1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/pci.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140
141 #include "net-sysfs.h"
142
143 /* Instead of increasing this, you should create a hash table. */
144 #define MAX_GRO_SKBS 8
145
146 /* This should be increased if a protocol with a bigger head is added. */
147 #define GRO_MAX_HEAD (MAX_HEADER + 128)
148
149 static DEFINE_SPINLOCK(ptype_lock);
150 static DEFINE_SPINLOCK(offload_lock);
151 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
152 struct list_head ptype_all __read_mostly; /* Taps */
153 static struct list_head offload_base __read_mostly;
154
155 static int netif_rx_internal(struct sk_buff *skb);
156 static int call_netdevice_notifiers_info(unsigned long val,
157 struct net_device *dev,
158 struct netdev_notifier_info *info);
159
160 /*
161 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
162 * semaphore.
163 *
164 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
165 *
166 * Writers must hold the rtnl semaphore while they loop through the
167 * dev_base_head list, and hold dev_base_lock for writing when they do the
168 * actual updates. This allows pure readers to access the list even
169 * while a writer is preparing to update it.
170 *
171 * To put it another way, dev_base_lock is held for writing only to
172 * protect against pure readers; the rtnl semaphore provides the
173 * protection against other writers.
174 *
175 * See, for example usages, register_netdevice() and
176 * unregister_netdevice(), which must be called with the rtnl
177 * semaphore held.
178 */
179 DEFINE_RWLOCK(dev_base_lock);
180 EXPORT_SYMBOL(dev_base_lock);
181
182 /* protects napi_hash addition/deletion and napi_gen_id */
183 static DEFINE_SPINLOCK(napi_hash_lock);
184
185 static unsigned int napi_gen_id;
186 static DEFINE_HASHTABLE(napi_hash, 8);
187
188 static seqcount_t devnet_rename_seq;
189
dev_base_seq_inc(struct net * net)190 static inline void dev_base_seq_inc(struct net *net)
191 {
192 while (++net->dev_base_seq == 0);
193 }
194
dev_name_hash(struct net * net,const char * name)195 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
196 {
197 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
198
199 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
200 }
201
dev_index_hash(struct net * net,int ifindex)202 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
203 {
204 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
205 }
206
rps_lock(struct softnet_data * sd)207 static inline void rps_lock(struct softnet_data *sd)
208 {
209 #ifdef CONFIG_RPS
210 spin_lock(&sd->input_pkt_queue.lock);
211 #endif
212 }
213
rps_unlock(struct softnet_data * sd)214 static inline void rps_unlock(struct softnet_data *sd)
215 {
216 #ifdef CONFIG_RPS
217 spin_unlock(&sd->input_pkt_queue.lock);
218 #endif
219 }
220
221 /* Device list insertion */
list_netdevice(struct net_device * dev)222 static void list_netdevice(struct net_device *dev)
223 {
224 struct net *net = dev_net(dev);
225
226 ASSERT_RTNL();
227
228 write_lock_bh(&dev_base_lock);
229 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
230 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
231 hlist_add_head_rcu(&dev->index_hlist,
232 dev_index_hash(net, dev->ifindex));
233 write_unlock_bh(&dev_base_lock);
234
235 dev_base_seq_inc(net);
236 }
237
238 /* Device list removal
239 * caller must respect a RCU grace period before freeing/reusing dev
240 */
unlist_netdevice(struct net_device * dev)241 static void unlist_netdevice(struct net_device *dev)
242 {
243 ASSERT_RTNL();
244
245 /* Unlink dev from the device chain */
246 write_lock_bh(&dev_base_lock);
247 list_del_rcu(&dev->dev_list);
248 hlist_del_rcu(&dev->name_hlist);
249 hlist_del_rcu(&dev->index_hlist);
250 write_unlock_bh(&dev_base_lock);
251
252 dev_base_seq_inc(dev_net(dev));
253 }
254
255 /*
256 * Our notifier list
257 */
258
259 static RAW_NOTIFIER_HEAD(netdev_chain);
260
261 /*
262 * Device drivers call our routines to queue packets here. We empty the
263 * queue in the local softnet handler.
264 */
265
266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
267 EXPORT_PER_CPU_SYMBOL(softnet_data);
268
269 #ifdef CONFIG_LOCKDEP
270 /*
271 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
272 * according to dev->type
273 */
274 static const unsigned short netdev_lock_type[] =
275 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
287 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
288 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
289 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
290
291 static const char *const netdev_lock_name[] =
292 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
304 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
305 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
306 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
307
308 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
310
netdev_lock_pos(unsigned short dev_type)311 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
312 {
313 int i;
314
315 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
316 if (netdev_lock_type[i] == dev_type)
317 return i;
318 /* the last key is used by default */
319 return ARRAY_SIZE(netdev_lock_type) - 1;
320 }
321
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)322 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
323 unsigned short dev_type)
324 {
325 int i;
326
327 i = netdev_lock_pos(dev_type);
328 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
329 netdev_lock_name[i]);
330 }
331
netdev_set_addr_lockdep_class(struct net_device * dev)332 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
333 {
334 int i;
335
336 i = netdev_lock_pos(dev->type);
337 lockdep_set_class_and_name(&dev->addr_list_lock,
338 &netdev_addr_lock_key[i],
339 netdev_lock_name[i]);
340 }
341 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)342 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
343 unsigned short dev_type)
344 {
345 }
netdev_set_addr_lockdep_class(struct net_device * dev)346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348 }
349 #endif
350
351 /*******************************************************************************
352
353 Protocol management and registration routines
354
355 *******************************************************************************/
356
357 /*
358 * Add a protocol ID to the list. Now that the input handler is
359 * smarter we can dispense with all the messy stuff that used to be
360 * here.
361 *
362 * BEWARE!!! Protocol handlers, mangling input packets,
363 * MUST BE last in hash buckets and checking protocol handlers
364 * MUST start from promiscuous ptype_all chain in net_bh.
365 * It is true now, do not change it.
366 * Explanation follows: if protocol handler, mangling packet, will
367 * be the first on list, it is not able to sense, that packet
368 * is cloned and should be copied-on-write, so that it will
369 * change it and subsequent readers will get broken packet.
370 * --ANK (980803)
371 */
372
ptype_head(const struct packet_type * pt)373 static inline struct list_head *ptype_head(const struct packet_type *pt)
374 {
375 if (pt->type == htons(ETH_P_ALL))
376 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
377 else
378 return pt->dev ? &pt->dev->ptype_specific :
379 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
380 }
381
382 /**
383 * dev_add_pack - add packet handler
384 * @pt: packet type declaration
385 *
386 * Add a protocol handler to the networking stack. The passed &packet_type
387 * is linked into kernel lists and may not be freed until it has been
388 * removed from the kernel lists.
389 *
390 * This call does not sleep therefore it can not
391 * guarantee all CPU's that are in middle of receiving packets
392 * will see the new packet type (until the next received packet).
393 */
394
dev_add_pack(struct packet_type * pt)395 void dev_add_pack(struct packet_type *pt)
396 {
397 struct list_head *head = ptype_head(pt);
398
399 spin_lock(&ptype_lock);
400 list_add_rcu(&pt->list, head);
401 spin_unlock(&ptype_lock);
402 }
403 EXPORT_SYMBOL(dev_add_pack);
404
405 /**
406 * __dev_remove_pack - remove packet handler
407 * @pt: packet type declaration
408 *
409 * Remove a protocol handler that was previously added to the kernel
410 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
411 * from the kernel lists and can be freed or reused once this function
412 * returns.
413 *
414 * The packet type might still be in use by receivers
415 * and must not be freed until after all the CPU's have gone
416 * through a quiescent state.
417 */
__dev_remove_pack(struct packet_type * pt)418 void __dev_remove_pack(struct packet_type *pt)
419 {
420 struct list_head *head = ptype_head(pt);
421 struct packet_type *pt1;
422
423 spin_lock(&ptype_lock);
424
425 list_for_each_entry(pt1, head, list) {
426 if (pt == pt1) {
427 list_del_rcu(&pt->list);
428 goto out;
429 }
430 }
431
432 pr_warn("dev_remove_pack: %p not found\n", pt);
433 out:
434 spin_unlock(&ptype_lock);
435 }
436 EXPORT_SYMBOL(__dev_remove_pack);
437
438 /**
439 * dev_remove_pack - remove packet handler
440 * @pt: packet type declaration
441 *
442 * Remove a protocol handler that was previously added to the kernel
443 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
444 * from the kernel lists and can be freed or reused once this function
445 * returns.
446 *
447 * This call sleeps to guarantee that no CPU is looking at the packet
448 * type after return.
449 */
dev_remove_pack(struct packet_type * pt)450 void dev_remove_pack(struct packet_type *pt)
451 {
452 __dev_remove_pack(pt);
453
454 synchronize_net();
455 }
456 EXPORT_SYMBOL(dev_remove_pack);
457
458
459 /**
460 * dev_add_offload - register offload handlers
461 * @po: protocol offload declaration
462 *
463 * Add protocol offload handlers to the networking stack. The passed
464 * &proto_offload is linked into kernel lists and may not be freed until
465 * it has been removed from the kernel lists.
466 *
467 * This call does not sleep therefore it can not
468 * guarantee all CPU's that are in middle of receiving packets
469 * will see the new offload handlers (until the next received packet).
470 */
dev_add_offload(struct packet_offload * po)471 void dev_add_offload(struct packet_offload *po)
472 {
473 struct packet_offload *elem;
474
475 spin_lock(&offload_lock);
476 list_for_each_entry(elem, &offload_base, list) {
477 if (po->priority < elem->priority)
478 break;
479 }
480 list_add_rcu(&po->list, elem->list.prev);
481 spin_unlock(&offload_lock);
482 }
483 EXPORT_SYMBOL(dev_add_offload);
484
485 /**
486 * __dev_remove_offload - remove offload handler
487 * @po: packet offload declaration
488 *
489 * Remove a protocol offload handler that was previously added to the
490 * kernel offload handlers by dev_add_offload(). The passed &offload_type
491 * is removed from the kernel lists and can be freed or reused once this
492 * function returns.
493 *
494 * The packet type might still be in use by receivers
495 * and must not be freed until after all the CPU's have gone
496 * through a quiescent state.
497 */
__dev_remove_offload(struct packet_offload * po)498 static void __dev_remove_offload(struct packet_offload *po)
499 {
500 struct list_head *head = &offload_base;
501 struct packet_offload *po1;
502
503 spin_lock(&offload_lock);
504
505 list_for_each_entry(po1, head, list) {
506 if (po == po1) {
507 list_del_rcu(&po->list);
508 goto out;
509 }
510 }
511
512 pr_warn("dev_remove_offload: %p not found\n", po);
513 out:
514 spin_unlock(&offload_lock);
515 }
516
517 /**
518 * dev_remove_offload - remove packet offload handler
519 * @po: packet offload declaration
520 *
521 * Remove a packet offload handler that was previously added to the kernel
522 * offload handlers by dev_add_offload(). The passed &offload_type is
523 * removed from the kernel lists and can be freed or reused once this
524 * function returns.
525 *
526 * This call sleeps to guarantee that no CPU is looking at the packet
527 * type after return.
528 */
dev_remove_offload(struct packet_offload * po)529 void dev_remove_offload(struct packet_offload *po)
530 {
531 __dev_remove_offload(po);
532
533 synchronize_net();
534 }
535 EXPORT_SYMBOL(dev_remove_offload);
536
537 /******************************************************************************
538
539 Device Boot-time Settings Routines
540
541 *******************************************************************************/
542
543 /* Boot time configuration table */
544 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
545
546 /**
547 * netdev_boot_setup_add - add new setup entry
548 * @name: name of the device
549 * @map: configured settings for the device
550 *
551 * Adds new setup entry to the dev_boot_setup list. The function
552 * returns 0 on error and 1 on success. This is a generic routine to
553 * all netdevices.
554 */
netdev_boot_setup_add(char * name,struct ifmap * map)555 static int netdev_boot_setup_add(char *name, struct ifmap *map)
556 {
557 struct netdev_boot_setup *s;
558 int i;
559
560 s = dev_boot_setup;
561 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
562 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
563 memset(s[i].name, 0, sizeof(s[i].name));
564 strlcpy(s[i].name, name, IFNAMSIZ);
565 memcpy(&s[i].map, map, sizeof(s[i].map));
566 break;
567 }
568 }
569
570 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
571 }
572
573 /**
574 * netdev_boot_setup_check - check boot time settings
575 * @dev: the netdevice
576 *
577 * Check boot time settings for the device.
578 * The found settings are set for the device to be used
579 * later in the device probing.
580 * Returns 0 if no settings found, 1 if they are.
581 */
netdev_boot_setup_check(struct net_device * dev)582 int netdev_boot_setup_check(struct net_device *dev)
583 {
584 struct netdev_boot_setup *s = dev_boot_setup;
585 int i;
586
587 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
588 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
589 !strcmp(dev->name, s[i].name)) {
590 dev->irq = s[i].map.irq;
591 dev->base_addr = s[i].map.base_addr;
592 dev->mem_start = s[i].map.mem_start;
593 dev->mem_end = s[i].map.mem_end;
594 return 1;
595 }
596 }
597 return 0;
598 }
599 EXPORT_SYMBOL(netdev_boot_setup_check);
600
601
602 /**
603 * netdev_boot_base - get address from boot time settings
604 * @prefix: prefix for network device
605 * @unit: id for network device
606 *
607 * Check boot time settings for the base address of device.
608 * The found settings are set for the device to be used
609 * later in the device probing.
610 * Returns 0 if no settings found.
611 */
netdev_boot_base(const char * prefix,int unit)612 unsigned long netdev_boot_base(const char *prefix, int unit)
613 {
614 const struct netdev_boot_setup *s = dev_boot_setup;
615 char name[IFNAMSIZ];
616 int i;
617
618 sprintf(name, "%s%d", prefix, unit);
619
620 /*
621 * If device already registered then return base of 1
622 * to indicate not to probe for this interface
623 */
624 if (__dev_get_by_name(&init_net, name))
625 return 1;
626
627 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
628 if (!strcmp(name, s[i].name))
629 return s[i].map.base_addr;
630 return 0;
631 }
632
633 /*
634 * Saves at boot time configured settings for any netdevice.
635 */
netdev_boot_setup(char * str)636 int __init netdev_boot_setup(char *str)
637 {
638 int ints[5];
639 struct ifmap map;
640
641 str = get_options(str, ARRAY_SIZE(ints), ints);
642 if (!str || !*str)
643 return 0;
644
645 /* Save settings */
646 memset(&map, 0, sizeof(map));
647 if (ints[0] > 0)
648 map.irq = ints[1];
649 if (ints[0] > 1)
650 map.base_addr = ints[2];
651 if (ints[0] > 2)
652 map.mem_start = ints[3];
653 if (ints[0] > 3)
654 map.mem_end = ints[4];
655
656 /* Add new entry to the list */
657 return netdev_boot_setup_add(str, &map);
658 }
659
660 __setup("netdev=", netdev_boot_setup);
661
662 /*******************************************************************************
663
664 Device Interface Subroutines
665
666 *******************************************************************************/
667
668 /**
669 * dev_get_iflink - get 'iflink' value of a interface
670 * @dev: targeted interface
671 *
672 * Indicates the ifindex the interface is linked to.
673 * Physical interfaces have the same 'ifindex' and 'iflink' values.
674 */
675
dev_get_iflink(const struct net_device * dev)676 int dev_get_iflink(const struct net_device *dev)
677 {
678 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
679 return dev->netdev_ops->ndo_get_iflink(dev);
680
681 return dev->ifindex;
682 }
683 EXPORT_SYMBOL(dev_get_iflink);
684
685 /**
686 * dev_fill_metadata_dst - Retrieve tunnel egress information.
687 * @dev: targeted interface
688 * @skb: The packet.
689 *
690 * For better visibility of tunnel traffic OVS needs to retrieve
691 * egress tunnel information for a packet. Following API allows
692 * user to get this info.
693 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)694 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
695 {
696 struct ip_tunnel_info *info;
697
698 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
699 return -EINVAL;
700
701 info = skb_tunnel_info_unclone(skb);
702 if (!info)
703 return -ENOMEM;
704 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
705 return -EINVAL;
706
707 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
708 }
709 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
710
711 /**
712 * __dev_get_by_name - find a device by its name
713 * @net: the applicable net namespace
714 * @name: name to find
715 *
716 * Find an interface by name. Must be called under RTNL semaphore
717 * or @dev_base_lock. If the name is found a pointer to the device
718 * is returned. If the name is not found then %NULL is returned. The
719 * reference counters are not incremented so the caller must be
720 * careful with locks.
721 */
722
__dev_get_by_name(struct net * net,const char * name)723 struct net_device *__dev_get_by_name(struct net *net, const char *name)
724 {
725 struct net_device *dev;
726 struct hlist_head *head = dev_name_hash(net, name);
727
728 hlist_for_each_entry(dev, head, name_hlist)
729 if (!strncmp(dev->name, name, IFNAMSIZ))
730 return dev;
731
732 return NULL;
733 }
734 EXPORT_SYMBOL(__dev_get_by_name);
735
736 /**
737 * dev_get_by_name_rcu - find a device by its name
738 * @net: the applicable net namespace
739 * @name: name to find
740 *
741 * Find an interface by name.
742 * If the name is found a pointer to the device is returned.
743 * If the name is not found then %NULL is returned.
744 * The reference counters are not incremented so the caller must be
745 * careful with locks. The caller must hold RCU lock.
746 */
747
dev_get_by_name_rcu(struct net * net,const char * name)748 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
749 {
750 struct net_device *dev;
751 struct hlist_head *head = dev_name_hash(net, name);
752
753 hlist_for_each_entry_rcu(dev, head, name_hlist)
754 if (!strncmp(dev->name, name, IFNAMSIZ))
755 return dev;
756
757 return NULL;
758 }
759 EXPORT_SYMBOL(dev_get_by_name_rcu);
760
761 /**
762 * dev_get_by_name - find a device by its name
763 * @net: the applicable net namespace
764 * @name: name to find
765 *
766 * Find an interface by name. This can be called from any
767 * context and does its own locking. The returned handle has
768 * the usage count incremented and the caller must use dev_put() to
769 * release it when it is no longer needed. %NULL is returned if no
770 * matching device is found.
771 */
772
dev_get_by_name(struct net * net,const char * name)773 struct net_device *dev_get_by_name(struct net *net, const char *name)
774 {
775 struct net_device *dev;
776
777 rcu_read_lock();
778 dev = dev_get_by_name_rcu(net, name);
779 if (dev)
780 dev_hold(dev);
781 rcu_read_unlock();
782 return dev;
783 }
784 EXPORT_SYMBOL(dev_get_by_name);
785
786 /**
787 * __dev_get_by_index - find a device by its ifindex
788 * @net: the applicable net namespace
789 * @ifindex: index of device
790 *
791 * Search for an interface by index. Returns %NULL if the device
792 * is not found or a pointer to the device. The device has not
793 * had its reference counter increased so the caller must be careful
794 * about locking. The caller must hold either the RTNL semaphore
795 * or @dev_base_lock.
796 */
797
__dev_get_by_index(struct net * net,int ifindex)798 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
799 {
800 struct net_device *dev;
801 struct hlist_head *head = dev_index_hash(net, ifindex);
802
803 hlist_for_each_entry(dev, head, index_hlist)
804 if (dev->ifindex == ifindex)
805 return dev;
806
807 return NULL;
808 }
809 EXPORT_SYMBOL(__dev_get_by_index);
810
811 /**
812 * dev_get_by_index_rcu - find a device by its ifindex
813 * @net: the applicable net namespace
814 * @ifindex: index of device
815 *
816 * Search for an interface by index. Returns %NULL if the device
817 * is not found or a pointer to the device. The device has not
818 * had its reference counter increased so the caller must be careful
819 * about locking. The caller must hold RCU lock.
820 */
821
dev_get_by_index_rcu(struct net * net,int ifindex)822 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
823 {
824 struct net_device *dev;
825 struct hlist_head *head = dev_index_hash(net, ifindex);
826
827 hlist_for_each_entry_rcu(dev, head, index_hlist)
828 if (dev->ifindex == ifindex)
829 return dev;
830
831 return NULL;
832 }
833 EXPORT_SYMBOL(dev_get_by_index_rcu);
834
835
836 /**
837 * dev_get_by_index - find a device by its ifindex
838 * @net: the applicable net namespace
839 * @ifindex: index of device
840 *
841 * Search for an interface by index. Returns NULL if the device
842 * is not found or a pointer to the device. The device returned has
843 * had a reference added and the pointer is safe until the user calls
844 * dev_put to indicate they have finished with it.
845 */
846
dev_get_by_index(struct net * net,int ifindex)847 struct net_device *dev_get_by_index(struct net *net, int ifindex)
848 {
849 struct net_device *dev;
850
851 rcu_read_lock();
852 dev = dev_get_by_index_rcu(net, ifindex);
853 if (dev)
854 dev_hold(dev);
855 rcu_read_unlock();
856 return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859
860 /**
861 * netdev_get_name - get a netdevice name, knowing its ifindex.
862 * @net: network namespace
863 * @name: a pointer to the buffer where the name will be stored.
864 * @ifindex: the ifindex of the interface to get the name from.
865 *
866 * The use of raw_seqcount_begin() and cond_resched() before
867 * retrying is required as we want to give the writers a chance
868 * to complete when CONFIG_PREEMPT is not set.
869 */
netdev_get_name(struct net * net,char * name,int ifindex)870 int netdev_get_name(struct net *net, char *name, int ifindex)
871 {
872 struct net_device *dev;
873 unsigned int seq;
874
875 retry:
876 seq = raw_seqcount_begin(&devnet_rename_seq);
877 rcu_read_lock();
878 dev = dev_get_by_index_rcu(net, ifindex);
879 if (!dev) {
880 rcu_read_unlock();
881 return -ENODEV;
882 }
883
884 strcpy(name, dev->name);
885 rcu_read_unlock();
886 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
887 cond_resched();
888 goto retry;
889 }
890
891 return 0;
892 }
893
894 /**
895 * dev_getbyhwaddr_rcu - find a device by its hardware address
896 * @net: the applicable net namespace
897 * @type: media type of device
898 * @ha: hardware address
899 *
900 * Search for an interface by MAC address. Returns NULL if the device
901 * is not found or a pointer to the device.
902 * The caller must hold RCU or RTNL.
903 * The returned device has not had its ref count increased
904 * and the caller must therefore be careful about locking
905 *
906 */
907
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)908 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
909 const char *ha)
910 {
911 struct net_device *dev;
912
913 for_each_netdev_rcu(net, dev)
914 if (dev->type == type &&
915 !memcmp(dev->dev_addr, ha, dev->addr_len))
916 return dev;
917
918 return NULL;
919 }
920 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
921
__dev_getfirstbyhwtype(struct net * net,unsigned short type)922 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
923 {
924 struct net_device *dev;
925
926 ASSERT_RTNL();
927 for_each_netdev(net, dev)
928 if (dev->type == type)
929 return dev;
930
931 return NULL;
932 }
933 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
934
dev_getfirstbyhwtype(struct net * net,unsigned short type)935 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
936 {
937 struct net_device *dev, *ret = NULL;
938
939 rcu_read_lock();
940 for_each_netdev_rcu(net, dev)
941 if (dev->type == type) {
942 dev_hold(dev);
943 ret = dev;
944 break;
945 }
946 rcu_read_unlock();
947 return ret;
948 }
949 EXPORT_SYMBOL(dev_getfirstbyhwtype);
950
951 /**
952 * __dev_get_by_flags - find any device with given flags
953 * @net: the applicable net namespace
954 * @if_flags: IFF_* values
955 * @mask: bitmask of bits in if_flags to check
956 *
957 * Search for any interface with the given flags. Returns NULL if a device
958 * is not found or a pointer to the device. Must be called inside
959 * rtnl_lock(), and result refcount is unchanged.
960 */
961
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)962 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
963 unsigned short mask)
964 {
965 struct net_device *dev, *ret;
966
967 ASSERT_RTNL();
968
969 ret = NULL;
970 for_each_netdev(net, dev) {
971 if (((dev->flags ^ if_flags) & mask) == 0) {
972 ret = dev;
973 break;
974 }
975 }
976 return ret;
977 }
978 EXPORT_SYMBOL(__dev_get_by_flags);
979
980 /**
981 * dev_valid_name - check if name is okay for network device
982 * @name: name string
983 *
984 * Network device names need to be valid file names to
985 * to allow sysfs to work. We also disallow any kind of
986 * whitespace.
987 */
dev_valid_name(const char * name)988 bool dev_valid_name(const char *name)
989 {
990 if (*name == '\0')
991 return false;
992 if (strlen(name) >= IFNAMSIZ)
993 return false;
994 if (!strcmp(name, ".") || !strcmp(name, ".."))
995 return false;
996
997 while (*name) {
998 if (*name == '/' || *name == ':' || isspace(*name))
999 return false;
1000 name++;
1001 }
1002 return true;
1003 }
1004 EXPORT_SYMBOL(dev_valid_name);
1005
1006 /**
1007 * __dev_alloc_name - allocate a name for a device
1008 * @net: network namespace to allocate the device name in
1009 * @name: name format string
1010 * @buf: scratch buffer and result name string
1011 *
1012 * Passed a format string - eg "lt%d" it will try and find a suitable
1013 * id. It scans list of devices to build up a free map, then chooses
1014 * the first empty slot. The caller must hold the dev_base or rtnl lock
1015 * while allocating the name and adding the device in order to avoid
1016 * duplicates.
1017 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1018 * Returns the number of the unit assigned or a negative errno code.
1019 */
1020
__dev_alloc_name(struct net * net,const char * name,char * buf)1021 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1022 {
1023 int i = 0;
1024 const char *p;
1025 const int max_netdevices = 8*PAGE_SIZE;
1026 unsigned long *inuse;
1027 struct net_device *d;
1028
1029 p = strnchr(name, IFNAMSIZ-1, '%');
1030 if (p) {
1031 /*
1032 * Verify the string as this thing may have come from
1033 * the user. There must be either one "%d" and no other "%"
1034 * characters.
1035 */
1036 if (p[1] != 'd' || strchr(p + 2, '%'))
1037 return -EINVAL;
1038
1039 /* Use one page as a bit array of possible slots */
1040 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1041 if (!inuse)
1042 return -ENOMEM;
1043
1044 for_each_netdev(net, d) {
1045 if (!sscanf(d->name, name, &i))
1046 continue;
1047 if (i < 0 || i >= max_netdevices)
1048 continue;
1049
1050 /* avoid cases where sscanf is not exact inverse of printf */
1051 snprintf(buf, IFNAMSIZ, name, i);
1052 if (!strncmp(buf, d->name, IFNAMSIZ))
1053 set_bit(i, inuse);
1054 }
1055
1056 i = find_first_zero_bit(inuse, max_netdevices);
1057 free_page((unsigned long) inuse);
1058 }
1059
1060 if (buf != name)
1061 snprintf(buf, IFNAMSIZ, name, i);
1062 if (!__dev_get_by_name(net, buf))
1063 return i;
1064
1065 /* It is possible to run out of possible slots
1066 * when the name is long and there isn't enough space left
1067 * for the digits, or if all bits are used.
1068 */
1069 return -ENFILE;
1070 }
1071
1072 /**
1073 * dev_alloc_name - allocate a name for a device
1074 * @dev: device
1075 * @name: name format string
1076 *
1077 * Passed a format string - eg "lt%d" it will try and find a suitable
1078 * id. It scans list of devices to build up a free map, then chooses
1079 * the first empty slot. The caller must hold the dev_base or rtnl lock
1080 * while allocating the name and adding the device in order to avoid
1081 * duplicates.
1082 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1083 * Returns the number of the unit assigned or a negative errno code.
1084 */
1085
dev_alloc_name(struct net_device * dev,const char * name)1086 int dev_alloc_name(struct net_device *dev, const char *name)
1087 {
1088 char buf[IFNAMSIZ];
1089 struct net *net;
1090 int ret;
1091
1092 BUG_ON(!dev_net(dev));
1093 net = dev_net(dev);
1094 ret = __dev_alloc_name(net, name, buf);
1095 if (ret >= 0)
1096 strlcpy(dev->name, buf, IFNAMSIZ);
1097 return ret;
1098 }
1099 EXPORT_SYMBOL(dev_alloc_name);
1100
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1101 static int dev_alloc_name_ns(struct net *net,
1102 struct net_device *dev,
1103 const char *name)
1104 {
1105 char buf[IFNAMSIZ];
1106 int ret;
1107
1108 ret = __dev_alloc_name(net, name, buf);
1109 if (ret >= 0)
1110 strlcpy(dev->name, buf, IFNAMSIZ);
1111 return ret;
1112 }
1113
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1114 static int dev_get_valid_name(struct net *net,
1115 struct net_device *dev,
1116 const char *name)
1117 {
1118 BUG_ON(!net);
1119
1120 if (!dev_valid_name(name))
1121 return -EINVAL;
1122
1123 if (strchr(name, '%'))
1124 return dev_alloc_name_ns(net, dev, name);
1125 else if (__dev_get_by_name(net, name))
1126 return -EEXIST;
1127 else if (dev->name != name)
1128 strlcpy(dev->name, name, IFNAMSIZ);
1129
1130 return 0;
1131 }
1132
1133 /**
1134 * dev_change_name - change name of a device
1135 * @dev: device
1136 * @newname: name (or format string) must be at least IFNAMSIZ
1137 *
1138 * Change name of a device, can pass format strings "eth%d".
