rflowp = rflow;
3352 			cpu = tcpu;
3353 			goto done;
3354 		}
3355 	}
3356 
3357 try_rps:
3358 
3359 	if (map) {
3360 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3361 		if (cpu_online(tcpu)) {
3362 			cpu = tcpu;
3363 			goto done;
3364 		}
3365 	}
3366 
3367 done:
3368 	return cpu;
3369 }
3370 
3371 #ifdef CONFIG_RFS_ACCEL
3372 
3373 /**
3374  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3375  * @dev: Device on which the filter was set
3376  * @rxq_index: RX queue index
3377  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3378  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3379  *
3380  * Drivers that implement ndo_rx_flow_steer() should periodically call
3381  * this function for each installed filter and remove the filters for
3382  * which it returns %true.
3383  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)3384 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3385 			 u32 flow_id, u16 filter_id)
3386 {
3387 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3388 	struct rps_dev_flow_table *flow_table;
3389 	struct rps_dev_flow *rflow;
3390 	bool expire = true;
3391 	unsigned int cpu;
3392 
3393 	rcu_read_lock();
3394 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3395 	if (flow_table && flow_id <= flow_table->mask) {
3396 		rflow = &flow_table->flows[flow_id];
3397 		cpu = ACCESS_ONCE(rflow->cpu);
3398 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3399 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3400 			   rflow->last_qtail) <
3401 		     (int)(10 * flow_table->mask)))
3402 			expire = false;
3403 	}
3404 	rcu_read_unlock();
3405 	return expire;
3406 }
3407 EXPORT_SYMBOL(rps_may_expire_flow);
3408 
3409 #endif /* CONFIG_RFS_ACCEL */
3410 
3411 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)3412 static void rps_trigger_softirq(void *data)
3413 {
3414 	struct softnet_data *sd = data;
3415 
3416 	____napi_schedule(sd, &sd->backlog);
3417 	sd->received_rps++;
3418 }
3419 
3420 #endif /* CONFIG_RPS */
3421 
3422 /*
3423  * Check if this softnet_data structure is another cpu one
3424  * If yes, queue it to our IPI list and return 1
3425  * If no, return 0
3426  */
rps_ipi_queued(struct softnet_data * sd)3427 static int rps_ipi_queued(struct softnet_data *sd)
3428 {
3429 #ifdef CONFIG_RPS
3430 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3431 
3432 	if (sd != mysd) {
3433 		sd->rps_ipi_next = mysd->rps_ipi_list;
3434 		mysd->rps_ipi_list = sd;
3435 
3436 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3437 		return 1;
3438 	}
3439 #endif /* CONFIG_RPS */
3440 	return 0;
3441 }
3442 
3443 #ifdef CONFIG_NET_FLOW_LIMIT
3444 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3445 #endif
3446 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)3447 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3448 {
3449 #ifdef CONFIG_NET_FLOW_LIMIT
3450 	struct sd_flow_limit *fl;
3451 	struct softnet_data *sd;
3452 	unsigned int old_flow, new_flow;
3453 
3454 	if (qlen < (netdev_max_backlog >> 1))
3455 		return false;
3456 
3457 	sd = this_cpu_ptr(&softnet_data);
3458 
3459 	rcu_read_lock();
3460 	fl = rcu_dereference(sd->flow_limit);
3461 	if (fl) {
3462 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3463 		old_flow = fl->history[fl->history_head];
3464 		fl->history[fl->history_head] = new_flow;
3465 
3466 		fl->history_head++;
3467 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3468 
3469 		if (likely(fl->buckets[old_flow]))
3470 			fl->buckets[old_flow]--;
3471 
3472 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3473 			fl->count++;
3474 			rcu_read_unlock();
3475 			return true;
3476 		}
3477 	}
3478 	rcu_read_unlock();
3479 #endif
3480 	return false;
3481 }
3482 
3483 /*
3484  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3485  * queue (may be a remote CPU queue).
3486  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)3487 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3488 			      unsigned int *qtail)
3489 {
3490 	struct softnet_data *sd;
3491 	unsigned long flags;
3492 	unsigned int qlen;
3493 
3494 	sd = &per_cpu(softnet_data, cpu);
3495 
3496 	local_irq_save(flags);
3497 
3498 	rps_lock(sd);
3499 	if (!netif_running(skb->dev))
3500 		goto drop;
3501 	qlen = skb_queue_len(&sd->input_pkt_queue);
3502 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3503 		if (qlen) {
3504 enqueue:
3505 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3506 			input_queue_tail_incr_save(sd, qtail);
3507 			rps_unlock(sd);
3508 			local_irq_restore(flags);
3509 			return NET_RX_SUCCESS;
3510 		}
3511 
3512 		/* Schedule NAPI for backlog device
3513 		 * We can use non atomic operation since we own the queue lock
3514 		 */
3515 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3516 			if (!rps_ipi_queued(sd))
3517 				____napi_schedule(sd, &sd->backlog);
3518 		}
3519 		goto enqueue;
3520 	}
3521 
3522 drop:
3523 	sd->dropped++;
3524 	rps_unlock(sd);
3525 
3526 	local_irq_restore(flags);
3527 
3528 	atomic_long_inc(&skb->dev->rx_dropped);
3529 	kfree_skb(skb);
3530 	return NET_RX_DROP;
3531 }
3532 
netif_rx_internal(struct sk_buff * skb)3533 static int netif_rx_internal(struct sk_buff *skb)
3534 {
3535 	int ret;
3536 
3537 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3538 
3539 	trace_netif_rx(skb);
3540 #ifdef CONFIG_RPS
3541 	if (static_key_false(&rps_needed)) {
3542 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3543 		int cpu;
3544 
3545 		preempt_disable();
3546 		rcu_read_lock();
3547 
3548 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3549 		if (cpu < 0)
3550 			cpu = smp_processor_id();
3551 
3552 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3553 
3554 		rcu_read_unlock();
3555 		preempt_enable();
3556 	} else
3557 #endif
3558 	{
3559 		unsigned int qtail;
3560 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3561 		put_cpu();
3562 	}
3563 	return ret;
3564 }
3565 
3566 /**
3567  *	netif_rx	-	post buffer to the network code
3568  *	@skb: buffer to post
3569  *
3570  *	This function receives a packet from a device driver and queues it for
3571  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3572  *	may be dropped during processing for congestion control or by the
3573  *	protocol layers.
3574  *
3575  *	return values:
3576  *	NET_RX_SUCCESS	(no congestion)
3577  *	NET_RX_DROP     (packet was dropped)
3578  *
3579  */
3580 
netif_rx(struct sk_buff * skb)3581 int netif_rx(struct sk_buff *skb)
3582 {
3583 	trace_netif_rx_entry(skb);
3584 
3585 	return netif_rx_internal(skb);
3586 }
3587 EXPORT_SYMBOL(netif_rx);
3588 
netif_rx_ni(struct sk_buff * skb)3589 int netif_rx_ni(struct sk_buff *skb)
3590 {
3591 	int err;
3592 
3593 	trace_netif_rx_ni_entry(skb);
3594 
3595 	preempt_disable();
3596 	err = netif_rx_internal(skb);
3597 	if (local_softirq_pending())
3598 		do_softirq();
3599 	preempt_enable();
3600 
3601 	return err;
3602 }
3603 EXPORT_SYMBOL(netif_rx_ni);
3604 
net_tx_action(struct softirq_action * h)3605 static void net_tx_action(struct softirq_action *h)
3606 {
3607 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3608 
3609 	if (sd->completion_queue) {
3610 		struct sk_buff *clist;
3611 
3612 		local_irq_disable();
3613 		clist = sd->completion_queue;
3614 		sd->completion_queue = NULL;
3615 		local_irq_enable();
3616 
3617 		while (clist) {
3618 			struct sk_buff *skb = clist;
3619 			clist = clist->next;
3620 
3621 			WARN_ON(atomic_read(&skb->users));
3622 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3623 				trace_consume_skb(skb);
3624 			else
3625 				trace_kfree_skb(skb, net_tx_action);
3626 			__kfree_skb(skb);
3627 		}
3628 	}
3629 
3630 	if (sd->output_queue) {
3631 		struct Qdisc *head;
3632 
3633 		local_irq_disable();
3634 		head = sd->output_queue;
3635 		sd->output_queue = NULL;
3636 		sd->output_queue_tailp = &sd->output_queue;
3637 		local_irq_enable();
3638 
3639 		while (head) {
3640 			struct Qdisc *q = head;
3641 			spinlock_t *root_lock;
3642 
3643 			head = head->next_sched;
3644 
3645 			root_lock = qdisc_lock(q);
3646 			if (spin_trylock(root_lock)) {
3647 				smp_mb__before_atomic();
3648 				clear_bit(__QDISC_STATE_SCHED,
3649 					  &q->state);
3650 				qdisc_run(q);
3651 				spin_unlock(root_lock);
3652 			} else {
3653 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3654 					      &q->state)) {
3655 					__netif_reschedule(q);
3656 				} else {
3657 					smp_mb__before_atomic();
3658 					clear_bit(__QDISC_STATE_SCHED,
3659 						  &q->state);
3660 				}
3661 			}
3662 		}
3663 	}
3664 }
3665 
3666 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3667     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3668 /* This hook is defined here for ATM LANE */
3669 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3670 			     unsigned char *addr) __read_mostly;
3671 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3672 #endif
3673 
handle_ing(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)3674 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3675 					 struct packet_type **pt_prev,
3676 					 int *ret, struct net_device *orig_dev)
3677 {
3678 #ifdef CONFIG_NET_CLS_ACT
3679 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3680 	struct tcf_result cl_res;
3681 
3682 	/* If there's at least one ingress present somewhere (so
3683 	 * we get here via enabled static key), remaining devices
3684 	 * that are not configured with an ingress qdisc will bail
3685 	 * out here.
3686 	 */
3687 	if (!cl)
3688 		return skb;
3689 	if (*pt_prev) {
3690 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3691 		*pt_prev = NULL;
3692 	}
3693 
3694 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3695 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3696 	qdisc_bstats_cpu_update(cl->q, skb);
3697 
3698 	switch (tc_classify(skb, cl, &cl_res, false)) {
3699 	case TC_ACT_OK:
3700 	case TC_ACT_RECLASSIFY:
3701 		skb->tc_index = TC_H_MIN(cl_res.classid);
3702 		break;
3703 	case TC_ACT_SHOT:
3704 		qdisc_qstats_cpu_drop(cl->q);
3705 	case TC_ACT_STOLEN:
3706 	case TC_ACT_QUEUED:
3707 		kfree_skb(skb);
3708 		return NULL;
3709 	case TC_ACT_REDIRECT:
3710 		/* skb_mac_header check was done by cls/act_bpf, so
3711 		 * we can safely push the L2 header back before
3712 		 * redirecting to another netdev
3713 		 */
3714 		__skb_push(skb, skb->mac_len);
3715 		skb_do_redirect(skb);
3716 		return NULL;
3717 	default:
3718 		break;
3719 	}
3720 #endif /* CONFIG_NET_CLS_ACT */
3721 	return skb;
3722 }
3723 
3724 /**
3725  *	netdev_rx_handler_register - register receive handler
3726  *	@dev: device to register a handler for
3727  *	@rx_handler: receive handler to register
3728  *	@rx_handler_data: data pointer that is used by rx handler
3729  *
3730  *	Register a receive handler for a device. This handler will then be
3731  *	called from __netif_receive_skb. A negative errno code is returned
3732  *	on a failure.
3733  *
3734  *	The caller must hold the rtnl_mutex.
3735  *
3736  *	For a general description of rx_handler, see enum rx_handler_result.
3737  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)3738 int netdev_rx_handler_register(struct net_device *dev,
3739 			       rx_handler_func_t *rx_handler,
3740 			       void *rx_handler_data)
3741 {
3742 	ASSERT_RTNL();
3743 
3744 	if (dev->rx_handler)
3745 		return -EBUSY;
3746 
3747 	/* Note: rx_handler_data must be set before rx_handler */
3748 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3749 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3750 
3751 	return 0;
3752 }
3753 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3754 
3755 /**
3756  *	netdev_rx_handler_unregister - unregister receive handler
3757  *	@dev: device to unregister a handler from
3758  *
3759  *	Unregister a receive handler from a device.
3760  *
3761  *	The caller must hold the rtnl_mutex.
3762  */
netdev_rx_handler_unregister(struct net_device * dev)3763 void netdev_rx_handler_unregister(struct net_device *dev)
3764 {
3765 
3766 	ASSERT_RTNL();
3767 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3768 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3769 	 * section has a guarantee to see a non NULL rx_handler_data
3770 	 * as well.
3771 	 */
3772 	synchronize_net();
3773 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3774 }
3775 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3776 
3777 /*
3778  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3779  * the special handling of PFMEMALLOC skbs.
3780  */
skb_pfmemalloc_protocol(struct sk_buff * skb)3781 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3782 {
3783 	switch (skb->protocol) {
3784 	case htons(ETH_P_ARP):
3785 	case htons(ETH_P_IP):
3786 	case htons(ETH_P_IPV6):
3787 	case htons(ETH_P_8021Q):
3788 	case htons(ETH_P_8021AD):
3789 		return true;
3790 	default:
3791 		return false;
3792 	}
3793 }
3794 
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)3795 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3796 			     int *ret, struct net_device *orig_dev)
3797 {
3798 #ifdef CONFIG_NETFILTER_INGRESS
3799 	if (nf_hook_ingress_active(skb)) {
3800 		if (*pt_prev) {
3801 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
3802 			*pt_prev = NULL;
3803 		}
3804 
3805 		return nf_hook_ingress(skb);
3806 	}
3807 #endif /* CONFIG_NETFILTER_INGRESS */
3808 	return 0;
3809 }
3810 
__netif_receive_skb_core(struct sk_buff * skb,bool pfmemalloc)3811 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3812 {
3813 	struct packet_type *ptype, *pt_prev;
3814 	rx_handler_func_t *rx_handler;
3815 	struct net_device *orig_dev;
3816 	bool deliver_exact = false;
3817 	int ret = NET_RX_DROP;
3818 	__be16 type;
3819 
3820 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3821 
3822 	trace_netif_receive_skb(skb);
3823 
3824 	orig_dev = skb->dev;
3825 
3826 	skb_reset_network_header(skb);
3827 	if (!skb_transport_header_was_set(skb))
3828 		skb_reset_transport_header(skb);
3829 	skb_reset_mac_len(skb);
3830 
3831 	pt_prev = NULL;
3832 
3833 another_round:
3834 	skb->skb_iif = skb->dev->ifindex;
3835 
3836 	__this_cpu_inc(softnet_data.processed);
3837 
3838 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3839 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3840 		skb = skb_vlan_untag(skb);
3841 		if (unlikely(!skb))
3842 			goto out;
3843 	}
3844 
3845 #ifdef CONFIG_NET_CLS_ACT
3846 	if (skb->tc_verd & TC_NCLS) {
3847 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3848 		goto ncls;
3849 	}
3850 #endif
3851 
3852 	if (pfmemalloc)
3853 		goto skip_taps;
3854 
3855 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3856 		if (pt_prev)
3857 			ret = deliver_skb(skb, pt_prev, orig_dev);
3858 		pt_prev = ptype;
3859 	}
3860 
3861 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3862 		if (pt_prev)
3863 			ret = deliver_skb(skb, pt_prev, orig_dev);
3864 		pt_prev = ptype;
3865 	}
3866 
3867 skip_taps:
3868 #ifdef CONFIG_NET_INGRESS
3869 	if (static_key_false(&ingress_needed)) {
3870 		skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3871 		if (!skb)
3872 			goto out;
3873 
3874 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3875 			goto out;
3876 	}
3877 #endif
3878 #ifdef CONFIG_NET_CLS_ACT
3879 	skb->tc_verd = 0;
3880 ncls:
3881 #endif
3882 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3883 		goto drop;
3884 
3885 	if (skb_vlan_tag_present(skb)) {
3886 		if (pt_prev) {
3887 			ret = deliver_skb(skb, pt_prev, orig_dev);
3888 			pt_prev = NULL;
3889 		}
3890 		if (vlan_do_receive(&skb))
3891 			goto another_round;
3892 		else if (unlikely(!skb))
3893 			goto out;
3894 	}
3895 
3896 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3897 	if (rx_handler) {
3898 		if (pt_prev) {
3899 			ret = deliver_skb(skb, pt_prev, orig_dev);
3900 			pt_prev = NULL;
3901 		}
3902 		switch (rx_handler(&skb)) {
3903 		case RX_HANDLER_CONSUMED:
3904 			ret = NET_RX_SUCCESS;
3905 			goto out;
3906 		case RX_HANDLER_ANOTHER:
3907 			goto another_round;
3908 		case RX_HANDLER_EXACT:
3909 			deliver_exact = true;
3910 		case RX_HANDLER_PASS:
3911 			break;
3912 		default:
3913 			BUG();
3914 		}
3915 	}
3916 
3917 	if (unlikely(skb_vlan_tag_present(skb))) {
3918 		if (skb_vlan_tag_get_id(skb))
3919 			skb->pkt_type = PACKET_OTHERHOST;
3920 		/* Note: we might in the future use prio bits
3921 		 * and set skb->priority like in vlan_do_receive()
3922 		 * For the time being, just ignore Priority Code Point
3923 		 */
3924 		skb->vlan_tci = 0;
3925 	}
3926 
3927 	type = skb->protocol;
3928 
3929 	/* deliver only exact match when indicated */
3930 	if (likely(!deliver_exact)) {
3931 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3932 				       &ptype_base[ntohs(type) &
3933 						   PTYPE_HASH_MASK]);
3934 	}
3935 
3936 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3937 			       &orig_dev->ptype_specific);
3938 
3939 	if (unlikely(skb->dev != orig_dev)) {
3940 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3941 				       &skb->dev->ptype_specific);
3942 	}
3943 
3944 	if (pt_prev) {
3945 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3946 			goto drop;
3947 		else
3948 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3949 	} else {
3950 drop:
3951 		atomic_long_inc(&skb->dev->rx_dropped);
3952 		kfree_skb(skb);
3953 		/* Jamal, now you will not able to escape explaining
3954 		 * me how you were going to use this. :-)
3955 		 */
3956 		ret = NET_RX_DROP;
3957 	}
3958 
3959 out:
3960 	return ret;
3961 }
3962 
__netif_receive_skb(struct sk_buff * skb)3963 static int __netif_receive_skb(struct sk_buff *skb)
3964 {
3965 	int ret;
3966 
3967 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3968 		unsigned long pflags = current->flags;
3969 
3970 		/*
3971 		 * PFMEMALLOC skbs are special, they should
3972 		 * - be delivered to SOCK_MEMALLOC sockets only
3973 		 * - stay away from userspace
3974 		 * - have bounded memory usage
3975 		 *
3976 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3977 		 * context down to all allocation sites.
