1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
24 *   mm->mmap_sem
25 *     page->flags PG_locked (lock_page)
26 *       mapping->i_mmap_rwsem
27 *         anon_vma->rwsem
28 *           mm->page_table_lock or pte_lock
29 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 *             swap_lock (in swap_duplicate, swap_info_get)
31 *               mmlist_lock (in mmput, drain_mmlist and others)
32 *               mapping->private_lock (in __set_page_dirty_buffers)
33 *                 mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
34 *                   mapping->tree_lock (widely used)
35 *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
36 *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
37 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
38 *                 mapping->tree_lock (widely used, in set_page_dirty,
39 *                           in arch-dependent flush_dcache_mmap_lock,
40 *                           within bdi.wb->list_lock in __sync_single_inode)
41 *
42 * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
43 *   ->tasklist_lock
44 *     pte map lock
45 */
46
47#include <linux/mm.h>
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/swapops.h>
51#include <linux/slab.h>
52#include <linux/init.h>
53#include <linux/ksm.h>
54#include <linux/rmap.h>
55#include <linux/rcupdate.h>
56#include <linux/export.h>
57#include <linux/memcontrol.h>
58#include <linux/mmu_notifier.h>
59#include <linux/migrate.h>
60#include <linux/hugetlb.h>
61#include <linux/backing-dev.h>
62#include <linux/page_idle.h>
63
64#include <asm/tlbflush.h>
65
66#include <trace/events/tlb.h>
67
68#include "internal.h"
69
70static struct kmem_cache *anon_vma_cachep;
71static struct kmem_cache *anon_vma_chain_cachep;
72
73static inline struct anon_vma *anon_vma_alloc(void)
74{
75	struct anon_vma *anon_vma;
76
77	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
78	if (anon_vma) {
79		atomic_set(&anon_vma->refcount, 1);
80		anon_vma->degree = 1;	/* Reference for first vma */
81		anon_vma->parent = anon_vma;
82		/*
83		 * Initialise the anon_vma root to point to itself. If called
84		 * from fork, the root will be reset to the parents anon_vma.
85		 */
86		anon_vma->root = anon_vma;
87	}
88
89	return anon_vma;
90}
91
92static inline void anon_vma_free(struct anon_vma *anon_vma)
93{
94	VM_BUG_ON(atomic_read(&anon_vma->refcount));
95
96	/*
97	 * Synchronize against page_lock_anon_vma_read() such that
98	 * we can safely hold the lock without the anon_vma getting
99	 * freed.
100	 *
101	 * Relies on the full mb implied by the atomic_dec_and_test() from
102	 * put_anon_vma() against the acquire barrier implied by
103	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
104	 *
105	 * page_lock_anon_vma_read()	VS	put_anon_vma()
106	 *   down_read_trylock()		  atomic_dec_and_test()
107	 *   LOCK				  MB
108	 *   atomic_read()			  rwsem_is_locked()
109	 *
110	 * LOCK should suffice since the actual taking of the lock must
111	 * happen _before_ what follows.
112	 */
113	might_sleep();
114	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
115		anon_vma_lock_write(anon_vma);
116		anon_vma_unlock_write(anon_vma);
117	}
118
119	kmem_cache_free(anon_vma_cachep, anon_vma);
120}
121
122static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
123{
124	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
125}
126
127static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
128{
129	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
130}
131
132static void anon_vma_chain_link(struct vm_area_struct *vma,
133				struct anon_vma_chain *avc,
134				struct anon_vma *anon_vma)
135{
136	avc->vma = vma;
137	avc->anon_vma = anon_vma;
138	list_add(&avc->same_vma, &vma->anon_vma_chain);
139	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
140}
141
142/**
143 * anon_vma_prepare - attach an anon_vma to a memory region
144 * @vma: the memory region in question
145 *
146 * This makes sure the memory mapping described by 'vma' has
147 * an 'anon_vma' attached to it, so that we can associate the
148 * anonymous pages mapped into it with that anon_vma.
149 *
150 * The common case will be that we already have one, but if
151 * not we either need to find an adjacent mapping that we
152 * can re-use the anon_vma from (very common when the only
153 * reason for splitting a vma has been mprotect()), or we
154 * allocate a new one.
155 *
156 * Anon-vma allocations are very subtle, because we may have
157 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
158 * and that may actually touch the spinlock even in the newly
159 * allocated vma (it depends on RCU to make sure that the
160 * anon_vma isn't actually destroyed).
161 *
162 * As a result, we need to do proper anon_vma locking even
163 * for the new allocation. At the same time, we do not want
164 * to do any locking for the common case of already having
165 * an anon_vma.
166 *
167 * This must be called with the mmap_sem held for reading.
168 */
169int anon_vma_prepare(struct vm_area_struct *vma)
170{
171	struct anon_vma *anon_vma = vma->anon_vma;
172	struct anon_vma_chain *avc;
173
174	might_sleep();
175	if (unlikely(!anon_vma)) {
176		struct mm_struct *mm = vma->vm_mm;
177		struct anon_vma *allocated;
178
179		avc = anon_vma_chain_alloc(GFP_KERNEL);
180		if (!avc)
181			goto out_enomem;
182
183		anon_vma = find_mergeable_anon_vma(vma);
184		allocated = NULL;
185		if (!anon_vma) {
186			anon_vma = anon_vma_alloc();
187			if (unlikely(!anon_vma))
188				goto out_enomem_free_avc;
189			allocated = anon_vma;
190		}
191
192		anon_vma_lock_write(anon_vma);
193		/* page_table_lock to protect against threads */
194		spin_lock(&mm->page_table_lock);
195		if (likely(!vma->anon_vma)) {
196			vma->anon_vma = anon_vma;
197			anon_vma_chain_link(vma, avc, anon_vma);
198			/* vma reference or self-parent link for new root */
199			anon_vma->degree++;
200			allocated = NULL;
201			avc = NULL;
202		}
203		spin_unlock(&mm->page_table_lock);
204		anon_vma_unlock_write(anon_vma);
205
206		if (unlikely(allocated))
207			put_anon_vma(allocated);
208		if (unlikely(avc))
209			anon_vma_chain_free(avc);
210	}
211	return 0;
212
213 out_enomem_free_avc:
214	anon_vma_chain_free(avc);
215 out_enomem:
216	return -ENOMEM;
217}
218
219/*
220 * This is a useful helper function for locking the anon_vma root as
221 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
222 * have the same vma.
223 *
224 * Such anon_vma's should have the same root, so you'd expect to see
225 * just a single mutex_lock for the whole traversal.