1139 * for wildcarding.
1140 */
dev_change_name(struct net_device * dev,const char * newname)1141 int dev_change_name(struct net_device *dev, const char *newname)
1142 {
1143 unsigned char old_assign_type;
1144 char oldname[IFNAMSIZ];
1145 int err = 0;
1146 int ret;
1147 struct net *net;
1148
1149 ASSERT_RTNL();
1150 BUG_ON(!dev_net(dev));
1151
1152 net = dev_net(dev);
1153 if (dev->flags & IFF_UP)
1154 return -EBUSY;
1155
1156 write_seqcount_begin(&devnet_rename_seq);
1157
1158 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1159 write_seqcount_end(&devnet_rename_seq);
1160 return 0;
1161 }
1162
1163 memcpy(oldname, dev->name, IFNAMSIZ);
1164
1165 err = dev_get_valid_name(net, dev, newname);
1166 if (err < 0) {
1167 write_seqcount_end(&devnet_rename_seq);
1168 return err;
1169 }
1170
1171 if (oldname[0] && !strchr(oldname, '%'))
1172 netdev_info(dev, "renamed from %s\n", oldname);
1173
1174 old_assign_type = dev->name_assign_type;
1175 dev->name_assign_type = NET_NAME_RENAMED;
1176
1177 rollback:
1178 ret = device_rename(&dev->dev, dev->name);
1179 if (ret) {
1180 memcpy(dev->name, oldname, IFNAMSIZ);
1181 dev->name_assign_type = old_assign_type;
1182 write_seqcount_end(&devnet_rename_seq);
1183 return ret;
1184 }
1185
1186 write_seqcount_end(&devnet_rename_seq);
1187
1188 netdev_adjacent_rename_links(dev, oldname);
1189
1190 write_lock_bh(&dev_base_lock);
1191 hlist_del_rcu(&dev->name_hlist);
1192 write_unlock_bh(&dev_base_lock);
1193
1194 synchronize_rcu();
1195
1196 write_lock_bh(&dev_base_lock);
1197 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1198 write_unlock_bh(&dev_base_lock);
1199
1200 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1201 ret = notifier_to_errno(ret);
1202
1203 if (ret) {
1204 /* err >= 0 after dev_alloc_name() or stores the first errno */
1205 if (err >= 0) {
1206 err = ret;
1207 write_seqcount_begin(&devnet_rename_seq);
1208 memcpy(dev->name, oldname, IFNAMSIZ);
1209 memcpy(oldname, newname, IFNAMSIZ);
1210 dev->name_assign_type = old_assign_type;
1211 old_assign_type = NET_NAME_RENAMED;
1212 goto rollback;
1213 } else {
1214 pr_err("%s: name change rollback failed: %d\n",
1215 dev->name, ret);
1216 }
1217 }
1218
1219 return err;
1220 }
1221
1222 /**
1223 * dev_set_alias - change ifalias of a device
1224 * @dev: device
1225 * @alias: name up to IFALIASZ
1226 * @len: limit of bytes to copy from info
1227 *
1228 * Set ifalias for a device,
1229 */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1230 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1231 {
1232 char *new_ifalias;
1233
1234 ASSERT_RTNL();
1235
1236 if (len >= IFALIASZ)
1237 return -EINVAL;
1238
1239 if (!len) {
1240 kfree(dev->ifalias);
1241 dev->ifalias = NULL;
1242 return 0;
1243 }
1244
1245 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1246 if (!new_ifalias)
1247 return -ENOMEM;
1248 dev->ifalias = new_ifalias;
1249
1250 strlcpy(dev->ifalias, alias, len+1);
1251 return len;
1252 }
1253
1254
1255 /**
1256 * netdev_features_change - device changes features
1257 * @dev: device to cause notification
1258 *
1259 * Called to indicate a device has changed features.
1260 */
netdev_features_change(struct net_device * dev)1261 void netdev_features_change(struct net_device *dev)
1262 {
1263 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1264 }
1265 EXPORT_SYMBOL(netdev_features_change);
1266
1267 /**
1268 * netdev_state_change - device changes state
1269 * @dev: device to cause notification
1270 *
1271 * Called to indicate a device has changed state. This function calls
1272 * the notifier chains for netdev_chain and sends a NEWLINK message
1273 * to the routing socket.
1274 */
netdev_state_change(struct net_device * dev)1275 void netdev_state_change(struct net_device *dev)
1276 {
1277 if (dev->flags & IFF_UP) {
1278 struct netdev_notifier_change_info change_info;
1279
1280 change_info.flags_changed = 0;
1281 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1282 &change_info.info);
1283 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1284 }
1285 }
1286 EXPORT_SYMBOL(netdev_state_change);
1287
1288 /**
1289 * netdev_notify_peers - notify network peers about existence of @dev
1290 * @dev: network device
1291 *
1292 * Generate traffic such that interested network peers are aware of
1293 * @dev, such as by generating a gratuitous ARP. This may be used when
1294 * a device wants to inform the rest of the network about some sort of
1295 * reconfiguration such as a failover event or virtual machine
1296 * migration.
1297 */
netdev_notify_peers(struct net_device * dev)1298 void netdev_notify_peers(struct net_device *dev)
1299 {
1300 rtnl_lock();
1301 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1302 rtnl_unlock();
1303 }
1304 EXPORT_SYMBOL(netdev_notify_peers);
1305
__dev_open(struct net_device * dev)1306 static int __dev_open(struct net_device *dev)
1307 {
1308 const struct net_device_ops *ops = dev->netdev_ops;
1309 int ret;
1310
1311 ASSERT_RTNL();
1312
1313 if (!netif_device_present(dev))
1314 return -ENODEV;
1315
1316 /* Block netpoll from trying to do any rx path servicing.
1317 * If we don't do this there is a chance ndo_poll_controller
1318 * or ndo_poll may be running while we open the device
1319 */
1320 netpoll_poll_disable(dev);
1321
1322 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1323 ret = notifier_to_errno(ret);
1324 if (ret)
1325 return ret;
1326
1327 set_bit(__LINK_STATE_START, &dev->state);
1328
1329 if (ops->ndo_validate_addr)
1330 ret = ops->ndo_validate_addr(dev);
1331
1332 if (!ret && ops->ndo_open)
1333 ret = ops->ndo_open(dev);
1334
1335 netpoll_poll_enable(dev);
1336
1337 if (ret)
1338 clear_bit(__LINK_STATE_START, &dev->state);
1339 else {
1340 dev->flags |= IFF_UP;
1341 dev_set_rx_mode(dev);
1342 dev_activate(dev);
1343 add_device_randomness(dev->dev_addr, dev->addr_len);
1344 }
1345
1346 return ret;
1347 }
1348
1349 /**
1350 * dev_open - prepare an interface for use.
1351 * @dev: device to open
1352 *
1353 * Takes a device from down to up state. The device's private open
1354 * function is invoked and then the multicast lists are loaded. Finally
1355 * the device is moved into the up state and a %NETDEV_UP message is
1356 * sent to the netdev notifier chain.
1357 *
1358 * Calling this function on an active interface is a nop. On a failure
1359 * a negative errno code is returned.
1360 */
dev_open(struct net_device * dev)1361 int dev_open(struct net_device *dev)
1362 {
1363 int ret;
1364
1365 if (dev->flags & IFF_UP)
1366 return 0;
1367
1368 ret = __dev_open(dev);
1369 if (ret < 0)
1370 return ret;
1371
1372 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1373 call_netdevice_notifiers(NETDEV_UP, dev);
1374
1375 return ret;
1376 }
1377 EXPORT_SYMBOL(dev_open);
1378
__dev_close_many(struct list_head * head)1379 static int __dev_close_many(struct list_head *head)
1380 {
1381 struct net_device *dev;
1382
1383 ASSERT_RTNL();
1384 might_sleep();
1385
1386 list_for_each_entry(dev, head, close_list) {
1387 /* Temporarily disable netpoll until the interface is down */
1388 netpoll_poll_disable(dev);
1389
1390 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1391
1392 clear_bit(__LINK_STATE_START, &dev->state);
1393
1394 /* Synchronize to scheduled poll. We cannot touch poll list, it
1395 * can be even on different cpu. So just clear netif_running().
1396 *
1397 * dev->stop() will invoke napi_disable() on all of it's
1398 * napi_struct instances on this device.
1399 */
1400 smp_mb__after_atomic(); /* Commit netif_running(). */
1401 }
1402
1403 dev_deactivate_many(head);
1404
1405 list_for_each_entry(dev, head, close_list) {
1406 const struct net_device_ops *ops = dev->netdev_ops;
1407
1408 /*
1409 * Call the device specific close. This cannot fail.
1410 * Only if device is UP
1411 *
1412 * We allow it to be called even after a DETACH hot-plug
1413 * event.
1414 */
1415 if (ops->ndo_stop)
1416 ops->ndo_stop(dev);
1417
1418 dev->flags &= ~IFF_UP;
1419 netpoll_poll_enable(dev);
1420 }
1421
1422 return 0;
1423 }
1424
__dev_close(struct net_device * dev)1425 static int __dev_close(struct net_device *dev)
1426 {
1427 int retval;
1428 LIST_HEAD(single);
1429
1430 list_add(&dev->close_list, &single);
1431 retval = __dev_close_many(&single);
1432 list_del(&single);
1433
1434 return retval;
1435 }
1436
dev_close_many(struct list_head * head,bool unlink)1437 int dev_close_many(struct list_head *head, bool unlink)
1438 {
1439 struct net_device *dev, *tmp;
1440
1441 /* Remove the devices that don't need to be closed */
1442 list_for_each_entry_safe(dev, tmp, head, close_list)
1443 if (!(dev->flags & IFF_UP))
1444 list_del_init(&dev->close_list);
1445
1446 __dev_close_many(head);
1447
1448 list_for_each_entry_safe(dev, tmp, head, close_list) {
1449 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1450 call_netdevice_notifiers(NETDEV_DOWN, dev);
1451 if (unlink)
1452 list_del_init(&dev->close_list);
1453 }
1454
1455 return 0;
1456 }
1457 EXPORT_SYMBOL(dev_close_many);
1458
1459 /**
1460 * dev_close - shutdown an interface.
1461 * @dev: device to shutdown
1462 *
1463 * This function moves an active device into down state. A
1464 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1465 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1466 * chain.
1467 */
dev_close(struct net_device * dev)1468 int dev_close(struct net_device *dev)
1469 {
1470 if (dev->flags & IFF_UP) {
1471 LIST_HEAD(single);
1472
1473 list_add(&dev->close_list, &single);
1474 dev_close_many(&single, true);
1475 list_del(&single);
1476 }
1477 return 0;
1478 }
1479 EXPORT_SYMBOL(dev_close);
1480
1481
1482 /**
1483 * dev_disable_lro - disable Large Receive Offload on a device
1484 * @dev: device
1485 *
1486 * Disable Large Receive Offload (LRO) on a net device. Must be
1487 * called under RTNL. This is needed if received packets may be
1488 * forwarded to another interface.
1489 */
dev_disable_lro(struct net_device * dev)1490 void dev_disable_lro(struct net_device *dev)
1491 {
1492 struct net_device *lower_dev;
1493 struct list_head *iter;
1494
1495 dev->wanted_features &= ~NETIF_F_LRO;
1496 netdev_update_features(dev);
1497
1498 if (unlikely(dev->features & NETIF_F_LRO))
1499 netdev_WARN(dev, "failed to disable LRO!\n");
1500
1501 netdev_for_each_lower_dev(dev, lower_dev, iter)
1502 dev_disable_lro(lower_dev);
1503 }
1504 EXPORT_SYMBOL(dev_disable_lro);
1505
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1506 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1507 struct net_device *dev)
1508 {
1509 struct netdev_notifier_info info;
1510
1511 netdev_notifier_info_init(&info, dev);
1512 return nb->notifier_call(nb, val, &info);
1513 }
1514
1515 static int dev_boot_phase = 1;
1516
1517 /**
1518 * register_netdevice_notifier - register a network notifier block
1519 * @nb: notifier
1520 *
1521 * Register a notifier to be called when network device events occur.
1522 * The notifier passed is linked into the kernel structures and must
1523 * not be reused until it has been unregistered. A negative errno code
1524 * is returned on a failure.
1525 *
1526 * When registered all registration and up events are replayed
1527 * to the new notifier to allow device to have a race free
1528 * view of the network device list.
1529 */
1530
register_netdevice_notifier(struct notifier_block * nb)1531 int register_netdevice_notifier(struct notifier_block *nb)
1532 {
1533 struct net_device *dev;
1534 struct net_device *last;
1535 struct net *net;
1536 int err;
1537
1538 rtnl_lock();
1539 err = raw_notifier_chain_register(&netdev_chain, nb);
1540 if (err)
1541 goto unlock;
1542 if (dev_boot_phase)
1543 goto unlock;
1544 for_each_net(net) {
1545 for_each_netdev(net, dev) {
1546 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1547 err = notifier_to_errno(err);
1548 if (err)
1549 goto rollback;
1550
1551 if (!(dev->flags & IFF_UP))
1552 continue;
1553
1554 call_netdevice_notifier(nb, NETDEV_UP, dev);
1555 }
1556 }
1557
1558 unlock:
1559 rtnl_unlock();
1560 return err;
1561
1562 rollback:
1563 last = dev;
1564 for_each_net(net) {
1565 for_each_netdev(net, dev) {
1566 if (dev == last)
1567 goto outroll;
1568
1569 if (dev->flags & IFF_UP) {
1570 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1571 dev);
1572 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1573 }
1574 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1575 }
1576 }
1577
1578 outroll:
1579 raw_notifier_chain_unregister(&netdev_chain, nb);
1580 goto unlock;
1581 }
1582 EXPORT_SYMBOL(register_netdevice_notifier);
1583
1584 /**
1585 * unregister_netdevice_notifier - unregister a network notifier block
1586 * @nb: notifier
1587 *
1588 * Unregister a notifier previously registered by
1589 * register_netdevice_notifier(). The notifier is unlinked into the
1590 * kernel structures and may then be reused. A negative errno code
1591 * is returned on a failure.
1592 *
1593 * After unregistering unregister and down device events are synthesized
1594 * for all devices on the device list to the removed notifier to remove
1595 * the need for special case cleanup code.
1596 */
1597
unregister_netdevice_notifier(struct notifier_block * nb)1598 int unregister_netdevice_notifier(struct notifier_block *nb)
1599 {
1600 struct net_device *dev;
1601 struct net *net;
1602 int err;
1603
1604 rtnl_lock();
1605 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1606 if (err)
1607 goto unlock;
1608
1609 for_each_net(net) {
1610 for_each_netdev(net, dev) {
1611 if (dev->flags & IFF_UP) {
1612 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1613 dev);
1614 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1615 }
1616 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1617 }
1618 }
1619 unlock:
1620 rtnl_unlock();
1621 return err;
1622 }
1623 EXPORT_SYMBOL(unregister_netdevice_notifier);
1624
1625 /**
1626 * call_netdevice_notifiers_info - call all network notifier blocks
1627 * @val: value passed unmodified to notifier function
1628 * @dev: net_device pointer passed unmodified to notifier function
1629 * @info: notifier information data
1630 *
1631 * Call all network notifier blocks. Parameters and return value
1632 * are as for raw_notifier_call_chain().
1633 */
1634
call_netdevice_notifiers_info(unsigned long val,struct net_device * dev,struct netdev_notifier_info * info)1635 static int call_netdevice_notifiers_info(unsigned long val,
1636 struct net_device *dev,
1637 struct netdev_notifier_info *info)
1638 {
1639 ASSERT_RTNL();
1640 netdev_notifier_info_init(info, dev);
1641 return raw_notifier_call_chain(&netdev_chain, val, info);
1642 }
1643
1644 /**
1645 * call_netdevice_notifiers - call all network notifier blocks
1646 * @val: value passed unmodified to notifier function
1647 * @dev: net_device pointer passed unmodified to notifier function
1648 *
1649 * Call all network notifier blocks. Parameters and return value
1650 * are as for raw_notifier_call_chain().
1651 */
1652
call_netdevice_notifiers(unsigned long val,struct net_device * dev)1653 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1654 {
1655 struct netdev_notifier_info info;
1656
1657 return call_netdevice_notifiers_info(val, dev, &info);
1658 }
1659 EXPORT_SYMBOL(call_netdevice_notifiers);
1660
1661 #ifdef CONFIG_NET_INGRESS
1662 static struct static_key ingress_needed __read_mostly;
1663
net_inc_ingress_queue(void)1664 void net_inc_ingress_queue(void)
1665 {
1666 static_key_slow_inc(&ingress_needed);
1667 }
1668 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1669
net_dec_ingress_queue(void)1670 void net_dec_ingress_queue(void)
1671 {
1672 static_key_slow_dec(&ingress_needed);
1673 }
1674 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1675 #endif
1676
1677 static struct static_key netstamp_needed __read_mostly;
1678 #ifdef HAVE_JUMP_LABEL
1679 /* We are not allowed to call static_key_slow_dec() from irq context
1680 * If net_disable_timestamp() is called from irq context, defer the
1681 * static_key_slow_dec() calls.
1682 */
1683 static atomic_t netstamp_needed_deferred;
1684 #endif
1685
net_enable_timestamp(void)1686 void net_enable_timestamp(void)
1687 {
1688 #ifdef HAVE_JUMP_LABEL
1689 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1690
1691 if (deferred) {
1692 while (--deferred)
1693 static_key_slow_dec(&netstamp_needed);
1694 return;
1695 }
1696 #endif
1697 static_key_slow_inc(&netstamp_needed);
1698 }
1699 EXPORT_SYMBOL(net_enable_timestamp);
1700
net_disable_timestamp(void)1701 void net_disable_timestamp(void)
1702 {
1703 #ifdef HAVE_JUMP_LABEL
1704 if (in_interrupt()) {
1705 atomic_inc(&netstamp_needed_deferred);
1706 return;
1707 }
1708 #endif
1709 static_key_slow_dec(&netstamp_needed);
1710 }
1711 EXPORT_SYMBOL(net_disable_timestamp);
1712
net_timestamp_set(struct sk_buff * skb)1713 static inline void net_timestamp_set(struct sk_buff *skb)
1714 {
1715 skb->tstamp.tv64 = 0;
1716 if (static_key_false(&netstamp_needed))
1717 __net_timestamp(skb);
1718 }
1719
1720 #define net_timestamp_check(COND, SKB) \
1721 if (static_key_false(&netstamp_needed)) { \
1722 if ((COND) && !(SKB)->tstamp.tv64) \
1723 __net_timestamp(SKB); \
1724 } \
1725
is_skb_forwardable(struct net_device * dev,struct sk_buff * skb)1726 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1727 {
1728 unsigned int len;
1729
1730 if (!(dev->flags & IFF_UP))
1731 return false;
1732
1733 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1734 if (skb->len <= len)
1735 return true;
1736
1737 /* if TSO is enabled, we don't care about the length as the packet
1738 * could be forwarded without being segmented before
1739 */
1740 if (skb_is_gso(skb))
1741 return true;
1742
1743 return false;
1744 }
1745 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1746
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1747 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1748 {
1749 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1750 unlikely(!is_skb_forwardable(dev, skb))) {
1751 atomic_long_inc(&dev->rx_dropped);
1752 kfree_skb(skb);
1753 return NET_RX_DROP;
1754 }
1755
1756 skb_scrub_packet(skb, true);
1757 skb->priority = 0;
1758 skb->protocol = eth_type_trans(skb, dev);
1759 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1760
1761 return 0;
1762 }
1763 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1764
1765 /**
1766 * dev_forward_skb - loopback an skb to another netif
1767 *
1768 * @dev: destination network device
1769 * @skb: buffer to forward
1770 *
1771 * return values:
1772 * NET_RX_SUCCESS (no congestion)
1773 * NET_RX_DROP (packet was dropped, but freed)
1774 *
1775 * dev_forward_skb can be used for injecting an skb from the
1776 * start_xmit function of one device into the receive queue
1777 * of another device.
1778 *
1779 * The receiving device may be in another namespace, so
1780 * we have to clear all information in the skb that could
1781 * impact namespace isolation.
1782 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1783 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1784 {
1785 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1786 }
1787 EXPORT_SYMBOL_GPL(dev_forward_skb);
1788
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)1789 static inline int deliver_skb(struct sk_buff *skb,
1790 struct packet_type *pt_prev,
1791 struct net_device *orig_dev)
1792 {
1793 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1794 return -ENOMEM;
1795 atomic_inc(&skb->users);
1796 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1797 }
1798
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)1799 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1800 struct packet_type **pt,
1801 struct net_device *orig_dev,
1802 __be16 type,
1803 struct list_head *ptype_list)
1804 {
1805 struct packet_type *ptype, *pt_prev = *pt;
1806
1807 list_for_each_entry_rcu(ptype, ptype_list, list) {
1808 if (ptype->type != type)
1809 continue;
1810 if (pt_prev)
1811 deliver_skb(skb, pt_prev, orig_dev);
1812 pt_prev = ptype;
1813 }
1814 *pt = pt_prev;
1815 }
1816
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)1817 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1818 {
1819 if (!ptype->af_packet_priv || !skb->sk)
1820 return false;
1821
1822 if (ptype->id_match)
1823 return ptype->id_match(ptype, skb->sk);
1824 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1825 return true;
1826
1827 return false;
1828 }
1829
1830 /*
1831 * Support routine. Sends outgoing frames to any network
1832 * taps currently in use.
1833 */
1834
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)1835 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1836 {
1837 struct packet_type *ptype;
1838 struct sk_buff *skb2 = NULL;
1839 struct packet_type *pt_prev = NULL;
1840 struct list_head *ptype_list = &ptype_all;
1841
1842 rcu_read_lock();
1843 again:
1844 list_for_each_entry_rcu(ptype, ptype_list, list) {
1845 /* Never send packets back to the socket
1846 * they originated from - MvS (miquels@drinkel.ow.org)
1847 */
1848 if (skb_loop_sk(ptype, skb))
1849 continue;
1850
1851 if (pt_prev) {
1852 deliver_skb(skb2, pt_prev, skb->dev);
1853 pt_prev = ptype;
1854 continue;
1855 }
1856
1857 /* need to clone skb, done only once */
1858 skb2 = skb_clone(skb, GFP_ATOMIC);
1859 if (!skb2)
1860 goto out_unlock;
1861
1862 net_timestamp_set(skb2);
1863
1864 /* skb->nh should be correctly
1865 * set by sender, so that the second statement is
1866 * just protection against buggy protocols.
1867 */
1868 skb_reset_mac_header(skb2);
1869
1870 if (skb_network_header(skb2) < skb2->data ||
1871 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1872 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1873 ntohs(skb2->protocol),
1874 dev->name);
1875 skb_reset_network_header(skb2);
1876 }
1877
1878 skb2->transport_header = skb2->network_header;
1879 skb2->pkt_type = PACKET_OUTGOING;
1880 pt_prev = ptype;
1881 }
1882
1883 if (ptype_list == &ptype_all) {
1884 ptype_list = &dev->ptype_all;
1885 goto again;
1886 }
1887 out_unlock:
1888 if (pt_prev)
1889 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1890 rcu_read_unlock();
1891 }
1892
1893 /**
1894 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1895 * @dev: Network device
1896 * @txq: number of queues available
1897 *
1898 * If real_num_tx_queues is changed the tc mappings may no longer be
1899 * valid. To resolve this verify the tc mapping remains valid and if
1900 * not NULL the mapping. With no priorities mapping to this
1901 * offset/count pair it will no longer be used. In the worst case TC0
1902 * is invalid nothing can be done so disable priority mappings. If is
1903 * expected that drivers will fix this mapping if they can before
1904 * calling netif_set_real_num_tx_queues.
1905 */
netif_setup_tc(struct net_device * dev,unsigned int txq)1906 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1907 {
1908 int i;
1909 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1910
1911 /* If TC0 is invalidated disable TC mapping */
1912 if (tc->offset + tc->count > txq) {
1913 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1914 dev->num_tc = 0;
1915 return;
1916 }
1917
1918 /* Invalidated prio to tc mappings set to TC0 */
1919 for (i = 1; i < TC_BITMASK + 1; i++) {
1920 int q = netdev_get_prio_tc_map(dev, i);
1921
1922 tc = &dev->tc_to_txq[q];
1923 if (tc->offset + tc->count > txq) {
1924 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1925 i, q);
1926 netdev_set_prio_tc_map(dev, i, 0);
1927 }
1928 }
1929 }
1930
1931 #ifdef CONFIG_XPS
1932 static DEFINE_MUTEX(xps_map_mutex);
1933 #define xmap_dereference(P) \
1934 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1935
remove_xps_queue(struct xps_dev_maps * dev_maps,int cpu,u16 index)1936 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1937 int cpu, u16 index)
1938 {
1939 struct xps_map *map = NULL;
1940 int pos;
1941
1942 if (dev_maps)
1943 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1944
1945 for (pos = 0; map && pos < map->len; pos++) {
1946 if (map->queues[pos] == index) {
1947 if (map->len > 1) {
1948 map->queues[pos] = map->queues[--map->len];
1949 } else {
1950 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1951 kfree_rcu(map, rcu);
1952 map = NULL;
1953 }
1954 break;
1955 }
1956 }
1957
1958 return map;
1959 }
1960
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)1961 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1962 {
1963 struct xps_dev_maps *dev_maps;
1964 int cpu, i;
1965 bool active = false;
1966
1967 mutex_lock(&xps_map_mutex);
1968 dev_maps = xmap_dereference(dev->xps_maps);
1969
1970 if (!dev_maps)
1971 goto out_no_maps;
1972
1973 for_each_possible_cpu(cpu) {
1974 for (i = index; i < dev->num_tx_queues; i++) {
1975 if (!remove_xps_queue(dev_maps, cpu, i))
1976 break;
1977 }
1978 if (i == dev->num_tx_queues)
1979 active = true;
1980 }
1981
1982 if (!active) {
1983 RCU_INIT_POINTER(dev->xps_maps, NULL);
1984 kfree_rcu(dev_maps, rcu);
1985 }
1986
1987 for (i = index; i < dev->num_tx_queues; i++)
1988 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1989 NUMA_NO_NODE);
1990
1991 out_no_maps:
1992 mutex_unlock(&xps_map_mutex);
1993 }
1994
expand_xps_map(struct xps_map * map,int cpu,u16 index)1995 static struct xps_map *expand_xps_map(struct xps_map *map,
1996 int cpu, u16 index)
1997 {
1998 struct xps_map *new_map;
1999 int alloc_len = XPS_MIN_MAP_ALLOC;
2000 int i, pos;
2001
2002 for (pos = 0; map && pos < map->len; pos++) {
2003 if (map->queues[pos] != index)
2004 continue;
2005 return map;
2006 }
2007
2008 /* Need to add queue to this CPU's existing map */
2009 if (map) {
2010 if (pos < map->alloc_len)
2011 return map;
2012
2013 alloc_len = map->alloc_len * 2;
2014 }
2015
2016 /* Need to allocate new map to store queue on this CPU's map */
2017 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2018 cpu_to_node(cpu));
2019 if (!new_map)
2020 return NULL;
2021
2022 for (i = 0; i < pos; i++)
2023 new_map->queues[i] = map->queues[i];
2024 new_map->alloc_len = alloc_len;
2025 new_map->len = pos;
2026
2027 return new_map;
2028 }
2029
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2030 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2031 u16 index)
2032 {
2033 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2034 struct xps_map *map, *new_map;
2035 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2036 int cpu, numa_node_id = -2;
2037 bool active = false;
2038
2039 mutex_lock(&xps_map_mutex);
2040
2041 dev_maps = xmap_dereference(dev->xps_maps);
2042
2043 /* allocate memory for queue storage */
2044 for_each_online_cpu(cpu) {
2045 if (!cpumask_test_cpu(cpu, mask))
2046 continue;
2047
2048 if (!new_dev_maps)
2049 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2050 if (!new_dev_maps) {
2051 mutex_unlock(&xps_map_mutex);
2052 return -ENOMEM;
2053 }
2054
2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 NULL;
2057
2058 map = expand_xps_map(map, cpu, index);
2059 if (!map)
2060 goto error;
2061
2062 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2063 }
2064
2065 if (!new_dev_maps)
2066 goto out_no_new_maps;
2067
2068 for_each_possible_cpu(cpu) {
2069 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2070 /* add queue to CPU maps */
2071 int pos = 0;
2072
2073 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2074 while ((pos < map->len) && (map->queues[pos] != index))
2075 pos++;
2076
2077 if (pos == map->len)
2078 map->queues[map->len++] = index;
2079 #ifdef CONFIG_NUMA
2080 if (numa_node_id == -2)
2081 numa_node_id = cpu_to_node(cpu);
2082 else if (numa_node_id != cpu_to_node(cpu))
2083 numa_node_id = -1;
2084 #endif
2085 } else if (dev_maps) {
2086 /* fill in the new device map from the old device map */
2087 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2088 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2089 }
2090
2091 }
2092
2093 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2094
2095 /* Cleanup old maps */
2096 if (dev_maps) {
2097 for_each_possible_cpu(cpu) {
2098 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2099 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2100 if (map && map != new_map)
2101 kfree_rcu(map, rcu);
2102 }
2103
2104 kfree_rcu(dev_maps, rcu);
2105 }
2106
2107 dev_maps = new_dev_maps;
2108 active = true;
2109
2110 out_no_new_maps:
2111 /* update Tx queue numa node */
2112 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2113 (numa_node_id >= 0) ? numa_node_id :
2114 NUMA_NO_NODE);
2115
2116 if (!dev_maps)
2117 goto out_no_maps;
2118
2119 /* removes queue from unused CPUs */
2120 for_each_possible_cpu(cpu) {
2121 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2122 continue;
2123
2124 if (remove_xps_queue(dev_maps, cpu, index))
2125 active = true;
2126 }
2127
2128 /* free map if not active */
2129 if (!active) {
2130 RCU_INIT_POINTER(dev->xps_maps, NULL);
2131 kfree_rcu(dev_maps, rcu);
2132 }
2133
2134 out_no_maps:
2135 mutex_unlock(&xps_map_mutex);
2136
2137 return 0;
2138 error:
2139 /* remove any maps that we added */
2140 for_each_possible_cpu(cpu) {
2141 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2142 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2143 NULL;
2144 if (new_map && new_map != map)
2145 kfree(new_map);
2146 }
2147
2148 mutex_unlock(&xps_map_mutex);
2149
2150 kfree(new_dev_maps);
2151 return -ENOMEM;
2152 }
2153 EXPORT_SYMBOL(netif_set_xps_queue);
2154
2155 #endif
2156 /*
2157 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2158 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2159 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2160 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2161 {
2162 int rc;
2163
2164 if (txq < 1 || txq > dev->num_tx_queues)
2165 return -EINVAL;
2166
2167 if (dev->reg_state == NETREG_REGISTERED ||
2168 dev->reg_state == NETREG_UNREGISTERING) {
2169 ASSERT_RTNL();
2170
2171 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2172 txq);
2173 if (rc)
2174 return rc;
2175
2176 if (dev->num_tc)
2177 netif_setup_tc(dev, txq);
2178
2179 if (txq < dev->real_num_tx_queues) {
2180 qdisc_reset_all_tx_gt(dev, txq);
2181 #ifdef CONFIG_XPS
2182 netif_reset_xps_queues_gt(dev, txq);
2183 #endif
2184 }
2185 }
2186
2187 dev->real_num_tx_queues = txq;
2188 return 0;
2189 }
2190 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2191
2192 #ifdef CONFIG_SYSFS
2193 /**
2194 * netif_set_real_num_rx_queues - set actual number of RX queues used
2195 * @dev: Network device
2196 * @rxq: Actual number of RX queues
2197 *
2198 * This must be called either with the rtnl_lock held or before
2199 * registration of the net device. Returns 0 on success, or a
2200 * negative error code. If called before registration, it always
2201 * succeeds.