3978 		 */
3979 		current->flags |= PF_MEMALLOC;
3980 		ret = __netif_receive_skb_core(skb, true);
3981 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3982 	} else
3983 		ret = __netif_receive_skb_core(skb, false);
3984 
3985 	return ret;
3986 }
3987 
netif_receive_skb_internal(struct sk_buff * skb)3988 static int netif_receive_skb_internal(struct sk_buff *skb)
3989 {
3990 	int ret;
3991 
3992 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3993 
3994 	if (skb_defer_rx_timestamp(skb))
3995 		return NET_RX_SUCCESS;
3996 
3997 	rcu_read_lock();
3998 
3999 #ifdef CONFIG_RPS
4000 	if (static_key_false(&rps_needed)) {
4001 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4002 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4003 
4004 		if (cpu >= 0) {
4005 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4006 			rcu_read_unlock();
4007 			return ret;
4008 		}
4009 	}
4010 #endif
4011 	ret = __netif_receive_skb(skb);
4012 	rcu_read_unlock();
4013 	return ret;
4014 }
4015 
4016 /**
4017  *	netif_receive_skb - process receive buffer from network
4018  *	@skb: buffer to process
4019  *
4020  *	netif_receive_skb() is the main receive data processing function.
4021  *	It always succeeds. The buffer may be dropped during processing
4022  *	for congestion control or by the protocol layers.
4023  *
4024  *	This function may only be called from softirq context and interrupts
4025  *	should be enabled.
4026  *
4027  *	Return values (usually ignored):
4028  *	NET_RX_SUCCESS: no congestion
4029  *	NET_RX_DROP: packet was dropped
4030  */
netif_receive_skb(struct sk_buff * skb)4031 int netif_receive_skb(struct sk_buff *skb)
4032 {
4033 	trace_netif_receive_skb_entry(skb);
4034 
4035 	return netif_receive_skb_internal(skb);
4036 }
4037 EXPORT_SYMBOL(netif_receive_skb);
4038 
4039 /* Network device is going away, flush any packets still pending
4040  * Called with irqs disabled.
4041  */
flush_backlog(void * arg)4042 static void flush_backlog(void *arg)
4043 {
4044 	struct net_device *dev = arg;
4045 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4046 	struct sk_buff *skb, *tmp;
4047 
4048 	rps_lock(sd);
4049 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4050 		if (skb->dev == dev) {
4051 			__skb_unlink(skb, &sd->input_pkt_queue);
4052 			kfree_skb(skb);
4053 			input_queue_head_incr(sd);
4054 		}
4055 	}
4056 	rps_unlock(sd);
4057 
4058 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4059 		if (skb->dev == dev) {
4060 			__skb_unlink(skb, &sd->process_queue);
4061 			kfree_skb(skb);
4062 			input_queue_head_incr(sd);
4063 		}
4064 	}
4065 }
4066 
napi_gro_complete(struct sk_buff * skb)4067 static int napi_gro_complete(struct sk_buff *skb)
4068 {
4069 	struct packet_offload *ptype;
4070 	__be16 type = skb->protocol;
4071 	struct list_head *head = &offload_base;
4072 	int err = -ENOENT;
4073 
4074 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4075 
4076 	if (NAPI_GRO_CB(skb)->count == 1) {
4077 		skb_shinfo(skb)->gso_size = 0;
4078 		goto out;
4079 	}
4080 
4081 	rcu_read_lock();
4082 	list_for_each_entry_rcu(ptype, head, list) {
4083 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4084 			continue;
4085 
4086 		err = ptype->callbacks.gro_complete(skb, 0);
4087 		break;
4088 	}
4089 	rcu_read_unlock();
4090 
4091 	if (err) {
4092 		WARN_ON(&ptype->list == head);
4093 		kfree_skb(skb);
4094 		return NET_RX_SUCCESS;
4095 	}
4096 
4097 out:
4098 	return netif_receive_skb_internal(skb);
4099 }
4100 
4101 /* napi->gro_list contains packets ordered by age.
4102  * youngest packets at the head of it.
4103  * Complete skbs in reverse order to reduce latencies.
4104  */
napi_gro_flush(struct napi_struct * napi,bool flush_old)4105 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4106 {
4107 	struct sk_buff *skb, *prev = NULL;
4108 
4109 	/* scan list and build reverse chain */
4110 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4111 		skb->prev = prev;
4112 		prev = skb;
4113 	}
4114 
4115 	for (skb = prev; skb; skb = prev) {
4116 		skb->next = NULL;
4117 
4118 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4119 			return;
4120 
4121 		prev = skb->prev;
4122 		napi_gro_complete(skb);
4123 		napi->gro_count--;
4124 	}
4125 
4126 	napi->gro_list = NULL;
4127 }
4128 EXPORT_SYMBOL(napi_gro_flush);
4129 
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)4130 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4131 {
4132 	struct sk_buff *p;
4133 	unsigned int maclen = skb->dev->hard_header_len;
4134 	u32 hash = skb_get_hash_raw(skb);
4135 
4136 	for (p = napi->gro_list; p; p = p->next) {
4137 		unsigned long diffs;
4138 
4139 		NAPI_GRO_CB(p)->flush = 0;
4140 
4141 		if (hash != skb_get_hash_raw(p)) {
4142 			NAPI_GRO_CB(p)->same_flow = 0;
4143 			continue;
4144 		}
4145 
4146 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4147 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4148 		diffs |= skb_metadata_dst_cmp(p, skb);
4149 		if (maclen == ETH_HLEN)
4150 			diffs |= compare_ether_header(skb_mac_header(p),
4151 						      skb_mac_header(skb));
4152 		else if (!diffs)
4153 			diffs = memcmp(skb_mac_header(p),
4154 				       skb_mac_header(skb),
4155 				       maclen);
4156 		NAPI_GRO_CB(p)->same_flow = !diffs;
4157 	}
4158 }
4159 
skb_gro_reset_offset(struct sk_buff * skb)4160 static void skb_gro_reset_offset(struct sk_buff *skb)
4161 {
4162 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4163 	const skb_frag_t *frag0 = &pinfo->frags[0];
4164 
4165 	NAPI_GRO_CB(skb)->data_offset = 0;
4166 	NAPI_GRO_CB(skb)->frag0 = NULL;
4167 	NAPI_GRO_CB(skb)->frag0_len = 0;
4168 
4169 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4170 	    pinfo->nr_frags &&
4171 	    !PageHighMem(skb_frag_page(frag0))) {
4172 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4173 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4174 	}
4175 }
4176 
gro_pull_from_frag0(struct sk_buff * skb,int grow)4177 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4178 {
4179 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4180 
4181 	BUG_ON(skb->end - skb->tail < grow);
4182 
4183 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4184 
4185 	skb->data_len -= grow;
4186 	skb->tail += grow;
4187 
4188 	pinfo->frags[0].page_offset += grow;
4189 	skb_frag_size_sub(&pinfo->frags[0], grow);
4190 
4191 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4192 		skb_frag_unref(skb, 0);
4193 		memmove(pinfo->frags, pinfo->frags + 1,
4194 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4195 	}
4196 }
4197 
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)4198 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4199 {
4200 	struct sk_buff **pp = NULL;
4201 	struct packet_offload *ptype;
4202 	__be16 type = skb->protocol;
4203 	struct list_head *head = &offload_base;
4204 	int same_flow;
4205 	enum gro_result ret;
4206 	int grow;
4207 
4208 	if (!(skb->dev->features & NETIF_F_GRO))
4209 		goto normal;
4210 
4211 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4212 		goto normal;
4213 
4214 	gro_list_prepare(napi, skb);
4215 
4216 	rcu_read_lock();
4217 	list_for_each_entry_rcu(ptype, head, list) {
4218 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4219 			continue;
4220 
4221 		skb_set_network_header(skb, skb_gro_offset(skb));
4222 		skb_reset_mac_len(skb);
4223 		NAPI_GRO_CB(skb)->same_flow = 0;
4224 		NAPI_GRO_CB(skb)->flush = 0;
4225 		NAPI_GRO_CB(skb)->free = 0;
4226 		NAPI_GRO_CB(skb)->udp_mark = 0;
4227 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4228 
4229 		/* Setup for GRO checksum validation */
4230 		switch (skb->ip_summed) {
4231 		case CHECKSUM_COMPLETE:
4232 			NAPI_GRO_CB(skb)->csum = skb->csum;
4233 			NAPI_GRO_CB(skb)->csum_valid = 1;
4234 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4235 			break;
4236 		case CHECKSUM_UNNECESSARY:
4237 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4238 			NAPI_GRO_CB(skb)->csum_valid = 0;
4239 			break;
4240 		default:
4241 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4242 			NAPI_GRO_CB(skb)->csum_valid = 0;
4243 		}
4244 
4245 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4246 		break;
4247 	}
4248 	rcu_read_unlock();
4249 
4250 	if (&ptype->list == head)
4251 		goto normal;
4252 
4253 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4254 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4255 
4256 	if (pp) {
4257 		struct sk_buff *nskb = *pp;
4258 
4259 		*pp = nskb->next;
4260 		nskb->next = NULL;
4261 		napi_gro_complete(nskb);
4262 		napi->gro_count--;
4263 	}
4264 
4265 	if (same_flow)
4266 		goto ok;
4267 
4268 	if (NAPI_GRO_CB(skb)->flush)
4269 		goto normal;
4270 
4271 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4272 		struct sk_buff *nskb = napi->gro_list;
4273 
4274 		/* locate the end of the list to select the 'oldest' flow */
4275 		while (nskb->next) {
4276 			pp = &nskb->next;
4277 			nskb = *pp;
4278 		}
4279 		*pp = NULL;
4280 		nskb->next = NULL;
4281 		napi_gro_complete(nskb);
4282 	} else {
4283 		napi->gro_count++;
4284 	}
4285 	NAPI_GRO_CB(skb)->count = 1;
4286 	NAPI_GRO_CB(skb)->age = jiffies;
4287 	NAPI_GRO_CB(skb)->last = skb;
4288 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4289 	skb->next = napi->gro_list;
4290 	napi->gro_list = skb;
4291 	ret = GRO_HELD;
4292 
4293 pull:
4294 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4295 	if (grow > 0)
4296 		gro_pull_from_frag0(skb, grow);
4297 ok:
4298 	return ret;
4299 
4300 normal:
4301 	ret = GRO_NORMAL;
4302 	goto pull;
4303 }
4304 
gro_find_receive_by_type(__be16 type)4305 struct packet_offload *gro_find_receive_by_type(__be16 type)
4306 {
4307 	struct list_head *offload_head = &offload_base;
4308 	struct packet_offload *ptype;
4309 
4310 	list_for_each_entry_rcu(ptype, offload_head, list) {
4311 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4312 			continue;
4313 		return ptype;
4314 	}
4315 	return NULL;
4316 }
4317 EXPORT_SYMBOL(gro_find_receive_by_type);
4318 
gro_find_complete_by_type(__be16 type)4319 struct packet_offload *gro_find_complete_by_type(__be16 type)
4320 {
4321 	struct list_head *offload_head = &offload_base;
4322 	struct packet_offload *ptype;
4323 
4324 	list_for_each_entry_rcu(ptype, offload_head, list) {
4325 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4326 			continue;
4327 		return ptype;
4328 	}
4329 	return NULL;
4330 }
4331 EXPORT_SYMBOL(gro_find_complete_by_type);
4332 
napi_skb_finish(gro_result_t ret,struct sk_buff * skb)4333 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4334 {
4335 	switch (ret) {
4336 	case GRO_NORMAL:
4337 		if (netif_receive_skb_internal(skb))
4338 			ret = GRO_DROP;
4339 		break;
4340 
4341 	case GRO_DROP:
4342 		kfree_skb(skb);
4343 		break;
4344 
4345 	case GRO_MERGED_FREE:
4346 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4347 			skb_dst_drop(skb);
4348 			kmem_cache_free(skbuff_head_cache, skb);
4349 		} else {
4350 			__kfree_skb(skb);
4351 		}
4352 		break;
4353 
4354 	case GRO_HELD:
4355 	case GRO_MERGED:
4356 		break;
4357 	}
4358 
4359 	return ret;
4360 }
4361 
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)4362 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4363 {
4364 	trace_napi_gro_receive_entry(skb);
4365 
4366 	skb_gro_reset_offset(skb);
4367 
4368 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4369 }
4370 EXPORT_SYMBOL(napi_gro_receive);
4371 
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)4372 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4373 {
4374 	if (unlikely(skb->pfmemalloc)) {
4375 		consume_skb(skb);
4376 		return;
4377 	}
4378 	__skb_pull(skb, skb_headlen(skb));
4379 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4380 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4381 	skb->vlan_tci = 0;
4382 	skb->dev = napi->dev;
4383 	skb->skb_iif = 0;
4384 	skb->encapsulation = 0;
4385 	skb_shinfo(skb)->gso_type = 0;
4386 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4387 
4388 	napi->skb = skb;
4389 }
4390 
napi_get_frags(struct napi_struct * napi)4391 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4392 {
4393 	struct sk_buff *skb = napi->skb;
4394 
4395 	if (!skb) {
4396 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4397 		napi->skb = skb;
4398 	}
4399 	return skb;
4400 }
4401 EXPORT_SYMBOL(napi_get_frags);
4402 
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)4403 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4404 				      struct sk_buff *skb,
4405 				      gro_result_t ret)
4406 {
4407 	switch (ret) {
4408 	case GRO_NORMAL:
4409 	case GRO_HELD:
4410 		__skb_push(skb, ETH_HLEN);
4411 		skb->protocol = eth_type_trans(skb, skb->dev);
4412 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4413 			ret = GRO_DROP;
4414 		break;
4415 
4416 	case GRO_DROP:
4417 	case GRO_MERGED_FREE:
4418 		napi_reuse_skb(napi, skb);
4419 		break;
4420 
4421 	case GRO_MERGED:
4422 		break;
4423 	}
4424 
4425 	return ret;
4426 }
4427 
4428 /* Upper GRO stack assumes network header starts at gro_offset=0
4429  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4430  * We copy ethernet header into skb->data to have a common layout.
4431  */
napi_frags_skb(struct napi_struct * napi)4432 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4433 {
4434 	struct sk_buff *skb = napi->skb;
4435 	const struct ethhdr *eth;
4436 	unsigned int hlen = sizeof(*eth);
4437 
4438 	napi->skb = NULL;
4439 
4440 	skb_reset_mac_header(skb);
4441 	skb_gro_reset_offset(skb);
4442 
4443 	eth = skb_gro_header_fast(skb, 0);
4444 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4445 		eth = skb_gro_header_slow(skb, hlen, 0);
4446 		if (unlikely(!eth)) {
4447 			napi_reuse_skb(napi, skb);
4448 			return NULL;
4449 		}
4450 	} else {
4451 		gro_pull_from_frag0(skb, hlen);
4452 		NAPI_GRO_CB(skb)->frag0 += hlen;
4453 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4454 	}
4455 	__skb_pull(skb, hlen);
4456 
4457 	/*
4458 	 * This works because the only protocols we care about don't require
4459 	 * special handling.
4460 	 * We'll fix it up properly in napi_frags_finish()
4461 	 */
4462 	skb->protocol = eth->h_proto;
4463 
4464 	return skb;
4465 }
4466 
napi_gro_frags(struct napi_struct * napi)4467 gro_result_t napi_gro_frags(struct napi_struct *napi)
4468 {
4469 	struct sk_buff *skb = napi_frags_skb(napi);
4470 
4471 	if (!skb)
4472 		return GRO_DROP;
4473 
4474 	trace_napi_gro_frags_entry(skb);
4475 
4476 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4477 }
4478 EXPORT_SYMBOL(napi_gro_frags);
4479 
4480 /* Compute the checksum from gro_offset and return the folded value
4481  * after adding in any pseudo checksum.
4482  */
__skb_gro_checksum_complete(struct sk_buff * skb)4483 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4484 {
4485 	__wsum wsum;
4486 	__sum16 sum;
4487 
4488 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4489 
4490 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4491 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4492 	if (likely(!sum)) {
4493 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4494 		    !skb->csum_complete_sw)
4495 			netdev_rx_csum_fault(skb->dev);
4496 	}
4497 
4498 	NAPI_GRO_CB(skb)->csum = wsum;
4499 	NAPI_GRO_CB(skb)->csum_valid = 1;
4500 
4501 	return sum;
4502 }
4503 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4504 
4505 /*
4506  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4507  * Note: called with local irq disabled, but exits with local irq enabled.