226 */
227static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
228{
229	struct anon_vma *new_root = anon_vma->root;
230	if (new_root != root) {
231		if (WARN_ON_ONCE(root))
232			up_write(&root->rwsem);
233		root = new_root;
234		down_write(&root->rwsem);
235	}
236	return root;
237}
238
239static inline void unlock_anon_vma_root(struct anon_vma *root)
240{
241	if (root)
242		up_write(&root->rwsem);
243}
244
245/*
246 * Attach the anon_vmas from src to dst.
247 * Returns 0 on success, -ENOMEM on failure.
248 *
249 * If dst->anon_vma is NULL this function tries to find and reuse existing
250 * anon_vma which has no vmas and only one child anon_vma. This prevents
251 * degradation of anon_vma hierarchy to endless linear chain in case of
252 * constantly forking task. On the other hand, an anon_vma with more than one
253 * child isn't reused even if there was no alive vma, thus rmap walker has a
254 * good chance of avoiding scanning the whole hierarchy when it searches where
255 * page is mapped.
256 */
257int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
258{
259	struct anon_vma_chain *avc, *pavc;
260	struct anon_vma *root = NULL;
261
262	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
263		struct anon_vma *anon_vma;
264
265		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
266		if (unlikely(!avc)) {
267			unlock_anon_vma_root(root);
268			root = NULL;
269			avc = anon_vma_chain_alloc(GFP_KERNEL);
270			if (!avc)
271				goto enomem_failure;
272		}
273		anon_vma = pavc->anon_vma;
274		root = lock_anon_vma_root(root, anon_vma);
275		anon_vma_chain_link(dst, avc, anon_vma);
276
277		/*
278		 * Reuse existing anon_vma if its degree lower than two,
279		 * that means it has no vma and only one anon_vma child.
280		 *
281		 * Do not chose parent anon_vma, otherwise first child
282		 * will always reuse it. Root anon_vma is never reused:
283		 * it has self-parent reference and at least one child.
284		 */
285		if (!dst->anon_vma && anon_vma != src->anon_vma &&
286				anon_vma->degree < 2)
287			dst->anon_vma = anon_vma;
288	}
289	if (dst->anon_vma)
290		dst->anon_vma->degree++;
291	unlock_anon_vma_root(root);
292	return 0;
293
294 enomem_failure:
295	/*
296	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
297	 * decremented in unlink_anon_vmas().
298	 * We can safely do this because callers of anon_vma_clone() don't care
299	 * about dst->anon_vma if anon_vma_clone() failed.
300	 */
301	dst->anon_vma = NULL;
302	unlink_anon_vmas(dst);
303	return -ENOMEM;
304}
305
306/*
307 * Attach vma to its own anon_vma, as well as to the anon_vmas that
308 * the corresponding VMA in the parent process is attached to.
309 * Returns 0 on success, non-zero on failure.
310 */
311int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
312{
313	struct anon_vma_chain *avc;
314	struct anon_vma *anon_vma;
315	int error;
316
317	/* Don't bother if the parent process has no anon_vma here. */
318	if (!pvma->anon_vma)
319		return 0;
320
321	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
322	vma->anon_vma = NULL;
323
324	/*
325	 * First, attach the new VMA to the parent VMA's anon_vmas,
326	 * so rmap can find non-COWed pages in child processes.
327	 */
328	error = anon_vma_clone(vma, pvma);
329	if (error)
330		return error;
331
332	/* An existing anon_vma has been reused, all done then. */
333	if (vma->anon_vma)
334		return 0;
335
336	/* Then add our own anon_vma. */
337	anon_vma = anon_vma_alloc();
338	if (!anon_vma)
339		goto out_error;
340	avc = anon_vma_chain_alloc(GFP_KERNEL);
341	if (!avc)
342		goto out_error_free_anon_vma;
343
344	/*
345	 * The root anon_vma's spinlock is the lock actually used when we
346	 * lock any of the anon_vmas in this anon_vma tree.
347	 */
348	anon_vma->root = pvma->anon_vma->root;
349	anon_vma->parent = pvma->anon_vma;
350	/*
351	 * With refcounts, an anon_vma can stay around longer than the
352	 * process it belongs to. The root anon_vma needs to be pinned until
353	 * this anon_vma is freed, because the lock lives in the root.
354	 */
355	get_anon_vma(anon_vma->root);
356	/* Mark this anon_vma as the one where our new (COWed) pages go. */
357	vma->anon_vma = anon_vma;
358	anon_vma_lock_write(anon_vma);
359	anon_vma_chain_link(vma, avc, anon_vma);
360	anon_vma->parent->degree++;
361	anon_vma_unlock_write(anon_vma);
362
363	return 0;
364
365 out_error_free_anon_vma:
366	put_anon_vma(anon_vma);
367 out_error:
368	unlink_anon_vmas(vma);
369	return -ENOMEM;
370}
371
372void unlink_anon_vmas(struct vm_area_struct *vma)
373{
374	struct anon_vma_chain *avc, *next;
375	struct anon_vma *root = NULL;
376
377	/*
378	 * Unlink each anon_vma chained to the VMA.  This list is ordered
379	 * from newest to oldest, ensuring the root anon_vma gets freed last.
380	 */
381	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
382		struct anon_vma *anon_vma = avc->anon_vma;
383
384		root = lock_anon_vma_root(root, anon_vma);
385		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
386
387		/*
388		 * Leave empty anon_vmas on the list - we'll need
389		 * to free them outside the lock.
390		 */
391		if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
392			anon_vma->parent->degree--;
393			continue;
394		}
395
396		list_del(&avc->same_vma);
397		anon_vma_chain_free(avc);
398	}
399	if (vma->anon_vma)
400		vma->anon_vma->degree--;
401	unlock_anon_vma_root(root);
402
403	/*
404	 * Iterate the list once more, it now only contains empty and unlinked
405	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
406	 * needing to write-acquire the anon_vma->root->rwsem.
407	 */
408	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
409		struct anon_vma *anon_vma = avc->anon_vma;
410
411		BUG_ON(anon_vma->degree);
412		put_anon_vma(anon_vma);
413
414		list_del(&avc->same_vma);
415		anon_vma_chain_free(avc);
416	}
417}
418
419static void anon_vma_ctor(void *data)
420{
421	struct anon_vma *anon_vma = data;
422
423	init_rwsem(&anon_vma->rwsem);
424	atomic_set(&anon_vma->refcount, 0);
425	anon_vma->rb_root = RB_ROOT;
426}
427
428void __init anon_vma_init(void)
429{
430	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
431			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
432	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
433}
434
435/*
436 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
437 *
438 * Since there is no serialization what so ever against page_remove_rmap()
439 * the best this function can do is return a locked anon_vma that might
440 * have been relevant to this page.