2202 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2203 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2204 {
2205 int rc;
2206
2207 if (rxq < 1 || rxq > dev->num_rx_queues)
2208 return -EINVAL;
2209
2210 if (dev->reg_state == NETREG_REGISTERED) {
2211 ASSERT_RTNL();
2212
2213 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2214 rxq);
2215 if (rc)
2216 return rc;
2217 }
2218
2219 dev->real_num_rx_queues = rxq;
2220 return 0;
2221 }
2222 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2223 #endif
2224
2225 /**
2226 * netif_get_num_default_rss_queues - default number of RSS queues
2227 *
2228 * This routine should set an upper limit on the number of RSS queues
2229 * used by default by multiqueue devices.
2230 */
netif_get_num_default_rss_queues(void)2231 int netif_get_num_default_rss_queues(void)
2232 {
2233 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2234 }
2235 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2236
__netif_reschedule(struct Qdisc * q)2237 static inline void __netif_reschedule(struct Qdisc *q)
2238 {
2239 struct softnet_data *sd;
2240 unsigned long flags;
2241
2242 local_irq_save(flags);
2243 sd = this_cpu_ptr(&softnet_data);
2244 q->next_sched = NULL;
2245 *sd->output_queue_tailp = q;
2246 sd->output_queue_tailp = &q->next_sched;
2247 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2248 local_irq_restore(flags);
2249 }
2250
__netif_schedule(struct Qdisc * q)2251 void __netif_schedule(struct Qdisc *q)
2252 {
2253 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2254 __netif_reschedule(q);
2255 }
2256 EXPORT_SYMBOL(__netif_schedule);
2257
2258 struct dev_kfree_skb_cb {
2259 enum skb_free_reason reason;
2260 };
2261
get_kfree_skb_cb(const struct sk_buff * skb)2262 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2263 {
2264 return (struct dev_kfree_skb_cb *)skb->cb;
2265 }
2266
netif_schedule_queue(struct netdev_queue * txq)2267 void netif_schedule_queue(struct netdev_queue *txq)
2268 {
2269 rcu_read_lock();
2270 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2271 struct Qdisc *q = rcu_dereference(txq->qdisc);
2272
2273 __netif_schedule(q);
2274 }
2275 rcu_read_unlock();
2276 }
2277 EXPORT_SYMBOL(netif_schedule_queue);
2278
2279 /**
2280 * netif_wake_subqueue - allow sending packets on subqueue
2281 * @dev: network device
2282 * @queue_index: sub queue index
2283 *
2284 * Resume individual transmit queue of a device with multiple transmit queues.
2285 */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)2286 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2287 {
2288 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2289
2290 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2291 struct Qdisc *q;
2292
2293 rcu_read_lock();
2294 q = rcu_dereference(txq->qdisc);
2295 __netif_schedule(q);
2296 rcu_read_unlock();
2297 }
2298 }
2299 EXPORT_SYMBOL(netif_wake_subqueue);
2300
netif_tx_wake_queue(struct netdev_queue * dev_queue)2301 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2302 {
2303 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2304 struct Qdisc *q;
2305
2306 rcu_read_lock();
2307 q = rcu_dereference(dev_queue->qdisc);
2308 __netif_schedule(q);
2309 rcu_read_unlock();
2310 }
2311 }
2312 EXPORT_SYMBOL(netif_tx_wake_queue);
2313
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)2314 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2315 {
2316 unsigned long flags;
2317
2318 if (likely(atomic_read(&skb->users) == 1)) {
2319 smp_rmb();
2320 atomic_set(&skb->users, 0);
2321 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2322 return;
2323 }
2324 get_kfree_skb_cb(skb)->reason = reason;
2325 local_irq_save(flags);
2326 skb->next = __this_cpu_read(softnet_data.completion_queue);
2327 __this_cpu_write(softnet_data.completion_queue, skb);
2328 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2329 local_irq_restore(flags);
2330 }
2331 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2332
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)2333 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2334 {
2335 if (in_irq() || irqs_disabled())
2336 __dev_kfree_skb_irq(skb, reason);
2337 else
2338 dev_kfree_skb(skb);
2339 }
2340 EXPORT_SYMBOL(__dev_kfree_skb_any);
2341
2342
2343 /**
2344 * netif_device_detach - mark device as removed
2345 * @dev: network device
2346 *
2347 * Mark device as removed from system and therefore no longer available.
2348 */
netif_device_detach(struct net_device * dev)2349 void netif_device_detach(struct net_device *dev)
2350 {
2351 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2352 netif_running(dev)) {
2353 netif_tx_stop_all_queues(dev);
2354 }
2355 }
2356 EXPORT_SYMBOL(netif_device_detach);
2357
2358 /**
2359 * netif_device_attach - mark device as attached
2360 * @dev: network device
2361 *
2362 * Mark device as attached from system and restart if needed.
2363 */
netif_device_attach(struct net_device * dev)2364 void netif_device_attach(struct net_device *dev)
2365 {
2366 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2367 netif_running(dev)) {
2368 netif_tx_wake_all_queues(dev);
2369 __netdev_watchdog_up(dev);
2370 }
2371 }
2372 EXPORT_SYMBOL(netif_device_attach);
2373
2374 /*
2375 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2376 * to be used as a distribution range.
2377 */
__skb_tx_hash(const struct net_device * dev,struct sk_buff * skb,unsigned int num_tx_queues)2378 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2379 unsigned int num_tx_queues)
2380 {
2381 u32 hash;
2382 u16 qoffset = 0;
2383 u16 qcount = num_tx_queues;
2384
2385 if (skb_rx_queue_recorded(skb)) {
2386 hash = skb_get_rx_queue(skb);
2387 while (unlikely(hash >= num_tx_queues))
2388 hash -= num_tx_queues;
2389 return hash;
2390 }
2391
2392 if (dev->num_tc) {
2393 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2394 qoffset = dev->tc_to_txq[tc].offset;
2395 qcount = dev->tc_to_txq[tc].count;
2396 }
2397
2398 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2399 }
2400 EXPORT_SYMBOL(__skb_tx_hash);
2401
skb_warn_bad_offload(const struct sk_buff * skb)2402 static void skb_warn_bad_offload(const struct sk_buff *skb)
2403 {
2404 static const netdev_features_t null_features = 0;
2405 struct net_device *dev = skb->dev;
2406 const char *name = "";
2407
2408 if (!net_ratelimit())
2409 return;
2410
2411 if (dev) {
2412 if (dev->dev.parent)
2413 name = dev_driver_string(dev->dev.parent);
2414 else
2415 name = netdev_name(dev);
2416 }
2417 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2418 "gso_type=%d ip_summed=%d\n",
2419 name, dev ? &dev->features : &null_features,
2420 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2421 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2422 skb_shinfo(skb)->gso_type, skb->ip_summed);
2423 }
2424
2425 /*
2426 * Invalidate hardware checksum when packet is to be mangled, and
2427 * complete checksum manually on outgoing path.
2428 */
skb_checksum_help(struct sk_buff * skb)2429 int skb_checksum_help(struct sk_buff *skb)
2430 {
2431 __wsum csum;
2432 int ret = 0, offset;
2433
2434 if (skb->ip_summed == CHECKSUM_COMPLETE)
2435 goto out_set_summed;
2436
2437 if (unlikely(skb_shinfo(skb)->gso_size)) {
2438 skb_warn_bad_offload(skb);
2439 return -EINVAL;
2440 }
2441
2442 /* Before computing a checksum, we should make sure no frag could
2443 * be modified by an external entity : checksum could be wrong.
2444 */
2445 if (skb_has_shared_frag(skb)) {
2446 ret = __skb_linearize(skb);
2447 if (ret)
2448 goto out;
2449 }
2450
2451 offset = skb_checksum_start_offset(skb);
2452 BUG_ON(offset >= skb_headlen(skb));
2453 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2454
2455 offset += skb->csum_offset;
2456 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2457
2458 if (skb_cloned(skb) &&
2459 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2460 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2461 if (ret)
2462 goto out;
2463 }
2464
2465 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2466 out_set_summed:
2467 skb->ip_summed = CHECKSUM_NONE;
2468 out:
2469 return ret;
2470 }
2471 EXPORT_SYMBOL(skb_checksum_help);
2472
skb_network_protocol(struct sk_buff * skb,int * depth)2473 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2474 {
2475 __be16 type = skb->protocol;
2476
2477 /* Tunnel gso handlers can set protocol to ethernet. */
2478 if (type == htons(ETH_P_TEB)) {
2479 struct ethhdr *eth;
2480
2481 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2482 return 0;
2483
2484 eth = (struct ethhdr *)skb_mac_header(skb);
2485 type = eth->h_proto;
2486 }
2487
2488 return __vlan_get_protocol(skb, type, depth);
2489 }
2490
2491 /**
2492 * skb_mac_gso_segment - mac layer segmentation handler.
2493 * @skb: buffer to segment
2494 * @features: features for the output path (see dev->features)
2495 */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)2496 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2497 netdev_features_t features)
2498 {
2499 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2500 struct packet_offload *ptype;
2501 int vlan_depth = skb->mac_len;
2502 __be16 type = skb_network_protocol(skb, &vlan_depth);
2503
2504 if (unlikely(!type))
2505 return ERR_PTR(-EINVAL);
2506
2507 __skb_pull(skb, vlan_depth);
2508
2509 rcu_read_lock();
2510 list_for_each_entry_rcu(ptype, &offload_base, list) {
2511 if (ptype->type == type && ptype->callbacks.gso_segment) {
2512 segs = ptype->callbacks.gso_segment(skb, features);
2513 break;
2514 }
2515 }
2516 rcu_read_unlock();
2517
2518 __skb_push(skb, skb->data - skb_mac_header(skb));
2519
2520 return segs;
2521 }
2522 EXPORT_SYMBOL(skb_mac_gso_segment);
2523
2524
2525 /* openvswitch calls this on rx path, so we need a different check.
2526 */
skb_needs_check(struct sk_buff * skb,bool tx_path)2527 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2528 {
2529 if (tx_path)
2530 return skb->ip_summed != CHECKSUM_PARTIAL;
2531 else
2532 return skb->ip_summed == CHECKSUM_NONE;
2533 }
2534
2535 /**
2536 * __skb_gso_segment - Perform segmentation on skb.
2537 * @skb: buffer to segment
2538 * @features: features for the output path (see dev->features)
2539 * @tx_path: whether it is called in TX path
2540 *
2541 * This function segments the given skb and returns a list of segments.
2542 *
2543 * It may return NULL if the skb requires no segmentation. This is
2544 * only possible when GSO is used for verifying header integrity.
2545 *
2546 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2547 */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)2548 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2549 netdev_features_t features, bool tx_path)
2550 {
2551 if (unlikely(skb_needs_check(skb, tx_path))) {
2552 int err;
2553
2554 skb_warn_bad_offload(skb);
2555
2556 err = skb_cow_head(skb, 0);
2557 if (err < 0)
2558 return ERR_PTR(err);
2559 }
2560
2561 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2562 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2563
2564 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2565 SKB_GSO_CB(skb)->encap_level = 0;
2566
2567 skb_reset_mac_header(skb);
2568 skb_reset_mac_len(skb);
2569
2570 return skb_mac_gso_segment(skb, features);
2571 }
2572 EXPORT_SYMBOL(__skb_gso_segment);
2573
2574 /* Take action when hardware reception checksum errors are detected. */
2575 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev)2576 void netdev_rx_csum_fault(struct net_device *dev)
2577 {
2578 if (net_ratelimit()) {
2579 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2580 dump_stack();
2581 }
2582 }
2583 EXPORT_SYMBOL(netdev_rx_csum_fault);
2584 #endif
2585
2586 /* Actually, we should eliminate this check as soon as we know, that:
2587 * 1. IOMMU is present and allows to map all the memory.
2588 * 2. No high memory really exists on this machine.
2589 */
2590
illegal_highdma(struct net_device * dev,struct sk_buff * skb)2591 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2592 {
2593 #ifdef CONFIG_HIGHMEM
2594 int i;
2595 if (!(dev->features & NETIF_F_HIGHDMA)) {
2596 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2597 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2598 if (PageHighMem(skb_frag_page(frag)))
2599 return 1;
2600 }
2601 }
2602
2603 if (PCI_DMA_BUS_IS_PHYS) {
2604 struct device *pdev = dev->dev.parent;
2605
2606 if (!pdev)
2607 return 0;
2608 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2609 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2610 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2611 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2612 return 1;
2613 }
2614 }
2615 #endif
2616 return 0;
2617 }
2618
2619 /* If MPLS offload request, verify we are testing hardware MPLS features
2620 * instead of standard features for the netdev.
2621 */
2622 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)2623 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2624 netdev_features_t features,
2625 __be16 type)
2626 {
2627 if (eth_p_mpls(type))
2628 features &= skb->dev->mpls_features;
2629
2630 return features;
2631 }
2632 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)2633 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2634 netdev_features_t features,
2635 __be16 type)
2636 {
2637 return features;
2638 }
2639 #endif
2640
harmonize_features(struct sk_buff * skb,netdev_features_t features)2641 static netdev_features_t harmonize_features(struct sk_buff *skb,
2642 netdev_features_t features)
2643 {
2644 int tmp;
2645 __be16 type;
2646
2647 type = skb_network_protocol(skb, &tmp);
2648 features = net_mpls_features(skb, features, type);
2649
2650 if (skb->ip_summed != CHECKSUM_NONE &&
2651 !can_checksum_protocol(features, type)) {
2652 features &= ~NETIF_F_ALL_CSUM;
2653 } else if (illegal_highdma(skb->dev, skb)) {
2654 features &= ~NETIF_F_SG;
2655 }
2656
2657 return features;
2658 }
2659
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2660 netdev_features_t passthru_features_check(struct sk_buff *skb,
2661 struct net_device *dev,
2662 netdev_features_t features)
2663 {
2664 return features;
2665 }
2666 EXPORT_SYMBOL(passthru_features_check);
2667
dflt_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2668 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2669 struct net_device *dev,
2670 netdev_features_t features)
2671 {
2672 return vlan_features_check(skb, features);
2673 }
2674
netif_skb_features(struct sk_buff * skb)2675 netdev_features_t netif_skb_features(struct sk_buff *skb)
2676 {
2677 struct net_device *dev = skb->dev;
2678 netdev_features_t features = dev->features;
2679 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2680
2681 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2682 features &= ~NETIF_F_GSO_MASK;
2683
2684 /* If encapsulation offload request, verify we are testing
2685 * hardware encapsulation features instead of standard
2686 * features for the netdev
2687 */
2688 if (skb->encapsulation)
2689 features &= dev->hw_enc_features;
2690
2691 if (skb_vlan_tagged(skb))
2692 features = netdev_intersect_features(features,
2693 dev->vlan_features |
2694 NETIF_F_HW_VLAN_CTAG_TX |
2695 NETIF_F_HW_VLAN_STAG_TX);
2696
2697 if (dev->netdev_ops->ndo_features_check)
2698 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2699 features);
2700 else
2701 features &= dflt_features_check(skb, dev, features);
2702
2703 return harmonize_features(skb, features);
2704 }
2705 EXPORT_SYMBOL(netif_skb_features);
2706
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)2707 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2708 struct netdev_queue *txq, bool more)
2709 {
2710 unsigned int len;
2711 int rc;
2712
2713 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2714 dev_queue_xmit_nit(skb, dev);
2715
2716 len = skb->len;
2717 trace_net_dev_start_xmit(skb, dev);
2718 rc = netdev_start_xmit(skb, dev, txq, more);
2719 trace_net_dev_xmit(skb, rc, dev, len);
2720
2721 return rc;
2722 }
2723
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)2724 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2725 struct netdev_queue *txq, int *ret)
2726 {
2727 struct sk_buff *skb = first;
2728 int rc = NETDEV_TX_OK;
2729
2730 while (skb) {
2731 struct sk_buff *next = skb->next;
2732
2733 skb->next = NULL;
2734 rc = xmit_one(skb, dev, txq, next != NULL);
2735 if (unlikely(!dev_xmit_complete(rc))) {
2736 skb->next = next;
2737 goto out;
2738 }
2739
2740 skb = next;
2741 if (netif_xmit_stopped(txq) && skb) {
2742 rc = NETDEV_TX_BUSY;
2743 break;
2744 }
2745 }
2746
2747 out:
2748 *ret = rc;
2749 return skb;
2750 }
2751
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)2752 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2753 netdev_features_t features)
2754 {
2755 if (skb_vlan_tag_present(skb) &&
2756 !vlan_hw_offload_capable(features, skb->vlan_proto))
2757 skb = __vlan_hwaccel_push_inside(skb);
2758 return skb;
2759 }
2760
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2761 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2762 {
2763 netdev_features_t features;
2764
2765 if (skb->next)
2766 return skb;
2767
2768 features = netif_skb_features(skb);
2769 skb = validate_xmit_vlan(skb, features);
2770 if (unlikely(!skb))
2771 goto out_null;
2772
2773 if (netif_needs_gso(skb, features)) {
2774 struct sk_buff *segs;
2775
2776 segs = skb_gso_segment(skb, features);
2777 if (IS_ERR(segs)) {
2778 goto out_kfree_skb;
2779 } else if (segs) {
2780 consume_skb(skb);
2781 skb = segs;
2782 }
2783 } else {
2784 if (skb_needs_linearize(skb, features) &&
2785 __skb_linearize(skb))
2786 goto out_kfree_skb;
2787
2788 /* If packet is not checksummed and device does not
2789 * support checksumming for this protocol, complete
2790 * checksumming here.
2791 */
2792 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2793 if (skb->encapsulation)
2794 skb_set_inner_transport_header(skb,
2795 skb_checksum_start_offset(skb));
2796 else
2797 skb_set_transport_header(skb,
2798 skb_checksum_start_offset(skb));
2799 if (!(features & NETIF_F_ALL_CSUM) &&
2800 skb_checksum_help(skb))
2801 goto out_kfree_skb;
2802 }
2803 }
2804
2805 return skb;
2806
2807 out_kfree_skb:
2808 kfree_skb(skb);
2809 out_null:
2810 return NULL;
2811 }
2812
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev)2813 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2814 {
2815 struct sk_buff *next, *head = NULL, *tail;
2816
2817 for (; skb != NULL; skb = next) {
2818 next = skb->next;
2819 skb->next = NULL;
2820
2821 /* in case skb wont be segmented, point to itself */
2822 skb->prev = skb;
2823
2824 skb = validate_xmit_skb(skb, dev);
2825 if (!skb)
2826 continue;
2827
2828 if (!head)
2829 head = skb;
2830 else
2831 tail->next = skb;
2832 /* If skb was segmented, skb->prev points to
2833 * the last segment. If not, it still contains skb.
2834 */
2835 tail = skb->prev;
2836 }
2837 return head;
2838 }
2839
qdisc_pkt_len_init(struct sk_buff * skb)2840 static void qdisc_pkt_len_init(struct sk_buff *skb)
2841 {
2842 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2843
2844 qdisc_skb_cb(skb)->pkt_len = skb->len;
2845
2846 /* To get more precise estimation of bytes sent on wire,
2847 * we add to pkt_len the headers size of all segments
2848 */
2849 if (shinfo->gso_size) {
2850 unsigned int hdr_len;
2851 u16 gso_segs = shinfo->gso_segs;
2852
2853 /* mac layer + network layer */
2854 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2855
2856 /* + transport layer */
2857 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2858 hdr_len += tcp_hdrlen(skb);
2859 else
2860 hdr_len += sizeof(struct udphdr);
2861
2862 if (shinfo->gso_type & SKB_GSO_DODGY)
2863 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2864 shinfo->gso_size);
2865
2866 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2867 }
2868 }
2869
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)2870 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2871 struct net_device *dev,
2872 struct netdev_queue *txq)
2873 {
2874 spinlock_t *root_lock = qdisc_lock(q);
2875 bool contended;
2876 int rc;
2877
2878 qdisc_pkt_len_init(skb);
2879 qdisc_calculate_pkt_len(skb, q);
2880 /*
2881 * Heuristic to force contended enqueues to serialize on a
2882 * separate lock before trying to get qdisc main lock.
2883 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2884 * often and dequeue packets faster.
2885 */
2886 contended = qdisc_is_running(q);
2887 if (unlikely(contended))
2888 spin_lock(&q->busylock);
2889
2890 spin_lock(root_lock);
2891 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2892 kfree_skb(skb);
2893 rc = NET_XMIT_DROP;
2894 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2895 qdisc_run_begin(q)) {
2896 /*
2897 * This is a work-conserving queue; there are no old skbs
2898 * waiting to be sent out; and the qdisc is not running -
2899 * xmit the skb directly.
2900 */
2901
2902 qdisc_bstats_update(q, skb);
2903
2904 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2905 if (unlikely(contended)) {
2906 spin_unlock(&q->busylock);
2907 contended = false;
2908 }
2909 __qdisc_run(q);
2910 } else
2911 qdisc_run_end(q);
2912
2913 rc = NET_XMIT_SUCCESS;
2914 } else {
2915 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2916 if (qdisc_run_begin(q)) {
2917 if (unlikely(contended)) {
2918 spin_unlock(&q->busylock);
2919 contended = false;
2920 }
2921 __qdisc_run(q);
2922 }
2923 }
2924 spin_unlock(root_lock);
2925 if (unlikely(contended))
2926 spin_unlock(&q->busylock);
2927 return rc;
2928 }
2929
2930 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)2931 static void skb_update_prio(struct sk_buff *skb)
2932 {
2933 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2934
2935 if (!skb->priority && skb->sk && map) {
2936 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2937
2938 if (prioidx < map->priomap_len)
2939 skb->priority = map->priomap[prioidx];
2940 }
2941 }
2942 #else
2943 #define skb_update_prio(skb)
2944 #endif
2945
2946 DEFINE_PER_CPU(int, xmit_recursion);
2947 EXPORT_SYMBOL(xmit_recursion);
2948
2949 #define RECURSION_LIMIT 10
2950
2951 /**
2952 * dev_loopback_xmit - loop back @skb
2953 * @net: network namespace this loopback is happening in
2954 * @sk: sk needed to be a netfilter okfn
2955 * @skb: buffer to transmit
2956 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)2957 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2958 {
2959 skb_reset_mac_header(skb);
2960 __skb_pull(skb, skb_network_offset(skb));
2961 skb->pkt_type = PACKET_LOOPBACK;
2962 skb->ip_summed = CHECKSUM_UNNECESSARY;
2963 WARN_ON(!skb_dst(skb));
2964 skb_dst_force(skb);
2965 netif_rx_ni(skb);
2966 return 0;
2967 }
2968 EXPORT_SYMBOL(dev_loopback_xmit);
2969
get_xps_queue(struct net_device * dev,struct sk_buff * skb)2970 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2971 {
2972 #ifdef CONFIG_XPS
2973 struct xps_dev_maps *dev_maps;
2974 struct xps_map *map;
2975 int queue_index = -1;
2976
2977 rcu_read_lock();
2978 dev_maps = rcu_dereference(dev->xps_maps);
2979 if (dev_maps) {
2980 map = rcu_dereference(
2981 dev_maps->cpu_map[skb->sender_cpu - 1]);
2982 if (map) {
2983 if (map->len == 1)
2984 queue_index = map->queues[0];
2985 else
2986 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2987 map->len)];
2988 if (unlikely(queue_index >= dev->real_num_tx_queues))
2989 queue_index = -1;
2990 }
2991 }
2992 rcu_read_unlock();
2993
2994 return queue_index;
2995 #else
2996 return -1;
2997 #endif
2998 }
2999
__netdev_pick_tx(struct net_device * dev,struct sk_buff * skb)3000 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3001 {
3002 struct sock *sk = skb->sk;
3003 int queue_index = sk_tx_queue_get(sk);
3004
3005 if (queue_index < 0 || skb->ooo_okay ||
3006 queue_index >= dev->real_num_tx_queues) {
3007 int new_index = get_xps_queue(dev, skb);
3008 if (new_index < 0)
3009 new_index = skb_tx_hash(dev, skb);
3010
3011 if (queue_index != new_index && sk &&
3012 sk_fullsock(sk) &&
3013 rcu_access_pointer(sk->sk_dst_cache))
3014 sk_tx_queue_set(sk, new_index);
3015
3016 queue_index = new_index;
3017 }
3018
3019 return queue_index;
3020 }
3021
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,void * accel_priv)3022 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3023 struct sk_buff *skb,
3024 void *accel_priv)
3025 {
3026 int queue_index = 0;
3027
3028 #ifdef CONFIG_XPS
3029 if (skb->sender_cpu == 0)
3030 skb->sender_cpu = raw_smp_processor_id() + 1;
3031 #endif
3032
3033 if (dev->real_num_tx_queues != 1) {
3034 const struct net_device_ops *ops = dev->netdev_ops;
3035 if (ops->ndo_select_queue)
3036 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3037 __netdev_pick_tx);
3038 else
3039 queue_index = __netdev_pick_tx(dev, skb);
3040
3041 if (!accel_priv)
3042 queue_index = netdev_cap_txqueue(dev, queue_index);
3043 }
3044
3045 skb_set_queue_mapping(skb, queue_index);
3046 return netdev_get_tx_queue(dev, queue_index);
3047 }
3048
3049 /**
3050 * __dev_queue_xmit - transmit a buffer
3051 * @skb: buffer to transmit
3052 * @accel_priv: private data used for L2 forwarding offload
3053 *
3054 * Queue a buffer for transmission to a network device. The caller must
3055 * have set the device and priority and built the buffer before calling
3056 * this function. The function can be called from an interrupt.
