1/*
2 * mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009		SUSE Linux Products GmbH
5 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas.  Percpu areas are allocated in chunks.  Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.
17 *
18 *  c0                           c1                         c2
19 *  -------------------          -------------------        ------------
20 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
21 *  -------------------  ......  -------------------  ....  ------------
22 *
23 * Allocation is done in offset-size areas of single unit space.  Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
26 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
29 *
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes.  The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be equal to or larger than the maximum contiguous
35 * area in the chunk.  This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map.  A positive value in the map represents a free
40 * region and negative allocated.  Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry.  This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
45 *
46 * To use this allocator, arch code should do the followings.
47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 *   regular address to percpu pointer and back if they need to be
50 *   different from the default
51 *
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 *   setup the first chunk containing the kernel static percpu area
54 */
55
56#include <linux/bitmap.h>
57#include <linux/bootmem.h>
58#include <linux/err.h>
59#include <linux/list.h>
60#include <linux/log2.h>
61#include <linux/mm.h>
62#include <linux/module.h>
63#include <linux/mutex.h>
64#include <linux/percpu.h>
65#include <linux/pfn.h>
66#include <linux/slab.h>
67#include <linux/spinlock.h>
68#include <linux/vmalloc.h>
69#include <linux/workqueue.h>
70#include <linux/kmemleak.h>
71
72#include <asm/cacheflush.h>
73#include <asm/sections.h>
74#include <asm/tlbflush.h>
75#include <asm/io.h>
76
77#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
78#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
79#define PCPU_ATOMIC_MAP_MARGIN_LOW	32
80#define PCPU_ATOMIC_MAP_MARGIN_HIGH	64
81#define PCPU_EMPTY_POP_PAGES_LOW	2
82#define PCPU_EMPTY_POP_PAGES_HIGH	4
83
84#ifdef CONFIG_SMP
85/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
86#ifndef __addr_to_pcpu_ptr
87#define __addr_to_pcpu_ptr(addr)					\
88	(void __percpu *)((unsigned long)(addr) -			\
89			  (unsigned long)pcpu_base_addr	+		\
90			  (unsigned long)__per_cpu_start)
91#endif
92#ifndef __pcpu_ptr_to_addr
93#define __pcpu_ptr_to_addr(ptr)						\
94	(void __force *)((unsigned long)(ptr) +				\
95			 (unsigned long)pcpu_base_addr -		\
96			 (unsigned long)__per_cpu_start)
97#endif
98#else	/* CONFIG_SMP */
99/* on UP, it's always identity mapped */
100#define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
101#define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
102#endif	/* CONFIG_SMP */
103
104struct pcpu_chunk {
105	struct list_head	list;		/* linked to pcpu_slot lists */
106	int			free_size;	/* free bytes in the chunk */
107	int			contig_hint;	/* max contiguous size hint */
108	void			*base_addr;	/* base address of this chunk */
109
110	int			map_used;	/* # of map entries used before the sentry */
111	int			map_alloc;	/* # of map entries allocated */
112	int			*map;		/* allocation map */
113	struct work_struct	map_extend_work;/* async ->map[] extension */
114
115	void			*data;		/* chunk data */
116	int			first_free;	/* no free below this */
117	bool			immutable;	/* no [de]population allowed */
118	int			nr_populated;	/* # of populated pages */
119	unsigned long		populated[];	/* populated bitmap */
120};
121
122static int pcpu_unit_pages __read_mostly;
123static int pcpu_unit_size __read_mostly;
124static int pcpu_nr_units __read_mostly;
125static int pcpu_atom_size __read_mostly;
126static int pcpu_nr_slots __read_mostly;
127static size_t pcpu_chunk_struct_size __read_mostly;
128
129/* cpus with the lowest and highest unit addresses */
130static unsigned int pcpu_low_unit_cpu __read_mostly;
131static unsigned int pcpu_high_unit_cpu __read_mostly;
132
133/* the address of the first chunk which starts with the kernel static area */
134void *pcpu_base_addr __read_mostly;
135EXPORT_SYMBOL_GPL(pcpu_base_addr);
136
137static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
138const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
139
140/* group information, used for vm allocation */
141static int pcpu_nr_groups __read_mostly;
142static const unsigned long *pcpu_group_offsets __read_mostly;
143static const size_t *pcpu_group_sizes __read_mostly;
144
145/*
146 * The first chunk which always exists.  Note that unlike other
147 * chunks, this one can be allocated and mapped in several different
148 * ways and thus often doesn't live in the vmalloc area.
149 */
150static struct pcpu_chunk *pcpu_first_chunk;
151
152/*
153 * Optional reserved chunk.  This chunk reserves part of the first
154 * chunk and serves it for reserved allocations.  The amount of
155 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
156 * area doesn't exist, the following variables contain NULL and 0
157 * respectively.
158 */
159static struct pcpu_chunk *pcpu_reserved_chunk;
160static int pcpu_reserved_chunk_limit;
161
162static DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
163static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop */
164
165static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
166
167/*
168 * The number of empty populated pages, protected by pcpu_lock.  The
169 * reserved chunk doesn't contribute to the count.
170 */
171static int pcpu_nr_empty_pop_pages;
172
173/*
174 * Balance work is used to populate or destroy chunks asynchronously.  We
175 * try to keep the number of populated free pages between
176 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
177 * empty chunk.
178 */
179static void pcpu_balance_workfn(struct work_struct *work);
180static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
181static bool pcpu_async_enabled __read_mostly;
182static bool pcpu_atomic_alloc_failed;
183
184static void pcpu_schedule_balance_work(void)
185{
186	if (pcpu_async_enabled)
187		schedule_work(&pcpu_balance_work);
188}
189
190static bool pcpu_addr_in_first_chunk(void *addr)
191{
192	void *first_start = pcpu_first_chunk->base_addr;
193
194	return addr >= first_start && addr < first_start + pcpu_unit_size;
195}
196
197static bool pcpu_addr_in_reserved_chunk(void *addr)
198{
199	void *first_start = pcpu_first_chunk->base_addr;
200
201	return addr >= first_start &&
202		addr < first_start + pcpu_reserved_chunk_limit;
203}
204
205static int __pcpu_size_to_slot(int size)
206{
207	int highbit = fls(size);	/* size is in bytes */
208	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
209}
210
211static int pcpu_size_to_slot(int size)
212{
213	if (size == pcpu_unit_size)
214		return pcpu_nr_slots - 1;
215	return __pcpu_size_to_slot(size);
216}
217
218static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
219{
220	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
221		return 0;
222
223	return pcpu_size_to_slot(chunk->free_size);
224}
225
226/* set the pointer to a chunk in a page struct */
227static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
228{
229	page->index = (unsigned long)pcpu;
230}
231
232/* obtain pointer to a chunk from a page struct */
233static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
234{
235	return (struct pcpu_chunk *)page->index;
236}
237
238static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
239{
240	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
241}
242
243static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
244				     unsigned int cpu, int page_idx)
245{
246	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
247		(page_idx << PAGE_SHIFT);
248}
249
250static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
251					   int *rs, int *re, int end)
252{
253	*rs = find_next_zero_bit(chunk->populated, end, *rs);
254	*re = find_next_bit(chunk->populated, end, *rs + 1);
255}
256
257static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
258					 int *rs, int *re, int end)
259{
260	*rs = find_next_bit(chunk->populated, end, *rs);
261	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
262}
263
264/*
265 * (Un)populated page region iterators.  Iterate over (un)populated
266 * page regions between @start and @end in @chunk.  @rs and @re should
267 * be integer variables and will be set to start and end page index of
268 * the current region.
269 */
270#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
271	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
272	     (rs) < (re);						    \
273	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
274
275#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
276	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
277	     (rs) < (re);						    \
278	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
279
280/**
281 * pcpu_mem_zalloc - allocate memory
282 * @size: bytes to allocate
283 *
284 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
285 * kzalloc() is used; otherwise, vzalloc() is used.  The returned
286 * memory is always zeroed.
287 *
288 * CONTEXT:
289 * Does GFP_KERNEL allocation.
290 *
291 * RETURNS:
292 * Pointer to the allocated area on success, NULL on failure.