441 *
442 * The page might have been remapped to a different anon_vma or the anon_vma
443 * returned may already be freed (and even reused).
444 *
445 * In case it was remapped to a different anon_vma, the new anon_vma will be a
446 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
447 * ensure that any anon_vma obtained from the page will still be valid for as
448 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
449 *
450 * All users of this function must be very careful when walking the anon_vma
451 * chain and verify that the page in question is indeed mapped in it
452 * [ something equivalent to page_mapped_in_vma() ].
453 *
454 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
455 * that the anon_vma pointer from page->mapping is valid if there is a
456 * mapcount, we can dereference the anon_vma after observing those.
457 */
458struct anon_vma *page_get_anon_vma(struct page *page)
459{
460	struct anon_vma *anon_vma = NULL;
461	unsigned long anon_mapping;
462
463	rcu_read_lock();
464	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
465	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
466		goto out;
467	if (!page_mapped(page))
468		goto out;
469
470	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
471	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
472		anon_vma = NULL;
473		goto out;
474	}
475
476	/*
477	 * If this page is still mapped, then its anon_vma cannot have been
478	 * freed.  But if it has been unmapped, we have no security against the
479	 * anon_vma structure being freed and reused (for another anon_vma:
480	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
481	 * above cannot corrupt).
482	 */
483	if (!page_mapped(page)) {
484		rcu_read_unlock();
485		put_anon_vma(anon_vma);
486		return NULL;
487	}
488out:
489	rcu_read_unlock();
490
491	return anon_vma;
492}
493
494/*
495 * Similar to page_get_anon_vma() except it locks the anon_vma.
496 *
497 * Its a little more complex as it tries to keep the fast path to a single
498 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
499 * reference like with page_get_anon_vma() and then block on the mutex.
500 */
501struct anon_vma *page_lock_anon_vma_read(struct page *page)
502{
503	struct anon_vma *anon_vma = NULL;
504	struct anon_vma *root_anon_vma;
505	unsigned long anon_mapping;
506
507	rcu_read_lock();
508	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
509	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
510		goto out;
511	if (!page_mapped(page))
512		goto out;
513
514	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
515	root_anon_vma = READ_ONCE(anon_vma->root);
516	if (down_read_trylock(&root_anon_vma->rwsem)) {
517		/*
518		 * If the page is still mapped, then this anon_vma is still
519		 * its anon_vma, and holding the mutex ensures that it will
520		 * not go away, see anon_vma_free().
521		 */
522		if (!page_mapped(page)) {
523			up_read(&root_anon_vma->rwsem);
524			anon_vma = NULL;
525		}
526		goto out;
527	}
528
529	/* trylock failed, we got to sleep */
530	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
531		anon_vma = NULL;
532		goto out;
533	}
534
535	if (!page_mapped(page)) {
536		rcu_read_unlock();
537		put_anon_vma(anon_vma);
538		return NULL;
539	}
540
541	/* we pinned the anon_vma, its safe to sleep */
542	rcu_read_unlock();
543	anon_vma_lock_read(anon_vma);
544
545	if (atomic_dec_and_test(&anon_vma->refcount)) {
546		/*
547		 * Oops, we held the last refcount, release the lock
548		 * and bail -- can't simply use put_anon_vma() because
549		 * we'll deadlock on the anon_vma_lock_write() recursion.
550		 */
551		anon_vma_unlock_read(anon_vma);
552		__put_anon_vma(anon_vma);
553		anon_vma = NULL;
554	}
555
556	return anon_vma;
557
558out:
559	rcu_read_unlock();
560	return anon_vma;
561}
562
563void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
564{
565	anon_vma_unlock_read(anon_vma);
566}
567
568/*
569 * At what user virtual address is page expected in @vma?
570 */
571static inline unsigned long
572__vma_address(struct page *page, struct vm_area_struct *vma)
573{
574	pgoff_t pgoff = page_to_pgoff(page);
575	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
576}
577
578inline unsigned long
579vma_address(struct page *page, struct vm_area_struct *vma)
580{
581	unsigned long address = __vma_address(page, vma);
582
583	/* page should be within @vma mapping range */
584	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
585
586	return address;
587}
588
589#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
590static void percpu_flush_tlb_batch_pages(void *data)
591{
592	/*
593	 * All TLB entries are flushed on the assumption that it is
594	 * cheaper to flush all TLBs and let them be refilled than
595	 * flushing individual PFNs. Note that we do not track mm's
596	 * to flush as that might simply be multiple full TLB flushes
597	 * for no gain.
598	 */
599	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
600	flush_tlb_local();
601}
602
603/*
604 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
605 * important if a PTE was dirty when it was unmapped that it's flushed
606 * before any IO is initiated on the page to prevent lost writes. Similarly,
607 * it must be flushed before freeing to prevent data leakage.
608 */
609void try_to_unmap_flush(void)
610{
611	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
612	int cpu;
613
614	if (!tlb_ubc->flush_required)
615		return;
616
617	cpu = get_cpu();
618
619	trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, -1UL);
620
621	if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask))
622		percpu_flush_tlb_batch_pages(&tlb_ubc->cpumask);
623
624	if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) {
625		smp_call_function_many(&tlb_ubc->cpumask,
626			percpu_flush_tlb_batch_pages, (void *)tlb_ubc, true);
627	}
628	cpumask_clear(&tlb_ubc->cpumask);
629	tlb_ubc->flush_required = false;
630	tlb_ubc->writable = false;
631	put_cpu();
632}
633
634/* Flush iff there are potentially writable TLB entries that can race with IO */
635void try_to_unmap_flush_dirty(void)
636{
637	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
638
639	if (tlb_ubc->writable)
640		try_to_unmap_flush();
641}
642
643static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
644		struct page *page, bool writable)
645{
646	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
647
648	cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
649	tlb_ubc->flush_required = true;
650
651	/*
652	 * If the PTE was dirty then it's best to assume it's writable. The
653	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
654	 * before the page is queued for IO.
655	 */
656	if (writable)
657		tlb_ubc->writable = true;
658}
659
660/*
661 * Returns true if the TLB flush should be deferred to the end of a batch of
662 * unmap operations to reduce IPIs.