4508  */
net_rps_action_and_irq_enable(struct softnet_data * sd)4509 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4510 {
4511 #ifdef CONFIG_RPS
4512 	struct softnet_data *remsd = sd->rps_ipi_list;
4513 
4514 	if (remsd) {
4515 		sd->rps_ipi_list = NULL;
4516 
4517 		local_irq_enable();
4518 
4519 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4520 		while (remsd) {
4521 			struct softnet_data *next = remsd->rps_ipi_next;
4522 
4523 			if (cpu_online(remsd->cpu))
4524 				smp_call_function_single_async(remsd->cpu,
4525 							   &remsd->csd);
4526 			remsd = next;
4527 		}
4528 	} else
4529 #endif
4530 		local_irq_enable();
4531 }
4532 
sd_has_rps_ipi_waiting(struct softnet_data * sd)4533 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4534 {
4535 #ifdef CONFIG_RPS
4536 	return sd->rps_ipi_list != NULL;
4537 #else
4538 	return false;
4539 #endif
4540 }
4541 
process_backlog(struct napi_struct * napi,int quota)4542 static int process_backlog(struct napi_struct *napi, int quota)
4543 {
4544 	int work = 0;
4545 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4546 
4547 	/* Check if we have pending ipi, its better to send them now,
4548 	 * not waiting net_rx_action() end.
4549 	 */
4550 	if (sd_has_rps_ipi_waiting(sd)) {
4551 		local_irq_disable();
4552 		net_rps_action_and_irq_enable(sd);
4553 	}
4554 
4555 	napi->weight = weight_p;
4556 	local_irq_disable();
4557 	while (1) {
4558 		struct sk_buff *skb;
4559 
4560 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4561 			rcu_read_lock();
4562 			local_irq_enable();
4563 			__netif_receive_skb(skb);
4564 			rcu_read_unlock();
4565 			local_irq_disable();
4566 			input_queue_head_incr(sd);
4567 			if (++work >= quota) {
4568 				local_irq_enable();
4569 				return work;
4570 			}
4571 		}
4572 
4573 		rps_lock(sd);
4574 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4575 			/*
4576 			 * Inline a custom version of __napi_complete().
4577 			 * only current cpu owns and manipulates this napi,
4578 			 * and NAPI_STATE_SCHED is the only possible flag set
4579 			 * on backlog.
4580 			 * We can use a plain write instead of clear_bit(),
4581 			 * and we dont need an smp_mb() memory barrier.
4582 			 */
4583 			napi->state = 0;
4584 			rps_unlock(sd);
4585 
4586 			break;
4587 		}
4588 
4589 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4590 					   &sd->process_queue);
4591 		rps_unlock(sd);
4592 	}
4593 	local_irq_enable();
4594 
4595 	return work;
4596 }
4597 
4598 /**
4599  * __napi_schedule - schedule for receive
4600  * @n: entry to schedule
4601  *
4602  * The entry's receive function will be scheduled to run.
4603  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4604  */
__napi_schedule(struct napi_struct * n)4605 void __napi_schedule(struct napi_struct *n)
4606 {
4607 	unsigned long flags;
4608 
4609 	local_irq_save(flags);
4610 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4611 	local_irq_restore(flags);
4612 }
4613 EXPORT_SYMBOL(__napi_schedule);
4614 
4615 /**
4616  * __napi_schedule_irqoff - schedule for receive
4617  * @n: entry to schedule
4618  *
4619  * Variant of __napi_schedule() assuming hard irqs are masked
4620  */
__napi_schedule_irqoff(struct napi_struct * n)4621 void __napi_schedule_irqoff(struct napi_struct *n)
4622 {
4623 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4624 }
4625 EXPORT_SYMBOL(__napi_schedule_irqoff);
4626 
__napi_complete(struct napi_struct * n)4627 void __napi_complete(struct napi_struct *n)
4628 {
4629 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4630 
4631 	list_del_init(&n->poll_list);
4632 	smp_mb__before_atomic();
4633 	clear_bit(NAPI_STATE_SCHED, &n->state);
4634 }
4635 EXPORT_SYMBOL(__napi_complete);
4636 
napi_complete_done(struct napi_struct * n,int work_done)4637 void napi_complete_done(struct napi_struct *n, int work_done)
4638 {
4639 	unsigned long flags;
4640 
4641 	/*
4642 	 * don't let napi dequeue from the cpu poll list
4643 	 * just in case its running on a different cpu
4644 	 */
4645 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4646 		return;
4647 
4648 	if (n->gro_list) {
4649 		unsigned long timeout = 0;
4650 
4651 		if (work_done)
4652 			timeout = n->dev->gro_flush_timeout;
4653 
4654 		if (timeout)
4655 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4656 				      HRTIMER_MODE_REL_PINNED);
4657 		else
4658 			napi_gro_flush(n, false);
4659 	}
4660 	if (likely(list_empty(&n->poll_list))) {
4661 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4662 	} else {
4663 		/* If n->poll_list is not empty, we need to mask irqs */
4664 		local_irq_save(flags);
4665 		__napi_complete(n);
4666 		local_irq_restore(flags);
4667 	}
4668 }
4669 EXPORT_SYMBOL(napi_complete_done);
4670 
4671 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)4672 struct napi_struct *napi_by_id(unsigned int napi_id)
4673 {
4674 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4675 	struct napi_struct *napi;
4676 
4677 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4678 		if (napi->napi_id == napi_id)
4679 			return napi;
4680 
4681 	return NULL;
4682 }
4683 EXPORT_SYMBOL_GPL(napi_by_id);
4684 
napi_hash_add(struct napi_struct * napi)4685 void napi_hash_add(struct napi_struct *napi)
4686 {
4687 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4688 
4689 		spin_lock(&napi_hash_lock);
4690 
4691 		/* 0 is not a valid id, we also skip an id that is taken
4692 		 * we expect both events to be extremely rare
4693 		 */
4694 		napi->napi_id = 0;
4695 		while (!napi->napi_id) {
4696 			napi->napi_id = ++napi_gen_id;
4697 			if (napi_by_id(napi->napi_id))
4698 				napi->napi_id = 0;
4699 		}
4700 
4701 		hlist_add_head_rcu(&napi->napi_hash_node,
4702 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4703 
4704 		spin_unlock(&napi_hash_lock);
4705 	}
4706 }
4707 EXPORT_SYMBOL_GPL(napi_hash_add);
4708 
4709 /* Warning : caller is responsible to make sure rcu grace period
4710  * is respected before freeing memory containing @napi
4711  */
napi_hash_del(struct napi_struct * napi)4712 void napi_hash_del(struct napi_struct *napi)
4713 {
4714 	spin_lock(&napi_hash_lock);
4715 
4716 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4717 		hlist_del_rcu(&napi->napi_hash_node);
4718 
4719 	spin_unlock(&napi_hash_lock);
4720 }
4721 EXPORT_SYMBOL_GPL(napi_hash_del);
4722 
napi_watchdog(struct hrtimer * timer)4723 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4724 {
4725 	struct napi_struct *napi;
4726 
4727 	napi = container_of(timer, struct napi_struct, timer);
4728 	if (napi->gro_list)
4729 		napi_schedule(napi);
4730 
4731 	return HRTIMER_NORESTART;
4732 }
4733 
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)4734 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4735 		    int (*poll)(struct napi_struct *, int), int weight)
4736 {
4737 	INIT_LIST_HEAD(&napi->poll_list);
4738 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4739 	napi->timer.function = napi_watchdog;
4740 	napi->gro_count = 0;
4741 	napi->gro_list = NULL;
4742 	napi->skb = NULL;
4743 	napi->poll = poll;
4744 	if (weight > NAPI_POLL_WEIGHT)
4745 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4746 			    weight, dev->name);
4747 	napi->weight = weight;
4748 	list_add(&napi->dev_list, &dev->napi_list);
4749 	napi->dev = dev;
4750 #ifdef CONFIG_NETPOLL
4751 	spin_lock_init(&napi->poll_lock);
4752 	napi->poll_owner = -1;
4753 #endif
4754 	set_bit(NAPI_STATE_SCHED, &napi->state);
4755 }
4756 EXPORT_SYMBOL(netif_napi_add);
4757 
napi_disable(struct napi_struct * n)4758 void napi_disable(struct napi_struct *n)
4759 {
4760 	might_sleep();
4761 	set_bit(NAPI_STATE_DISABLE, &n->state);
4762 
4763 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4764 		msleep(1);
4765 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4766 		msleep(1);
4767 
4768 	hrtimer_cancel(&n->timer);
4769 
4770 	clear_bit(NAPI_STATE_DISABLE, &n->state);
4771 }
4772 EXPORT_SYMBOL(napi_disable);
4773 
netif_napi_del(struct napi_struct * napi)4774 void netif_napi_del(struct napi_struct *napi)
4775 {
4776 	list_del_init(&napi->dev_list);
4777 	napi_free_frags(napi);
4778 
4779 	kfree_skb_list(napi->gro_list);
4780 	napi->gro_list = NULL;
4781 	napi->gro_count = 0;
4782 }
4783 EXPORT_SYMBOL(netif_napi_del);
4784 
napi_poll(struct napi_struct * n,struct list_head * repoll)4785 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4786 {
4787 	void *have;
4788 	int work, weight;
4789 
4790 	list_del_init(&n->poll_list);
4791 
4792 	have = netpoll_poll_lock(n);
4793 
4794 	weight = n->weight;
4795 
4796 	/* This NAPI_STATE_SCHED test is for avoiding a race
4797 	 * with netpoll's poll_napi().  Only the entity which
4798 	 * obtains the lock and sees NAPI_STATE_SCHED set will
4799 	 * actually make the ->poll() call.  Therefore we avoid
4800 	 * accidentally calling ->poll() when NAPI is not scheduled.
4801 	 */
4802 	work = 0;
4803 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4804 		work = n->poll(n, weight);
4805 		trace_napi_poll(n);
4806 	}
4807 
4808 	WARN_ON_ONCE(work > weight);
4809 
4810 	if (likely(work < weight))
4811 		goto out_unlock;
4812 
4813 	/* Drivers must not modify the NAPI state if they
4814 	 * consume the entire weight.  In such cases this code
4815 	 * still "owns" the NAPI instance and therefore can
4816 	 * move the instance around on the list at-will.
4817 	 */
4818 	if (unlikely(napi_disable_pending(n))) {
4819 		napi_complete(n);
4820 		goto out_unlock;
4821 	}
4822 
4823 	if (n->gro_list) {
4824 		/* flush too old packets
4825 		 * If HZ < 1000, flush all packets.
4826 		 */
4827 		napi_gro_flush(n, HZ >= 1000);
4828 	}
4829 
4830 	/* Some drivers may have called napi_schedule
4831 	 * prior to exhausting their budget.
4832 	 */
4833 	if (unlikely(!list_empty(&n->poll_list))) {
4834 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4835 			     n->dev ? n->dev->name : "backlog");
4836 		goto out_unlock;
4837 	}
4838 
4839 	list_add_tail(&n->poll_list, repoll);
4840 
4841 out_unlock:
4842 	netpoll_poll_unlock(have);
4843 
4844 	return work;
4845 }
4846 
net_rx_action(struct softirq_action * h)4847 static void net_rx_action(struct softirq_action *h)
4848 {
4849 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4850 	unsigned long time_limit = jiffies + 2;
4851 	int budget = netdev_budget;
4852 	LIST_HEAD(list);
4853 	LIST_HEAD(repoll);
4854 
4855 	local_irq_disable();
4856 	list_splice_init(&sd->poll_list, &list);
4857 	local_irq_enable();
4858 
4859 	for (;;) {
4860 		struct napi_struct *n;
4861 
4862 		if (list_empty(&list)) {
4863 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4864 				return;
4865 			break;
4866 		}
4867 
4868 		n = list_first_entry(&list, struct napi_struct, poll_list);
4869 		budget -= napi_poll(n, &repoll);
4870 
4871 		/* If softirq window is exhausted then punt.
4872 		 * Allow this to run for 2 jiffies since which will allow
4873 		 * an average latency of 1.5/HZ.
4874 		 */
4875 		if (unlikely(budget <= 0 ||
4876 			     time_after_eq(jiffies, time_limit))) {
4877 			sd->time_squeeze++;
4878 			break;
4879 		}
4880 	}
4881 
4882 	local_irq_disable();
4883 
4884 	list_splice_tail_init(&sd->poll_list, &list);
4885 	list_splice_tail(&repoll, &list);
4886 	list_splice(&list, &sd->poll_list);
4887 	if (!list_empty(&sd->poll_list))
4888 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4889 
4890 	net_rps_action_and_irq_enable(sd);
4891 }
4892 
4893 struct netdev_adjacent {
4894 	struct net_device *dev;
4895 
4896 	/* upper master flag, there can only be one master device per list */
4897 	bool master;
4898 
4899 	/* counter for the number of times this device was added to us */
4900 	u16 ref_nr;
4901 
4902 	/* private field for the users */
4903 	void *private;
4904 
4905 	struct list_head list;
4906 	struct rcu_head rcu;
4907 };
4908 
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)4909 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4910 						 struct list_head *adj_list)
4911 {
4912 	struct netdev_adjacent *adj;
4913 
4914 	list_for_each_entry(adj, adj_list, list) {
4915 		if (adj->dev == adj_dev)
4916 			return adj;
4917 	}
4918 	return NULL;
4919 }
4920 
4921 /**
4922  * netdev_has_upper_dev - Check if device is linked to an upper device
4923  * @dev: device
4924  * @upper_dev: upper device to check
4925  *
4926  * Find out if a device is linked to specified upper device and return true
4927  * in case it is. Note that this checks only immediate upper device,
4928  * not through a complete stack of devices. The caller must hold the RTNL lock.
4929  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)4930 bool netdev_has_upper_dev(struct net_device *dev,
4931 			  struct net_device *upper_dev)
4932 {
4933 	ASSERT_RTNL();
4934 
4935 	return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4936 }
4937 EXPORT_SYMBOL(netdev_has_upper_dev);
4938 
4939 /**
4940  * netdev_has_any_upper_dev - Check if device is linked to some device
4941  * @dev: device
4942  *
4943  * Find out if a device is linked to an upper device and return true in case
4944  * it is. The caller must hold the RTNL lock.
4945  */
netdev_has_any_upper_dev(struct net_device * dev)4946 static bool netdev_has_any_upper_dev(struct net_device *dev)
4947 {
4948 	ASSERT_RTNL();
4949 
4950 	return !list_empty(&dev->all_adj_list.upper);
4951 }
4952 
4953 /**
4954  * netdev_master_upper_dev_get - Get master upper device
4955  * @dev: device
4956  *
4957  * Find a master upper device and return pointer to it or NULL in case
4958  * it's not there. The caller must hold the RTNL lock.
4959  */
netdev_master_upper_dev_get(struct net_device * dev)4960 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4961 {
4962 	struct netdev_adjacent *upper;
4963 
4964 	ASSERT_RTNL();
4965 
4966 	if (list_empty(&dev->adj_list.upper))
4967 		return NULL;
4968 
4969 	upper = list_first_entry(&dev->adj_list.upper,
4970 				 struct netdev_adjacent, list);
4971 	if (likely(upper->master))
4972 		return upper->dev;
4973 	return NULL;
4974 }
4975 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4976 
netdev_adjacent_get_private(struct list_head * adj_list)4977 void *netdev_adjacent_get_private(struct list_head *adj_list)
4978 {
4979 	struct netdev_adjacent *adj;
4980 
4981 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4982 
4983 	return adj->private;
4984 }
4985 EXPORT_SYMBOL(netdev_adjacent_get_private);
4986 
4987 /**
4988  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4989  * @dev: device
4990  * @iter: list_head ** of the current position
4991  *
4992  * Gets the next device from the dev's upper list, starting from iter
4993  * position. The caller must hold RCU read lock.
4994  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)4995 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4996 						 struct list_head **iter)
4997 {
4998 	struct netdev_adjacent *upper;
4999 
5000 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5001 
5002 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5003 
5004 	if (&upper->list == &dev->adj_list.upper)
5005 		return NULL;
5006 
5007 	*iter = &upper->list;
5008 
5009 	return upper->dev;
5010 }
5011 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5012 
5013 /**
5014  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5015  * @dev: device
5016  * @iter: list_head ** of the current position
5017  *
5018  * Gets the next device from the dev's upper list, starting from iter
5019  * position. The caller must hold RCU read lock.
5020  */
netdev_all_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)5021 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5022 						     struct list_head **iter)
5023 {
5024 	struct netdev_adjacent *upper;
5025 
5026 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5027 
5028 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5029 
5030 	if (&upper->list == &dev->all_adj_list.upper)
5031 		return NULL;
5032 
5033 	*iter = &upper->list;
5034 
5035 	return upper->dev;
5036 }
5037 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5038 
5039 /**
5040  * netdev_lower_get_next_private - Get the next ->private from the
5041  *				   lower neighbour list
5042  * @dev: device
5043  * @iter: list_head ** of the current position
5044  *
5045  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5046  * list, starting from iter position. The caller must hold either hold the
5047  * RTNL lock or its own locking that guarantees that the neighbour lower
5048  * list will remain unchanged.