293 */
294static void *pcpu_mem_zalloc(size_t size)
295{
296	if (WARN_ON_ONCE(!slab_is_available()))
297		return NULL;
298
299	if (size <= PAGE_SIZE)
300		return kzalloc(size, GFP_KERNEL);
301	else
302		return vzalloc(size);
303}
304
305/**
306 * pcpu_mem_free - free memory
307 * @ptr: memory to free
308 * @size: size of the area
309 *
310 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
311 */
312static void pcpu_mem_free(void *ptr, size_t size)
313{
314	if (size <= PAGE_SIZE)
315		kfree(ptr);
316	else
317		vfree(ptr);
318}
319
320/**
321 * pcpu_count_occupied_pages - count the number of pages an area occupies
322 * @chunk: chunk of interest
323 * @i: index of the area in question
324 *
325 * Count the number of pages chunk's @i'th area occupies.  When the area's
326 * start and/or end address isn't aligned to page boundary, the straddled
327 * page is included in the count iff the rest of the page is free.
328 */
329static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
330{
331	int off = chunk->map[i] & ~1;
332	int end = chunk->map[i + 1] & ~1;
333
334	if (!PAGE_ALIGNED(off) && i > 0) {
335		int prev = chunk->map[i - 1];
336
337		if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
338			off = round_down(off, PAGE_SIZE);
339	}
340
341	if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
342		int next = chunk->map[i + 1];
343		int nend = chunk->map[i + 2] & ~1;
344
345		if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
346			end = round_up(end, PAGE_SIZE);
347	}
348
349	return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
350}
351
352/**
353 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
354 * @chunk: chunk of interest
355 * @oslot: the previous slot it was on
356 *
357 * This function is called after an allocation or free changed @chunk.
358 * New slot according to the changed state is determined and @chunk is
359 * moved to the slot.  Note that the reserved chunk is never put on
360 * chunk slots.
361 *
362 * CONTEXT:
363 * pcpu_lock.
364 */
365static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
366{
367	int nslot = pcpu_chunk_slot(chunk);
368
369	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
370		if (oslot < nslot)
371			list_move(&chunk->list, &pcpu_slot[nslot]);
372		else
373			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
374	}
375}
376
377/**
378 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
379 * @chunk: chunk of interest
380 * @is_atomic: the allocation context
381 *
382 * Determine whether area map of @chunk needs to be extended.  If
383 * @is_atomic, only the amount necessary for a new allocation is
384 * considered; however, async extension is scheduled if the left amount is
385 * low.  If !@is_atomic, it aims for more empty space.  Combined, this
386 * ensures that the map is likely to have enough available space to
387 * accomodate atomic allocations which can't extend maps directly.
388 *
389 * CONTEXT:
390 * pcpu_lock.
391 *
392 * RETURNS:
393 * New target map allocation length if extension is necessary, 0
394 * otherwise.
395 */
396static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
397{
398	int margin, new_alloc;
399
400	if (is_atomic) {
401		margin = 3;
402
403		if (chunk->map_alloc <
404		    chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW &&
405		    pcpu_async_enabled)
406			schedule_work(&chunk->map_extend_work);
407	} else {
408		margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
409	}
410
411	if (chunk->map_alloc >= chunk->map_used + margin)
412		return 0;
413
414	new_alloc = PCPU_DFL_MAP_ALLOC;
415	while (new_alloc < chunk->map_used + margin)
416		new_alloc *= 2;
417
418	return new_alloc;
419}
420
421/**
422 * pcpu_extend_area_map - extend area map of a chunk
423 * @chunk: chunk of interest
424 * @new_alloc: new target allocation length of the area map
425 *
426 * Extend area map of @chunk to have @new_alloc entries.
427 *
428 * CONTEXT:
429 * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
430 *
431 * RETURNS:
432 * 0 on success, -errno on failure.
433 */
434static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
435{
436	int *old = NULL, *new = NULL;
437	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
438	unsigned long flags;
439
440	new = pcpu_mem_zalloc(new_size);
441	if (!new)
442		return -ENOMEM;
443
444	/* acquire pcpu_lock and switch to new area map */
445	spin_lock_irqsave(&pcpu_lock, flags);
446
447	if (new_alloc <= chunk->map_alloc)
448		goto out_unlock;
449
450	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
451	old = chunk->map;
452
453	memcpy(new, old, old_size);
454
455	chunk->map_alloc = new_alloc;
456	chunk->map = new;
457	new = NULL;
458
459out_unlock:
460	spin_unlock_irqrestore(&pcpu_lock, flags);
461
462	/*
463	 * pcpu_mem_free() might end up calling vfree() which uses
464	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
465	 */
466	pcpu_mem_free(old, old_size);
467	pcpu_mem_free(new, new_size);
468
469	return 0;
470}
471
472static void pcpu_map_extend_workfn(struct work_struct *work)
473{
474	struct pcpu_chunk *chunk = container_of(work, struct pcpu_chunk,
475						map_extend_work);
476	int new_alloc;
477
478	spin_lock_irq(&pcpu_lock);
479	new_alloc = pcpu_need_to_extend(chunk, false);
480	spin_unlock_irq(&pcpu_lock);
481
482	if (new_alloc)
483		pcpu_extend_area_map(chunk, new_alloc);
484}
485
486/**
487 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
488 * @chunk: chunk the candidate area belongs to
489 * @off: the offset to the start of the candidate area
490 * @this_size: the size of the candidate area
491 * @size: the size of the target allocation
492 * @align: the alignment of the target allocation
493 * @pop_only: only allocate from already populated region
494 *
495 * We're trying to allocate @size bytes aligned at @align.  @chunk's area
496 * at @off sized @this_size is a candidate.  This function determines
497 * whether the target allocation fits in the candidate area and returns the
498 * number of bytes to pad after @off.  If the target area doesn't fit, -1
499 * is returned.
500 *
501 * If @pop_only is %true, this function only considers the already
502 * populated part of the candidate area.
503 */
504static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
505			    int size, int align, bool pop_only)
506{
507	int cand_off = off;
508
509	while (true) {
510		int head = ALIGN(cand_off, align) - off;
511		int page_start, page_end, rs, re;
512
513		if (this_size < head + size)
514			return -1;
515
516		if (!pop_only)
517			return head;
518
519		/*
520		 * If the first unpopulated page is beyond the end of the
521		 * allocation, the whole allocation is populated;
522		 * otherwise, retry from the end of the unpopulated area.
523		 */
524		page_start = PFN_DOWN(head + off);
525		page_end = PFN_UP(head + off + size);
526
527		rs = page_start;
528		pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
529		if (rs >= page_end)
530			return head;
531		cand_off = re * PAGE_SIZE;
532	}
533}
534
535/**
536 * pcpu_alloc_area - allocate area from a pcpu_chunk
537 * @chunk: chunk of interest
538 * @size: wanted size in bytes
539 * @align: wanted align
540 * @pop_only: allocate only from the populated area
541 * @occ_pages_p: out param for the number of pages the area occupies
542 *
543 * Try to allocate @size bytes area aligned at @align from @chunk.
544 * Note that this function only allocates the offset.  It doesn't
545 * populate or map the area.
546 *
547 * @chunk->map must have at least two free slots.
548 *
549 * CONTEXT:
550 * pcpu_lock.
551 *
552 * RETURNS:
553 * Allocated offset in @chunk on success, -1 if no matching area is
554 * found.
555 */
556static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
557			   bool pop_only, int *occ_pages_p)
558{
559	int oslot = pcpu_chunk_slot(chunk);
560	int max_contig = 0;
561	int i, off;
562	bool seen_free = false;
563	int *p;
564
565	for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
566		int head, tail;
567		int this_size;
568
569		off = *p;
570		if (off & 1)
571			continue;
572
573		this_size = (p[1] & ~1) - off;
574
575		head = pcpu_fit_in_area(chunk, off, this_size, size, align,
576					pop_only);
577		if (head < 0) {
578			if (!seen_free) {
579				chunk->first_free = i;
580				seen_free = true;
581			}
582			max_contig = max(this_size, max_contig);
583			continue;
584		}
585
586		/*
587		 * If head is small or the previous block is free,
588		 * merge'em.  Note that 'small' is defined as smaller
589		 * than sizeof(int), which is very small but isn't too
590		 * uncommon for percpu allocations.