663 */
664static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
665{
666	bool should_defer = false;
667
668	if (!(flags & TTU_BATCH_FLUSH))
669		return false;
670
671	/* If remote CPUs need to be flushed then defer batch the flush */
672	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
673		should_defer = true;
674	put_cpu();
675
676	return should_defer;
677}
678#else
679static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
680		struct page *page, bool writable)
681{
682}
683
684static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
685{
686	return false;
687}
688#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
689
690/*
691 * At what user virtual address is page expected in vma?
692 * Caller should check the page is actually part of the vma.
693 */
694unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
695{
696	unsigned long address;
697	if (PageAnon(page)) {
698		struct anon_vma *page__anon_vma = page_anon_vma(page);
699		/*
700		 * Note: swapoff's unuse_vma() is more efficient with this
701		 * check, and needs it to match anon_vma when KSM is active.
702		 */
703		if (!vma->anon_vma || !page__anon_vma ||
704		    vma->anon_vma->root != page__anon_vma->root)
705			return -EFAULT;
706	} else if (page->mapping) {
707		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
708			return -EFAULT;
709	} else
710		return -EFAULT;
711	address = __vma_address(page, vma);
712	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
713		return -EFAULT;
714	return address;
715}
716
717pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
718{
719	pgd_t *pgd;
720	pud_t *pud;
721	pmd_t *pmd = NULL;
722	pmd_t pmde;
723
724	pgd = pgd_offset(mm, address);
725	if (!pgd_present(*pgd))
726		goto out;
727
728	pud = pud_offset(pgd, address);
729	if (!pud_present(*pud))
730		goto out;
731
732	pmd = pmd_offset(pud, address);
733	/*
734	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
735	 * without holding anon_vma lock for write.  So when looking for a
736	 * genuine pmde (in which to find pte), test present and !THP together.
737	 */
738	pmde = *pmd;
739	barrier();
740	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
741		pmd = NULL;
742out:
743	return pmd;
744}
745
746/*
747 * Check that @page is mapped at @address into @mm.
748 *
749 * If @sync is false, page_check_address may perform a racy check to avoid
750 * the page table lock when the pte is not present (helpful when reclaiming
751 * highly shared pages).
752 *
753 * On success returns with pte mapped and locked.
754 */
755pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
756			  unsigned long address, spinlock_t **ptlp, int sync)
757{
758	pmd_t *pmd;
759	pte_t *pte;
760	spinlock_t *ptl;
761
762	if (unlikely(PageHuge(page))) {
763		/* when pud is not present, pte will be NULL */
764		pte = huge_pte_offset(mm, address);
765		if (!pte)
766			return NULL;
767
768		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
769		goto check;
770	}
771
772	pmd = mm_find_pmd(mm, address);
773	if (!pmd)
774		return NULL;
775
776	pte = pte_offset_map(pmd, address);
777	/* Make a quick check before getting the lock */
778	if (!sync && !pte_present(*pte)) {
779		pte_unmap(pte);
780		return NULL;
781	}
782
783	ptl = pte_lockptr(mm, pmd);
784check:
785	spin_lock(ptl);
786	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
787		*ptlp = ptl;
788		return pte;
789	}
790	pte_unmap_unlock(pte, ptl);
791	return NULL;
792}
793
794/**
795 * page_mapped_in_vma - check whether a page is really mapped in a VMA
796 * @page: the page to test
797 * @vma: the VMA to test
798 *
799 * Returns 1 if the page is mapped into the page tables of the VMA, 0
800 * if the page is not mapped into the page tables of this VMA.  Only
801 * valid for normal file or anonymous VMAs.
802 */
803int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
804{
805	unsigned long address;
806	pte_t *pte;
807	spinlock_t *ptl;
808
809	address = __vma_address(page, vma);
810	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
811		return 0;
812	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
813	if (!pte)			/* the page is not in this mm */
814		return 0;
815	pte_unmap_unlock(pte, ptl);
816
817	return 1;
818}
819
820struct page_referenced_arg {
821	int mapcount;
822	int referenced;
823	unsigned long vm_flags;
824	struct mem_cgroup *memcg;
825};
826/*
827 * arg: page_referenced_arg will be passed
828 */
829static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
830			unsigned long address, void *arg)
831{
832	struct mm_struct *mm = vma->vm_mm;
833	spinlock_t *ptl;
834	int referenced = 0;
835	struct page_referenced_arg *pra = arg;
836
837	if (unlikely(PageTransHuge(page))) {
838		pmd_t *pmd;
839
840		/*
841		 * rmap might return false positives; we must filter
842		 * these out using page_check_address_pmd().
843		 */
844		pmd = page_check_address_pmd(page, mm, address,
845					     PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
846		if (!pmd)
847			return SWAP_AGAIN;
848
849		if (vma->vm_flags & VM_LOCKED) {
850			spin_unlock(ptl);
851			pra->vm_flags |= VM_LOCKED;
852			return SWAP_FAIL; /* To break the loop */
853		}
854
855		/* go ahead even if the pmd is pmd_trans_splitting() */
856		if (pmdp_clear_flush_young_notify(vma, address, pmd))
857			referenced++;
858		spin_unlock(ptl);
859	} else {
860		pte_t *pte;
861
862		/*
863		 * rmap might return false positives; we must filter
864		 * these out using page_check_address().
865		 */
866		pte = page_check_address(page, mm, address, &ptl, 0);
867		if (!pte)
868			return SWAP_AGAIN;
869
870		if (vma->vm_flags & VM_LOCKED) {
871			pte_unmap_unlock(pte, ptl);
872			pra->vm_flags |= VM_LOCKED;
873			return SWAP_FAIL; /* To break the loop */
874		}
875
876		if (ptep_clear_flush_young_notify(vma, address, pte)) {
877			/*
878			 * Don't treat a reference through a sequentially read
879			 * mapping as such.  If the page has been used in
880			 * another mapping, we will catch it; if this other
881			 * mapping is already gone, the unmap path will have
882			 * set PG_referenced or activated the page.
883			 */
884			if (likely(!(vma->vm_flags & VM_SEQ_READ)))
885				referenced++;
886		}
887		pte_unmap_unlock(pte, ptl);
888	}
889
890	if (referenced)
891		clear_page_idle(page);
892	if (test_and_clear_page_young(page))
893		referenced++;
894
895	if (referenced) {
896		pra->referenced++;
897		pra->vm_flags |= vma->vm_flags;
898	}
899
900	pra->mapcount--;
901	if (!pra->mapcount)
902		return SWAP_SUCCESS; /* To break the loop */
903
904	return SWAP_AGAIN;
905}
906
907static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
908{
909	struct page_referenced_arg *pra = arg;
910	struct mem_cgroup *memcg = pra->memcg;
911
912	if (!mm_match_cgroup(vma->vm_mm, memcg))
913		return true;
914
915	return false;
916}
917
918/**
919 * page_referenced - test if the page was referenced
920 * @page: the page to test
921 * @is_locked: caller holds lock on the page
922 * @memcg: target memory cgroup
923 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
924 *
925 * Quick test_and_clear_referenced for all mappings to a page,
926 * returns the number of ptes which referenced the page.