5049  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)5050 void *netdev_lower_get_next_private(struct net_device *dev,
5051 				    struct list_head **iter)
5052 {
5053 	struct netdev_adjacent *lower;
5054 
5055 	lower = list_entry(*iter, struct netdev_adjacent, list);
5056 
5057 	if (&lower->list == &dev->adj_list.lower)
5058 		return NULL;
5059 
5060 	*iter = lower->list.next;
5061 
5062 	return lower->private;
5063 }
5064 EXPORT_SYMBOL(netdev_lower_get_next_private);
5065 
5066 /**
5067  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5068  *				       lower neighbour list, RCU
5069  *				       variant
5070  * @dev: device
5071  * @iter: list_head ** of the current position
5072  *
5073  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5074  * list, starting from iter position. The caller must hold RCU read lock.
5075  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)5076 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5077 					struct list_head **iter)
5078 {
5079 	struct netdev_adjacent *lower;
5080 
5081 	WARN_ON_ONCE(!rcu_read_lock_held());
5082 
5083 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5084 
5085 	if (&lower->list == &dev->adj_list.lower)
5086 		return NULL;
5087 
5088 	*iter = &lower->list;
5089 
5090 	return lower->private;
5091 }
5092 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5093 
5094 /**
5095  * netdev_lower_get_next - Get the next device from the lower neighbour
5096  *                         list
5097  * @dev: device
5098  * @iter: list_head ** of the current position
5099  *
5100  * Gets the next netdev_adjacent from the dev's lower neighbour
5101  * list, starting from iter position. The caller must hold RTNL lock or
5102  * its own locking that guarantees that the neighbour lower
5103  * list will remain unchanged.
5104  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)5105 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5106 {
5107 	struct netdev_adjacent *lower;
5108 
5109 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5110 
5111 	if (&lower->list == &dev->adj_list.lower)
5112 		return NULL;
5113 
5114 	*iter = &lower->list;
5115 
5116 	return lower->dev;
5117 }
5118 EXPORT_SYMBOL(netdev_lower_get_next);
5119 
5120 /**
5121  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5122  *				       lower neighbour list, RCU
5123  *				       variant
5124  * @dev: device
5125  *
5126  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5127  * list. The caller must hold RCU read lock.
5128  */
netdev_lower_get_first_private_rcu(struct net_device * dev)5129 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5130 {
5131 	struct netdev_adjacent *lower;
5132 
5133 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5134 			struct netdev_adjacent, list);
5135 	if (lower)
5136 		return lower->private;
5137 	return NULL;
5138 }
5139 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5140 
5141 /**
5142  * netdev_master_upper_dev_get_rcu - Get master upper device
5143  * @dev: device
5144  *
5145  * Find a master upper device and return pointer to it or NULL in case
5146  * it's not there. The caller must hold the RCU read lock.
5147  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)5148 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5149 {
5150 	struct netdev_adjacent *upper;
5151 
5152 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5153 				       struct netdev_adjacent, list);
5154 	if (upper && likely(upper->master))
5155 		return upper->dev;
5156 	return NULL;
5157 }
5158 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5159 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)5160 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5161 			      struct net_device *adj_dev,
5162 			      struct list_head *dev_list)
5163 {
5164 	char linkname[IFNAMSIZ+7];
5165 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5166 		"upper_%s" : "lower_%s", adj_dev->name);
5167 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5168 				 linkname);
5169 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)5170 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5171 			       char *name,
5172 			       struct list_head *dev_list)
5173 {
5174 	char linkname[IFNAMSIZ+7];
5175 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5176 		"upper_%s" : "lower_%s", name);
5177 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5178 }
5179 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)5180 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5181 						 struct net_device *adj_dev,
5182 						 struct list_head *dev_list)
5183 {
5184 	return (dev_list == &dev->adj_list.upper ||
5185 		dev_list == &dev->adj_list.lower) &&
5186 		net_eq(dev_net(dev), dev_net(adj_dev));
5187 }
5188 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)5189 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5190 					struct net_device *adj_dev,
5191 					struct list_head *dev_list,
5192 					void *private, bool master)
5193 {
5194 	struct netdev_adjacent *adj;
5195 	int ret;
5196 
5197 	adj = __netdev_find_adj(adj_dev, dev_list);
5198 
5199 	if (adj) {
5200 		adj->ref_nr++;
5201 		return 0;
5202 	}
5203 
5204 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5205 	if (!adj)
5206 		return -ENOMEM;
5207 
5208 	adj->dev = adj_dev;
5209 	adj->master = master;
5210 	adj->ref_nr = 1;
5211 	adj->private = private;
5212 	dev_hold(adj_dev);
5213 
5214 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5215 		 adj_dev->name, dev->name, adj_dev->name);
5216 
5217 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5218 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5219 		if (ret)
5220 			goto free_adj;
5221 	}
5222 
5223 	/* Ensure that master link is always the first item in list. */
5224 	if (master) {
5225 		ret = sysfs_create_link(&(dev->dev.kobj),
5226 					&(adj_dev->dev.kobj), "master");
5227 		if (ret)
5228 			goto remove_symlinks;
5229 
5230 		list_add_rcu(&adj->list, dev_list);
5231 	} else {
5232 		list_add_tail_rcu(&adj->list, dev_list);
5233 	}
5234 
5235 	return 0;
5236 
5237 remove_symlinks:
5238 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5239 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5240 free_adj:
5241 	kfree(adj);
5242 	dev_put(adj_dev);
5243 
5244 	return ret;
5245 }
5246 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)5247 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5248 					 struct net_device *adj_dev,
5249 					 struct list_head *dev_list)
5250 {
5251 	struct netdev_adjacent *adj;
5252 
5253 	adj = __netdev_find_adj(adj_dev, dev_list);
5254 
5255 	if (!adj) {
5256 		pr_err("tried to remove device %s from %s\n",
5257 		       dev->name, adj_dev->name);
5258 		BUG();
5259 	}
5260 
5261 	if (adj->ref_nr > 1) {
5262 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5263 			 adj->ref_nr-1);
5264 		adj->ref_nr--;
5265 		return;
5266 	}
5267 
5268 	if (adj->master)
5269 		sysfs_remove_link(&(dev->dev.kobj), "master");
5270 
5271 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5272 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5273 
5274 	list_del_rcu(&adj->list);
5275 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5276 		 adj_dev->name, dev->name, adj_dev->name);
5277 	dev_put(adj_dev);
5278 	kfree_rcu(adj, rcu);
5279 }
5280 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)5281 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5282 					    struct net_device *upper_dev,
5283 					    struct list_head *up_list,
5284 					    struct list_head *down_list,
5285 					    void *private, bool master)
5286 {
5287 	int ret;
5288 
5289 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5290 					   master);
5291 	if (ret)
5292 		return ret;
5293 
5294 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5295 					   false);
5296 	if (ret) {
5297 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5298 		return ret;
5299 	}
5300 
5301 	return 0;
5302 }
5303 
__netdev_adjacent_dev_link(struct net_device * dev,struct net_device * upper_dev)5304 static int __netdev_adjacent_dev_link(struct net_device *dev,
5305 				      struct net_device *upper_dev)
5306 {
5307 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5308 						&dev->all_adj_list.upper,
5309 						&upper_dev->all_adj_list.lower,
5310 						NULL, false);
5311 }
5312 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list)5313 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5314 					       struct net_device *upper_dev,
5315 					       struct list_head *up_list,
5316 					       struct list_head *down_list)
5317 {
5318 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5319 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5320 }
5321 
__netdev_adjacent_dev_unlink(struct net_device * dev,struct net_device * upper_dev)5322 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5323 					 struct net_device *upper_dev)
5324 {
5325 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5326 					   &dev->all_adj_list.upper,
5327 					   &upper_dev->all_adj_list.lower);
5328 }
5329 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)5330 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5331 						struct net_device *upper_dev,
5332 						void *private, bool master)
5333 {
5334 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5335 
5336 	if (ret)
5337 		return ret;
5338 
5339 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5340 					       &dev->adj_list.upper,
5341 					       &upper_dev->adj_list.lower,
5342 					       private, master);
5343 	if (ret) {
5344 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5345 		return ret;
5346 	}
5347 
5348 	return 0;
5349 }
5350 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)5351 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5352 						   struct net_device *upper_dev)
5353 {
5354 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5355 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5356 					   &dev->adj_list.upper,
5357 					   &upper_dev->adj_list.lower);
5358 }
5359 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * private)5360 static int __netdev_upper_dev_link(struct net_device *dev,
5361 				   struct net_device *upper_dev, bool master,
5362 				   void *private)
5363 {
5364 	struct netdev_notifier_changeupper_info changeupper_info;
5365 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5366 	int ret = 0;
5367 
5368 	ASSERT_RTNL();
5369 
5370 	if (dev == upper_dev)
5371 		return -EBUSY;
5372 
5373 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5374 	if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5375 		return -EBUSY;
5376 
5377 	if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5378 		return -EEXIST;
5379 
5380 	if (master && netdev_master_upper_dev_get(dev))
5381 		return -EBUSY;
5382 
5383 	changeupper_info.upper_dev = upper_dev;
5384 	changeupper_info.master = master;
5385 	changeupper_info.linking = true;
5386 
5387 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5388 					    &changeupper_info.info);
5389 	ret = notifier_to_errno(ret);
5390 	if (ret)
5391 		return ret;
5392 
5393 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5394 						   master);
5395 	if (ret)
5396 		return ret;
5397 
5398 	/* Now that we linked these devs, make all the upper_dev's
5399 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5400 	 * versa, and don't forget the devices itself. All of these
5401 	 * links are non-neighbours.
5402 	 */
5403 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5404 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5405 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5406 				 i->dev->name, j->dev->name);
5407 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5408 			if (ret)
5409 				goto rollback_mesh;
5410 		}
5411 	}
5412 
5413 	/* add dev to every upper_dev's upper device */
5414 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5415 		pr_debug("linking %s's upper device %s with %s\n",
5416 			 upper_dev->name, i->dev->name, dev->name);
5417 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5418 		if (ret)
5419 			goto rollback_upper_mesh;
5420 	}
5421 
5422 	/* add upper_dev to every dev's lower device */
5423 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5424 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5425 			 i->dev->name, upper_dev->name);
5426 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5427 		if (ret)
5428 			goto rollback_lower_mesh;
5429 	}
5430 
5431 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5432 				      &changeupper_info.info);
5433 	return 0;
5434 
5435 rollback_lower_mesh:
5436 	to_i = i;
5437 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5438 		if (i == to_i)
5439 			break;
5440 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5441 	}
5442 
5443 	i = NULL;
5444 
5445 rollback_upper_mesh:
5446 	to_i = i;
5447 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5448 		if (i == to_i)
5449 			break;
5450 		__netdev_adjacent_dev_unlink(dev, i->dev);
5451 	}
5452 
5453 	i = j = NULL;
5454 
5455 rollback_mesh:
5456 	to_i = i;
5457 	to_j = j;
5458 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5459 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5460 			if (i == to_i && j == to_j)
5461 				break;
5462 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5463 		}
5464 		if (i == to_i)
5465 			break;
5466 	}
5467 
5468 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5469 
5470 	return ret;
5471 }
5472 
5473 /**
5474  * netdev_upper_dev_link - Add a link to the upper device
5475  * @dev: device
5476  * @upper_dev: new upper device
5477  *
5478  * Adds a link to device which is upper to this one. The caller must hold
5479  * the RTNL lock. On a failure a negative errno code is returned.
5480  * On success the reference counts are adjusted and the function
5481  * returns zero.
5482  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev)5483 int netdev_upper_dev_link(struct net_device *dev,
5484 			  struct net_device *upper_dev)
5485 {
5486 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5487 }
5488 EXPORT_SYMBOL(netdev_upper_dev_link);
5489 
5490 /**
5491  * netdev_master_upper_dev_link - Add a master link to the upper device
5492  * @dev: device
5493  * @upper_dev: new upper device
5494  *
5495  * Adds a link to device which is upper to this one. In this case, only
5496  * one master upper device can be linked, although other non-master devices
5497  * might be linked as well. The caller must hold the RTNL lock.
5498  * On a failure a negative errno code is returned. On success the reference
5499  * counts are adjusted and the function returns zero.
5500  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev)5501 int netdev_master_upper_dev_link(struct net_device *dev,
5502 				 struct net_device *upper_dev)
5503 {
5504 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5505 }
5506 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5507 
netdev_master_upper_dev_link_private(struct net_device * dev,struct net_device * upper_dev,void * private)5508 int netdev_master_upper_dev_link_private(struct net_device *dev,
5509 					 struct net_device *upper_dev,
5510 					 void *private)
5511 {
5512 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5513 }
5514 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5515 
5516 /**
5517  * netdev_upper_dev_unlink - Removes a link to upper device
5518  * @dev: device
5519  * @upper_dev: new upper device
5520  *
5521  * Removes a link to device which is upper to this one. The caller must hold
5522  * the RTNL lock.
5523  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)5524 void netdev_upper_dev_unlink(struct net_device *dev,
5525 			     struct net_device *upper_dev)
5526 {
5527 	struct netdev_notifier_changeupper_info changeupper_info;
5528 	struct netdev_adjacent *i, *j;
5529 	ASSERT_RTNL();
5530 
5531 	changeupper_info.upper_dev = upper_dev;
5532 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5533 	changeupper_info.linking = false;
5534 
5535 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5536 				      &changeupper_info.info);
5537 
5538 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5539 
5540 	/* Here is the tricky part. We must remove all dev's lower
5541 	 * devices from all upper_dev's upper devices and vice
5542 	 * versa, to maintain the graph relationship.
5543 	 */
5544 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5545 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5546 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5547 
5548 	/* remove also the devices itself from lower/upper device
5549 	 * list
5550 	 */
5551 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5552 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5553 
5554 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5555 		__netdev_adjacent_dev_unlink(dev, i->dev);
5556 
5557 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5558 				      &changeupper_info.info);
5559 }
5560 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5561 
5562 /**
5563  * netdev_bonding_info_change - Dispatch event about slave change
5564  * @dev: device
5565  * @bonding_info: info to dispatch
5566  *
5567  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5568  * The caller must hold the RTNL lock.
5569  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)5570 void netdev_bonding_info_change(struct net_device *dev,
5571 				struct netdev_bonding_info *bonding_info)
5572 {
5573 	struct netdev_notifier_bonding_info	info;
5574 
5575 	memcpy(&info.bonding_info, bonding_info,
5576 	       sizeof(struct netdev_bonding_info));
5577 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5578 				      &info.info);
5579 }
5580 EXPORT_SYMBOL(netdev_bonding_info_change);
5581 
netdev_adjacent_add_links(struct net_device * dev)5582 static void netdev_adjacent_add_links(struct net_device *dev)
5583 {
5584 	struct netdev_adjacent *iter;
5585 
5586 	struct net *net = dev_net(dev);
5587 
5588 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5589 		if (!net_eq(net,dev_net(iter->dev)))
5590 			continue;
5591 		netdev_adjacent_sysfs_add(iter->dev, dev,
5592 					  &iter->dev->adj_list.lower);
5593 		netdev_adjacent_sysfs_add(dev, iter->dev,
5594 					  &dev->adj_list.upper);
5595 	}
5596 
5597 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5598 		if (!net_eq(net,dev_net(iter->dev)))
5599 			continue;
5600 		netdev_adjacent_sysfs_add(iter->dev, dev,
5601 					  &iter->dev->adj_list.upper);
5602 		netdev_adjacent_sysfs_add(dev, iter->dev,
5603 					  &dev->adj_list.lower);
5604 	}
5605 }
5606 
netdev_adjacent_del_links(struct net_device * dev)5607 static void netdev_adjacent_del_links(struct net_device *dev)
5608 {
5609 	struct netdev_adjacent *iter;
5610 
5611 	struct net *net = dev_net(dev);
5612 
5613 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5614 		if (!net_eq(net,dev_net(iter->dev)))
5615 			continue;
5616 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5617 					  &iter->dev->adj_list.lower);
5618 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5619 					  &dev->adj_list.upper);
5620 	}
5621 
5622 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5623 		if (!net_eq(net,dev_net(iter->dev)))
5624 			continue;
5625 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5626 					  &iter->dev->adj_list.upper);
5627 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5628 					  &dev->adj_list.lower);
5629 	}
5630 }
5631 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)5632 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5633 {
5634 	struct netdev_adjacent *iter;
5635 
5636 	struct net *net = dev_net(dev);
5637 
5638 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5639 		if (!net_eq(net,dev_net(iter->dev)))
5640 			continue;
5641 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5642 					  &iter->dev->adj_list.lower);
5643 		netdev_adjacent_sysfs_add(iter->dev, dev,
5644 					  &iter->dev->adj_list.lower);
5645 	}
5646 
5647 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5648 		if (!net_eq(net,dev_net(iter->dev)))
5649 			continue;
5650 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5651 					  &iter->dev->adj_list.upper);
5652 		netdev_adjacent_sysfs_add(iter->dev, dev,
5653 					  &iter->dev->adj_list.upper);
5654 	}
5655 }
5656 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)5657 void *netdev_lower_dev_get_private(struct net_device *dev,
5658 				   struct net_device *lower_dev)
5659 {
5660 	struct netdev_adjacent *lower;
5661 
5662 	if (!lower_dev)
5663 		return NULL;
5664 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5665 	if (!lower)
5666 		return NULL;
5667 
5668 	return lower->private;
5669 }
5670 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5671 
5672 
dev_get_nest_level(struct net_device * dev,bool (* type_check)(struct net_device * dev))5673 int dev_get_nest_level(struct net_device *dev,
5674 		       bool (*type_check)(struct net_device *dev))
5675 {
5676 	struct net_device *lower = NULL;
5677 	struct list_head *iter;
5678 	int max_nest = -1;
5679 	int nest;
5680 
5681 	ASSERT_RTNL();
5682 
5683 	netdev_for_each_lower_dev(dev, lower, iter) {
5684 		nest = dev_get_nest_level(lower, type_check);
5685 		if (max_nest < nest)
5686 			max_nest = nest;
5687 	}
5688 
5689 	if (type_check(dev))
5690 		max_nest++;
5691 
5692 	return max_nest;
5693 }
5694 EXPORT_SYMBOL(dev_get_nest_level);
5695 
dev_change_rx_flags(struct net_device * dev,int flags)5696 static void dev_change_rx_flags(struct net_device *dev, int flags)
5697 {
5698 	const struct net_device_ops *ops = dev->netdev_ops;
5699 
5700 	if (ops->ndo_change_rx_flags)
5701 		ops->ndo_change_rx_flags(dev, flags);
5702 }
5703 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)5704 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5705 {
5706 	unsigned int old_flags = dev->flags;
5707 	kuid_t uid;
5708 	kgid_t gid;
5709 
5710 	ASSERT_RTNL();
5711 
5712 	dev->flags |= IFF_PROMISC;
5713 	dev->promiscuity += inc;
5714 	if (dev->promiscuity == 0) {
5715 		/*
5716 		 * Avoid overflow.
