1/*
2 * 	NET3	Protocol independent device support routines.
3 *
4 *		This program is free software; you can redistribute it and/or
5 *		modify it under the terms of the GNU General Public License
6 *		as published by the Free Software Foundation; either version
7 *		2 of the License, or (at your option) any later version.
8 *
9 *	Derived from the non IP parts of dev.c 1.0.19
10 * 		Authors:	Ross Biro
11 *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 *	Additional Authors:
15 *		Florian la Roche <rzsfl@rz.uni-sb.de>
16 *		Alan Cox <gw4pts@gw4pts.ampr.org>
17 *		David Hinds <dahinds@users.sourceforge.net>
18 *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 *		Adam Sulmicki <adam@cfar.umd.edu>
20 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 *	Changes:
23 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24 *              			to 2 if register_netdev gets called
25 *              			before net_dev_init & also removed a
26 *              			few lines of code in the process.
27 *		Alan Cox	:	device private ioctl copies fields back.
28 *		Alan Cox	:	Transmit queue code does relevant
29 *					stunts to keep the queue safe.
30 *		Alan Cox	:	Fixed double lock.
31 *		Alan Cox	:	Fixed promisc NULL pointer trap
32 *		????????	:	Support the full private ioctl range
33 *		Alan Cox	:	Moved ioctl permission check into
34 *					drivers
35 *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36 *		Alan Cox	:	100 backlog just doesn't cut it when
37 *					you start doing multicast video 8)
38 *		Alan Cox	:	Rewrote net_bh and list manager.
39 *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40 *		Alan Cox	:	Took out transmit every packet pass
41 *					Saved a few bytes in the ioctl handler
42 *		Alan Cox	:	Network driver sets packet type before
43 *					calling netif_rx. Saves a function
44 *					call a packet.
45 *		Alan Cox	:	Hashed net_bh()
46 *		Richard Kooijman:	Timestamp fixes.
47 *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48 *		Alan Cox	:	Device lock protection.
49 *		Alan Cox	: 	Fixed nasty side effect of device close
50 *					changes.
51 *		Rudi Cilibrasi	:	Pass the right thing to
52 *					set_mac_address()
53 *		Dave Miller	:	32bit quantity for the device lock to
54 *					make it work out on a Sparc.
55 *		Bjorn Ekwall	:	Added KERNELD hack.
56 *		Alan Cox	:	Cleaned up the backlog initialise.
57 *		Craig Metz	:	SIOCGIFCONF fix if space for under
58 *					1 device.
59 *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60 *					is no device open function.
61 *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62 *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63 *		Cyrus Durgin	:	Cleaned for KMOD
64 *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65 *					A network device unload needs to purge
66 *					the backlog queue.
67 *	Paul Rusty Russell	:	SIOCSIFNAME
68 *              Pekka Riikonen  :	Netdev boot-time settings code
69 *              Andrew Morton   :       Make unregister_netdevice wait
70 *              			indefinitely on dev->refcnt
71 * 		J Hadi Salim	:	- Backlog queue sampling
72 *				        - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/mutex.h>
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
94#include <linux/ethtool.h>
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
100#include <linux/stat.h>
101#include <net/dst.h>
102#include <net/dst_metadata.h>
103#include <net/pkt_sched.h>
104#include <net/checksum.h>
105#include <net/xfrm.h>
106#include <linux/highmem.h>
107#include <linux/init.h>
108#include <linux/module.h>
109#include <linux/netpoll.h>
110#include <linux/rcupdate.h>
111#include <linux/delay.h>
112#include <net/iw_handler.h>
113#include <asm/current.h>
114#include <linux/audit.h>
115#include <linux/dmaengine.h>
116#include <linux/err.h>
117#include <linux/ctype.h>
118#include <linux/if_arp.h>
119#include <linux/if_vlan.h>
120#include <linux/ip.h>
121#include <net/ip.h>
122#include <net/mpls.h>
123#include <linux/ipv6.h>
124#include <linux/in.h>
125#include <linux/jhash.h>
126#include <linux/random.h>
127#include <trace/events/napi.h>
128#include <trace/events/net.h>
129#include <trace/events/skb.h>
130#include <linux/pci.h>
131#include <linux/inetdevice.h>
132#include <linux/cpu_rmap.h>
133#include <linux/static_key.h>
134#include <linux/hashtable.h>
135#include <linux/vmalloc.h>
136#include <linux/if_macvlan.h>
137#include <linux/errqueue.h>
138#include <linux/hrtimer.h>
139#include <linux/netfilter_ingress.h>
140
141#include "net-sysfs.h"
142
143/* Instead of increasing this, you should create a hash table. */
144#define MAX_GRO_SKBS 8
145
146/* This should be increased if a protocol with a bigger head is added. */
147#define GRO_MAX_HEAD (MAX_HEADER + 128)
148
149static DEFINE_SPINLOCK(ptype_lock);
150static DEFINE_SPINLOCK(offload_lock);
151struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
152struct list_head ptype_all __read_mostly;	/* Taps */
153static struct list_head offload_base __read_mostly;
154
155static int netif_rx_internal(struct sk_buff *skb);
156static int call_netdevice_notifiers_info(unsigned long val,
157					 struct net_device *dev,
158					 struct netdev_notifier_info *info);
159
160/*
161 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
162 * semaphore.
163 *
164 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
165 *
166 * Writers must hold the rtnl semaphore while they loop through the
167 * dev_base_head list, and hold dev_base_lock for writing when they do the
168 * actual updates.  This allows pure readers to access the list even
169 * while a writer is preparing to update it.
170 *
171 * To put it another way, dev_base_lock is held for writing only to
172 * protect against pure readers; the rtnl semaphore provides the
173 * protection against other writers.
174 *
175 * See, for example usages, register_netdevice() and
176 * unregister_netdevice(), which must be called with the rtnl
177 * semaphore held.
178 */
179DEFINE_RWLOCK(dev_base_lock);
180EXPORT_SYMBOL(dev_base_lock);
181
182/* protects napi_hash addition/deletion and napi_gen_id */
183static DEFINE_SPINLOCK(napi_hash_lock);
184
185static unsigned int napi_gen_id;
186static DEFINE_HASHTABLE(napi_hash, 8);
187
188static seqcount_t devnet_rename_seq;
189
190static inline void dev_base_seq_inc(struct net *net)
191{
192	while (++net->dev_base_seq == 0);
193}
194
195static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
196{
197	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
198
199	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
200}
201
202static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
203{
204	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
205}
206
207static inline void rps_lock(struct softnet_data *sd)
208{
209#ifdef CONFIG_RPS
210	spin_lock(&sd->input_pkt_queue.lock);
211#endif
212}
213
214static inline void rps_unlock(struct softnet_data *sd)
215{
216#ifdef CONFIG_RPS
217	spin_unlock(&sd->input_pkt_queue.lock);
218#endif
219}
220
221/* Device list insertion */
222static void list_netdevice(struct net_device *dev)
223{
224	struct net *net = dev_net(dev);
225
226	ASSERT_RTNL();
227
228	write_lock_bh(&dev_base_lock);
229	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
230	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
231	hlist_add_head_rcu(&dev->index_hlist,
232			   dev_index_hash(net, dev->ifindex));
233	write_unlock_bh(&dev_base_lock);
234
235	dev_base_seq_inc(net);
236}
237
238/* Device list removal
239 * caller must respect a RCU grace period before freeing/reusing dev
240 */
241static void unlist_netdevice(struct net_device *dev)
242{
243	ASSERT_RTNL();
244
245	/* Unlink dev from the device chain */
246	write_lock_bh(&dev_base_lock);
247	list_del_rcu(&dev->dev_list);
248	hlist_del_rcu(&dev->name_hlist);
249	hlist_del_rcu(&dev->index_hlist);
250	write_unlock_bh(&dev_base_lock);
251
252	dev_base_seq_inc(dev_net(dev));
253}
254
255/*
256 *	Our notifier list
257 */
258
259static RAW_NOTIFIER_HEAD(netdev_chain);
260
261/*
262 *	Device drivers call our routines to queue packets here. We empty the
263 *	queue in the local softnet handler.
264 */
265
266DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
267EXPORT_PER_CPU_SYMBOL(softnet_data);
268
269#ifdef CONFIG_LOCKDEP
270/*
271 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
272 * according to dev->type
273 */
274static const unsigned short netdev_lock_type[] =
275	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
287	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
288	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
289	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
290
291static const char *const netdev_lock_name[] =
292	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
304	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
305	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
306	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
307
308static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
309static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
310
311static inline unsigned short netdev_lock_pos(unsigned short dev_type)
312{
313	int i;
314
315	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
316		if (netdev_lock_type[i] == dev_type)
317			return i;
318	/* the last key is used by default */
319	return ARRAY_SIZE(netdev_lock_type) - 1;
320}
321
322static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
323						 unsigned short dev_type)
324{
325	int i;
326
327	i = netdev_lock_pos(dev_type);
328	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
329				   netdev_lock_name[i]);
330}
331
332static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
333{
334	int i;
335
336	i = netdev_lock_pos(dev->type);
337	lockdep_set_class_and_name(&dev->addr_list_lock,
338				   &netdev_addr_lock_key[i],
339				   netdev_lock_name[i]);
340}
341#else
342static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
343						 unsigned short dev_type)
344{
345}
346static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347{
348}
349#endif
350
351/*******************************************************************************
352
353		Protocol management and registration routines
354
355*******************************************************************************/
356
357/*
358 *	Add a protocol ID to the list. Now that the input handler is
359 *	smarter we can dispense with all the messy stuff that used to be
360 *	here.
361 *
362 *	BEWARE!!! Protocol handlers, mangling input packets,
363 *	MUST BE last in hash buckets and checking protocol handlers
364 *	MUST start from promiscuous ptype_all chain in net_bh.
365 *	It is true now, do not change it.
366 *	Explanation follows: if protocol handler, mangling packet, will
367 *	be the first on list, it is not able to sense, that packet
368 *	is cloned and should be copied-on-write, so that it will
369 *	change it and subsequent readers will get broken packet.
370 *							--ANK (980803)
371 */
372
373static inline struct list_head *ptype_head(const struct packet_type *pt)
374{
375	if (pt->type == htons(ETH_P_ALL))
376		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
377	else
378		return pt->dev ? &pt->dev->ptype_specific :
379				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
380}
381
382/**
383 *	dev_add_pack - add packet handler
384 *	@pt: packet type declaration
385 *
386 *	Add a protocol handler to the networking stack. The passed &packet_type
387 *	is linked into kernel lists and may not be freed until it has been
388 *	removed from the kernel lists.
389 *
390 *	This call does not sleep therefore it can not
391 *	guarantee all CPU's that are in middle of receiving packets
392 *	will see the new packet type (until the next received packet).
393 */
394
395void dev_add_pack(struct packet_type *pt)
396{
397	struct list_head *head = ptype_head(pt);
398
399	spin_lock(&ptype_lock);
400	list_add_rcu(&pt->list, head);
401	spin_unlock(&ptype_lock);
402}
403EXPORT_SYMBOL(dev_add_pack);
404
405/**
406 *	__dev_remove_pack	 - remove packet handler
407 *	@pt: packet type declaration
408 *
409 *	Remove a protocol handler that was previously added to the kernel
410 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
411 *	from the kernel lists and can be freed or reused once this function
412 *	returns.
413 *
414 *      The packet type might still be in use by receivers
415 *	and must not be freed until after all the CPU's have gone
416 *	through a quiescent state.
417 */
418void __dev_remove_pack(struct packet_type *pt)
419{
420	struct list_head *head = ptype_head(pt);
421	struct packet_type *pt1;
422
423	spin_lock(&ptype_lock);
424
425	list_for_each_entry(pt1, head, list) {
426		if (pt == pt1) {
427			list_del_rcu(&pt->list);
428			goto out;
429		}
430	}
431
432	pr_warn("dev_remove_pack: %p not found\n", pt);
433out:
434	spin_unlock(&ptype_lock);
435}
436EXPORT_SYMBOL(__dev_remove_pack);
437
438/**
439 *	dev_remove_pack	 - remove packet handler
440 *	@pt: packet type declaration
441 *
442 *	Remove a protocol handler that was previously added to the kernel
443 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
444 *	from the kernel lists and can be freed or reused once this function
445 *	returns.
446 *
447 *	This call sleeps to guarantee that no CPU is looking at the packet
448 *	type after return.
449 */
450void dev_remove_pack(struct packet_type *pt)
451{
452	__dev_remove_pack(pt);
453
454	synchronize_net();
455}
456EXPORT_SYMBOL(dev_remove_pack);
457
458
459/**
460 *	dev_add_offload - register offload handlers
461 *	@po: protocol offload declaration
462 *
463 *	Add protocol offload handlers to the networking stack. The passed
464 *	&proto_offload is linked into kernel lists and may not be freed until
465 *	it has been removed from the kernel lists.
466 *
467 *	This call does not sleep therefore it can not
468 *	guarantee all CPU's that are in middle of receiving packets
469 *	will see the new offload handlers (until the next received packet).
470 */
471void dev_add_offload(struct packet_offload *po)
472{
473	struct packet_offload *elem;
474
475	spin_lock(&offload_lock);
476	list_for_each_entry(elem, &offload_base, list) {
477		if (po->priority < elem->priority)
478			break;
479	}
480	list_add_rcu(&po->list, elem->list.prev);
481	spin_unlock(&offload_lock);
482}
483EXPORT_SYMBOL(dev_add_offload);
484
485/**
486 *	__dev_remove_offload	 - remove offload handler
487 *	@po: packet offload declaration
488 *
489 *	Remove a protocol offload handler that was previously added to the
490 *	kernel offload handlers by dev_add_offload(). The passed &offload_type
491 *	is removed from the kernel lists and can be freed or reused once this
492 *	function returns.
493 *
494 *      The packet type might still be in use by receivers
495 *	and must not be freed until after all the CPU's have gone
496 *	through a quiescent state.
497 */
498static void __dev_remove_offload(struct packet_offload *po)
499{
500	struct list_head *head = &offload_base;
501	struct packet_offload *po1;
502
503	spin_lock(&offload_lock);
504
505	list_for_each_entry(po1, head, list) {
506		if (po == po1) {
507			list_del_rcu(&po->list);
508			goto out;
509		}
510	}
511
512	pr_warn("dev_remove_offload: %p not found\n", po);
513out:
514	spin_unlock(&offload_lock);
515}
516
517/**
518 *	dev_remove_offload	 - remove packet offload handler
519 *	@po: packet offload declaration
520 *
521 *	Remove a packet offload handler that was previously added to the kernel
522 *	offload handlers by dev_add_offload(). The passed &offload_type is
523 *	removed from the kernel lists and can be freed or reused once this
524 *	function returns.
525 *
526 *	This call sleeps to guarantee that no CPU is looking at the packet
527 *	type after return.
528 */
529void dev_remove_offload(struct packet_offload *po)
530{
531	__dev_remove_offload(po);
532
533	synchronize_net();
534}
535EXPORT_SYMBOL(dev_remove_offload);
536
537/******************************************************************************
538
539		      Device Boot-time Settings Routines
540
541*******************************************************************************/
542
543/* Boot time configuration table */
544static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
545
546/**
547 *	netdev_boot_setup_add	- add new setup entry
548 *	@name: name of the device
549 *	@map: configured settings for the device
550 *
551 *	Adds new setup entry to the dev_boot_setup list.  The function
552 *	returns 0 on error and 1 on success.  This is a generic routine to
553 *	all netdevices.
554 */
555static int netdev_boot_setup_add(char *name, struct ifmap *map)
556{
557	struct netdev_boot_setup *s;
558	int i;
559
560	s = dev_boot_setup;
561	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
562		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
563			memset(s[i].name, 0, sizeof(s[i].name));
564			strlcpy(s[i].name, name, IFNAMSIZ);
565			memcpy(&s[i].map, map, sizeof(s[i].map));
566			break;
567		}
568	}
569
570	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
571}
572
573/**
574 *	netdev_boot_setup_check	- check boot time settings
575 *	@dev: the netdevice
576 *
577 * 	Check boot time settings for the device.
578 *	The found settings are set for the device to be used
579 *	later in the device probing.
580 *	Returns 0 if no settings found, 1 if they are.
581 */
582int netdev_boot_setup_check(struct net_device *dev)
583{
584	struct netdev_boot_setup *s = dev_boot_setup;
585	int i;
586
587	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
588		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
589		    !strcmp(dev->name, s[i].name)) {
590			dev->irq 	= s[i].map.irq;
591			dev->base_addr 	= s[i].map.base_addr;
592			dev->mem_start 	= s[i].map.mem_start;
593			dev->mem_end 	= s[i].map.mem_end;
594			return 1;
595		}
596	}
597	return 0;
598}
599EXPORT_SYMBOL(netdev_boot_setup_check);
600
601
602/**
603 *	netdev_boot_base	- get address from boot time settings
604 *	@prefix: prefix for network device
605 *	@unit: id for network device
606 *
607 * 	Check boot time settings for the base address of device.
608 *	The found settings are set for the device to be used
609 *	later in the device probing.
610 *	Returns 0 if no settings found.
611 */
612unsigned long netdev_boot_base(const char *prefix, int unit)
613{
614	const struct netdev_boot_setup *s = dev_boot_setup;
615	char name[IFNAMSIZ];
616	int i;
617
618	sprintf(name, "%s%d", prefix, unit);
619
620	/*
621	 * If device already registered then return base of 1
622	 * to indicate not to probe for this interface
623	 */
624	if (__dev_get_by_name(&init_net, name))
625		return 1;
626
627	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
628		if (!strcmp(name, s[i].name))
629			return s[i].map.base_addr;
630	return 0;
631}
632
633/*
634 * Saves at boot time configured settings for any netdevice.
635 */
636int __init netdev_boot_setup(char *str)
637{
638	int ints[5];
639	struct ifmap map;
640
641	str = get_options(str, ARRAY_SIZE(ints), ints);
642	if (!str || !*str)
643		return 0;
644
645	/* Save settings */
646	memset(&map, 0, sizeof(map));
647	if (ints[0] > 0)
648		map.irq = ints[1];
649	if (ints[0] > 1)
650		map.base_addr = ints[2];
651	if (ints[0] > 2)
652		map.mem_start = ints[3];
653	if (ints[0] > 3)
654		map.mem_end = ints[4];
655
656	/* Add new entry to the list */
657	return netdev_boot_setup_add(str, &map);
658}
659
660__setup("netdev=", netdev_boot_setup);
661
662/*******************************************************************************
663
664			    Device Interface Subroutines
665
666*******************************************************************************/
667
668/**
669 *	dev_get_iflink	- get 'iflink' value of a interface
670 *	@dev: targeted interface
671 *
672 *	Indicates the ifindex the interface is linked to.
673 *	Physical interfaces have the same 'ifindex' and 'iflink' values.
674 */
675
676int dev_get_iflink(const struct net_device *dev)
677{
678	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
679		return dev->netdev_ops->ndo_get_iflink(dev);
680
681	return dev->ifindex;
682}
683EXPORT_SYMBOL(dev_get_iflink);
684
685/**
686 *	dev_fill_metadata_dst - Retrieve tunnel egress information.
687 *	@dev: targeted interface
688 *	@skb: The packet.
689 *
690 *	For better visibility of tunnel traffic OVS needs to retrieve
691 *	egress tunnel information for a packet. Following API allows
692 *	user to get this info.
693 */
694int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
695{
696	struct ip_tunnel_info *info;
697
698	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
699		return -EINVAL;
700
701	info = skb_tunnel_info_unclone(skb);
702	if (!info)
703		return -ENOMEM;
704	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
705		return -EINVAL;
706
707	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
708}
709EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
710
711/**
712 *	__dev_get_by_name	- find a device by its name
713 *	@net: the applicable net namespace
714 *	@name: name to find
715 *
716 *	Find an interface by name. Must be called under RTNL semaphore
717 *	or @dev_base_lock. If the name is found a pointer to the device
718 *	is returned. If the name is not found then %NULL is returned. The
719 *	reference counters are not incremented so the caller must be
720 *	careful with locks.
721 */
722
723struct net_device *__dev_get_by_name(struct net *net, const char *name)
724{
725	struct net_device *dev;
726	struct hlist_head *head = dev_name_hash(net, name);
727
728	hlist_for_each_entry(dev, head, name_hlist)
729		if (!strncmp(dev->name, name, IFNAMSIZ))
730			return dev;
731
732	return NULL;
733}
734EXPORT_SYMBOL(__dev_get_by_name);
735
736/**
737 *	dev_get_by_name_rcu	- find a device by its name
738 *	@net: the applicable net namespace
739 *	@name: name to find
740 *
741 *	Find an interface by name.
742 *	If the name is found a pointer to the device is returned.
743 * 	If the name is not found then %NULL is returned.
744 *	The reference counters are not incremented so the caller must be
745 *	careful with locks. The caller must hold RCU lock.
746 */
747
748struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
749{
750	struct net_device *dev;
751	struct hlist_head *head = dev_name_hash(net, name);
752
753	hlist_for_each_entry_rcu(dev, head, name_hlist)
754		if (!strncmp(dev->name, name, IFNAMSIZ))
755			return dev;
756
757	return NULL;
758}
759EXPORT_SYMBOL(dev_get_by_name_rcu);
760
761/**
762 *	dev_get_by_name		- find a device by its name
763 *	@net: the applicable net namespace
764 *	@name: name to find
765 *
766 *	Find an interface by name. This can be called from any
767 *	context and does its own locking. The returned handle has
768 *	the usage count incremented and the caller must use dev_put() to
769 *	release it when it is no longer needed. %NULL is returned if no
770 *	matching device is found.
771 */
772
773struct net_device *dev_get_by_name(struct net *net, const char *name)
774{
775	struct net_device *dev;
776
777	rcu_read_lock();
778	dev = dev_get_by_name_rcu(net, name);
779	if (dev)
780		dev_hold(dev);
781	rcu_read_unlock();
782	return dev;
783}
784EXPORT_SYMBOL(dev_get_by_name);
785
786/**
787 *	__dev_get_by_index - find a device by its ifindex
788 *	@net: the applicable net namespace
789 *	@ifindex: index of device
790 *
791 *	Search for an interface by index. Returns %NULL if the device
792 *	is not found or a pointer to the device. The device has not
793 *	had its reference counter increased so the caller must be careful
794 *	about locking. The caller must hold either the RTNL semaphore
795 *	or @dev_base_lock.
796 */
797
798struct net_device *__dev_get_by_index(struct net *net, int ifindex)
799{
800	struct net_device *dev;
801	struct hlist_head *head = dev_index_hash(net, ifindex);
802
803	hlist_for_each_entry(dev, head, index_hlist)
804		if (dev->ifindex == ifindex)
805			return dev;
806
807	return NULL;
808}
809EXPORT_SYMBOL(__dev_get_by_index);
810
811/**
812 *	dev_get_by_index_rcu - find a device by its ifindex
813 *	@net: the applicable net namespace
814 *	@ifindex: index of device
815 *
816 *	Search for an interface by index. Returns %NULL if the device
817 *	is not found or a pointer to the device. The device has not
818 *	had its reference counter increased so the caller must be careful
819 *	about locking. The caller must hold RCU lock.
820 */
821
822struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
823{
824	struct net_device *dev;
825	struct hlist_head *head = dev_index_hash(net, ifindex);
826
827	hlist_for_each_entry_rcu(dev, head, index_hlist)
828		if (dev->ifindex == ifindex)
829			return dev;
830
831	return NULL;
832}
833EXPORT_SYMBOL(dev_get_by_index_rcu);
834
835
836/**
837 *	dev_get_by_index - find a device by its ifindex
838 *	@net: the applicable net namespace
839 *	@ifindex: index of device
840 *
841 *	Search for an interface by index. Returns NULL if the device
842 *	is not found or a pointer to the device. The device returned has
843 *	had a reference added and the pointer is safe until the user calls
844 *	dev_put to indicate they have finished with it.
845 */
846
847struct net_device *dev_get_by_index(struct net *net, int ifindex)
848{
849	struct net_device *dev;
850
851	rcu_read_lock();
852	dev = dev_get_by_index_rcu(net, ifindex);
853	if (dev)
854		dev_hold(dev);
855	rcu_read_unlock();
856	return dev;
857}
858EXPORT_SYMBOL(dev_get_by_index);
859
860/**
861 *	netdev_get_name - get a netdevice name, knowing its ifindex.
862 *	@net: network namespace
863 *	@name: a pointer to the buffer where the name will be stored.
864 *	@ifindex: the ifindex of the interface to get the name from.
865 *
866 *	The use of raw_seqcount_begin() and cond_resched() before
867 *	retrying is required as we want to give the writers a chance
868 *	to complete when CONFIG_PREEMPT is not set.
869 */
870int netdev_get_name(struct net *net, char *name, int ifindex)
871{
872	struct net_device *dev;
873	unsigned int seq;
874
875retry:
876	seq = raw_seqcount_begin(&devnet_rename_seq);
877	rcu_read_lock();
878	dev = dev_get_by_index_rcu(net, ifindex);
879	if (!dev) {
880		rcu_read_unlock();
881		return -ENODEV;
882	}
883
884	strcpy(name, dev->name);
885	rcu_read_unlock();
886	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
887		cond_resched();
888		goto retry;
889	}
890
891	return 0;
892}
893
894/**
895 *	dev_getbyhwaddr_rcu - find a device by its hardware address
896 *	@net: the applicable net namespace
897 *	@type: media type of device
898 *	@ha: hardware address
899 *
900 *	Search for an interface by MAC address. Returns NULL if the device
901 *	is not found or a pointer to the device.
902 *	The caller must hold RCU or RTNL.
903 *	The returned device has not had its ref count increased
904 *	and the caller must therefore be careful about locking
905 *
906 */
907
908struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
909				       const char *ha)
910{
911	struct net_device *dev;
912
913	for_each_netdev_rcu(net, dev)
914		if (dev->type == type &&
915		    !memcmp(dev->dev_addr, ha, dev->addr_len))
916			return dev;
917
918	return NULL;
919}
920EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
921
922struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
923{
924	struct net_device *dev;
925
926	ASSERT_RTNL();
927	for_each_netdev(net, dev)
928		if (dev->type == type)
929			return dev;
930
931	return NULL;
932}
933EXPORT_SYMBOL(__dev_getfirstbyhwtype);
934
935struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
936{
937	struct net_device *dev, *ret = NULL;
938
939	rcu_read_lock();
940	for_each_netdev_rcu(net, dev)
941		if (dev->type == type) {
942			dev_hold(dev);
943			ret = dev;
944			break;
945		}
946	rcu_read_unlock();
947	return ret;
948}
949EXPORT_SYMBOL(dev_getfirstbyhwtype);
950
951/**
952 *	__dev_get_by_flags - find any device with given flags
953 *	@net: the applicable net namespace
954 *	@if_flags: IFF_* values
955 *	@mask: bitmask of bits in if_flags to check
956 *
957 *	Search for any interface with the given flags. Returns NULL if a device
958 *	is not found or a pointer to the device. Must be called inside
959 *	rtnl_lock(), and result refcount is unchanged.
960 */
961
962struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
963				      unsigned short mask)
964{
965	struct net_device *dev, *ret;
966
967	ASSERT_RTNL();
968
969	ret = NULL;
970	for_each_netdev(net, dev) {
971		if (((dev->flags ^ if_flags) & mask) == 0) {
972			ret = dev;
973			break;
974		}
975	}
976	return ret;
977}
978EXPORT_SYMBOL(__dev_get_by_flags);
979
980/**
981 *	dev_valid_name - check if name is okay for network device
982 *	@name: name string
983 *
984 *	Network device names need to be valid file names to
985 *	to allow sysfs to work.  We also disallow any kind of
986 *	whitespace.
987 */
988bool dev_valid_name(const char *name)
989{
990	if (*name == '\0')
991		return false;
992	if (strlen(name) >= IFNAMSIZ)
993		return false;
994	if (!strcmp(name, ".") || !strcmp(name, ".."))
995		return false;
996
997	while (*name) {
998		if (*name == '/' || *name == ':' || isspace(*name))
999			return false;
1000		name++;
1001	}
1002	return true;
1003}
1004EXPORT_SYMBOL(dev_valid_name);
1005
1006/**
1007 *	__dev_alloc_name - allocate a name for a device
1008 *	@net: network namespace to allocate the device name in
1009 *	@name: name format string
1010 *	@buf:  scratch buffer and result name string
1011 *
1012 *	Passed a format string - eg "lt%d" it will try and find a suitable
1013 *	id. It scans list of devices to build up a free map, then chooses
1014 *	the first empty slot. The caller must hold the dev_base or rtnl lock
1015 *	while allocating the name and adding the device in order to avoid
1016 *	duplicates.