927 */
928int page_referenced(struct page *page,
929		    int is_locked,
930		    struct mem_cgroup *memcg,
931		    unsigned long *vm_flags)
932{
933	int ret;
934	int we_locked = 0;
935	struct page_referenced_arg pra = {
936		.mapcount = page_mapcount(page),
937		.memcg = memcg,
938	};
939	struct rmap_walk_control rwc = {
940		.rmap_one = page_referenced_one,
941		.arg = (void *)&pra,
942		.anon_lock = page_lock_anon_vma_read,
943	};
944
945	*vm_flags = 0;
946	if (!page_mapped(page))
947		return 0;
948
949	if (!page_rmapping(page))
950		return 0;
951
952	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
953		we_locked = trylock_page(page);
954		if (!we_locked)
955			return 1;
956	}
957
958	/*
959	 * If we are reclaiming on behalf of a cgroup, skip
960	 * counting on behalf of references from different
961	 * cgroups
962	 */
963	if (memcg) {
964		rwc.invalid_vma = invalid_page_referenced_vma;
965	}
966
967	ret = rmap_walk(page, &rwc);
968	*vm_flags = pra.vm_flags;
969
970	if (we_locked)
971		unlock_page(page);
972
973	return pra.referenced;
974}
975
976static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
977			    unsigned long address, void *arg)
978{
979	struct mm_struct *mm = vma->vm_mm;
980	pte_t *pte;
981	spinlock_t *ptl;
982	int ret = 0;
983	int *cleaned = arg;
984
985	pte = page_check_address(page, mm, address, &ptl, 1);
986	if (!pte)
987		goto out;
988
989	if (pte_dirty(*pte) || pte_write(*pte)) {
990		pte_t entry;
991
992		flush_cache_page(vma, address, pte_pfn(*pte));
993		entry = ptep_clear_flush(vma, address, pte);
994		entry = pte_wrprotect(entry);
995		entry = pte_mkclean(entry);
996		set_pte_at(mm, address, pte, entry);
997		ret = 1;
998	}
999
1000	pte_unmap_unlock(pte, ptl);
1001
1002	if (ret) {
1003		mmu_notifier_invalidate_page(mm, address);
1004		(*cleaned)++;
1005	}
1006out:
1007	return SWAP_AGAIN;
1008}
1009
1010static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1011{
1012	if (vma->vm_flags & VM_SHARED)
1013		return false;
1014
1015	return true;
1016}
1017
1018int page_mkclean(struct page *page)
1019{
1020	int cleaned = 0;
1021	struct address_space *mapping;
1022	struct rmap_walk_control rwc = {
1023		.arg = (void *)&cleaned,
1024		.rmap_one = page_mkclean_one,
1025		.invalid_vma = invalid_mkclean_vma,
1026	};
1027
1028	BUG_ON(!PageLocked(page));
1029
1030	if (!page_mapped(page))
1031		return 0;
1032
1033	mapping = page_mapping(page);
1034	if (!mapping)
1035		return 0;
1036
1037	rmap_walk(page, &rwc);
1038
1039	return cleaned;
1040}
1041EXPORT_SYMBOL_GPL(page_mkclean);
1042
1043/**
1044 * page_move_anon_rmap - move a page to our anon_vma
1045 * @page:	the page to move to our anon_vma
1046 * @vma:	the vma the page belongs to
1047 * @address:	the user virtual address mapped
1048 *
1049 * When a page belongs exclusively to one process after a COW event,
1050 * that page can be moved into the anon_vma that belongs to just that
1051 * process, so the rmap code will not search the parent or sibling
1052 * processes.
1053 */
1054void page_move_anon_rmap(struct page *page,
1055	struct vm_area_struct *vma, unsigned long address)
1056{
1057	struct anon_vma *anon_vma = vma->anon_vma;
1058
1059	VM_BUG_ON_PAGE(!PageLocked(page), page);
1060	VM_BUG_ON_VMA(!anon_vma, vma);
1061	VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
1062
1063	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1064	/*
1065	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1066	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1067	 * PageAnon()) will not see one without the other.
1068	 */
1069	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1070}
1071
1072/**
1073 * __page_set_anon_rmap - set up new anonymous rmap
1074 * @page:	Page to add to rmap
1075 * @vma:	VM area to add page to.
1076 * @address:	User virtual address of the mapping
1077 * @exclusive:	the page is exclusively owned by the current process
1078 */
1079static void __page_set_anon_rmap(struct page *page,
1080	struct vm_area_struct *vma, unsigned long address, int exclusive)
1081{
1082	struct anon_vma *anon_vma = vma->anon_vma;
1083
1084	BUG_ON(!anon_vma);
1085
1086	if (PageAnon(page))
1087		return;
1088
1089	/*
1090	 * If the page isn't exclusively mapped into this vma,
1091	 * we must use the _oldest_ possible anon_vma for the
1092	 * page mapping!
1093	 */
1094	if (!exclusive)
1095		anon_vma = anon_vma->root;
1096
1097	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1098	page->mapping = (struct address_space *) anon_vma;
1099	page->index = linear_page_index(vma, address);
1100}
1101
1102/**
1103 * __page_check_anon_rmap - sanity check anonymous rmap addition
1104 * @page:	the page to add the mapping to
1105 * @vma:	the vm area in which the mapping is added
1106 * @address:	the user virtual address mapped
1107 */
1108static void __page_check_anon_rmap(struct page *page,
1109	struct vm_area_struct *vma, unsigned long address)
1110{
1111#ifdef CONFIG_DEBUG_VM
1112	/*
1113	 * The page's anon-rmap details (mapping and index) are guaranteed to
1114	 * be set up correctly at this point.
1115	 *
1116	 * We have exclusion against page_add_anon_rmap because the caller
1117	 * always holds the page locked, except if called from page_dup_rmap,
1118	 * in which case the page is already known to be setup.
1119	 *
1120	 * We have exclusion against page_add_new_anon_rmap because those pages
1121	 * are initially only visible via the pagetables, and the pte is locked
1122	 * over the call to page_add_new_anon_rmap.