3057 *
3058 * A negative errno code is returned on a failure. A success does not
3059 * guarantee the frame will be transmitted as it may be dropped due
3060 * to congestion or traffic shaping.
3061 *
3062 * -----------------------------------------------------------------------------------
3063 * I notice this method can also return errors from the queue disciplines,
3064 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3065 * be positive.
3066 *
3067 * Regardless of the return value, the skb is consumed, so it is currently
3068 * difficult to retry a send to this method. (You can bump the ref count
3069 * before sending to hold a reference for retry if you are careful.)
3070 *
3071 * When calling this method, interrupts MUST be enabled. This is because
3072 * the BH enable code must have IRQs enabled so that it will not deadlock.
3073 * --BLG
3074 */
__dev_queue_xmit(struct sk_buff * skb,void * accel_priv)3075 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3076 {
3077 struct net_device *dev = skb->dev;
3078 struct netdev_queue *txq;
3079 struct Qdisc *q;
3080 int rc = -ENOMEM;
3081
3082 skb_reset_mac_header(skb);
3083
3084 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3085 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3086
3087 /* Disable soft irqs for various locks below. Also
3088 * stops preemption for RCU.
3089 */
3090 rcu_read_lock_bh();
3091
3092 skb_update_prio(skb);
3093
3094 /* If device/qdisc don't need skb->dst, release it right now while
3095 * its hot in this cpu cache.
3096 */
3097 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3098 skb_dst_drop(skb);
3099 else
3100 skb_dst_force(skb);
3101
3102 #ifdef CONFIG_NET_SWITCHDEV
3103 /* Don't forward if offload device already forwarded */
3104 if (skb->offload_fwd_mark &&
3105 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3106 consume_skb(skb);
3107 rc = NET_XMIT_SUCCESS;
3108 goto out;
3109 }
3110 #endif
3111
3112 txq = netdev_pick_tx(dev, skb, accel_priv);
3113 q = rcu_dereference_bh(txq->qdisc);
3114
3115 #ifdef CONFIG_NET_CLS_ACT
3116 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3117 #endif
3118 trace_net_dev_queue(skb);
3119 if (q->enqueue) {
3120 rc = __dev_xmit_skb(skb, q, dev, txq);
3121 goto out;
3122 }
3123
3124 /* The device has no queue. Common case for software devices:
3125 loopback, all the sorts of tunnels...
3126
3127 Really, it is unlikely that netif_tx_lock protection is necessary
3128 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3129 counters.)
3130 However, it is possible, that they rely on protection
3131 made by us here.
3132
3133 Check this and shot the lock. It is not prone from deadlocks.
3134 Either shot noqueue qdisc, it is even simpler 8)
3135 */
3136 if (dev->flags & IFF_UP) {
3137 int cpu = smp_processor_id(); /* ok because BHs are off */
3138
3139 if (txq->xmit_lock_owner != cpu) {
3140
3141 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3142 goto recursion_alert;
3143
3144 skb = validate_xmit_skb(skb, dev);
3145 if (!skb)
3146 goto drop;
3147
3148 HARD_TX_LOCK(dev, txq, cpu);
3149
3150 if (!netif_xmit_stopped(txq)) {
3151 __this_cpu_inc(xmit_recursion);
3152 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3153 __this_cpu_dec(xmit_recursion);
3154 if (dev_xmit_complete(rc)) {
3155 HARD_TX_UNLOCK(dev, txq);
3156 goto out;
3157 }
3158 }
3159 HARD_TX_UNLOCK(dev, txq);
3160 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3161 dev->name);
3162 } else {
3163 /* Recursion is detected! It is possible,
3164 * unfortunately
3165 */
3166 recursion_alert:
3167 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3168 dev->name);
3169 }
3170 }
3171
3172 rc = -ENETDOWN;
3173 drop:
3174 rcu_read_unlock_bh();
3175
3176 atomic_long_inc(&dev->tx_dropped);
3177 kfree_skb_list(skb);
3178 return rc;
3179 out:
3180 rcu_read_unlock_bh();
3181 return rc;
3182 }
3183
dev_queue_xmit(struct sk_buff * skb)3184 int dev_queue_xmit(struct sk_buff *skb)
3185 {
3186 return __dev_queue_xmit(skb, NULL);
3187 }
3188 EXPORT_SYMBOL(dev_queue_xmit);
3189
dev_queue_xmit_accel(struct sk_buff * skb,void * accel_priv)3190 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3191 {
3192 return __dev_queue_xmit(skb, accel_priv);
3193 }
3194 EXPORT_SYMBOL(dev_queue_xmit_accel);
3195
3196
3197 /*=======================================================================
3198 Receiver routines
3199 =======================================================================*/
3200
3201 int netdev_max_backlog __read_mostly = 1000;
3202 EXPORT_SYMBOL(netdev_max_backlog);
3203
3204 int netdev_tstamp_prequeue __read_mostly = 1;
3205 int netdev_budget __read_mostly = 300;
3206 int weight_p __read_mostly = 64; /* old backlog weight */
3207
3208 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)3209 static inline void ____napi_schedule(struct softnet_data *sd,
3210 struct napi_struct *napi)
3211 {
3212 list_add_tail(&napi->poll_list, &sd->poll_list);
3213 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3214 }
3215
3216 #ifdef CONFIG_RPS
3217
3218 /* One global table that all flow-based protocols share. */
3219 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3220 EXPORT_SYMBOL(rps_sock_flow_table);
3221 u32 rps_cpu_mask __read_mostly;
3222 EXPORT_SYMBOL(rps_cpu_mask);
3223
3224 struct static_key rps_needed __read_mostly;
3225
3226 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)3227 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3228 struct rps_dev_flow *rflow, u16 next_cpu)
3229 {
3230 if (next_cpu < nr_cpu_ids) {
3231 #ifdef CONFIG_RFS_ACCEL
3232 struct netdev_rx_queue *rxqueue;
3233 struct rps_dev_flow_table *flow_table;
3234 struct rps_dev_flow *old_rflow;
3235 u32 flow_id;
3236 u16 rxq_index;
3237 int rc;
3238
3239 /* Should we steer this flow to a different hardware queue? */
3240 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3241 !(dev->features & NETIF_F_NTUPLE))
3242 goto out;
3243 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3244 if (rxq_index == skb_get_rx_queue(skb))
3245 goto out;
3246
3247 rxqueue = dev->_rx + rxq_index;
3248 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3249 if (!flow_table)
3250 goto out;
3251 flow_id = skb_get_hash(skb) & flow_table->mask;
3252 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3253 rxq_index, flow_id);
3254 if (rc < 0)
3255 goto out;
3256 old_rflow = rflow;
3257 rflow = &flow_table->flows[flow_id];
3258 rflow->filter = rc;
3259 if (old_rflow->filter == rflow->filter)
3260 old_rflow->filter = RPS_NO_FILTER;
3261 out:
3262 #endif
3263 rflow->last_qtail =
3264 per_cpu(softnet_data, next_cpu).input_queue_head;
3265 }
3266
3267 rflow->cpu = next_cpu;
3268 return rflow;
3269 }
3270
3271 /*
3272 * get_rps_cpu is called from netif_receive_skb and returns the target
3273 * CPU from the RPS map of the receiving queue for a given skb.
3274 * rcu_read_lock must be held on entry.
3275 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)3276 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3277 struct rps_dev_flow **rflowp)
3278 {
3279 const struct rps_sock_flow_table *sock_flow_table;
3280 struct netdev_rx_queue *rxqueue = dev->_rx;
3281 struct rps_dev_flow_table *flow_table;
3282 struct rps_map *map;
3283 int cpu = -1;
3284 u32 tcpu;
3285 u32 hash;
3286
3287 if (skb_rx_queue_recorded(skb)) {
3288 u16 index = skb_get_rx_queue(skb);
3289
3290 if (unlikely(index >= dev->real_num_rx_queues)) {
3291 WARN_ONCE(dev->real_num_rx_queues > 1,
3292 "%s received packet on queue %u, but number "
3293 "of RX queues is %u\n",
3294 dev->name, index, dev->real_num_rx_queues);
3295 goto done;
3296 }
3297 rxqueue += index;
3298 }
3299
3300 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3301
3302 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3303 map = rcu_dereference(rxqueue->rps_map);
3304 if (!flow_table && !map)
3305 goto done;
3306
3307 skb_reset_network_header(skb);
3308 hash = skb_get_hash(skb);
3309 if (!hash)
3310 goto done;
3311
3312 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3313 if (flow_table && sock_flow_table) {
3314 struct rps_dev_flow *rflow;
3315 u32 next_cpu;
3316 u32 ident;
3317
3318 /* First check into global flow table if there is a match */
3319 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3320 if ((ident ^ hash) & ~rps_cpu_mask)
3321 goto try_rps;
3322
3323 next_cpu = ident & rps_cpu_mask;
3324
3325 /* OK, now we know there is a match,
3326 * we can look at the local (per receive queue) flow table
3327 */
3328 rflow = &flow_table->flows[hash & flow_table->mask];
3329 tcpu = rflow->cpu;
3330
3331 /*
3332 * If the desired CPU (where last recvmsg was done) is
3333 * different from current CPU (one in the rx-queue flow
3334 * table entry), switch if one of the following holds:
3335 * - Current CPU is unset (>= nr_cpu_ids).
3336 * - Current CPU is offline.
3337 * - The current CPU's queue tail has advanced beyond the
3338 * last packet that was enqueued using this table entry.
3339 * This guarantees that all previous packets for the flow
3340 * have been dequeued, thus preserving in order delivery.
3341 */
3342 if (unlikely(tcpu != next_cpu) &&
3343 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3344 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3345 rflow->last_qtail)) >= 0)) {
3346 tcpu = next_cpu;
3347 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3348 }
3349
3350 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3351 *rflowp = rflow;
3352 cpu = tcpu;
3353 goto done;
3354 }
3355 }
3356
3357 try_rps:
3358
3359 if (map) {
3360 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3361 if (cpu_online(tcpu)) {
3362 cpu = tcpu;
3363 goto done;
3364 }
3365 }
3366
3367 done:
3368 return cpu;
3369 }
3370
3371 #ifdef CONFIG_RFS_ACCEL
3372
3373 /**
3374 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3375 * @dev: Device on which the filter was set
3376 * @rxq_index: RX queue index
3377 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3378 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3379 *
3380 * Drivers that implement ndo_rx_flow_steer() should periodically call
3381 * this function for each installed filter and remove the filters for
3382 * which it returns %true.
3383 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)3384 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3385 u32 flow_id, u16 filter_id)
3386 {
3387 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3388 struct rps_dev_flow_table *flow_table;
3389 struct rps_dev_flow *rflow;
3390 bool expire = true;
3391 unsigned int cpu;
3392
3393 rcu_read_lock();
3394 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3395 if (flow_table && flow_id <= flow_table->mask) {
3396 rflow = &flow_table->flows[flow_id];
3397 cpu = ACCESS_ONCE(rflow->cpu);
3398 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3399 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3400 rflow->last_qtail) <
3401 (int)(10 * flow_table->mask)))
3402 expire = false;
3403 }
3404 rcu_read_unlock();
3405 return expire;
3406 }
3407 EXPORT_SYMBOL(rps_may_expire_flow);
3408
3409 #endif /* CONFIG_RFS_ACCEL */
3410
3411 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)3412 static void rps_trigger_softirq(void *data)
3413 {
3414 struct softnet_data *sd = data;
3415
3416 ____napi_schedule(sd, &sd->backlog);
3417 sd->received_rps++;
3418 }
3419
3420 #endif /* CONFIG_RPS */
3421
3422 /*
3423 * Check if this softnet_data structure is another cpu one
3424 * If yes, queue it to our IPI list and return 1
3425 * If no, return 0
3426 */
rps_ipi_queued(struct softnet_data * sd)3427 static int rps_ipi_queued(struct softnet_data *sd)
3428 {
3429 #ifdef CONFIG_RPS
3430 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3431
3432 if (sd != mysd) {
3433 sd->rps_ipi_next = mysd->rps_ipi_list;
3434 mysd->rps_ipi_list = sd;
3435
3436 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3437 return 1;
3438 }
3439 #endif /* CONFIG_RPS */
3440 return 0;
3441 }
3442
3443 #ifdef CONFIG_NET_FLOW_LIMIT
3444 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3445 #endif
3446
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)3447 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3448 {
3449 #ifdef CONFIG_NET_FLOW_LIMIT
3450 struct sd_flow_limit *fl;
3451 struct softnet_data *sd;
3452 unsigned int old_flow, new_flow;
3453
3454 if (qlen < (netdev_max_backlog >> 1))
3455 return false;
3456
3457 sd = this_cpu_ptr(&softnet_data);
3458
3459 rcu_read_lock();
3460 fl = rcu_dereference(sd->flow_limit);
3461 if (fl) {
3462 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3463 old_flow = fl->history[fl->history_head];
3464 fl->history[fl->history_head] = new_flow;
3465
3466 fl->history_head++;
3467 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3468
3469 if (likely(fl->buckets[old_flow]))
3470 fl->buckets[old_flow]--;
3471
3472 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3473 fl->count++;
3474 rcu_read_unlock();
3475 return true;
3476 }
3477 }
3478 rcu_read_unlock();
3479 #endif
3480 return false;
3481 }
3482
3483 /*
3484 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3485 * queue (may be a remote CPU queue).
3486 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)3487 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3488 unsigned int *qtail)
3489 {
3490 struct softnet_data *sd;
3491 unsigned long flags;
3492 unsigned int qlen;
3493
3494 sd = &per_cpu(softnet_data, cpu);
3495
3496 local_irq_save(flags);
3497
3498 rps_lock(sd);
3499 if (!netif_running(skb->dev))
3500 goto drop;
3501 qlen = skb_queue_len(&sd->input_pkt_queue);
3502 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3503 if (qlen) {
3504 enqueue:
3505 __skb_queue_tail(&sd->input_pkt_queue, skb);
3506 input_queue_tail_incr_save(sd, qtail);
3507 rps_unlock(sd);
3508 local_irq_restore(flags);
3509 return NET_RX_SUCCESS;
3510 }
3511
3512 /* Schedule NAPI for backlog device
3513 * We can use non atomic operation since we own the queue lock
3514 */
3515 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3516 if (!rps_ipi_queued(sd))
3517 ____napi_schedule(sd, &sd->backlog);
3518 }
3519 goto enqueue;
3520 }
3521
3522 drop:
3523 sd->dropped++;
3524 rps_unlock(sd);
3525
3526 local_irq_restore(flags);
3527
3528 atomic_long_inc(&skb->dev->rx_dropped);
3529 kfree_skb(skb);
3530 return NET_RX_DROP;
3531 }
3532
netif_rx_internal(struct sk_buff * skb)3533 static int netif_rx_internal(struct sk_buff *skb)
3534 {
3535 int ret;
3536
3537 net_timestamp_check(netdev_tstamp_prequeue, skb);
3538
3539 trace_netif_rx(skb);
3540 #ifdef CONFIG_RPS
3541 if (static_key_false(&rps_needed)) {
3542 struct rps_dev_flow voidflow, *rflow = &voidflow;
3543 int cpu;
3544
3545 preempt_disable();
3546 rcu_read_lock();
3547
3548 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3549 if (cpu < 0)
3550 cpu = smp_processor_id();
3551
3552 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3553
3554 rcu_read_unlock();
3555 preempt_enable();
3556 } else
3557 #endif
3558 {
3559 unsigned int qtail;
3560 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3561 put_cpu();
3562 }
3563 return ret;
3564 }
3565
3566 /**
3567 * netif_rx - post buffer to the network code
3568 * @skb: buffer to post
3569 *
3570 * This function receives a packet from a device driver and queues it for
3571 * the upper (protocol) levels to process. It always succeeds. The buffer
3572 * may be dropped during processing for congestion control or by the
3573 * protocol layers.
3574 *
3575 * return values:
3576 * NET_RX_SUCCESS (no congestion)
3577 * NET_RX_DROP (packet was dropped)
3578 *
3579 */
3580
netif_rx(struct sk_buff * skb)3581 int netif_rx(struct sk_buff *skb)
3582 {
3583 trace_netif_rx_entry(skb);
3584
3585 return netif_rx_internal(skb);
3586 }
3587 EXPORT_SYMBOL(netif_rx);
3588
netif_rx_ni(struct sk_buff * skb)3589 int netif_rx_ni(struct sk_buff *skb)
3590 {
3591 int err;
3592
3593 trace_netif_rx_ni_entry(skb);
3594
3595 preempt_disable();
3596 err = netif_rx_internal(skb);
3597 if (local_softirq_pending())
3598 do_softirq();
3599 preempt_enable();
3600
3601 return err;
3602 }
3603 EXPORT_SYMBOL(netif_rx_ni);
3604
net_tx_action(struct softirq_action * h)3605 static void net_tx_action(struct softirq_action *h)
3606 {
3607 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3608
3609 if (sd->completion_queue) {
3610 struct sk_buff *clist;
3611
3612 local_irq_disable();
3613 clist = sd->completion_queue;
3614 sd->completion_queue = NULL;
3615 local_irq_enable();
3616
3617 while (clist) {
3618 struct sk_buff *skb = clist;
3619 clist = clist->next;
3620
3621 WARN_ON(atomic_read(&skb->users));
3622 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3623 trace_consume_skb(skb);
3624 else
3625 trace_kfree_skb(skb, net_tx_action);
3626 __kfree_skb(skb);
3627 }
3628 }
3629
3630 if (sd->output_queue) {
3631 struct Qdisc *head;
3632
3633 local_irq_disable();
3634 head = sd->output_queue;
3635 sd->output_queue = NULL;
3636 sd->output_queue_tailp = &sd->output_queue;
3637 local_irq_enable();
3638
3639 while (head) {
3640 struct Qdisc *q = head;
3641 spinlock_t *root_lock;
3642
3643 head = head->next_sched;
3644
3645 root_lock = qdisc_lock(q);
3646 if (spin_trylock(root_lock)) {
3647 smp_mb__before_atomic();
3648 clear_bit(__QDISC_STATE_SCHED,
3649 &q->state);
3650 qdisc_run(q);
3651 spin_unlock(root_lock);
3652 } else {
3653 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3654 &q->state)) {
3655 __netif_reschedule(q);
3656 } else {
3657 smp_mb__before_atomic();
3658 clear_bit(__QDISC_STATE_SCHED,
3659 &q->state);
3660 }
3661 }
3662 }
3663 }
3664 }
3665
3666 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3667 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3668 /* This hook is defined here for ATM LANE */
3669 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3670 unsigned char *addr) __read_mostly;
3671 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3672 #endif
3673
handle_ing(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)3674 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3675 struct packet_type **pt_prev,
3676 int *ret, struct net_device *orig_dev)
3677 {
3678 #ifdef CONFIG_NET_CLS_ACT
3679 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3680 struct tcf_result cl_res;
3681
3682 /* If there's at least one ingress present somewhere (so
3683 * we get here via enabled static key), remaining devices
3684 * that are not configured with an ingress qdisc will bail
3685 * out here.
3686 */
3687 if (!cl)
3688 return skb;
3689 if (*pt_prev) {
3690 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3691 *pt_prev = NULL;
3692 }
3693
3694 qdisc_skb_cb(skb)->pkt_len = skb->len;
3695 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3696 qdisc_bstats_cpu_update(cl->q, skb);
3697
3698 switch (tc_classify(skb, cl, &cl_res, false)) {
3699 case TC_ACT_OK:
3700 case TC_ACT_RECLASSIFY:
3701 skb->tc_index = TC_H_MIN(cl_res.classid);
3702 break;
3703 case TC_ACT_SHOT:
3704 qdisc_qstats_cpu_drop(cl->q);
3705 case TC_ACT_STOLEN:
3706 case TC_ACT_QUEUED:
3707 kfree_skb(skb);
3708 return NULL;
3709 case TC_ACT_REDIRECT:
3710 /* skb_mac_header check was done by cls/act_bpf, so
3711 * we can safely push the L2 header back before
3712 * redirecting to another netdev
3713 */
3714 __skb_push(skb, skb->mac_len);
3715 skb_do_redirect(skb);
3716 return NULL;
3717 default:
3718 break;
3719 }
3720 #endif /* CONFIG_NET_CLS_ACT */
3721 return skb;
3722 }
3723
3724 /**
3725 * netdev_rx_handler_register - register receive handler
3726 * @dev: device to register a handler for
3727 * @rx_handler: receive handler to register
3728 * @rx_handler_data: data pointer that is used by rx handler
3729 *
3730 * Register a receive handler for a device. This handler will then be
3731 * called from __netif_receive_skb. A negative errno code is returned
3732 * on a failure.
3733 *
3734 * The caller must hold the rtnl_mutex.
3735 *
3736 * For a general description of rx_handler, see enum rx_handler_result.
3737 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)3738 int netdev_rx_handler_register(struct net_device *dev,
3739 rx_handler_func_t *rx_handler,
3740 void *rx_handler_data)
3741 {
3742 ASSERT_RTNL();
3743
3744 if (dev->rx_handler)
3745 return -EBUSY;
3746
3747 /* Note: rx_handler_data must be set before rx_handler */
3748 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3749 rcu_assign_pointer(dev->rx_handler, rx_handler);
3750
3751 return 0;
3752 }
3753 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3754
3755 /**
3756 * netdev_rx_handler_unregister - unregister receive handler
3757 * @dev: device to unregister a handler from
3758 *
3759 * Unregister a receive handler from a device.
3760 *
3761 * The caller must hold the rtnl_mutex.
3762 */
netdev_rx_handler_unregister(struct net_device * dev)3763 void netdev_rx_handler_unregister(struct net_device *dev)
3764 {
3765
3766 ASSERT_RTNL();
3767 RCU_INIT_POINTER(dev->rx_handler, NULL);
3768 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3769 * section has a guarantee to see a non NULL rx_handler_data
3770 * as well.
3771 */
3772 synchronize_net();
3773 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3774 }
3775 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3776
3777 /*
3778 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3779 * the special handling of PFMEMALLOC skbs.
3780 */
skb_pfmemalloc_protocol(struct sk_buff * skb)3781 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3782 {
3783 switch (skb->protocol) {
3784 case htons(ETH_P_ARP):
3785 case htons(ETH_P_IP):
3786 case htons(ETH_P_IPV6):
3787 case htons(ETH_P_8021Q):
3788 case htons(ETH_P_8021AD):
3789 return true;
3790 default:
3791 return false;
3792 }
3793 }
3794
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)3795 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3796 int *ret, struct net_device *orig_dev)
3797 {
3798 #ifdef CONFIG_NETFILTER_INGRESS
3799 if (nf_hook_ingress_active(skb)) {
3800 if (*pt_prev) {
3801 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3802 *pt_prev = NULL;
3803 }
3804
3805 return nf_hook_ingress(skb);
3806 }
3807 #endif /* CONFIG_NETFILTER_INGRESS */
3808 return 0;
3809 }
3810
__netif_receive_skb_core(struct sk_buff * skb,bool pfmemalloc)3811 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3812 {
3813 struct packet_type *ptype, *pt_prev;
3814 rx_handler_func_t *rx_handler;
3815 struct net_device *orig_dev;
3816 bool deliver_exact = false;
3817 int ret = NET_RX_DROP;
3818 __be16 type;
3819
3820 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3821
3822 trace_netif_receive_skb(skb);
3823
3824 orig_dev = skb->dev;
3825
3826 skb_reset_network_header(skb);
3827 if (!skb_transport_header_was_set(skb))
3828 skb_reset_transport_header(skb);
3829 skb_reset_mac_len(skb);
3830
3831 pt_prev = NULL;
3832
3833 another_round:
3834 skb->skb_iif = skb->dev->ifindex;
3835
3836 __this_cpu_inc(softnet_data.processed);
3837
3838 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3839 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3840 skb = skb_vlan_untag(skb);
3841 if (unlikely(!skb))
3842 goto out;
3843 }
3844
3845 #ifdef CONFIG_NET_CLS_ACT
3846 if (skb->tc_verd & TC_NCLS) {
3847 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3848 goto ncls;
3849 }
3850 #endif
3851
3852 if (pfmemalloc)
3853 goto skip_taps;
3854
3855 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3856 if (pt_prev)
3857 ret = deliver_skb(skb, pt_prev, orig_dev);
3858 pt_prev = ptype;
3859 }
3860
3861 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3862 if (pt_prev)
3863 ret = deliver_skb(skb, pt_prev, orig_dev);
3864 pt_prev = ptype;
3865 }
3866
3867 skip_taps:
3868 #ifdef CONFIG_NET_INGRESS
3869 if (static_key_false(&ingress_needed)) {
3870 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3871 if (!skb)
3872 goto out;
3873
3874 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3875 goto out;
3876 }
3877 #endif
3878 #ifdef CONFIG_NET_CLS_ACT
3879 skb->tc_verd = 0;
3880 ncls:
3881 #endif
3882 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3883 goto drop;
3884
3885 if (skb_vlan_tag_present(skb)) {
3886 if (pt_prev) {
3887 ret = deliver_skb(skb, pt_prev, orig_dev);
3888 pt_prev = NULL;
3889 }
3890 if (vlan_do_receive(&skb))
3891 goto another_round;
3892 else if (unlikely(!skb))
3893 goto out;
3894 }
3895
3896 rx_handler = rcu_dereference(skb->dev->rx_handler);
3897 if (rx_handler) {
3898 if (pt_prev) {
3899 ret = deliver_skb(skb, pt_prev, orig_dev);
3900 pt_prev = NULL;
3901 }
3902 switch (rx_handler(&skb)) {
3903 case RX_HANDLER_CONSUMED:
3904 ret = NET_RX_SUCCESS;
3905 goto out;
3906 case RX_HANDLER_ANOTHER:
3907 goto another_round;
3908 case RX_HANDLER_EXACT:
3909 deliver_exact = true;
3910 case RX_HANDLER_PASS:
3911 break;
3912 default:
3913 BUG();
3914 }
3915 }
3916
3917 if (unlikely(skb_vlan_tag_present(skb))) {
3918 if (skb_vlan_tag_get_id(skb))
3919 skb->pkt_type = PACKET_OTHERHOST;
3920 /* Note: we might in the future use prio bits
3921 * and set skb->priority like in vlan_do_receive()
3922 * For the time being, just ignore Priority Code Point
3923 */
3924 skb->vlan_tci = 0;
3925 }
3926
3927 type = skb->protocol;
3928
3929 /* deliver only exact match when indicated */
3930 if (likely(!deliver_exact)) {
3931 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3932 &ptype_base[ntohs(type) &
3933 PTYPE_HASH_MASK]);
3934 }
3935
3936 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3937 &orig_dev->ptype_specific);
3938
3939 if (unlikely(skb->dev != orig_dev)) {
3940 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3941 &skb->dev->ptype_specific);
3942 }
3943
3944 if (pt_prev) {
3945 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3946 goto drop;
3947 else
3948 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3949 } else {
3950 drop:
3951 atomic_long_inc(&skb->dev->rx_dropped);
3952 kfree_skb(skb);
3953 /* Jamal, now you will not able to escape explaining
3954 * me how you were going to use this. :-)
3955 */
3956 ret = NET_RX_DROP;
3957 }
3958
3959 out:
3960 return ret;
3961 }
3962
__netif_receive_skb(struct sk_buff * skb)3963 static int __netif_receive_skb(struct sk_buff *skb)
3964 {
3965 int ret;
3966
3967 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3968 unsigned long pflags = current->flags;
3969
3970 /*
3971 * PFMEMALLOC skbs are special, they should
3972 * - be delivered to SOCK_MEMALLOC sockets only
3973 * - stay away from userspace
3974 * - have bounded memory usage
3975 *
3976 * Use PF_MEMALLOC as this saves us from propagating the allocation
3977 * context down to all allocation sites.
3978 */
3979 current->flags |= PF_MEMALLOC;
3980 ret = __netif_receive_skb_core(skb, true);
3981 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3982 } else
3983 ret = __netif_receive_skb_core(skb, false);
3984
3985 return ret;
3986 }
3987
netif_receive_skb_internal(struct sk_buff * skb)3988 static int netif_receive_skb_internal(struct sk_buff *skb)
3989 {
3990 int ret;
3991
3992 net_timestamp_check(netdev_tstamp_prequeue, skb);
3993
3994 if (skb_defer_rx_timestamp(skb))
3995 return NET_RX_SUCCESS;
3996
3997 rcu_read_lock();
3998
3999 #ifdef CONFIG_RPS
4000 if (static_key_false(&rps_needed)) {
4001 struct rps_dev_flow voidflow, *rflow = &voidflow;
4002 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4003
4004 if (cpu >= 0) {
4005 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4006 rcu_read_unlock();
4007 return ret;
4008 }
4009 }
4010 #endif
4011 ret = __netif_receive_skb(skb);
4012 rcu_read_unlock();
4013 return ret;
4014 }
4015
4016 /**
4017 * netif_receive_skb - process receive buffer from network
4018 * @skb: buffer to process
4019 *
4020 * netif_receive_skb() is the main receive data processing function.