1017 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1018 *	Returns the number of the unit assigned or a negative errno code.
1019 */
1020
1021static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1022{
1023	int i = 0;
1024	const char *p;
1025	const int max_netdevices = 8*PAGE_SIZE;
1026	unsigned long *inuse;
1027	struct net_device *d;
1028
1029	p = strnchr(name, IFNAMSIZ-1, '%');
1030	if (p) {
1031		/*
1032		 * Verify the string as this thing may have come from
1033		 * the user.  There must be either one "%d" and no other "%"
1034		 * characters.
1035		 */
1036		if (p[1] != 'd' || strchr(p + 2, '%'))
1037			return -EINVAL;
1038
1039		/* Use one page as a bit array of possible slots */
1040		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1041		if (!inuse)
1042			return -ENOMEM;
1043
1044		for_each_netdev(net, d) {
1045			if (!sscanf(d->name, name, &i))
1046				continue;
1047			if (i < 0 || i >= max_netdevices)
1048				continue;
1049
1050			/*  avoid cases where sscanf is not exact inverse of printf */
1051			snprintf(buf, IFNAMSIZ, name, i);
1052			if (!strncmp(buf, d->name, IFNAMSIZ))
1053				set_bit(i, inuse);
1054		}
1055
1056		i = find_first_zero_bit(inuse, max_netdevices);
1057		free_page((unsigned long) inuse);
1058	}
1059
1060	if (buf != name)
1061		snprintf(buf, IFNAMSIZ, name, i);
1062	if (!__dev_get_by_name(net, buf))
1063		return i;
1064
1065	/* It is possible to run out of possible slots
1066	 * when the name is long and there isn't enough space left
1067	 * for the digits, or if all bits are used.
1068	 */
1069	return -ENFILE;
1070}
1071
1072/**
1073 *	dev_alloc_name - allocate a name for a device
1074 *	@dev: device
1075 *	@name: name format string
1076 *
1077 *	Passed a format string - eg "lt%d" it will try and find a suitable
1078 *	id. It scans list of devices to build up a free map, then chooses
1079 *	the first empty slot. The caller must hold the dev_base or rtnl lock
1080 *	while allocating the name and adding the device in order to avoid
1081 *	duplicates.
1082 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1083 *	Returns the number of the unit assigned or a negative errno code.
1084 */
1085
1086int dev_alloc_name(struct net_device *dev, const char *name)
1087{
1088	char buf[IFNAMSIZ];
1089	struct net *net;
1090	int ret;
1091
1092	BUG_ON(!dev_net(dev));
1093	net = dev_net(dev);
1094	ret = __dev_alloc_name(net, name, buf);
1095	if (ret >= 0)
1096		strlcpy(dev->name, buf, IFNAMSIZ);
1097	return ret;
1098}
1099EXPORT_SYMBOL(dev_alloc_name);
1100
1101static int dev_alloc_name_ns(struct net *net,
1102			     struct net_device *dev,
1103			     const char *name)
1104{
1105	char buf[IFNAMSIZ];
1106	int ret;
1107
1108	ret = __dev_alloc_name(net, name, buf);
1109	if (ret >= 0)
1110		strlcpy(dev->name, buf, IFNAMSIZ);
1111	return ret;
1112}
1113
1114static int dev_get_valid_name(struct net *net,
1115			      struct net_device *dev,
1116			      const char *name)
1117{
1118	BUG_ON(!net);
1119
1120	if (!dev_valid_name(name))
1121		return -EINVAL;
1122
1123	if (strchr(name, '%'))
1124		return dev_alloc_name_ns(net, dev, name);
1125	else if (__dev_get_by_name(net, name))
1126		return -EEXIST;
1127	else if (dev->name != name)
1128		strlcpy(dev->name, name, IFNAMSIZ);
1129
1130	return 0;
1131}
1132
1133/**
1134 *	dev_change_name - change name of a device
1135 *	@dev: device
1136 *	@newname: name (or format string) must be at least IFNAMSIZ
1137 *
1138 *	Change name of a device, can pass format strings "eth%d".
1139 *	for wildcarding.
1140 */
1141int dev_change_name(struct net_device *dev, const char *newname)
1142{
1143	unsigned char old_assign_type;
1144	char oldname[IFNAMSIZ];
1145	int err = 0;
1146	int ret;
1147	struct net *net;
1148
1149	ASSERT_RTNL();
1150	BUG_ON(!dev_net(dev));
1151
1152	net = dev_net(dev);
1153	if (dev->flags & IFF_UP)
1154		return -EBUSY;
1155
1156	write_seqcount_begin(&devnet_rename_seq);
1157
1158	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1159		write_seqcount_end(&devnet_rename_seq);
1160		return 0;
1161	}
1162
1163	memcpy(oldname, dev->name, IFNAMSIZ);
1164
1165	err = dev_get_valid_name(net, dev, newname);
1166	if (err < 0) {
1167		write_seqcount_end(&devnet_rename_seq);
1168		return err;
1169	}
1170
1171	if (oldname[0] && !strchr(oldname, '%'))
1172		netdev_info(dev, "renamed from %s\n", oldname);
1173
1174	old_assign_type = dev->name_assign_type;
1175	dev->name_assign_type = NET_NAME_RENAMED;
1176
1177rollback:
1178	ret = device_rename(&dev->dev, dev->name);
1179	if (ret) {
1180		memcpy(dev->name, oldname, IFNAMSIZ);
1181		dev->name_assign_type = old_assign_type;
1182		write_seqcount_end(&devnet_rename_seq);
1183		return ret;
1184	}
1185
1186	write_seqcount_end(&devnet_rename_seq);
1187
1188	netdev_adjacent_rename_links(dev, oldname);
1189
1190	write_lock_bh(&dev_base_lock);
1191	hlist_del_rcu(&dev->name_hlist);
1192	write_unlock_bh(&dev_base_lock);
1193
1194	synchronize_rcu();
1195
1196	write_lock_bh(&dev_base_lock);
1197	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1198	write_unlock_bh(&dev_base_lock);
1199
1200	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1201	ret = notifier_to_errno(ret);
1202
1203	if (ret) {
1204		/* err >= 0 after dev_alloc_name() or stores the first errno */
1205		if (err >= 0) {
1206			err = ret;
1207			write_seqcount_begin(&devnet_rename_seq);
1208			memcpy(dev->name, oldname, IFNAMSIZ);
1209			memcpy(oldname, newname, IFNAMSIZ);
1210			dev->name_assign_type = old_assign_type;
1211			old_assign_type = NET_NAME_RENAMED;
1212			goto rollback;
1213		} else {
1214			pr_err("%s: name change rollback failed: %d\n",
1215			       dev->name, ret);
1216		}
1217	}
1218
1219	return err;
1220}
1221
1222/**
1223 *	dev_set_alias - change ifalias of a device
1224 *	@dev: device
1225 *	@alias: name up to IFALIASZ
1226 *	@len: limit of bytes to copy from info
1227 *
1228 *	Set ifalias for a device,
1229 */
1230int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1231{
1232	char *new_ifalias;
1233
1234	ASSERT_RTNL();
1235
1236	if (len >= IFALIASZ)
1237		return -EINVAL;
1238
1239	if (!len) {
1240		kfree(dev->ifalias);
1241		dev->ifalias = NULL;
1242		return 0;
1243	}
1244
1245	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1246	if (!new_ifalias)
1247		return -ENOMEM;
1248	dev->ifalias = new_ifalias;
1249
1250	strlcpy(dev->ifalias, alias, len+1);
1251	return len;
1252}
1253
1254
1255/**
1256 *	netdev_features_change - device changes features
1257 *	@dev: device to cause notification
1258 *
1259 *	Called to indicate a device has changed features.
1260 */
1261void netdev_features_change(struct net_device *dev)
1262{
1263	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1264}
1265EXPORT_SYMBOL(netdev_features_change);
1266
1267/**
1268 *	netdev_state_change - device changes state
1269 *	@dev: device to cause notification
1270 *
1271 *	Called to indicate a device has changed state. This function calls
1272 *	the notifier chains for netdev_chain and sends a NEWLINK message
1273 *	to the routing socket.
1274 */
1275void netdev_state_change(struct net_device *dev)
1276{
1277	if (dev->flags & IFF_UP) {
1278		struct netdev_notifier_change_info change_info;
1279
1280		change_info.flags_changed = 0;
1281		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1282					      &change_info.info);
1283		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1284	}
1285}
1286EXPORT_SYMBOL(netdev_state_change);
1287
1288/**
1289 * 	netdev_notify_peers - notify network peers about existence of @dev
1290 * 	@dev: network device
1291 *
1292 * Generate traffic such that interested network peers are aware of
1293 * @dev, such as by generating a gratuitous ARP. This may be used when
1294 * a device wants to inform the rest of the network about some sort of
1295 * reconfiguration such as a failover event or virtual machine
1296 * migration.
1297 */
1298void netdev_notify_peers(struct net_device *dev)
1299{
1300	rtnl_lock();
1301	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1302	rtnl_unlock();
1303}
1304EXPORT_SYMBOL(netdev_notify_peers);
1305
1306static int __dev_open(struct net_device *dev)
1307{
1308	const struct net_device_ops *ops = dev->netdev_ops;
1309	int ret;
1310
1311	ASSERT_RTNL();
1312
1313	if (!netif_device_present(dev))
1314		return -ENODEV;
1315
1316	/* Block netpoll from trying to do any rx path servicing.
1317	 * If we don't do this there is a chance ndo_poll_controller
1318	 * or ndo_poll may be running while we open the device
1319	 */
1320	netpoll_poll_disable(dev);
1321
1322	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1323	ret = notifier_to_errno(ret);
1324	if (ret)
1325		return ret;
1326
1327	set_bit(__LINK_STATE_START, &dev->state);
1328
1329	if (ops->ndo_validate_addr)
1330		ret = ops->ndo_validate_addr(dev);
1331
1332	if (!ret && ops->ndo_open)
1333		ret = ops->ndo_open(dev);
1334
1335	netpoll_poll_enable(dev);
1336
1337	if (ret)
1338		clear_bit(__LINK_STATE_START, &dev->state);
1339	else {
1340		dev->flags |= IFF_UP;
1341		dev_set_rx_mode(dev);
1342		dev_activate(dev);
1343		add_device_randomness(dev->dev_addr, dev->addr_len);
1344	}
1345
1346	return ret;
1347}
1348
1349/**
1350 *	dev_open	- prepare an interface for use.
1351 *	@dev:	device to open
1352 *
1353 *	Takes a device from down to up state. The device's private open
1354 *	function is invoked and then the multicast lists are loaded. Finally
1355 *	the device is moved into the up state and a %NETDEV_UP message is
1356 *	sent to the netdev notifier chain.
1357 *
1358 *	Calling this function on an active interface is a nop. On a failure
1359 *	a negative errno code is returned.
1360 */
1361int dev_open(struct net_device *dev)
1362{
1363	int ret;
1364
1365	if (dev->flags & IFF_UP)
1366		return 0;
1367
1368	ret = __dev_open(dev);
1369	if (ret < 0)
1370		return ret;
1371
1372	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1373	call_netdevice_notifiers(NETDEV_UP, dev);
1374
1375	return ret;
1376}
1377EXPORT_SYMBOL(dev_open);
1378
1379static int __dev_close_many(struct list_head *head)
1380{
1381	struct net_device *dev;
1382
1383	ASSERT_RTNL();
1384	might_sleep();
1385
1386	list_for_each_entry(dev, head, close_list) {
1387		/* Temporarily disable netpoll until the interface is down */
1388		netpoll_poll_disable(dev);
1389
1390		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1391
1392		clear_bit(__LINK_STATE_START, &dev->state);
1393
1394		/* Synchronize to scheduled poll. We cannot touch poll list, it
1395		 * can be even on different cpu. So just clear netif_running().
1396		 *
1397		 * dev->stop() will invoke napi_disable() on all of it's
1398		 * napi_struct instances on this device.
1399		 */
1400		smp_mb__after_atomic(); /* Commit netif_running(). */
1401	}
1402
1403	dev_deactivate_many(head);
1404
1405	list_for_each_entry(dev, head, close_list) {
1406		const struct net_device_ops *ops = dev->netdev_ops;
1407
1408		/*
1409		 *	Call the device specific close. This cannot fail.
1410		 *	Only if device is UP
1411		 *
1412		 *	We allow it to be called even after a DETACH hot-plug
1413		 *	event.
1414		 */
1415		if (ops->ndo_stop)
1416			ops->ndo_stop(dev);
1417
1418		dev->flags &= ~IFF_UP;
1419		netpoll_poll_enable(dev);
1420	}
1421
1422	return 0;
1423}
1424
1425static int __dev_close(struct net_device *dev)
1426{
1427	int retval;
1428	LIST_HEAD(single);
1429
1430	list_add(&dev->close_list, &single);
1431	retval = __dev_close_many(&single);
1432	list_del(&single);
1433
1434	return retval;
1435}
1436
1437int dev_close_many(struct list_head *head, bool unlink)
1438{
1439	struct net_device *dev, *tmp;
1440
1441	/* Remove the devices that don't need to be closed */
1442	list_for_each_entry_safe(dev, tmp, head, close_list)
1443		if (!(dev->flags & IFF_UP))
1444			list_del_init(&dev->close_list);
1445
1446	__dev_close_many(head);
1447
1448	list_for_each_entry_safe(dev, tmp, head, close_list) {
1449		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1450		call_netdevice_notifiers(NETDEV_DOWN, dev);
1451		if (unlink)
1452			list_del_init(&dev->close_list);
1453	}
1454
1455	return 0;
1456}
1457EXPORT_SYMBOL(dev_close_many);
1458
1459/**
1460 *	dev_close - shutdown an interface.
1461 *	@dev: device to shutdown
1462 *
1463 *	This function moves an active device into down state. A
1464 *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1465 *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1466 *	chain.
1467 */
1468int dev_close(struct net_device *dev)
1469{
1470	if (dev->flags & IFF_UP) {
1471		LIST_HEAD(single);
1472
1473		list_add(&dev->close_list, &single);
1474		dev_close_many(&single, true);
1475		list_del(&single);
1476	}
1477	return 0;
1478}
1479EXPORT_SYMBOL(dev_close);
1480
1481
1482/**
1483 *	dev_disable_lro - disable Large Receive Offload on a device
1484 *	@dev: device
1485 *
1486 *	Disable Large Receive Offload (LRO) on a net device.  Must be
1487 *	called under RTNL.  This is needed if received packets may be
1488 *	forwarded to another interface.
1489 */
1490void dev_disable_lro(struct net_device *dev)
1491{
1492	struct net_device *lower_dev;
1493	struct list_head *iter;
1494
1495	dev->wanted_features &= ~NETIF_F_LRO;
1496	netdev_update_features(dev);
1497
1498	if (unlikely(dev->features & NETIF_F_LRO))
1499		netdev_WARN(dev, "failed to disable LRO!\n");
1500
1501	netdev_for_each_lower_dev(dev, lower_dev, iter)
1502		dev_disable_lro(lower_dev);
1503}
1504EXPORT_SYMBOL(dev_disable_lro);
1505
1506static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1507				   struct net_device *dev)
1508{
1509	struct netdev_notifier_info info;
1510
1511	netdev_notifier_info_init(&info, dev);
1512	return nb->notifier_call(nb, val, &info);
1513}
1514
1515static int dev_boot_phase = 1;
1516
1517/**
1518 *	register_netdevice_notifier - register a network notifier block
1519 *	@nb: notifier
1520 *
1521 *	Register a notifier to be called when network device events occur.
1522 *	The notifier passed is linked into the kernel structures and must
1523 *	not be reused until it has been unregistered. A negative errno code
1524 *	is returned on a failure.
1525 *
1526 * 	When registered all registration and up events are replayed
1527 *	to the new notifier to allow device to have a race free
1528 *	view of the network device list.
1529 */
1530
1531int register_netdevice_notifier(struct notifier_block *nb)
1532{
1533	struct net_device *dev;
1534	struct net_device *last;
1535	struct net *net;
1536	int err;
1537
1538	rtnl_lock();
1539	err = raw_notifier_chain_register(&netdev_chain, nb);
1540	if (err)
1541		goto unlock;
1542	if (dev_boot_phase)
1543		goto unlock;
1544	for_each_net(net) {
1545		for_each_netdev(net, dev) {
1546			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1547			err = notifier_to_errno(err);
1548			if (err)
1549				goto rollback;
1550
1551			if (!(dev->flags & IFF_UP))
1552				continue;
1553
1554			call_netdevice_notifier(nb, NETDEV_UP, dev);
1555		}
1556	}
1557
1558unlock:
1559	rtnl_unlock();
1560	return err;
1561
1562rollback:
1563	last = dev;
1564	for_each_net(net) {
1565		for_each_netdev(net, dev) {
1566			if (dev == last)
1567				goto outroll;
1568
1569			if (dev->flags & IFF_UP) {
1570				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1571							dev);
1572				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1573			}
1574			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1575		}
1576	}
1577
1578outroll:
1579	raw_notifier_chain_unregister(&netdev_chain, nb);
1580	goto unlock;
1581}
1582EXPORT_SYMBOL(register_netdevice_notifier);
1583
1584/**
1585 *	unregister_netdevice_notifier - unregister a network notifier block
1586 *	@nb: notifier
1587 *
1588 *	Unregister a notifier previously registered by
1589 *	register_netdevice_notifier(). The notifier is unlinked into the
1590 *	kernel structures and may then be reused. A negative errno code
1591 *	is returned on a failure.
1592 *
1593 * 	After unregistering unregister and down device events are synthesized
1594 *	for all devices on the device list to the removed notifier to remove
1595 *	the need for special case cleanup code.
1596 */
1597
1598int unregister_netdevice_notifier(struct notifier_block *nb)
1599{
1600	struct net_device *dev;
1601	struct net *net;
1602	int err;
1603
1604	rtnl_lock();
1605	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1606	if (err)
1607		goto unlock;
1608
1609	for_each_net(net) {
1610		for_each_netdev(net, dev) {
1611			if (dev->flags & IFF_UP) {
1612				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1613							dev);
1614				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1615			}
1616			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1617		}
1618	}
1619unlock:
1620	rtnl_unlock();
1621	return err;
1622}
1623EXPORT_SYMBOL(unregister_netdevice_notifier);
1624
1625/**
1626 *	call_netdevice_notifiers_info - call all network notifier blocks
1627 *	@val: value passed unmodified to notifier function
1628 *	@dev: net_device pointer passed unmodified to notifier function
1629 *	@info: notifier information data
1630 *
1631 *	Call all network notifier blocks.  Parameters and return value
1632 *	are as for raw_notifier_call_chain().
1633 */
1634
1635static int call_netdevice_notifiers_info(unsigned long val,
1636					 struct net_device *dev,
1637					 struct netdev_notifier_info *info)
1638{
1639	ASSERT_RTNL();
1640	netdev_notifier_info_init(info, dev);
1641	return raw_notifier_call_chain(&netdev_chain, val, info);
1642}
1643
1644/**
1645 *	call_netdevice_notifiers - call all network notifier blocks
1646 *      @val: value passed unmodified to notifier function
1647 *      @dev: net_device pointer passed unmodified to notifier function
1648 *
1649 *	Call all network notifier blocks.  Parameters and return value
1650 *	are as for raw_notifier_call_chain().
1651 */
1652
1653int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1654{
1655	struct netdev_notifier_info info;
1656
1657	return call_netdevice_notifiers_info(val, dev, &info);
1658}
1659EXPORT_SYMBOL(call_netdevice_notifiers);
1660
1661#ifdef CONFIG_NET_INGRESS
1662static struct static_key ingress_needed __read_mostly;
1663
1664void net_inc_ingress_queue(void)
1665{
1666	static_key_slow_inc(&ingress_needed);
1667}
1668EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1669
1670void net_dec_ingress_queue(void)
1671{
1672	static_key_slow_dec(&ingress_needed);
1673}
1674EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1675#endif
1676
1677static struct static_key netstamp_needed __read_mostly;
1678#ifdef HAVE_JUMP_LABEL
1679/* We are not allowed to call static_key_slow_dec() from irq context
1680 * If net_disable_timestamp() is called from irq context, defer the
1681 * static_key_slow_dec() calls.
1682 */
1683static atomic_t netstamp_needed_deferred;
1684#endif
1685
1686void net_enable_timestamp(void)
1687{
1688#ifdef HAVE_JUMP_LABEL
1689	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1690
1691	if (deferred) {
1692		while (--deferred)
1693			static_key_slow_dec(&netstamp_needed);
1694		return;
1695	}
1696#endif
1697	static_key_slow_inc(&netstamp_needed);
1698}
1699EXPORT_SYMBOL(net_enable_timestamp);
1700
1701void net_disable_timestamp(void)
1702{
1703#ifdef HAVE_JUMP_LABEL
1704	if (in_interrupt()) {
1705		atomic_inc(&netstamp_needed_deferred);
1706		return;
1707	}
1708#endif
1709	static_key_slow_dec(&netstamp_needed);
1710}
1711EXPORT_SYMBOL(net_disable_timestamp);
1712
1713static inline void net_timestamp_set(struct sk_buff *skb)
1714{
1715	skb->tstamp.tv64 = 0;
1716	if (static_key_false(&netstamp_needed))
1717		__net_timestamp(skb);
1718}
1719
1720#define net_timestamp_check(COND, SKB)			\
1721	if (static_key_false(&netstamp_needed)) {		\
1722		if ((COND) && !(SKB)->tstamp.tv64)	\
1723			__net_timestamp(SKB);		\
1724	}						\
1725
1726bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1727{
1728	unsigned int len;
1729
1730	if (!(dev->flags & IFF_UP))
1731		return false;
1732
1733	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1734	if (skb->len <= len)
1735		return true;
1736
1737	/* if TSO is enabled, we don't care about the length as the packet
1738	 * could be forwarded without being segmented before
1739	 */
1740	if (skb_is_gso(skb))
1741		return true;
1742
1743	return false;
1744}
1745EXPORT_SYMBOL_GPL(is_skb_forwardable);
1746
1747int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1748{
1749	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1750	    unlikely(!is_skb_forwardable(dev, skb))) {
1751		atomic_long_inc(&dev->rx_dropped);
1752		kfree_skb(skb);
1753		return NET_RX_DROP;
1754	}
1755
1756	skb_scrub_packet(skb, true);
1757	skb->priority = 0;
1758	skb->protocol = eth_type_trans(skb, dev);
1759	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1760
1761	return 0;
1762}
1763EXPORT_SYMBOL_GPL(__dev_forward_skb);
1764
1765/**
1766 * dev_forward_skb - loopback an skb to another netif
1767 *
1768 * @dev: destination network device
1769 * @skb: buffer to forward
1770 *
1771 * return values:
1772 *	NET_RX_SUCCESS	(no congestion)
1773 *	NET_RX_DROP     (packet was dropped, but freed)
1774 *
1775 * dev_forward_skb can be used for injecting an skb from the
1776 * start_xmit function of one device into the receive queue
1777 * of another device.
1778 *
1779 * The receiving device may be in another namespace, so
1780 * we have to clear all information in the skb that could
1781 * impact namespace isolation.
1782 */
1783int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1784{
1785	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1786}
1787EXPORT_SYMBOL_GPL(dev_forward_skb);
1788
1789static inline int deliver_skb(struct sk_buff *skb,
1790			      struct packet_type *pt_prev,
1791			      struct net_device *orig_dev)
1792{
1793	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1794		return -ENOMEM;
1795	atomic_inc(&skb->users);
1796	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1797}
1798
1799static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1800					  struct packet_type **pt,
1801					  struct net_device *orig_dev,
1802					  __be16 type,
1803					  struct list_head *ptype_list)
1804{
1805	struct packet_type *ptype, *pt_prev = *pt;
1806
1807	list_for_each_entry_rcu(ptype, ptype_list, list) {
1808		if (ptype->type != type)
1809			continue;
1810		if (pt_prev)
1811			deliver_skb(skb, pt_prev, orig_dev);
1812		pt_prev = ptype;
1813	}
1814	*pt = pt_prev;
1815}
1816
1817static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1818{
1819	if (!ptype->af_packet_priv || !skb->sk)
1820		return false;
1821
1822	if (ptype->id_match)
1823		return ptype->id_match(ptype, skb->sk);
1824	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1825		return true;
1826
1827	return false;
1828}
1829
1830/*
1831 *	Support routine. Sends outgoing frames to any network
1832 *	taps currently in use.
1833 */
1834
1835static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1836{
1837	struct packet_type *ptype;
1838	struct sk_buff *skb2 = NULL;
1839	struct packet_type *pt_prev = NULL;
1840	struct list_head *ptype_list = &ptype_all;
1841
1842	rcu_read_lock();
1843again:
1844	list_for_each_entry_rcu(ptype, ptype_list, list) {
1845		/* Never send packets back to the socket
1846		 * they originated from - MvS (miquels@drinkel.ow.org)
1847		 */
1848		if (skb_loop_sk(ptype, skb))
1849			continue;
1850
1851		if (pt_prev) {
1852			deliver_skb(skb2, pt_prev, skb->dev);
1853			pt_prev = ptype;
1854			continue;
1855		}
1856
1857		/* need to clone skb, done only once */
1858		skb2 = skb_clone(skb, GFP_ATOMIC);
1859		if (!skb2)
1860			goto out_unlock;
1861
1862		net_timestamp_set(skb2);
1863
1864		/* skb->nh should be correctly
1865		 * set by sender, so that the second statement is
1866		 * just protection against buggy protocols.
1867		 */
1868		skb_reset_mac_header(skb2);
1869
1870		if (skb_network_header(skb2) < skb2->data ||
1871		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1872			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1873					     ntohs(skb2->protocol),
1874					     dev->name);
1875			skb_reset_network_header(skb2);
1876		}
1877
1878		skb2->transport_header = skb2->network_header;
1879		skb2->pkt_type = PACKET_OUTGOING;
1880		pt_prev = ptype;
1881	}
1882
1883	if (ptype_list == &ptype_all) {
1884		ptype_list = &dev->ptype_all;
1885		goto again;
1886	}
1887out_unlock:
1888	if (pt_prev)
1889		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1890	rcu_read_unlock();
1891}
1892
1893/**
1894 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1895 * @dev: Network device
1896 * @txq: number of queues available
1897 *
1898 * If real_num_tx_queues is changed the tc mappings may no longer be
1899 * valid. To resolve this verify the tc mapping remains valid and if
1900 * not NULL the mapping. With no priorities mapping to this
1901 * offset/count pair it will no longer be used. In the worst case TC0
1902 * is invalid nothing can be done so disable priority mappings. If is
1903 * expected that drivers will fix this mapping if they can before
1904 * calling netif_set_real_num_tx_queues.