5717 		 * If inc causes overflow, untouch promisc and return error.
5718 		 */
5719 		if (inc < 0)
5720 			dev->flags &= ~IFF_PROMISC;
5721 		else {
5722 			dev->promiscuity -= inc;
5723 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5724 				dev->name);
5725 			return -EOVERFLOW;
5726 		}
5727 	}
5728 	if (dev->flags != old_flags) {
5729 		pr_info("device %s %s promiscuous mode\n",
5730 			dev->name,
5731 			dev->flags & IFF_PROMISC ? "entered" : "left");
5732 		if (audit_enabled) {
5733 			current_uid_gid(&uid, &gid);
5734 			audit_log(current->audit_context, GFP_ATOMIC,
5735 				AUDIT_ANOM_PROMISCUOUS,
5736 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5737 				dev->name, (dev->flags & IFF_PROMISC),
5738 				(old_flags & IFF_PROMISC),
5739 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5740 				from_kuid(&init_user_ns, uid),
5741 				from_kgid(&init_user_ns, gid),
5742 				audit_get_sessionid(current));
5743 		}
5744 
5745 		dev_change_rx_flags(dev, IFF_PROMISC);
5746 	}
5747 	if (notify)
5748 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5749 	return 0;
5750 }
5751 
5752 /**
5753  *	dev_set_promiscuity	- update promiscuity count on a device
5754  *	@dev: device
5755  *	@inc: modifier
5756  *
5757  *	Add or remove promiscuity from a device. While the count in the device
5758  *	remains above zero the interface remains promiscuous. Once it hits zero
5759  *	the device reverts back to normal filtering operation. A negative inc
5760  *	value is used to drop promiscuity on the device.
5761  *	Return 0 if successful or a negative errno code on error.
5762  */
dev_set_promiscuity(struct net_device * dev,int inc)5763 int dev_set_promiscuity(struct net_device *dev, int inc)
5764 {
5765 	unsigned int old_flags = dev->flags;
5766 	int err;
5767 
5768 	err = __dev_set_promiscuity(dev, inc, true);
5769 	if (err < 0)
5770 		return err;
5771 	if (dev->flags != old_flags)
5772 		dev_set_rx_mode(dev);
5773 	return err;
5774 }
5775 EXPORT_SYMBOL(dev_set_promiscuity);
5776 
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)5777 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5778 {
5779 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5780 
5781 	ASSERT_RTNL();
5782 
5783 	dev->flags |= IFF_ALLMULTI;
5784 	dev->allmulti += inc;
5785 	if (dev->allmulti == 0) {
5786 		/*
5787 		 * Avoid overflow.
5788 		 * If inc causes overflow, untouch allmulti and return error.
5789 		 */
5790 		if (inc < 0)
5791 			dev->flags &= ~IFF_ALLMULTI;
5792 		else {
5793 			dev->allmulti -= inc;
5794 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5795 				dev->name);
5796 			return -EOVERFLOW;
5797 		}
5798 	}
5799 	if (dev->flags ^ old_flags) {
5800 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5801 		dev_set_rx_mode(dev);
5802 		if (notify)
5803 			__dev_notify_flags(dev, old_flags,
5804 					   dev->gflags ^ old_gflags);
5805 	}
5806 	return 0;
5807 }
5808 
5809 /**
5810  *	dev_set_allmulti	- update allmulti count on a device
5811  *	@dev: device
5812  *	@inc: modifier
5813  *
5814  *	Add or remove reception of all multicast frames to a device. While the
5815  *	count in the device remains above zero the interface remains listening
5816  *	to all interfaces. Once it hits zero the device reverts back to normal
5817  *	filtering operation. A negative @inc value is used to drop the counter
5818  *	when releasing a resource needing all multicasts.
5819  *	Return 0 if successful or a negative errno code on error.
5820  */
5821 
dev_set_allmulti(struct net_device * dev,int inc)5822 int dev_set_allmulti(struct net_device *dev, int inc)
5823 {
5824 	return __dev_set_allmulti(dev, inc, true);
5825 }
5826 EXPORT_SYMBOL(dev_set_allmulti);
5827 
5828 /*
5829  *	Upload unicast and multicast address lists to device and
5830  *	configure RX filtering. When the device doesn't support unicast
5831  *	filtering it is put in promiscuous mode while unicast addresses
5832  *	are present.
5833  */
__dev_set_rx_mode(struct net_device * dev)5834 void __dev_set_rx_mode(struct net_device *dev)
5835 {
5836 	const struct net_device_ops *ops = dev->netdev_ops;
5837 
5838 	/* dev_open will call this function so the list will stay sane. */
5839 	if (!(dev->flags&IFF_UP))
5840 		return;
5841 
5842 	if (!netif_device_present(dev))
5843 		return;
5844 
5845 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5846 		/* Unicast addresses changes may only happen under the rtnl,
5847 		 * therefore calling __dev_set_promiscuity here is safe.
5848 		 */
5849 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5850 			__dev_set_promiscuity(dev, 1, false);
5851 			dev->uc_promisc = true;
5852 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5853 			__dev_set_promiscuity(dev, -1, false);
5854 			dev->uc_promisc = false;
5855 		}
5856 	}
5857 
5858 	if (ops->ndo_set_rx_mode)
5859 		ops->ndo_set_rx_mode(dev);
5860 }
5861 
dev_set_rx_mode(struct net_device * dev)5862 void dev_set_rx_mode(struct net_device *dev)
5863 {
5864 	netif_addr_lock_bh(dev);
5865 	__dev_set_rx_mode(dev);
5866 	netif_addr_unlock_bh(dev);
5867 }
5868 
5869 /**
5870  *	dev_get_flags - get flags reported to userspace
5871  *	@dev: device
5872  *
5873  *	Get the combination of flag bits exported through APIs to userspace.
5874  */
dev_get_flags(const struct net_device * dev)5875 unsigned int dev_get_flags(const struct net_device *dev)
5876 {
5877 	unsigned int flags;
5878 
5879 	flags = (dev->flags & ~(IFF_PROMISC |
5880 				IFF_ALLMULTI |
5881 				IFF_RUNNING |
5882 				IFF_LOWER_UP |
5883 				IFF_DORMANT)) |
5884 		(dev->gflags & (IFF_PROMISC |
5885 				IFF_ALLMULTI));
5886 
5887 	if (netif_running(dev)) {
5888 		if (netif_oper_up(dev))
5889 			flags |= IFF_RUNNING;
5890 		if (netif_carrier_ok(dev))
5891 			flags |= IFF_LOWER_UP;
5892 		if (netif_dormant(dev))
5893 			flags |= IFF_DORMANT;
5894 	}
5895 
5896 	return flags;
5897 }
5898 EXPORT_SYMBOL(dev_get_flags);
5899 
__dev_change_flags(struct net_device * dev,unsigned int flags)5900 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5901 {
5902 	unsigned int old_flags = dev->flags;
5903 	int ret;
5904 
5905 	ASSERT_RTNL();
5906 
5907 	/*
5908 	 *	Set the flags on our device.
5909 	 */
5910 
5911 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5912 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5913 			       IFF_AUTOMEDIA)) |
5914 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5915 				    IFF_ALLMULTI));
5916 
5917 	/*
5918 	 *	Load in the correct multicast list now the flags have changed.
5919 	 */
5920 
5921 	if ((old_flags ^ flags) & IFF_MULTICAST)
5922 		dev_change_rx_flags(dev, IFF_MULTICAST);
5923 
5924 	dev_set_rx_mode(dev);
5925 
5926 	/*
5927 	 *	Have we downed the interface. We handle IFF_UP ourselves
5928 	 *	according to user attempts to set it, rather than blindly
5929 	 *	setting it.
5930 	 */
5931 
5932 	ret = 0;
5933 	if ((old_flags ^ flags) & IFF_UP)
5934 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5935 
5936 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5937 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5938 		unsigned int old_flags = dev->flags;
5939 
5940 		dev->gflags ^= IFF_PROMISC;
5941 
5942 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5943 			if (dev->flags != old_flags)
5944 				dev_set_rx_mode(dev);
5945 	}
5946 
5947 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5948 	   is important. Some (broken) drivers set IFF_PROMISC, when
5949 	   IFF_ALLMULTI is requested not asking us and not reporting.
5950 	 */
5951 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5952 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5953 
5954 		dev->gflags ^= IFF_ALLMULTI;
5955 		__dev_set_allmulti(dev, inc, false);
5956 	}
5957 
5958 	return ret;
5959 }
5960 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)5961 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5962 			unsigned int gchanges)
5963 {
5964 	unsigned int changes = dev->flags ^ old_flags;
5965 
5966 	if (gchanges)
5967 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5968 
5969 	if (changes & IFF_UP) {
5970 		if (dev->flags & IFF_UP)
5971 			call_netdevice_notifiers(NETDEV_UP, dev);
5972 		else
5973 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5974 	}
5975 
5976 	if (dev->flags & IFF_UP &&
5977 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5978 		struct netdev_notifier_change_info change_info;
5979 
5980 		change_info.flags_changed = changes;
5981 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5982 					      &change_info.info);
5983 	}
5984 }
5985 
5986 /**
5987  *	dev_change_flags - change device settings
5988  *	@dev: device
5989  *	@flags: device state flags
5990  *
5991  *	Change settings on device based state flags. The flags are
5992  *	in the userspace exported format.
5993  */
dev_change_flags(struct net_device * dev,unsigned int flags)5994 int dev_change_flags(struct net_device *dev, unsigned int flags)
5995 {
5996 	int ret;
5997 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5998 
5999 	ret = __dev_change_flags(dev, flags);
6000 	if (ret < 0)
6001 		return ret;
6002 
6003 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6004 	__dev_notify_flags(dev, old_flags, changes);
6005 	return ret;
6006 }
6007 EXPORT_SYMBOL(dev_change_flags);
6008 
__dev_set_mtu(struct net_device * dev,int new_mtu)6009 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6010 {
6011 	const struct net_device_ops *ops = dev->netdev_ops;
6012 
6013 	if (ops->ndo_change_mtu)
6014 		return ops->ndo_change_mtu(dev, new_mtu);
6015 
6016 	dev->mtu = new_mtu;
6017 	return 0;
6018 }
6019 
6020 /**
6021  *	dev_set_mtu - Change maximum transfer unit
6022  *	@dev: device
6023  *	@new_mtu: new transfer unit
6024  *
6025  *	Change the maximum transfer size of the network device.
6026  */
dev_set_mtu(struct net_device * dev,int new_mtu)6027 int dev_set_mtu(struct net_device *dev, int new_mtu)
6028 {
6029 	int err, orig_mtu;
6030 
6031 	if (new_mtu == dev->mtu)
6032 		return 0;
6033 
6034 	/*	MTU must be positive.	 */
6035 	if (new_mtu < 0)
6036 		return -EINVAL;
6037 
6038 	if (!netif_device_present(dev))
6039 		return -ENODEV;
6040 
6041 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6042 	err = notifier_to_errno(err);
6043 	if (err)
6044 		return err;
6045 
6046 	orig_mtu = dev->mtu;
6047 	err = __dev_set_mtu(dev, new_mtu);
6048 
6049 	if (!err) {
6050 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6051 		err = notifier_to_errno(err);
6052 		if (err) {
6053 			/* setting mtu back and notifying everyone again,
6054 			 * so that they have a chance to revert changes.
6055 			 */
6056 			__dev_set_mtu(dev, orig_mtu);
6057 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6058 		}
6059 	}
6060 	return err;
6061 }
6062 EXPORT_SYMBOL(dev_set_mtu);
6063 
6064 /**
6065  *	dev_set_group - Change group this device belongs to
6066  *	@dev: device
6067  *	@new_group: group this device should belong to
6068  */
dev_set_group(struct net_device * dev,int new_group)6069 void dev_set_group(struct net_device *dev, int new_group)
6070 {
6071 	dev->group = new_group;
6072 }
6073 EXPORT_SYMBOL(dev_set_group);
6074 
6075 /**
6076  *	dev_set_mac_address - Change Media Access Control Address
6077  *	@dev: device
6078  *	@sa: new address
6079  *
6080  *	Change the hardware (MAC) address of the device
6081  */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa)6082 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6083 {
6084 	const struct net_device_ops *ops = dev->netdev_ops;
6085 	int err;
6086 
6087 	if (!ops->ndo_set_mac_address)
6088 		return -EOPNOTSUPP;
6089 	if (sa->sa_family != dev->type)
6090 		return -EINVAL;
6091 	if (!netif_device_present(dev))
6092 		return -ENODEV;
6093 	err = ops->ndo_set_mac_address(dev, sa);
6094 	if (err)
6095 		return err;
6096 	dev->addr_assign_type = NET_ADDR_SET;
6097 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6098 	add_device_randomness(dev->dev_addr, dev->addr_len);
6099 	return 0;
6100 }
6101 EXPORT_SYMBOL(dev_set_mac_address);
6102 
6103 /**
6104  *	dev_change_carrier - Change device carrier
6105  *	@dev: device
6106  *	@new_carrier: new value
6107  *
6108  *	Change device carrier
6109  */
dev_change_carrier(struct net_device * dev,bool new_carrier)6110 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6111 {
6112 	const struct net_device_ops *ops = dev->netdev_ops;
6113 
6114 	if (!ops->ndo_change_carrier)
6115 		return -EOPNOTSUPP;
6116 	if (!netif_device_present(dev))
6117 		return -ENODEV;
6118 	return ops->ndo_change_carrier(dev, new_carrier);
6119 }
6120 EXPORT_SYMBOL(dev_change_carrier);
6121 
6122 /**
6123  *	dev_get_phys_port_id - Get device physical port ID
6124  *	@dev: device
6125  *	@ppid: port ID
6126  *
6127  *	Get device physical port ID
6128  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)6129 int dev_get_phys_port_id(struct net_device *dev,
6130 			 struct netdev_phys_item_id *ppid)
6131 {
6132 	const struct net_device_ops *ops = dev->netdev_ops;
6133 
6134 	if (!ops->ndo_get_phys_port_id)
6135 		return -EOPNOTSUPP;
6136 	return ops->ndo_get_phys_port_id(dev, ppid);
6137 }
6138 EXPORT_SYMBOL(dev_get_phys_port_id);
6139 
6140 /**
6141  *	dev_get_phys_port_name - Get device physical port name
6142  *	@dev: device
6143  *	@name: port name
6144  *
6145  *	Get device physical port name
6146  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)6147 int dev_get_phys_port_name(struct net_device *dev,
6148 			   char *name, size_t len)
6149 {
6150 	const struct net_device_ops *ops = dev->netdev_ops;
6151 
6152 	if (!ops->ndo_get_phys_port_name)
6153 		return -EOPNOTSUPP;
6154 	return ops->ndo_get_phys_port_name(dev, name, len);
6155 }
6156 EXPORT_SYMBOL(dev_get_phys_port_name);
6157 
6158 /**
6159  *	dev_change_proto_down - update protocol port state information
6160  *	@dev: device
6161  *	@proto_down: new value
6162  *
6163  *	This info can be used by switch drivers to set the phys state of the
6164  *	port.
6165  */
dev_change_proto_down(struct net_device * dev,bool proto_down)6166 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6167 {
6168 	const struct net_device_ops *ops = dev->netdev_ops;
6169 
6170 	if (!ops->ndo_change_proto_down)
6171 		return -EOPNOTSUPP;
6172 	if (!netif_device_present(dev))
6173 		return -ENODEV;
6174 	return ops->ndo_change_proto_down(dev, proto_down);
6175 }
6176 EXPORT_SYMBOL(dev_change_proto_down);
6177 
6178 /**
6179  *	dev_new_index	-	allocate an ifindex
6180  *	@net: the applicable net namespace
6181  *
6182  *	Returns a suitable unique value for a new device interface
6183  *	number.  The caller must hold the rtnl semaphore or the
6184  *	dev_base_lock to be sure it remains unique.