4021 * It always succeeds. The buffer may be dropped during processing
4022 * for congestion control or by the protocol layers.
4023 *
4024 * This function may only be called from softirq context and interrupts
4025 * should be enabled.
4026 *
4027 * Return values (usually ignored):
4028 * NET_RX_SUCCESS: no congestion
4029 * NET_RX_DROP: packet was dropped
4030 */
netif_receive_skb(struct sk_buff * skb)4031 int netif_receive_skb(struct sk_buff *skb)
4032 {
4033 trace_netif_receive_skb_entry(skb);
4034
4035 return netif_receive_skb_internal(skb);
4036 }
4037 EXPORT_SYMBOL(netif_receive_skb);
4038
4039 /* Network device is going away, flush any packets still pending
4040 * Called with irqs disabled.
4041 */
flush_backlog(void * arg)4042 static void flush_backlog(void *arg)
4043 {
4044 struct net_device *dev = arg;
4045 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4046 struct sk_buff *skb, *tmp;
4047
4048 rps_lock(sd);
4049 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4050 if (skb->dev == dev) {
4051 __skb_unlink(skb, &sd->input_pkt_queue);
4052 kfree_skb(skb);
4053 input_queue_head_incr(sd);
4054 }
4055 }
4056 rps_unlock(sd);
4057
4058 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4059 if (skb->dev == dev) {
4060 __skb_unlink(skb, &sd->process_queue);
4061 kfree_skb(skb);
4062 input_queue_head_incr(sd);
4063 }
4064 }
4065 }
4066
napi_gro_complete(struct sk_buff * skb)4067 static int napi_gro_complete(struct sk_buff *skb)
4068 {
4069 struct packet_offload *ptype;
4070 __be16 type = skb->protocol;
4071 struct list_head *head = &offload_base;
4072 int err = -ENOENT;
4073
4074 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4075
4076 if (NAPI_GRO_CB(skb)->count == 1) {
4077 skb_shinfo(skb)->gso_size = 0;
4078 goto out;
4079 }
4080
4081 rcu_read_lock();
4082 list_for_each_entry_rcu(ptype, head, list) {
4083 if (ptype->type != type || !ptype->callbacks.gro_complete)
4084 continue;
4085
4086 err = ptype->callbacks.gro_complete(skb, 0);
4087 break;
4088 }
4089 rcu_read_unlock();
4090
4091 if (err) {
4092 WARN_ON(&ptype->list == head);
4093 kfree_skb(skb);
4094 return NET_RX_SUCCESS;
4095 }
4096
4097 out:
4098 return netif_receive_skb_internal(skb);
4099 }
4100
4101 /* napi->gro_list contains packets ordered by age.
4102 * youngest packets at the head of it.
4103 * Complete skbs in reverse order to reduce latencies.
4104 */
napi_gro_flush(struct napi_struct * napi,bool flush_old)4105 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4106 {
4107 struct sk_buff *skb, *prev = NULL;
4108
4109 /* scan list and build reverse chain */
4110 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4111 skb->prev = prev;
4112 prev = skb;
4113 }
4114
4115 for (skb = prev; skb; skb = prev) {
4116 skb->next = NULL;
4117
4118 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4119 return;
4120
4121 prev = skb->prev;
4122 napi_gro_complete(skb);
4123 napi->gro_count--;
4124 }
4125
4126 napi->gro_list = NULL;
4127 }
4128 EXPORT_SYMBOL(napi_gro_flush);
4129
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)4130 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4131 {
4132 struct sk_buff *p;
4133 unsigned int maclen = skb->dev->hard_header_len;
4134 u32 hash = skb_get_hash_raw(skb);
4135
4136 for (p = napi->gro_list; p; p = p->next) {
4137 unsigned long diffs;
4138
4139 NAPI_GRO_CB(p)->flush = 0;
4140
4141 if (hash != skb_get_hash_raw(p)) {
4142 NAPI_GRO_CB(p)->same_flow = 0;
4143 continue;
4144 }
4145
4146 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4147 diffs |= p->vlan_tci ^ skb->vlan_tci;
4148 diffs |= skb_metadata_dst_cmp(p, skb);
4149 if (maclen == ETH_HLEN)
4150 diffs |= compare_ether_header(skb_mac_header(p),
4151 skb_mac_header(skb));
4152 else if (!diffs)
4153 diffs = memcmp(skb_mac_header(p),
4154 skb_mac_header(skb),
4155 maclen);
4156 NAPI_GRO_CB(p)->same_flow = !diffs;
4157 }
4158 }
4159
skb_gro_reset_offset(struct sk_buff * skb)4160 static void skb_gro_reset_offset(struct sk_buff *skb)
4161 {
4162 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4163 const skb_frag_t *frag0 = &pinfo->frags[0];
4164
4165 NAPI_GRO_CB(skb)->data_offset = 0;
4166 NAPI_GRO_CB(skb)->frag0 = NULL;
4167 NAPI_GRO_CB(skb)->frag0_len = 0;
4168
4169 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4170 pinfo->nr_frags &&
4171 !PageHighMem(skb_frag_page(frag0))) {
4172 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4173 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4174 }
4175 }
4176
gro_pull_from_frag0(struct sk_buff * skb,int grow)4177 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4178 {
4179 struct skb_shared_info *pinfo = skb_shinfo(skb);
4180
4181 BUG_ON(skb->end - skb->tail < grow);
4182
4183 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4184
4185 skb->data_len -= grow;
4186 skb->tail += grow;
4187
4188 pinfo->frags[0].page_offset += grow;
4189 skb_frag_size_sub(&pinfo->frags[0], grow);
4190
4191 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4192 skb_frag_unref(skb, 0);
4193 memmove(pinfo->frags, pinfo->frags + 1,
4194 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4195 }
4196 }
4197
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)4198 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4199 {
4200 struct sk_buff **pp = NULL;
4201 struct packet_offload *ptype;
4202 __be16 type = skb->protocol;
4203 struct list_head *head = &offload_base;
4204 int same_flow;
4205 enum gro_result ret;
4206 int grow;
4207
4208 if (!(skb->dev->features & NETIF_F_GRO))
4209 goto normal;
4210
4211 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4212 goto normal;
4213
4214 gro_list_prepare(napi, skb);
4215
4216 rcu_read_lock();
4217 list_for_each_entry_rcu(ptype, head, list) {
4218 if (ptype->type != type || !ptype->callbacks.gro_receive)
4219 continue;
4220
4221 skb_set_network_header(skb, skb_gro_offset(skb));
4222 skb_reset_mac_len(skb);
4223 NAPI_GRO_CB(skb)->same_flow = 0;
4224 NAPI_GRO_CB(skb)->flush = 0;
4225 NAPI_GRO_CB(skb)->free = 0;
4226 NAPI_GRO_CB(skb)->udp_mark = 0;
4227 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4228
4229 /* Setup for GRO checksum validation */
4230 switch (skb->ip_summed) {
4231 case CHECKSUM_COMPLETE:
4232 NAPI_GRO_CB(skb)->csum = skb->csum;
4233 NAPI_GRO_CB(skb)->csum_valid = 1;
4234 NAPI_GRO_CB(skb)->csum_cnt = 0;
4235 break;
4236 case CHECKSUM_UNNECESSARY:
4237 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4238 NAPI_GRO_CB(skb)->csum_valid = 0;
4239 break;
4240 default:
4241 NAPI_GRO_CB(skb)->csum_cnt = 0;
4242 NAPI_GRO_CB(skb)->csum_valid = 0;
4243 }
4244
4245 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4246 break;
4247 }
4248 rcu_read_unlock();
4249
4250 if (&ptype->list == head)
4251 goto normal;
4252
4253 same_flow = NAPI_GRO_CB(skb)->same_flow;
4254 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4255
4256 if (pp) {
4257 struct sk_buff *nskb = *pp;
4258
4259 *pp = nskb->next;
4260 nskb->next = NULL;
4261 napi_gro_complete(nskb);
4262 napi->gro_count--;
4263 }
4264
4265 if (same_flow)
4266 goto ok;
4267
4268 if (NAPI_GRO_CB(skb)->flush)
4269 goto normal;
4270
4271 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4272 struct sk_buff *nskb = napi->gro_list;
4273
4274 /* locate the end of the list to select the 'oldest' flow */
4275 while (nskb->next) {
4276 pp = &nskb->next;
4277 nskb = *pp;
4278 }
4279 *pp = NULL;
4280 nskb->next = NULL;
4281 napi_gro_complete(nskb);
4282 } else {
4283 napi->gro_count++;
4284 }
4285 NAPI_GRO_CB(skb)->count = 1;
4286 NAPI_GRO_CB(skb)->age = jiffies;
4287 NAPI_GRO_CB(skb)->last = skb;
4288 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4289 skb->next = napi->gro_list;
4290 napi->gro_list = skb;
4291 ret = GRO_HELD;
4292
4293 pull:
4294 grow = skb_gro_offset(skb) - skb_headlen(skb);
4295 if (grow > 0)
4296 gro_pull_from_frag0(skb, grow);
4297 ok:
4298 return ret;
4299
4300 normal:
4301 ret = GRO_NORMAL;
4302 goto pull;
4303 }
4304
gro_find_receive_by_type(__be16 type)4305 struct packet_offload *gro_find_receive_by_type(__be16 type)
4306 {
4307 struct list_head *offload_head = &offload_base;
4308 struct packet_offload *ptype;
4309
4310 list_for_each_entry_rcu(ptype, offload_head, list) {
4311 if (ptype->type != type || !ptype->callbacks.gro_receive)
4312 continue;
4313 return ptype;
4314 }
4315 return NULL;
4316 }
4317 EXPORT_SYMBOL(gro_find_receive_by_type);
4318
gro_find_complete_by_type(__be16 type)4319 struct packet_offload *gro_find_complete_by_type(__be16 type)
4320 {
4321 struct list_head *offload_head = &offload_base;
4322 struct packet_offload *ptype;
4323
4324 list_for_each_entry_rcu(ptype, offload_head, list) {
4325 if (ptype->type != type || !ptype->callbacks.gro_complete)
4326 continue;
4327 return ptype;
4328 }
4329 return NULL;
4330 }
4331 EXPORT_SYMBOL(gro_find_complete_by_type);
4332
napi_skb_finish(gro_result_t ret,struct sk_buff * skb)4333 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4334 {
4335 switch (ret) {
4336 case GRO_NORMAL:
4337 if (netif_receive_skb_internal(skb))
4338 ret = GRO_DROP;
4339 break;
4340
4341 case GRO_DROP:
4342 kfree_skb(skb);
4343 break;
4344
4345 case GRO_MERGED_FREE:
4346 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4347 skb_dst_drop(skb);
4348 kmem_cache_free(skbuff_head_cache, skb);
4349 } else {
4350 __kfree_skb(skb);
4351 }
4352 break;
4353
4354 case GRO_HELD:
4355 case GRO_MERGED:
4356 break;
4357 }
4358
4359 return ret;
4360 }
4361
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)4362 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4363 {
4364 trace_napi_gro_receive_entry(skb);
4365
4366 skb_gro_reset_offset(skb);
4367
4368 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4369 }
4370 EXPORT_SYMBOL(napi_gro_receive);
4371
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)4372 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4373 {
4374 if (unlikely(skb->pfmemalloc)) {
4375 consume_skb(skb);
4376 return;
4377 }
4378 __skb_pull(skb, skb_headlen(skb));
4379 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4380 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4381 skb->vlan_tci = 0;
4382 skb->dev = napi->dev;
4383 skb->skb_iif = 0;
4384 skb->encapsulation = 0;
4385 skb_shinfo(skb)->gso_type = 0;
4386 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4387
4388 napi->skb = skb;
4389 }
4390
napi_get_frags(struct napi_struct * napi)4391 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4392 {
4393 struct sk_buff *skb = napi->skb;
4394
4395 if (!skb) {
4396 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4397 napi->skb = skb;
4398 }
4399 return skb;
4400 }
4401 EXPORT_SYMBOL(napi_get_frags);
4402
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)4403 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4404 struct sk_buff *skb,
4405 gro_result_t ret)
4406 {
4407 switch (ret) {
4408 case GRO_NORMAL:
4409 case GRO_HELD:
4410 __skb_push(skb, ETH_HLEN);
4411 skb->protocol = eth_type_trans(skb, skb->dev);
4412 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4413 ret = GRO_DROP;
4414 break;
4415
4416 case GRO_DROP:
4417 case GRO_MERGED_FREE:
4418 napi_reuse_skb(napi, skb);
4419 break;
4420
4421 case GRO_MERGED:
4422 break;
4423 }
4424
4425 return ret;
4426 }
4427
4428 /* Upper GRO stack assumes network header starts at gro_offset=0
4429 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4430 * We copy ethernet header into skb->data to have a common layout.
4431 */
napi_frags_skb(struct napi_struct * napi)4432 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4433 {
4434 struct sk_buff *skb = napi->skb;
4435 const struct ethhdr *eth;
4436 unsigned int hlen = sizeof(*eth);
4437
4438 napi->skb = NULL;
4439
4440 skb_reset_mac_header(skb);
4441 skb_gro_reset_offset(skb);
4442
4443 eth = skb_gro_header_fast(skb, 0);
4444 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4445 eth = skb_gro_header_slow(skb, hlen, 0);
4446 if (unlikely(!eth)) {
4447 napi_reuse_skb(napi, skb);
4448 return NULL;
4449 }
4450 } else {
4451 gro_pull_from_frag0(skb, hlen);
4452 NAPI_GRO_CB(skb)->frag0 += hlen;
4453 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4454 }
4455 __skb_pull(skb, hlen);
4456
4457 /*
4458 * This works because the only protocols we care about don't require
4459 * special handling.
4460 * We'll fix it up properly in napi_frags_finish()
4461 */
4462 skb->protocol = eth->h_proto;
4463
4464 return skb;
4465 }
4466
napi_gro_frags(struct napi_struct * napi)4467 gro_result_t napi_gro_frags(struct napi_struct *napi)
4468 {
4469 struct sk_buff *skb = napi_frags_skb(napi);
4470
4471 if (!skb)
4472 return GRO_DROP;
4473
4474 trace_napi_gro_frags_entry(skb);
4475
4476 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4477 }
4478 EXPORT_SYMBOL(napi_gro_frags);
4479
4480 /* Compute the checksum from gro_offset and return the folded value
4481 * after adding in any pseudo checksum.
4482 */
__skb_gro_checksum_complete(struct sk_buff * skb)4483 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4484 {
4485 __wsum wsum;
4486 __sum16 sum;
4487
4488 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4489
4490 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4491 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4492 if (likely(!sum)) {
4493 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4494 !skb->csum_complete_sw)
4495 netdev_rx_csum_fault(skb->dev);
4496 }
4497
4498 NAPI_GRO_CB(skb)->csum = wsum;
4499 NAPI_GRO_CB(skb)->csum_valid = 1;
4500
4501 return sum;
4502 }
4503 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4504
4505 /*
4506 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4507 * Note: called with local irq disabled, but exits with local irq enabled.
4508 */
net_rps_action_and_irq_enable(struct softnet_data * sd)4509 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4510 {
4511 #ifdef CONFIG_RPS
4512 struct softnet_data *remsd = sd->rps_ipi_list;
4513
4514 if (remsd) {
4515 sd->rps_ipi_list = NULL;
4516
4517 local_irq_enable();
4518
4519 /* Send pending IPI's to kick RPS processing on remote cpus. */
4520 while (remsd) {
4521 struct softnet_data *next = remsd->rps_ipi_next;
4522
4523 if (cpu_online(remsd->cpu))
4524 smp_call_function_single_async(remsd->cpu,
4525 &remsd->csd);
4526 remsd = next;
4527 }
4528 } else
4529 #endif
4530 local_irq_enable();
4531 }
4532
sd_has_rps_ipi_waiting(struct softnet_data * sd)4533 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4534 {
4535 #ifdef CONFIG_RPS
4536 return sd->rps_ipi_list != NULL;
4537 #else
4538 return false;
4539 #endif
4540 }
4541
process_backlog(struct napi_struct * napi,int quota)4542 static int process_backlog(struct napi_struct *napi, int quota)
4543 {
4544 int work = 0;
4545 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4546
4547 /* Check if we have pending ipi, its better to send them now,
4548 * not waiting net_rx_action() end.
4549 */
4550 if (sd_has_rps_ipi_waiting(sd)) {
4551 local_irq_disable();
4552 net_rps_action_and_irq_enable(sd);
4553 }
4554
4555 napi->weight = weight_p;
4556 local_irq_disable();
4557 while (1) {
4558 struct sk_buff *skb;
4559
4560 while ((skb = __skb_dequeue(&sd->process_queue))) {
4561 rcu_read_lock();
4562 local_irq_enable();
4563 __netif_receive_skb(skb);
4564 rcu_read_unlock();
4565 local_irq_disable();
4566 input_queue_head_incr(sd);
4567 if (++work >= quota) {
4568 local_irq_enable();
4569 return work;
4570 }
4571 }
4572
4573 rps_lock(sd);
4574 if (skb_queue_empty(&sd->input_pkt_queue)) {
4575 /*
4576 * Inline a custom version of __napi_complete().
4577 * only current cpu owns and manipulates this napi,
4578 * and NAPI_STATE_SCHED is the only possible flag set
4579 * on backlog.
4580 * We can use a plain write instead of clear_bit(),
4581 * and we dont need an smp_mb() memory barrier.
4582 */
4583 napi->state = 0;
4584 rps_unlock(sd);
4585
4586 break;
4587 }
4588
4589 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4590 &sd->process_queue);
4591 rps_unlock(sd);
4592 }
4593 local_irq_enable();
4594
4595 return work;
4596 }
4597
4598 /**
4599 * __napi_schedule - schedule for receive
4600 * @n: entry to schedule
4601 *
4602 * The entry's receive function will be scheduled to run.
4603 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4604 */
__napi_schedule(struct napi_struct * n)4605 void __napi_schedule(struct napi_struct *n)
4606 {
4607 unsigned long flags;
4608
4609 local_irq_save(flags);
4610 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4611 local_irq_restore(flags);
4612 }
4613 EXPORT_SYMBOL(__napi_schedule);
4614
4615 /**
4616 * __napi_schedule_irqoff - schedule for receive
4617 * @n: entry to schedule
4618 *
4619 * Variant of __napi_schedule() assuming hard irqs are masked
4620 */
__napi_schedule_irqoff(struct napi_struct * n)4621 void __napi_schedule_irqoff(struct napi_struct *n)
4622 {
4623 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4624 }
4625 EXPORT_SYMBOL(__napi_schedule_irqoff);
4626
__napi_complete(struct napi_struct * n)4627 void __napi_complete(struct napi_struct *n)
4628 {
4629 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4630
4631 list_del_init(&n->poll_list);
4632 smp_mb__before_atomic();
4633 clear_bit(NAPI_STATE_SCHED, &n->state);
4634 }
4635 EXPORT_SYMBOL(__napi_complete);
4636
napi_complete_done(struct napi_struct * n,int work_done)4637 void napi_complete_done(struct napi_struct *n, int work_done)
4638 {
4639 unsigned long flags;
4640
4641 /*
4642 * don't let napi dequeue from the cpu poll list
4643 * just in case its running on a different cpu
4644 */
4645 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4646 return;
4647
4648 if (n->gro_list) {
4649 unsigned long timeout = 0;
4650
4651 if (work_done)
4652 timeout = n->dev->gro_flush_timeout;
4653
4654 if (timeout)
4655 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4656 HRTIMER_MODE_REL_PINNED);
4657 else
4658 napi_gro_flush(n, false);
4659 }
4660 if (likely(list_empty(&n->poll_list))) {
4661 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4662 } else {
4663 /* If n->poll_list is not empty, we need to mask irqs */
4664 local_irq_save(flags);
4665 __napi_complete(n);
4666 local_irq_restore(flags);
4667 }
4668 }
4669 EXPORT_SYMBOL(napi_complete_done);
4670
4671 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)4672 struct napi_struct *napi_by_id(unsigned int napi_id)
4673 {
4674 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4675 struct napi_struct *napi;
4676
4677 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4678 if (napi->napi_id == napi_id)
4679 return napi;
4680
4681 return NULL;
4682 }
4683 EXPORT_SYMBOL_GPL(napi_by_id);
4684
napi_hash_add(struct napi_struct * napi)4685 void napi_hash_add(struct napi_struct *napi)
4686 {
4687 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4688
4689 spin_lock(&napi_hash_lock);
4690
4691 /* 0 is not a valid id, we also skip an id that is taken
4692 * we expect both events to be extremely rare
4693 */
4694 napi->napi_id = 0;
4695 while (!napi->napi_id) {
4696 napi->napi_id = ++napi_gen_id;
4697 if (napi_by_id(napi->napi_id))
4698 napi->napi_id = 0;
4699 }
4700
4701 hlist_add_head_rcu(&napi->napi_hash_node,
4702 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4703
4704 spin_unlock(&napi_hash_lock);
4705 }
4706 }
4707 EXPORT_SYMBOL_GPL(napi_hash_add);
4708
4709 /* Warning : caller is responsible to make sure rcu grace period
4710 * is respected before freeing memory containing @napi
4711 */
napi_hash_del(struct napi_struct * napi)4712 void napi_hash_del(struct napi_struct *napi)
4713 {
4714 spin_lock(&napi_hash_lock);
4715
4716 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4717 hlist_del_rcu(&napi->napi_hash_node);
4718
4719 spin_unlock(&napi_hash_lock);
4720 }
4721 EXPORT_SYMBOL_GPL(napi_hash_del);
4722
napi_watchdog(struct hrtimer * timer)4723 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4724 {
4725 struct napi_struct *napi;
4726
4727 napi = container_of(timer, struct napi_struct, timer);
4728 if (napi->gro_list)
4729 napi_schedule(napi);
4730
4731 return HRTIMER_NORESTART;
4732 }
4733
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)4734 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4735 int (*poll)(struct napi_struct *, int), int weight)
4736 {
4737 INIT_LIST_HEAD(&napi->poll_list);
4738 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4739 napi->timer.function = napi_watchdog;
4740 napi->gro_count = 0;
4741 napi->gro_list = NULL;
4742 napi->skb = NULL;
4743 napi->poll = poll;
4744 if (weight > NAPI_POLL_WEIGHT)
4745 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4746 weight, dev->name);
4747 napi->weight = weight;
4748 list_add(&napi->dev_list, &dev->napi_list);
4749 napi->dev = dev;
4750 #ifdef CONFIG_NETPOLL
4751 spin_lock_init(&napi->poll_lock);
4752 napi->poll_owner = -1;
4753 #endif
4754 set_bit(NAPI_STATE_SCHED, &napi->state);
4755 }
4756 EXPORT_SYMBOL(netif_napi_add);
4757
napi_disable(struct napi_struct * n)4758 void napi_disable(struct napi_struct *n)
4759 {
4760 might_sleep();
4761 set_bit(NAPI_STATE_DISABLE, &n->state);
4762
4763 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4764 msleep(1);
4765 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4766 msleep(1);
4767
4768 hrtimer_cancel(&n->timer);
4769
4770 clear_bit(NAPI_STATE_DISABLE, &n->state);
4771 }
4772 EXPORT_SYMBOL(napi_disable);
4773
netif_napi_del(struct napi_struct * napi)4774 void netif_napi_del(struct napi_struct *napi)
4775 {
4776 list_del_init(&napi->dev_list);
4777 napi_free_frags(napi);
4778
4779 kfree_skb_list(napi->gro_list);
4780 napi->gro_list = NULL;
4781 napi->gro_count = 0;
4782 }
4783 EXPORT_SYMBOL(netif_napi_del);
4784
napi_poll(struct napi_struct * n,struct list_head * repoll)4785 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4786 {
4787 void *have;
4788 int work, weight;
4789
4790 list_del_init(&n->poll_list);
4791
4792 have = netpoll_poll_lock(n);
4793
4794 weight = n->weight;
4795
4796 /* This NAPI_STATE_SCHED test is for avoiding a race
4797 * with netpoll's poll_napi(). Only the entity which
4798 * obtains the lock and sees NAPI_STATE_SCHED set will
4799 * actually make the ->poll() call. Therefore we avoid
4800 * accidentally calling ->poll() when NAPI is not scheduled.
4801 */
4802 work = 0;
4803 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4804 work = n->poll(n, weight);
4805 trace_napi_poll(n);
4806 }
4807
4808 WARN_ON_ONCE(work > weight);
4809
4810 if (likely(work < weight))
4811 goto out_unlock;
4812
4813 /* Drivers must not modify the NAPI state if they
4814 * consume the entire weight. In such cases this code
4815 * still "owns" the NAPI instance and therefore can
4816 * move the instance around on the list at-will.
4817 */
4818 if (unlikely(napi_disable_pending(n))) {
4819 napi_complete(n);
4820 goto out_unlock;
4821 }
4822
4823 if (n->gro_list) {
4824 /* flush too old packets
4825 * If HZ < 1000, flush all packets.
4826 */
4827 napi_gro_flush(n, HZ >= 1000);
4828 }
4829
4830 /* Some drivers may have called napi_schedule
4831 * prior to exhausting their budget.
4832 */
4833 if (unlikely(!list_empty(&n->poll_list))) {
4834 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4835 n->dev ? n->dev->name : "backlog");
4836 goto out_unlock;
4837 }
4838
4839 list_add_tail(&n->poll_list, repoll);
4840
4841 out_unlock:
4842 netpoll_poll_unlock(have);
4843
4844 return work;
4845 }
4846
net_rx_action(struct softirq_action * h)4847 static void net_rx_action(struct softirq_action *h)
4848 {
4849 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4850 unsigned long time_limit = jiffies + 2;
4851 int budget = netdev_budget;
4852 LIST_HEAD(list);
4853 LIST_HEAD(repoll);
4854
4855 local_irq_disable();
4856 list_splice_init(&sd->poll_list, &list);
4857 local_irq_enable();
4858
4859 for (;;) {
4860 struct napi_struct *n;
4861
4862 if (list_empty(&list)) {
4863 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4864 return;
4865 break;
4866 }
4867
4868 n = list_first_entry(&list, struct napi_struct, poll_list);
4869 budget -= napi_poll(n, &repoll);
4870
4871 /* If softirq window is exhausted then punt.
4872 * Allow this to run for 2 jiffies since which will allow
4873 * an average latency of 1.5/HZ.
4874 */
4875 if (unlikely(budget <= 0 ||
4876 time_after_eq(jiffies, time_limit))) {
4877 sd->time_squeeze++;
4878 break;
4879 }
4880 }
4881
4882 local_irq_disable();
4883
4884 list_splice_tail_init(&sd->poll_list, &list);
4885 list_splice_tail(&repoll, &list);
4886 list_splice(&list, &sd->poll_list);
4887 if (!list_empty(&sd->poll_list))
4888 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4889
4890 net_rps_action_and_irq_enable(sd);
4891 }
4892
4893 struct netdev_adjacent {
4894 struct net_device *dev;
4895
4896 /* upper master flag, there can only be one master device per list */
4897 bool master;
4898
4899 /* counter for the number of times this device was added to us */
4900 u16 ref_nr;
4901
4902 /* private field for the users */
4903 void *private;
4904
4905 struct list_head list;
4906 struct rcu_head rcu;
4907 };
4908
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)4909 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4910 struct list_head *adj_list)
4911 {
4912 struct netdev_adjacent *adj;
4913
4914 list_for_each_entry(adj, adj_list, list) {
4915 if (adj->dev == adj_dev)
4916 return adj;
4917 }
4918 return NULL;
4919 }
4920
4921 /**
4922 * netdev_has_upper_dev - Check if device is linked to an upper device
4923 * @dev: device
4924 * @upper_dev: upper device to check
4925 *
4926 * Find out if a device is linked to specified upper device and return true
4927 * in case it is. Note that this checks only immediate upper device,
4928 * not through a complete stack of devices. The caller must hold the RTNL lock.
4929 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)4930 bool netdev_has_upper_dev(struct net_device *dev,
4931 struct net_device *upper_dev)
4932 {
4933 ASSERT_RTNL();
4934
4935 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4936 }
4937 EXPORT_SYMBOL(netdev_has_upper_dev);
4938
4939 /**
4940 * netdev_has_any_upper_dev - Check if device is linked to some device
4941 * @dev: device
4942 *
4943 * Find out if a device is linked to an upper device and return true in case
4944 * it is. The caller must hold the RTNL lock.