1123	 */
1124	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1125	BUG_ON(page->index != linear_page_index(vma, address));
1126#endif
1127}
1128
1129/**
1130 * page_add_anon_rmap - add pte mapping to an anonymous page
1131 * @page:	the page to add the mapping to
1132 * @vma:	the vm area in which the mapping is added
1133 * @address:	the user virtual address mapped
1134 *
1135 * The caller needs to hold the pte lock, and the page must be locked in
1136 * the anon_vma case: to serialize mapping,index checking after setting,
1137 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1138 * (but PageKsm is never downgraded to PageAnon).
1139 */
1140void page_add_anon_rmap(struct page *page,
1141	struct vm_area_struct *vma, unsigned long address)
1142{
1143	do_page_add_anon_rmap(page, vma, address, 0);
1144}
1145
1146/*
1147 * Special version of the above for do_swap_page, which often runs
1148 * into pages that are exclusively owned by the current process.
1149 * Everybody else should continue to use page_add_anon_rmap above.
1150 */
1151void do_page_add_anon_rmap(struct page *page,
1152	struct vm_area_struct *vma, unsigned long address, int exclusive)
1153{
1154	int first = atomic_inc_and_test(&page->_mapcount);
1155	if (first) {
1156		/*
1157		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1158		 * these counters are not modified in interrupt context, and
1159		 * pte lock(a spinlock) is held, which implies preemption
1160		 * disabled.
1161		 */
1162		if (PageTransHuge(page))
1163			__inc_zone_page_state(page,
1164					      NR_ANON_TRANSPARENT_HUGEPAGES);
1165		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1166				hpage_nr_pages(page));
1167	}
1168	if (unlikely(PageKsm(page)))
1169		return;
1170
1171	VM_BUG_ON_PAGE(!PageLocked(page), page);
1172	/* address might be in next vma when migration races vma_adjust */
1173	if (first)
1174		__page_set_anon_rmap(page, vma, address, exclusive);
1175	else
1176		__page_check_anon_rmap(page, vma, address);
1177}
1178
1179/**
1180 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1181 * @page:	the page to add the mapping to
1182 * @vma:	the vm area in which the mapping is added
1183 * @address:	the user virtual address mapped
1184 *
1185 * Same as page_add_anon_rmap but must only be called on *new* pages.
1186 * This means the inc-and-test can be bypassed.
1187 * Page does not have to be locked.
1188 */
1189void page_add_new_anon_rmap(struct page *page,
1190	struct vm_area_struct *vma, unsigned long address)
1191{
1192	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1193	SetPageSwapBacked(page);
1194	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1195	if (PageTransHuge(page))
1196		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1197	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1198			hpage_nr_pages(page));
1199	__page_set_anon_rmap(page, vma, address, 1);
1200}
1201
1202/**
1203 * page_add_file_rmap - add pte mapping to a file page
1204 * @page: the page to add the mapping to
1205 *
1206 * The caller needs to hold the pte lock.
1207 */
1208void page_add_file_rmap(struct page *page)
1209{
1210	struct mem_cgroup *memcg;
1211
1212	memcg = mem_cgroup_begin_page_stat(page);
1213	if (atomic_inc_and_test(&page->_mapcount)) {
1214		__inc_zone_page_state(page, NR_FILE_MAPPED);
1215		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1216	}
1217	mem_cgroup_end_page_stat(memcg);
1218}
1219
1220static void page_remove_file_rmap(struct page *page)
1221{
1222	struct mem_cgroup *memcg;
1223
1224	memcg = mem_cgroup_begin_page_stat(page);
1225
1226	/* page still mapped by someone else? */
1227	if (!atomic_add_negative(-1, &page->_mapcount))
1228		goto out;
1229
1230	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1231	if (unlikely(PageHuge(page)))
1232		goto out;
1233
1234	/*
1235	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1236	 * these counters are not modified in interrupt context, and
1237	 * pte lock(a spinlock) is held, which implies preemption disabled.
1238	 */
1239	__dec_zone_page_state(page, NR_FILE_MAPPED);
1240	mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1241
1242	if (unlikely(PageMlocked(page)))
1243		clear_page_mlock(page);
1244out:
1245	mem_cgroup_end_page_stat(memcg);
1246}
1247
1248/**
1249 * page_remove_rmap - take down pte mapping from a page
1250 * @page: page to remove mapping from
1251 *
1252 * The caller needs to hold the pte lock.
1253 */
1254void page_remove_rmap(struct page *page)
1255{
1256	if (!PageAnon(page)) {
1257		page_remove_file_rmap(page);
1258		return;
1259	}
1260
1261	/* page still mapped by someone else? */
1262	if (!atomic_add_negative(-1, &page->_mapcount))
1263		return;
1264
1265	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1266	if (unlikely(PageHuge(page)))
1267		return;
1268
1269	/*
1270	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1271	 * these counters are not modified in interrupt context, and
1272	 * pte lock(a spinlock) is held, which implies preemption disabled.
1273	 */
1274	if (PageTransHuge(page))
1275		__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1276
1277	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1278			      -hpage_nr_pages(page));
1279
1280	if (unlikely(PageMlocked(page)))
1281		clear_page_mlock(page);
1282
1283	/*
1284	 * It would be tidy to reset the PageAnon mapping here,
1285	 * but that might overwrite a racing page_add_anon_rmap
1286	 * which increments mapcount after us but sets mapping
1287	 * before us: so leave the reset to free_hot_cold_page,
1288	 * and remember that it's only reliable while mapped.
1289	 * Leaving it set also helps swapoff to reinstate ptes
1290	 * faster for those pages still in swapcache.
1291	 */
1292}
1293
1294/*
1295 * @arg: enum ttu_flags will be passed to this argument
1296 */
1297static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1298		     unsigned long address, void *arg)
1299{
1300	struct mm_struct *mm = vma->vm_mm;
1301	pte_t *pte;
1302	pte_t pteval;
1303	spinlock_t *ptl;
1304	int ret = SWAP_AGAIN;
1305	enum ttu_flags flags = (enum ttu_flags)arg;
1306
1307	/* munlock has nothing to gain from examining un-locked vmas */
1308	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1309		goto out;
1310
1311	pte = page_check_address(page, mm, address, &ptl, 0);
1312	if (!pte)
1313		goto out;
1314
1315	/*
1316	 * If the page is mlock()d, we cannot swap it out.
1317	 * If it's recently referenced (perhaps page_referenced
1318	 * skipped over this mm) then we should reactivate it.