591		 */
592		if (head && (head < sizeof(int) || !(p[-1] & 1))) {
593			*p = off += head;
594			if (p[-1] & 1)
595				chunk->free_size -= head;
596			else
597				max_contig = max(*p - p[-1], max_contig);
598			this_size -= head;
599			head = 0;
600		}
601
602		/* if tail is small, just keep it around */
603		tail = this_size - head - size;
604		if (tail < sizeof(int)) {
605			tail = 0;
606			size = this_size - head;
607		}
608
609		/* split if warranted */
610		if (head || tail) {
611			int nr_extra = !!head + !!tail;
612
613			/* insert new subblocks */
614			memmove(p + nr_extra + 1, p + 1,
615				sizeof(chunk->map[0]) * (chunk->map_used - i));
616			chunk->map_used += nr_extra;
617
618			if (head) {
619				if (!seen_free) {
620					chunk->first_free = i;
621					seen_free = true;
622				}
623				*++p = off += head;
624				++i;
625				max_contig = max(head, max_contig);
626			}
627			if (tail) {
628				p[1] = off + size;
629				max_contig = max(tail, max_contig);
630			}
631		}
632
633		if (!seen_free)
634			chunk->first_free = i + 1;
635
636		/* update hint and mark allocated */
637		if (i + 1 == chunk->map_used)
638			chunk->contig_hint = max_contig; /* fully scanned */
639		else
640			chunk->contig_hint = max(chunk->contig_hint,
641						 max_contig);
642
643		chunk->free_size -= size;
644		*p |= 1;
645
646		*occ_pages_p = pcpu_count_occupied_pages(chunk, i);
647		pcpu_chunk_relocate(chunk, oslot);
648		return off;
649	}
650
651	chunk->contig_hint = max_contig;	/* fully scanned */
652	pcpu_chunk_relocate(chunk, oslot);
653
654	/* tell the upper layer that this chunk has no matching area */
655	return -1;
656}
657
658/**
659 * pcpu_free_area - free area to a pcpu_chunk
660 * @chunk: chunk of interest
661 * @freeme: offset of area to free
662 * @occ_pages_p: out param for the number of pages the area occupies
663 *
664 * Free area starting from @freeme to @chunk.  Note that this function
665 * only modifies the allocation map.  It doesn't depopulate or unmap
666 * the area.
667 *
668 * CONTEXT:
669 * pcpu_lock.
670 */
671static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
672			   int *occ_pages_p)
673{
674	int oslot = pcpu_chunk_slot(chunk);
675	int off = 0;
676	unsigned i, j;
677	int to_free = 0;
678	int *p;
679
680	freeme |= 1;	/* we are searching for <given offset, in use> pair */
681
682	i = 0;
683	j = chunk->map_used;
684	while (i != j) {
685		unsigned k = (i + j) / 2;
686		off = chunk->map[k];
687		if (off < freeme)
688			i = k + 1;
689		else if (off > freeme)
690			j = k;
691		else
692			i = j = k;
693	}
694	BUG_ON(off != freeme);
695
696	if (i < chunk->first_free)
697		chunk->first_free = i;
698
699	p = chunk->map + i;
700	*p = off &= ~1;
701	chunk->free_size += (p[1] & ~1) - off;
702
703	*occ_pages_p = pcpu_count_occupied_pages(chunk, i);
704
705	/* merge with next? */
706	if (!(p[1] & 1))
707		to_free++;
708	/* merge with previous? */
709	if (i > 0 && !(p[-1] & 1)) {
710		to_free++;
711		i--;
712		p--;
713	}
714	if (to_free) {
715		chunk->map_used -= to_free;
716		memmove(p + 1, p + 1 + to_free,
717			(chunk->map_used - i) * sizeof(chunk->map[0]));
718	}
719
720	chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
721	pcpu_chunk_relocate(chunk, oslot);
722}
723
724static struct pcpu_chunk *pcpu_alloc_chunk(void)
725{
726	struct pcpu_chunk *chunk;
727
728	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
729	if (!chunk)
730		return NULL;
731
732	chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
733						sizeof(chunk->map[0]));
734	if (!chunk->map) {
735		pcpu_mem_free(chunk, pcpu_chunk_struct_size);
736		return NULL;
737	}
738
739	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
740	chunk->map[0] = 0;
741	chunk->map[1] = pcpu_unit_size | 1;
742	chunk->map_used = 1;
743
744	INIT_LIST_HEAD(&chunk->list);
745	INIT_WORK(&chunk->map_extend_work, pcpu_map_extend_workfn);
746	chunk->free_size = pcpu_unit_size;
747	chunk->contig_hint = pcpu_unit_size;
748
749	return chunk;
750}
751
752static void pcpu_free_chunk(struct pcpu_chunk *chunk)
753{
754	if (!chunk)
755		return;
756	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
757	pcpu_mem_free(chunk, pcpu_chunk_struct_size);
758}
759
760/**
761 * pcpu_chunk_populated - post-population bookkeeping
762 * @chunk: pcpu_chunk which got populated
763 * @page_start: the start page
764 * @page_end: the end page
765 *
766 * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
767 * the bookkeeping information accordingly.  Must be called after each
768 * successful population.
769 */
770static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
771				 int page_start, int page_end)
772{
773	int nr = page_end - page_start;
774
775	lockdep_assert_held(&pcpu_lock);
776
777	bitmap_set(chunk->populated, page_start, nr);
778	chunk->nr_populated += nr;
779	pcpu_nr_empty_pop_pages += nr;
780}
781
782/**
783 * pcpu_chunk_depopulated - post-depopulation bookkeeping
784 * @chunk: pcpu_chunk which got depopulated
785 * @page_start: the start page
786 * @page_end: the end page
787 *
788 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
789 * Update the bookkeeping information accordingly.  Must be called after
790 * each successful depopulation.
791 */
792static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
793				   int page_start, int page_end)
794{
795	int nr = page_end - page_start;
796
797	lockdep_assert_held(&pcpu_lock);
798
799	bitmap_clear(chunk->populated, page_start, nr);
800	chunk->nr_populated -= nr;
801	pcpu_nr_empty_pop_pages -= nr;
802}
803
804/*
805 * Chunk management implementation.
806 *
807 * To allow different implementations, chunk alloc/free and
808 * [de]population are implemented in a separate file which is pulled
809 * into this file and compiled together.  The following functions
810 * should be implemented.
811 *
812 * pcpu_populate_chunk		- populate the specified range of a chunk
813 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
814 * pcpu_create_chunk		- create a new chunk
815 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
816 * pcpu_addr_to_page		- translate address to physical address
817 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
818 */
819static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
820static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
821static struct pcpu_chunk *pcpu_create_chunk(void);
822static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
823static struct page *pcpu_addr_to_page(void *addr);
824static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
825
826#ifdef CONFIG_NEED_PER_CPU_KM
827#include "percpu-km.c"
828#else
829#include "percpu-vm.c"
830#endif
831
832/**
833 * pcpu_chunk_addr_search - determine chunk containing specified address
834 * @addr: address for which the chunk needs to be determined.
835 *
836 * RETURNS:
837 * The address of the found chunk.
838 */
839static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
840{
841	/* is it in the first chunk? */
842	if (pcpu_addr_in_first_chunk(addr)) {
843		/* is it in the reserved area? */
844		if (pcpu_addr_in_reserved_chunk(addr))
845			return pcpu_reserved_chunk;
846		return pcpu_first_chunk;
847	}
848
849	/*
850	 * The address is relative to unit0 which might be unused and
851	 * thus unmapped.  Offset the address to the unit space of the
852	 * current processor before looking it up in the vmalloc
853	 * space.  Note that any possible cpu id can be used here, so
854	 * there's no need to worry about preemption or cpu hotplug.
855	 */
856	addr += pcpu_unit_offsets[raw_smp_processor_id()];
857	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
858}
859
860/**
861 * pcpu_alloc - the percpu allocator
862 * @size: size of area to allocate in bytes
863 * @align: alignment of area (max PAGE_SIZE)
864 * @reserved: allocate from the reserved chunk if available
865 * @gfp: allocation flags
866 *
867 * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
868 * contain %GFP_KERNEL, the allocation is atomic.
869 *
870 * RETURNS:
871 * Percpu pointer to the allocated area on success, NULL on failure.
872 */
873static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
874				 gfp_t gfp)
875{
876	static int warn_limit = 10;
877	struct pcpu_chunk *chunk;
878	const char *err;
879	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
880	int occ_pages = 0;
881	int slot, off, new_alloc, cpu, ret;
882	unsigned long flags;
883	void __percpu *ptr;
884
885	/*
886	 * We want the lowest bit of offset available for in-use/free
887	 * indicator, so force >= 16bit alignment and make size even.