1905 */
1906static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1907{
1908	int i;
1909	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1910
1911	/* If TC0 is invalidated disable TC mapping */
1912	if (tc->offset + tc->count > txq) {
1913		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1914		dev->num_tc = 0;
1915		return;
1916	}
1917
1918	/* Invalidated prio to tc mappings set to TC0 */
1919	for (i = 1; i < TC_BITMASK + 1; i++) {
1920		int q = netdev_get_prio_tc_map(dev, i);
1921
1922		tc = &dev->tc_to_txq[q];
1923		if (tc->offset + tc->count > txq) {
1924			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1925				i, q);
1926			netdev_set_prio_tc_map(dev, i, 0);
1927		}
1928	}
1929}
1930
1931#ifdef CONFIG_XPS
1932static DEFINE_MUTEX(xps_map_mutex);
1933#define xmap_dereference(P)		\
1934	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1935
1936static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1937					int cpu, u16 index)
1938{
1939	struct xps_map *map = NULL;
1940	int pos;
1941
1942	if (dev_maps)
1943		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1944
1945	for (pos = 0; map && pos < map->len; pos++) {
1946		if (map->queues[pos] == index) {
1947			if (map->len > 1) {
1948				map->queues[pos] = map->queues[--map->len];
1949			} else {
1950				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1951				kfree_rcu(map, rcu);
1952				map = NULL;
1953			}
1954			break;
1955		}
1956	}
1957
1958	return map;
1959}
1960
1961static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1962{
1963	struct xps_dev_maps *dev_maps;
1964	int cpu, i;
1965	bool active = false;
1966
1967	mutex_lock(&xps_map_mutex);
1968	dev_maps = xmap_dereference(dev->xps_maps);
1969
1970	if (!dev_maps)
1971		goto out_no_maps;
1972
1973	for_each_possible_cpu(cpu) {
1974		for (i = index; i < dev->num_tx_queues; i++) {
1975			if (!remove_xps_queue(dev_maps, cpu, i))
1976				break;
1977		}
1978		if (i == dev->num_tx_queues)
1979			active = true;
1980	}
1981
1982	if (!active) {
1983		RCU_INIT_POINTER(dev->xps_maps, NULL);
1984		kfree_rcu(dev_maps, rcu);
1985	}
1986
1987	for (i = index; i < dev->num_tx_queues; i++)
1988		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1989					     NUMA_NO_NODE);
1990
1991out_no_maps:
1992	mutex_unlock(&xps_map_mutex);
1993}
1994
1995static struct xps_map *expand_xps_map(struct xps_map *map,
1996				      int cpu, u16 index)
1997{
1998	struct xps_map *new_map;
1999	int alloc_len = XPS_MIN_MAP_ALLOC;
2000	int i, pos;
2001
2002	for (pos = 0; map && pos < map->len; pos++) {
2003		if (map->queues[pos] != index)
2004			continue;
2005		return map;
2006	}
2007
2008	/* Need to add queue to this CPU's existing map */
2009	if (map) {
2010		if (pos < map->alloc_len)
2011			return map;
2012
2013		alloc_len = map->alloc_len * 2;
2014	}
2015
2016	/* Need to allocate new map to store queue on this CPU's map */
2017	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2018			       cpu_to_node(cpu));
2019	if (!new_map)
2020		return NULL;
2021
2022	for (i = 0; i < pos; i++)
2023		new_map->queues[i] = map->queues[i];
2024	new_map->alloc_len = alloc_len;
2025	new_map->len = pos;
2026
2027	return new_map;
2028}
2029
2030int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2031			u16 index)
2032{
2033	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2034	struct xps_map *map, *new_map;
2035	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2036	int cpu, numa_node_id = -2;
2037	bool active = false;
2038
2039	mutex_lock(&xps_map_mutex);
2040
2041	dev_maps = xmap_dereference(dev->xps_maps);
2042
2043	/* allocate memory for queue storage */
2044	for_each_online_cpu(cpu) {
2045		if (!cpumask_test_cpu(cpu, mask))
2046			continue;
2047
2048		if (!new_dev_maps)
2049			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2050		if (!new_dev_maps) {
2051			mutex_unlock(&xps_map_mutex);
2052			return -ENOMEM;
2053		}
2054
2055		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056				 NULL;
2057
2058		map = expand_xps_map(map, cpu, index);
2059		if (!map)
2060			goto error;
2061
2062		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2063	}
2064
2065	if (!new_dev_maps)
2066		goto out_no_new_maps;
2067
2068	for_each_possible_cpu(cpu) {
2069		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2070			/* add queue to CPU maps */
2071			int pos = 0;
2072
2073			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2074			while ((pos < map->len) && (map->queues[pos] != index))
2075				pos++;
2076
2077			if (pos == map->len)
2078				map->queues[map->len++] = index;
2079#ifdef CONFIG_NUMA
2080			if (numa_node_id == -2)
2081				numa_node_id = cpu_to_node(cpu);
2082			else if (numa_node_id != cpu_to_node(cpu))
2083				numa_node_id = -1;
2084#endif
2085		} else if (dev_maps) {
2086			/* fill in the new device map from the old device map */
2087			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2088			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2089		}
2090
2091	}
2092
2093	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2094
2095	/* Cleanup old maps */
2096	if (dev_maps) {
2097		for_each_possible_cpu(cpu) {
2098			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2099			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2100			if (map && map != new_map)
2101				kfree_rcu(map, rcu);
2102		}
2103
2104		kfree_rcu(dev_maps, rcu);
2105	}
2106
2107	dev_maps = new_dev_maps;
2108	active = true;
2109
2110out_no_new_maps:
2111	/* update Tx queue numa node */
2112	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2113				     (numa_node_id >= 0) ? numa_node_id :
2114				     NUMA_NO_NODE);
2115
2116	if (!dev_maps)
2117		goto out_no_maps;
2118
2119	/* removes queue from unused CPUs */
2120	for_each_possible_cpu(cpu) {
2121		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2122			continue;
2123
2124		if (remove_xps_queue(dev_maps, cpu, index))
2125			active = true;
2126	}
2127
2128	/* free map if not active */
2129	if (!active) {
2130		RCU_INIT_POINTER(dev->xps_maps, NULL);
2131		kfree_rcu(dev_maps, rcu);
2132	}
2133
2134out_no_maps:
2135	mutex_unlock(&xps_map_mutex);
2136
2137	return 0;
2138error:
2139	/* remove any maps that we added */
2140	for_each_possible_cpu(cpu) {
2141		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2142		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2143				 NULL;
2144		if (new_map && new_map != map)
2145			kfree(new_map);
2146	}
2147
2148	mutex_unlock(&xps_map_mutex);
2149
2150	kfree(new_dev_maps);
2151	return -ENOMEM;
2152}
2153EXPORT_SYMBOL(netif_set_xps_queue);
2154
2155#endif
2156/*
2157 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2158 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2159 */
2160int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2161{
2162	int rc;
2163
2164	if (txq < 1 || txq > dev->num_tx_queues)
2165		return -EINVAL;
2166
2167	if (dev->reg_state == NETREG_REGISTERED ||
2168	    dev->reg_state == NETREG_UNREGISTERING) {
2169		ASSERT_RTNL();
2170
2171		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2172						  txq);
2173		if (rc)
2174			return rc;
2175
2176		if (dev->num_tc)
2177			netif_setup_tc(dev, txq);
2178
2179		if (txq < dev->real_num_tx_queues) {
2180			qdisc_reset_all_tx_gt(dev, txq);
2181#ifdef CONFIG_XPS
2182			netif_reset_xps_queues_gt(dev, txq);
2183#endif
2184		}
2185	}
2186
2187	dev->real_num_tx_queues = txq;
2188	return 0;
2189}
2190EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2191
2192#ifdef CONFIG_SYSFS
2193/**
2194 *	netif_set_real_num_rx_queues - set actual number of RX queues used
2195 *	@dev: Network device
2196 *	@rxq: Actual number of RX queues
2197 *
2198 *	This must be called either with the rtnl_lock held or before
2199 *	registration of the net device.  Returns 0 on success, or a
2200 *	negative error code.  If called before registration, it always
2201 *	succeeds.
2202 */
2203int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2204{
2205	int rc;
2206
2207	if (rxq < 1 || rxq > dev->num_rx_queues)
2208		return -EINVAL;
2209
2210	if (dev->reg_state == NETREG_REGISTERED) {
2211		ASSERT_RTNL();
2212
2213		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2214						  rxq);
2215		if (rc)
2216			return rc;
2217	}
2218
2219	dev->real_num_rx_queues = rxq;
2220	return 0;
2221}
2222EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2223#endif
2224
2225/**
2226 * netif_get_num_default_rss_queues - default number of RSS queues
2227 *
2228 * This routine should set an upper limit on the number of RSS queues
2229 * used by default by multiqueue devices.
2230 */
2231int netif_get_num_default_rss_queues(void)
2232{
2233	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2234}
2235EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2236
2237static inline void __netif_reschedule(struct Qdisc *q)
2238{
2239	struct softnet_data *sd;
2240	unsigned long flags;
2241
2242	local_irq_save(flags);
2243	sd = this_cpu_ptr(&softnet_data);
2244	q->next_sched = NULL;
2245	*sd->output_queue_tailp = q;
2246	sd->output_queue_tailp = &q->next_sched;
2247	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2248	local_irq_restore(flags);
2249}
2250
2251void __netif_schedule(struct Qdisc *q)
2252{
2253	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2254		__netif_reschedule(q);
2255}
2256EXPORT_SYMBOL(__netif_schedule);
2257
2258struct dev_kfree_skb_cb {
2259	enum skb_free_reason reason;
2260};
2261
2262static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2263{
2264	return (struct dev_kfree_skb_cb *)skb->cb;
2265}
2266
2267void netif_schedule_queue(struct netdev_queue *txq)
2268{
2269	rcu_read_lock();
2270	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2271		struct Qdisc *q = rcu_dereference(txq->qdisc);
2272
2273		__netif_schedule(q);
2274	}
2275	rcu_read_unlock();
2276}
2277EXPORT_SYMBOL(netif_schedule_queue);
2278
2279/**
2280 *	netif_wake_subqueue - allow sending packets on subqueue
2281 *	@dev: network device
2282 *	@queue_index: sub queue index
2283 *
2284 * Resume individual transmit queue of a device with multiple transmit queues.
2285 */
2286void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2287{
2288	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2289
2290	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2291		struct Qdisc *q;
2292
2293		rcu_read_lock();
2294		q = rcu_dereference(txq->qdisc);
2295		__netif_schedule(q);
2296		rcu_read_unlock();
2297	}
2298}
2299EXPORT_SYMBOL(netif_wake_subqueue);
2300
2301void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2302{
2303	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2304		struct Qdisc *q;
2305
2306		rcu_read_lock();
2307		q = rcu_dereference(dev_queue->qdisc);
2308		__netif_schedule(q);
2309		rcu_read_unlock();
2310	}
2311}
2312EXPORT_SYMBOL(netif_tx_wake_queue);
2313
2314void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2315{
2316	unsigned long flags;
2317
2318	if (likely(atomic_read(&skb->users) == 1)) {
2319		smp_rmb();
2320		atomic_set(&skb->users, 0);
2321	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2322		return;
2323	}
2324	get_kfree_skb_cb(skb)->reason = reason;
2325	local_irq_save(flags);
2326	skb->next = __this_cpu_read(softnet_data.completion_queue);
2327	__this_cpu_write(softnet_data.completion_queue, skb);
2328	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2329	local_irq_restore(flags);
2330}
2331EXPORT_SYMBOL(__dev_kfree_skb_irq);
2332
2333void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2334{
2335	if (in_irq() || irqs_disabled())
2336		__dev_kfree_skb_irq(skb, reason);
2337	else
2338		dev_kfree_skb(skb);
2339}
2340EXPORT_SYMBOL(__dev_kfree_skb_any);
2341
2342
2343/**
2344 * netif_device_detach - mark device as removed
2345 * @dev: network device
2346 *
2347 * Mark device as removed from system and therefore no longer available.
2348 */
2349void netif_device_detach(struct net_device *dev)
2350{
2351	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2352	    netif_running(dev)) {
2353		netif_tx_stop_all_queues(dev);
2354	}
2355}
2356EXPORT_SYMBOL(netif_device_detach);
2357
2358/**
2359 * netif_device_attach - mark device as attached
2360 * @dev: network device
2361 *
2362 * Mark device as attached from system and restart if needed.
2363 */
2364void netif_device_attach(struct net_device *dev)
2365{
2366	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2367	    netif_running(dev)) {
2368		netif_tx_wake_all_queues(dev);
2369		__netdev_watchdog_up(dev);
2370	}
2371}
2372EXPORT_SYMBOL(netif_device_attach);
2373
2374/*
2375 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2376 * to be used as a distribution range.
2377 */
2378u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2379		  unsigned int num_tx_queues)
2380{
2381	u32 hash;
2382	u16 qoffset = 0;
2383	u16 qcount = num_tx_queues;
2384
2385	if (skb_rx_queue_recorded(skb)) {
2386		hash = skb_get_rx_queue(skb);
2387		while (unlikely(hash >= num_tx_queues))
2388			hash -= num_tx_queues;
2389		return hash;
2390	}
2391
2392	if (dev->num_tc) {
2393		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2394		qoffset = dev->tc_to_txq[tc].offset;
2395		qcount = dev->tc_to_txq[tc].count;
2396	}
2397
2398	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2399}
2400EXPORT_SYMBOL(__skb_tx_hash);
2401
2402static void skb_warn_bad_offload(const struct sk_buff *skb)
2403{
2404	static const netdev_features_t null_features = 0;
2405	struct net_device *dev = skb->dev;
2406	const char *name = "";
2407
2408	if (!net_ratelimit())
2409		return;
2410
2411	if (dev) {
2412		if (dev->dev.parent)
2413			name = dev_driver_string(dev->dev.parent);
2414		else
2415			name = netdev_name(dev);
2416	}
2417	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2418	     "gso_type=%d ip_summed=%d\n",
2419	     name, dev ? &dev->features : &null_features,
2420	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2421	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2422	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2423}
2424
2425/*
2426 * Invalidate hardware checksum when packet is to be mangled, and
2427 * complete checksum manually on outgoing path.
2428 */
2429int skb_checksum_help(struct sk_buff *skb)
2430{
2431	__wsum csum;
2432	int ret = 0, offset;
2433
2434	if (skb->ip_summed == CHECKSUM_COMPLETE)
2435		goto out_set_summed;
2436
2437	if (unlikely(skb_shinfo(skb)->gso_size)) {
2438		skb_warn_bad_offload(skb);
2439		return -EINVAL;
2440	}
2441
2442	/* Before computing a checksum, we should make sure no frag could
2443	 * be modified by an external entity : checksum could be wrong.
2444	 */
2445	if (skb_has_shared_frag(skb)) {
2446		ret = __skb_linearize(skb);
2447		if (ret)
2448			goto out;
2449	}
2450
2451	offset = skb_checksum_start_offset(skb);
2452	BUG_ON(offset >= skb_headlen(skb));
2453	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2454
2455	offset += skb->csum_offset;
2456	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2457
2458	if (skb_cloned(skb) &&
2459	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2460		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2461		if (ret)
2462			goto out;
2463	}
2464
2465	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2466out_set_summed:
2467	skb->ip_summed = CHECKSUM_NONE;
2468out:
2469	return ret;
2470}
2471EXPORT_SYMBOL(skb_checksum_help);
2472
2473__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2474{
2475	__be16 type = skb->protocol;
2476
2477	/* Tunnel gso handlers can set protocol to ethernet. */
2478	if (type == htons(ETH_P_TEB)) {
2479		struct ethhdr *eth;
2480
2481		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2482			return 0;
2483
2484		eth = (struct ethhdr *)skb_mac_header(skb);
2485		type = eth->h_proto;
2486	}
2487
2488	return __vlan_get_protocol(skb, type, depth);
2489}
2490
2491/**
2492 *	skb_mac_gso_segment - mac layer segmentation handler.
2493 *	@skb: buffer to segment
2494 *	@features: features for the output path (see dev->features)
2495 */
2496struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2497				    netdev_features_t features)
2498{
2499	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2500	struct packet_offload *ptype;
2501	int vlan_depth = skb->mac_len;
2502	__be16 type = skb_network_protocol(skb, &vlan_depth);
2503
2504	if (unlikely(!type))
2505		return ERR_PTR(-EINVAL);
2506
2507	__skb_pull(skb, vlan_depth);
2508
2509	rcu_read_lock();
2510	list_for_each_entry_rcu(ptype, &offload_base, list) {
2511		if (ptype->type == type && ptype->callbacks.gso_segment) {
2512			segs = ptype->callbacks.gso_segment(skb, features);
2513			break;
2514		}
2515	}
2516	rcu_read_unlock();
2517
2518	__skb_push(skb, skb->data - skb_mac_header(skb));
2519
2520	return segs;
2521}
2522EXPORT_SYMBOL(skb_mac_gso_segment);
2523
2524
2525/* openvswitch calls this on rx path, so we need a different check.
2526 */
2527static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2528{
2529	if (tx_path)
2530		return skb->ip_summed != CHECKSUM_PARTIAL;
2531	else
2532		return skb->ip_summed == CHECKSUM_NONE;
2533}
2534
2535/**
2536 *	__skb_gso_segment - Perform segmentation on skb.
2537 *	@skb: buffer to segment
2538 *	@features: features for the output path (see dev->features)
2539 *	@tx_path: whether it is called in TX path
2540 *
2541 *	This function segments the given skb and returns a list of segments.
2542 *
2543 *	It may return NULL if the skb requires no segmentation.  This is
2544 *	only possible when GSO is used for verifying header integrity.
2545 *
2546 *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2547 */
2548struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2549				  netdev_features_t features, bool tx_path)
2550{
2551	if (unlikely(skb_needs_check(skb, tx_path))) {
2552		int err;
2553
2554		skb_warn_bad_offload(skb);
2555
2556		err = skb_cow_head(skb, 0);
2557		if (err < 0)
2558			return ERR_PTR(err);
2559	}
2560
2561	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2562		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2563
2564	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2565	SKB_GSO_CB(skb)->encap_level = 0;
2566
2567	skb_reset_mac_header(skb);
2568	skb_reset_mac_len(skb);
2569
2570	return skb_mac_gso_segment(skb, features);
2571}
2572EXPORT_SYMBOL(__skb_gso_segment);
2573
2574/* Take action when hardware reception checksum errors are detected. */
2575#ifdef CONFIG_BUG
2576void netdev_rx_csum_fault(struct net_device *dev)
2577{
2578	if (net_ratelimit()) {
2579		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2580		dump_stack();
2581	}
2582}
2583EXPORT_SYMBOL(netdev_rx_csum_fault);
2584#endif
2585
2586/* Actually, we should eliminate this check as soon as we know, that:
2587 * 1. IOMMU is present and allows to map all the memory.
2588 * 2. No high memory really exists on this machine.
2589 */
2590
2591static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2592{
2593#ifdef CONFIG_HIGHMEM
2594	int i;
2595	if (!(dev->features & NETIF_F_HIGHDMA)) {
2596		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2597			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2598			if (PageHighMem(skb_frag_page(frag)))
2599				return 1;
2600		}
2601	}
2602
2603	if (PCI_DMA_BUS_IS_PHYS) {
2604		struct device *pdev = dev->dev.parent;
2605
2606		if (!pdev)
2607			return 0;
2608		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2609			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2610			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2611			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2612				return 1;
2613		}
2614	}
2615#endif
2616	return 0;
2617}
2618
2619/* If MPLS offload request, verify we are testing hardware MPLS features
2620 * instead of standard features for the netdev.
2621 */
2622#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2623static netdev_features_t net_mpls_features(struct sk_buff *skb,
2624					   netdev_features_t features,
2625					   __be16 type)
2626{
2627	if (eth_p_mpls(type))
2628		features &= skb->dev->mpls_features;
2629
2630	return features;
2631}
2632#else
2633static netdev_features_t net_mpls_features(struct sk_buff *skb,
2634					   netdev_features_t features,
2635					   __be16 type)
2636{
2637	return features;
2638}
2639#endif
2640
2641static netdev_features_t harmonize_features(struct sk_buff *skb,
2642	netdev_features_t features)
2643{
2644	int tmp;
2645	__be16 type;
2646
2647	type = skb_network_protocol(skb, &tmp);
2648	features = net_mpls_features(skb, features, type);
2649
2650	if (skb->ip_summed != CHECKSUM_NONE &&
2651	    !can_checksum_protocol(features, type)) {
2652		features &= ~NETIF_F_ALL_CSUM;
2653	} else if (illegal_highdma(skb->dev, skb)) {
2654		features &= ~NETIF_F_SG;
2655	}
2656
2657	return features;
2658}
2659
2660netdev_features_t passthru_features_check(struct sk_buff *skb,
2661					  struct net_device *dev,
2662					  netdev_features_t features)
2663{
2664	return features;
2665}
2666EXPORT_SYMBOL(passthru_features_check);
2667
2668static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2669					     struct net_device *dev,
2670					     netdev_features_t features)
2671{
2672	return vlan_features_check(skb, features);
2673}
2674
2675netdev_features_t netif_skb_features(struct sk_buff *skb)
2676{
2677	struct net_device *dev = skb->dev;
2678	netdev_features_t features = dev->features;
2679	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2680
2681	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2682		features &= ~NETIF_F_GSO_MASK;
2683
2684	/* If encapsulation offload request, verify we are testing
2685	 * hardware encapsulation features instead of standard
2686	 * features for the netdev
2687	 */
2688	if (skb->encapsulation)
2689		features &= dev->hw_enc_features;
2690
2691	if (skb_vlan_tagged(skb))
2692		features = netdev_intersect_features(features,
2693						     dev->vlan_features |
2694						     NETIF_F_HW_VLAN_CTAG_TX |
2695						     NETIF_F_HW_VLAN_STAG_TX);
2696
2697	if (dev->netdev_ops->ndo_features_check)
2698		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2699								features);
2700	else
2701		features &= dflt_features_check(skb, dev, features);
2702
2703	return harmonize_features(skb, features);
2704}
2705EXPORT_SYMBOL(netif_skb_features);
2706
2707static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2708		    struct netdev_queue *txq, bool more)
2709{
2710	unsigned int len;
2711	int rc;
2712
2713	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2714		dev_queue_xmit_nit(skb, dev);
2715
2716	len = skb->len;
2717	trace_net_dev_start_xmit(skb, dev);
2718	rc = netdev_start_xmit(skb, dev, txq, more);
2719	trace_net_dev_xmit(skb, rc, dev, len);
2720
2721	return rc;
2722}
2723
2724struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2725				    struct netdev_queue *txq, int *ret)
2726{
2727	struct sk_buff *skb = first;
2728	int rc = NETDEV_TX_OK;
2729
2730	while (skb) {
2731		struct sk_buff *next = skb->next;
2732
2733		skb->next = NULL;
2734		rc = xmit_one(skb, dev, txq, next != NULL);
2735		if (unlikely(!dev_xmit_complete(rc))) {
2736			skb->next = next;
2737			goto out;
2738		}
2739
2740		skb = next;
2741		if (netif_xmit_stopped(txq) && skb) {
2742			rc = NETDEV_TX_BUSY;
2743			break;
2744		}
2745	}
2746
2747out:
2748	*ret = rc;
2749	return skb;
2750}
2751
2752static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2753					  netdev_features_t features)
2754{
2755	if (skb_vlan_tag_present(skb) &&
2756	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2757		skb = __vlan_hwaccel_push_inside(skb);
2758	return skb;
2759}
2760
2761static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2762{
2763	netdev_features_t features;
2764
2765	if (skb->next)
2766		return skb;
2767
2768	features = netif_skb_features(skb);
2769	skb = validate_xmit_vlan(skb, features);
2770	if (unlikely(!skb))
2771		goto out_null;
2772
2773	if (netif_needs_gso(skb, features)) {
2774		struct sk_buff *segs;
2775
2776		segs = skb_gso_segment(skb, features);
2777		if (IS_ERR(segs)) {
2778			goto out_kfree_skb;
2779		} else if (segs) {
2780			consume_skb(skb);
2781			skb = segs;
2782		}
2783	} else {
2784		if (skb_needs_linearize(skb, features) &&
2785		    __skb_linearize(skb))
2786			goto out_kfree_skb;
2787
2788		/* If packet is not checksummed and device does not
2789		 * support checksumming for this protocol, complete
2790		 * checksumming here.
2791		 */
2792		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2793			if (skb->encapsulation)
2794				skb_set_inner_transport_header(skb,
2795							       skb_checksum_start_offset(skb));
2796			else
2797				skb_set_transport_header(skb,
2798							 skb_checksum_start_offset(skb));
2799			if (!(features & NETIF_F_ALL_CSUM) &&
2800			    skb_checksum_help(skb))
2801				goto out_kfree_skb;
2802		}
2803	}
2804
2805	return skb;
2806
2807out_kfree_skb:
2808	kfree_skb(skb);
2809out_null:
2810	return NULL;
2811}
2812
2813struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2814{
2815	struct sk_buff *next, *head = NULL, *tail;
2816
2817	for (; skb != NULL; skb = next) {
2818		next = skb->next;
2819		skb->next = NULL;
2820
2821		/* in case skb wont be segmented, point to itself */
2822		skb->prev = skb;
2823
2824		skb = validate_xmit_skb(skb, dev);
2825		if (!skb)
2826			continue;
2827
2828		if (!head)
2829			head = skb;
2830		else
2831			tail->next = skb;
2832		/* If skb was segmented, skb->prev points to
2833		 * the last segment. If not, it still contains skb.
2834		 */
2835		tail = skb->prev;
2836	}
2837	return head;
2838}
2839
2840static void qdisc_pkt_len_init(struct sk_buff *skb)
2841{
2842	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2843
2844	qdisc_skb_cb(skb)->pkt_len = skb->len;
2845
2846	/* To get more precise estimation of bytes sent on wire,
2847	 * we add to pkt_len the headers size of all segments
2848	 */
2849	if (shinfo->gso_size)  {
2850		unsigned int hdr_len;
2851		u16 gso_segs = shinfo->gso_segs;
2852
2853		/* mac layer + network layer */
2854		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2855
2856		/* + transport layer */
2857		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2858			hdr_len += tcp_hdrlen(skb);
2859		else
2860			hdr_len += sizeof(struct udphdr);
2861
2862		if (shinfo->gso_type & SKB_GSO_DODGY)
2863			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2864						shinfo->gso_size);
2865
2866		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2867	}
2868}
2869
2870static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2871				 struct net_device *dev,
2872				 struct netdev_queue *txq)
2873{
2874	spinlock_t *root_lock = qdisc_lock(q);
2875	bool contended;
2876	int rc;
2877
2878	qdisc_pkt_len_init(skb);
2879	qdisc_calculate_pkt_len(skb, q);
2880	/*
2881	 * Heuristic to force contended enqueues to serialize on a
2882	 * separate lock before trying to get qdisc main lock.
2883	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2884	 * often and dequeue packets faster.
2885	 */
2886	contended = qdisc_is_running(q);
2887	if (unlikely(contended))
2888		spin_lock(&q->busylock);
2889
2890	spin_lock(root_lock);
2891	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2892		kfree_skb(skb);
2893		rc = NET_XMIT_DROP;
2894	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2895		   qdisc_run_begin(q)) {
2896		/*
2897		 * This is a work-conserving queue; there are no old skbs
2898		 * waiting to be sent out; and the qdisc is not running -
2899		 * xmit the skb directly.
2900		 */
2901
2902		qdisc_bstats_update(q, skb);
2903
2904		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2905			if (unlikely(contended)) {
2906				spin_unlock(&q->busylock);
2907				contended = false;
2908			}
2909			__qdisc_run(q);
2910		} else
2911			qdisc_run_end(q);
2912
2913		rc = NET_XMIT_SUCCESS;
2914	} else {
2915		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2916		if (qdisc_run_begin(q)) {
2917			if (unlikely(contended)) {
2918				spin_unlock(&q->busylock);
2919				contended = false;
2920			}
2921			__qdisc_run(q);
2922		}
2923	}
2924	spin_unlock(root_lock);
2925	if (unlikely(contended))
2926		spin_unlock(&q->busylock);
2927	return rc;
2928}
2929
2930#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2931static void skb_update_prio(struct sk_buff *skb)
2932{
2933	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2934
2935	if (!skb->priority && skb->sk && map) {
2936		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2937
2938		if (prioidx < map->priomap_len)
2939			skb->priority = map->priomap[prioidx];
2940	}
2941}
2942#else
2943#define skb_update_prio(skb)
2944#endif
2945
2946DEFINE_PER_CPU(int, xmit_recursion);
2947EXPORT_SYMBOL(xmit_recursion);
2948
2949#define RECURSION_LIMIT 10
2950
2951/**
2952 *	dev_loopback_xmit - loop back @skb
2953 *	@net: network namespace this loopback is happening in
2954 *	@sk:  sk needed to be a netfilter okfn
2955 *	@skb: buffer to transmit
2956 */
2957int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2958{
2959	skb_reset_mac_header(skb);
2960	__skb_pull(skb, skb_network_offset(skb));
2961	skb->pkt_type = PACKET_LOOPBACK;
2962	skb->ip_summed = CHECKSUM_UNNECESSARY;
2963	WARN_ON(!skb_dst(skb));
2964	skb_dst_force(skb);
2965	netif_rx_ni(skb);
2966	return 0;
2967}
2968EXPORT_SYMBOL(dev_loopback_xmit);
2969
2970static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2971{
2972#ifdef CONFIG_XPS
2973	struct xps_dev_maps *dev_maps;
2974	struct xps_map *map;
2975	int queue_index = -1;
2976
2977	rcu_read_lock();
2978	dev_maps = rcu_dereference(dev->xps_maps);
2979	if (dev_maps) {
2980		map = rcu_dereference(
2981		    dev_maps->cpu_map[skb->sender_cpu - 1]);
2982		if (map) {
2983			if (map->len == 1)
2984				queue_index = map->queues[0];
2985			else
2986				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2987									   map->len)];
2988			if (unlikely(queue_index >= dev->real_num_tx_queues))
2989				queue_index = -1;
2990		}
2991	}
2992	rcu_read_unlock();
2993
2994	return queue_index;
2995#else
2996	return -1;
2997#endif
2998}
2999
3000static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3001{
3002	struct sock *sk = skb->sk;
3003	int queue_index = sk_tx_queue_get(sk);
3004
3005	if (queue_index < 0 || skb->ooo_okay ||
3006	    queue_index >= dev->real_num_tx_queues) {
3007		int new_index = get_xps_queue(dev, skb);
3008		if (new_index < 0)
3009			new_index = skb_tx_hash(dev, skb);
3010
3011		if (queue_index != new_index && sk &&
3012		    sk_fullsock(sk) &&
3013		    rcu_access_pointer(sk->sk_dst_cache))
3014			sk_tx_queue_set(sk, new_index);
3015
3016		queue_index = new_index;
3017	}
3018
3019	return queue_index;
3020}
3021
3022struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3023				    struct sk_buff *skb,
3024				    void *accel_priv)
3025{
3026	int queue_index = 0;
3027
3028#ifdef CONFIG_XPS
3029	if (skb->sender_cpu == 0)
3030		skb->sender_cpu = raw_smp_processor_id() + 1;
3031#endif
3032
3033	if (dev->real_num_tx_queues != 1) {
3034		const struct net_device_ops *ops = dev->netdev_ops;
3035		if (ops->ndo_select_queue)
3036			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3037							    __netdev_pick_tx);
3038		else
3039			queue_index = __netdev_pick_tx(dev, skb);
3040
3041		if (!accel_priv)
3042			queue_index = netdev_cap_txqueue(dev, queue_index);
3043	}
3044
3045	skb_set_queue_mapping(skb, queue_index);
3046	return netdev_get_tx_queue(dev, queue_index);
3047}
3048
3049/**
3050 *	__dev_queue_xmit - transmit a buffer
3051 *	@skb: buffer to transmit
3052 *	@accel_priv: private data used for L2 forwarding offload
3053 *
3054 *	Queue a buffer for transmission to a network device. The caller must
3055 *	have set the device and priority and built the buffer before calling
3056 *	this function. The function can be called from an interrupt.