6185  */
dev_new_index(struct net * net)6186 static int dev_new_index(struct net *net)
6187 {
6188 	int ifindex = net->ifindex;
6189 	for (;;) {
6190 		if (++ifindex <= 0)
6191 			ifindex = 1;
6192 		if (!__dev_get_by_index(net, ifindex))
6193 			return net->ifindex = ifindex;
6194 	}
6195 }
6196 
6197 /* Delayed registration/unregisteration */
6198 static LIST_HEAD(net_todo_list);
6199 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6200 
net_set_todo(struct net_device * dev)6201 static void net_set_todo(struct net_device *dev)
6202 {
6203 	list_add_tail(&dev->todo_list, &net_todo_list);
6204 	dev_net(dev)->dev_unreg_count++;
6205 }
6206 
rollback_registered_many(struct list_head * head)6207 static void rollback_registered_many(struct list_head *head)
6208 {
6209 	struct net_device *dev, *tmp;
6210 	LIST_HEAD(close_head);
6211 
6212 	BUG_ON(dev_boot_phase);
6213 	ASSERT_RTNL();
6214 
6215 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6216 		/* Some devices call without registering
6217 		 * for initialization unwind. Remove those
6218 		 * devices and proceed with the remaining.
6219 		 */
6220 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6221 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6222 				 dev->name, dev);
6223 
6224 			WARN_ON(1);
6225 			list_del(&dev->unreg_list);
6226 			continue;
6227 		}
6228 		dev->dismantle = true;
6229 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6230 	}
6231 
6232 	/* If device is running, close it first. */
6233 	list_for_each_entry(dev, head, unreg_list)
6234 		list_add_tail(&dev->close_list, &close_head);
6235 	dev_close_many(&close_head, true);
6236 
6237 	list_for_each_entry(dev, head, unreg_list) {
6238 		/* And unlink it from device chain. */
6239 		unlist_netdevice(dev);
6240 
6241 		dev->reg_state = NETREG_UNREGISTERING;
6242 		on_each_cpu(flush_backlog, dev, 1);
6243 	}
6244 
6245 	synchronize_net();
6246 
6247 	list_for_each_entry(dev, head, unreg_list) {
6248 		struct sk_buff *skb = NULL;
6249 
6250 		/* Shutdown queueing discipline. */
6251 		dev_shutdown(dev);
6252 
6253 
6254 		/* Notify protocols, that we are about to destroy
6255 		   this device. They should clean all the things.
6256 		*/
6257 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6258 
6259 		if (!dev->rtnl_link_ops ||
6260 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6261 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6262 						     GFP_KERNEL);
6263 
6264 		/*
6265 		 *	Flush the unicast and multicast chains
6266 		 */
6267 		dev_uc_flush(dev);
6268 		dev_mc_flush(dev);
6269 
6270 		if (dev->netdev_ops->ndo_uninit)
6271 			dev->netdev_ops->ndo_uninit(dev);
6272 
6273 		if (skb)
6274 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6275 
6276 		/* Notifier chain MUST detach us all upper devices. */
6277 		WARN_ON(netdev_has_any_upper_dev(dev));
6278 
6279 		/* Remove entries from kobject tree */
6280 		netdev_unregister_kobject(dev);
6281 #ifdef CONFIG_XPS
6282 		/* Remove XPS queueing entries */
6283 		netif_reset_xps_queues_gt(dev, 0);
6284 #endif
6285 	}
6286 
6287 	synchronize_net();
6288 
6289 	list_for_each_entry(dev, head, unreg_list)
6290 		dev_put(dev);
6291 }
6292 
rollback_registered(struct net_device * dev)6293 static void rollback_registered(struct net_device *dev)
6294 {
6295 	LIST_HEAD(single);
6296 
6297 	list_add(&dev->unreg_list, &single);
6298 	rollback_registered_many(&single);
6299 	list_del(&single);
6300 }
6301 
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)6302 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6303 	struct net_device *upper, netdev_features_t features)
6304 {
6305 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6306 	netdev_features_t feature;
6307 	int feature_bit;
6308 
6309 	for_each_netdev_feature(&upper_disables, feature_bit) {
6310 		feature = __NETIF_F_BIT(feature_bit);
6311 		if (!(upper->wanted_features & feature)
6312 		    && (features & feature)) {
6313 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6314 				   &feature, upper->name);
6315 			features &= ~feature;
6316 		}
6317 	}
6318 
6319 	return features;
6320 }
6321 
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)6322 static void netdev_sync_lower_features(struct net_device *upper,
6323 	struct net_device *lower, netdev_features_t features)
6324 {
6325 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6326 	netdev_features_t feature;
6327 	int feature_bit;
6328 
6329 	for_each_netdev_feature(&upper_disables, feature_bit) {
6330 		feature = __NETIF_F_BIT(feature_bit);
6331 		if (!(features & feature) && (lower->features & feature)) {
6332 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6333 				   &feature, lower->name);
6334 			lower->wanted_features &= ~feature;
6335 			netdev_update_features(lower);
6336 
6337 			if (unlikely(lower->features & feature))
6338 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6339 					    &feature, lower->name);
6340 		}
6341 	}
6342 }
6343 
netdev_fix_features(struct net_device * dev,netdev_features_t features)6344 static netdev_features_t netdev_fix_features(struct net_device *dev,
6345 	netdev_features_t features)
6346 {
6347 	/* Fix illegal checksum combinations */
6348 	if ((features & NETIF_F_HW_CSUM) &&
6349 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6350 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6351 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6352 	}
6353 
6354 	/* TSO requires that SG is present as well. */
6355 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6356 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6357 		features &= ~NETIF_F_ALL_TSO;
6358 	}
6359 
6360 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6361 					!(features & NETIF_F_IP_CSUM)) {
6362 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6363 		features &= ~NETIF_F_TSO;
6364 		features &= ~NETIF_F_TSO_ECN;
6365 	}
6366 
6367 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6368 					 !(features & NETIF_F_IPV6_CSUM)) {
6369 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6370 		features &= ~NETIF_F_TSO6;
6371 	}
6372 
6373 	/* TSO ECN requires that TSO is present as well. */
6374 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6375 		features &= ~NETIF_F_TSO_ECN;
6376 
6377 	/* Software GSO depends on SG. */
6378 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6379 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6380 		features &= ~NETIF_F_GSO;
6381 	}
6382 
6383 	/* UFO needs SG and checksumming */
6384 	if (features & NETIF_F_UFO) {
6385 		/* maybe split UFO into V4 and V6? */
6386 		if (!((features & NETIF_F_GEN_CSUM) ||
6387 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6388 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6389 			netdev_dbg(dev,
6390 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6391 			features &= ~NETIF_F_UFO;
6392 		}
6393 
6394 		if (!(features & NETIF_F_SG)) {
6395 			netdev_dbg(dev,
6396 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6397 			features &= ~NETIF_F_UFO;
6398 		}
6399 	}
6400 
6401 #ifdef CONFIG_NET_RX_BUSY_POLL
6402 	if (dev->netdev_ops->ndo_busy_poll)
6403 		features |= NETIF_F_BUSY_POLL;
6404 	else
6405 #endif
6406 		features &= ~NETIF_F_BUSY_POLL;
6407 
6408 	return features;
6409 }
6410 
__netdev_update_features(struct net_device * dev)6411 int __netdev_update_features(struct net_device *dev)
6412 {
6413 	struct net_device *upper, *lower;
6414 	netdev_features_t features;
6415 	struct list_head *iter;
6416 	int err = -1;
6417 
6418 	ASSERT_RTNL();
6419 
6420 	features = netdev_get_wanted_features(dev);
6421 
6422 	if (dev->netdev_ops->ndo_fix_features)
6423 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6424 
6425 	/* driver might be less strict about feature dependencies */
6426 	features = netdev_fix_features(dev, features);
6427 
6428 	/* some features can't be enabled if they're off an an upper device */
6429 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
6430 		features = netdev_sync_upper_features(dev, upper, features);
6431 
6432 	if (dev->features == features)
6433 		goto sync_lower;
6434 
6435 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6436 		&dev->features, &features);
6437 
6438 	if (dev->netdev_ops->ndo_set_features)
6439 		err = dev->netdev_ops->ndo_set_features(dev, features);
6440 	else
6441 		err = 0;
6442 
6443 	if (unlikely(err < 0)) {
6444 		netdev_err(dev,
6445 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6446 			err, &features, &dev->features);
6447 		/* return non-0 since some features might have changed and
6448 		 * it's better to fire a spurious notification than miss it
6449 		 */
6450 		return -1;
6451 	}
6452 
6453 sync_lower:
6454 	/* some features must be disabled on lower devices when disabled
6455 	 * on an upper device (think: bonding master or bridge)
6456 	 */
6457 	netdev_for_each_lower_dev(dev, lower, iter)
6458 		netdev_sync_lower_features(dev, lower, features);
6459 
6460 	if (!err)
6461 		dev->features = features;
6462 
6463 	return err < 0 ? 0 : 1;
6464 }
6465 
6466 /**
6467  *	netdev_update_features - recalculate device features
6468  *	@dev: the device to check
6469  *
6470  *	Recalculate dev->features set and send notifications if it
6471  *	has changed. Should be called after driver or hardware dependent
6472  *	conditions might have changed that influence the features.
6473  */
netdev_update_features(struct net_device * dev)6474 void netdev_update_features(struct net_device *dev)
6475 {
6476 	if (__netdev_update_features(dev))
6477 		netdev_features_change(dev);
6478 }
6479 EXPORT_SYMBOL(netdev_update_features);
6480 
6481 /**
6482  *	netdev_change_features - recalculate device features
6483  *	@dev: the device to check
6484  *
6485  *	Recalculate dev->features set and send notifications even
6486  *	if they have not changed. Should be called instead of
6487  *	netdev_update_features() if also dev->vlan_features might
6488  *	have changed to allow the changes to be propagated to stacked
6489  *	VLAN devices.
6490  */
netdev_change_features(struct net_device * dev)6491 void netdev_change_features(struct net_device *dev)
6492 {
6493 	__netdev_update_features(dev);
6494 	netdev_features_change(dev);
6495 }
6496 EXPORT_SYMBOL(netdev_change_features);
6497 
6498 /**
6499  *	netif_stacked_transfer_operstate -	transfer operstate
6500  *	@rootdev: the root or lower level device to transfer state from
6501  *	@dev: the device to transfer operstate to
6502  *
6503  *	Transfer operational state from root to device. This is normally
6504  *	called when a stacking relationship exists between the root
6505  *	device and the device(a leaf device).
6506  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)6507 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6508 					struct net_device *dev)
6509 {
6510 	if (rootdev->operstate == IF_OPER_DORMANT)
6511 		netif_dormant_on(dev);
6512 	else
6513 		netif_dormant_off(dev);
6514 
6515 	if (netif_carrier_ok(rootdev)) {
6516 		if (!netif_carrier_ok(dev))
6517 			netif_carrier_on(dev);
6518 	} else {
6519 		if (netif_carrier_ok(dev))
6520 			netif_carrier_off(dev);
6521 	}
6522 }
6523 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6524 
6525 #ifdef CONFIG_SYSFS
netif_alloc_rx_queues(struct net_device * dev)6526 static int netif_alloc_rx_queues(struct net_device *dev)
6527 {
6528 	unsigned int i, count = dev->num_rx_queues;
6529 	struct netdev_rx_queue *rx;
6530 	size_t sz = count * sizeof(*rx);
6531 
6532 	BUG_ON(count < 1);
6533 
6534 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6535 	if (!rx) {
6536 		rx = vzalloc(sz);
6537 		if (!rx)
6538 			return -ENOMEM;
6539 	}
6540 	dev->_rx = rx;
6541 
6542 	for (i = 0; i < count; i++)
6543 		rx[i].dev = dev;
6544 	return 0;
6545 }
6546 #endif
6547 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)6548 static void netdev_init_one_queue(struct net_device *dev,
6549 				  struct netdev_queue *queue, void *_unused)
6550 {
6551 	/* Initialize queue lock */
6552 	spin_lock_init(&queue->_xmit_lock);
6553 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6554 	queue->xmit_lock_owner = -1;
6555 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6556 	queue->dev = dev;
6557 #ifdef CONFIG_BQL
6558 	dql_init(&queue->dql, HZ);
6559 #endif
6560 }
6561 
netif_free_tx_queues(struct net_device * dev)6562 static void netif_free_tx_queues(struct net_device *dev)
6563 {
6564 	kvfree(dev->_tx);
6565 }
6566 
netif_alloc_netdev_queues(struct net_device * dev)6567 static int netif_alloc_netdev_queues(struct net_device *dev)
6568 {
6569 	unsigned int count = dev->num_tx_queues;
6570 	struct netdev_queue *tx;
6571 	size_t sz = count * sizeof(*tx);
6572 
6573 	if (count < 1 || count > 0xffff)
6574 		return -EINVAL;
6575 
6576 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6577 	if (!tx) {
6578 		tx = vzalloc(sz);
6579 		if (!tx)
6580 			return -ENOMEM;
6581 	}
6582 	dev->_tx = tx;
6583 
6584 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6585 	spin_lock_init(&dev->tx_global_lock);
6586 
6587 	return 0;
6588 }
6589 
netif_tx_stop_all_queues(struct net_device * dev)6590 void netif_tx_stop_all_queues(struct net_device *dev)
6591 {
6592 	unsigned int i;
6593 
6594 	for (i = 0; i < dev->num_tx_queues; i++) {
6595 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6596 		netif_tx_stop_queue(txq);
6597 	}
6598 }
6599 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6600 
6601 /**
6602  *	register_netdevice	- register a network device
6603  *	@dev: device to register
6604  *
6605  *	Take a completed network device structure and add it to the kernel
6606  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6607  *	chain. 0 is returned on success. A negative errno code is returned
6608  *	on a failure to set up the device, or if the name is a duplicate.
6609  *
6610  *	Callers must hold the rtnl semaphore. You may want
6611  *	register_netdev() instead of this.
6612  *
6613  *	BUGS:
6614  *	The locking appears insufficient to guarantee two parallel registers
6615  *	will not get the same name.
6616  */
6617 
register_netdevice(struct net_device * dev)6618 int register_netdevice(struct net_device *dev)
6619 {
6620 	int ret;
6621 	struct net *net = dev_net(dev);
6622 
6623 	BUG_ON(dev_boot_phase);
6624 	ASSERT_RTNL();
6625 
6626 	might_sleep();
6627 
6628 	/* When net_device's are persistent, this will be fatal. */
6629 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6630 	BUG_ON(!net);
6631 
6632 	spin_lock_init(&dev->addr_list_lock);
6633 	netdev_set_addr_lockdep_class(dev);
6634 
6635 	ret = dev_get_valid_name(net, dev, dev->name);
6636 	if (ret < 0)
6637 		goto out;
6638 
6639 	/* Init, if this function is available */
6640 	if (dev->netdev_ops->ndo_init) {
6641 		ret = dev->netdev_ops->ndo_init(dev);
6642 		if (ret) {
6643 			if (ret > 0)
6644 				ret = -EIO;
6645 			goto out;
6646 		}
6647 	}
6648 
6649 	if (((dev->hw_features | dev->features) &
6650 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6651 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6652 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6653 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6654 		ret = -EINVAL;
6655 		goto err_uninit;
6656 	}
6657 
6658 	ret = -EBUSY;
6659 	if (!dev->ifindex)
6660 		dev->ifindex = dev_new_index(net);
6661 	else if (__dev_get_by_index(net, dev->ifindex))
6662 		goto err_uninit;
6663 
6664 	/* Transfer changeable features to wanted_features and enable
6665 	 * software offloads (GSO and GRO).
6666 	 */
6667 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6668 	dev->features |= NETIF_F_SOFT_FEATURES;
6669 	dev->wanted_features = dev->features & dev->hw_features;
6670 
6671 	if (!(dev->flags & IFF_LOOPBACK)) {
6672 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6673 	}
6674 
6675 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6676 	 */
6677 	dev->vlan_features |= NETIF_F_HIGHDMA;
6678 
6679 	/* Make NETIF_F_SG inheritable to tunnel devices.
6680 	 */
6681 	dev->hw_enc_features |= NETIF_F_SG;
6682 
6683 	/* Make NETIF_F_SG inheritable to MPLS.
6684 	 */
6685 	dev->mpls_features |= NETIF_F_SG;
6686 
6687 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6688 	ret = notifier_to_errno(ret);
6689 	if (ret)
6690 		goto err_uninit;
6691 
6692 	ret = netdev_register_kobject(dev);
6693 	if (ret)
6694 		goto err_uninit;
6695 	dev->reg_state = NETREG_REGISTERED;
6696 
6697 	__netdev_update_features(dev);
6698 
6699 	/*
6700 	 *	Default initial state at registry is that the
6701 	 *	device is present.
6702 	 */
6703 
6704 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6705 
6706 	linkwatch_init_dev(dev);
6707 
6708 	dev_init_scheduler(dev);
6709 	dev_hold(dev);
6710 	list_netdevice(dev);
6711 	add_device_randomness(dev->dev_addr, dev->addr_len);
6712 
6713 	/* If the device has permanent device address, driver should
6714 	 * set dev_addr and also addr_assign_type should be set to
6715 	 * NET_ADDR_PERM (default value).
6716 	 */
6717 	if (dev->addr_assign_type == NET_ADDR_PERM)
6718 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6719 
6720 	/* Notify protocols, that a new device appeared. */
6721 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6722 	ret = notifier_to_errno(ret);
6723 	if (ret) {
6724 		rollback_registered(dev);
6725 		dev->reg_state = NETREG_UNREGISTERED;
6726 	}
6727 	/*
6728 	 *	Prevent userspace races by waiting until the network
6729 	 *	device is fully setup before sending notifications.