1319	 */
1320	if (!(flags & TTU_IGNORE_MLOCK)) {
1321		if (vma->vm_flags & VM_LOCKED) {
1322			/* Holding pte lock, we do *not* need mmap_sem here */
1323			mlock_vma_page(page);
1324			ret = SWAP_MLOCK;
1325			goto out_unmap;
1326		}
1327		if (flags & TTU_MUNLOCK)
1328			goto out_unmap;
1329	}
1330	if (!(flags & TTU_IGNORE_ACCESS)) {
1331		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1332			ret = SWAP_FAIL;
1333			goto out_unmap;
1334		}
1335  	}
1336
1337	/* Nuke the page table entry. */
1338	flush_cache_page(vma, address, page_to_pfn(page));
1339	if (should_defer_flush(mm, flags)) {
1340		/*
1341		 * We clear the PTE but do not flush so potentially a remote
1342		 * CPU could still be writing to the page. If the entry was
1343		 * previously clean then the architecture must guarantee that
1344		 * a clear->dirty transition on a cached TLB entry is written
1345		 * through and traps if the PTE is unmapped.
1346		 */
1347		pteval = ptep_get_and_clear(mm, address, pte);
1348
1349		set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
1350	} else {
1351		pteval = ptep_clear_flush(vma, address, pte);
1352	}
1353
1354	/* Move the dirty bit to the physical page now the pte is gone. */
1355	if (pte_dirty(pteval))
1356		set_page_dirty(page);
1357
1358	/* Update high watermark before we lower rss */
1359	update_hiwater_rss(mm);
1360
1361	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1362		if (PageHuge(page)) {
1363			hugetlb_count_sub(1 << compound_order(page), mm);
1364		} else {
1365			if (PageAnon(page))
1366				dec_mm_counter(mm, MM_ANONPAGES);
1367			else
1368				dec_mm_counter(mm, MM_FILEPAGES);
1369		}
1370		set_pte_at(mm, address, pte,
1371			   swp_entry_to_pte(make_hwpoison_entry(page)));
1372	} else if (pte_unused(pteval)) {
1373		/*
1374		 * The guest indicated that the page content is of no
1375		 * interest anymore. Simply discard the pte, vmscan
1376		 * will take care of the rest.
1377		 */
1378		if (PageAnon(page))
1379			dec_mm_counter(mm, MM_ANONPAGES);
1380		else
1381			dec_mm_counter(mm, MM_FILEPAGES);
1382	} else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) {
1383		swp_entry_t entry;
1384		pte_t swp_pte;
1385		/*
1386		 * Store the pfn of the page in a special migration
1387		 * pte. do_swap_page() will wait until the migration
1388		 * pte is removed and then restart fault handling.
1389		 */
1390		entry = make_migration_entry(page, pte_write(pteval));
1391		swp_pte = swp_entry_to_pte(entry);
1392		if (pte_soft_dirty(pteval))
1393			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1394		set_pte_at(mm, address, pte, swp_pte);
1395	} else if (PageAnon(page)) {
1396		swp_entry_t entry = { .val = page_private(page) };
1397		pte_t swp_pte;
1398		/*
1399		 * Store the swap location in the pte.
1400		 * See handle_pte_fault() ...
1401		 */
1402		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1403		if (swap_duplicate(entry) < 0) {
1404			set_pte_at(mm, address, pte, pteval);
1405			ret = SWAP_FAIL;
1406			goto out_unmap;
1407		}
1408		if (list_empty(&mm->mmlist)) {
1409			spin_lock(&mmlist_lock);
1410			if (list_empty(&mm->mmlist))
1411				list_add(&mm->mmlist, &init_mm.mmlist);
1412			spin_unlock(&mmlist_lock);
1413		}
1414		dec_mm_counter(mm, MM_ANONPAGES);
1415		inc_mm_counter(mm, MM_SWAPENTS);
1416		swp_pte = swp_entry_to_pte(entry);
1417		if (pte_soft_dirty(pteval))
1418			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1419		set_pte_at(mm, address, pte, swp_pte);
1420	} else
1421		dec_mm_counter(mm, MM_FILEPAGES);
1422
1423	page_remove_rmap(page);
1424	page_cache_release(page);
1425
1426out_unmap:
1427	pte_unmap_unlock(pte, ptl);
1428	if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
1429		mmu_notifier_invalidate_page(mm, address);
1430out:
1431	return ret;
1432}
1433
1434bool is_vma_temporary_stack(struct vm_area_struct *vma)
1435{
1436	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1437
1438	if (!maybe_stack)
1439		return false;
1440
1441	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1442						VM_STACK_INCOMPLETE_SETUP)
1443		return true;
1444
1445	return false;
1446}
1447
1448static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1449{
1450	return is_vma_temporary_stack(vma);
1451}
1452
1453static int page_not_mapped(struct page *page)
1454{
1455	return !page_mapped(page);
1456};
1457
1458/**
1459 * try_to_unmap - try to remove all page table mappings to a page
1460 * @page: the page to get unmapped
1461 * @flags: action and flags
1462 *
1463 * Tries to remove all the page table entries which are mapping this
1464 * page, used in the pageout path.  Caller must hold the page lock.
1465 * Return values are:
1466 *
1467 * SWAP_SUCCESS	- we succeeded in removing all mappings
1468 * SWAP_AGAIN	- we missed a mapping, try again later
1469 * SWAP_FAIL	- the page is unswappable
1470 * SWAP_MLOCK	- page is mlocked.
1471 */
1472int try_to_unmap(struct page *page, enum ttu_flags flags)
1473{
1474	int ret;
1475	struct rmap_walk_control rwc = {
1476		.rmap_one = try_to_unmap_one,
1477		.arg = (void *)flags,
1478		.done = page_not_mapped,
1479		.anon_lock = page_lock_anon_vma_read,
1480	};
1481
1482	VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1483
1484	/*
1485	 * During exec, a temporary VMA is setup and later moved.
1486	 * The VMA is moved under the anon_vma lock but not the
1487	 * page tables leading to a race where migration cannot
1488	 * find the migration ptes. Rather than increasing the
1489	 * locking requirements of exec(), migration skips
1490	 * temporary VMAs until after exec() completes.
1491	 */
1492	if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1493		rwc.invalid_vma = invalid_migration_vma;
1494
1495	ret = rmap_walk(page, &rwc);
1496
1497	if (ret != SWAP_MLOCK && !page_mapped(page))
1498		ret = SWAP_SUCCESS;
1499	return ret;
1500}
1501
1502/**
1503 * try_to_munlock - try to munlock a page
1504 * @page: the page to be munlocked
1505 *
1506 * Called from munlock code.  Checks all of the VMAs mapping the page
1507 * to make sure nobody else has this page mlocked. The page will be
1508 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1509 *
1510 * Return values are:
1511 *
1512 * SWAP_AGAIN	- no vma is holding page mlocked, or,
1513 * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1514 * SWAP_FAIL	- page cannot be located at present
1515 * SWAP_MLOCK	- page is now mlocked.