888	 */
889	if (unlikely(align < 2))
890		align = 2;
891
892	size = ALIGN(size, 2);
893
894	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
895		WARN(true, "illegal size (%zu) or align (%zu) for "
896		     "percpu allocation\n", size, align);
897		return NULL;
898	}
899
900	spin_lock_irqsave(&pcpu_lock, flags);
901
902	/* serve reserved allocations from the reserved chunk if available */
903	if (reserved && pcpu_reserved_chunk) {
904		chunk = pcpu_reserved_chunk;
905
906		if (size > chunk->contig_hint) {
907			err = "alloc from reserved chunk failed";
908			goto fail_unlock;
909		}
910
911		while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
912			spin_unlock_irqrestore(&pcpu_lock, flags);
913			if (is_atomic ||
914			    pcpu_extend_area_map(chunk, new_alloc) < 0) {
915				err = "failed to extend area map of reserved chunk";
916				goto fail;
917			}
918			spin_lock_irqsave(&pcpu_lock, flags);
919		}
920
921		off = pcpu_alloc_area(chunk, size, align, is_atomic,
922				      &occ_pages);
923		if (off >= 0)
924			goto area_found;
925
926		err = "alloc from reserved chunk failed";
927		goto fail_unlock;
928	}
929
930restart:
931	/* search through normal chunks */
932	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
933		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
934			if (size > chunk->contig_hint)
935				continue;
936
937			new_alloc = pcpu_need_to_extend(chunk, is_atomic);
938			if (new_alloc) {
939				if (is_atomic)
940					continue;
941				spin_unlock_irqrestore(&pcpu_lock, flags);
942				if (pcpu_extend_area_map(chunk,
943							 new_alloc) < 0) {
944					err = "failed to extend area map";
945					goto fail;
946				}
947				spin_lock_irqsave(&pcpu_lock, flags);
948				/*
949				 * pcpu_lock has been dropped, need to
950				 * restart cpu_slot list walking.
951				 */
952				goto restart;
953			}
954
955			off = pcpu_alloc_area(chunk, size, align, is_atomic,
956					      &occ_pages);
957			if (off >= 0)
958				goto area_found;
959		}
960	}
961
962	spin_unlock_irqrestore(&pcpu_lock, flags);
963
964	/*
965	 * No space left.  Create a new chunk.  We don't want multiple
966	 * tasks to create chunks simultaneously.  Serialize and create iff
967	 * there's still no empty chunk after grabbing the mutex.
968	 */
969	if (is_atomic)
970		goto fail;
971
972	mutex_lock(&pcpu_alloc_mutex);
973
974	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
975		chunk = pcpu_create_chunk();
976		if (!chunk) {
977			mutex_unlock(&pcpu_alloc_mutex);
978			err = "failed to allocate new chunk";
979			goto fail;
980		}
981
982		spin_lock_irqsave(&pcpu_lock, flags);
983		pcpu_chunk_relocate(chunk, -1);
984	} else {
985		spin_lock_irqsave(&pcpu_lock, flags);
986	}
987
988	mutex_unlock(&pcpu_alloc_mutex);
989	goto restart;
990
991area_found:
992	spin_unlock_irqrestore(&pcpu_lock, flags);
993
994	/* populate if not all pages are already there */
995	if (!is_atomic) {
996		int page_start, page_end, rs, re;
997
998		mutex_lock(&pcpu_alloc_mutex);
999
1000		page_start = PFN_DOWN(off);
1001		page_end = PFN_UP(off + size);
1002
1003		pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1004			WARN_ON(chunk->immutable);
1005
1006			ret = pcpu_populate_chunk(chunk, rs, re);
1007
1008			spin_lock_irqsave(&pcpu_lock, flags);
1009			if (ret) {
1010				mutex_unlock(&pcpu_alloc_mutex);
1011				pcpu_free_area(chunk, off, &occ_pages);
1012				err = "failed to populate";
1013				goto fail_unlock;
1014			}
1015			pcpu_chunk_populated(chunk, rs, re);
1016			spin_unlock_irqrestore(&pcpu_lock, flags);
1017		}
1018
1019		mutex_unlock(&pcpu_alloc_mutex);
1020	}
1021
1022	if (chunk != pcpu_reserved_chunk)
1023		pcpu_nr_empty_pop_pages -= occ_pages;
1024
1025	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1026		pcpu_schedule_balance_work();
1027
1028	/* clear the areas and return address relative to base address */
1029	for_each_possible_cpu(cpu)
1030		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1031
1032	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1033	kmemleak_alloc_percpu(ptr, size, gfp);
1034	return ptr;
1035
1036fail_unlock:
1037	spin_unlock_irqrestore(&pcpu_lock, flags);
1038fail:
1039	if (!is_atomic && warn_limit) {
1040		pr_warning("PERCPU: allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1041			   size, align, is_atomic, err);
1042		dump_stack();
1043		if (!--warn_limit)
1044			pr_info("PERCPU: limit reached, disable warning\n");
1045	}
1046	if (is_atomic) {
1047		/* see the flag handling in pcpu_blance_workfn() */
1048		pcpu_atomic_alloc_failed = true;
1049		pcpu_schedule_balance_work();
1050	}
1051	return NULL;
1052}
1053
1054/**
1055 * __alloc_percpu_gfp - allocate dynamic percpu area
1056 * @size: size of area to allocate in bytes
1057 * @align: alignment of area (max PAGE_SIZE)
1058 * @gfp: allocation flags
1059 *
1060 * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1061 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1062 * be called from any context but is a lot more likely to fail.
1063 *
1064 * RETURNS:
1065 * Percpu pointer to the allocated area on success, NULL on failure.
1066 */
1067void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1068{
1069	return pcpu_alloc(size, align, false, gfp);
1070}
1071EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1072
1073/**
1074 * __alloc_percpu - allocate dynamic percpu area
1075 * @size: size of area to allocate in bytes
1076 * @align: alignment of area (max PAGE_SIZE)
1077 *
1078 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1079 */
1080void __percpu *__alloc_percpu(size_t size, size_t align)
1081{
1082	return pcpu_alloc(size, align, false, GFP_KERNEL);
1083}
1084EXPORT_SYMBOL_GPL(__alloc_percpu);
1085
1086/**
1087 * __alloc_reserved_percpu - allocate reserved percpu area
1088 * @size: size of area to allocate in bytes
1089 * @align: alignment of area (max PAGE_SIZE)
1090 *
1091 * Allocate zero-filled percpu area of @size bytes aligned at @align
1092 * from reserved percpu area if arch has set it up; otherwise,
1093 * allocation is served from the same dynamic area.  Might sleep.
1094 * Might trigger writeouts.
1095 *
1096 * CONTEXT:
1097 * Does GFP_KERNEL allocation.
1098 *
1099 * RETURNS:
1100 * Percpu pointer to the allocated area on success, NULL on failure.
1101 */
1102void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1103{
1104	return pcpu_alloc(size, align, true, GFP_KERNEL);
1105}
1106
1107/**
1108 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1109 * @work: unused
1110 *
1111 * Reclaim all fully free chunks except for the first one.
1112 */
1113static void pcpu_balance_workfn(struct work_struct *work)
1114{
1115	LIST_HEAD(to_free);
1116	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1117	struct pcpu_chunk *chunk, *next;
1118	int slot, nr_to_pop, ret;
1119
1120	/*
1121	 * There's no reason to keep around multiple unused chunks and VM
1122	 * areas can be scarce.  Destroy all free chunks except for one.