3057 *
3058 *	A negative errno code is returned on a failure. A success does not
3059 *	guarantee the frame will be transmitted as it may be dropped due
3060 *	to congestion or traffic shaping.
3061 *
3062 * -----------------------------------------------------------------------------------
3063 *      I notice this method can also return errors from the queue disciplines,
3064 *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3065 *      be positive.
3066 *
3067 *      Regardless of the return value, the skb is consumed, so it is currently
3068 *      difficult to retry a send to this method.  (You can bump the ref count
3069 *      before sending to hold a reference for retry if you are careful.)
3070 *
3071 *      When calling this method, interrupts MUST be enabled.  This is because
3072 *      the BH enable code must have IRQs enabled so that it will not deadlock.
3073 *          --BLG
3074 */
3075static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3076{
3077	struct net_device *dev = skb->dev;
3078	struct netdev_queue *txq;
3079	struct Qdisc *q;
3080	int rc = -ENOMEM;
3081
3082	skb_reset_mac_header(skb);
3083
3084	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3085		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3086
3087	/* Disable soft irqs for various locks below. Also
3088	 * stops preemption for RCU.
3089	 */
3090	rcu_read_lock_bh();
3091
3092	skb_update_prio(skb);
3093
3094	/* If device/qdisc don't need skb->dst, release it right now while
3095	 * its hot in this cpu cache.
3096	 */
3097	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3098		skb_dst_drop(skb);
3099	else
3100		skb_dst_force(skb);
3101
3102#ifdef CONFIG_NET_SWITCHDEV
3103	/* Don't forward if offload device already forwarded */
3104	if (skb->offload_fwd_mark &&
3105	    skb->offload_fwd_mark == dev->offload_fwd_mark) {
3106		consume_skb(skb);
3107		rc = NET_XMIT_SUCCESS;
3108		goto out;
3109	}
3110#endif
3111
3112	txq = netdev_pick_tx(dev, skb, accel_priv);
3113	q = rcu_dereference_bh(txq->qdisc);
3114
3115#ifdef CONFIG_NET_CLS_ACT
3116	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3117#endif
3118	trace_net_dev_queue(skb);
3119	if (q->enqueue) {
3120		rc = __dev_xmit_skb(skb, q, dev, txq);
3121		goto out;
3122	}
3123
3124	/* The device has no queue. Common case for software devices:
3125	   loopback, all the sorts of tunnels...
3126
3127	   Really, it is unlikely that netif_tx_lock protection is necessary
3128	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3129	   counters.)
3130	   However, it is possible, that they rely on protection
3131	   made by us here.
3132
3133	   Check this and shot the lock. It is not prone from deadlocks.
3134	   Either shot noqueue qdisc, it is even simpler 8)
3135	 */
3136	if (dev->flags & IFF_UP) {
3137		int cpu = smp_processor_id(); /* ok because BHs are off */
3138
3139		if (txq->xmit_lock_owner != cpu) {
3140
3141			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3142				goto recursion_alert;
3143
3144			skb = validate_xmit_skb(skb, dev);
3145			if (!skb)
3146				goto drop;
3147
3148			HARD_TX_LOCK(dev, txq, cpu);
3149
3150			if (!netif_xmit_stopped(txq)) {
3151				__this_cpu_inc(xmit_recursion);
3152				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3153				__this_cpu_dec(xmit_recursion);
3154				if (dev_xmit_complete(rc)) {
3155					HARD_TX_UNLOCK(dev, txq);
3156					goto out;
3157				}
3158			}
3159			HARD_TX_UNLOCK(dev, txq);
3160			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3161					     dev->name);
3162		} else {
3163			/* Recursion is detected! It is possible,
3164			 * unfortunately
3165			 */
3166recursion_alert:
3167			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3168					     dev->name);
3169		}
3170	}
3171
3172	rc = -ENETDOWN;
3173drop:
3174	rcu_read_unlock_bh();
3175
3176	atomic_long_inc(&dev->tx_dropped);
3177	kfree_skb_list(skb);
3178	return rc;
3179out:
3180	rcu_read_unlock_bh();
3181	return rc;
3182}
3183
3184int dev_queue_xmit(struct sk_buff *skb)
3185{
3186	return __dev_queue_xmit(skb, NULL);
3187}
3188EXPORT_SYMBOL(dev_queue_xmit);
3189
3190int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3191{
3192	return __dev_queue_xmit(skb, accel_priv);
3193}
3194EXPORT_SYMBOL(dev_queue_xmit_accel);
3195
3196
3197/*=======================================================================
3198			Receiver routines
3199  =======================================================================*/
3200
3201int netdev_max_backlog __read_mostly = 1000;
3202EXPORT_SYMBOL(netdev_max_backlog);
3203
3204int netdev_tstamp_prequeue __read_mostly = 1;
3205int netdev_budget __read_mostly = 300;
3206int weight_p __read_mostly = 64;            /* old backlog weight */
3207
3208/* Called with irq disabled */
3209static inline void ____napi_schedule(struct softnet_data *sd,
3210				     struct napi_struct *napi)
3211{
3212	list_add_tail(&napi->poll_list, &sd->poll_list);
3213	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3214}
3215
3216#ifdef CONFIG_RPS
3217
3218/* One global table that all flow-based protocols share. */
3219struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3220EXPORT_SYMBOL(rps_sock_flow_table);
3221u32 rps_cpu_mask __read_mostly;
3222EXPORT_SYMBOL(rps_cpu_mask);
3223
3224struct static_key rps_needed __read_mostly;
3225
3226static struct rps_dev_flow *
3227set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3228	    struct rps_dev_flow *rflow, u16 next_cpu)
3229{
3230	if (next_cpu < nr_cpu_ids) {
3231#ifdef CONFIG_RFS_ACCEL
3232		struct netdev_rx_queue *rxqueue;
3233		struct rps_dev_flow_table *flow_table;
3234		struct rps_dev_flow *old_rflow;
3235		u32 flow_id;
3236		u16 rxq_index;
3237		int rc;
3238
3239		/* Should we steer this flow to a different hardware queue? */
3240		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3241		    !(dev->features & NETIF_F_NTUPLE))
3242			goto out;
3243		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3244		if (rxq_index == skb_get_rx_queue(skb))
3245			goto out;
3246
3247		rxqueue = dev->_rx + rxq_index;
3248		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3249		if (!flow_table)
3250			goto out;
3251		flow_id = skb_get_hash(skb) & flow_table->mask;
3252		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3253							rxq_index, flow_id);
3254		if (rc < 0)
3255			goto out;
3256		old_rflow = rflow;
3257		rflow = &flow_table->flows[flow_id];
3258		rflow->filter = rc;
3259		if (old_rflow->filter == rflow->filter)
3260			old_rflow->filter = RPS_NO_FILTER;
3261	out:
3262#endif
3263		rflow->last_qtail =
3264			per_cpu(softnet_data, next_cpu).input_queue_head;
3265	}
3266
3267	rflow->cpu = next_cpu;
3268	return rflow;
3269}
3270
3271/*
3272 * get_rps_cpu is called from netif_receive_skb and returns the target
3273 * CPU from the RPS map of the receiving queue for a given skb.
3274 * rcu_read_lock must be held on entry.
3275 */
3276static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3277		       struct rps_dev_flow **rflowp)
3278{
3279	const struct rps_sock_flow_table *sock_flow_table;
3280	struct netdev_rx_queue *rxqueue = dev->_rx;
3281	struct rps_dev_flow_table *flow_table;
3282	struct rps_map *map;
3283	int cpu = -1;
3284	u32 tcpu;
3285	u32 hash;
3286
3287	if (skb_rx_queue_recorded(skb)) {
3288		u16 index = skb_get_rx_queue(skb);
3289
3290		if (unlikely(index >= dev->real_num_rx_queues)) {
3291			WARN_ONCE(dev->real_num_rx_queues > 1,
3292				  "%s received packet on queue %u, but number "
3293				  "of RX queues is %u\n",
3294				  dev->name, index, dev->real_num_rx_queues);
3295			goto done;
3296		}
3297		rxqueue += index;
3298	}
3299
3300	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3301
3302	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3303	map = rcu_dereference(rxqueue->rps_map);
3304	if (!flow_table && !map)
3305		goto done;
3306
3307	skb_reset_network_header(skb);
3308	hash = skb_get_hash(skb);
3309	if (!hash)
3310		goto done;
3311
3312	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3313	if (flow_table && sock_flow_table) {
3314		struct rps_dev_flow *rflow;
3315		u32 next_cpu;
3316		u32 ident;
3317
3318		/* First check into global flow table if there is a match */
3319		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3320		if ((ident ^ hash) & ~rps_cpu_mask)
3321			goto try_rps;
3322
3323		next_cpu = ident & rps_cpu_mask;
3324
3325		/* OK, now we know there is a match,
3326		 * we can look at the local (per receive queue) flow table
3327		 */
3328		rflow = &flow_table->flows[hash & flow_table->mask];
3329		tcpu = rflow->cpu;
3330
3331		/*
3332		 * If the desired CPU (where last recvmsg was done) is
3333		 * different from current CPU (one in the rx-queue flow
3334		 * table entry), switch if one of the following holds:
3335		 *   - Current CPU is unset (>= nr_cpu_ids).
3336		 *   - Current CPU is offline.
3337		 *   - The current CPU's queue tail has advanced beyond the
3338		 *     last packet that was enqueued using this table entry.
3339		 *     This guarantees that all previous packets for the flow
3340		 *     have been dequeued, thus preserving in order delivery.
3341		 */
3342		if (unlikely(tcpu != next_cpu) &&
3343		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3344		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3345		      rflow->last_qtail)) >= 0)) {
3346			tcpu = next_cpu;
3347			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3348		}
3349
3350		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3351			*rflowp = rflow;
3352			cpu = tcpu;
3353			goto done;
3354		}
3355	}
3356
3357try_rps:
3358
3359	if (map) {
3360		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3361		if (cpu_online(tcpu)) {
3362			cpu = tcpu;
3363			goto done;
3364		}
3365	}
3366
3367done:
3368	return cpu;
3369}
3370
3371#ifdef CONFIG_RFS_ACCEL
3372
3373/**
3374 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3375 * @dev: Device on which the filter was set
3376 * @rxq_index: RX queue index
3377 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3378 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3379 *
3380 * Drivers that implement ndo_rx_flow_steer() should periodically call
3381 * this function for each installed filter and remove the filters for
3382 * which it returns %true.
3383 */
3384bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3385			 u32 flow_id, u16 filter_id)
3386{
3387	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3388	struct rps_dev_flow_table *flow_table;
3389	struct rps_dev_flow *rflow;
3390	bool expire = true;
3391	unsigned int cpu;
3392
3393	rcu_read_lock();
3394	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3395	if (flow_table && flow_id <= flow_table->mask) {
3396		rflow = &flow_table->flows[flow_id];
3397		cpu = ACCESS_ONCE(rflow->cpu);
3398		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3399		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3400			   rflow->last_qtail) <
3401		     (int)(10 * flow_table->mask)))
3402			expire = false;
3403	}
3404	rcu_read_unlock();
3405	return expire;
3406}
3407EXPORT_SYMBOL(rps_may_expire_flow);
3408
3409#endif /* CONFIG_RFS_ACCEL */
3410
3411/* Called from hardirq (IPI) context */
3412static void rps_trigger_softirq(void *data)
3413{
3414	struct softnet_data *sd = data;
3415
3416	____napi_schedule(sd, &sd->backlog);
3417	sd->received_rps++;
3418}
3419
3420#endif /* CONFIG_RPS */
3421
3422/*
3423 * Check if this softnet_data structure is another cpu one
3424 * If yes, queue it to our IPI list and return 1
3425 * If no, return 0
3426 */
3427static int rps_ipi_queued(struct softnet_data *sd)
3428{
3429#ifdef CONFIG_RPS
3430	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3431
3432	if (sd != mysd) {
3433		sd->rps_ipi_next = mysd->rps_ipi_list;
3434		mysd->rps_ipi_list = sd;
3435
3436		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3437		return 1;
3438	}
3439#endif /* CONFIG_RPS */
3440	return 0;
3441}
3442
3443#ifdef CONFIG_NET_FLOW_LIMIT
3444int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3445#endif
3446
3447static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3448{
3449#ifdef CONFIG_NET_FLOW_LIMIT
3450	struct sd_flow_limit *fl;
3451	struct softnet_data *sd;
3452	unsigned int old_flow, new_flow;
3453
3454	if (qlen < (netdev_max_backlog >> 1))
3455		return false;
3456
3457	sd = this_cpu_ptr(&softnet_data);
3458
3459	rcu_read_lock();
3460	fl = rcu_dereference(sd->flow_limit);
3461	if (fl) {
3462		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3463		old_flow = fl->history[fl->history_head];
3464		fl->history[fl->history_head] = new_flow;
3465
3466		fl->history_head++;
3467		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3468
3469		if (likely(fl->buckets[old_flow]))
3470			fl->buckets[old_flow]--;
3471
3472		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3473			fl->count++;
3474			rcu_read_unlock();
3475			return true;
3476		}
3477	}
3478	rcu_read_unlock();
3479#endif
3480	return false;
3481}
3482
3483/*
3484 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3485 * queue (may be a remote CPU queue).
3486 */
3487static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3488			      unsigned int *qtail)
3489{
3490	struct softnet_data *sd;
3491	unsigned long flags;
3492	unsigned int qlen;
3493
3494	sd = &per_cpu(softnet_data, cpu);
3495
3496	local_irq_save(flags);
3497
3498	rps_lock(sd);
3499	if (!netif_running(skb->dev))
3500		goto drop;
3501	qlen = skb_queue_len(&sd->input_pkt_queue);
3502	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3503		if (qlen) {
3504enqueue:
3505			__skb_queue_tail(&sd->input_pkt_queue, skb);
3506			input_queue_tail_incr_save(sd, qtail);
3507			rps_unlock(sd);
3508			local_irq_restore(flags);
3509			return NET_RX_SUCCESS;
3510		}
3511
3512		/* Schedule NAPI for backlog device
3513		 * We can use non atomic operation since we own the queue lock
3514		 */
3515		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3516			if (!rps_ipi_queued(sd))
3517				____napi_schedule(sd, &sd->backlog);
3518		}
3519		goto enqueue;
3520	}
3521
3522drop:
3523	sd->dropped++;
3524	rps_unlock(sd);
3525
3526	local_irq_restore(flags);
3527
3528	atomic_long_inc(&skb->dev->rx_dropped);
3529	kfree_skb(skb);
3530	return NET_RX_DROP;
3531}
3532
3533static int netif_rx_internal(struct sk_buff *skb)
3534{
3535	int ret;
3536
3537	net_timestamp_check(netdev_tstamp_prequeue, skb);
3538
3539	trace_netif_rx(skb);
3540#ifdef CONFIG_RPS
3541	if (static_key_false(&rps_needed)) {
3542		struct rps_dev_flow voidflow, *rflow = &voidflow;
3543		int cpu;
3544
3545		preempt_disable();
3546		rcu_read_lock();
3547
3548		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3549		if (cpu < 0)
3550			cpu = smp_processor_id();
3551
3552		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3553
3554		rcu_read_unlock();
3555		preempt_enable();
3556	} else
3557#endif
3558	{
3559		unsigned int qtail;
3560		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3561		put_cpu();
3562	}
3563	return ret;
3564}
3565
3566/**
3567 *	netif_rx	-	post buffer to the network code
3568 *	@skb: buffer to post
3569 *
3570 *	This function receives a packet from a device driver and queues it for
3571 *	the upper (protocol) levels to process.  It always succeeds. The buffer
3572 *	may be dropped during processing for congestion control or by the
3573 *	protocol layers.
3574 *
3575 *	return values:
3576 *	NET_RX_SUCCESS	(no congestion)
3577 *	NET_RX_DROP     (packet was dropped)
3578 *
3579 */
3580
3581int netif_rx(struct sk_buff *skb)
3582{
3583	trace_netif_rx_entry(skb);
3584
3585	return netif_rx_internal(skb);
3586}
3587EXPORT_SYMBOL(netif_rx);
3588
3589int netif_rx_ni(struct sk_buff *skb)
3590{
3591	int err;
3592
3593	trace_netif_rx_ni_entry(skb);
3594
3595	preempt_disable();
3596	err = netif_rx_internal(skb);
3597	if (local_softirq_pending())
3598		do_softirq();
3599	preempt_enable();
3600
3601	return err;
3602}
3603EXPORT_SYMBOL(netif_rx_ni);
3604
3605static void net_tx_action(struct softirq_action *h)
3606{
3607	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3608
3609	if (sd->completion_queue) {
3610		struct sk_buff *clist;
3611
3612		local_irq_disable();
3613		clist = sd->completion_queue;
3614		sd->completion_queue = NULL;
3615		local_irq_enable();
3616
3617		while (clist) {
3618			struct sk_buff *skb = clist;
3619			clist = clist->next;
3620
3621			WARN_ON(atomic_read(&skb->users));
3622			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3623				trace_consume_skb(skb);
3624			else
3625				trace_kfree_skb(skb, net_tx_action);
3626			__kfree_skb(skb);
3627		}
3628	}
3629
3630	if (sd->output_queue) {
3631		struct Qdisc *head;
3632
3633		local_irq_disable();
3634		head = sd->output_queue;
3635		sd->output_queue = NULL;
3636		sd->output_queue_tailp = &sd->output_queue;
3637		local_irq_enable();
3638
3639		while (head) {
3640			struct Qdisc *q = head;
3641			spinlock_t *root_lock;
3642
3643			head = head->next_sched;
3644
3645			root_lock = qdisc_lock(q);
3646			if (spin_trylock(root_lock)) {
3647				smp_mb__before_atomic();
3648				clear_bit(__QDISC_STATE_SCHED,
3649					  &q->state);
3650				qdisc_run(q);
3651				spin_unlock(root_lock);
3652			} else {
3653				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3654					      &q->state)) {
3655					__netif_reschedule(q);
3656				} else {
3657					smp_mb__before_atomic();
3658					clear_bit(__QDISC_STATE_SCHED,
3659						  &q->state);
3660				}
3661			}
3662		}
3663	}
3664}
3665
3666#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3667    (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3668/* This hook is defined here for ATM LANE */
3669int (*br_fdb_test_addr_hook)(struct net_device *dev,
3670			     unsigned char *addr) __read_mostly;
3671EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3672#endif
3673
3674static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3675					 struct packet_type **pt_prev,
3676					 int *ret, struct net_device *orig_dev)
3677{
3678#ifdef CONFIG_NET_CLS_ACT
3679	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3680	struct tcf_result cl_res;
3681
3682	/* If there's at least one ingress present somewhere (so
3683	 * we get here via enabled static key), remaining devices
3684	 * that are not configured with an ingress qdisc will bail
3685	 * out here.
3686	 */
3687	if (!cl)
3688		return skb;
3689	if (*pt_prev) {
3690		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3691		*pt_prev = NULL;
3692	}
3693
3694	qdisc_skb_cb(skb)->pkt_len = skb->len;
3695	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3696	qdisc_bstats_cpu_update(cl->q, skb);
3697
3698	switch (tc_classify(skb, cl, &cl_res, false)) {
3699	case TC_ACT_OK:
3700	case TC_ACT_RECLASSIFY:
3701		skb->tc_index = TC_H_MIN(cl_res.classid);
3702		break;
3703	case TC_ACT_SHOT:
3704		qdisc_qstats_cpu_drop(cl->q);
3705	case TC_ACT_STOLEN:
3706	case TC_ACT_QUEUED:
3707		kfree_skb(skb);
3708		return NULL;
3709	case TC_ACT_REDIRECT:
3710		/* skb_mac_header check was done by cls/act_bpf, so
3711		 * we can safely push the L2 header back before
3712		 * redirecting to another netdev
3713		 */
3714		__skb_push(skb, skb->mac_len);
3715		skb_do_redirect(skb);
3716		return NULL;
3717	default:
3718		break;
3719	}
3720#endif /* CONFIG_NET_CLS_ACT */
3721	return skb;
3722}
3723
3724/**
3725 *	netdev_rx_handler_register - register receive handler
3726 *	@dev: device to register a handler for
3727 *	@rx_handler: receive handler to register
3728 *	@rx_handler_data: data pointer that is used by rx handler
3729 *
3730 *	Register a receive handler for a device. This handler will then be
3731 *	called from __netif_receive_skb. A negative errno code is returned
3732 *	on a failure.
3733 *
3734 *	The caller must hold the rtnl_mutex.
3735 *
3736 *	For a general description of rx_handler, see enum rx_handler_result.
3737 */
3738int netdev_rx_handler_register(struct net_device *dev,
3739			       rx_handler_func_t *rx_handler,
3740			       void *rx_handler_data)
3741{
3742	ASSERT_RTNL();
3743
3744	if (dev->rx_handler)
3745		return -EBUSY;
3746
3747	/* Note: rx_handler_data must be set before rx_handler */
3748	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3749	rcu_assign_pointer(dev->rx_handler, rx_handler);
3750
3751	return 0;
3752}
3753EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3754
3755/**
3756 *	netdev_rx_handler_unregister - unregister receive handler
3757 *	@dev: device to unregister a handler from
3758 *
3759 *	Unregister a receive handler from a device.
3760 *
3761 *	The caller must hold the rtnl_mutex.
3762 */
3763void netdev_rx_handler_unregister(struct net_device *dev)
3764{
3765
3766	ASSERT_RTNL();
3767	RCU_INIT_POINTER(dev->rx_handler, NULL);
3768	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3769	 * section has a guarantee to see a non NULL rx_handler_data
3770	 * as well.
3771	 */
3772	synchronize_net();
3773	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3774}
3775EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3776
3777/*
3778 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3779 * the special handling of PFMEMALLOC skbs.
3780 */
3781static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3782{
3783	switch (skb->protocol) {
3784	case htons(ETH_P_ARP):
3785	case htons(ETH_P_IP):
3786	case htons(ETH_P_IPV6):
3787	case htons(ETH_P_8021Q):
3788	case htons(ETH_P_8021AD):
3789		return true;
3790	default:
3791		return false;
3792	}
3793}
3794
3795static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3796			     int *ret, struct net_device *orig_dev)
3797{
3798#ifdef CONFIG_NETFILTER_INGRESS
3799	if (nf_hook_ingress_active(skb)) {
3800		if (*pt_prev) {
3801			*ret = deliver_skb(skb, *pt_prev, orig_dev);
3802			*pt_prev = NULL;
3803		}
3804
3805		return nf_hook_ingress(skb);
3806	}
3807#endif /* CONFIG_NETFILTER_INGRESS */
3808	return 0;
3809}
3810
3811static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3812{
3813	struct packet_type *ptype, *pt_prev;
3814	rx_handler_func_t *rx_handler;
3815	struct net_device *orig_dev;
3816	bool deliver_exact = false;
3817	int ret = NET_RX_DROP;
3818	__be16 type;
3819
3820	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3821
3822	trace_netif_receive_skb(skb);
3823
3824	orig_dev = skb->dev;
3825
3826	skb_reset_network_header(skb);
3827	if (!skb_transport_header_was_set(skb))
3828		skb_reset_transport_header(skb);
3829	skb_reset_mac_len(skb);
3830
3831	pt_prev = NULL;
3832
3833another_round:
3834	skb->skb_iif = skb->dev->ifindex;
3835
3836	__this_cpu_inc(softnet_data.processed);
3837
3838	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3839	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3840		skb = skb_vlan_untag(skb);
3841		if (unlikely(!skb))
3842			goto out;
3843	}
3844
3845#ifdef CONFIG_NET_CLS_ACT
3846	if (skb->tc_verd & TC_NCLS) {
3847		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3848		goto ncls;
3849	}
3850#endif
3851
3852	if (pfmemalloc)
3853		goto skip_taps;
3854
3855	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3856		if (pt_prev)
3857			ret = deliver_skb(skb, pt_prev, orig_dev);
3858		pt_prev = ptype;
3859	}
3860
3861	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3862		if (pt_prev)
3863			ret = deliver_skb(skb, pt_prev, orig_dev);
3864		pt_prev = ptype;
3865	}
3866
3867skip_taps:
3868#ifdef CONFIG_NET_INGRESS
3869	if (static_key_false(&ingress_needed)) {
3870		skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3871		if (!skb)
3872			goto out;
3873
3874		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3875			goto out;
3876	}
3877#endif
3878#ifdef CONFIG_NET_CLS_ACT
3879	skb->tc_verd = 0;
3880ncls:
3881#endif
3882	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3883		goto drop;
3884
3885	if (skb_vlan_tag_present(skb)) {
3886		if (pt_prev) {
3887			ret = deliver_skb(skb, pt_prev, orig_dev);
3888			pt_prev = NULL;
3889		}
3890		if (vlan_do_receive(&skb))
3891			goto another_round;
3892		else if (unlikely(!skb))
3893			goto out;
3894	}
3895
3896	rx_handler = rcu_dereference(skb->dev->rx_handler);
3897	if (rx_handler) {
3898		if (pt_prev) {
3899			ret = deliver_skb(skb, pt_prev, orig_dev);
3900			pt_prev = NULL;
3901		}
3902		switch (rx_handler(&skb)) {
3903		case RX_HANDLER_CONSUMED:
3904			ret = NET_RX_SUCCESS;
3905			goto out;
3906		case RX_HANDLER_ANOTHER:
3907			goto another_round;
3908		case RX_HANDLER_EXACT:
3909			deliver_exact = true;
3910		case RX_HANDLER_PASS:
3911			break;
3912		default:
3913			BUG();
3914		}
3915	}
3916
3917	if (unlikely(skb_vlan_tag_present(skb))) {
3918		if (skb_vlan_tag_get_id(skb))
3919			skb->pkt_type = PACKET_OTHERHOST;
3920		/* Note: we might in the future use prio bits
3921		 * and set skb->priority like in vlan_do_receive()
3922		 * For the time being, just ignore Priority Code Point
3923		 */
3924		skb->vlan_tci = 0;
3925	}
3926
3927	type = skb->protocol;
3928
3929	/* deliver only exact match when indicated */
3930	if (likely(!deliver_exact)) {
3931		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3932				       &ptype_base[ntohs(type) &
3933						   PTYPE_HASH_MASK]);
3934	}
3935
3936	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3937			       &orig_dev->ptype_specific);
3938
3939	if (unlikely(skb->dev != orig_dev)) {
3940		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3941				       &skb->dev->ptype_specific);
3942	}
3943
3944	if (pt_prev) {
3945		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3946			goto drop;
3947		else
3948			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3949	} else {
3950drop:
3951		atomic_long_inc(&skb->dev->rx_dropped);
3952		kfree_skb(skb);
3953		/* Jamal, now you will not able to escape explaining
3954		 * me how you were going to use this. :-)
3955		 */
3956		ret = NET_RX_DROP;
3957	}
3958
3959out:
3960	return ret;
3961}
3962
3963static int __netif_receive_skb(struct sk_buff *skb)
3964{
3965	int ret;
3966
3967	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3968		unsigned long pflags = current->flags;
3969
3970		/*
3971		 * PFMEMALLOC skbs are special, they should
3972		 * - be delivered to SOCK_MEMALLOC sockets only
3973		 * - stay away from userspace
3974		 * - have bounded memory usage
3975		 *
3976		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3977		 * context down to all allocation sites.