1516 */
1517int try_to_munlock(struct page *page)
1518{
1519	int ret;
1520	struct rmap_walk_control rwc = {
1521		.rmap_one = try_to_unmap_one,
1522		.arg = (void *)TTU_MUNLOCK,
1523		.done = page_not_mapped,
1524		.anon_lock = page_lock_anon_vma_read,
1525
1526	};
1527
1528	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1529
1530	ret = rmap_walk(page, &rwc);
1531	return ret;
1532}
1533
1534void __put_anon_vma(struct anon_vma *anon_vma)
1535{
1536	struct anon_vma *root = anon_vma->root;
1537
1538	anon_vma_free(anon_vma);
1539	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1540		anon_vma_free(root);
1541}
1542
1543static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1544					struct rmap_walk_control *rwc)
1545{
1546	struct anon_vma *anon_vma;
1547
1548	if (rwc->anon_lock)
1549		return rwc->anon_lock(page);
1550
1551	/*
1552	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1553	 * because that depends on page_mapped(); but not all its usages
1554	 * are holding mmap_sem. Users without mmap_sem are required to
1555	 * take a reference count to prevent the anon_vma disappearing
1556	 */
1557	anon_vma = page_anon_vma(page);
1558	if (!anon_vma)
1559		return NULL;
1560
1561	anon_vma_lock_read(anon_vma);
1562	return anon_vma;
1563}
1564
1565/*
1566 * rmap_walk_anon - do something to anonymous page using the object-based
1567 * rmap method
1568 * @page: the page to be handled
1569 * @rwc: control variable according to each walk type
1570 *
1571 * Find all the mappings of a page using the mapping pointer and the vma chains
1572 * contained in the anon_vma struct it points to.
1573 *
1574 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1575 * where the page was found will be held for write.  So, we won't recheck
1576 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1577 * LOCKED.
1578 */
1579static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1580{
1581	struct anon_vma *anon_vma;
1582	pgoff_t pgoff;
1583	struct anon_vma_chain *avc;
1584	int ret = SWAP_AGAIN;
1585
1586	anon_vma = rmap_walk_anon_lock(page, rwc);
1587	if (!anon_vma)
1588		return ret;
1589
1590	pgoff = page_to_pgoff(page);
1591	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1592		struct vm_area_struct *vma = avc->vma;
1593		unsigned long address = vma_address(page, vma);
1594
1595		cond_resched();
1596
1597		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1598			continue;
1599
1600		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1601		if (ret != SWAP_AGAIN)
1602			break;
1603		if (rwc->done && rwc->done(page))
1604			break;
1605	}
1606	anon_vma_unlock_read(anon_vma);
1607	return ret;
1608}
1609
1610/*
1611 * rmap_walk_file - do something to file page using the object-based rmap method
1612 * @page: the page to be handled
1613 * @rwc: control variable according to each walk type
1614 *
1615 * Find all the mappings of a page using the mapping pointer and the vma chains
1616 * contained in the address_space struct it points to.
1617 *
1618 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1619 * where the page was found will be held for write.  So, we won't recheck
1620 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1621 * LOCKED.
1622 */
1623static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1624{
1625	struct address_space *mapping = page->mapping;
1626	pgoff_t pgoff;
1627	struct vm_area_struct *vma;
1628	int ret = SWAP_AGAIN;
1629
1630	/*
1631	 * The page lock not only makes sure that page->mapping cannot
1632	 * suddenly be NULLified by truncation, it makes sure that the
1633	 * structure at mapping cannot be freed and reused yet,
1634	 * so we can safely take mapping->i_mmap_rwsem.
1635	 */
1636	VM_BUG_ON_PAGE(!PageLocked(page), page);
1637
1638	if (!mapping)
1639		return ret;
1640
1641	pgoff = page_to_pgoff(page);
1642	i_mmap_lock_read(mapping);
1643	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1644		unsigned long address = vma_address(page, vma);
1645
1646		cond_resched();
1647
1648		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1649			continue;
1650
1651		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1652		if (ret != SWAP_AGAIN)
1653			goto done;
1654		if (rwc->done && rwc->done(page))
1655			goto done;
1656	}
1657
1658done:
1659	i_mmap_unlock_read(mapping);
1660	return ret;
1661}
1662
1663int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1664{
1665	if (unlikely(PageKsm(page)))
1666		return rmap_walk_ksm(page, rwc);
1667	else if (PageAnon(page))
1668		return rmap_walk_anon(page, rwc);
1669	else
1670		return rmap_walk_file(page, rwc);
1671}
1672
1673#ifdef CONFIG_HUGETLB_PAGE
1674/*
1675 * The following three functions are for anonymous (private mapped) hugepages.
1676 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1677 * and no lru code, because we handle hugepages differently from common pages.
1678 */
1679static void __hugepage_set_anon_rmap(struct page *page,
1680	struct vm_area_struct *vma, unsigned long address, int exclusive)
1681{
1682	struct anon_vma *anon_vma = vma->anon_vma;
1683
1684	BUG_ON(!anon_vma);
1685
1686	if (PageAnon(page))
1687		return;
1688	if (!exclusive)
1689		anon_vma = anon_vma->root;
1690
1691	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1692	page->mapping = (struct address_space *) anon_vma;
1693	page->index = linear_page_index(vma, address);
1694}
1695
1696void hugepage_add_anon_rmap(struct page *page,
1697			    struct vm_area_struct *vma, unsigned long address)
1698{
1699	struct anon_vma *anon_vma = vma->anon_vma;
1700	int first;
1701
1702	BUG_ON(!PageLocked(page));
1703	BUG_ON(!anon_vma);
1704	/* address might be in next vma when migration races vma_adjust */
1705	first = atomic_inc_and_test(&page->_mapcount);
1706	if (first)
1707		__hugepage_set_anon_rmap(page, vma, address, 0);
1708}
1709
1710void hugepage_add_new_anon_rmap(struct page *page,
1711			struct vm_area_struct *vma, unsigned long address)
1712{
1713	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1714	atomic_set(&page->_mapcount, 0);
1715	__hugepage_set_anon_rmap(page, vma, address, 1);
1716}
1717#endif /* CONFIG_HUGETLB_PAGE */
1718