1123	 */
1124	mutex_lock(&pcpu_alloc_mutex);
1125	spin_lock_irq(&pcpu_lock);
1126
1127	list_for_each_entry_safe(chunk, next, free_head, list) {
1128		WARN_ON(chunk->immutable);
1129
1130		/* spare the first one */
1131		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1132			continue;
1133
1134		list_move(&chunk->list, &to_free);
1135	}
1136
1137	spin_unlock_irq(&pcpu_lock);
1138
1139	list_for_each_entry_safe(chunk, next, &to_free, list) {
1140		int rs, re;
1141
1142		pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1143			pcpu_depopulate_chunk(chunk, rs, re);
1144			spin_lock_irq(&pcpu_lock);
1145			pcpu_chunk_depopulated(chunk, rs, re);
1146			spin_unlock_irq(&pcpu_lock);
1147		}
1148		pcpu_destroy_chunk(chunk);
1149	}
1150
1151	/*
1152	 * Ensure there are certain number of free populated pages for
1153	 * atomic allocs.  Fill up from the most packed so that atomic
1154	 * allocs don't increase fragmentation.  If atomic allocation
1155	 * failed previously, always populate the maximum amount.  This
1156	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1157	 * failing indefinitely; however, large atomic allocs are not
1158	 * something we support properly and can be highly unreliable and
1159	 * inefficient.
1160	 */
1161retry_pop:
1162	if (pcpu_atomic_alloc_failed) {
1163		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1164		/* best effort anyway, don't worry about synchronization */
1165		pcpu_atomic_alloc_failed = false;
1166	} else {
1167		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1168				  pcpu_nr_empty_pop_pages,
1169				  0, PCPU_EMPTY_POP_PAGES_HIGH);
1170	}
1171
1172	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1173		int nr_unpop = 0, rs, re;
1174
1175		if (!nr_to_pop)
1176			break;
1177
1178		spin_lock_irq(&pcpu_lock);
1179		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1180			nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1181			if (nr_unpop)
1182				break;
1183		}
1184		spin_unlock_irq(&pcpu_lock);
1185
1186		if (!nr_unpop)
1187			continue;
1188
1189		/* @chunk can't go away while pcpu_alloc_mutex is held */
1190		pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1191			int nr = min(re - rs, nr_to_pop);
1192
1193			ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1194			if (!ret) {
1195				nr_to_pop -= nr;
1196				spin_lock_irq(&pcpu_lock);
1197				pcpu_chunk_populated(chunk, rs, rs + nr);
1198				spin_unlock_irq(&pcpu_lock);
1199			} else {
1200				nr_to_pop = 0;
1201			}
1202
1203			if (!nr_to_pop)
1204				break;
1205		}
1206	}
1207
1208	if (nr_to_pop) {
1209		/* ran out of chunks to populate, create a new one and retry */
1210		chunk = pcpu_create_chunk();
1211		if (chunk) {
1212			spin_lock_irq(&pcpu_lock);
1213			pcpu_chunk_relocate(chunk, -1);
1214			spin_unlock_irq(&pcpu_lock);
1215			goto retry_pop;
1216		}
1217	}
1218
1219	mutex_unlock(&pcpu_alloc_mutex);
1220}
1221
1222/**
1223 * free_percpu - free percpu area
1224 * @ptr: pointer to area to free
1225 *
1226 * Free percpu area @ptr.
1227 *
1228 * CONTEXT:
1229 * Can be called from atomic context.
1230 */
1231void free_percpu(void __percpu *ptr)
1232{
1233	void *addr;
1234	struct pcpu_chunk *chunk;
1235	unsigned long flags;
1236	int off, occ_pages;
1237
1238	if (!ptr)
1239		return;
1240
1241	kmemleak_free_percpu(ptr);
1242
1243	addr = __pcpu_ptr_to_addr(ptr);
1244
1245	spin_lock_irqsave(&pcpu_lock, flags);
1246
1247	chunk = pcpu_chunk_addr_search(addr);
1248	off = addr - chunk->base_addr;
1249
1250	pcpu_free_area(chunk, off, &occ_pages);
1251
1252	if (chunk != pcpu_reserved_chunk)
1253		pcpu_nr_empty_pop_pages += occ_pages;
1254
1255	/* if there are more than one fully free chunks, wake up grim reaper */
1256	if (chunk->free_size == pcpu_unit_size) {
1257		struct pcpu_chunk *pos;
1258
1259		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1260			if (pos != chunk) {
1261				pcpu_schedule_balance_work();
1262				break;
1263			}
1264	}
1265
1266	spin_unlock_irqrestore(&pcpu_lock, flags);
1267}
1268EXPORT_SYMBOL_GPL(free_percpu);
1269
1270/**
1271 * is_kernel_percpu_address - test whether address is from static percpu area
1272 * @addr: address to test
1273 *
1274 * Test whether @addr belongs to in-kernel static percpu area.  Module
1275 * static percpu areas are not considered.  For those, use
1276 * is_module_percpu_address().
1277 *
1278 * RETURNS:
1279 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1280 */
1281bool is_kernel_percpu_address(unsigned long addr)
1282{
1283#ifdef CONFIG_SMP
1284	const size_t static_size = __per_cpu_end - __per_cpu_start;
1285	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1286	unsigned int cpu;
1287
1288	for_each_possible_cpu(cpu) {
1289		void *start = per_cpu_ptr(base, cpu);
1290
1291		if ((void *)addr >= start && (void *)addr < start + static_size)
1292			return true;
1293        }
1294#endif
1295	/* on UP, can't distinguish from other static vars, always false */
1296	return false;
1297}
1298
1299/**
1300 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1301 * @addr: the address to be converted to physical address
1302 *
1303 * Given @addr which is dereferenceable address obtained via one of
1304 * percpu access macros, this function translates it into its physical
1305 * address.  The caller is responsible for ensuring @addr stays valid
1306 * until this function finishes.
1307 *
1308 * percpu allocator has special setup for the first chunk, which currently
1309 * supports either embedding in linear address space or vmalloc mapping,
1310 * and, from the second one, the backing allocator (currently either vm or
1311 * km) provides translation.
1312 *
1313 * The addr can be translated simply without checking if it falls into the
1314 * first chunk. But the current code reflects better how percpu allocator
1315 * actually works, and the verification can discover both bugs in percpu
1316 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1317 * code.
1318 *
1319 * RETURNS:
1320 * The physical address for @addr.
1321 */
1322phys_addr_t per_cpu_ptr_to_phys(void *addr)
1323{
1324	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1325	bool in_first_chunk = false;
1326	unsigned long first_low, first_high;
1327	unsigned int cpu;
1328
1329	/*
1330	 * The following test on unit_low/high isn't strictly
1331	 * necessary but will speed up lookups of addresses which
1332	 * aren't in the first chunk.
1333	 */
1334	first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1335	first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1336				     pcpu_unit_pages);
1337	if ((unsigned long)addr >= first_low &&
1338	    (unsigned long)addr < first_high) {
1339		for_each_possible_cpu(cpu) {
1340			void *start = per_cpu_ptr(base, cpu);
1341
1342			if (addr >= start && addr < start + pcpu_unit_size) {
1343				in_first_chunk = true;
1344				break;
1345			}
1346		}
1347	}
1348
1349	if (in_first_chunk) {
1350		if (!is_vmalloc_addr(addr))
1351			return __pa(addr);
1352		else
1353			return page_to_phys(vmalloc_to_page(addr)) +
1354			       offset_in_page(addr);
1355	} else
1356		return page_to_phys(pcpu_addr_to_page(addr)) +
1357		       offset_in_page(addr);
1358}
1359
1360/**
1361 * pcpu_alloc_alloc_info - allocate percpu allocation info
1362 * @nr_groups: the number of groups
1363 * @nr_units: the number of units
1364 *
1365 * Allocate ai which is large enough for @nr_groups groups containing
1366 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1367 * cpu_map array which is long enough for @nr_units and filled with
1368 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1369 * pointer of other groups.
1370 *
1371 * RETURNS:
1372 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1373 * failure.
1374 */
1375struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1376						      int nr_units)
1377{
1378	struct pcpu_alloc_info *ai;
1379	size_t base_size, ai_size;
1380	void *ptr;
1381	int unit;
1382
1383	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1384			  __alignof__(ai->groups[0].cpu_map[0]));
1385	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1386
1387	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1388	if (!ptr)
1389		return NULL;
1390	ai = ptr;
1391	ptr += base_size;
1392
1393	ai->groups[0].cpu_map = ptr;
1394
1395	for (unit = 0; unit < nr_units; unit++)
1396		ai->groups[0].cpu_map[unit] = NR_CPUS;
1397
1398	ai->nr_groups = nr_groups;
1399	ai->__ai_size = PFN_ALIGN(ai_size);
1400
1401	return ai;
1402}
1403
1404/**
1405 * pcpu_free_alloc_info - free percpu allocation info
1406 * @ai: pcpu_alloc_info to free
1407 *
1408 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1409 */
1410void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1411{
1412	memblock_free_early(__pa(ai), ai->__ai_size);
1413}
1414
1415/**
1416 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1417 * @lvl: loglevel
1418 * @ai: allocation info to dump
1419 *
1420 * Print out information about @ai using loglevel @lvl.