4945 */
netdev_has_any_upper_dev(struct net_device * dev)4946 static bool netdev_has_any_upper_dev(struct net_device *dev)
4947 {
4948 ASSERT_RTNL();
4949
4950 return !list_empty(&dev->all_adj_list.upper);
4951 }
4952
4953 /**
4954 * netdev_master_upper_dev_get - Get master upper device
4955 * @dev: device
4956 *
4957 * Find a master upper device and return pointer to it or NULL in case
4958 * it's not there. The caller must hold the RTNL lock.
4959 */
netdev_master_upper_dev_get(struct net_device * dev)4960 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4961 {
4962 struct netdev_adjacent *upper;
4963
4964 ASSERT_RTNL();
4965
4966 if (list_empty(&dev->adj_list.upper))
4967 return NULL;
4968
4969 upper = list_first_entry(&dev->adj_list.upper,
4970 struct netdev_adjacent, list);
4971 if (likely(upper->master))
4972 return upper->dev;
4973 return NULL;
4974 }
4975 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4976
netdev_adjacent_get_private(struct list_head * adj_list)4977 void *netdev_adjacent_get_private(struct list_head *adj_list)
4978 {
4979 struct netdev_adjacent *adj;
4980
4981 adj = list_entry(adj_list, struct netdev_adjacent, list);
4982
4983 return adj->private;
4984 }
4985 EXPORT_SYMBOL(netdev_adjacent_get_private);
4986
4987 /**
4988 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4989 * @dev: device
4990 * @iter: list_head ** of the current position
4991 *
4992 * Gets the next device from the dev's upper list, starting from iter
4993 * position. The caller must hold RCU read lock.
4994 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)4995 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4996 struct list_head **iter)
4997 {
4998 struct netdev_adjacent *upper;
4999
5000 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5001
5002 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5003
5004 if (&upper->list == &dev->adj_list.upper)
5005 return NULL;
5006
5007 *iter = &upper->list;
5008
5009 return upper->dev;
5010 }
5011 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5012
5013 /**
5014 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5015 * @dev: device
5016 * @iter: list_head ** of the current position
5017 *
5018 * Gets the next device from the dev's upper list, starting from iter
5019 * position. The caller must hold RCU read lock.
5020 */
netdev_all_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)5021 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5022 struct list_head **iter)
5023 {
5024 struct netdev_adjacent *upper;
5025
5026 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5027
5028 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5029
5030 if (&upper->list == &dev->all_adj_list.upper)
5031 return NULL;
5032
5033 *iter = &upper->list;
5034
5035 return upper->dev;
5036 }
5037 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5038
5039 /**
5040 * netdev_lower_get_next_private - Get the next ->private from the
5041 * lower neighbour list
5042 * @dev: device
5043 * @iter: list_head ** of the current position
5044 *
5045 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5046 * list, starting from iter position. The caller must hold either hold the
5047 * RTNL lock or its own locking that guarantees that the neighbour lower
5048 * list will remain unchanged.
5049 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)5050 void *netdev_lower_get_next_private(struct net_device *dev,
5051 struct list_head **iter)
5052 {
5053 struct netdev_adjacent *lower;
5054
5055 lower = list_entry(*iter, struct netdev_adjacent, list);
5056
5057 if (&lower->list == &dev->adj_list.lower)
5058 return NULL;
5059
5060 *iter = lower->list.next;
5061
5062 return lower->private;
5063 }
5064 EXPORT_SYMBOL(netdev_lower_get_next_private);
5065
5066 /**
5067 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5068 * lower neighbour list, RCU
5069 * variant
5070 * @dev: device
5071 * @iter: list_head ** of the current position
5072 *
5073 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5074 * list, starting from iter position. The caller must hold RCU read lock.
5075 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)5076 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5077 struct list_head **iter)
5078 {
5079 struct netdev_adjacent *lower;
5080
5081 WARN_ON_ONCE(!rcu_read_lock_held());
5082
5083 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5084
5085 if (&lower->list == &dev->adj_list.lower)
5086 return NULL;
5087
5088 *iter = &lower->list;
5089
5090 return lower->private;
5091 }
5092 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5093
5094 /**
5095 * netdev_lower_get_next - Get the next device from the lower neighbour
5096 * list
5097 * @dev: device
5098 * @iter: list_head ** of the current position
5099 *
5100 * Gets the next netdev_adjacent from the dev's lower neighbour
5101 * list, starting from iter position. The caller must hold RTNL lock or
5102 * its own locking that guarantees that the neighbour lower
5103 * list will remain unchanged.
5104 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)5105 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5106 {
5107 struct netdev_adjacent *lower;
5108
5109 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5110
5111 if (&lower->list == &dev->adj_list.lower)
5112 return NULL;
5113
5114 *iter = &lower->list;
5115
5116 return lower->dev;
5117 }
5118 EXPORT_SYMBOL(netdev_lower_get_next);
5119
5120 /**
5121 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5122 * lower neighbour list, RCU
5123 * variant
5124 * @dev: device
5125 *
5126 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5127 * list. The caller must hold RCU read lock.
5128 */
netdev_lower_get_first_private_rcu(struct net_device * dev)5129 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5130 {
5131 struct netdev_adjacent *lower;
5132
5133 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5134 struct netdev_adjacent, list);
5135 if (lower)
5136 return lower->private;
5137 return NULL;
5138 }
5139 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5140
5141 /**
5142 * netdev_master_upper_dev_get_rcu - Get master upper device
5143 * @dev: device
5144 *
5145 * Find a master upper device and return pointer to it or NULL in case
5146 * it's not there. The caller must hold the RCU read lock.
5147 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)5148 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5149 {
5150 struct netdev_adjacent *upper;
5151
5152 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5153 struct netdev_adjacent, list);
5154 if (upper && likely(upper->master))
5155 return upper->dev;
5156 return NULL;
5157 }
5158 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5159
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)5160 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5161 struct net_device *adj_dev,
5162 struct list_head *dev_list)
5163 {
5164 char linkname[IFNAMSIZ+7];
5165 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5166 "upper_%s" : "lower_%s", adj_dev->name);
5167 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5168 linkname);
5169 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)5170 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5171 char *name,
5172 struct list_head *dev_list)
5173 {
5174 char linkname[IFNAMSIZ+7];
5175 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5176 "upper_%s" : "lower_%s", name);
5177 sysfs_remove_link(&(dev->dev.kobj), linkname);
5178 }
5179
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)5180 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5181 struct net_device *adj_dev,
5182 struct list_head *dev_list)
5183 {
5184 return (dev_list == &dev->adj_list.upper ||
5185 dev_list == &dev->adj_list.lower) &&
5186 net_eq(dev_net(dev), dev_net(adj_dev));
5187 }
5188
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)5189 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5190 struct net_device *adj_dev,
5191 struct list_head *dev_list,
5192 void *private, bool master)
5193 {
5194 struct netdev_adjacent *adj;
5195 int ret;
5196
5197 adj = __netdev_find_adj(adj_dev, dev_list);
5198
5199 if (adj) {
5200 adj->ref_nr++;
5201 return 0;
5202 }
5203
5204 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5205 if (!adj)
5206 return -ENOMEM;
5207
5208 adj->dev = adj_dev;
5209 adj->master = master;
5210 adj->ref_nr = 1;
5211 adj->private = private;
5212 dev_hold(adj_dev);
5213
5214 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5215 adj_dev->name, dev->name, adj_dev->name);
5216
5217 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5218 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5219 if (ret)
5220 goto free_adj;
5221 }
5222
5223 /* Ensure that master link is always the first item in list. */
5224 if (master) {
5225 ret = sysfs_create_link(&(dev->dev.kobj),
5226 &(adj_dev->dev.kobj), "master");
5227 if (ret)
5228 goto remove_symlinks;
5229
5230 list_add_rcu(&adj->list, dev_list);
5231 } else {
5232 list_add_tail_rcu(&adj->list, dev_list);
5233 }
5234
5235 return 0;
5236
5237 remove_symlinks:
5238 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5239 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5240 free_adj:
5241 kfree(adj);
5242 dev_put(adj_dev);
5243
5244 return ret;
5245 }
5246
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)5247 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5248 struct net_device *adj_dev,
5249 struct list_head *dev_list)
5250 {
5251 struct netdev_adjacent *adj;
5252
5253 adj = __netdev_find_adj(adj_dev, dev_list);
5254
5255 if (!adj) {
5256 pr_err("tried to remove device %s from %s\n",
5257 dev->name, adj_dev->name);
5258 BUG();
5259 }
5260
5261 if (adj->ref_nr > 1) {
5262 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5263 adj->ref_nr-1);
5264 adj->ref_nr--;
5265 return;
5266 }
5267
5268 if (adj->master)
5269 sysfs_remove_link(&(dev->dev.kobj), "master");
5270
5271 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5272 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5273
5274 list_del_rcu(&adj->list);
5275 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5276 adj_dev->name, dev->name, adj_dev->name);
5277 dev_put(adj_dev);
5278 kfree_rcu(adj, rcu);
5279 }
5280
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)5281 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5282 struct net_device *upper_dev,
5283 struct list_head *up_list,
5284 struct list_head *down_list,
5285 void *private, bool master)
5286 {
5287 int ret;
5288
5289 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5290 master);
5291 if (ret)
5292 return ret;
5293
5294 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5295 false);
5296 if (ret) {
5297 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5298 return ret;
5299 }
5300
5301 return 0;
5302 }
5303
__netdev_adjacent_dev_link(struct net_device * dev,struct net_device * upper_dev)5304 static int __netdev_adjacent_dev_link(struct net_device *dev,
5305 struct net_device *upper_dev)
5306 {
5307 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5308 &dev->all_adj_list.upper,
5309 &upper_dev->all_adj_list.lower,
5310 NULL, false);
5311 }
5312
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list)5313 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5314 struct net_device *upper_dev,
5315 struct list_head *up_list,
5316 struct list_head *down_list)
5317 {
5318 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5319 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5320 }
5321
__netdev_adjacent_dev_unlink(struct net_device * dev,struct net_device * upper_dev)5322 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5323 struct net_device *upper_dev)
5324 {
5325 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5326 &dev->all_adj_list.upper,
5327 &upper_dev->all_adj_list.lower);
5328 }
5329
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)5330 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5331 struct net_device *upper_dev,
5332 void *private, bool master)
5333 {
5334 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5335
5336 if (ret)
5337 return ret;
5338
5339 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5340 &dev->adj_list.upper,
5341 &upper_dev->adj_list.lower,
5342 private, master);
5343 if (ret) {
5344 __netdev_adjacent_dev_unlink(dev, upper_dev);
5345 return ret;
5346 }
5347
5348 return 0;
5349 }
5350
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)5351 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5352 struct net_device *upper_dev)
5353 {
5354 __netdev_adjacent_dev_unlink(dev, upper_dev);
5355 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5356 &dev->adj_list.upper,
5357 &upper_dev->adj_list.lower);
5358 }
5359
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * private)5360 static int __netdev_upper_dev_link(struct net_device *dev,
5361 struct net_device *upper_dev, bool master,
5362 void *private)
5363 {
5364 struct netdev_notifier_changeupper_info changeupper_info;
5365 struct netdev_adjacent *i, *j, *to_i, *to_j;
5366 int ret = 0;
5367
5368 ASSERT_RTNL();
5369
5370 if (dev == upper_dev)
5371 return -EBUSY;
5372
5373 /* To prevent loops, check if dev is not upper device to upper_dev. */
5374 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5375 return -EBUSY;
5376
5377 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5378 return -EEXIST;
5379
5380 if (master && netdev_master_upper_dev_get(dev))
5381 return -EBUSY;
5382
5383 changeupper_info.upper_dev = upper_dev;
5384 changeupper_info.master = master;
5385 changeupper_info.linking = true;
5386
5387 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5388 &changeupper_info.info);
5389 ret = notifier_to_errno(ret);
5390 if (ret)
5391 return ret;
5392
5393 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5394 master);
5395 if (ret)
5396 return ret;
5397
5398 /* Now that we linked these devs, make all the upper_dev's
5399 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5400 * versa, and don't forget the devices itself. All of these
5401 * links are non-neighbours.
5402 */
5403 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5404 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5405 pr_debug("Interlinking %s with %s, non-neighbour\n",
5406 i->dev->name, j->dev->name);
5407 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5408 if (ret)
5409 goto rollback_mesh;
5410 }
5411 }
5412
5413 /* add dev to every upper_dev's upper device */
5414 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5415 pr_debug("linking %s's upper device %s with %s\n",
5416 upper_dev->name, i->dev->name, dev->name);
5417 ret = __netdev_adjacent_dev_link(dev, i->dev);
5418 if (ret)
5419 goto rollback_upper_mesh;
5420 }
5421
5422 /* add upper_dev to every dev's lower device */
5423 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5424 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5425 i->dev->name, upper_dev->name);
5426 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5427 if (ret)
5428 goto rollback_lower_mesh;
5429 }
5430
5431 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5432 &changeupper_info.info);
5433 return 0;
5434
5435 rollback_lower_mesh:
5436 to_i = i;
5437 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5438 if (i == to_i)
5439 break;
5440 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5441 }
5442
5443 i = NULL;
5444
5445 rollback_upper_mesh:
5446 to_i = i;
5447 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5448 if (i == to_i)
5449 break;
5450 __netdev_adjacent_dev_unlink(dev, i->dev);
5451 }
5452
5453 i = j = NULL;
5454
5455 rollback_mesh:
5456 to_i = i;
5457 to_j = j;
5458 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5459 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5460 if (i == to_i && j == to_j)
5461 break;
5462 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5463 }
5464 if (i == to_i)
5465 break;
5466 }
5467
5468 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5469
5470 return ret;
5471 }
5472
5473 /**
5474 * netdev_upper_dev_link - Add a link to the upper device
5475 * @dev: device
5476 * @upper_dev: new upper device
5477 *
5478 * Adds a link to device which is upper to this one. The caller must hold
5479 * the RTNL lock. On a failure a negative errno code is returned.
5480 * On success the reference counts are adjusted and the function
5481 * returns zero.
5482 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev)5483 int netdev_upper_dev_link(struct net_device *dev,
5484 struct net_device *upper_dev)
5485 {
5486 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5487 }
5488 EXPORT_SYMBOL(netdev_upper_dev_link);
5489
5490 /**
5491 * netdev_master_upper_dev_link - Add a master link to the upper device
5492 * @dev: device
5493 * @upper_dev: new upper device
5494 *
5495 * Adds a link to device which is upper to this one. In this case, only
5496 * one master upper device can be linked, although other non-master devices
5497 * might be linked as well. The caller must hold the RTNL lock.
5498 * On a failure a negative errno code is returned. On success the reference
5499 * counts are adjusted and the function returns zero.
5500 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev)5501 int netdev_master_upper_dev_link(struct net_device *dev,
5502 struct net_device *upper_dev)
5503 {
5504 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5505 }
5506 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5507
netdev_master_upper_dev_link_private(struct net_device * dev,struct net_device * upper_dev,void * private)5508 int netdev_master_upper_dev_link_private(struct net_device *dev,
5509 struct net_device *upper_dev,
5510 void *private)
5511 {
5512 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5513 }
5514 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5515
5516 /**
5517 * netdev_upper_dev_unlink - Removes a link to upper device
5518 * @dev: device
5519 * @upper_dev: new upper device
5520 *
5521 * Removes a link to device which is upper to this one. The caller must hold
5522 * the RTNL lock.
5523 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)5524 void netdev_upper_dev_unlink(struct net_device *dev,
5525 struct net_device *upper_dev)
5526 {
5527 struct netdev_notifier_changeupper_info changeupper_info;
5528 struct netdev_adjacent *i, *j;
5529 ASSERT_RTNL();
5530
5531 changeupper_info.upper_dev = upper_dev;
5532 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5533 changeupper_info.linking = false;
5534
5535 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5536 &changeupper_info.info);
5537
5538 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5539
5540 /* Here is the tricky part. We must remove all dev's lower
5541 * devices from all upper_dev's upper devices and vice
5542 * versa, to maintain the graph relationship.
5543 */
5544 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5545 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5546 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5547
5548 /* remove also the devices itself from lower/upper device
5549 * list
5550 */
5551 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5552 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5553
5554 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5555 __netdev_adjacent_dev_unlink(dev, i->dev);
5556
5557 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5558 &changeupper_info.info);
5559 }
5560 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5561
5562 /**
5563 * netdev_bonding_info_change - Dispatch event about slave change
5564 * @dev: device
5565 * @bonding_info: info to dispatch
5566 *
5567 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5568 * The caller must hold the RTNL lock.
5569 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)5570 void netdev_bonding_info_change(struct net_device *dev,
5571 struct netdev_bonding_info *bonding_info)
5572 {
5573 struct netdev_notifier_bonding_info info;
5574
5575 memcpy(&info.bonding_info, bonding_info,
5576 sizeof(struct netdev_bonding_info));
5577 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5578 &info.info);
5579 }
5580 EXPORT_SYMBOL(netdev_bonding_info_change);
5581
netdev_adjacent_add_links(struct net_device * dev)5582 static void netdev_adjacent_add_links(struct net_device *dev)
5583 {
5584 struct netdev_adjacent *iter;
5585
5586 struct net *net = dev_net(dev);
5587
5588 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5589 if (!net_eq(net,dev_net(iter->dev)))
5590 continue;
5591 netdev_adjacent_sysfs_add(iter->dev, dev,
5592 &iter->dev->adj_list.lower);
5593 netdev_adjacent_sysfs_add(dev, iter->dev,
5594 &dev->adj_list.upper);
5595 }
5596
5597 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5598 if (!net_eq(net,dev_net(iter->dev)))
5599 continue;
5600 netdev_adjacent_sysfs_add(iter->dev, dev,
5601 &iter->dev->adj_list.upper);
5602 netdev_adjacent_sysfs_add(dev, iter->dev,
5603 &dev->adj_list.lower);
5604 }
5605 }
5606
netdev_adjacent_del_links(struct net_device * dev)5607 static void netdev_adjacent_del_links(struct net_device *dev)
5608 {
5609 struct netdev_adjacent *iter;
5610
5611 struct net *net = dev_net(dev);
5612
5613 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5614 if (!net_eq(net,dev_net(iter->dev)))
5615 continue;
5616 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5617 &iter->dev->adj_list.lower);
5618 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5619 &dev->adj_list.upper);
5620 }
5621
5622 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5623 if (!net_eq(net,dev_net(iter->dev)))
5624 continue;
5625 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5626 &iter->dev->adj_list.upper);
5627 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5628 &dev->adj_list.lower);
5629 }
5630 }
5631
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)5632 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5633 {
5634 struct netdev_adjacent *iter;
5635
5636 struct net *net = dev_net(dev);
5637
5638 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5639 if (!net_eq(net,dev_net(iter->dev)))
5640 continue;
5641 netdev_adjacent_sysfs_del(iter->dev, oldname,
5642 &iter->dev->adj_list.lower);
5643 netdev_adjacent_sysfs_add(iter->dev, dev,
5644 &iter->dev->adj_list.lower);
5645 }
5646
5647 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5648 if (!net_eq(net,dev_net(iter->dev)))
5649 continue;
5650 netdev_adjacent_sysfs_del(iter->dev, oldname,
5651 &iter->dev->adj_list.upper);
5652 netdev_adjacent_sysfs_add(iter->dev, dev,
5653 &iter->dev->adj_list.upper);
5654 }
5655 }
5656
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)5657 void *netdev_lower_dev_get_private(struct net_device *dev,
5658 struct net_device *lower_dev)
5659 {
5660 struct netdev_adjacent *lower;
5661
5662 if (!lower_dev)
5663 return NULL;
5664 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5665 if (!lower)
5666 return NULL;
5667
5668 return lower->private;
5669 }
5670 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5671
5672
dev_get_nest_level(struct net_device * dev,bool (* type_check)(struct net_device * dev))5673 int dev_get_nest_level(struct net_device *dev,
5674 bool (*type_check)(struct net_device *dev))
5675 {
5676 struct net_device *lower = NULL;
5677 struct list_head *iter;
5678 int max_nest = -1;
5679 int nest;
5680
5681 ASSERT_RTNL();
5682
5683 netdev_for_each_lower_dev(dev, lower, iter) {
5684 nest = dev_get_nest_level(lower, type_check);
5685 if (max_nest < nest)
5686 max_nest = nest;
5687 }
5688
5689 if (type_check(dev))
5690 max_nest++;
5691
5692 return max_nest;
5693 }
5694 EXPORT_SYMBOL(dev_get_nest_level);
5695
dev_change_rx_flags(struct net_device * dev,int flags)5696 static void dev_change_rx_flags(struct net_device *dev, int flags)
5697 {
5698 const struct net_device_ops *ops = dev->netdev_ops;
5699
5700 if (ops->ndo_change_rx_flags)
5701 ops->ndo_change_rx_flags(dev, flags);
5702 }
5703
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)5704 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5705 {
5706 unsigned int old_flags = dev->flags;
5707 kuid_t uid;
5708 kgid_t gid;
5709
5710 ASSERT_RTNL();
5711
5712 dev->flags |= IFF_PROMISC;
5713 dev->promiscuity += inc;
5714 if (dev->promiscuity == 0) {
5715 /*
5716 * Avoid overflow.
5717 * If inc causes overflow, untouch promisc and return error.
5718 */
5719 if (inc < 0)
5720 dev->flags &= ~IFF_PROMISC;
5721 else {
5722 dev->promiscuity -= inc;
5723 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5724 dev->name);
5725 return -EOVERFLOW;
5726 }
5727 }
5728 if (dev->flags != old_flags) {
5729 pr_info("device %s %s promiscuous mode\n",
5730 dev->name,
5731 dev->flags & IFF_PROMISC ? "entered" : "left");
5732 if (audit_enabled) {
5733 current_uid_gid(&uid, &gid);
5734 audit_log(current->audit_context, GFP_ATOMIC,
5735 AUDIT_ANOM_PROMISCUOUS,
5736 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5737 dev->name, (dev->flags & IFF_PROMISC),
5738 (old_flags & IFF_PROMISC),
5739 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5740 from_kuid(&init_user_ns, uid),
5741 from_kgid(&init_user_ns, gid),
5742 audit_get_sessionid(current));
5743 }
5744
5745 dev_change_rx_flags(dev, IFF_PROMISC);
5746 }
5747 if (notify)
5748 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5749 return 0;
5750 }
5751
5752 /**
5753 * dev_set_promiscuity - update promiscuity count on a device
5754 * @dev: device
5755 * @inc: modifier
5756 *
5757 * Add or remove promiscuity from a device. While the count in the device
5758 * remains above zero the interface remains promiscuous. Once it hits zero
5759 * the device reverts back to normal filtering operation. A negative inc
5760 * value is used to drop promiscuity on the device.
5761 * Return 0 if successful or a negative errno code on error.
5762 */
dev_set_promiscuity(struct net_device * dev,int inc)5763 int dev_set_promiscuity(struct net_device *dev, int inc)
5764 {
5765 unsigned int old_flags = dev->flags;
5766 int err;
5767
5768 err = __dev_set_promiscuity(dev, inc, true);
5769 if (err < 0)
5770 return err;
5771 if (dev->flags != old_flags)
5772 dev_set_rx_mode(dev);
5773 return err;
5774 }
5775 EXPORT_SYMBOL(dev_set_promiscuity);
5776
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)5777 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5778 {
5779 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5780
5781 ASSERT_RTNL();
5782
5783 dev->flags |= IFF_ALLMULTI;
5784 dev->allmulti += inc;
5785 if (dev->allmulti == 0) {
5786 /*
5787 * Avoid overflow.
5788 * If inc causes overflow, untouch allmulti and return error.
5789 */
5790 if (inc < 0)
5791 dev->flags &= ~IFF_ALLMULTI;
5792 else {
5793 dev->allmulti -= inc;
5794 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5795 dev->name);
5796 return -EOVERFLOW;
5797 }
5798 }
5799 if (dev->flags ^ old_flags) {
5800 dev_change_rx_flags(dev, IFF_ALLMULTI);
5801 dev_set_rx_mode(dev);
5802 if (notify)
5803 __dev_notify_flags(dev, old_flags,
5804 dev->gflags ^ old_gflags);
5805 }
5806 return 0;
5807 }
5808
5809 /**
5810 * dev_set_allmulti - update allmulti count on a device
5811 * @dev: device
5812 * @inc: modifier
5813 *
5814 * Add or remove reception of all multicast frames to a device. While the
5815 * count in the device remains above zero the interface remains listening
5816 * to all interfaces. Once it hits zero the device reverts back to normal
5817 * filtering operation. A negative @inc value is used to drop the counter
5818 * when releasing a resource needing all multicasts.
5819 * Return 0 if successful or a negative errno code on error.
5820 */
5821
dev_set_allmulti(struct net_device * dev,int inc)5822 int dev_set_allmulti(struct net_device *dev, int inc)
5823 {
5824 return __dev_set_allmulti(dev, inc, true);
5825 }
5826 EXPORT_SYMBOL(dev_set_allmulti);
5827
5828 /*
5829 * Upload unicast and multicast address lists to device and
5830 * configure RX filtering. When the device doesn't support unicast
5831 * filtering it is put in promiscuous mode while unicast addresses
5832 * are present.
5833 */
__dev_set_rx_mode(struct net_device * dev)5834 void __dev_set_rx_mode(struct net_device *dev)
5835 {
5836 const struct net_device_ops *ops = dev->netdev_ops;
5837
5838 /* dev_open will call this function so the list will stay sane. */
5839 if (!(dev->flags&IFF_UP))
5840 return;
5841
5842 if (!netif_device_present(dev))
5843 return;
5844
5845 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5846 /* Unicast addresses changes may only happen under the rtnl,
5847 * therefore calling __dev_set_promiscuity here is safe.
5848 */
5849 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5850 __dev_set_promiscuity(dev, 1, false);
5851 dev->uc_promisc = true;
5852 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5853 __dev_set_promiscuity(dev, -1, false);
5854 dev->uc_promisc = false;
5855 }
5856 }
5857
5858 if (ops->ndo_set_rx_mode)
5859 ops->ndo_set_rx_mode(dev);
5860 }
5861
dev_set_rx_mode(struct net_device * dev)5862 void dev_set_rx_mode(struct net_device *dev)
5863 {
5864 netif_addr_lock_bh(dev);
5865 __dev_set_rx_mode(dev);
5866 netif_addr_unlock_bh(dev);
5867 }
5868
5869 /**
5870 * dev_get_flags - get flags reported to userspace
5871 * @dev: device
5872 *
5873 * Get the combination of flag bits exported through APIs to userspace.
5874 */
dev_get_flags(const struct net_device * dev)5875 unsigned int dev_get_flags(const struct net_device *dev)
5876 {
5877 unsigned int flags;
5878
5879 flags = (dev->flags & ~(IFF_PROMISC |
5880 IFF_ALLMULTI |
5881 IFF_RUNNING |
5882 IFF_LOWER_UP |
5883 IFF_DORMANT)) |
5884 (dev->gflags & (IFF_PROMISC |
5885 IFF_ALLMULTI));
5886
5887 if (netif_running(dev)) {
5888 if (netif_oper_up(dev))
5889 flags |= IFF_RUNNING;
5890 if (netif_carrier_ok(dev))
5891 flags |= IFF_LOWER_UP;
5892 if (netif_dormant(dev))
5893 flags |= IFF_DORMANT;
5894 }
5895
5896 return flags;
5897 }
5898 EXPORT_SYMBOL(dev_get_flags);
5899
__dev_change_flags(struct net_device * dev,unsigned int flags)5900 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5901 {
5902 unsigned int old_flags = dev->flags;
5903 int ret;
5904
5905 ASSERT_RTNL();
5906
5907 /*
5908 * Set the flags on our device.
5909 */
5910
5911 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5912 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5913 IFF_AUTOMEDIA)) |
5914 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5915 IFF_ALLMULTI));
5916
5917 /*
5918 * Load in the correct multicast list now the flags have changed.
5919 */
5920
5921 if ((old_flags ^ flags) & IFF_MULTICAST)
5922 dev_change_rx_flags(dev, IFF_MULTICAST);
5923
5924 dev_set_rx_mode(dev);
5925
5926 /*
5927 * Have we downed the interface. We handle IFF_UP ourselves
5928 * according to user attempts to set it, rather than blindly
5929 * setting it.