3978		 */
3979		current->flags |= PF_MEMALLOC;
3980		ret = __netif_receive_skb_core(skb, true);
3981		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3982	} else
3983		ret = __netif_receive_skb_core(skb, false);
3984
3985	return ret;
3986}
3987
3988static int netif_receive_skb_internal(struct sk_buff *skb)
3989{
3990	int ret;
3991
3992	net_timestamp_check(netdev_tstamp_prequeue, skb);
3993
3994	if (skb_defer_rx_timestamp(skb))
3995		return NET_RX_SUCCESS;
3996
3997	rcu_read_lock();
3998
3999#ifdef CONFIG_RPS
4000	if (static_key_false(&rps_needed)) {
4001		struct rps_dev_flow voidflow, *rflow = &voidflow;
4002		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4003
4004		if (cpu >= 0) {
4005			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4006			rcu_read_unlock();
4007			return ret;
4008		}
4009	}
4010#endif
4011	ret = __netif_receive_skb(skb);
4012	rcu_read_unlock();
4013	return ret;
4014}
4015
4016/**
4017 *	netif_receive_skb - process receive buffer from network
4018 *	@skb: buffer to process
4019 *
4020 *	netif_receive_skb() is the main receive data processing function.
4021 *	It always succeeds. The buffer may be dropped during processing
4022 *	for congestion control or by the protocol layers.
4023 *
4024 *	This function may only be called from softirq context and interrupts
4025 *	should be enabled.
4026 *
4027 *	Return values (usually ignored):
4028 *	NET_RX_SUCCESS: no congestion
4029 *	NET_RX_DROP: packet was dropped
4030 */
4031int netif_receive_skb(struct sk_buff *skb)
4032{
4033	trace_netif_receive_skb_entry(skb);
4034
4035	return netif_receive_skb_internal(skb);
4036}
4037EXPORT_SYMBOL(netif_receive_skb);
4038
4039/* Network device is going away, flush any packets still pending
4040 * Called with irqs disabled.
4041 */
4042static void flush_backlog(void *arg)
4043{
4044	struct net_device *dev = arg;
4045	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4046	struct sk_buff *skb, *tmp;
4047
4048	rps_lock(sd);
4049	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4050		if (skb->dev == dev) {
4051			__skb_unlink(skb, &sd->input_pkt_queue);
4052			kfree_skb(skb);
4053			input_queue_head_incr(sd);
4054		}
4055	}
4056	rps_unlock(sd);
4057
4058	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4059		if (skb->dev == dev) {
4060			__skb_unlink(skb, &sd->process_queue);
4061			kfree_skb(skb);
4062			input_queue_head_incr(sd);
4063		}
4064	}
4065}
4066
4067static int napi_gro_complete(struct sk_buff *skb)
4068{
4069	struct packet_offload *ptype;
4070	__be16 type = skb->protocol;
4071	struct list_head *head = &offload_base;
4072	int err = -ENOENT;
4073
4074	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4075
4076	if (NAPI_GRO_CB(skb)->count == 1) {
4077		skb_shinfo(skb)->gso_size = 0;
4078		goto out;
4079	}
4080
4081	rcu_read_lock();
4082	list_for_each_entry_rcu(ptype, head, list) {
4083		if (ptype->type != type || !ptype->callbacks.gro_complete)
4084			continue;
4085
4086		err = ptype->callbacks.gro_complete(skb, 0);
4087		break;
4088	}
4089	rcu_read_unlock();
4090
4091	if (err) {
4092		WARN_ON(&ptype->list == head);
4093		kfree_skb(skb);
4094		return NET_RX_SUCCESS;
4095	}
4096
4097out:
4098	return netif_receive_skb_internal(skb);
4099}
4100
4101/* napi->gro_list contains packets ordered by age.
4102 * youngest packets at the head of it.
4103 * Complete skbs in reverse order to reduce latencies.
4104 */
4105void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4106{
4107	struct sk_buff *skb, *prev = NULL;
4108
4109	/* scan list and build reverse chain */
4110	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4111		skb->prev = prev;
4112		prev = skb;
4113	}
4114
4115	for (skb = prev; skb; skb = prev) {
4116		skb->next = NULL;
4117
4118		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4119			return;
4120
4121		prev = skb->prev;
4122		napi_gro_complete(skb);
4123		napi->gro_count--;
4124	}
4125
4126	napi->gro_list = NULL;
4127}
4128EXPORT_SYMBOL(napi_gro_flush);
4129
4130static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4131{
4132	struct sk_buff *p;
4133	unsigned int maclen = skb->dev->hard_header_len;
4134	u32 hash = skb_get_hash_raw(skb);
4135
4136	for (p = napi->gro_list; p; p = p->next) {
4137		unsigned long diffs;
4138
4139		NAPI_GRO_CB(p)->flush = 0;
4140
4141		if (hash != skb_get_hash_raw(p)) {
4142			NAPI_GRO_CB(p)->same_flow = 0;
4143			continue;
4144		}
4145
4146		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4147		diffs |= p->vlan_tci ^ skb->vlan_tci;
4148		diffs |= skb_metadata_dst_cmp(p, skb);
4149		if (maclen == ETH_HLEN)
4150			diffs |= compare_ether_header(skb_mac_header(p),
4151						      skb_mac_header(skb));
4152		else if (!diffs)
4153			diffs = memcmp(skb_mac_header(p),
4154				       skb_mac_header(skb),
4155				       maclen);
4156		NAPI_GRO_CB(p)->same_flow = !diffs;
4157	}
4158}
4159
4160static void skb_gro_reset_offset(struct sk_buff *skb)
4161{
4162	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4163	const skb_frag_t *frag0 = &pinfo->frags[0];
4164
4165	NAPI_GRO_CB(skb)->data_offset = 0;
4166	NAPI_GRO_CB(skb)->frag0 = NULL;
4167	NAPI_GRO_CB(skb)->frag0_len = 0;
4168
4169	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4170	    pinfo->nr_frags &&
4171	    !PageHighMem(skb_frag_page(frag0))) {
4172		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4173		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4174	}
4175}
4176
4177static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4178{
4179	struct skb_shared_info *pinfo = skb_shinfo(skb);
4180
4181	BUG_ON(skb->end - skb->tail < grow);
4182
4183	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4184
4185	skb->data_len -= grow;
4186	skb->tail += grow;
4187
4188	pinfo->frags[0].page_offset += grow;
4189	skb_frag_size_sub(&pinfo->frags[0], grow);
4190
4191	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4192		skb_frag_unref(skb, 0);
4193		memmove(pinfo->frags, pinfo->frags + 1,
4194			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4195	}
4196}
4197
4198static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4199{
4200	struct sk_buff **pp = NULL;
4201	struct packet_offload *ptype;
4202	__be16 type = skb->protocol;
4203	struct list_head *head = &offload_base;
4204	int same_flow;
4205	enum gro_result ret;
4206	int grow;
4207
4208	if (!(skb->dev->features & NETIF_F_GRO))
4209		goto normal;
4210
4211	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4212		goto normal;
4213
4214	gro_list_prepare(napi, skb);
4215
4216	rcu_read_lock();
4217	list_for_each_entry_rcu(ptype, head, list) {
4218		if (ptype->type != type || !ptype->callbacks.gro_receive)
4219			continue;
4220
4221		skb_set_network_header(skb, skb_gro_offset(skb));
4222		skb_reset_mac_len(skb);
4223		NAPI_GRO_CB(skb)->same_flow = 0;
4224		NAPI_GRO_CB(skb)->flush = 0;
4225		NAPI_GRO_CB(skb)->free = 0;
4226		NAPI_GRO_CB(skb)->udp_mark = 0;
4227		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4228
4229		/* Setup for GRO checksum validation */
4230		switch (skb->ip_summed) {
4231		case CHECKSUM_COMPLETE:
4232			NAPI_GRO_CB(skb)->csum = skb->csum;
4233			NAPI_GRO_CB(skb)->csum_valid = 1;
4234			NAPI_GRO_CB(skb)->csum_cnt = 0;
4235			break;
4236		case CHECKSUM_UNNECESSARY:
4237			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4238			NAPI_GRO_CB(skb)->csum_valid = 0;
4239			break;
4240		default:
4241			NAPI_GRO_CB(skb)->csum_cnt = 0;
4242			NAPI_GRO_CB(skb)->csum_valid = 0;
4243		}
4244
4245		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4246		break;
4247	}
4248	rcu_read_unlock();
4249
4250	if (&ptype->list == head)
4251		goto normal;
4252
4253	same_flow = NAPI_GRO_CB(skb)->same_flow;
4254	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4255
4256	if (pp) {
4257		struct sk_buff *nskb = *pp;
4258
4259		*pp = nskb->next;
4260		nskb->next = NULL;
4261		napi_gro_complete(nskb);
4262		napi->gro_count--;
4263	}
4264
4265	if (same_flow)
4266		goto ok;
4267
4268	if (NAPI_GRO_CB(skb)->flush)
4269		goto normal;
4270
4271	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4272		struct sk_buff *nskb = napi->gro_list;
4273
4274		/* locate the end of the list to select the 'oldest' flow */
4275		while (nskb->next) {
4276			pp = &nskb->next;
4277			nskb = *pp;
4278		}
4279		*pp = NULL;
4280		nskb->next = NULL;
4281		napi_gro_complete(nskb);
4282	} else {
4283		napi->gro_count++;
4284	}
4285	NAPI_GRO_CB(skb)->count = 1;
4286	NAPI_GRO_CB(skb)->age = jiffies;
4287	NAPI_GRO_CB(skb)->last = skb;
4288	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4289	skb->next = napi->gro_list;
4290	napi->gro_list = skb;
4291	ret = GRO_HELD;
4292
4293pull:
4294	grow = skb_gro_offset(skb) - skb_headlen(skb);
4295	if (grow > 0)
4296		gro_pull_from_frag0(skb, grow);
4297ok:
4298	return ret;
4299
4300normal:
4301	ret = GRO_NORMAL;
4302	goto pull;
4303}
4304
4305struct packet_offload *gro_find_receive_by_type(__be16 type)
4306{
4307	struct list_head *offload_head = &offload_base;
4308	struct packet_offload *ptype;
4309
4310	list_for_each_entry_rcu(ptype, offload_head, list) {
4311		if (ptype->type != type || !ptype->callbacks.gro_receive)
4312			continue;
4313		return ptype;
4314	}
4315	return NULL;
4316}
4317EXPORT_SYMBOL(gro_find_receive_by_type);
4318
4319struct packet_offload *gro_find_complete_by_type(__be16 type)
4320{
4321	struct list_head *offload_head = &offload_base;
4322	struct packet_offload *ptype;
4323
4324	list_for_each_entry_rcu(ptype, offload_head, list) {
4325		if (ptype->type != type || !ptype->callbacks.gro_complete)
4326			continue;
4327		return ptype;
4328	}
4329	return NULL;
4330}
4331EXPORT_SYMBOL(gro_find_complete_by_type);
4332
4333static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4334{
4335	switch (ret) {
4336	case GRO_NORMAL:
4337		if (netif_receive_skb_internal(skb))
4338			ret = GRO_DROP;
4339		break;
4340
4341	case GRO_DROP:
4342		kfree_skb(skb);
4343		break;
4344
4345	case GRO_MERGED_FREE:
4346		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4347			skb_dst_drop(skb);
4348			kmem_cache_free(skbuff_head_cache, skb);
4349		} else {
4350			__kfree_skb(skb);
4351		}
4352		break;
4353
4354	case GRO_HELD:
4355	case GRO_MERGED:
4356		break;
4357	}
4358
4359	return ret;
4360}
4361
4362gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4363{
4364	trace_napi_gro_receive_entry(skb);
4365
4366	skb_gro_reset_offset(skb);
4367
4368	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4369}
4370EXPORT_SYMBOL(napi_gro_receive);
4371
4372static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4373{
4374	if (unlikely(skb->pfmemalloc)) {
4375		consume_skb(skb);
4376		return;
4377	}
4378	__skb_pull(skb, skb_headlen(skb));
4379	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4380	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4381	skb->vlan_tci = 0;
4382	skb->dev = napi->dev;
4383	skb->skb_iif = 0;
4384	skb->encapsulation = 0;
4385	skb_shinfo(skb)->gso_type = 0;
4386	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4387
4388	napi->skb = skb;
4389}
4390
4391struct sk_buff *napi_get_frags(struct napi_struct *napi)
4392{
4393	struct sk_buff *skb = napi->skb;
4394
4395	if (!skb) {
4396		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4397		napi->skb = skb;
4398	}
4399	return skb;
4400}
4401EXPORT_SYMBOL(napi_get_frags);
4402
4403static gro_result_t napi_frags_finish(struct napi_struct *napi,
4404				      struct sk_buff *skb,
4405				      gro_result_t ret)
4406{
4407	switch (ret) {
4408	case GRO_NORMAL:
4409	case GRO_HELD:
4410		__skb_push(skb, ETH_HLEN);
4411		skb->protocol = eth_type_trans(skb, skb->dev);
4412		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4413			ret = GRO_DROP;
4414		break;
4415
4416	case GRO_DROP:
4417	case GRO_MERGED_FREE:
4418		napi_reuse_skb(napi, skb);
4419		break;
4420
4421	case GRO_MERGED:
4422		break;
4423	}
4424
4425	return ret;
4426}
4427
4428/* Upper GRO stack assumes network header starts at gro_offset=0
4429 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4430 * We copy ethernet header into skb->data to have a common layout.
4431 */
4432static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4433{
4434	struct sk_buff *skb = napi->skb;
4435	const struct ethhdr *eth;
4436	unsigned int hlen = sizeof(*eth);
4437
4438	napi->skb = NULL;
4439
4440	skb_reset_mac_header(skb);
4441	skb_gro_reset_offset(skb);
4442
4443	eth = skb_gro_header_fast(skb, 0);
4444	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4445		eth = skb_gro_header_slow(skb, hlen, 0);
4446		if (unlikely(!eth)) {
4447			napi_reuse_skb(napi, skb);
4448			return NULL;
4449		}
4450	} else {
4451		gro_pull_from_frag0(skb, hlen);
4452		NAPI_GRO_CB(skb)->frag0 += hlen;
4453		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4454	}
4455	__skb_pull(skb, hlen);
4456
4457	/*
4458	 * This works because the only protocols we care about don't require
4459	 * special handling.
4460	 * We'll fix it up properly in napi_frags_finish()
4461	 */
4462	skb->protocol = eth->h_proto;
4463
4464	return skb;
4465}
4466
4467gro_result_t napi_gro_frags(struct napi_struct *napi)
4468{
4469	struct sk_buff *skb = napi_frags_skb(napi);
4470
4471	if (!skb)
4472		return GRO_DROP;
4473
4474	trace_napi_gro_frags_entry(skb);
4475
4476	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4477}
4478EXPORT_SYMBOL(napi_gro_frags);
4479
4480/* Compute the checksum from gro_offset and return the folded value
4481 * after adding in any pseudo checksum.
4482 */
4483__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4484{
4485	__wsum wsum;
4486	__sum16 sum;
4487
4488	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4489
4490	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4491	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4492	if (likely(!sum)) {
4493		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4494		    !skb->csum_complete_sw)
4495			netdev_rx_csum_fault(skb->dev);
4496	}
4497
4498	NAPI_GRO_CB(skb)->csum = wsum;
4499	NAPI_GRO_CB(skb)->csum_valid = 1;
4500
4501	return sum;
4502}
4503EXPORT_SYMBOL(__skb_gro_checksum_complete);
4504
4505/*
4506 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4507 * Note: called with local irq disabled, but exits with local irq enabled.
4508 */
4509static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4510{
4511#ifdef CONFIG_RPS
4512	struct softnet_data *remsd = sd->rps_ipi_list;
4513
4514	if (remsd) {
4515		sd->rps_ipi_list = NULL;
4516
4517		local_irq_enable();
4518
4519		/* Send pending IPI's to kick RPS processing on remote cpus. */
4520		while (remsd) {
4521			struct softnet_data *next = remsd->rps_ipi_next;
4522
4523			if (cpu_online(remsd->cpu))
4524				smp_call_function_single_async(remsd->cpu,
4525							   &remsd->csd);
4526			remsd = next;
4527		}
4528	} else
4529#endif
4530		local_irq_enable();
4531}
4532
4533static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4534{
4535#ifdef CONFIG_RPS
4536	return sd->rps_ipi_list != NULL;
4537#else
4538	return false;
4539#endif
4540}
4541
4542static int process_backlog(struct napi_struct *napi, int quota)
4543{
4544	int work = 0;
4545	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4546
4547	/* Check if we have pending ipi, its better to send them now,
4548	 * not waiting net_rx_action() end.
4549	 */
4550	if (sd_has_rps_ipi_waiting(sd)) {
4551		local_irq_disable();
4552		net_rps_action_and_irq_enable(sd);
4553	}
4554
4555	napi->weight = weight_p;
4556	local_irq_disable();
4557	while (1) {
4558		struct sk_buff *skb;
4559
4560		while ((skb = __skb_dequeue(&sd->process_queue))) {
4561			rcu_read_lock();
4562			local_irq_enable();
4563			__netif_receive_skb(skb);
4564			rcu_read_unlock();
4565			local_irq_disable();
4566			input_queue_head_incr(sd);
4567			if (++work >= quota) {
4568				local_irq_enable();
4569				return work;
4570			}
4571		}
4572
4573		rps_lock(sd);
4574		if (skb_queue_empty(&sd->input_pkt_queue)) {
4575			/*
4576			 * Inline a custom version of __napi_complete().
4577			 * only current cpu owns and manipulates this napi,
4578			 * and NAPI_STATE_SCHED is the only possible flag set
4579			 * on backlog.
4580			 * We can use a plain write instead of clear_bit(),
4581			 * and we dont need an smp_mb() memory barrier.
4582			 */
4583			napi->state = 0;
4584			rps_unlock(sd);
4585
4586			break;
4587		}
4588
4589		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4590					   &sd->process_queue);
4591		rps_unlock(sd);
4592	}
4593	local_irq_enable();
4594
4595	return work;
4596}
4597
4598/**
4599 * __napi_schedule - schedule for receive
4600 * @n: entry to schedule
4601 *
4602 * The entry's receive function will be scheduled to run.
4603 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4604 */
4605void __napi_schedule(struct napi_struct *n)
4606{
4607	unsigned long flags;
4608
4609	local_irq_save(flags);
4610	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4611	local_irq_restore(flags);
4612}
4613EXPORT_SYMBOL(__napi_schedule);
4614
4615/**
4616 * __napi_schedule_irqoff - schedule for receive
4617 * @n: entry to schedule
4618 *
4619 * Variant of __napi_schedule() assuming hard irqs are masked
4620 */
4621void __napi_schedule_irqoff(struct napi_struct *n)
4622{
4623	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4624}
4625EXPORT_SYMBOL(__napi_schedule_irqoff);
4626
4627void __napi_complete(struct napi_struct *n)
4628{
4629	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4630
4631	list_del_init(&n->poll_list);
4632	smp_mb__before_atomic();
4633	clear_bit(NAPI_STATE_SCHED, &n->state);
4634}
4635EXPORT_SYMBOL(__napi_complete);
4636
4637void napi_complete_done(struct napi_struct *n, int work_done)
4638{
4639	unsigned long flags;
4640
4641	/*
4642	 * don't let napi dequeue from the cpu poll list
4643	 * just in case its running on a different cpu
4644	 */
4645	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4646		return;
4647
4648	if (n->gro_list) {
4649		unsigned long timeout = 0;
4650
4651		if (work_done)
4652			timeout = n->dev->gro_flush_timeout;
4653
4654		if (timeout)
4655			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4656				      HRTIMER_MODE_REL_PINNED);
4657		else
4658			napi_gro_flush(n, false);
4659	}
4660	if (likely(list_empty(&n->poll_list))) {
4661		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4662	} else {
4663		/* If n->poll_list is not empty, we need to mask irqs */
4664		local_irq_save(flags);
4665		__napi_complete(n);
4666		local_irq_restore(flags);
4667	}
4668}
4669EXPORT_SYMBOL(napi_complete_done);
4670
4671/* must be called under rcu_read_lock(), as we dont take a reference */
4672struct napi_struct *napi_by_id(unsigned int napi_id)
4673{
4674	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4675	struct napi_struct *napi;
4676
4677	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4678		if (napi->napi_id == napi_id)
4679			return napi;
4680
4681	return NULL;
4682}
4683EXPORT_SYMBOL_GPL(napi_by_id);
4684
4685void napi_hash_add(struct napi_struct *napi)
4686{
4687	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4688
4689		spin_lock(&napi_hash_lock);
4690
4691		/* 0 is not a valid id, we also skip an id that is taken
4692		 * we expect both events to be extremely rare
4693		 */
4694		napi->napi_id = 0;
4695		while (!napi->napi_id) {
4696			napi->napi_id = ++napi_gen_id;
4697			if (napi_by_id(napi->napi_id))
4698				napi->napi_id = 0;
4699		}
4700
4701		hlist_add_head_rcu(&napi->napi_hash_node,
4702			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4703
4704		spin_unlock(&napi_hash_lock);
4705	}
4706}
4707EXPORT_SYMBOL_GPL(napi_hash_add);
4708
4709/* Warning : caller is responsible to make sure rcu grace period
4710 * is respected before freeing memory containing @napi
4711 */
4712void napi_hash_del(struct napi_struct *napi)
4713{
4714	spin_lock(&napi_hash_lock);
4715
4716	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4717		hlist_del_rcu(&napi->napi_hash_node);
4718
4719	spin_unlock(&napi_hash_lock);
4720}
4721EXPORT_SYMBOL_GPL(napi_hash_del);
4722
4723static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4724{
4725	struct napi_struct *napi;
4726
4727	napi = container_of(timer, struct napi_struct, timer);
4728	if (napi->gro_list)
4729		napi_schedule(napi);
4730
4731	return HRTIMER_NORESTART;
4732}
4733
4734void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4735		    int (*poll)(struct napi_struct *, int), int weight)
4736{
4737	INIT_LIST_HEAD(&napi->poll_list);
4738	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4739	napi->timer.function = napi_watchdog;
4740	napi->gro_count = 0;
4741	napi->gro_list = NULL;
4742	napi->skb = NULL;
4743	napi->poll = poll;
4744	if (weight > NAPI_POLL_WEIGHT)
4745		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4746			    weight, dev->name);
4747	napi->weight = weight;
4748	list_add(&napi->dev_list, &dev->napi_list);
4749	napi->dev = dev;
4750#ifdef CONFIG_NETPOLL
4751	spin_lock_init(&napi->poll_lock);
4752	napi->poll_owner = -1;
4753#endif
4754	set_bit(NAPI_STATE_SCHED, &napi->state);
4755}
4756EXPORT_SYMBOL(netif_napi_add);
4757
4758void napi_disable(struct napi_struct *n)
4759{
4760	might_sleep();
4761	set_bit(NAPI_STATE_DISABLE, &n->state);
4762
4763	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4764		msleep(1);
4765	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4766		msleep(1);
4767
4768	hrtimer_cancel(&n->timer);
4769
4770	clear_bit(NAPI_STATE_DISABLE, &n->state);
4771}
4772EXPORT_SYMBOL(napi_disable);
4773
4774void netif_napi_del(struct napi_struct *napi)
4775{
4776	list_del_init(&napi->dev_list);
4777	napi_free_frags(napi);
4778
4779	kfree_skb_list(napi->gro_list);
4780	napi->gro_list = NULL;
4781	napi->gro_count = 0;
4782}
4783EXPORT_SYMBOL(netif_napi_del);
4784
4785static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4786{
4787	void *have;
4788	int work, weight;
4789
4790	list_del_init(&n->poll_list);
4791
4792	have = netpoll_poll_lock(n);
4793
4794	weight = n->weight;
4795
4796	/* This NAPI_STATE_SCHED test is for avoiding a race
4797	 * with netpoll's poll_napi().  Only the entity which
4798	 * obtains the lock and sees NAPI_STATE_SCHED set will
4799	 * actually make the ->poll() call.  Therefore we avoid
4800	 * accidentally calling ->poll() when NAPI is not scheduled.
4801	 */
4802	work = 0;
4803	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4804		work = n->poll(n, weight);
4805		trace_napi_poll(n);
4806	}
4807
4808	WARN_ON_ONCE(work > weight);
4809
4810	if (likely(work < weight))
4811		goto out_unlock;
4812
4813	/* Drivers must not modify the NAPI state if they
4814	 * consume the entire weight.  In such cases this code
4815	 * still "owns" the NAPI instance and therefore can
4816	 * move the instance around on the list at-will.
4817	 */
4818	if (unlikely(napi_disable_pending(n))) {
4819		napi_complete(n);
4820		goto out_unlock;
4821	}
4822
4823	if (n->gro_list) {
4824		/* flush too old packets
4825		 * If HZ < 1000, flush all packets.
4826		 */
4827		napi_gro_flush(n, HZ >= 1000);
4828	}
4829
4830	/* Some drivers may have called napi_schedule
4831	 * prior to exhausting their budget.
4832	 */
4833	if (unlikely(!list_empty(&n->poll_list))) {
4834		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4835			     n->dev ? n->dev->name : "backlog");
4836		goto out_unlock;
4837	}
4838
4839	list_add_tail(&n->poll_list, repoll);
4840
4841out_unlock:
4842	netpoll_poll_unlock(have);
4843
4844	return work;
4845}
4846
4847static void net_rx_action(struct softirq_action *h)
4848{
4849	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4850	unsigned long time_limit = jiffies + 2;
4851	int budget = netdev_budget;
4852	LIST_HEAD(list);
4853	LIST_HEAD(repoll);
4854
4855	local_irq_disable();
4856	list_splice_init(&sd->poll_list, &list);
4857	local_irq_enable();
4858
4859	for (;;) {
4860		struct napi_struct *n;
4861
4862		if (list_empty(&list)) {
4863			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4864				return;
4865			break;
4866		}
4867
4868		n = list_first_entry(&list, struct napi_struct, poll_list);
4869		budget -= napi_poll(n, &repoll);
4870
4871		/* If softirq window is exhausted then punt.
4872		 * Allow this to run for 2 jiffies since which will allow
4873		 * an average latency of 1.5/HZ.
4874		 */
4875		if (unlikely(budget <= 0 ||
4876			     time_after_eq(jiffies, time_limit))) {
4877			sd->time_squeeze++;
4878			break;
4879		}
4880	}
4881
4882	local_irq_disable();
4883
4884	list_splice_tail_init(&sd->poll_list, &list);
4885	list_splice_tail(&repoll, &list);
4886	list_splice(&list, &sd->poll_list);
4887	if (!list_empty(&sd->poll_list))
4888		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4889
4890	net_rps_action_and_irq_enable(sd);
4891}
4892
4893struct netdev_adjacent {
4894	struct net_device *dev;
4895
4896	/* upper master flag, there can only be one master device per list */
4897	bool master;
4898
4899	/* counter for the number of times this device was added to us */
4900	u16 ref_nr;
4901
4902	/* private field for the users */
4903	void *private;
4904
4905	struct list_head list;
4906	struct rcu_head rcu;
4907};
4908
4909static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4910						 struct list_head *adj_list)
4911{
4912	struct netdev_adjacent *adj;
4913
4914	list_for_each_entry(adj, adj_list, list) {
4915		if (adj->dev == adj_dev)
4916			return adj;
4917	}
4918	return NULL;
4919}
4920
4921/**
4922 * netdev_has_upper_dev - Check if device is linked to an upper device
4923 * @dev: device
4924 * @upper_dev: upper device to check
4925 *
4926 * Find out if a device is linked to specified upper device and return true
4927 * in case it is. Note that this checks only immediate upper device,
4928 * not through a complete stack of devices. The caller must hold the RTNL lock.