1421 */
1422static void pcpu_dump_alloc_info(const char *lvl,
1423				 const struct pcpu_alloc_info *ai)
1424{
1425	int group_width = 1, cpu_width = 1, width;
1426	char empty_str[] = "--------";
1427	int alloc = 0, alloc_end = 0;
1428	int group, v;
1429	int upa, apl;	/* units per alloc, allocs per line */
1430
1431	v = ai->nr_groups;
1432	while (v /= 10)
1433		group_width++;
1434
1435	v = num_possible_cpus();
1436	while (v /= 10)
1437		cpu_width++;
1438	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1439
1440	upa = ai->alloc_size / ai->unit_size;
1441	width = upa * (cpu_width + 1) + group_width + 3;
1442	apl = rounddown_pow_of_two(max(60 / width, 1));
1443
1444	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1445	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1446	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1447
1448	for (group = 0; group < ai->nr_groups; group++) {
1449		const struct pcpu_group_info *gi = &ai->groups[group];
1450		int unit = 0, unit_end = 0;
1451
1452		BUG_ON(gi->nr_units % upa);
1453		for (alloc_end += gi->nr_units / upa;
1454		     alloc < alloc_end; alloc++) {
1455			if (!(alloc % apl)) {
1456				printk(KERN_CONT "\n");
1457				printk("%spcpu-alloc: ", lvl);
1458			}
1459			printk(KERN_CONT "[%0*d] ", group_width, group);
1460
1461			for (unit_end += upa; unit < unit_end; unit++)
1462				if (gi->cpu_map[unit] != NR_CPUS)
1463					printk(KERN_CONT "%0*d ", cpu_width,
1464					       gi->cpu_map[unit]);
1465				else
1466					printk(KERN_CONT "%s ", empty_str);
1467		}
1468	}
1469	printk(KERN_CONT "\n");
1470}
1471
1472/**
1473 * pcpu_setup_first_chunk - initialize the first percpu chunk
1474 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1475 * @base_addr: mapped address
1476 *
1477 * Initialize the first percpu chunk which contains the kernel static
1478 * perpcu area.  This function is to be called from arch percpu area
1479 * setup path.
1480 *
1481 * @ai contains all information necessary to initialize the first
1482 * chunk and prime the dynamic percpu allocator.
1483 *
1484 * @ai->static_size is the size of static percpu area.
1485 *
1486 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1487 * reserve after the static area in the first chunk.  This reserves
1488 * the first chunk such that it's available only through reserved
1489 * percpu allocation.  This is primarily used to serve module percpu
1490 * static areas on architectures where the addressing model has
1491 * limited offset range for symbol relocations to guarantee module
1492 * percpu symbols fall inside the relocatable range.
1493 *
1494 * @ai->dyn_size determines the number of bytes available for dynamic
1495 * allocation in the first chunk.  The area between @ai->static_size +
1496 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1497 *
1498 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1499 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1500 * @ai->dyn_size.
1501 *
1502 * @ai->atom_size is the allocation atom size and used as alignment
1503 * for vm areas.
1504 *
1505 * @ai->alloc_size is the allocation size and always multiple of
1506 * @ai->atom_size.  This is larger than @ai->atom_size if
1507 * @ai->unit_size is larger than @ai->atom_size.
1508 *
1509 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1510 * percpu areas.  Units which should be colocated are put into the
1511 * same group.  Dynamic VM areas will be allocated according to these
1512 * groupings.  If @ai->nr_groups is zero, a single group containing
1513 * all units is assumed.
1514 *
1515 * The caller should have mapped the first chunk at @base_addr and
1516 * copied static data to each unit.
1517 *
1518 * If the first chunk ends up with both reserved and dynamic areas, it
1519 * is served by two chunks - one to serve the core static and reserved
1520 * areas and the other for the dynamic area.  They share the same vm
1521 * and page map but uses different area allocation map to stay away
1522 * from each other.  The latter chunk is circulated in the chunk slots
1523 * and available for dynamic allocation like any other chunks.
1524 *
1525 * RETURNS:
1526 * 0 on success, -errno on failure.
1527 */
1528int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1529				  void *base_addr)
1530{
1531	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1532	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1533	size_t dyn_size = ai->dyn_size;
1534	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1535	struct pcpu_chunk *schunk, *dchunk = NULL;
1536	unsigned long *group_offsets;
1537	size_t *group_sizes;
1538	unsigned long *unit_off;
1539	unsigned int cpu;
1540	int *unit_map;
1541	int group, unit, i;
1542
1543#define PCPU_SETUP_BUG_ON(cond)	do {					\
1544	if (unlikely(cond)) {						\
1545		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
1546		pr_emerg("PERCPU: cpu_possible_mask=%*pb\n",		\
1547			 cpumask_pr_args(cpu_possible_mask));		\
1548		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1549		BUG();							\
1550	}								\
1551} while (0)
1552
1553	/* sanity checks */
1554	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1555#ifdef CONFIG_SMP
1556	PCPU_SETUP_BUG_ON(!ai->static_size);
1557	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
1558#endif
1559	PCPU_SETUP_BUG_ON(!base_addr);
1560	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
1561	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1562	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
1563	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1564	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1565	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1566
1567	/* process group information and build config tables accordingly */
1568	group_offsets = memblock_virt_alloc(ai->nr_groups *
1569					     sizeof(group_offsets[0]), 0);
1570	group_sizes = memblock_virt_alloc(ai->nr_groups *
1571					   sizeof(group_sizes[0]), 0);
1572	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1573	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1574
1575	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1576		unit_map[cpu] = UINT_MAX;
1577
1578	pcpu_low_unit_cpu = NR_CPUS;
1579	pcpu_high_unit_cpu = NR_CPUS;
1580
1581	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1582		const struct pcpu_group_info *gi = &ai->groups[group];
1583
1584		group_offsets[group] = gi->base_offset;
1585		group_sizes[group] = gi->nr_units * ai->unit_size;
1586
1587		for (i = 0; i < gi->nr_units; i++) {
1588			cpu = gi->cpu_map[i];
1589			if (cpu == NR_CPUS)
1590				continue;
1591
1592			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
1593			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1594			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1595
1596			unit_map[cpu] = unit + i;
1597			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1598
1599			/* determine low/high unit_cpu */
1600			if (pcpu_low_unit_cpu == NR_CPUS ||
1601			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1602				pcpu_low_unit_cpu = cpu;
1603			if (pcpu_high_unit_cpu == NR_CPUS ||
1604			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1605				pcpu_high_unit_cpu = cpu;
1606		}
1607	}
1608	pcpu_nr_units = unit;
1609
1610	for_each_possible_cpu(cpu)
1611		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1612
1613	/* we're done parsing the input, undefine BUG macro and dump config */
1614#undef PCPU_SETUP_BUG_ON
1615	pcpu_dump_alloc_info(KERN_DEBUG, ai);
1616
1617	pcpu_nr_groups = ai->nr_groups;
1618	pcpu_group_offsets = group_offsets;
1619	pcpu_group_sizes = group_sizes;
1620	pcpu_unit_map = unit_map;
1621	pcpu_unit_offsets = unit_off;
1622
1623	/* determine basic parameters */
1624	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1625	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1626	pcpu_atom_size = ai->atom_size;
1627	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1628		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1629
1630	/*
1631	 * Allocate chunk slots.  The additional last slot is for
1632	 * empty chunks.
1633	 */
1634	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1635	pcpu_slot = memblock_virt_alloc(
1636			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1637	for (i = 0; i < pcpu_nr_slots; i++)
1638		INIT_LIST_HEAD(&pcpu_slot[i]);
1639
1640	/*
1641	 * Initialize static chunk.  If reserved_size is zero, the
1642	 * static chunk covers static area + dynamic allocation area
1643	 * in the first chunk.  If reserved_size is not zero, it
1644	 * covers static area + reserved area (mostly used for module
1645	 * static percpu allocation).