6730 	 */
6731 	if (!dev->rtnl_link_ops ||
6732 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6733 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6734 
6735 out:
6736 	return ret;
6737 
6738 err_uninit:
6739 	if (dev->netdev_ops->ndo_uninit)
6740 		dev->netdev_ops->ndo_uninit(dev);
6741 	goto out;
6742 }
6743 EXPORT_SYMBOL(register_netdevice);
6744 
6745 /**
6746  *	init_dummy_netdev	- init a dummy network device for NAPI
6747  *	@dev: device to init
6748  *
6749  *	This takes a network device structure and initialize the minimum
6750  *	amount of fields so it can be used to schedule NAPI polls without
6751  *	registering a full blown interface. This is to be used by drivers
6752  *	that need to tie several hardware interfaces to a single NAPI
6753  *	poll scheduler due to HW limitations.
6754  */
init_dummy_netdev(struct net_device * dev)6755 int init_dummy_netdev(struct net_device *dev)
6756 {
6757 	/* Clear everything. Note we don't initialize spinlocks
6758 	 * are they aren't supposed to be taken by any of the
6759 	 * NAPI code and this dummy netdev is supposed to be
6760 	 * only ever used for NAPI polls
6761 	 */
6762 	memset(dev, 0, sizeof(struct net_device));
6763 
6764 	/* make sure we BUG if trying to hit standard
6765 	 * register/unregister code path
6766 	 */
6767 	dev->reg_state = NETREG_DUMMY;
6768 
6769 	/* NAPI wants this */
6770 	INIT_LIST_HEAD(&dev->napi_list);
6771 
6772 	/* a dummy interface is started by default */
6773 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6774 	set_bit(__LINK_STATE_START, &dev->state);
6775 
6776 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6777 	 * because users of this 'device' dont need to change
6778 	 * its refcount.
6779 	 */
6780 
6781 	return 0;
6782 }
6783 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6784 
6785 
6786 /**
6787  *	register_netdev	- register a network device
6788  *	@dev: device to register
6789  *
6790  *	Take a completed network device structure and add it to the kernel
6791  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6792  *	chain. 0 is returned on success. A negative errno code is returned
6793  *	on a failure to set up the device, or if the name is a duplicate.
6794  *
6795  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6796  *	and expands the device name if you passed a format string to
6797  *	alloc_netdev.
6798  */
register_netdev(struct net_device * dev)6799 int register_netdev(struct net_device *dev)
6800 {
6801 	int err;
6802 
6803 	rtnl_lock();
6804 	err = register_netdevice(dev);
6805 	rtnl_unlock();
6806 	return err;
6807 }
6808 EXPORT_SYMBOL(register_netdev);
6809 
netdev_refcnt_read(const struct net_device * dev)6810 int netdev_refcnt_read(const struct net_device *dev)
6811 {
6812 	int i, refcnt = 0;
6813 
6814 	for_each_possible_cpu(i)
6815 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6816 	return refcnt;
6817 }
6818 EXPORT_SYMBOL(netdev_refcnt_read);
6819 
6820 /**
6821  * netdev_wait_allrefs - wait until all references are gone.
6822  * @dev: target net_device
6823  *
6824  * This is called when unregistering network devices.
6825  *
6826  * Any protocol or device that holds a reference should register
6827  * for netdevice notification, and cleanup and put back the
6828  * reference if they receive an UNREGISTER event.
6829  * We can get stuck here if buggy protocols don't correctly
6830  * call dev_put.
6831  */
netdev_wait_allrefs(struct net_device * dev)6832 static void netdev_wait_allrefs(struct net_device *dev)
6833 {
6834 	unsigned long rebroadcast_time, warning_time;
6835 	int refcnt;
6836 
6837 	linkwatch_forget_dev(dev);
6838 
6839 	rebroadcast_time = warning_time = jiffies;
6840 	refcnt = netdev_refcnt_read(dev);
6841 
6842 	while (refcnt != 0) {
6843 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6844 			rtnl_lock();
6845 
6846 			/* Rebroadcast unregister notification */
6847 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6848 
6849 			__rtnl_unlock();
6850 			rcu_barrier();
6851 			rtnl_lock();
6852 
6853 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6854 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6855 				     &dev->state)) {
6856 				/* We must not have linkwatch events
6857 				 * pending on unregister. If this
6858 				 * happens, we simply run the queue
6859 				 * unscheduled, resulting in a noop
6860 				 * for this device.
6861 				 */
6862 				linkwatch_run_queue();
6863 			}
6864 
6865 			__rtnl_unlock();
6866 
6867 			rebroadcast_time = jiffies;
6868 		}
6869 
6870 		msleep(250);
6871 
6872 		refcnt = netdev_refcnt_read(dev);
6873 
6874 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6875 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6876 				 dev->name, refcnt);
6877 			warning_time = jiffies;
6878 		}
6879 	}
6880 }
6881 
6882 /* The sequence is:
6883  *
6884  *	rtnl_lock();
6885  *	...
6886  *	register_netdevice(x1);
6887  *	register_netdevice(x2);
6888  *	...
6889  *	unregister_netdevice(y1);
6890  *	unregister_netdevice(y2);
6891  *      ...
6892  *	rtnl_unlock();
6893  *	free_netdev(y1);
6894  *	free_netdev(y2);
6895  *
6896  * We are invoked by rtnl_unlock().
6897  * This allows us to deal with problems:
6898  * 1) We can delete sysfs objects which invoke hotplug
6899  *    without deadlocking with linkwatch via keventd.
6900  * 2) Since we run with the RTNL semaphore not held, we can sleep
6901  *    safely in order to wait for the netdev refcnt to drop to zero.
6902  *
6903  * We must not return until all unregister events added during
6904  * the interval the lock was held have been completed.
6905  */
netdev_run_todo(void)6906 void netdev_run_todo(void)
6907 {
6908 	struct list_head list;
6909 
6910 	/* Snapshot list, allow later requests */
6911 	list_replace_init(&net_todo_list, &list);
6912 
6913 	__rtnl_unlock();
6914 
6915 
6916 	/* Wait for rcu callbacks to finish before next phase */
6917 	if (!list_empty(&list))
6918 		rcu_barrier();
6919 
6920 	while (!list_empty(&list)) {
6921 		struct net_device *dev
6922 			= list_first_entry(&list, struct net_device, todo_list);
6923 		list_del(&dev->todo_list);
6924 
6925 		rtnl_lock();
6926 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6927 		__rtnl_unlock();
6928 
6929 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6930 			pr_err("network todo '%s' but state %d\n",
6931 			       dev->name, dev->reg_state);
6932 			dump_stack();
6933 			continue;
6934 		}
6935 
6936 		dev->reg_state = NETREG_UNREGISTERED;
6937 
6938 		netdev_wait_allrefs(dev);
6939 
6940 		/* paranoia */
6941 		BUG_ON(netdev_refcnt_read(dev));
6942 		BUG_ON(!list_empty(&dev->ptype_all));
6943 		BUG_ON(!list_empty(&dev->ptype_specific));
6944 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6945 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6946 		WARN_ON(dev->dn_ptr);
6947 
6948 		if (dev->destructor)
6949 			dev->destructor(dev);
6950 
6951 		/* Report a network device has been unregistered */
6952 		rtnl_lock();
6953 		dev_net(dev)->dev_unreg_count--;
6954 		__rtnl_unlock();
6955 		wake_up(&netdev_unregistering_wq);
6956 
6957 		/* Free network device */
6958 		kobject_put(&dev->dev.kobj);
6959 	}
6960 }
6961 
6962 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6963  * fields in the same order, with only the type differing.
6964  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)6965 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6966 			     const struct net_device_stats *netdev_stats)
6967 {
6968 #if BITS_PER_LONG == 64
6969 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6970 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6971 #else
6972 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6973 	const unsigned long *src = (const unsigned long *)netdev_stats;
6974 	u64 *dst = (u64 *)stats64;
6975 
6976 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6977 		     sizeof(*stats64) / sizeof(u64));
6978 	for (i = 0; i < n; i++)
6979 		dst[i] = src[i];
6980 #endif
6981 }
6982 EXPORT_SYMBOL(netdev_stats_to_stats64);
6983 
6984 /**
6985  *	dev_get_stats	- get network device statistics
6986  *	@dev: device to get statistics from
6987  *	@storage: place to store stats
6988  *
6989  *	Get network statistics from device. Return @storage.
6990  *	The device driver may provide its own method by setting
6991  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6992  *	otherwise the internal statistics structure is used.
6993  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)6994 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6995 					struct rtnl_link_stats64 *storage)
6996 {
6997 	const struct net_device_ops *ops = dev->netdev_ops;
6998 
6999 	if (ops->ndo_get_stats64) {
7000 		memset(storage, 0, sizeof(*storage));
7001 		ops->ndo_get_stats64(dev, storage);
7002 	} else if (ops->ndo_get_stats) {
7003 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7004 	} else {
7005 		netdev_stats_to_stats64(storage, &dev->stats);
7006 	}
7007 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7008 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7009 	return storage;
7010 }
7011 EXPORT_SYMBOL(dev_get_stats);
7012 
dev_ingress_queue_create(struct net_device * dev)7013 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7014 {
7015 	struct netdev_queue *queue = dev_ingress_queue(dev);
7016 
7017 #ifdef CONFIG_NET_CLS_ACT
7018 	if (queue)
7019 		return queue;
7020 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7021 	if (!queue)
7022 		return NULL;
7023 	netdev_init_one_queue(dev, queue, NULL);
7024 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7025 	queue->qdisc_sleeping = &noop_qdisc;
7026 	rcu_assign_pointer(dev->ingress_queue, queue);
7027 #endif
7028 	return queue;
7029 }
7030 
7031 static const struct ethtool_ops default_ethtool_ops;
7032 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)7033 void netdev_set_default_ethtool_ops(struct net_device *dev,
7034 				    const struct ethtool_ops *ops)
7035 {
7036 	if (dev->ethtool_ops == &default_ethtool_ops)
7037 		dev->ethtool_ops = ops;
7038 }
7039 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7040 
netdev_freemem(struct net_device * dev)7041 void netdev_freemem(struct net_device *dev)
7042 {
7043 	char *addr = (char *)dev - dev->padded;
7044 
7045 	kvfree(addr);
7046 }
7047 
7048 /**
7049  *	alloc_netdev_mqs - allocate network device
7050  *	@sizeof_priv:		size of private data to allocate space for
7051  *	@name:			device name format string
7052  *	@name_assign_type: 	origin of device name
7053  *	@setup:			callback to initialize device
7054  *	@txqs:			the number of TX subqueues to allocate
7055  *	@rxqs:			the number of RX subqueues to allocate
7056  *
7057  *	Allocates a struct net_device with private data area for driver use
7058  *	and performs basic initialization.  Also allocates subqueue structs
7059  *	for each queue on the device.
7060  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)7061 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7062 		unsigned char name_assign_type,
7063 		void (*setup)(struct net_device *),
7064 		unsigned int txqs, unsigned int rxqs)
7065 {
7066 	struct net_device *dev;
7067 	size_t alloc_size;
7068 	struct net_device *p;
7069 
7070 	BUG_ON(strlen(name) >= sizeof(dev->name));
7071 
7072 	if (txqs < 1) {
7073 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7074 		return NULL;
7075 	}
7076 
7077 #ifdef CONFIG_SYSFS
7078 	if (rxqs < 1) {
7079 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7080 		return NULL;
7081 	}
7082 #endif
7083 
7084 	alloc_size = sizeof(struct net_device);
7085 	if (sizeof_priv) {
7086 		/* ensure 32-byte alignment of private area */
7087 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7088 		alloc_size += sizeof_priv;
7089 	}
7090 	/* ensure 32-byte alignment of whole construct */
7091 	alloc_size += NETDEV_ALIGN - 1;
7092 
7093 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7094 	if (!p)
7095 		p = vzalloc(alloc_size);
7096 	if (!p)
7097 		return NULL;
7098 
7099 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7100 	dev->padded = (char *)dev - (char *)p;
7101 
7102 	dev->pcpu_refcnt = alloc_percpu(int);
7103 	if (!dev->pcpu_refcnt)
7104 		goto free_dev;
7105 
7106 	if (dev_addr_init(dev))
7107 		goto free_pcpu;
7108 
7109 	dev_mc_init(dev);
7110 	dev_uc_init(dev);
7111 
7112 	dev_net_set(dev, &init_net);
7113 
7114 	dev->gso_max_size = GSO_MAX_SIZE;
7115 	dev->gso_max_segs = GSO_MAX_SEGS;
7116 	dev->gso_min_segs = 0;
7117 
7118 	INIT_LIST_HEAD(&dev->napi_list);
7119 	INIT_LIST_HEAD(&dev->unreg_list);
7120 	INIT_LIST_HEAD(&dev->close_list);
7121 	INIT_LIST_HEAD(&dev->link_watch_list);
7122 	INIT_LIST_HEAD(&dev->adj_list.upper);
7123 	INIT_LIST_HEAD(&dev->adj_list.lower);
7124 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
7125 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
7126 	INIT_LIST_HEAD(&dev->ptype_all);
7127 	INIT_LIST_HEAD(&dev->ptype_specific);
7128 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7129 	setup(dev);
7130 
7131 	if (!dev->tx_queue_len) {
7132 		dev->priv_flags |= IFF_NO_QUEUE;
7133 		dev->tx_queue_len = 1;
7134 	}
7135 
7136 	dev->num_tx_queues = txqs;
7137 	dev->real_num_tx_queues = txqs;
7138 	if (netif_alloc_netdev_queues(dev))
7139 		goto free_all;
7140 
7141 #ifdef CONFIG_SYSFS
7142 	dev->num_rx_queues = rxqs;
7143 	dev->real_num_rx_queues = rxqs;
7144 	if (netif_alloc_rx_queues(dev))
7145 		goto free_all;
7146 #endif
7147 
7148 	strcpy(dev->name, name);
7149 	dev->name_assign_type = name_assign_type;
7150 	dev->group = INIT_NETDEV_GROUP;
7151 	if (!dev->ethtool_ops)
7152 		dev->ethtool_ops = &default_ethtool_ops;
7153 
7154 	nf_hook_ingress_init(dev);
7155 
7156 	return dev;
7157 
7158 free_all:
7159 	free_netdev(dev);
7160 	return NULL;
7161 
7162 free_pcpu:
7163 	free_percpu(dev->pcpu_refcnt);
7164 free_dev:
7165 	netdev_freemem(dev);
7166 	return NULL;
7167 }
7168 EXPORT_SYMBOL(alloc_netdev_mqs);
7169 
7170 /**
7171  *	free_netdev - free network device
7172  *	@dev: device
7173  *
7174  *	This function does the last stage of destroying an allocated device
7175  * 	interface. The reference to the device object is released.
7176  *	If this is the last reference then it will be freed.
7177  */
free_netdev(struct net_device * dev)7178 void free_netdev(struct net_device *dev)
7179 {
7180 	struct napi_struct *p, *n;
7181 
7182 	netif_free_tx_queues(dev);
7183 #ifdef CONFIG_SYSFS
7184 	kvfree(dev->_rx);
7185 #endif
7186 
7187 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7188 
7189 	/* Flush device addresses */
7190 	dev_addr_flush(dev);
7191 
7192 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7193 		netif_napi_del(p);
7194 
7195 	free_percpu(dev->pcpu_refcnt);
7196 	dev->pcpu_refcnt = NULL;
7197 
7198 	/*  Compatibility with error handling in drivers */
7199 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7200 		netdev_freemem(dev);
7201 		return;
7202 	}
7203 
7204 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7205 	dev->reg_state = NETREG_RELEASED;
7206 
7207 	/* will free via device release */
7208 	put_device(&dev->dev);
7209 }
7210 EXPORT_SYMBOL(free_netdev);
7211 
7212 /**
7213  *	synchronize_net -  Synchronize with packet receive processing
7214  *
7215  *	Wait for packets currently being received to be done.
7216  *	Does not block later packets from starting.
7217  */
synchronize_net(void)7218 void synchronize_net(void)
7219 {
7220 	might_sleep();
7221 	if (rtnl_is_locked())
7222 		synchronize_rcu_expedited();
7223 	else
7224 		synchronize_rcu();
7225 }
7226 EXPORT_SYMBOL(synchronize_net);
7227 
7228 /**
7229  *	unregister_netdevice_queue - remove device from the kernel
7230  *	@dev: device
7231  *	@head: list
7232  *
7233  *	This function shuts down a device interface and removes it
7234  *	from the kernel tables.
7235  *	If head not NULL, device is queued to be unregistered later.
7236  *
7237  *	Callers must hold the rtnl semaphore.  You may want
7238  *	unregister_netdev() instead of this.
7239  */
7240 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)7241 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7242 {
7243 	ASSERT_RTNL();
7244 
7245 	if (head) {
7246 		list_move_tail(&dev->unreg_list, head);
7247 	} else {
7248 		rollback_registered(dev);
7249 		/* Finish processing unregister after unlock */
7250 		net_set_todo(dev);
7251 	}
7252 }
7253 EXPORT_SYMBOL(unregister_netdevice_queue);
7254 
7255 /**
7256  *	unregister_netdevice_many - unregister many devices
7257  *	@head: list of devices
7258  *
7259  *  Note: As most callers use a stack allocated list_head,
7260  *  we force a list_del() to make sure stack wont be corrupted later.
7261  */
unregister_netdevice_many(struct list_head * head)7262 void unregister_netdevice_many(struct list_head *head)
7263 {
7264 	struct net_device *dev;
7265 
7266 	if (!list_empty(head)) {
7267 		rollback_registered_many(head);
7268 		list_for_each_entry(dev, head, unreg_list)
7269 			net_set_todo(dev);
7270 		list_del(head);
7271 	}
7272 }
7273 EXPORT_SYMBOL(unregister_netdevice_many);
7274 
7275 /**
7276  *	unregister_netdev - remove device from the kernel
7277  *	@dev: device
7278  *
7279  *	This function shuts down a device interface and removes it
7280  *	from the kernel tables.