5930 */
5931
5932 ret = 0;
5933 if ((old_flags ^ flags) & IFF_UP)
5934 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5935
5936 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5937 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5938 unsigned int old_flags = dev->flags;
5939
5940 dev->gflags ^= IFF_PROMISC;
5941
5942 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5943 if (dev->flags != old_flags)
5944 dev_set_rx_mode(dev);
5945 }
5946
5947 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5948 is important. Some (broken) drivers set IFF_PROMISC, when
5949 IFF_ALLMULTI is requested not asking us and not reporting.
5950 */
5951 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5952 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5953
5954 dev->gflags ^= IFF_ALLMULTI;
5955 __dev_set_allmulti(dev, inc, false);
5956 }
5957
5958 return ret;
5959 }
5960
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)5961 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5962 unsigned int gchanges)
5963 {
5964 unsigned int changes = dev->flags ^ old_flags;
5965
5966 if (gchanges)
5967 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5968
5969 if (changes & IFF_UP) {
5970 if (dev->flags & IFF_UP)
5971 call_netdevice_notifiers(NETDEV_UP, dev);
5972 else
5973 call_netdevice_notifiers(NETDEV_DOWN, dev);
5974 }
5975
5976 if (dev->flags & IFF_UP &&
5977 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5978 struct netdev_notifier_change_info change_info;
5979
5980 change_info.flags_changed = changes;
5981 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5982 &change_info.info);
5983 }
5984 }
5985
5986 /**
5987 * dev_change_flags - change device settings
5988 * @dev: device
5989 * @flags: device state flags
5990 *
5991 * Change settings on device based state flags. The flags are
5992 * in the userspace exported format.
5993 */
dev_change_flags(struct net_device * dev,unsigned int flags)5994 int dev_change_flags(struct net_device *dev, unsigned int flags)
5995 {
5996 int ret;
5997 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5998
5999 ret = __dev_change_flags(dev, flags);
6000 if (ret < 0)
6001 return ret;
6002
6003 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6004 __dev_notify_flags(dev, old_flags, changes);
6005 return ret;
6006 }
6007 EXPORT_SYMBOL(dev_change_flags);
6008
__dev_set_mtu(struct net_device * dev,int new_mtu)6009 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6010 {
6011 const struct net_device_ops *ops = dev->netdev_ops;
6012
6013 if (ops->ndo_change_mtu)
6014 return ops->ndo_change_mtu(dev, new_mtu);
6015
6016 dev->mtu = new_mtu;
6017 return 0;
6018 }
6019
6020 /**
6021 * dev_set_mtu - Change maximum transfer unit
6022 * @dev: device
6023 * @new_mtu: new transfer unit
6024 *
6025 * Change the maximum transfer size of the network device.
6026 */
dev_set_mtu(struct net_device * dev,int new_mtu)6027 int dev_set_mtu(struct net_device *dev, int new_mtu)
6028 {
6029 int err, orig_mtu;
6030
6031 if (new_mtu == dev->mtu)
6032 return 0;
6033
6034 /* MTU must be positive. */
6035 if (new_mtu < 0)
6036 return -EINVAL;
6037
6038 if (!netif_device_present(dev))
6039 return -ENODEV;
6040
6041 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6042 err = notifier_to_errno(err);
6043 if (err)
6044 return err;
6045
6046 orig_mtu = dev->mtu;
6047 err = __dev_set_mtu(dev, new_mtu);
6048
6049 if (!err) {
6050 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6051 err = notifier_to_errno(err);
6052 if (err) {
6053 /* setting mtu back and notifying everyone again,
6054 * so that they have a chance to revert changes.
6055 */
6056 __dev_set_mtu(dev, orig_mtu);
6057 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6058 }
6059 }
6060 return err;
6061 }
6062 EXPORT_SYMBOL(dev_set_mtu);
6063
6064 /**
6065 * dev_set_group - Change group this device belongs to
6066 * @dev: device
6067 * @new_group: group this device should belong to
6068 */
dev_set_group(struct net_device * dev,int new_group)6069 void dev_set_group(struct net_device *dev, int new_group)
6070 {
6071 dev->group = new_group;
6072 }
6073 EXPORT_SYMBOL(dev_set_group);
6074
6075 /**
6076 * dev_set_mac_address - Change Media Access Control Address
6077 * @dev: device
6078 * @sa: new address
6079 *
6080 * Change the hardware (MAC) address of the device
6081 */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa)6082 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6083 {
6084 const struct net_device_ops *ops = dev->netdev_ops;
6085 int err;
6086
6087 if (!ops->ndo_set_mac_address)
6088 return -EOPNOTSUPP;
6089 if (sa->sa_family != dev->type)
6090 return -EINVAL;
6091 if (!netif_device_present(dev))
6092 return -ENODEV;
6093 err = ops->ndo_set_mac_address(dev, sa);
6094 if (err)
6095 return err;
6096 dev->addr_assign_type = NET_ADDR_SET;
6097 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6098 add_device_randomness(dev->dev_addr, dev->addr_len);
6099 return 0;
6100 }
6101 EXPORT_SYMBOL(dev_set_mac_address);
6102
6103 /**
6104 * dev_change_carrier - Change device carrier
6105 * @dev: device
6106 * @new_carrier: new value
6107 *
6108 * Change device carrier
6109 */
dev_change_carrier(struct net_device * dev,bool new_carrier)6110 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6111 {
6112 const struct net_device_ops *ops = dev->netdev_ops;
6113
6114 if (!ops->ndo_change_carrier)
6115 return -EOPNOTSUPP;
6116 if (!netif_device_present(dev))
6117 return -ENODEV;
6118 return ops->ndo_change_carrier(dev, new_carrier);
6119 }
6120 EXPORT_SYMBOL(dev_change_carrier);
6121
6122 /**
6123 * dev_get_phys_port_id - Get device physical port ID
6124 * @dev: device
6125 * @ppid: port ID
6126 *
6127 * Get device physical port ID
6128 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)6129 int dev_get_phys_port_id(struct net_device *dev,
6130 struct netdev_phys_item_id *ppid)
6131 {
6132 const struct net_device_ops *ops = dev->netdev_ops;
6133
6134 if (!ops->ndo_get_phys_port_id)
6135 return -EOPNOTSUPP;
6136 return ops->ndo_get_phys_port_id(dev, ppid);
6137 }
6138 EXPORT_SYMBOL(dev_get_phys_port_id);
6139
6140 /**
6141 * dev_get_phys_port_name - Get device physical port name
6142 * @dev: device
6143 * @name: port name
6144 *
6145 * Get device physical port name
6146 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)6147 int dev_get_phys_port_name(struct net_device *dev,
6148 char *name, size_t len)
6149 {
6150 const struct net_device_ops *ops = dev->netdev_ops;
6151
6152 if (!ops->ndo_get_phys_port_name)
6153 return -EOPNOTSUPP;
6154 return ops->ndo_get_phys_port_name(dev, name, len);
6155 }
6156 EXPORT_SYMBOL(dev_get_phys_port_name);
6157
6158 /**
6159 * dev_change_proto_down - update protocol port state information
6160 * @dev: device
6161 * @proto_down: new value
6162 *
6163 * This info can be used by switch drivers to set the phys state of the
6164 * port.
6165 */
dev_change_proto_down(struct net_device * dev,bool proto_down)6166 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6167 {
6168 const struct net_device_ops *ops = dev->netdev_ops;
6169
6170 if (!ops->ndo_change_proto_down)
6171 return -EOPNOTSUPP;
6172 if (!netif_device_present(dev))
6173 return -ENODEV;
6174 return ops->ndo_change_proto_down(dev, proto_down);
6175 }
6176 EXPORT_SYMBOL(dev_change_proto_down);
6177
6178 /**
6179 * dev_new_index - allocate an ifindex
6180 * @net: the applicable net namespace
6181 *
6182 * Returns a suitable unique value for a new device interface
6183 * number. The caller must hold the rtnl semaphore or the
6184 * dev_base_lock to be sure it remains unique.
6185 */
dev_new_index(struct net * net)6186 static int dev_new_index(struct net *net)
6187 {
6188 int ifindex = net->ifindex;
6189 for (;;) {
6190 if (++ifindex <= 0)
6191 ifindex = 1;
6192 if (!__dev_get_by_index(net, ifindex))
6193 return net->ifindex = ifindex;
6194 }
6195 }
6196
6197 /* Delayed registration/unregisteration */
6198 static LIST_HEAD(net_todo_list);
6199 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6200
net_set_todo(struct net_device * dev)6201 static void net_set_todo(struct net_device *dev)
6202 {
6203 list_add_tail(&dev->todo_list, &net_todo_list);
6204 dev_net(dev)->dev_unreg_count++;
6205 }
6206
rollback_registered_many(struct list_head * head)6207 static void rollback_registered_many(struct list_head *head)
6208 {
6209 struct net_device *dev, *tmp;
6210 LIST_HEAD(close_head);
6211
6212 BUG_ON(dev_boot_phase);
6213 ASSERT_RTNL();
6214
6215 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6216 /* Some devices call without registering
6217 * for initialization unwind. Remove those
6218 * devices and proceed with the remaining.
6219 */
6220 if (dev->reg_state == NETREG_UNINITIALIZED) {
6221 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6222 dev->name, dev);
6223
6224 WARN_ON(1);
6225 list_del(&dev->unreg_list);
6226 continue;
6227 }
6228 dev->dismantle = true;
6229 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6230 }
6231
6232 /* If device is running, close it first. */
6233 list_for_each_entry(dev, head, unreg_list)
6234 list_add_tail(&dev->close_list, &close_head);
6235 dev_close_many(&close_head, true);
6236
6237 list_for_each_entry(dev, head, unreg_list) {
6238 /* And unlink it from device chain. */
6239 unlist_netdevice(dev);
6240
6241 dev->reg_state = NETREG_UNREGISTERING;
6242 on_each_cpu(flush_backlog, dev, 1);
6243 }
6244
6245 synchronize_net();
6246
6247 list_for_each_entry(dev, head, unreg_list) {
6248 struct sk_buff *skb = NULL;
6249
6250 /* Shutdown queueing discipline. */
6251 dev_shutdown(dev);
6252
6253
6254 /* Notify protocols, that we are about to destroy
6255 this device. They should clean all the things.
6256 */
6257 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6258
6259 if (!dev->rtnl_link_ops ||
6260 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6261 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6262 GFP_KERNEL);
6263
6264 /*
6265 * Flush the unicast and multicast chains
6266 */
6267 dev_uc_flush(dev);
6268 dev_mc_flush(dev);
6269
6270 if (dev->netdev_ops->ndo_uninit)
6271 dev->netdev_ops->ndo_uninit(dev);
6272
6273 if (skb)
6274 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6275
6276 /* Notifier chain MUST detach us all upper devices. */
6277 WARN_ON(netdev_has_any_upper_dev(dev));
6278
6279 /* Remove entries from kobject tree */
6280 netdev_unregister_kobject(dev);
6281 #ifdef CONFIG_XPS
6282 /* Remove XPS queueing entries */
6283 netif_reset_xps_queues_gt(dev, 0);
6284 #endif
6285 }
6286
6287 synchronize_net();
6288
6289 list_for_each_entry(dev, head, unreg_list)
6290 dev_put(dev);
6291 }
6292
rollback_registered(struct net_device * dev)6293 static void rollback_registered(struct net_device *dev)
6294 {
6295 LIST_HEAD(single);
6296
6297 list_add(&dev->unreg_list, &single);
6298 rollback_registered_many(&single);
6299 list_del(&single);
6300 }
6301
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)6302 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6303 struct net_device *upper, netdev_features_t features)
6304 {
6305 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6306 netdev_features_t feature;
6307 int feature_bit;
6308
6309 for_each_netdev_feature(&upper_disables, feature_bit) {
6310 feature = __NETIF_F_BIT(feature_bit);
6311 if (!(upper->wanted_features & feature)
6312 && (features & feature)) {
6313 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6314 &feature, upper->name);
6315 features &= ~feature;
6316 }
6317 }
6318
6319 return features;
6320 }
6321
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)6322 static void netdev_sync_lower_features(struct net_device *upper,
6323 struct net_device *lower, netdev_features_t features)
6324 {
6325 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6326 netdev_features_t feature;
6327 int feature_bit;
6328
6329 for_each_netdev_feature(&upper_disables, feature_bit) {
6330 feature = __NETIF_F_BIT(feature_bit);
6331 if (!(features & feature) && (lower->features & feature)) {
6332 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6333 &feature, lower->name);
6334 lower->wanted_features &= ~feature;
6335 netdev_update_features(lower);
6336
6337 if (unlikely(lower->features & feature))
6338 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6339 &feature, lower->name);
6340 }
6341 }
6342 }
6343
netdev_fix_features(struct net_device * dev,netdev_features_t features)6344 static netdev_features_t netdev_fix_features(struct net_device *dev,
6345 netdev_features_t features)
6346 {
6347 /* Fix illegal checksum combinations */
6348 if ((features & NETIF_F_HW_CSUM) &&
6349 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6350 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6351 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6352 }
6353
6354 /* TSO requires that SG is present as well. */
6355 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6356 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6357 features &= ~NETIF_F_ALL_TSO;
6358 }
6359
6360 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6361 !(features & NETIF_F_IP_CSUM)) {
6362 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6363 features &= ~NETIF_F_TSO;
6364 features &= ~NETIF_F_TSO_ECN;
6365 }
6366
6367 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6368 !(features & NETIF_F_IPV6_CSUM)) {
6369 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6370 features &= ~NETIF_F_TSO6;
6371 }
6372
6373 /* TSO ECN requires that TSO is present as well. */
6374 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6375 features &= ~NETIF_F_TSO_ECN;
6376
6377 /* Software GSO depends on SG. */
6378 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6379 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6380 features &= ~NETIF_F_GSO;
6381 }
6382
6383 /* UFO needs SG and checksumming */
6384 if (features & NETIF_F_UFO) {
6385 /* maybe split UFO into V4 and V6? */
6386 if (!((features & NETIF_F_GEN_CSUM) ||
6387 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6388 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6389 netdev_dbg(dev,
6390 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6391 features &= ~NETIF_F_UFO;
6392 }
6393
6394 if (!(features & NETIF_F_SG)) {
6395 netdev_dbg(dev,
6396 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6397 features &= ~NETIF_F_UFO;
6398 }
6399 }
6400
6401 #ifdef CONFIG_NET_RX_BUSY_POLL
6402 if (dev->netdev_ops->ndo_busy_poll)
6403 features |= NETIF_F_BUSY_POLL;
6404 else
6405 #endif
6406 features &= ~NETIF_F_BUSY_POLL;
6407
6408 return features;
6409 }
6410
__netdev_update_features(struct net_device * dev)6411 int __netdev_update_features(struct net_device *dev)
6412 {
6413 struct net_device *upper, *lower;
6414 netdev_features_t features;
6415 struct list_head *iter;
6416 int err = -1;
6417
6418 ASSERT_RTNL();
6419
6420 features = netdev_get_wanted_features(dev);
6421
6422 if (dev->netdev_ops->ndo_fix_features)
6423 features = dev->netdev_ops->ndo_fix_features(dev, features);
6424
6425 /* driver might be less strict about feature dependencies */
6426 features = netdev_fix_features(dev, features);
6427
6428 /* some features can't be enabled if they're off an an upper device */
6429 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6430 features = netdev_sync_upper_features(dev, upper, features);
6431
6432 if (dev->features == features)
6433 goto sync_lower;
6434
6435 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6436 &dev->features, &features);
6437
6438 if (dev->netdev_ops->ndo_set_features)
6439 err = dev->netdev_ops->ndo_set_features(dev, features);
6440 else
6441 err = 0;
6442
6443 if (unlikely(err < 0)) {
6444 netdev_err(dev,
6445 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6446 err, &features, &dev->features);
6447 /* return non-0 since some features might have changed and
6448 * it's better to fire a spurious notification than miss it
6449 */
6450 return -1;
6451 }
6452
6453 sync_lower:
6454 /* some features must be disabled on lower devices when disabled
6455 * on an upper device (think: bonding master or bridge)
6456 */
6457 netdev_for_each_lower_dev(dev, lower, iter)
6458 netdev_sync_lower_features(dev, lower, features);
6459
6460 if (!err)
6461 dev->features = features;
6462
6463 return err < 0 ? 0 : 1;
6464 }
6465
6466 /**
6467 * netdev_update_features - recalculate device features
6468 * @dev: the device to check
6469 *
6470 * Recalculate dev->features set and send notifications if it
6471 * has changed. Should be called after driver or hardware dependent
6472 * conditions might have changed that influence the features.
6473 */
netdev_update_features(struct net_device * dev)6474 void netdev_update_features(struct net_device *dev)
6475 {
6476 if (__netdev_update_features(dev))
6477 netdev_features_change(dev);
6478 }
6479 EXPORT_SYMBOL(netdev_update_features);
6480
6481 /**
6482 * netdev_change_features - recalculate device features
6483 * @dev: the device to check
6484 *
6485 * Recalculate dev->features set and send notifications even
6486 * if they have not changed. Should be called instead of
6487 * netdev_update_features() if also dev->vlan_features might
6488 * have changed to allow the changes to be propagated to stacked
6489 * VLAN devices.
6490 */
netdev_change_features(struct net_device * dev)6491 void netdev_change_features(struct net_device *dev)
6492 {
6493 __netdev_update_features(dev);
6494 netdev_features_change(dev);
6495 }
6496 EXPORT_SYMBOL(netdev_change_features);
6497
6498 /**
6499 * netif_stacked_transfer_operstate - transfer operstate
6500 * @rootdev: the root or lower level device to transfer state from
6501 * @dev: the device to transfer operstate to
6502 *
6503 * Transfer operational state from root to device. This is normally
6504 * called when a stacking relationship exists between the root
6505 * device and the device(a leaf device).
6506 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)6507 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6508 struct net_device *dev)
6509 {
6510 if (rootdev->operstate == IF_OPER_DORMANT)
6511 netif_dormant_on(dev);
6512 else
6513 netif_dormant_off(dev);
6514
6515 if (netif_carrier_ok(rootdev)) {
6516 if (!netif_carrier_ok(dev))
6517 netif_carrier_on(dev);
6518 } else {
6519 if (netif_carrier_ok(dev))
6520 netif_carrier_off(dev);
6521 }
6522 }
6523 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6524
6525 #ifdef CONFIG_SYSFS
netif_alloc_rx_queues(struct net_device * dev)6526 static int netif_alloc_rx_queues(struct net_device *dev)
6527 {
6528 unsigned int i, count = dev->num_rx_queues;
6529 struct netdev_rx_queue *rx;
6530 size_t sz = count * sizeof(*rx);
6531
6532 BUG_ON(count < 1);
6533
6534 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6535 if (!rx) {
6536 rx = vzalloc(sz);
6537 if (!rx)
6538 return -ENOMEM;
6539 }
6540 dev->_rx = rx;
6541
6542 for (i = 0; i < count; i++)
6543 rx[i].dev = dev;
6544 return 0;
6545 }
6546 #endif
6547
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)6548 static void netdev_init_one_queue(struct net_device *dev,
6549 struct netdev_queue *queue, void *_unused)
6550 {
6551 /* Initialize queue lock */
6552 spin_lock_init(&queue->_xmit_lock);
6553 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6554 queue->xmit_lock_owner = -1;
6555 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6556 queue->dev = dev;
6557 #ifdef CONFIG_BQL
6558 dql_init(&queue->dql, HZ);
6559 #endif
6560 }
6561
netif_free_tx_queues(struct net_device * dev)6562 static void netif_free_tx_queues(struct net_device *dev)
6563 {
6564 kvfree(dev->_tx);
6565 }
6566
netif_alloc_netdev_queues(struct net_device * dev)6567 static int netif_alloc_netdev_queues(struct net_device *dev)
6568 {
6569 unsigned int count = dev->num_tx_queues;
6570 struct netdev_queue *tx;
6571 size_t sz = count * sizeof(*tx);
6572
6573 if (count < 1 || count > 0xffff)
6574 return -EINVAL;
6575
6576 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6577 if (!tx) {
6578 tx = vzalloc(sz);
6579 if (!tx)
6580 return -ENOMEM;
6581 }
6582 dev->_tx = tx;
6583
6584 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6585 spin_lock_init(&dev->tx_global_lock);
6586
6587 return 0;
6588 }
6589
netif_tx_stop_all_queues(struct net_device * dev)6590 void netif_tx_stop_all_queues(struct net_device *dev)
6591 {
6592 unsigned int i;
6593
6594 for (i = 0; i < dev->num_tx_queues; i++) {
6595 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6596 netif_tx_stop_queue(txq);
6597 }
6598 }
6599 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6600
6601 /**
6602 * register_netdevice - register a network device
6603 * @dev: device to register
6604 *
6605 * Take a completed network device structure and add it to the kernel
6606 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6607 * chain. 0 is returned on success. A negative errno code is returned
6608 * on a failure to set up the device, or if the name is a duplicate.
6609 *
6610 * Callers must hold the rtnl semaphore. You may want
6611 * register_netdev() instead of this.
6612 *
6613 * BUGS:
6614 * The locking appears insufficient to guarantee two parallel registers
6615 * will not get the same name.
6616 */
6617
register_netdevice(struct net_device * dev)6618 int register_netdevice(struct net_device *dev)
6619 {
6620 int ret;
6621 struct net *net = dev_net(dev);
6622
6623 BUG_ON(dev_boot_phase);
6624 ASSERT_RTNL();
6625
6626 might_sleep();
6627
6628 /* When net_device's are persistent, this will be fatal. */
6629 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6630 BUG_ON(!net);
6631
6632 spin_lock_init(&dev->addr_list_lock);
6633 netdev_set_addr_lockdep_class(dev);
6634
6635 ret = dev_get_valid_name(net, dev, dev->name);
6636 if (ret < 0)
6637 goto out;
6638
6639 /* Init, if this function is available */
6640 if (dev->netdev_ops->ndo_init) {
6641 ret = dev->netdev_ops->ndo_init(dev);
6642 if (ret) {
6643 if (ret > 0)
6644 ret = -EIO;
6645 goto out;
6646 }
6647 }
6648
6649 if (((dev->hw_features | dev->features) &
6650 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6651 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6652 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6653 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6654 ret = -EINVAL;
6655 goto err_uninit;
6656 }
6657
6658 ret = -EBUSY;
6659 if (!dev->ifindex)
6660 dev->ifindex = dev_new_index(net);
6661 else if (__dev_get_by_index(net, dev->ifindex))
6662 goto err_uninit;
6663
6664 /* Transfer changeable features to wanted_features and enable
6665 * software offloads (GSO and GRO).
6666 */
6667 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6668 dev->features |= NETIF_F_SOFT_FEATURES;
6669 dev->wanted_features = dev->features & dev->hw_features;
6670
6671 if (!(dev->flags & IFF_LOOPBACK)) {
6672 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6673 }
6674
6675 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6676 */
6677 dev->vlan_features |= NETIF_F_HIGHDMA;
6678
6679 /* Make NETIF_F_SG inheritable to tunnel devices.
6680 */
6681 dev->hw_enc_features |= NETIF_F_SG;
6682
6683 /* Make NETIF_F_SG inheritable to MPLS.
6684 */
6685 dev->mpls_features |= NETIF_F_SG;
6686
6687 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6688 ret = notifier_to_errno(ret);
6689 if (ret)
6690 goto err_uninit;
6691
6692 ret = netdev_register_kobject(dev);
6693 if (ret)
6694 goto err_uninit;
6695 dev->reg_state = NETREG_REGISTERED;
6696
6697 __netdev_update_features(dev);
6698
6699 /*
6700 * Default initial state at registry is that the
6701 * device is present.
6702 */
6703
6704 set_bit(__LINK_STATE_PRESENT, &dev->state);
6705
6706 linkwatch_init_dev(dev);
6707
6708 dev_init_scheduler(dev);
6709 dev_hold(dev);
6710 list_netdevice(dev);
6711 add_device_randomness(dev->dev_addr, dev->addr_len);
6712
6713 /* If the device has permanent device address, driver should
6714 * set dev_addr and also addr_assign_type should be set to
6715 * NET_ADDR_PERM (default value).
6716 */
6717 if (dev->addr_assign_type == NET_ADDR_PERM)
6718 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6719
6720 /* Notify protocols, that a new device appeared. */
6721 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6722 ret = notifier_to_errno(ret);
6723 if (ret) {
6724 rollback_registered(dev);
6725 dev->reg_state = NETREG_UNREGISTERED;
6726 }
6727 /*
6728 * Prevent userspace races by waiting until the network
6729 * device is fully setup before sending notifications.
6730 */
6731 if (!dev->rtnl_link_ops ||
6732 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6733 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6734
6735 out:
6736 return ret;
6737
6738 err_uninit:
6739 if (dev->netdev_ops->ndo_uninit)
6740 dev->netdev_ops->ndo_uninit(dev);
6741 goto out;
6742 }
6743 EXPORT_SYMBOL(register_netdevice);
6744
6745 /**
6746 * init_dummy_netdev - init a dummy network device for NAPI
6747 * @dev: device to init
6748 *
6749 * This takes a network device structure and initialize the minimum
6750 * amount of fields so it can be used to schedule NAPI polls without
6751 * registering a full blown interface. This is to be used by drivers
6752 * that need to tie several hardware interfaces to a single NAPI
6753 * poll scheduler due to HW limitations.
6754 */
init_dummy_netdev(struct net_device * dev)6755 int init_dummy_netdev(struct net_device *dev)
6756 {
6757 /* Clear everything. Note we don't initialize spinlocks
6758 * are they aren't supposed to be taken by any of the
6759 * NAPI code and this dummy netdev is supposed to be
6760 * only ever used for NAPI polls
6761 */
6762 memset(dev, 0, sizeof(struct net_device));
6763
6764 /* make sure we BUG if trying to hit standard
6765 * register/unregister code path
6766 */
6767 dev->reg_state = NETREG_DUMMY;
6768
6769 /* NAPI wants this */
6770 INIT_LIST_HEAD(&dev->napi_list);
6771
6772 /* a dummy interface is started by default */
6773 set_bit(__LINK_STATE_PRESENT, &dev->state);
6774 set_bit(__LINK_STATE_START, &dev->state);
6775
6776 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6777 * because users of this 'device' dont need to change
6778 * its refcount.
6779 */
6780
6781 return 0;
6782 }
6783 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6784
6785
6786 /**
6787 * register_netdev - register a network device
6788 * @dev: device to register
6789 *
6790 * Take a completed network device structure and add it to the kernel
6791 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6792 * chain. 0 is returned on success. A negative errno code is returned
6793 * on a failure to set up the device, or if the name is a duplicate.
6794 *
6795 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6796 * and expands the device name if you passed a format string to
6797 * alloc_netdev.
6798 */
register_netdev(struct net_device * dev)6799 int register_netdev(struct net_device *dev)
6800 {
6801 int err;
6802
6803 rtnl_lock();
6804 err = register_netdevice(dev);
6805 rtnl_unlock();
6806 return err;
6807 }
6808 EXPORT_SYMBOL(register_netdev);
6809
netdev_refcnt_read(const struct net_device * dev)6810 int netdev_refcnt_read(const struct net_device *dev)
6811 {
6812 int i, refcnt = 0;
6813
6814 for_each_possible_cpu(i)
6815 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6816 return refcnt;
6817 }
6818 EXPORT_SYMBOL(netdev_refcnt_read);
6819
6820 /**
6821 * netdev_wait_allrefs - wait until all references are gone.
6822 * @dev: target net_device
6823 *
6824 * This is called when unregistering network devices.
6825 *
6826 * Any protocol or device that holds a reference should register
6827 * for netdevice notification, and cleanup and put back the
6828 * reference if they receive an UNREGISTER event.
6829 * We can get stuck here if buggy protocols don't correctly
6830 * call dev_put.
6831 */
netdev_wait_allrefs(struct net_device * dev)6832 static void netdev_wait_allrefs(struct net_device *dev)
6833 {
6834 unsigned long rebroadcast_time, warning_time;
6835 int refcnt;
6836
6837 linkwatch_forget_dev(dev);
6838
6839 rebroadcast_time = warning_time = jiffies;
6840 refcnt = netdev_refcnt_read(dev);
6841
6842 while (refcnt != 0) {
6843 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6844 rtnl_lock();
6845
6846 /* Rebroadcast unregister notification */
6847 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6848
6849 __rtnl_unlock();
6850 rcu_barrier();
6851 rtnl_lock();
6852
6853 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6854 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6855 &dev->state)) {
6856 /* We must not have linkwatch events
6857 * pending on unregister. If this
6858 * happens, we simply run the queue
6859 * unscheduled, resulting in a noop
6860 * for this device.
6861 */
6862 linkwatch_run_queue();
6863 }
6864
6865 __rtnl_unlock();
6866
6867 rebroadcast_time = jiffies;
6868 }
6869
6870 msleep(250);
6871
6872 refcnt = netdev_refcnt_read(dev);
6873
6874 if (time_after(jiffies, warning_time + 10 * HZ)) {
6875 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6876 dev->name, refcnt);
6877 warning_time = jiffies;
6878 }
6879 }
6880 }
6881
6882 /* The sequence is:
6883 *
6884 * rtnl_lock();
6885 * ...
6886 * register_netdevice(x1);
6887 * register_netdevice(x2);
6888 * ...
6889 * unregister_netdevice(y1);
6890 * unregister_netdevice(y2);
6891 * ...
6892 * rtnl_unlock();
6893 * free_netdev(y1);
6894 * free_netdev(y2);
6895 *
6896 * We are invoked by rtnl_unlock().