1646	 */
1647	schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1648	INIT_LIST_HEAD(&schunk->list);
1649	INIT_WORK(&schunk->map_extend_work, pcpu_map_extend_workfn);
1650	schunk->base_addr = base_addr;
1651	schunk->map = smap;
1652	schunk->map_alloc = ARRAY_SIZE(smap);
1653	schunk->immutable = true;
1654	bitmap_fill(schunk->populated, pcpu_unit_pages);
1655	schunk->nr_populated = pcpu_unit_pages;
1656
1657	if (ai->reserved_size) {
1658		schunk->free_size = ai->reserved_size;
1659		pcpu_reserved_chunk = schunk;
1660		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1661	} else {
1662		schunk->free_size = dyn_size;
1663		dyn_size = 0;			/* dynamic area covered */
1664	}
1665	schunk->contig_hint = schunk->free_size;
1666
1667	schunk->map[0] = 1;
1668	schunk->map[1] = ai->static_size;
1669	schunk->map_used = 1;
1670	if (schunk->free_size)
1671		schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
1672	schunk->map[schunk->map_used] |= 1;
1673
1674	/* init dynamic chunk if necessary */
1675	if (dyn_size) {
1676		dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1677		INIT_LIST_HEAD(&dchunk->list);
1678		INIT_WORK(&dchunk->map_extend_work, pcpu_map_extend_workfn);
1679		dchunk->base_addr = base_addr;
1680		dchunk->map = dmap;
1681		dchunk->map_alloc = ARRAY_SIZE(dmap);
1682		dchunk->immutable = true;
1683		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1684		dchunk->nr_populated = pcpu_unit_pages;
1685
1686		dchunk->contig_hint = dchunk->free_size = dyn_size;
1687		dchunk->map[0] = 1;
1688		dchunk->map[1] = pcpu_reserved_chunk_limit;
1689		dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1690		dchunk->map_used = 2;
1691	}
1692
1693	/* link the first chunk in */
1694	pcpu_first_chunk = dchunk ?: schunk;
1695	pcpu_nr_empty_pop_pages +=
1696		pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1697	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1698
1699	/* we're done */
1700	pcpu_base_addr = base_addr;
1701	return 0;
1702}
1703
1704#ifdef CONFIG_SMP
1705
1706const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1707	[PCPU_FC_AUTO]	= "auto",
1708	[PCPU_FC_EMBED]	= "embed",
1709	[PCPU_FC_PAGE]	= "page",
1710};
1711
1712enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1713
1714static int __init percpu_alloc_setup(char *str)
1715{
1716	if (!str)
1717		return -EINVAL;
1718
1719	if (0)
1720		/* nada */;
1721#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1722	else if (!strcmp(str, "embed"))
1723		pcpu_chosen_fc = PCPU_FC_EMBED;
1724#endif
1725#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1726	else if (!strcmp(str, "page"))
1727		pcpu_chosen_fc = PCPU_FC_PAGE;
1728#endif
1729	else
1730		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1731
1732	return 0;
1733}
1734early_param("percpu_alloc", percpu_alloc_setup);
1735
1736/*
1737 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1738 * Build it if needed by the arch config or the generic setup is going
1739 * to be used.
1740 */
1741#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1742	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1743#define BUILD_EMBED_FIRST_CHUNK
1744#endif
1745
1746/* build pcpu_page_first_chunk() iff needed by the arch config */
1747#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1748#define BUILD_PAGE_FIRST_CHUNK
1749#endif
1750
1751/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1752#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1753/**
1754 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1755 * @reserved_size: the size of reserved percpu area in bytes
1756 * @dyn_size: minimum free size for dynamic allocation in bytes
1757 * @atom_size: allocation atom size
1758 * @cpu_distance_fn: callback to determine distance between cpus, optional
1759 *
1760 * This function determines grouping of units, their mappings to cpus
1761 * and other parameters considering needed percpu size, allocation
1762 * atom size and distances between CPUs.
1763 *
1764 * Groups are always multiples of atom size and CPUs which are of
1765 * LOCAL_DISTANCE both ways are grouped together and share space for
1766 * units in the same group.  The returned configuration is guaranteed
1767 * to have CPUs on different nodes on different groups and >=75% usage
1768 * of allocated virtual address space.
1769 *
1770 * RETURNS:
1771 * On success, pointer to the new allocation_info is returned.  On
1772 * failure, ERR_PTR value is returned.
1773 */
1774static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1775				size_t reserved_size, size_t dyn_size,
1776				size_t atom_size,
1777				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1778{
1779	static int group_map[NR_CPUS] __initdata;
1780	static int group_cnt[NR_CPUS] __initdata;
1781	const size_t static_size = __per_cpu_end - __per_cpu_start;
1782	int nr_groups = 1, nr_units = 0;
1783	size_t size_sum, min_unit_size, alloc_size;
1784	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1785	int last_allocs, group, unit;
1786	unsigned int cpu, tcpu;
1787	struct pcpu_alloc_info *ai;
1788	unsigned int *cpu_map;
1789
1790	/* this function may be called multiple times */
1791	memset(group_map, 0, sizeof(group_map));
1792	memset(group_cnt, 0, sizeof(group_cnt));
1793
1794	/* calculate size_sum and ensure dyn_size is enough for early alloc */
1795	size_sum = PFN_ALIGN(static_size + reserved_size +
1796			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1797	dyn_size = size_sum - static_size - reserved_size;
1798
1799	/*
1800	 * Determine min_unit_size, alloc_size and max_upa such that
1801	 * alloc_size is multiple of atom_size and is the smallest
1802	 * which can accommodate 4k aligned segments which are equal to
1803	 * or larger than min_unit_size.
1804	 */
1805	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1806
1807	alloc_size = roundup(min_unit_size, atom_size);
1808	upa = alloc_size / min_unit_size;
1809	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1810		upa--;
1811	max_upa = upa;
1812
1813	/* group cpus according to their proximity */
1814	for_each_possible_cpu(cpu) {
1815		group = 0;
1816	next_group:
1817		for_each_possible_cpu(tcpu) {
1818			if (cpu == tcpu)
1819				break;
1820			if (group_map[tcpu] == group && cpu_distance_fn &&
1821			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1822			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1823				group++;
1824				nr_groups = max(nr_groups, group + 1);
1825				goto next_group;
1826			}
1827		}
1828		group_map[cpu] = group;
1829		group_cnt[group]++;
1830	}
1831
1832	/*
1833	 * Expand unit size until address space usage goes over 75%
1834	 * and then as much as possible without using more address
1835	 * space.
1836	 */
1837	last_allocs = INT_MAX;
1838	for (upa = max_upa; upa; upa--) {
1839		int allocs = 0, wasted = 0;
1840
1841		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1842			continue;
1843
1844		for (group = 0; group < nr_groups; group++) {
1845			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1846			allocs += this_allocs;
1847			wasted += this_allocs * upa - group_cnt[group];
1848		}
1849
1850		/*
1851		 * Don't accept if wastage is over 1/3.  The
1852		 * greater-than comparison ensures upa==1 always
1853		 * passes the following check.
1854		 */
1855		if (wasted > num_possible_cpus() / 3)
1856			continue;
1857
1858		/* and then don't consume more memory */
1859		if (allocs > last_allocs)
1860			break;
1861		last_allocs = allocs;
1862		best_upa = upa;
1863	}
1864	upa = best_upa;
1865
1866	/* allocate and fill alloc_info */
1867	for (group = 0; group < nr_groups; group++)
1868		nr_units += roundup(group_cnt[group], upa);
1869
1870	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1871	if (!ai)
1872		return ERR_PTR(-ENOMEM);
1873	cpu_map = ai->groups[0].cpu_map;
1874
1875	for (group = 0; group < nr_groups; group++) {
1876		ai->groups[group].cpu_map = cpu_map;
1877		cpu_map += roundup(group_cnt[group], upa);
1878	}
1879
1880	ai->static_size = static_size;
1881	ai->reserved_size = reserved_size;
1882	ai->dyn_size = dyn_size;
1883	ai->unit_size = alloc_size / upa;
1884	ai->atom_size = atom_size;
1885	ai->alloc_size = alloc_size;
1886
1887	for (group = 0, unit = 0; group_cnt[group]; group++) {
1888		struct pcpu_group_info *gi = &ai->groups[group];
1889
1890		/*
1891		 * Initialize base_offset as if all groups are located
1892		 * back-to-back.  The caller should update this to
1893		 * reflect actual allocation.