4929 */
4930bool netdev_has_upper_dev(struct net_device *dev,
4931			  struct net_device *upper_dev)
4932{
4933	ASSERT_RTNL();
4934
4935	return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4936}
4937EXPORT_SYMBOL(netdev_has_upper_dev);
4938
4939/**
4940 * netdev_has_any_upper_dev - Check if device is linked to some device
4941 * @dev: device
4942 *
4943 * Find out if a device is linked to an upper device and return true in case
4944 * it is. The caller must hold the RTNL lock.
4945 */
4946static bool netdev_has_any_upper_dev(struct net_device *dev)
4947{
4948	ASSERT_RTNL();
4949
4950	return !list_empty(&dev->all_adj_list.upper);
4951}
4952
4953/**
4954 * netdev_master_upper_dev_get - Get master upper device
4955 * @dev: device
4956 *
4957 * Find a master upper device and return pointer to it or NULL in case
4958 * it's not there. The caller must hold the RTNL lock.
4959 */
4960struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4961{
4962	struct netdev_adjacent *upper;
4963
4964	ASSERT_RTNL();
4965
4966	if (list_empty(&dev->adj_list.upper))
4967		return NULL;
4968
4969	upper = list_first_entry(&dev->adj_list.upper,
4970				 struct netdev_adjacent, list);
4971	if (likely(upper->master))
4972		return upper->dev;
4973	return NULL;
4974}
4975EXPORT_SYMBOL(netdev_master_upper_dev_get);
4976
4977void *netdev_adjacent_get_private(struct list_head *adj_list)
4978{
4979	struct netdev_adjacent *adj;
4980
4981	adj = list_entry(adj_list, struct netdev_adjacent, list);
4982
4983	return adj->private;
4984}
4985EXPORT_SYMBOL(netdev_adjacent_get_private);
4986
4987/**
4988 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4989 * @dev: device
4990 * @iter: list_head ** of the current position
4991 *
4992 * Gets the next device from the dev's upper list, starting from iter
4993 * position. The caller must hold RCU read lock.
4994 */
4995struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4996						 struct list_head **iter)
4997{
4998	struct netdev_adjacent *upper;
4999
5000	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5001
5002	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5003
5004	if (&upper->list == &dev->adj_list.upper)
5005		return NULL;
5006
5007	*iter = &upper->list;
5008
5009	return upper->dev;
5010}
5011EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5012
5013/**
5014 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5015 * @dev: device
5016 * @iter: list_head ** of the current position
5017 *
5018 * Gets the next device from the dev's upper list, starting from iter
5019 * position. The caller must hold RCU read lock.
5020 */
5021struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5022						     struct list_head **iter)
5023{
5024	struct netdev_adjacent *upper;
5025
5026	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5027
5028	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5029
5030	if (&upper->list == &dev->all_adj_list.upper)
5031		return NULL;
5032
5033	*iter = &upper->list;
5034
5035	return upper->dev;
5036}
5037EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5038
5039/**
5040 * netdev_lower_get_next_private - Get the next ->private from the
5041 *				   lower neighbour list
5042 * @dev: device
5043 * @iter: list_head ** of the current position
5044 *
5045 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5046 * list, starting from iter position. The caller must hold either hold the
5047 * RTNL lock or its own locking that guarantees that the neighbour lower
5048 * list will remain unchanged.
5049 */
5050void *netdev_lower_get_next_private(struct net_device *dev,
5051				    struct list_head **iter)
5052{
5053	struct netdev_adjacent *lower;
5054
5055	lower = list_entry(*iter, struct netdev_adjacent, list);
5056
5057	if (&lower->list == &dev->adj_list.lower)
5058		return NULL;
5059
5060	*iter = lower->list.next;
5061
5062	return lower->private;
5063}
5064EXPORT_SYMBOL(netdev_lower_get_next_private);
5065
5066/**
5067 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5068 *				       lower neighbour list, RCU
5069 *				       variant
5070 * @dev: device
5071 * @iter: list_head ** of the current position
5072 *
5073 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5074 * list, starting from iter position. The caller must hold RCU read lock.
5075 */
5076void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5077					struct list_head **iter)
5078{
5079	struct netdev_adjacent *lower;
5080
5081	WARN_ON_ONCE(!rcu_read_lock_held());
5082
5083	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5084
5085	if (&lower->list == &dev->adj_list.lower)
5086		return NULL;
5087
5088	*iter = &lower->list;
5089
5090	return lower->private;
5091}
5092EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5093
5094/**
5095 * netdev_lower_get_next - Get the next device from the lower neighbour
5096 *                         list
5097 * @dev: device
5098 * @iter: list_head ** of the current position
5099 *
5100 * Gets the next netdev_adjacent from the dev's lower neighbour
5101 * list, starting from iter position. The caller must hold RTNL lock or
5102 * its own locking that guarantees that the neighbour lower
5103 * list will remain unchanged.
5104 */
5105void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5106{
5107	struct netdev_adjacent *lower;
5108
5109	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5110
5111	if (&lower->list == &dev->adj_list.lower)
5112		return NULL;
5113
5114	*iter = &lower->list;
5115
5116	return lower->dev;
5117}
5118EXPORT_SYMBOL(netdev_lower_get_next);
5119
5120/**
5121 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5122 *				       lower neighbour list, RCU
5123 *				       variant
5124 * @dev: device
5125 *
5126 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5127 * list. The caller must hold RCU read lock.
5128 */
5129void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5130{
5131	struct netdev_adjacent *lower;
5132
5133	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5134			struct netdev_adjacent, list);
5135	if (lower)
5136		return lower->private;
5137	return NULL;
5138}
5139EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5140
5141/**
5142 * netdev_master_upper_dev_get_rcu - Get master upper device
5143 * @dev: device
5144 *
5145 * Find a master upper device and return pointer to it or NULL in case
5146 * it's not there. The caller must hold the RCU read lock.
5147 */
5148struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5149{
5150	struct netdev_adjacent *upper;
5151
5152	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5153				       struct netdev_adjacent, list);
5154	if (upper && likely(upper->master))
5155		return upper->dev;
5156	return NULL;
5157}
5158EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5159
5160static int netdev_adjacent_sysfs_add(struct net_device *dev,
5161			      struct net_device *adj_dev,
5162			      struct list_head *dev_list)
5163{
5164	char linkname[IFNAMSIZ+7];
5165	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5166		"upper_%s" : "lower_%s", adj_dev->name);
5167	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5168				 linkname);
5169}
5170static void netdev_adjacent_sysfs_del(struct net_device *dev,
5171			       char *name,
5172			       struct list_head *dev_list)
5173{
5174	char linkname[IFNAMSIZ+7];
5175	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5176		"upper_%s" : "lower_%s", name);
5177	sysfs_remove_link(&(dev->dev.kobj), linkname);
5178}
5179
5180static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5181						 struct net_device *adj_dev,
5182						 struct list_head *dev_list)
5183{
5184	return (dev_list == &dev->adj_list.upper ||
5185		dev_list == &dev->adj_list.lower) &&
5186		net_eq(dev_net(dev), dev_net(adj_dev));
5187}
5188
5189static int __netdev_adjacent_dev_insert(struct net_device *dev,
5190					struct net_device *adj_dev,
5191					struct list_head *dev_list,
5192					void *private, bool master)
5193{
5194	struct netdev_adjacent *adj;
5195	int ret;
5196
5197	adj = __netdev_find_adj(adj_dev, dev_list);
5198
5199	if (adj) {
5200		adj->ref_nr++;
5201		return 0;
5202	}
5203
5204	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5205	if (!adj)
5206		return -ENOMEM;
5207
5208	adj->dev = adj_dev;
5209	adj->master = master;
5210	adj->ref_nr = 1;
5211	adj->private = private;
5212	dev_hold(adj_dev);
5213
5214	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5215		 adj_dev->name, dev->name, adj_dev->name);
5216
5217	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5218		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5219		if (ret)
5220			goto free_adj;
5221	}
5222
5223	/* Ensure that master link is always the first item in list. */
5224	if (master) {
5225		ret = sysfs_create_link(&(dev->dev.kobj),
5226					&(adj_dev->dev.kobj), "master");
5227		if (ret)
5228			goto remove_symlinks;
5229
5230		list_add_rcu(&adj->list, dev_list);
5231	} else {
5232		list_add_tail_rcu(&adj->list, dev_list);
5233	}
5234
5235	return 0;
5236
5237remove_symlinks:
5238	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5239		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5240free_adj:
5241	kfree(adj);
5242	dev_put(adj_dev);
5243
5244	return ret;
5245}
5246
5247static void __netdev_adjacent_dev_remove(struct net_device *dev,
5248					 struct net_device *adj_dev,
5249					 struct list_head *dev_list)
5250{
5251	struct netdev_adjacent *adj;
5252
5253	adj = __netdev_find_adj(adj_dev, dev_list);
5254
5255	if (!adj) {
5256		pr_err("tried to remove device %s from %s\n",
5257		       dev->name, adj_dev->name);
5258		BUG();
5259	}
5260
5261	if (adj->ref_nr > 1) {
5262		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5263			 adj->ref_nr-1);
5264		adj->ref_nr--;
5265		return;
5266	}
5267
5268	if (adj->master)
5269		sysfs_remove_link(&(dev->dev.kobj), "master");
5270
5271	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5272		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5273
5274	list_del_rcu(&adj->list);
5275	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5276		 adj_dev->name, dev->name, adj_dev->name);
5277	dev_put(adj_dev);
5278	kfree_rcu(adj, rcu);
5279}
5280
5281static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5282					    struct net_device *upper_dev,
5283					    struct list_head *up_list,
5284					    struct list_head *down_list,
5285					    void *private, bool master)
5286{
5287	int ret;
5288
5289	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5290					   master);
5291	if (ret)
5292		return ret;
5293
5294	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5295					   false);
5296	if (ret) {
5297		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5298		return ret;
5299	}
5300
5301	return 0;
5302}
5303
5304static int __netdev_adjacent_dev_link(struct net_device *dev,
5305				      struct net_device *upper_dev)
5306{
5307	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5308						&dev->all_adj_list.upper,
5309						&upper_dev->all_adj_list.lower,
5310						NULL, false);
5311}
5312
5313static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5314					       struct net_device *upper_dev,
5315					       struct list_head *up_list,
5316					       struct list_head *down_list)
5317{
5318	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5319	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5320}
5321
5322static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5323					 struct net_device *upper_dev)
5324{
5325	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5326					   &dev->all_adj_list.upper,
5327					   &upper_dev->all_adj_list.lower);
5328}
5329
5330static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5331						struct net_device *upper_dev,
5332						void *private, bool master)
5333{
5334	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5335
5336	if (ret)
5337		return ret;
5338
5339	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5340					       &dev->adj_list.upper,
5341					       &upper_dev->adj_list.lower,
5342					       private, master);
5343	if (ret) {
5344		__netdev_adjacent_dev_unlink(dev, upper_dev);
5345		return ret;
5346	}
5347
5348	return 0;
5349}
5350
5351static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5352						   struct net_device *upper_dev)
5353{
5354	__netdev_adjacent_dev_unlink(dev, upper_dev);
5355	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5356					   &dev->adj_list.upper,
5357					   &upper_dev->adj_list.lower);
5358}
5359
5360static int __netdev_upper_dev_link(struct net_device *dev,
5361				   struct net_device *upper_dev, bool master,
5362				   void *private)
5363{
5364	struct netdev_notifier_changeupper_info changeupper_info;
5365	struct netdev_adjacent *i, *j, *to_i, *to_j;
5366	int ret = 0;
5367
5368	ASSERT_RTNL();
5369
5370	if (dev == upper_dev)
5371		return -EBUSY;
5372
5373	/* To prevent loops, check if dev is not upper device to upper_dev. */
5374	if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5375		return -EBUSY;
5376
5377	if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5378		return -EEXIST;
5379
5380	if (master && netdev_master_upper_dev_get(dev))
5381		return -EBUSY;
5382
5383	changeupper_info.upper_dev = upper_dev;
5384	changeupper_info.master = master;
5385	changeupper_info.linking = true;
5386
5387	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5388					    &changeupper_info.info);
5389	ret = notifier_to_errno(ret);
5390	if (ret)
5391		return ret;
5392
5393	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5394						   master);
5395	if (ret)
5396		return ret;
5397
5398	/* Now that we linked these devs, make all the upper_dev's
5399	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5400	 * versa, and don't forget the devices itself. All of these
5401	 * links are non-neighbours.
5402	 */
5403	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5404		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5405			pr_debug("Interlinking %s with %s, non-neighbour\n",
5406				 i->dev->name, j->dev->name);
5407			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5408			if (ret)
5409				goto rollback_mesh;
5410		}
5411	}
5412
5413	/* add dev to every upper_dev's upper device */
5414	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5415		pr_debug("linking %s's upper device %s with %s\n",
5416			 upper_dev->name, i->dev->name, dev->name);
5417		ret = __netdev_adjacent_dev_link(dev, i->dev);
5418		if (ret)
5419			goto rollback_upper_mesh;
5420	}
5421
5422	/* add upper_dev to every dev's lower device */
5423	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5424		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5425			 i->dev->name, upper_dev->name);
5426		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5427		if (ret)
5428			goto rollback_lower_mesh;
5429	}
5430
5431	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5432				      &changeupper_info.info);
5433	return 0;
5434
5435rollback_lower_mesh:
5436	to_i = i;
5437	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5438		if (i == to_i)
5439			break;
5440		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5441	}
5442
5443	i = NULL;
5444
5445rollback_upper_mesh:
5446	to_i = i;
5447	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5448		if (i == to_i)
5449			break;
5450		__netdev_adjacent_dev_unlink(dev, i->dev);
5451	}
5452
5453	i = j = NULL;
5454
5455rollback_mesh:
5456	to_i = i;
5457	to_j = j;
5458	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5459		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5460			if (i == to_i && j == to_j)
5461				break;
5462			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5463		}
5464		if (i == to_i)
5465			break;
5466	}
5467
5468	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5469
5470	return ret;
5471}
5472
5473/**
5474 * netdev_upper_dev_link - Add a link to the upper device
5475 * @dev: device
5476 * @upper_dev: new upper device
5477 *
5478 * Adds a link to device which is upper to this one. The caller must hold
5479 * the RTNL lock. On a failure a negative errno code is returned.
5480 * On success the reference counts are adjusted and the function
5481 * returns zero.
5482 */
5483int netdev_upper_dev_link(struct net_device *dev,
5484			  struct net_device *upper_dev)
5485{
5486	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5487}
5488EXPORT_SYMBOL(netdev_upper_dev_link);
5489
5490/**
5491 * netdev_master_upper_dev_link - Add a master link to the upper device
5492 * @dev: device
5493 * @upper_dev: new upper device
5494 *
5495 * Adds a link to device which is upper to this one. In this case, only
5496 * one master upper device can be linked, although other non-master devices
5497 * might be linked as well. The caller must hold the RTNL lock.
5498 * On a failure a negative errno code is returned. On success the reference
5499 * counts are adjusted and the function returns zero.
5500 */
5501int netdev_master_upper_dev_link(struct net_device *dev,
5502				 struct net_device *upper_dev)
5503{
5504	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5505}
5506EXPORT_SYMBOL(netdev_master_upper_dev_link);
5507
5508int netdev_master_upper_dev_link_private(struct net_device *dev,
5509					 struct net_device *upper_dev,
5510					 void *private)
5511{
5512	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5513}
5514EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5515
5516/**
5517 * netdev_upper_dev_unlink - Removes a link to upper device
5518 * @dev: device
5519 * @upper_dev: new upper device
5520 *
5521 * Removes a link to device which is upper to this one. The caller must hold
5522 * the RTNL lock.
5523 */
5524void netdev_upper_dev_unlink(struct net_device *dev,
5525			     struct net_device *upper_dev)
5526{
5527	struct netdev_notifier_changeupper_info changeupper_info;
5528	struct netdev_adjacent *i, *j;
5529	ASSERT_RTNL();
5530
5531	changeupper_info.upper_dev = upper_dev;
5532	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5533	changeupper_info.linking = false;
5534
5535	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5536				      &changeupper_info.info);
5537
5538	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5539
5540	/* Here is the tricky part. We must remove all dev's lower
5541	 * devices from all upper_dev's upper devices and vice
5542	 * versa, to maintain the graph relationship.
5543	 */
5544	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5545		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5546			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5547
5548	/* remove also the devices itself from lower/upper device
5549	 * list
5550	 */
5551	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5552		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5553
5554	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5555		__netdev_adjacent_dev_unlink(dev, i->dev);
5556
5557	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5558				      &changeupper_info.info);
5559}
5560EXPORT_SYMBOL(netdev_upper_dev_unlink);
5561
5562/**
5563 * netdev_bonding_info_change - Dispatch event about slave change
5564 * @dev: device
5565 * @bonding_info: info to dispatch
5566 *
5567 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5568 * The caller must hold the RTNL lock.
5569 */
5570void netdev_bonding_info_change(struct net_device *dev,
5571				struct netdev_bonding_info *bonding_info)
5572{
5573	struct netdev_notifier_bonding_info	info;
5574
5575	memcpy(&info.bonding_info, bonding_info,
5576	       sizeof(struct netdev_bonding_info));
5577	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5578				      &info.info);
5579}
5580EXPORT_SYMBOL(netdev_bonding_info_change);
5581
5582static void netdev_adjacent_add_links(struct net_device *dev)
5583{
5584	struct netdev_adjacent *iter;
5585
5586	struct net *net = dev_net(dev);
5587
5588	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5589		if (!net_eq(net,dev_net(iter->dev)))
5590			continue;
5591		netdev_adjacent_sysfs_add(iter->dev, dev,
5592					  &iter->dev->adj_list.lower);
5593		netdev_adjacent_sysfs_add(dev, iter->dev,
5594					  &dev->adj_list.upper);
5595	}
5596
5597	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5598		if (!net_eq(net,dev_net(iter->dev)))
5599			continue;
5600		netdev_adjacent_sysfs_add(iter->dev, dev,
5601					  &iter->dev->adj_list.upper);
5602		netdev_adjacent_sysfs_add(dev, iter->dev,
5603					  &dev->adj_list.lower);
5604	}
5605}
5606
5607static void netdev_adjacent_del_links(struct net_device *dev)
5608{
5609	struct netdev_adjacent *iter;
5610
5611	struct net *net = dev_net(dev);
5612
5613	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5614		if (!net_eq(net,dev_net(iter->dev)))
5615			continue;
5616		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5617					  &iter->dev->adj_list.lower);
5618		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5619					  &dev->adj_list.upper);
5620	}
5621
5622	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5623		if (!net_eq(net,dev_net(iter->dev)))
5624			continue;
5625		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5626					  &iter->dev->adj_list.upper);
5627		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5628					  &dev->adj_list.lower);
5629	}
5630}
5631
5632void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5633{
5634	struct netdev_adjacent *iter;
5635
5636	struct net *net = dev_net(dev);
5637
5638	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5639		if (!net_eq(net,dev_net(iter->dev)))
5640			continue;
5641		netdev_adjacent_sysfs_del(iter->dev, oldname,
5642					  &iter->dev->adj_list.lower);
5643		netdev_adjacent_sysfs_add(iter->dev, dev,
5644					  &iter->dev->adj_list.lower);
5645	}
5646
5647	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5648		if (!net_eq(net,dev_net(iter->dev)))
5649			continue;
5650		netdev_adjacent_sysfs_del(iter->dev, oldname,
5651					  &iter->dev->adj_list.upper);
5652		netdev_adjacent_sysfs_add(iter->dev, dev,
5653					  &iter->dev->adj_list.upper);
5654	}
5655}
5656
5657void *netdev_lower_dev_get_private(struct net_device *dev,
5658				   struct net_device *lower_dev)
5659{
5660	struct netdev_adjacent *lower;
5661
5662	if (!lower_dev)
5663		return NULL;
5664	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5665	if (!lower)
5666		return NULL;
5667
5668	return lower->private;
5669}
5670EXPORT_SYMBOL(netdev_lower_dev_get_private);
5671
5672
5673int dev_get_nest_level(struct net_device *dev,
5674		       bool (*type_check)(struct net_device *dev))
5675{
5676	struct net_device *lower = NULL;
5677	struct list_head *iter;
5678	int max_nest = -1;
5679	int nest;
5680
5681	ASSERT_RTNL();
5682
5683	netdev_for_each_lower_dev(dev, lower, iter) {
5684		nest = dev_get_nest_level(lower, type_check);
5685		if (max_nest < nest)
5686			max_nest = nest;
5687	}
5688
5689	if (type_check(dev))
5690		max_nest++;
5691
5692	return max_nest;
5693}
5694EXPORT_SYMBOL(dev_get_nest_level);
5695
5696static void dev_change_rx_flags(struct net_device *dev, int flags)
5697{
5698	const struct net_device_ops *ops = dev->netdev_ops;
5699
5700	if (ops->ndo_change_rx_flags)
5701		ops->ndo_change_rx_flags(dev, flags);
5702}
5703
5704static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5705{
5706	unsigned int old_flags = dev->flags;
5707	kuid_t uid;
5708	kgid_t gid;
5709
5710	ASSERT_RTNL();
5711
5712	dev->flags |= IFF_PROMISC;
5713	dev->promiscuity += inc;
5714	if (dev->promiscuity == 0) {
5715		/*
5716		 * Avoid overflow.
5717		 * If inc causes overflow, untouch promisc and return error.
5718		 */
5719		if (inc < 0)
5720			dev->flags &= ~IFF_PROMISC;
5721		else {
5722			dev->promiscuity -= inc;
5723			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5724				dev->name);
5725			return -EOVERFLOW;
5726		}
5727	}
5728	if (dev->flags != old_flags) {
5729		pr_info("device %s %s promiscuous mode\n",
5730			dev->name,
5731			dev->flags & IFF_PROMISC ? "entered" : "left");
5732		if (audit_enabled) {
5733			current_uid_gid(&uid, &gid);
5734			audit_log(current->audit_context, GFP_ATOMIC,
5735				AUDIT_ANOM_PROMISCUOUS,
5736				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5737				dev->name, (dev->flags & IFF_PROMISC),
5738				(old_flags & IFF_PROMISC),
5739				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5740				from_kuid(&init_user_ns, uid),
5741				from_kgid(&init_user_ns, gid),
5742				audit_get_sessionid(current));
5743		}
5744
5745		dev_change_rx_flags(dev, IFF_PROMISC);
5746	}
5747	if (notify)
5748		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5749	return 0;
5750}
5751
5752/**
5753 *	dev_set_promiscuity	- update promiscuity count on a device
5754 *	@dev: device
5755 *	@inc: modifier
5756 *
5757 *	Add or remove promiscuity from a device. While the count in the device
5758 *	remains above zero the interface remains promiscuous. Once it hits zero
5759 *	the device reverts back to normal filtering operation. A negative inc
5760 *	value is used to drop promiscuity on the device.
5761 *	Return 0 if successful or a negative errno code on error.
5762 */
5763int dev_set_promiscuity(struct net_device *dev, int inc)
5764{
5765	unsigned int old_flags = dev->flags;
5766	int err;
5767
5768	err = __dev_set_promiscuity(dev, inc, true);
5769	if (err < 0)
5770		return err;
5771	if (dev->flags != old_flags)
5772		dev_set_rx_mode(dev);
5773	return err;
5774}
5775EXPORT_SYMBOL(dev_set_promiscuity);
5776
5777static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5778{
5779	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5780
5781	ASSERT_RTNL();
5782
5783	dev->flags |= IFF_ALLMULTI;
5784	dev->allmulti += inc;
5785	if (dev->allmulti == 0) {
5786		/*
5787		 * Avoid overflow.
5788		 * If inc causes overflow, untouch allmulti and return error.
5789		 */
5790		if (inc < 0)
5791			dev->flags &= ~IFF_ALLMULTI;
5792		else {
5793			dev->allmulti -= inc;
5794			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5795				dev->name);
5796			return -EOVERFLOW;
5797		}
5798	}
5799	if (dev->flags ^ old_flags) {
5800		dev_change_rx_flags(dev, IFF_ALLMULTI);
5801		dev_set_rx_mode(dev);
5802		if (notify)
5803			__dev_notify_flags(dev, old_flags,
5804					   dev->gflags ^ old_gflags);
5805	}
5806	return 0;
5807}
5808
5809/**
5810 *	dev_set_allmulti	- update allmulti count on a device
5811 *	@dev: device
5812 *	@inc: modifier
5813 *
5814 *	Add or remove reception of all multicast frames to a device. While the
5815 *	count in the device remains above zero the interface remains listening
5816 *	to all interfaces. Once it hits zero the device reverts back to normal
5817 *	filtering operation. A negative @inc value is used to drop the counter
5818 *	when releasing a resource needing all multicasts.
5819 *	Return 0 if successful or a negative errno code on error.
5820 */
5821
5822int dev_set_allmulti(struct net_device *dev, int inc)
5823{
5824	return __dev_set_allmulti(dev, inc, true);
5825}
5826EXPORT_SYMBOL(dev_set_allmulti);
5827
5828/*
5829 *	Upload unicast and multicast address lists to device and
5830 *	configure RX filtering. When the device doesn't support unicast
5831 *	filtering it is put in promiscuous mode while unicast addresses
5832 *	are present.
5833 */
5834void __dev_set_rx_mode(struct net_device *dev)
5835{
5836	const struct net_device_ops *ops = dev->netdev_ops;
5837
5838	/* dev_open will call this function so the list will stay sane. */
5839	if (!(dev->flags&IFF_UP))
5840		return;
5841
5842	if (!netif_device_present(dev))
5843		return;
5844
5845	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5846		/* Unicast addresses changes may only happen under the rtnl,
5847		 * therefore calling __dev_set_promiscuity here is safe.
5848		 */
5849		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5850			__dev_set_promiscuity(dev, 1, false);
5851			dev->uc_promisc = true;
5852		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5853			__dev_set_promiscuity(dev, -1, false);
5854			dev->uc_promisc = false;
5855		}
5856	}
5857
5858	if (ops->ndo_set_rx_mode)
5859		ops->ndo_set_rx_mode(dev);
5860}
5861
5862void dev_set_rx_mode(struct net_device *dev)
5863{
5864	netif_addr_lock_bh(dev);
5865	__dev_set_rx_mode(dev);
5866	netif_addr_unlock_bh(dev);
5867}
5868
5869/**
5870 *	dev_get_flags - get flags reported to userspace
5871 *	@dev: device
5872 *
5873 *	Get the combination of flag bits exported through APIs to userspace.
5874 */
5875unsigned int dev_get_flags(const struct net_device *dev)
5876{
5877	unsigned int flags;
5878
5879	flags = (dev->flags & ~(IFF_PROMISC |
5880				IFF_ALLMULTI |
5881				IFF_RUNNING |
5882				IFF_LOWER_UP |
5883				IFF_DORMANT)) |
5884		(dev->gflags & (IFF_PROMISC |
5885				IFF_ALLMULTI));
5886
5887	if (netif_running(dev)) {
5888		if (netif_oper_up(dev))
5889			flags |= IFF_RUNNING;
5890		if (netif_carrier_ok(dev))
5891			flags |= IFF_LOWER_UP;
5892		if (netif_dormant(dev))
5893			flags |= IFF_DORMANT;
5894	}
5895
5896	return flags;
5897}
5898EXPORT_SYMBOL(dev_get_flags);
5899
5900int __dev_change_flags(struct net_device *dev, unsigned int flags)
5901{
5902	unsigned int old_flags = dev->flags;
5903	int ret;
5904
5905	ASSERT_RTNL();
5906
5907	/*
5908	 *	Set the flags on our device.
5909	 */
5910
5911	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5912			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5913			       IFF_AUTOMEDIA)) |
5914		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5915				    IFF_ALLMULTI));
5916
5917	/*
5918	 *	Load in the correct multicast list now the flags have changed.
5919	 */
5920
5921	if ((old_flags ^ flags) & IFF_MULTICAST)
5922		dev_change_rx_flags(dev, IFF_MULTICAST);
5923
5924	dev_set_rx_mode(dev);
5925
5926	/*
5927	 *	Have we downed the interface. We handle IFF_UP ourselves
5928	 *	according to user attempts to set it, rather than blindly
5929	 *	setting it.