6897 * This allows us to deal with problems:
6898 * 1) We can delete sysfs objects which invoke hotplug
6899 * without deadlocking with linkwatch via keventd.
6900 * 2) Since we run with the RTNL semaphore not held, we can sleep
6901 * safely in order to wait for the netdev refcnt to drop to zero.
6902 *
6903 * We must not return until all unregister events added during
6904 * the interval the lock was held have been completed.
6905 */
netdev_run_todo(void)6906 void netdev_run_todo(void)
6907 {
6908 struct list_head list;
6909
6910 /* Snapshot list, allow later requests */
6911 list_replace_init(&net_todo_list, &list);
6912
6913 __rtnl_unlock();
6914
6915
6916 /* Wait for rcu callbacks to finish before next phase */
6917 if (!list_empty(&list))
6918 rcu_barrier();
6919
6920 while (!list_empty(&list)) {
6921 struct net_device *dev
6922 = list_first_entry(&list, struct net_device, todo_list);
6923 list_del(&dev->todo_list);
6924
6925 rtnl_lock();
6926 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6927 __rtnl_unlock();
6928
6929 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6930 pr_err("network todo '%s' but state %d\n",
6931 dev->name, dev->reg_state);
6932 dump_stack();
6933 continue;
6934 }
6935
6936 dev->reg_state = NETREG_UNREGISTERED;
6937
6938 netdev_wait_allrefs(dev);
6939
6940 /* paranoia */
6941 BUG_ON(netdev_refcnt_read(dev));
6942 BUG_ON(!list_empty(&dev->ptype_all));
6943 BUG_ON(!list_empty(&dev->ptype_specific));
6944 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6945 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6946 WARN_ON(dev->dn_ptr);
6947
6948 if (dev->destructor)
6949 dev->destructor(dev);
6950
6951 /* Report a network device has been unregistered */
6952 rtnl_lock();
6953 dev_net(dev)->dev_unreg_count--;
6954 __rtnl_unlock();
6955 wake_up(&netdev_unregistering_wq);
6956
6957 /* Free network device */
6958 kobject_put(&dev->dev.kobj);
6959 }
6960 }
6961
6962 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6963 * fields in the same order, with only the type differing.
6964 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)6965 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6966 const struct net_device_stats *netdev_stats)
6967 {
6968 #if BITS_PER_LONG == 64
6969 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6970 memcpy(stats64, netdev_stats, sizeof(*stats64));
6971 #else
6972 size_t i, n = sizeof(*stats64) / sizeof(u64);
6973 const unsigned long *src = (const unsigned long *)netdev_stats;
6974 u64 *dst = (u64 *)stats64;
6975
6976 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6977 sizeof(*stats64) / sizeof(u64));
6978 for (i = 0; i < n; i++)
6979 dst[i] = src[i];
6980 #endif
6981 }
6982 EXPORT_SYMBOL(netdev_stats_to_stats64);
6983
6984 /**
6985 * dev_get_stats - get network device statistics
6986 * @dev: device to get statistics from
6987 * @storage: place to store stats
6988 *
6989 * Get network statistics from device. Return @storage.
6990 * The device driver may provide its own method by setting
6991 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6992 * otherwise the internal statistics structure is used.
6993 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)6994 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6995 struct rtnl_link_stats64 *storage)
6996 {
6997 const struct net_device_ops *ops = dev->netdev_ops;
6998
6999 if (ops->ndo_get_stats64) {
7000 memset(storage, 0, sizeof(*storage));
7001 ops->ndo_get_stats64(dev, storage);
7002 } else if (ops->ndo_get_stats) {
7003 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7004 } else {
7005 netdev_stats_to_stats64(storage, &dev->stats);
7006 }
7007 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7008 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7009 return storage;
7010 }
7011 EXPORT_SYMBOL(dev_get_stats);
7012
dev_ingress_queue_create(struct net_device * dev)7013 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7014 {
7015 struct netdev_queue *queue = dev_ingress_queue(dev);
7016
7017 #ifdef CONFIG_NET_CLS_ACT
7018 if (queue)
7019 return queue;
7020 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7021 if (!queue)
7022 return NULL;
7023 netdev_init_one_queue(dev, queue, NULL);
7024 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7025 queue->qdisc_sleeping = &noop_qdisc;
7026 rcu_assign_pointer(dev->ingress_queue, queue);
7027 #endif
7028 return queue;
7029 }
7030
7031 static const struct ethtool_ops default_ethtool_ops;
7032
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)7033 void netdev_set_default_ethtool_ops(struct net_device *dev,
7034 const struct ethtool_ops *ops)
7035 {
7036 if (dev->ethtool_ops == &default_ethtool_ops)
7037 dev->ethtool_ops = ops;
7038 }
7039 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7040
netdev_freemem(struct net_device * dev)7041 void netdev_freemem(struct net_device *dev)
7042 {
7043 char *addr = (char *)dev - dev->padded;
7044
7045 kvfree(addr);
7046 }
7047
7048 /**
7049 * alloc_netdev_mqs - allocate network device
7050 * @sizeof_priv: size of private data to allocate space for
7051 * @name: device name format string
7052 * @name_assign_type: origin of device name
7053 * @setup: callback to initialize device
7054 * @txqs: the number of TX subqueues to allocate
7055 * @rxqs: the number of RX subqueues to allocate
7056 *
7057 * Allocates a struct net_device with private data area for driver use
7058 * and performs basic initialization. Also allocates subqueue structs
7059 * for each queue on the device.
7060 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)7061 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7062 unsigned char name_assign_type,
7063 void (*setup)(struct net_device *),
7064 unsigned int txqs, unsigned int rxqs)
7065 {
7066 struct net_device *dev;
7067 size_t alloc_size;
7068 struct net_device *p;
7069
7070 BUG_ON(strlen(name) >= sizeof(dev->name));
7071
7072 if (txqs < 1) {
7073 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7074 return NULL;
7075 }
7076
7077 #ifdef CONFIG_SYSFS
7078 if (rxqs < 1) {
7079 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7080 return NULL;
7081 }
7082 #endif
7083
7084 alloc_size = sizeof(struct net_device);
7085 if (sizeof_priv) {
7086 /* ensure 32-byte alignment of private area */
7087 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7088 alloc_size += sizeof_priv;
7089 }
7090 /* ensure 32-byte alignment of whole construct */
7091 alloc_size += NETDEV_ALIGN - 1;
7092
7093 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7094 if (!p)
7095 p = vzalloc(alloc_size);
7096 if (!p)
7097 return NULL;
7098
7099 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7100 dev->padded = (char *)dev - (char *)p;
7101
7102 dev->pcpu_refcnt = alloc_percpu(int);
7103 if (!dev->pcpu_refcnt)
7104 goto free_dev;
7105
7106 if (dev_addr_init(dev))
7107 goto free_pcpu;
7108
7109 dev_mc_init(dev);
7110 dev_uc_init(dev);
7111
7112 dev_net_set(dev, &init_net);
7113
7114 dev->gso_max_size = GSO_MAX_SIZE;
7115 dev->gso_max_segs = GSO_MAX_SEGS;
7116 dev->gso_min_segs = 0;
7117
7118 INIT_LIST_HEAD(&dev->napi_list);
7119 INIT_LIST_HEAD(&dev->unreg_list);
7120 INIT_LIST_HEAD(&dev->close_list);
7121 INIT_LIST_HEAD(&dev->link_watch_list);
7122 INIT_LIST_HEAD(&dev->adj_list.upper);
7123 INIT_LIST_HEAD(&dev->adj_list.lower);
7124 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7125 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7126 INIT_LIST_HEAD(&dev->ptype_all);
7127 INIT_LIST_HEAD(&dev->ptype_specific);
7128 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7129 setup(dev);
7130
7131 if (!dev->tx_queue_len) {
7132 dev->priv_flags |= IFF_NO_QUEUE;
7133 dev->tx_queue_len = 1;
7134 }
7135
7136 dev->num_tx_queues = txqs;
7137 dev->real_num_tx_queues = txqs;
7138 if (netif_alloc_netdev_queues(dev))
7139 goto free_all;
7140
7141 #ifdef CONFIG_SYSFS
7142 dev->num_rx_queues = rxqs;
7143 dev->real_num_rx_queues = rxqs;
7144 if (netif_alloc_rx_queues(dev))
7145 goto free_all;
7146 #endif
7147
7148 strcpy(dev->name, name);
7149 dev->name_assign_type = name_assign_type;
7150 dev->group = INIT_NETDEV_GROUP;
7151 if (!dev->ethtool_ops)
7152 dev->ethtool_ops = &default_ethtool_ops;
7153
7154 nf_hook_ingress_init(dev);
7155
7156 return dev;
7157
7158 free_all:
7159 free_netdev(dev);
7160 return NULL;
7161
7162 free_pcpu:
7163 free_percpu(dev->pcpu_refcnt);
7164 free_dev:
7165 netdev_freemem(dev);
7166 return NULL;
7167 }
7168 EXPORT_SYMBOL(alloc_netdev_mqs);
7169
7170 /**
7171 * free_netdev - free network device
7172 * @dev: device
7173 *
7174 * This function does the last stage of destroying an allocated device
7175 * interface. The reference to the device object is released.
7176 * If this is the last reference then it will be freed.
7177 */
free_netdev(struct net_device * dev)7178 void free_netdev(struct net_device *dev)
7179 {
7180 struct napi_struct *p, *n;
7181
7182 netif_free_tx_queues(dev);
7183 #ifdef CONFIG_SYSFS
7184 kvfree(dev->_rx);
7185 #endif
7186
7187 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7188
7189 /* Flush device addresses */
7190 dev_addr_flush(dev);
7191
7192 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7193 netif_napi_del(p);
7194
7195 free_percpu(dev->pcpu_refcnt);
7196 dev->pcpu_refcnt = NULL;
7197
7198 /* Compatibility with error handling in drivers */
7199 if (dev->reg_state == NETREG_UNINITIALIZED) {
7200 netdev_freemem(dev);
7201 return;
7202 }
7203
7204 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7205 dev->reg_state = NETREG_RELEASED;
7206
7207 /* will free via device release */
7208 put_device(&dev->dev);
7209 }
7210 EXPORT_SYMBOL(free_netdev);
7211
7212 /**
7213 * synchronize_net - Synchronize with packet receive processing
7214 *
7215 * Wait for packets currently being received to be done.
7216 * Does not block later packets from starting.
7217 */
synchronize_net(void)7218 void synchronize_net(void)
7219 {
7220 might_sleep();
7221 if (rtnl_is_locked())
7222 synchronize_rcu_expedited();
7223 else
7224 synchronize_rcu();
7225 }
7226 EXPORT_SYMBOL(synchronize_net);
7227
7228 /**
7229 * unregister_netdevice_queue - remove device from the kernel
7230 * @dev: device
7231 * @head: list
7232 *
7233 * This function shuts down a device interface and removes it
7234 * from the kernel tables.
7235 * If head not NULL, device is queued to be unregistered later.
7236 *
7237 * Callers must hold the rtnl semaphore. You may want
7238 * unregister_netdev() instead of this.
7239 */
7240
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)7241 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7242 {
7243 ASSERT_RTNL();
7244
7245 if (head) {
7246 list_move_tail(&dev->unreg_list, head);
7247 } else {
7248 rollback_registered(dev);
7249 /* Finish processing unregister after unlock */
7250 net_set_todo(dev);
7251 }
7252 }
7253 EXPORT_SYMBOL(unregister_netdevice_queue);
7254
7255 /**
7256 * unregister_netdevice_many - unregister many devices
7257 * @head: list of devices
7258 *
7259 * Note: As most callers use a stack allocated list_head,
7260 * we force a list_del() to make sure stack wont be corrupted later.
7261 */
unregister_netdevice_many(struct list_head * head)7262 void unregister_netdevice_many(struct list_head *head)
7263 {
7264 struct net_device *dev;
7265
7266 if (!list_empty(head)) {
7267 rollback_registered_many(head);
7268 list_for_each_entry(dev, head, unreg_list)
7269 net_set_todo(dev);
7270 list_del(head);
7271 }
7272 }
7273 EXPORT_SYMBOL(unregister_netdevice_many);
7274
7275 /**
7276 * unregister_netdev - remove device from the kernel
7277 * @dev: device
7278 *
7279 * This function shuts down a device interface and removes it
7280 * from the kernel tables.
7281 *
7282 * This is just a wrapper for unregister_netdevice that takes
7283 * the rtnl semaphore. In general you want to use this and not
7284 * unregister_netdevice.
7285 */
unregister_netdev(struct net_device * dev)7286 void unregister_netdev(struct net_device *dev)
7287 {
7288 rtnl_lock();
7289 unregister_netdevice(dev);
7290 rtnl_unlock();
7291 }
7292 EXPORT_SYMBOL(unregister_netdev);
7293
7294 /**
7295 * dev_change_net_namespace - move device to different nethost namespace
7296 * @dev: device
7297 * @net: network namespace
7298 * @pat: If not NULL name pattern to try if the current device name
7299 * is already taken in the destination network namespace.
7300 *
7301 * This function shuts down a device interface and moves it
7302 * to a new network namespace. On success 0 is returned, on
7303 * a failure a netagive errno code is returned.
7304 *
7305 * Callers must hold the rtnl semaphore.
7306 */
7307
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)7308 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7309 {
7310 int err;
7311
7312 ASSERT_RTNL();
7313
7314 /* Don't allow namespace local devices to be moved. */
7315 err = -EINVAL;
7316 if (dev->features & NETIF_F_NETNS_LOCAL)
7317 goto out;
7318
7319 /* Ensure the device has been registrered */
7320 if (dev->reg_state != NETREG_REGISTERED)
7321 goto out;
7322
7323 /* Get out if there is nothing todo */
7324 err = 0;
7325 if (net_eq(dev_net(dev), net))
7326 goto out;
7327
7328 /* Pick the destination device name, and ensure
7329 * we can use it in the destination network namespace.
7330 */
7331 err = -EEXIST;
7332 if (__dev_get_by_name(net, dev->name)) {
7333 /* We get here if we can't use the current device name */
7334 if (!pat)
7335 goto out;
7336 if (dev_get_valid_name(net, dev, pat) < 0)
7337 goto out;
7338 }
7339
7340 /*
7341 * And now a mini version of register_netdevice unregister_netdevice.
7342 */
7343
7344 /* If device is running close it first. */
7345 dev_close(dev);
7346
7347 /* And unlink it from device chain */
7348 err = -ENODEV;
7349 unlist_netdevice(dev);
7350
7351 synchronize_net();
7352
7353 /* Shutdown queueing discipline. */
7354 dev_shutdown(dev);
7355
7356 /* Notify protocols, that we are about to destroy
7357 this device. They should clean all the things.
7358
7359 Note that dev->reg_state stays at NETREG_REGISTERED.
7360 This is wanted because this way 8021q and macvlan know
7361 the device is just moving and can keep their slaves up.
7362 */
7363 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7364 rcu_barrier();
7365 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7366 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7367
7368 /*
7369 * Flush the unicast and multicast chains
7370 */
7371 dev_uc_flush(dev);
7372 dev_mc_flush(dev);
7373
7374 /* Send a netdev-removed uevent to the old namespace */
7375 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7376 netdev_adjacent_del_links(dev);
7377
7378 /* Actually switch the network namespace */
7379 dev_net_set(dev, net);
7380
7381 /* If there is an ifindex conflict assign a new one */
7382 if (__dev_get_by_index(net, dev->ifindex))
7383 dev->ifindex = dev_new_index(net);
7384
7385 /* Send a netdev-add uevent to the new namespace */
7386 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7387 netdev_adjacent_add_links(dev);
7388
7389 /* Fixup kobjects */
7390 err = device_rename(&dev->dev, dev->name);
7391 WARN_ON(err);
7392
7393 /* Add the device back in the hashes */
7394 list_netdevice(dev);
7395
7396 /* Notify protocols, that a new device appeared. */
7397 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7398
7399 /*
7400 * Prevent userspace races by waiting until the network
7401 * device is fully setup before sending notifications.
7402 */
7403 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7404
7405 synchronize_net();
7406 err = 0;
7407 out:
7408 return err;
7409 }
7410 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7411
dev_cpu_callback(struct notifier_block * nfb,unsigned long action,void * ocpu)7412 static int dev_cpu_callback(struct notifier_block *nfb,
7413 unsigned long action,
7414 void *ocpu)
7415 {
7416 struct sk_buff **list_skb;
7417 struct sk_buff *skb;
7418 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7419 struct softnet_data *sd, *oldsd;
7420
7421 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7422 return NOTIFY_OK;
7423
7424 local_irq_disable();
7425 cpu = smp_processor_id();
7426 sd = &per_cpu(softnet_data, cpu);
7427 oldsd = &per_cpu(softnet_data, oldcpu);
7428
7429 /* Find end of our completion_queue. */
7430 list_skb = &sd->completion_queue;
7431 while (*list_skb)
7432 list_skb = &(*list_skb)->next;
7433 /* Append completion queue from offline CPU. */
7434 *list_skb = oldsd->completion_queue;
7435 oldsd->completion_queue = NULL;
7436
7437 /* Append output queue from offline CPU. */
7438 if (oldsd->output_queue) {
7439 *sd->output_queue_tailp = oldsd->output_queue;
7440 sd->output_queue_tailp = oldsd->output_queue_tailp;
7441 oldsd->output_queue = NULL;
7442 oldsd->output_queue_tailp = &oldsd->output_queue;
7443 }
7444 /* Append NAPI poll list from offline CPU, with one exception :
7445 * process_backlog() must be called by cpu owning percpu backlog.
7446 * We properly handle process_queue & input_pkt_queue later.
7447 */
7448 while (!list_empty(&oldsd->poll_list)) {
7449 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7450 struct napi_struct,
7451 poll_list);
7452
7453 list_del_init(&napi->poll_list);
7454 if (napi->poll == process_backlog)
7455 napi->state = 0;
7456 else
7457 ____napi_schedule(sd, napi);
7458 }
7459
7460 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7461 local_irq_enable();
7462
7463 /* Process offline CPU's input_pkt_queue */
7464 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7465 netif_rx_ni(skb);
7466 input_queue_head_incr(oldsd);
7467 }
7468 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7469 netif_rx_ni(skb);
7470 input_queue_head_incr(oldsd);
7471 }
7472
7473 return NOTIFY_OK;
7474 }
7475
7476
7477 /**
7478 * netdev_increment_features - increment feature set by one
7479 * @all: current feature set
7480 * @one: new feature set
7481 * @mask: mask feature set
7482 *
7483 * Computes a new feature set after adding a device with feature set
7484 * @one to the master device with current feature set @all. Will not
7485 * enable anything that is off in @mask. Returns the new feature set.
7486 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)7487 netdev_features_t netdev_increment_features(netdev_features_t all,
7488 netdev_features_t one, netdev_features_t mask)
7489 {
7490 if (mask & NETIF_F_GEN_CSUM)
7491 mask |= NETIF_F_ALL_CSUM;
7492 mask |= NETIF_F_VLAN_CHALLENGED;
7493
7494 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7495 all &= one | ~NETIF_F_ALL_FOR_ALL;
7496
7497 /* If one device supports hw checksumming, set for all. */
7498 if (all & NETIF_F_GEN_CSUM)
7499 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7500
7501 return all;
7502 }
7503 EXPORT_SYMBOL(netdev_increment_features);
7504
netdev_create_hash(void)7505 static struct hlist_head * __net_init netdev_create_hash(void)
7506 {
7507 int i;
7508 struct hlist_head *hash;
7509
7510 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7511 if (hash != NULL)
7512 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7513 INIT_HLIST_HEAD(&hash[i]);
7514
7515 return hash;
7516 }
7517
7518 /* Initialize per network namespace state */
netdev_init(struct net * net)7519 static int __net_init netdev_init(struct net *net)
7520 {
7521 if (net != &init_net)
7522 INIT_LIST_HEAD(&net->dev_base_head);
7523
7524 net->dev_name_head = netdev_create_hash();
7525 if (net->dev_name_head == NULL)
7526 goto err_name;
7527
7528 net->dev_index_head = netdev_create_hash();
7529 if (net->dev_index_head == NULL)
7530 goto err_idx;
7531
7532 return 0;
7533
7534 err_idx:
7535 kfree(net->dev_name_head);
7536 err_name:
7537 return -ENOMEM;
7538 }
7539
7540 /**
7541 * netdev_drivername - network driver for the device
7542 * @dev: network device
7543 *
7544 * Determine network driver for device.
7545 */
netdev_drivername(const struct net_device * dev)7546 const char *netdev_drivername(const struct net_device *dev)
7547 {
7548 const struct device_driver *driver;
7549 const struct device *parent;
7550 const char *empty = "";
7551
7552 parent = dev->dev.parent;
7553 if (!parent)
7554 return empty;
7555
7556 driver = parent->driver;
7557 if (driver && driver->name)
7558 return driver->name;
7559 return empty;
7560 }
7561
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)7562 static void __netdev_printk(const char *level, const struct net_device *dev,
7563 struct va_format *vaf)
7564 {
7565 if (dev && dev->dev.parent) {
7566 dev_printk_emit(level[1] - '0',
7567 dev->dev.parent,
7568 "%s %s %s%s: %pV",
7569 dev_driver_string(dev->dev.parent),
7570 dev_name(dev->dev.parent),
7571 netdev_name(dev), netdev_reg_state(dev),
7572 vaf);
7573 } else if (dev) {
7574 printk("%s%s%s: %pV",
7575 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7576 } else {
7577 printk("%s(NULL net_device): %pV", level, vaf);
7578 }
7579 }
7580
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)7581 void netdev_printk(const char *level, const struct net_device *dev,
7582 const char *format, ...)
7583 {
7584 struct va_format vaf;
7585 va_list args;
7586
7587 va_start(args, format);
7588
7589 vaf.fmt = format;
7590 vaf.va = &args;
7591
7592 __netdev_printk(level, dev, &vaf);
7593
7594 va_end(args);
7595 }
7596 EXPORT_SYMBOL(netdev_printk);
7597
7598 #define define_netdev_printk_level(func, level) \
7599 void func(const struct net_device *dev, const char *fmt, ...) \
7600 { \
7601 struct va_format vaf; \
7602 va_list args; \
7603 \
7604 va_start(args, fmt); \
7605 \
7606 vaf.fmt = fmt; \
7607 vaf.va = &args; \
7608 \
7609 __netdev_printk(level, dev, &vaf); \
7610 \
7611 va_end(args); \
7612 } \
7613 EXPORT_SYMBOL(func);
7614
7615 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7616 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7617 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7618 define_netdev_printk_level(netdev_err, KERN_ERR);
7619 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7620 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7621 define_netdev_printk_level(netdev_info, KERN_INFO);
7622
netdev_exit(struct net * net)7623 static void __net_exit netdev_exit(struct net *net)
7624 {
7625 kfree(net->dev_name_head);
7626 kfree(net->dev_index_head);
7627 }
7628
7629 static struct pernet_operations __net_initdata netdev_net_ops = {
7630 .init = netdev_init,
7631 .exit = netdev_exit,
7632 };
7633
default_device_exit(struct net * net)7634 static void __net_exit default_device_exit(struct net *net)
7635 {
7636 struct net_device *dev, *aux;
7637 /*
7638 * Push all migratable network devices back to the
7639 * initial network namespace
7640 */
7641 rtnl_lock();
7642 for_each_netdev_safe(net, dev, aux) {
7643 int err;
7644 char fb_name[IFNAMSIZ];
7645
7646 /* Ignore unmoveable devices (i.e. loopback) */
7647 if (dev->features & NETIF_F_NETNS_LOCAL)
7648 continue;
7649
7650 /* Leave virtual devices for the generic cleanup */
7651 if (dev->rtnl_link_ops)
7652 continue;
7653
7654 /* Push remaining network devices to init_net */
7655 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7656 err = dev_change_net_namespace(dev, &init_net, fb_name);
7657 if (err) {
7658 pr_emerg("%s: failed to move %s to init_net: %d\n",
7659 __func__, dev->name, err);
7660 BUG();
7661 }
7662 }
7663 rtnl_unlock();
7664 }
7665
rtnl_lock_unregistering(struct list_head * net_list)7666 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7667 {
7668 /* Return with the rtnl_lock held when there are no network
7669 * devices unregistering in any network namespace in net_list.
7670 */
7671 struct net *net;
7672 bool unregistering;
7673 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7674
7675 add_wait_queue(&netdev_unregistering_wq, &wait);
7676 for (;;) {
7677 unregistering = false;
7678 rtnl_lock();
7679 list_for_each_entry(net, net_list, exit_list) {
7680 if (net->dev_unreg_count > 0) {
7681 unregistering = true;
7682 break;
7683 }
7684 }
7685 if (!unregistering)
7686 break;
7687 __rtnl_unlock();
7688
7689 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7690 }
7691 remove_wait_queue(&netdev_unregistering_wq, &wait);
7692 }
7693
default_device_exit_batch(struct list_head * net_list)7694 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7695 {
7696 /* At exit all network devices most be removed from a network
7697 * namespace. Do this in the reverse order of registration.
7698 * Do this across as many network namespaces as possible to
7699 * improve batching efficiency.
7700 */
7701 struct net_device *dev;
7702 struct net *net;
7703 LIST_HEAD(dev_kill_list);
7704
7705 /* To prevent network device cleanup code from dereferencing
7706 * loopback devices or network devices that have been freed
7707 * wait here for all pending unregistrations to complete,
7708 * before unregistring the loopback device and allowing the
7709 * network namespace be freed.
7710 *
7711 * The netdev todo list containing all network devices
7712 * unregistrations that happen in default_device_exit_batch
7713 * will run in the rtnl_unlock() at the end of
7714 * default_device_exit_batch.
7715 */
7716 rtnl_lock_unregistering(net_list);
7717 list_for_each_entry(net, net_list, exit_list) {
7718 for_each_netdev_reverse(net, dev) {
7719 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7720 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7721 else
7722 unregister_netdevice_queue(dev, &dev_kill_list);
7723 }
7724 }
7725 unregister_netdevice_many(&dev_kill_list);
7726 rtnl_unlock();
7727 }
7728
7729 static struct pernet_operations __net_initdata default_device_ops = {
7730 .exit = default_device_exit,
7731 .exit_batch = default_device_exit_batch,
7732 };
7733
7734 /*
7735 * Initialize the DEV module. At boot time this walks the device list and
7736 * unhooks any devices that fail to initialise (normally hardware not
7737 * present) and leaves us with a valid list of present and active devices.
7738 *
7739 */
7740
7741 /*
7742 * This is called single threaded during boot, so no need
7743 * to take the rtnl semaphore.
7744 */
net_dev_init(void)7745 static int __init net_dev_init(void)
7746 {
7747 int i, rc = -ENOMEM;
7748
7749 BUG_ON(!dev_boot_phase);
7750
7751 if (dev_proc_init())
7752 goto out;
7753
7754 if (netdev_kobject_init())
7755 goto out;
7756
7757 INIT_LIST_HEAD(&ptype_all);
7758 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7759 INIT_LIST_HEAD(&ptype_base[i]);
7760
7761 INIT_LIST_HEAD(&offload_base);
7762
7763 if (register_pernet_subsys(&netdev_net_ops))
7764 goto out;
7765
7766 /*
7767 * Initialise the packet receive queues.
7768 */
7769
7770 for_each_possible_cpu(i) {
7771 struct softnet_data *sd = &per_cpu(softnet_data, i);
7772
7773 skb_queue_head_init(&sd->input_pkt_queue);
7774 skb_queue_head_init(&sd->process_queue);
7775 INIT_LIST_HEAD(&sd->poll_list);
7776 sd->output_queue_tailp = &sd->output_queue;
7777 #ifdef CONFIG_RPS
7778 sd->csd.func = rps_trigger_softirq;
7779 sd->csd.info = sd;
7780 sd->cpu = i;
7781 #endif
7782
7783 sd->backlog.poll = process_backlog;
7784 sd->backlog.weight = weight_p;
7785 }
7786
7787 dev_boot_phase = 0;
7788
7789 /* The loopback device is special if any other network devices
7790 * is present in a network namespace the loopback device must
7791 * be present. Since we now dynamically allocate and free the
7792 * loopback device ensure this invariant is maintained by
7793 * keeping the loopback device as the first device on the
7794 * list of network devices. Ensuring the loopback devices
7795 * is the first device that appears and the last network device
7796 * that disappears.
7797 */
7798 if (register_pernet_device(&loopback_net_ops))
7799 goto out;
7800
7801 if (register_pernet_device(&default_device_ops))
7802 goto out;
7803
7804 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7805 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7806
7807 hotcpu_notifier(dev_cpu_callback, 0);
7808 dst_subsys_init();
7809 rc = 0;
7810 out:
7811 return rc;
7812 }
7813
7814 subsys_initcall(net_dev_init);
7815