7281  *
7282  *	This is just a wrapper for unregister_netdevice that takes
7283  *	the rtnl semaphore.  In general you want to use this and not
7284  *	unregister_netdevice.
7285  */
unregister_netdev(struct net_device * dev)7286 void unregister_netdev(struct net_device *dev)
7287 {
7288 	rtnl_lock();
7289 	unregister_netdevice(dev);
7290 	rtnl_unlock();
7291 }
7292 EXPORT_SYMBOL(unregister_netdev);
7293 
7294 /**
7295  *	dev_change_net_namespace - move device to different nethost namespace
7296  *	@dev: device
7297  *	@net: network namespace
7298  *	@pat: If not NULL name pattern to try if the current device name
7299  *	      is already taken in the destination network namespace.
7300  *
7301  *	This function shuts down a device interface and moves it
7302  *	to a new network namespace. On success 0 is returned, on
7303  *	a failure a netagive errno code is returned.
7304  *
7305  *	Callers must hold the rtnl semaphore.
7306  */
7307 
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)7308 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7309 {
7310 	int err;
7311 
7312 	ASSERT_RTNL();
7313 
7314 	/* Don't allow namespace local devices to be moved. */
7315 	err = -EINVAL;
7316 	if (dev->features & NETIF_F_NETNS_LOCAL)
7317 		goto out;
7318 
7319 	/* Ensure the device has been registrered */
7320 	if (dev->reg_state != NETREG_REGISTERED)
7321 		goto out;
7322 
7323 	/* Get out if there is nothing todo */
7324 	err = 0;
7325 	if (net_eq(dev_net(dev), net))
7326 		goto out;
7327 
7328 	/* Pick the destination device name, and ensure
7329 	 * we can use it in the destination network namespace.
7330 	 */
7331 	err = -EEXIST;
7332 	if (__dev_get_by_name(net, dev->name)) {
7333 		/* We get here if we can't use the current device name */
7334 		if (!pat)
7335 			goto out;
7336 		if (dev_get_valid_name(net, dev, pat) < 0)
7337 			goto out;
7338 	}
7339 
7340 	/*
7341 	 * And now a mini version of register_netdevice unregister_netdevice.
7342 	 */
7343 
7344 	/* If device is running close it first. */
7345 	dev_close(dev);
7346 
7347 	/* And unlink it from device chain */
7348 	err = -ENODEV;
7349 	unlist_netdevice(dev);
7350 
7351 	synchronize_net();
7352 
7353 	/* Shutdown queueing discipline. */
7354 	dev_shutdown(dev);
7355 
7356 	/* Notify protocols, that we are about to destroy
7357 	   this device. They should clean all the things.
7358 
7359 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7360 	   This is wanted because this way 8021q and macvlan know
7361 	   the device is just moving and can keep their slaves up.
7362 	*/
7363 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7364 	rcu_barrier();
7365 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7366 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7367 
7368 	/*
7369 	 *	Flush the unicast and multicast chains
7370 	 */
7371 	dev_uc_flush(dev);
7372 	dev_mc_flush(dev);
7373 
7374 	/* Send a netdev-removed uevent to the old namespace */
7375 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7376 	netdev_adjacent_del_links(dev);
7377 
7378 	/* Actually switch the network namespace */
7379 	dev_net_set(dev, net);
7380 
7381 	/* If there is an ifindex conflict assign a new one */
7382 	if (__dev_get_by_index(net, dev->ifindex))
7383 		dev->ifindex = dev_new_index(net);
7384 
7385 	/* Send a netdev-add uevent to the new namespace */
7386 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7387 	netdev_adjacent_add_links(dev);
7388 
7389 	/* Fixup kobjects */
7390 	err = device_rename(&dev->dev, dev->name);
7391 	WARN_ON(err);
7392 
7393 	/* Add the device back in the hashes */
7394 	list_netdevice(dev);
7395 
7396 	/* Notify protocols, that a new device appeared. */
7397 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7398 
7399 	/*
7400 	 *	Prevent userspace races by waiting until the network
7401 	 *	device is fully setup before sending notifications.
7402 	 */
7403 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7404 
7405 	synchronize_net();
7406 	err = 0;
7407 out:
7408 	return err;
7409 }
7410 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7411 
dev_cpu_callback(struct notifier_block * nfb,unsigned long action,void * ocpu)7412 static int dev_cpu_callback(struct notifier_block *nfb,
7413 			    unsigned long action,
7414 			    void *ocpu)
7415 {
7416 	struct sk_buff **list_skb;
7417 	struct sk_buff *skb;
7418 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7419 	struct softnet_data *sd, *oldsd;
7420 
7421 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7422 		return NOTIFY_OK;
7423 
7424 	local_irq_disable();
7425 	cpu = smp_processor_id();
7426 	sd = &per_cpu(softnet_data, cpu);
7427 	oldsd = &per_cpu(softnet_data, oldcpu);
7428 
7429 	/* Find end of our completion_queue. */
7430 	list_skb = &sd->completion_queue;
7431 	while (*list_skb)
7432 		list_skb = &(*list_skb)->next;
7433 	/* Append completion queue from offline CPU. */
7434 	*list_skb = oldsd->completion_queue;
7435 	oldsd->completion_queue = NULL;
7436 
7437 	/* Append output queue from offline CPU. */
7438 	if (oldsd->output_queue) {
7439 		*sd->output_queue_tailp = oldsd->output_queue;
7440 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7441 		oldsd->output_queue = NULL;
7442 		oldsd->output_queue_tailp = &oldsd->output_queue;
7443 	}
7444 	/* Append NAPI poll list from offline CPU, with one exception :
7445 	 * process_backlog() must be called by cpu owning percpu backlog.
7446 	 * We properly handle process_queue & input_pkt_queue later.
7447 	 */
7448 	while (!list_empty(&oldsd->poll_list)) {
7449 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7450 							    struct napi_struct,
7451 							    poll_list);
7452 
7453 		list_del_init(&napi->poll_list);
7454 		if (napi->poll == process_backlog)
7455 			napi->state = 0;
7456 		else
7457 			____napi_schedule(sd, napi);
7458 	}
7459 
7460 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7461 	local_irq_enable();
7462 
7463 	/* Process offline CPU's input_pkt_queue */
7464 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7465 		netif_rx_ni(skb);
7466 		input_queue_head_incr(oldsd);
7467 	}
7468 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7469 		netif_rx_ni(skb);
7470 		input_queue_head_incr(oldsd);
7471 	}
7472 
7473 	return NOTIFY_OK;
7474 }
7475 
7476 
7477 /**
7478  *	netdev_increment_features - increment feature set by one
7479  *	@all: current feature set
7480  *	@one: new feature set
7481  *	@mask: mask feature set
7482  *
7483  *	Computes a new feature set after adding a device with feature set
7484  *	@one to the master device with current feature set @all.  Will not
7485  *	enable anything that is off in @mask. Returns the new feature set.
7486  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)7487 netdev_features_t netdev_increment_features(netdev_features_t all,
7488 	netdev_features_t one, netdev_features_t mask)
7489 {
7490 	if (mask & NETIF_F_GEN_CSUM)
7491 		mask |= NETIF_F_ALL_CSUM;
7492 	mask |= NETIF_F_VLAN_CHALLENGED;
7493 
7494 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7495 	all &= one | ~NETIF_F_ALL_FOR_ALL;
7496 
7497 	/* If one device supports hw checksumming, set for all. */
7498 	if (all & NETIF_F_GEN_CSUM)
7499 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7500 
7501 	return all;
7502 }
7503 EXPORT_SYMBOL(netdev_increment_features);
7504 
netdev_create_hash(void)7505 static struct hlist_head * __net_init netdev_create_hash(void)
7506 {
7507 	int i;
7508 	struct hlist_head *hash;
7509 
7510 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7511 	if (hash != NULL)
7512 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7513 			INIT_HLIST_HEAD(&hash[i]);
7514 
7515 	return hash;
7516 }
7517 
7518 /* Initialize per network namespace state */
netdev_init(struct net * net)7519 static int __net_init netdev_init(struct net *net)
7520 {
7521 	if (net != &init_net)
7522 		INIT_LIST_HEAD(&net->dev_base_head);
7523 
7524 	net->dev_name_head = netdev_create_hash();
7525 	if (net->dev_name_head == NULL)
7526 		goto err_name;
7527 
7528 	net->dev_index_head = netdev_create_hash();
7529 	if (net->dev_index_head == NULL)
7530 		goto err_idx;
7531 
7532 	return 0;
7533 
7534 err_idx:
7535 	kfree(net->dev_name_head);
7536 err_name:
7537 	return -ENOMEM;
7538 }
7539 
7540 /**
7541  *	netdev_drivername - network driver for the device
7542  *	@dev: network device
7543  *
7544  *	Determine network driver for device.
7545  */
netdev_drivername(const struct net_device * dev)7546 const char *netdev_drivername(const struct net_device *dev)
7547 {
7548 	const struct device_driver *driver;
7549 	const struct device *parent;
7550 	const char *empty = "";
7551 
7552 	parent = dev->dev.parent;
7553 	if (!parent)
7554 		return empty;
7555 
7556 	driver = parent->driver;
7557 	if (driver && driver->name)
7558 		return driver->name;
7559 	return empty;
7560 }
7561 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)7562 static void __netdev_printk(const char *level, const struct net_device *dev,
7563 			    struct va_format *vaf)
7564 {
7565 	if (dev && dev->dev.parent) {
7566 		dev_printk_emit(level[1] - '0',
7567 				dev->dev.parent,
7568 				"%s %s %s%s: %pV",
7569 				dev_driver_string(dev->dev.parent),
7570 				dev_name(dev->dev.parent),
7571 				netdev_name(dev), netdev_reg_state(dev),
7572 				vaf);
7573 	} else if (dev) {
7574 		printk("%s%s%s: %pV",
7575 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7576 	} else {
7577 		printk("%s(NULL net_device): %pV", level, vaf);
7578 	}
7579 }
7580 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)7581 void netdev_printk(const char *level, const struct net_device *dev,
7582 		   const char *format, ...)
7583 {
7584 	struct va_format vaf;
7585 	va_list args;
7586 
7587 	va_start(args, format);
7588 
7589 	vaf.fmt = format;
7590 	vaf.va = &args;
7591 
7592 	__netdev_printk(level, dev, &vaf);
7593 
7594 	va_end(args);
7595 }
7596 EXPORT_SYMBOL(netdev_printk);
7597 
7598 #define define_netdev_printk_level(func, level)			\
7599 void func(const struct net_device *dev, const char *fmt, ...)	\
7600 {								\
7601 	struct va_format vaf;					\
7602 	va_list args;						\
7603 								\
7604 	va_start(args, fmt);					\
7605 								\
7606 	vaf.fmt = fmt;						\
7607 	vaf.va = &args;						\
7608 								\
7609 	__netdev_printk(level, dev, &vaf);			\
7610 								\
7611 	va_end(args);						\
7612 }								\
7613 EXPORT_SYMBOL(func);
7614 
7615 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7616 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7617 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7618 define_netdev_printk_level(netdev_err, KERN_ERR);
7619 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7620 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7621 define_netdev_printk_level(netdev_info, KERN_INFO);
7622 
netdev_exit(struct net * net)7623 static void __net_exit netdev_exit(struct net *net)
7624 {
7625 	kfree(net->dev_name_head);
7626 	kfree(net->dev_index_head);
7627 }
7628 
7629 static struct pernet_operations __net_initdata netdev_net_ops = {
7630 	.init = netdev_init,
7631 	.exit = netdev_exit,
7632 };
7633 
default_device_exit(struct net * net)7634 static void __net_exit default_device_exit(struct net *net)
7635 {
7636 	struct net_device *dev, *aux;
7637 	/*
7638 	 * Push all migratable network devices back to the
7639 	 * initial network namespace
7640 	 */
7641 	rtnl_lock();
7642 	for_each_netdev_safe(net, dev, aux) {
7643 		int err;
7644 		char fb_name[IFNAMSIZ];
7645 
7646 		/* Ignore unmoveable devices (i.e. loopback) */
7647 		if (dev->features & NETIF_F_NETNS_LOCAL)
7648 			continue;
7649 
7650 		/* Leave virtual devices for the generic cleanup */
7651 		if (dev->rtnl_link_ops)
7652 			continue;
7653 
7654 		/* Push remaining network devices to init_net */
7655 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7656 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7657 		if (err) {
7658 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7659 				 __func__, dev->name, err);
7660 			BUG();
7661 		}
7662 	}
7663 	rtnl_unlock();
7664 }
7665 
rtnl_lock_unregistering(struct list_head * net_list)7666 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7667 {
7668 	/* Return with the rtnl_lock held when there are no network
7669 	 * devices unregistering in any network namespace in net_list.
7670 	 */
7671 	struct net *net;
7672 	bool unregistering;
7673 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
7674 
7675 	add_wait_queue(&netdev_unregistering_wq, &wait);
7676 	for (;;) {
7677 		unregistering = false;
7678 		rtnl_lock();
7679 		list_for_each_entry(net, net_list, exit_list) {
7680 			if (net->dev_unreg_count > 0) {
7681 				unregistering = true;
7682 				break;
7683 			}
7684 		}
7685 		if (!unregistering)
7686 			break;
7687 		__rtnl_unlock();
7688 
7689 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7690 	}
7691 	remove_wait_queue(&netdev_unregistering_wq, &wait);
7692 }
7693 
default_device_exit_batch(struct list_head * net_list)7694 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7695 {
7696 	/* At exit all network devices most be removed from a network
7697 	 * namespace.  Do this in the reverse order of registration.
7698 	 * Do this across as many network namespaces as possible to
7699 	 * improve batching efficiency.
7700 	 */
7701 	struct net_device *dev;
7702 	struct net *net;
7703 	LIST_HEAD(dev_kill_list);
7704 
7705 	/* To prevent network device cleanup code from dereferencing
7706 	 * loopback devices or network devices that have been freed
7707 	 * wait here for all pending unregistrations to complete,
7708 	 * before unregistring the loopback device and allowing the
7709 	 * network namespace be freed.
7710 	 *
7711 	 * The netdev todo list containing all network devices
7712 	 * unregistrations that happen in default_device_exit_batch
7713 	 * will run in the rtnl_unlock() at the end of
7714 	 * default_device_exit_batch.
7715 	 */
7716 	rtnl_lock_unregistering(net_list);
7717 	list_for_each_entry(net, net_list, exit_list) {
7718 		for_each_netdev_reverse(net, dev) {
7719 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7720 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7721 			else
7722 				unregister_netdevice_queue(dev, &dev_kill_list);
7723 		}
7724 	}
7725 	unregister_netdevice_many(&dev_kill_list);
7726 	rtnl_unlock();
7727 }
7728 
7729 static struct pernet_operations __net_initdata default_device_ops = {
7730 	.exit = default_device_exit,
7731 	.exit_batch = default_device_exit_batch,
7732 };
7733 
7734 /*
7735  *	Initialize the DEV module. At boot time this walks the device list and
7736  *	unhooks any devices that fail to initialise (normally hardware not
7737  *	present) and leaves us with a valid list of present and active devices.
7738  *
7739  */
7740 
7741 /*
7742  *       This is called single threaded during boot, so no need
7743  *       to take the rtnl semaphore.
7744  */
net_dev_init(void)7745 static int __init net_dev_init(void)
7746 {
7747 	int i, rc = -ENOMEM;
7748 
7749 	BUG_ON(!dev_boot_phase);
7750 
7751 	if (dev_proc_init())
7752 		goto out;
7753 
7754 	if (netdev_kobject_init())
7755 		goto out;
7756 
7757 	INIT_LIST_HEAD(&ptype_all);
7758 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7759 		INIT_LIST_HEAD(&ptype_base[i]);
7760 
7761 	INIT_LIST_HEAD(&offload_base);
7762 
7763 	if (register_pernet_subsys(&netdev_net_ops))
7764 		goto out;
7765 
7766 	/*
7767 	 *	Initialise the packet receive queues.
7768 	 */
7769 
7770 	for_each_possible_cpu(i) {
7771 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7772 
7773 		skb_queue_head_init(&sd->input_pkt_queue);
7774 		skb_queue_head_init(&sd->process_queue);
7775 		INIT_LIST_HEAD(&sd->poll_list);
7776 		sd->output_queue_tailp = &sd->output_queue;
7777 #ifdef CONFIG_RPS
7778 		sd->csd.func = rps_trigger_softirq;
7779 		sd->csd.info = sd;
7780 		sd->cpu = i;
7781 #endif
7782 
7783 		sd->backlog.poll = process_backlog;
7784 		sd->backlog.weight = weight_p;
7785 	}
7786 
7787 	dev_boot_phase = 0;
7788 
7789 	/* The loopback device is special if any other network devices
7790 	 * is present in a network namespace the loopback device must
7791 	 * be present. Since we now dynamically allocate and free the
7792 	 * loopback device ensure this invariant is maintained by
7793 	 * keeping the loopback device as the first device on the
7794 	 * list of network devices.  Ensuring the loopback devices
7795 	 * is the first device that appears and the last network device
7796 	 * that disappears.
7797 	 */
7798 	if (register_pernet_device(&loopback_net_ops))
7799 		goto out;
7800 
7801 	if (register_pernet_device(&default_device_ops))
7802 		goto out;
7803 
7804 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7805 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7806 
7807 	hotcpu_notifier(dev_cpu_callback, 0);
7808 	dst_subsys_init();
7809 	rc = 0;
7810 out:
7811 	return rc;
7812 }
7813 
7814 subsys_initcall(net_dev_init);
7815