5930	 */
5931
5932	ret = 0;
5933	if ((old_flags ^ flags) & IFF_UP)
5934		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5935
5936	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5937		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5938		unsigned int old_flags = dev->flags;
5939
5940		dev->gflags ^= IFF_PROMISC;
5941
5942		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5943			if (dev->flags != old_flags)
5944				dev_set_rx_mode(dev);
5945	}
5946
5947	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5948	   is important. Some (broken) drivers set IFF_PROMISC, when
5949	   IFF_ALLMULTI is requested not asking us and not reporting.
5950	 */
5951	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5952		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5953
5954		dev->gflags ^= IFF_ALLMULTI;
5955		__dev_set_allmulti(dev, inc, false);
5956	}
5957
5958	return ret;
5959}
5960
5961void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5962			unsigned int gchanges)
5963{
5964	unsigned int changes = dev->flags ^ old_flags;
5965
5966	if (gchanges)
5967		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5968
5969	if (changes & IFF_UP) {
5970		if (dev->flags & IFF_UP)
5971			call_netdevice_notifiers(NETDEV_UP, dev);
5972		else
5973			call_netdevice_notifiers(NETDEV_DOWN, dev);
5974	}
5975
5976	if (dev->flags & IFF_UP &&
5977	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5978		struct netdev_notifier_change_info change_info;
5979
5980		change_info.flags_changed = changes;
5981		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5982					      &change_info.info);
5983	}
5984}
5985
5986/**
5987 *	dev_change_flags - change device settings
5988 *	@dev: device
5989 *	@flags: device state flags
5990 *
5991 *	Change settings on device based state flags. The flags are
5992 *	in the userspace exported format.
5993 */
5994int dev_change_flags(struct net_device *dev, unsigned int flags)
5995{
5996	int ret;
5997	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5998
5999	ret = __dev_change_flags(dev, flags);
6000	if (ret < 0)
6001		return ret;
6002
6003	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6004	__dev_notify_flags(dev, old_flags, changes);
6005	return ret;
6006}
6007EXPORT_SYMBOL(dev_change_flags);
6008
6009static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6010{
6011	const struct net_device_ops *ops = dev->netdev_ops;
6012
6013	if (ops->ndo_change_mtu)
6014		return ops->ndo_change_mtu(dev, new_mtu);
6015
6016	dev->mtu = new_mtu;
6017	return 0;
6018}
6019
6020/**
6021 *	dev_set_mtu - Change maximum transfer unit
6022 *	@dev: device
6023 *	@new_mtu: new transfer unit
6024 *
6025 *	Change the maximum transfer size of the network device.
6026 */
6027int dev_set_mtu(struct net_device *dev, int new_mtu)
6028{
6029	int err, orig_mtu;
6030
6031	if (new_mtu == dev->mtu)
6032		return 0;
6033
6034	/*	MTU must be positive.	 */
6035	if (new_mtu < 0)
6036		return -EINVAL;
6037
6038	if (!netif_device_present(dev))
6039		return -ENODEV;
6040
6041	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6042	err = notifier_to_errno(err);
6043	if (err)
6044		return err;
6045
6046	orig_mtu = dev->mtu;
6047	err = __dev_set_mtu(dev, new_mtu);
6048
6049	if (!err) {
6050		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6051		err = notifier_to_errno(err);
6052		if (err) {
6053			/* setting mtu back and notifying everyone again,
6054			 * so that they have a chance to revert changes.
6055			 */
6056			__dev_set_mtu(dev, orig_mtu);
6057			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6058		}
6059	}
6060	return err;
6061}
6062EXPORT_SYMBOL(dev_set_mtu);
6063
6064/**
6065 *	dev_set_group - Change group this device belongs to
6066 *	@dev: device
6067 *	@new_group: group this device should belong to
6068 */
6069void dev_set_group(struct net_device *dev, int new_group)
6070{
6071	dev->group = new_group;
6072}
6073EXPORT_SYMBOL(dev_set_group);
6074
6075/**
6076 *	dev_set_mac_address - Change Media Access Control Address
6077 *	@dev: device
6078 *	@sa: new address
6079 *
6080 *	Change the hardware (MAC) address of the device
6081 */
6082int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6083{
6084	const struct net_device_ops *ops = dev->netdev_ops;
6085	int err;
6086
6087	if (!ops->ndo_set_mac_address)
6088		return -EOPNOTSUPP;
6089	if (sa->sa_family != dev->type)
6090		return -EINVAL;
6091	if (!netif_device_present(dev))
6092		return -ENODEV;
6093	err = ops->ndo_set_mac_address(dev, sa);
6094	if (err)
6095		return err;
6096	dev->addr_assign_type = NET_ADDR_SET;
6097	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6098	add_device_randomness(dev->dev_addr, dev->addr_len);
6099	return 0;
6100}
6101EXPORT_SYMBOL(dev_set_mac_address);
6102
6103/**
6104 *	dev_change_carrier - Change device carrier
6105 *	@dev: device
6106 *	@new_carrier: new value
6107 *
6108 *	Change device carrier
6109 */
6110int dev_change_carrier(struct net_device *dev, bool new_carrier)
6111{
6112	const struct net_device_ops *ops = dev->netdev_ops;
6113
6114	if (!ops->ndo_change_carrier)
6115		return -EOPNOTSUPP;
6116	if (!netif_device_present(dev))
6117		return -ENODEV;
6118	return ops->ndo_change_carrier(dev, new_carrier);
6119}
6120EXPORT_SYMBOL(dev_change_carrier);
6121
6122/**
6123 *	dev_get_phys_port_id - Get device physical port ID
6124 *	@dev: device
6125 *	@ppid: port ID
6126 *
6127 *	Get device physical port ID
6128 */
6129int dev_get_phys_port_id(struct net_device *dev,
6130			 struct netdev_phys_item_id *ppid)
6131{
6132	const struct net_device_ops *ops = dev->netdev_ops;
6133
6134	if (!ops->ndo_get_phys_port_id)
6135		return -EOPNOTSUPP;
6136	return ops->ndo_get_phys_port_id(dev, ppid);
6137}
6138EXPORT_SYMBOL(dev_get_phys_port_id);
6139
6140/**
6141 *	dev_get_phys_port_name - Get device physical port name
6142 *	@dev: device
6143 *	@name: port name
6144 *
6145 *	Get device physical port name
6146 */
6147int dev_get_phys_port_name(struct net_device *dev,
6148			   char *name, size_t len)
6149{
6150	const struct net_device_ops *ops = dev->netdev_ops;
6151
6152	if (!ops->ndo_get_phys_port_name)
6153		return -EOPNOTSUPP;
6154	return ops->ndo_get_phys_port_name(dev, name, len);
6155}
6156EXPORT_SYMBOL(dev_get_phys_port_name);
6157
6158/**
6159 *	dev_change_proto_down - update protocol port state information
6160 *	@dev: device
6161 *	@proto_down: new value
6162 *
6163 *	This info can be used by switch drivers to set the phys state of the
6164 *	port.
6165 */
6166int dev_change_proto_down(struct net_device *dev, bool proto_down)
6167{
6168	const struct net_device_ops *ops = dev->netdev_ops;
6169
6170	if (!ops->ndo_change_proto_down)
6171		return -EOPNOTSUPP;
6172	if (!netif_device_present(dev))
6173		return -ENODEV;
6174	return ops->ndo_change_proto_down(dev, proto_down);
6175}
6176EXPORT_SYMBOL(dev_change_proto_down);
6177
6178/**
6179 *	dev_new_index	-	allocate an ifindex
6180 *	@net: the applicable net namespace
6181 *
6182 *	Returns a suitable unique value for a new device interface
6183 *	number.  The caller must hold the rtnl semaphore or the
6184 *	dev_base_lock to be sure it remains unique.
6185 */
6186static int dev_new_index(struct net *net)
6187{
6188	int ifindex = net->ifindex;
6189	for (;;) {
6190		if (++ifindex <= 0)
6191			ifindex = 1;
6192		if (!__dev_get_by_index(net, ifindex))
6193			return net->ifindex = ifindex;
6194	}
6195}
6196
6197/* Delayed registration/unregisteration */
6198static LIST_HEAD(net_todo_list);
6199DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6200
6201static void net_set_todo(struct net_device *dev)
6202{
6203	list_add_tail(&dev->todo_list, &net_todo_list);
6204	dev_net(dev)->dev_unreg_count++;
6205}
6206
6207static void rollback_registered_many(struct list_head *head)
6208{
6209	struct net_device *dev, *tmp;
6210	LIST_HEAD(close_head);
6211
6212	BUG_ON(dev_boot_phase);
6213	ASSERT_RTNL();
6214
6215	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6216		/* Some devices call without registering
6217		 * for initialization unwind. Remove those
6218		 * devices and proceed with the remaining.
6219		 */
6220		if (dev->reg_state == NETREG_UNINITIALIZED) {
6221			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6222				 dev->name, dev);
6223
6224			WARN_ON(1);
6225			list_del(&dev->unreg_list);
6226			continue;
6227		}
6228		dev->dismantle = true;
6229		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6230	}
6231
6232	/* If device is running, close it first. */
6233	list_for_each_entry(dev, head, unreg_list)
6234		list_add_tail(&dev->close_list, &close_head);
6235	dev_close_many(&close_head, true);
6236
6237	list_for_each_entry(dev, head, unreg_list) {
6238		/* And unlink it from device chain. */
6239		unlist_netdevice(dev);
6240
6241		dev->reg_state = NETREG_UNREGISTERING;
6242		on_each_cpu(flush_backlog, dev, 1);
6243	}
6244
6245	synchronize_net();
6246
6247	list_for_each_entry(dev, head, unreg_list) {
6248		struct sk_buff *skb = NULL;
6249
6250		/* Shutdown queueing discipline. */
6251		dev_shutdown(dev);
6252
6253
6254		/* Notify protocols, that we are about to destroy
6255		   this device. They should clean all the things.
6256		*/
6257		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6258
6259		if (!dev->rtnl_link_ops ||
6260		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6261			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6262						     GFP_KERNEL);
6263
6264		/*
6265		 *	Flush the unicast and multicast chains
6266		 */
6267		dev_uc_flush(dev);
6268		dev_mc_flush(dev);
6269
6270		if (dev->netdev_ops->ndo_uninit)
6271			dev->netdev_ops->ndo_uninit(dev);
6272
6273		if (skb)
6274			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6275
6276		/* Notifier chain MUST detach us all upper devices. */
6277		WARN_ON(netdev_has_any_upper_dev(dev));
6278
6279		/* Remove entries from kobject tree */
6280		netdev_unregister_kobject(dev);
6281#ifdef CONFIG_XPS
6282		/* Remove XPS queueing entries */
6283		netif_reset_xps_queues_gt(dev, 0);
6284#endif
6285	}
6286
6287	synchronize_net();
6288
6289	list_for_each_entry(dev, head, unreg_list)
6290		dev_put(dev);
6291}
6292
6293static void rollback_registered(struct net_device *dev)
6294{
6295	LIST_HEAD(single);
6296
6297	list_add(&dev->unreg_list, &single);
6298	rollback_registered_many(&single);
6299	list_del(&single);
6300}
6301
6302static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6303	struct net_device *upper, netdev_features_t features)
6304{
6305	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6306	netdev_features_t feature;
6307	int feature_bit;
6308
6309	for_each_netdev_feature(&upper_disables, feature_bit) {
6310		feature = __NETIF_F_BIT(feature_bit);
6311		if (!(upper->wanted_features & feature)
6312		    && (features & feature)) {
6313			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6314				   &feature, upper->name);
6315			features &= ~feature;
6316		}
6317	}
6318
6319	return features;
6320}
6321
6322static void netdev_sync_lower_features(struct net_device *upper,
6323	struct net_device *lower, netdev_features_t features)
6324{
6325	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6326	netdev_features_t feature;
6327	int feature_bit;
6328
6329	for_each_netdev_feature(&upper_disables, feature_bit) {
6330		feature = __NETIF_F_BIT(feature_bit);
6331		if (!(features & feature) && (lower->features & feature)) {
6332			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6333				   &feature, lower->name);
6334			lower->wanted_features &= ~feature;
6335			netdev_update_features(lower);
6336
6337			if (unlikely(lower->features & feature))
6338				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6339					    &feature, lower->name);
6340		}
6341	}
6342}
6343
6344static netdev_features_t netdev_fix_features(struct net_device *dev,
6345	netdev_features_t features)
6346{
6347	/* Fix illegal checksum combinations */
6348	if ((features & NETIF_F_HW_CSUM) &&
6349	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6350		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6351		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6352	}
6353
6354	/* TSO requires that SG is present as well. */
6355	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6356		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6357		features &= ~NETIF_F_ALL_TSO;
6358	}
6359
6360	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6361					!(features & NETIF_F_IP_CSUM)) {
6362		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6363		features &= ~NETIF_F_TSO;
6364		features &= ~NETIF_F_TSO_ECN;
6365	}
6366
6367	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6368					 !(features & NETIF_F_IPV6_CSUM)) {
6369		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6370		features &= ~NETIF_F_TSO6;
6371	}
6372
6373	/* TSO ECN requires that TSO is present as well. */
6374	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6375		features &= ~NETIF_F_TSO_ECN;
6376
6377	/* Software GSO depends on SG. */
6378	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6379		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6380		features &= ~NETIF_F_GSO;
6381	}
6382
6383	/* UFO needs SG and checksumming */
6384	if (features & NETIF_F_UFO) {
6385		/* maybe split UFO into V4 and V6? */
6386		if (!((features & NETIF_F_GEN_CSUM) ||
6387		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6388			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6389			netdev_dbg(dev,
6390				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6391			features &= ~NETIF_F_UFO;
6392		}
6393
6394		if (!(features & NETIF_F_SG)) {
6395			netdev_dbg(dev,
6396				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6397			features &= ~NETIF_F_UFO;
6398		}
6399	}
6400
6401#ifdef CONFIG_NET_RX_BUSY_POLL
6402	if (dev->netdev_ops->ndo_busy_poll)
6403		features |= NETIF_F_BUSY_POLL;
6404	else
6405#endif
6406		features &= ~NETIF_F_BUSY_POLL;
6407
6408	return features;
6409}
6410
6411int __netdev_update_features(struct net_device *dev)
6412{
6413	struct net_device *upper, *lower;
6414	netdev_features_t features;
6415	struct list_head *iter;
6416	int err = -1;
6417
6418	ASSERT_RTNL();
6419
6420	features = netdev_get_wanted_features(dev);
6421
6422	if (dev->netdev_ops->ndo_fix_features)
6423		features = dev->netdev_ops->ndo_fix_features(dev, features);
6424
6425	/* driver might be less strict about feature dependencies */
6426	features = netdev_fix_features(dev, features);
6427
6428	/* some features can't be enabled if they're off an an upper device */
6429	netdev_for_each_upper_dev_rcu(dev, upper, iter)
6430		features = netdev_sync_upper_features(dev, upper, features);
6431
6432	if (dev->features == features)
6433		goto sync_lower;
6434
6435	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6436		&dev->features, &features);
6437
6438	if (dev->netdev_ops->ndo_set_features)
6439		err = dev->netdev_ops->ndo_set_features(dev, features);
6440	else
6441		err = 0;
6442
6443	if (unlikely(err < 0)) {
6444		netdev_err(dev,
6445			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6446			err, &features, &dev->features);
6447		/* return non-0 since some features might have changed and
6448		 * it's better to fire a spurious notification than miss it
6449		 */
6450		return -1;
6451	}
6452
6453sync_lower:
6454	/* some features must be disabled on lower devices when disabled
6455	 * on an upper device (think: bonding master or bridge)
6456	 */
6457	netdev_for_each_lower_dev(dev, lower, iter)
6458		netdev_sync_lower_features(dev, lower, features);
6459
6460	if (!err)
6461		dev->features = features;
6462
6463	return err < 0 ? 0 : 1;
6464}
6465
6466/**
6467 *	netdev_update_features - recalculate device features
6468 *	@dev: the device to check
6469 *
6470 *	Recalculate dev->features set and send notifications if it
6471 *	has changed. Should be called after driver or hardware dependent
6472 *	conditions might have changed that influence the features.
6473 */
6474void netdev_update_features(struct net_device *dev)
6475{
6476	if (__netdev_update_features(dev))
6477		netdev_features_change(dev);
6478}
6479EXPORT_SYMBOL(netdev_update_features);
6480
6481/**
6482 *	netdev_change_features - recalculate device features
6483 *	@dev: the device to check
6484 *
6485 *	Recalculate dev->features set and send notifications even
6486 *	if they have not changed. Should be called instead of
6487 *	netdev_update_features() if also dev->vlan_features might
6488 *	have changed to allow the changes to be propagated to stacked
6489 *	VLAN devices.
6490 */
6491void netdev_change_features(struct net_device *dev)
6492{
6493	__netdev_update_features(dev);
6494	netdev_features_change(dev);
6495}
6496EXPORT_SYMBOL(netdev_change_features);
6497
6498/**
6499 *	netif_stacked_transfer_operstate -	transfer operstate
6500 *	@rootdev: the root or lower level device to transfer state from
6501 *	@dev: the device to transfer operstate to
6502 *
6503 *	Transfer operational state from root to device. This is normally
6504 *	called when a stacking relationship exists between the root
6505 *	device and the device(a leaf device).
6506 */
6507void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6508					struct net_device *dev)
6509{
6510	if (rootdev->operstate == IF_OPER_DORMANT)
6511		netif_dormant_on(dev);
6512	else
6513		netif_dormant_off(dev);
6514
6515	if (netif_carrier_ok(rootdev)) {
6516		if (!netif_carrier_ok(dev))
6517			netif_carrier_on(dev);
6518	} else {
6519		if (netif_carrier_ok(dev))
6520			netif_carrier_off(dev);
6521	}
6522}
6523EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6524
6525#ifdef CONFIG_SYSFS
6526static int netif_alloc_rx_queues(struct net_device *dev)
6527{
6528	unsigned int i, count = dev->num_rx_queues;
6529	struct netdev_rx_queue *rx;
6530	size_t sz = count * sizeof(*rx);
6531
6532	BUG_ON(count < 1);
6533
6534	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6535	if (!rx) {
6536		rx = vzalloc(sz);
6537		if (!rx)
6538			return -ENOMEM;
6539	}
6540	dev->_rx = rx;
6541
6542	for (i = 0; i < count; i++)
6543		rx[i].dev = dev;
6544	return 0;
6545}
6546#endif
6547
6548static void netdev_init_one_queue(struct net_device *dev,
6549				  struct netdev_queue *queue, void *_unused)
6550{
6551	/* Initialize queue lock */
6552	spin_lock_init(&queue->_xmit_lock);
6553	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6554	queue->xmit_lock_owner = -1;
6555	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6556	queue->dev = dev;
6557#ifdef CONFIG_BQL
6558	dql_init(&queue->dql, HZ);
6559#endif
6560}
6561
6562static void netif_free_tx_queues(struct net_device *dev)
6563{
6564	kvfree(dev->_tx);
6565}
6566
6567static int netif_alloc_netdev_queues(struct net_device *dev)
6568{
6569	unsigned int count = dev->num_tx_queues;
6570	struct netdev_queue *tx;
6571	size_t sz = count * sizeof(*tx);
6572
6573	if (count < 1 || count > 0xffff)
6574		return -EINVAL;
6575
6576	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6577	if (!tx) {
6578		tx = vzalloc(sz);
6579		if (!tx)
6580			return -ENOMEM;
6581	}
6582	dev->_tx = tx;
6583
6584	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6585	spin_lock_init(&dev->tx_global_lock);
6586
6587	return 0;
6588}
6589
6590void netif_tx_stop_all_queues(struct net_device *dev)
6591{
6592	unsigned int i;
6593
6594	for (i = 0; i < dev->num_tx_queues; i++) {
6595		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6596		netif_tx_stop_queue(txq);
6597	}
6598}
6599EXPORT_SYMBOL(netif_tx_stop_all_queues);
6600
6601/**
6602 *	register_netdevice	- register a network device
6603 *	@dev: device to register
6604 *
6605 *	Take a completed network device structure and add it to the kernel
6606 *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6607 *	chain. 0 is returned on success. A negative errno code is returned
6608 *	on a failure to set up the device, or if the name is a duplicate.
6609 *
6610 *	Callers must hold the rtnl semaphore. You may want
6611 *	register_netdev() instead of this.
6612 *
6613 *	BUGS:
6614 *	The locking appears insufficient to guarantee two parallel registers
6615 *	will not get the same name.
6616 */
6617
6618int register_netdevice(struct net_device *dev)
6619{
6620	int ret;
6621	struct net *net = dev_net(dev);
6622
6623	BUG_ON(dev_boot_phase);
6624	ASSERT_RTNL();
6625
6626	might_sleep();
6627
6628	/* When net_device's are persistent, this will be fatal. */
6629	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6630	BUG_ON(!net);
6631
6632	spin_lock_init(&dev->addr_list_lock);
6633	netdev_set_addr_lockdep_class(dev);
6634
6635	ret = dev_get_valid_name(net, dev, dev->name);
6636	if (ret < 0)
6637		goto out;
6638
6639	/* Init, if this function is available */
6640	if (dev->netdev_ops->ndo_init) {
6641		ret = dev->netdev_ops->ndo_init(dev);
6642		if (ret) {
6643			if (ret > 0)
6644				ret = -EIO;
6645			goto out;
6646		}
6647	}
6648
6649	if (((dev->hw_features | dev->features) &
6650	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6651	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6652	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6653		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6654		ret = -EINVAL;
6655		goto err_uninit;
6656	}
6657
6658	ret = -EBUSY;
6659	if (!dev->ifindex)
6660		dev->ifindex = dev_new_index(net);
6661	else if (__dev_get_by_index(net, dev->ifindex))
6662		goto err_uninit;
6663
6664	/* Transfer changeable features to wanted_features and enable
6665	 * software offloads (GSO and GRO).
6666	 */
6667	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6668	dev->features |= NETIF_F_SOFT_FEATURES;
6669	dev->wanted_features = dev->features & dev->hw_features;
6670
6671	if (!(dev->flags & IFF_LOOPBACK)) {
6672		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6673	}
6674
6675	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6676	 */
6677	dev->vlan_features |= NETIF_F_HIGHDMA;
6678
6679	/* Make NETIF_F_SG inheritable to tunnel devices.
6680	 */
6681	dev->hw_enc_features |= NETIF_F_SG;
6682
6683	/* Make NETIF_F_SG inheritable to MPLS.
6684	 */
6685	dev->mpls_features |= NETIF_F_SG;
6686
6687	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6688	ret = notifier_to_errno(ret);
6689	if (ret)
6690		goto err_uninit;
6691
6692	ret = netdev_register_kobject(dev);
6693	if (ret)
6694		goto err_uninit;
6695	dev->reg_state = NETREG_REGISTERED;
6696
6697	__netdev_update_features(dev);
6698
6699	/*
6700	 *	Default initial state at registry is that the
6701	 *	device is present.
6702	 */
6703
6704	set_bit(__LINK_STATE_PRESENT, &dev->state);
6705
6706	linkwatch_init_dev(dev);
6707
6708	dev_init_scheduler(dev);
6709	dev_hold(dev);
6710	list_netdevice(dev);
6711	add_device_randomness(dev->dev_addr, dev->addr_len);
6712
6713	/* If the device has permanent device address, driver should
6714	 * set dev_addr and also addr_assign_type should be set to
6715	 * NET_ADDR_PERM (default value).
6716	 */
6717	if (dev->addr_assign_type == NET_ADDR_PERM)
6718		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6719
6720	/* Notify protocols, that a new device appeared. */
6721	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6722	ret = notifier_to_errno(ret);
6723	if (ret) {
6724		rollback_registered(dev);
6725		dev->reg_state = NETREG_UNREGISTERED;
6726	}
6727	/*
6728	 *	Prevent userspace races by waiting until the network
6729	 *	device is fully setup before sending notifications.
6730	 */
6731	if (!dev->rtnl_link_ops ||
6732	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6733		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6734
6735out:
6736	return ret;
6737
6738err_uninit:
6739	if (dev->netdev_ops->ndo_uninit)
6740		dev->netdev_ops->ndo_uninit(dev);
6741	goto out;
6742}
6743EXPORT_SYMBOL(register_netdevice);
6744
6745/**
6746 *	init_dummy_netdev	- init a dummy network device for NAPI
6747 *	@dev: device to init
6748 *
6749 *	This takes a network device structure and initialize the minimum
6750 *	amount of fields so it can be used to schedule NAPI polls without
6751 *	registering a full blown interface. This is to be used by drivers
6752 *	that need to tie several hardware interfaces to a single NAPI
6753 *	poll scheduler due to HW limitations.
6754 */
6755int init_dummy_netdev(struct net_device *dev)
6756{
6757	/* Clear everything. Note we don't initialize spinlocks
6758	 * are they aren't supposed to be taken by any of the
6759	 * NAPI code and this dummy netdev is supposed to be
6760	 * only ever used for NAPI polls
6761	 */
6762	memset(dev, 0, sizeof(struct net_device));
6763
6764	/* make sure we BUG if trying to hit standard
6765	 * register/unregister code path
6766	 */
6767	dev->reg_state = NETREG_DUMMY;
6768
6769	/* NAPI wants this */
6770	INIT_LIST_HEAD(&dev->napi_list);
6771
6772	/* a dummy interface is started by default */
6773	set_bit(__LINK_STATE_PRESENT, &dev->state);
6774	set_bit(__LINK_STATE_START, &dev->state);
6775
6776	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6777	 * because users of this 'device' dont need to change
6778	 * its refcount.
6779	 */
6780
6781	return 0;
6782}
6783EXPORT_SYMBOL_GPL(init_dummy_netdev);
6784
6785
6786/**
6787 *	register_netdev	- register a network device
6788 *	@dev: device to register
6789 *
6790 *	Take a completed network device structure and add it to the kernel
6791 *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6792 *	chain. 0 is returned on success. A negative errno code is returned
6793 *	on a failure to set up the device, or if the name is a duplicate.
6794 *
6795 *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6796 *	and expands the device name if you passed a format string to
6797 *	alloc_netdev.
6798 */
6799int register_netdev(struct net_device *dev)
6800{
6801	int err;
6802
6803	rtnl_lock();
6804	err = register_netdevice(dev);
6805	rtnl_unlock();
6806	return err;
6807}
6808EXPORT_SYMBOL(register_netdev);
6809
6810int netdev_refcnt_read(const struct net_device *dev)
6811{
6812	int i, refcnt = 0;
6813
6814	for_each_possible_cpu(i)
6815		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6816	return refcnt;
6817}
6818EXPORT_SYMBOL(netdev_refcnt_read);
6819
6820/**
6821 * netdev_wait_allrefs - wait until all references are gone.
6822 * @dev: target net_device
6823 *
6824 * This is called when unregistering network devices.
6825 *
6826 * Any protocol or device that holds a reference should register
6827 * for netdevice notification, and cleanup and put back the
6828 * reference if they receive an UNREGISTER event.
6829 * We can get stuck here if buggy protocols don't correctly
6830 * call dev_put.
6831 */
6832static void netdev_wait_allrefs(struct net_device *dev)
6833{
6834	unsigned long rebroadcast_time, warning_time;
6835	int refcnt;
6836
6837	linkwatch_forget_dev(dev);
6838
6839	rebroadcast_time = warning_time = jiffies;
6840	refcnt = netdev_refcnt_read(dev);
6841
6842	while (refcnt != 0) {
6843		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6844			rtnl_lock();
6845
6846			/* Rebroadcast unregister notification */
6847			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6848
6849			__rtnl_unlock();
6850			rcu_barrier();
6851			rtnl_lock();
6852
6853			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6854			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6855				     &dev->state)) {
6856				/* We must not have linkwatch events
6857				 * pending on unregister. If this
6858				 * happens, we simply run the queue
6859				 * unscheduled, resulting in a noop
6860				 * for this device.
6861				 */
6862				linkwatch_run_queue();
6863			}
6864
6865			__rtnl_unlock();
6866
6867			rebroadcast_time = jiffies;
6868		}
6869
6870		msleep(250);
6871
6872		refcnt = netdev_refcnt_read(dev);
6873
6874		if (time_after(jiffies, warning_time + 10 * HZ)) {
6875			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6876				 dev->name, refcnt);
6877			warning_time = jiffies;
6878		}
6879	}
6880}
6881
6882/* The sequence is:
6883 *
6884 *	rtnl_lock();
6885 *	...
6886 *	register_netdevice(x1);
6887 *	register_netdevice(x2);
6888 *	...
6889 *	unregister_netdevice(y1);
6890 *	unregister_netdevice(y2);
6891 *      ...
6892 *	rtnl_unlock();
6893 *	free_netdev(y1);
6894 *	free_netdev(y2);
6895 *
6896 * We are invoked by rtnl_unlock().
6897 * This allows us to deal with problems:
6898 * 1) We can delete sysfs objects which invoke hotplug
6899 *    without deadlocking with linkwatch via keventd.
6900 * 2) Since we run with the RTNL semaphore not held, we can sleep
6901 *    safely in order to wait for the netdev refcnt to drop to zero.
6902 *
6903 * We must not return until all unregister events added during
6904 * the interval the lock was held have been completed.
6905 */
6906void netdev_run_todo(void)
6907{
6908	struct list_head list;
6909
6910	/* Snapshot list, allow later requests */
6911	list_replace_init(&net_todo_list, &list);
6912
6913	__rtnl_unlock();
6914
6915
6916	/* Wait for rcu callbacks to finish before next phase */
6917	if (!list_empty(&list))
6918		rcu_barrier();
6919
6920	while (!list_empty(&list)) {
6921		struct net_device *dev
6922			= list_first_entry(&list, struct net_device, todo_list);
6923		list_del(&dev->todo_list);
6924
6925		rtnl_lock();
6926		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6927		__rtnl_unlock();
6928
6929		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6930			pr_err("network todo '%s' but state %d\n",
6931			       dev->name, dev->reg_state);
6932			dump_stack();
6933			continue;
6934		}
6935
6936		dev->reg_state = NETREG_UNREGISTERED;
6937
6938		netdev_wait_allrefs(dev);
6939
6940		/* paranoia */
6941		BUG_ON(netdev_refcnt_read(dev));
6942		BUG_ON(!list_empty(&dev->ptype_all));
6943		BUG_ON(!list_empty(&dev->ptype_specific));
6944		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6945		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6946		WARN_ON(dev->dn_ptr);
6947
6948		if (dev->destructor)
6949			dev->destructor(dev);
6950
6951		/* Report a network device has been unregistered */
6952		rtnl_lock();
6953		dev_net(dev)->dev_unreg_count--;
6954		__rtnl_unlock();
6955		wake_up(&netdev_unregistering_wq);
6956
6957		/* Free network device */
6958		kobject_put(&dev->dev.kobj);
6959	}
6960}
6961
6962/* Convert net_device_stats to rtnl_link_stats64.  They have the same
6963 * fields in the same order, with only the type differing.
6964 */
6965void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6966			     const struct net_device_stats *netdev_stats)
6967{
6968#if BITS_PER_LONG == 64
6969	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6970	memcpy(stats64, netdev_stats, sizeof(*stats64));
6971#else
6972	size_t i, n = sizeof(*stats64) / sizeof(u64);
6973	const unsigned long *src = (const unsigned long *)netdev_stats;
6974	u64 *dst = (u64 *)stats64;
6975
6976	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6977		     sizeof(*stats64) / sizeof(u64));
6978	for (i = 0; i < n; i++)
6979		dst[i] = src[i];
6980#endif
6981}
6982EXPORT_SYMBOL(netdev_stats_to_stats64);
6983
6984/**
6985 *	dev_get_stats	- get network device statistics
6986 *	@dev: device to get statistics from
6987 *	@storage: place to store stats
6988 *
6989 *	Get network statistics from device. Return @storage.
6990 *	The device driver may provide its own method by setting
6991 *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6992 *	otherwise the internal statistics structure is used.
6993 */
6994struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6995					struct rtnl_link_stats64 *storage)
6996{
6997	const struct net_device_ops *ops = dev->netdev_ops;
6998
6999	if (ops->ndo_get_stats64) {
7000		memset(storage, 0, sizeof(*storage));
7001		ops->ndo_get_stats64(dev, storage);
7002	} else if (ops->ndo_get_stats) {
7003		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7004	} else {
7005		netdev_stats_to_stats64(storage, &dev->stats);
7006	}
7007	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7008	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7009	return storage;
7010}
7011EXPORT_SYMBOL(dev_get_stats);
7012
7013struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7014{
7015	struct netdev_queue *queue = dev_ingress_queue(dev);
7016
7017#ifdef CONFIG_NET_CLS_ACT
7018	if (queue)
7019		return queue;
7020	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7021	if (!queue)
7022		return NULL;
7023	netdev_init_one_queue(dev, queue, NULL);
7024	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7025	queue->qdisc_sleeping = &noop_qdisc;
7026	rcu_assign_pointer(dev->ingress_queue, queue);
7027#endif
7028	return queue;
7029}
7030
7031static const struct ethtool_ops default_ethtool_ops;
7032
7033void netdev_set_default_ethtool_ops(struct net_device *dev,
7034				    const struct ethtool_ops *ops)
7035{
7036	if (dev->ethtool_ops == &default_ethtool_ops)
7037		dev->ethtool_ops = ops;
7038}
7039EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7040
7041void netdev_freemem(struct net_device *dev)
7042{
7043	char *addr = (char *)dev - dev->padded;
7044
7045	kvfree(addr);
7046}
7047
7048/**
7049 *	alloc_netdev_mqs - allocate network device
7050 *	@sizeof_priv:		size of private data to allocate space for
7051 *	@name:			device name format string
7052 *	@name_assign_type: 	origin of device name
7053 *	@setup:			callback to initialize device
7054 *	@txqs:			the number of TX subqueues to allocate
7055 *	@rxqs:			the number of RX subqueues to allocate
7056 *
7057 *	Allocates a struct net_device with private data area for driver use
7058 *	and performs basic initialization.  Also allocates subqueue structs
7059 *	for each queue on the device.
7060 */
7061struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7062		unsigned char name_assign_type,
7063		void (*setup)(struct net_device *),
7064		unsigned int txqs, unsigned int rxqs)
7065{
7066	struct net_device *dev;
7067	size_t alloc_size;
7068	struct net_device *p;
7069
7070	BUG_ON(strlen(name) >= sizeof(dev->name));
7071
7072	if (txqs < 1) {
7073		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7074		return NULL;
7075	}
7076
7077#ifdef CONFIG_SYSFS
7078	if (rxqs < 1) {
7079		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7080		return NULL;
7081	}
7082#endif
7083
7084	alloc_size = sizeof(struct net_device);
7085	if (sizeof_priv) {
7086		/* ensure 32-byte alignment of private area */
7087		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7088		alloc_size += sizeof_priv;
7089	}
7090	/* ensure 32-byte alignment of whole construct */
7091	alloc_size += NETDEV_ALIGN - 1;
7092
7093	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7094	if (!p)
7095		p = vzalloc(alloc_size);
7096	if (!p)
7097		return NULL;
7098
7099	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7100	dev->padded = (char *)dev - (char *)p;
7101
7102	dev->pcpu_refcnt = alloc_percpu(int);
7103	if (!dev->pcpu_refcnt)
7104		goto free_dev;
7105
7106	if (dev_addr_init(dev))
7107		goto free_pcpu;
7108
7109	dev_mc_init(dev);
7110	dev_uc_init(dev);
7111
7112	dev_net_set(dev, &init_net);
7113
7114	dev->gso_max_size = GSO_MAX_SIZE;
7115	dev->gso_max_segs = GSO_MAX_SEGS;
7116	dev->gso_min_segs = 0;
7117
7118	INIT_LIST_HEAD(&dev->napi_list);
7119	INIT_LIST_HEAD(&dev->unreg_list);
7120	INIT_LIST_HEAD(&dev->close_list);
7121	INIT_LIST_HEAD(&dev->link_watch_list);
7122	INIT_LIST_HEAD(&dev->adj_list.upper);
7123	INIT_LIST_HEAD(&dev->adj_list.lower);
7124	INIT_LIST_HEAD(&dev->all_adj_list.upper);
7125	INIT_LIST_HEAD(&dev->all_adj_list.lower);
7126	INIT_LIST_HEAD(&dev->ptype_all);
7127	INIT_LIST_HEAD(&dev->ptype_specific);
7128	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7129	setup(dev);
7130
7131	if (!dev->tx_queue_len) {
7132		dev->priv_flags |= IFF_NO_QUEUE;
7133		dev->tx_queue_len = 1;
7134	}
7135
7136	dev->num_tx_queues = txqs;
7137	dev->real_num_tx_queues = txqs;
7138	if (netif_alloc_netdev_queues(dev))
7139		goto free_all;
7140
7141#ifdef CONFIG_SYSFS
7142	dev->num_rx_queues = rxqs;
7143	dev->real_num_rx_queues = rxqs;
7144	if (netif_alloc_rx_queues(dev))
7145		goto free_all;
7146#endif
7147
7148	strcpy(dev->name, name);
7149	dev->name_assign_type = name_assign_type;
7150	dev->group = INIT_NETDEV_GROUP;
7151	if (!dev->ethtool_ops)
7152		dev->ethtool_ops = &default_ethtool_ops;
7153
7154	nf_hook_ingress_init(dev);
7155
7156	return dev;
7157
7158free_all:
7159	free_netdev(dev);
7160	return NULL;
7161
7162free_pcpu:
7163	free_percpu(dev->pcpu_refcnt);
7164free_dev:
7165	netdev_freemem(dev);
7166	return NULL;
7167}
7168EXPORT_SYMBOL(alloc_netdev_mqs);
7169
7170/**
7171 *	free_netdev - free network device
7172 *	@dev: device
7173 *
7174 *	This function does the last stage of destroying an allocated device
7175 * 	interface. The reference to the device object is released.
7176 *	If this is the last reference then it will be freed.
7177 */
7178void free_netdev(struct net_device *dev)
7179{
7180	struct napi_struct *p, *n;
7181
7182	netif_free_tx_queues(dev);
7183#ifdef CONFIG_SYSFS
7184	kvfree(dev->_rx);
7185#endif
7186
7187	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7188
7189	/* Flush device addresses */
7190	dev_addr_flush(dev);
7191
7192	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7193		netif_napi_del(p);
7194
7195	free_percpu(dev->pcpu_refcnt);
7196	dev->pcpu_refcnt = NULL;
7197
7198	/*  Compatibility with error handling in drivers */
7199	if (dev->reg_state == NETREG_UNINITIALIZED) {
7200		netdev_freemem(dev);
7201		return;
7202	}
7203
7204	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7205	dev->reg_state = NETREG_RELEASED;
7206
7207	/* will free via device release */
7208	put_device(&dev->dev);
7209}
7210EXPORT_SYMBOL(free_netdev);
7211
7212/**
7213 *	synchronize_net -  Synchronize with packet receive processing
7214 *
7215 *	Wait for packets currently being received to be done.
7216 *	Does not block later packets from starting.
7217 */
7218void synchronize_net(void)
7219{
7220	might_sleep();
7221	if (rtnl_is_locked())
7222		synchronize_rcu_expedited();
7223	else
7224		synchronize_rcu();
7225}
7226EXPORT_SYMBOL(synchronize_net);
7227
7228/**
7229 *	unregister_netdevice_queue - remove device from the kernel
7230 *	@dev: device
7231 *	@head: list
7232 *
7233 *	This function shuts down a device interface and removes it
7234 *	from the kernel tables.
7235 *	If head not NULL, device is queued to be unregistered later.
7236 *
7237 *	Callers must hold the rtnl semaphore.  You may want
7238 *	unregister_netdev() instead of this.
7239 */
7240
7241void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7242{
7243	ASSERT_RTNL();
7244
7245	if (head) {
7246		list_move_tail(&dev->unreg_list, head);
7247	} else {
7248		rollback_registered(dev);
7249		/* Finish processing unregister after unlock */
7250		net_set_todo(dev);
7251	}
7252}
7253EXPORT_SYMBOL(unregister_netdevice_queue);
7254
7255/**
7256 *	unregister_netdevice_many - unregister many devices
7257 *	@head: list of devices
7258 *
7259 *  Note: As most callers use a stack allocated list_head,
7260 *  we force a list_del() to make sure stack wont be corrupted later.
7261 */
7262void unregister_netdevice_many(struct list_head *head)
7263{
7264	struct net_device *dev;
7265
7266	if (!list_empty(head)) {
7267		rollback_registered_many(head);
7268		list_for_each_entry(dev, head, unreg_list)
7269			net_set_todo(dev);
7270		list_del(head);
7271	}
7272}
7273EXPORT_SYMBOL(unregister_netdevice_many);
7274
7275/**
7276 *	unregister_netdev - remove device from the kernel
7277 *	@dev: device
7278 *
7279 *	This function shuts down a device interface and removes it
7280 *	from the kernel tables.
7281 *
7282 *	This is just a wrapper for unregister_netdevice that takes
7283 *	the rtnl semaphore.  In general you want to use this and not
7284 *	unregister_netdevice.
7285 */
7286void unregister_netdev(struct net_device *dev)
7287{
7288	rtnl_lock();
7289	unregister_netdevice(dev);
7290	rtnl_unlock();
7291}
7292EXPORT_SYMBOL(unregister_netdev);
7293
7294/**
7295 *	dev_change_net_namespace - move device to different nethost namespace
7296 *	@dev: device
7297 *	@net: network namespace
7298 *	@pat: If not NULL name pattern to try if the current device name
7299 *	      is already taken in the destination network namespace.
7300 *
7301 *	This function shuts down a device interface and moves it
7302 *	to a new network namespace. On success 0 is returned, on
7303 *	a failure a netagive errno code is returned.
7304 *
7305 *	Callers must hold the rtnl semaphore.
7306 */
7307
7308int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7309{
7310	int err;
7311
7312	ASSERT_RTNL();
7313
7314	/* Don't allow namespace local devices to be moved. */
7315	err = -EINVAL;
7316	if (dev->features & NETIF_F_NETNS_LOCAL)
7317		goto out;
7318
7319	/* Ensure the device has been registrered */
7320	if (dev->reg_state != NETREG_REGISTERED)
7321		goto out;
7322
7323	/* Get out if there is nothing todo */
7324	err = 0;
7325	if (net_eq(dev_net(dev), net))
7326		goto out;
7327
7328	/* Pick the destination device name, and ensure
7329	 * we can use it in the destination network namespace.
7330	 */
7331	err = -EEXIST;
7332	if (__dev_get_by_name(net, dev->name)) {
7333		/* We get here if we can't use the current device name */
7334		if (!pat)
7335			goto out;
7336		if (dev_get_valid_name(net, dev, pat) < 0)
7337			goto out;
7338	}
7339
7340	/*
7341	 * And now a mini version of register_netdevice unregister_netdevice.
7342	 */
7343
7344	/* If device is running close it first. */
7345	dev_close(dev);
7346
7347	/* And unlink it from device chain */
7348	err = -ENODEV;
7349	unlist_netdevice(dev);
7350
7351	synchronize_net();
7352
7353	/* Shutdown queueing discipline. */
7354	dev_shutdown(dev);
7355
7356	/* Notify protocols, that we are about to destroy
7357	   this device. They should clean all the things.
7358
7359	   Note that dev->reg_state stays at NETREG_REGISTERED.
7360	   This is wanted because this way 8021q and macvlan know
7361	   the device is just moving and can keep their slaves up.
7362	*/
7363	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7364	rcu_barrier();
7365	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7366	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7367
7368	/*
7369	 *	Flush the unicast and multicast chains
7370	 */
7371	dev_uc_flush(dev);
7372	dev_mc_flush(dev);
7373
7374	/* Send a netdev-removed uevent to the old namespace */
7375	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7376	netdev_adjacent_del_links(dev);
7377
7378	/* Actually switch the network namespace */
7379	dev_net_set(dev, net);
7380
7381	/* If there is an ifindex conflict assign a new one */
7382	if (__dev_get_by_index(net, dev->ifindex))
7383		dev->ifindex = dev_new_index(net);
7384
7385	/* Send a netdev-add uevent to the new namespace */
7386	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7387	netdev_adjacent_add_links(dev);
7388
7389	/* Fixup kobjects */
7390	err = device_rename(&dev->dev, dev->name);
7391	WARN_ON(err);
7392
7393	/* Add the device back in the hashes */
7394	list_netdevice(dev);
7395
7396	/* Notify protocols, that a new device appeared. */
7397	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7398
7399	/*
7400	 *	Prevent userspace races by waiting until the network
7401	 *	device is fully setup before sending notifications.
7402	 */
7403	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7404
7405	synchronize_net();
7406	err = 0;
7407out:
7408	return err;
7409}
7410EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7411
7412static int dev_cpu_callback(struct notifier_block *nfb,
7413			    unsigned long action,
7414			    void *ocpu)
7415{
7416	struct sk_buff **list_skb;
7417	struct sk_buff *skb;
7418	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7419	struct softnet_data *sd, *oldsd;
7420
7421	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7422		return NOTIFY_OK;
7423
7424	local_irq_disable();
7425	cpu = smp_processor_id();
7426	sd = &per_cpu(softnet_data, cpu);
7427	oldsd = &per_cpu(softnet_data, oldcpu);
7428
7429	/* Find end of our completion_queue. */
7430	list_skb = &sd->completion_queue;
7431	while (*list_skb)
7432		list_skb = &(*list_skb)->next;
7433	/* Append completion queue from offline CPU. */
7434	*list_skb = oldsd->completion_queue;
7435	oldsd->completion_queue = NULL;
7436
7437	/* Append output queue from offline CPU. */
7438	if (oldsd->output_queue) {
7439		*sd->output_queue_tailp = oldsd->output_queue;
7440		sd->output_queue_tailp = oldsd->output_queue_tailp;
7441		oldsd->output_queue = NULL;
7442		oldsd->output_queue_tailp = &oldsd->output_queue;
7443	}
7444	/* Append NAPI poll list from offline CPU, with one exception :
7445	 * process_backlog() must be called by cpu owning percpu backlog.
7446	 * We properly handle process_queue & input_pkt_queue later.
7447	 */
7448	while (!list_empty(&oldsd->poll_list)) {
7449		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7450							    struct napi_struct,
7451							    poll_list);
7452
7453		list_del_init(&napi->poll_list);
7454		if (napi->poll == process_backlog)
7455			napi->state = 0;
7456		else
7457			____napi_schedule(sd, napi);
7458	}
7459
7460	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7461	local_irq_enable();
7462
7463	/* Process offline CPU's input_pkt_queue */
7464	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7465		netif_rx_ni(skb);
7466		input_queue_head_incr(oldsd);
7467	}
7468	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7469		netif_rx_ni(skb);
7470		input_queue_head_incr(oldsd);
7471	}
7472
7473	return NOTIFY_OK;
7474}
7475
7476
7477/**
7478 *	netdev_increment_features - increment feature set by one
7479 *	@all: current feature set
7480 *	@one: new feature set
7481 *	@mask: mask feature set
7482 *
7483 *	Computes a new feature set after adding a device with feature set
7484 *	@one to the master device with current feature set @all.  Will not
7485 *	enable anything that is off in @mask. Returns the new feature set.
7486 */
7487netdev_features_t netdev_increment_features(netdev_features_t all,
7488	netdev_features_t one, netdev_features_t mask)
7489{
7490	if (mask & NETIF_F_GEN_CSUM)
7491		mask |= NETIF_F_ALL_CSUM;
7492	mask |= NETIF_F_VLAN_CHALLENGED;
7493
7494	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7495	all &= one | ~NETIF_F_ALL_FOR_ALL;
7496
7497	/* If one device supports hw checksumming, set for all. */
7498	if (all & NETIF_F_GEN_CSUM)
7499		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7500
7501	return all;
7502}
7503EXPORT_SYMBOL(netdev_increment_features);
7504
7505static struct hlist_head * __net_init netdev_create_hash(void)
7506{
7507	int i;
7508	struct hlist_head *hash;
7509
7510	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7511	if (hash != NULL)
7512		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7513			INIT_HLIST_HEAD(&hash[i]);
7514
7515	return hash;
7516}
7517
7518/* Initialize per network namespace state */
7519static int __net_init netdev_init(struct net *net)
7520{
7521	if (net != &init_net)
7522		INIT_LIST_HEAD(&net->dev_base_head);
7523
7524	net->dev_name_head = netdev_create_hash();
7525	if (net->dev_name_head == NULL)
7526		goto err_name;
7527
7528	net->dev_index_head = netdev_create_hash();
7529	if (net->dev_index_head == NULL)
7530		goto err_idx;
7531
7532	return 0;
7533
7534err_idx:
7535	kfree(net->dev_name_head);
7536err_name:
7537	return -ENOMEM;
7538}
7539
7540/**
7541 *	netdev_drivername - network driver for the device
7542 *	@dev: network device
7543 *
7544 *	Determine network driver for device.
7545 */
7546const char *netdev_drivername(const struct net_device *dev)
7547{
7548	const struct device_driver *driver;
7549	const struct device *parent;
7550	const char *empty = "";
7551
7552	parent = dev->dev.parent;
7553	if (!parent)
7554		return empty;
7555
7556	driver = parent->driver;
7557	if (driver && driver->name)
7558		return driver->name;
7559	return empty;
7560}
7561
7562static void __netdev_printk(const char *level, const struct net_device *dev,
7563			    struct va_format *vaf)
7564{
7565	if (dev && dev->dev.parent) {
7566		dev_printk_emit(level[1] - '0',
7567				dev->dev.parent,
7568				"%s %s %s%s: %pV",
7569				dev_driver_string(dev->dev.parent),
7570				dev_name(dev->dev.parent),
7571				netdev_name(dev), netdev_reg_state(dev),
7572				vaf);
7573	} else if (dev) {
7574		printk("%s%s%s: %pV",
7575		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7576	} else {
7577		printk("%s(NULL net_device): %pV", level, vaf);
7578	}
7579}
7580
7581void netdev_printk(const char *level, const struct net_device *dev,
7582		   const char *format, ...)
7583{
7584	struct va_format vaf;
7585	va_list args;
7586
7587	va_start(args, format);
7588
7589	vaf.fmt = format;
7590	vaf.va = &args;
7591
7592	__netdev_printk(level, dev, &vaf);
7593
7594	va_end(args);
7595}
7596EXPORT_SYMBOL(netdev_printk);
7597
7598#define define_netdev_printk_level(func, level)			\
7599void func(const struct net_device *dev, const char *fmt, ...)	\
7600{								\
7601	struct va_format vaf;					\
7602	va_list args;						\
7603								\
7604	va_start(args, fmt);					\
7605								\
7606	vaf.fmt = fmt;						\
7607	vaf.va = &args;						\
7608								\
7609	__netdev_printk(level, dev, &vaf);			\
7610								\
7611	va_end(args);						\
7612}								\
7613EXPORT_SYMBOL(func);
7614
7615define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7616define_netdev_printk_level(netdev_alert, KERN_ALERT);
7617define_netdev_printk_level(netdev_crit, KERN_CRIT);
7618define_netdev_printk_level(netdev_err, KERN_ERR);
7619define_netdev_printk_level(netdev_warn, KERN_WARNING);
7620define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7621define_netdev_printk_level(netdev_info, KERN_INFO);
7622
7623static void __net_exit netdev_exit(struct net *net)
7624{
7625	kfree(net->dev_name_head);
7626	kfree(net->dev_index_head);
7627}
7628
7629static struct pernet_operations __net_initdata netdev_net_ops = {
7630	.init = netdev_init,
7631	.exit = netdev_exit,
7632};
7633
7634static void __net_exit default_device_exit(struct net *net)
7635{
7636	struct net_device *dev, *aux;
7637	/*
7638	 * Push all migratable network devices back to the
7639	 * initial network namespace
7640	 */
7641	rtnl_lock();
7642	for_each_netdev_safe(net, dev, aux) {
7643		int err;
7644		char fb_name[IFNAMSIZ];
7645
7646		/* Ignore unmoveable devices (i.e. loopback) */
7647		if (dev->features & NETIF_F_NETNS_LOCAL)
7648			continue;
7649
7650		/* Leave virtual devices for the generic cleanup */
7651		if (dev->rtnl_link_ops)
7652			continue;
7653
7654		/* Push remaining network devices to init_net */
7655		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7656		err = dev_change_net_namespace(dev, &init_net, fb_name);
7657		if (err) {
7658			pr_emerg("%s: failed to move %s to init_net: %d\n",
7659				 __func__, dev->name, err);
7660			BUG();
7661		}
7662	}
7663	rtnl_unlock();
7664}
7665
7666static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7667{
7668	/* Return with the rtnl_lock held when there are no network
7669	 * devices unregistering in any network namespace in net_list.
7670	 */
7671	struct net *net;
7672	bool unregistering;
7673	DEFINE_WAIT_FUNC(wait, woken_wake_function);
7674
7675	add_wait_queue(&netdev_unregistering_wq, &wait);
7676	for (;;) {
7677		unregistering = false;
7678		rtnl_lock();
7679		list_for_each_entry(net, net_list, exit_list) {
7680			if (net->dev_unreg_count > 0) {
7681				unregistering = true;
7682				break;
7683			}
7684		}
7685		if (!unregistering)
7686			break;
7687		__rtnl_unlock();
7688
7689		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7690	}
7691	remove_wait_queue(&netdev_unregistering_wq, &wait);
7692}
7693
7694static void __net_exit default_device_exit_batch(struct list_head *net_list)
7695{
7696	/* At exit all network devices most be removed from a network
7697	 * namespace.  Do this in the reverse order of registration.
7698	 * Do this across as many network namespaces as possible to
7699	 * improve batching efficiency.
7700	 */
7701	struct net_device *dev;
7702	struct net *net;
7703	LIST_HEAD(dev_kill_list);
7704
7705	/* To prevent network device cleanup code from dereferencing
7706	 * loopback devices or network devices that have been freed
7707	 * wait here for all pending unregistrations to complete,
7708	 * before unregistring the loopback device and allowing the
7709	 * network namespace be freed.
7710	 *
7711	 * The netdev todo list containing all network devices
7712	 * unregistrations that happen in default_device_exit_batch
7713	 * will run in the rtnl_unlock() at the end of
7714	 * default_device_exit_batch.
7715	 */
7716	rtnl_lock_unregistering(net_list);
7717	list_for_each_entry(net, net_list, exit_list) {
7718		for_each_netdev_reverse(net, dev) {
7719			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7720				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7721			else
7722				unregister_netdevice_queue(dev, &dev_kill_list);
7723		}
7724	}
7725	unregister_netdevice_many(&dev_kill_list);
7726	rtnl_unlock();
7727}
7728
7729static struct pernet_operations __net_initdata default_device_ops = {
7730	.exit = default_device_exit,
7731	.exit_batch = default_device_exit_batch,
7732};
7733
7734/*
7735 *	Initialize the DEV module. At boot time this walks the device list and
7736 *	unhooks any devices that fail to initialise (normally hardware not
7737 *	present) and leaves us with a valid list of present and active devices.
7738 *
7739 */
7740
7741/*
7742 *       This is called single threaded during boot, so no need
7743 *       to take the rtnl semaphore.
7744 */
7745static int __init net_dev_init(void)
7746{
7747	int i, rc = -ENOMEM;
7748
7749	BUG_ON(!dev_boot_phase);
7750
7751	if (dev_proc_init())
7752		goto out;
7753
7754	if (netdev_kobject_init())
7755		goto out;
7756
7757	INIT_LIST_HEAD(&ptype_all);
7758	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7759		INIT_LIST_HEAD(&ptype_base[i]);
7760
7761	INIT_LIST_HEAD(&offload_base);
7762
7763	if (register_pernet_subsys(&netdev_net_ops))
7764		goto out;
7765
7766	/*
7767	 *	Initialise the packet receive queues.
7768	 */
7769
7770	for_each_possible_cpu(i) {
7771		struct softnet_data *sd = &per_cpu(softnet_data, i);
7772
7773		skb_queue_head_init(&sd->input_pkt_queue);
7774		skb_queue_head_init(&sd->process_queue);
7775		INIT_LIST_HEAD(&sd->poll_list);
7776		sd->output_queue_tailp = &sd->output_queue;
7777#ifdef CONFIG_RPS
7778		sd->csd.func = rps_trigger_softirq;
7779		sd->csd.info = sd;
7780		sd->cpu = i;
7781#endif
7782
7783		sd->backlog.poll = process_backlog;
7784		sd->backlog.weight = weight_p;
7785	}
7786
7787	dev_boot_phase = 0;
7788
7789	/* The loopback device is special if any other network devices
7790	 * is present in a network namespace the loopback device must
7791	 * be present. Since we now dynamically allocate and free the
7792	 * loopback device ensure this invariant is maintained by
7793	 * keeping the loopback device as the first device on the
7794	 * list of network devices.  Ensuring the loopback devices
7795	 * is the first device that appears and the last network device
7796	 * that disappears.
7797	 */
7798	if (register_pernet_device(&loopback_net_ops))
7799		goto out;
7800
7801	if (register_pernet_device(&default_device_ops))
7802		goto out;
7803
7804	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7805	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7806
7807	hotcpu_notifier(dev_cpu_callback, 0);
7808	dst_subsys_init();
7809	rc = 0;
7810out:
7811	return rc;
7812}
7813
7814subsys_initcall(net_dev_init);
7815