1894		 */
1895		gi->base_offset = unit * ai->unit_size;
1896
1897		for_each_possible_cpu(cpu)
1898			if (group_map[cpu] == group)
1899				gi->cpu_map[gi->nr_units++] = cpu;
1900		gi->nr_units = roundup(gi->nr_units, upa);
1901		unit += gi->nr_units;
1902	}
1903	BUG_ON(unit != nr_units);
1904
1905	return ai;
1906}
1907#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1908
1909#if defined(BUILD_EMBED_FIRST_CHUNK)
1910/**
1911 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1912 * @reserved_size: the size of reserved percpu area in bytes
1913 * @dyn_size: minimum free size for dynamic allocation in bytes
1914 * @atom_size: allocation atom size
1915 * @cpu_distance_fn: callback to determine distance between cpus, optional
1916 * @alloc_fn: function to allocate percpu page
1917 * @free_fn: function to free percpu page
1918 *
1919 * This is a helper to ease setting up embedded first percpu chunk and
1920 * can be called where pcpu_setup_first_chunk() is expected.
1921 *
1922 * If this function is used to setup the first chunk, it is allocated
1923 * by calling @alloc_fn and used as-is without being mapped into
1924 * vmalloc area.  Allocations are always whole multiples of @atom_size
1925 * aligned to @atom_size.
1926 *
1927 * This enables the first chunk to piggy back on the linear physical
1928 * mapping which often uses larger page size.  Please note that this
1929 * can result in very sparse cpu->unit mapping on NUMA machines thus
1930 * requiring large vmalloc address space.  Don't use this allocator if
1931 * vmalloc space is not orders of magnitude larger than distances
1932 * between node memory addresses (ie. 32bit NUMA machines).
1933 *
1934 * @dyn_size specifies the minimum dynamic area size.
1935 *
1936 * If the needed size is smaller than the minimum or specified unit
1937 * size, the leftover is returned using @free_fn.
1938 *
1939 * RETURNS:
1940 * 0 on success, -errno on failure.
1941 */
1942int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1943				  size_t atom_size,
1944				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1945				  pcpu_fc_alloc_fn_t alloc_fn,
1946				  pcpu_fc_free_fn_t free_fn)
1947{
1948	void *base = (void *)ULONG_MAX;
1949	void **areas = NULL;
1950	struct pcpu_alloc_info *ai;
1951	size_t size_sum, areas_size, max_distance;
1952	int group, i, rc;
1953
1954	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1955				   cpu_distance_fn);
1956	if (IS_ERR(ai))
1957		return PTR_ERR(ai);
1958
1959	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1960	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1961
1962	areas = memblock_virt_alloc_nopanic(areas_size, 0);
1963	if (!areas) {
1964		rc = -ENOMEM;
1965		goto out_free;
1966	}
1967
1968	/* allocate, copy and determine base address */
1969	for (group = 0; group < ai->nr_groups; group++) {
1970		struct pcpu_group_info *gi = &ai->groups[group];
1971		unsigned int cpu = NR_CPUS;
1972		void *ptr;
1973
1974		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1975			cpu = gi->cpu_map[i];
1976		BUG_ON(cpu == NR_CPUS);
1977
1978		/* allocate space for the whole group */
1979		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1980		if (!ptr) {
1981			rc = -ENOMEM;
1982			goto out_free_areas;
1983		}
1984		/* kmemleak tracks the percpu allocations separately */
1985		kmemleak_free(ptr);
1986		areas[group] = ptr;
1987
1988		base = min(ptr, base);
1989	}
1990
1991	/*
1992	 * Copy data and free unused parts.  This should happen after all
1993	 * allocations are complete; otherwise, we may end up with
1994	 * overlapping groups.
1995	 */
1996	for (group = 0; group < ai->nr_groups; group++) {
1997		struct pcpu_group_info *gi = &ai->groups[group];
1998		void *ptr = areas[group];
1999
2000		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2001			if (gi->cpu_map[i] == NR_CPUS) {
2002				/* unused unit, free whole */
2003				free_fn(ptr, ai->unit_size);
2004				continue;
2005			}
2006			/* copy and return the unused part */
2007			memcpy(ptr, __per_cpu_load, ai->static_size);
2008			free_fn(ptr + size_sum, ai->unit_size - size_sum);
2009		}
2010	}
2011
2012	/* base address is now known, determine group base offsets */
2013	max_distance = 0;
2014	for (group = 0; group < ai->nr_groups; group++) {
2015		ai->groups[group].base_offset = areas[group] - base;
2016		max_distance = max_t(size_t, max_distance,
2017				     ai->groups[group].base_offset);
2018	}
2019	max_distance += ai->unit_size;
2020
2021	/* warn if maximum distance is further than 75% of vmalloc space */
2022	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2023		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
2024			   "space 0x%lx\n", max_distance,
2025			   VMALLOC_TOTAL);
2026#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2027		/* and fail if we have fallback */
2028		rc = -EINVAL;
2029		goto out_free;
2030#endif
2031	}
2032
2033	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2034		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2035		ai->dyn_size, ai->unit_size);
2036
2037	rc = pcpu_setup_first_chunk(ai, base);
2038	goto out_free;
2039
2040out_free_areas:
2041	for (group = 0; group < ai->nr_groups; group++)
2042		if (areas[group])
2043			free_fn(areas[group],
2044				ai->groups[group].nr_units * ai->unit_size);
2045out_free:
2046	pcpu_free_alloc_info(ai);
2047	if (areas)
2048		memblock_free_early(__pa(areas), areas_size);
2049	return rc;
2050}
2051#endif /* BUILD_EMBED_FIRST_CHUNK */
2052
2053#ifdef BUILD_PAGE_FIRST_CHUNK
2054/**
2055 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2056 * @reserved_size: the size of reserved percpu area in bytes
2057 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2058 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2059 * @populate_pte_fn: function to populate pte
2060 *
2061 * This is a helper to ease setting up page-remapped first percpu
2062 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2063 *
2064 * This is the basic allocator.  Static percpu area is allocated
2065 * page-by-page into vmalloc area.
2066 *
2067 * RETURNS:
2068 * 0 on success, -errno on failure.
2069 */
2070int __init pcpu_page_first_chunk(size_t reserved_size,
2071				 pcpu_fc_alloc_fn_t alloc_fn,
2072				 pcpu_fc_free_fn_t free_fn,
2073				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2074{
2075	static struct vm_struct vm;
2076	struct pcpu_alloc_info *ai;
2077	char psize_str[16];
2078	int unit_pages;
2079	size_t pages_size;
2080	struct page **pages;
2081	int unit, i, j, rc;
2082
2083	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2084
2085	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2086	if (IS_ERR(ai))
2087		return PTR_ERR(ai);
2088	BUG_ON(ai->nr_groups != 1);
2089	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2090
2091	unit_pages = ai->unit_size >> PAGE_SHIFT;
2092
2093	/* unaligned allocations can't be freed, round up to page size */
2094	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2095			       sizeof(pages[0]));
2096	pages = memblock_virt_alloc(pages_size, 0);
2097
2098	/* allocate pages */
2099	j = 0;
2100	for (unit = 0; unit < num_possible_cpus(); unit++)
2101		for (i = 0; i < unit_pages; i++) {
2102			unsigned int cpu = ai->groups[0].cpu_map[unit];
2103			void *ptr;
2104
2105			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2106			if (!ptr) {
2107				pr_warning("PERCPU: failed to allocate %s page "
2108					   "for cpu%u\n", psize_str, cpu);
2109				goto enomem;
2110			}
2111			/* kmemleak tracks the percpu allocations separately */
2112			kmemleak_free(ptr);
2113			pages[j++] = virt_to_page(ptr);
2114		}
2115
2116	/* allocate vm area, map the pages and copy static data */
2117	vm.flags = VM_ALLOC;
2118	vm.size = num_possible_cpus() * ai->unit_size;
2119	vm_area_register_early(&vm, PAGE_SIZE);
2120
2121	for (unit = 0; unit < num_possible_cpus(); unit++) {
2122		unsigned long unit_addr =
2123			(unsigned long)vm.addr + unit * ai->unit_size;
2124
2125		for (i = 0; i < unit_pages; i++)
2126			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2127
2128		/* pte already populated, the following shouldn't fail */
2129		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2130				      unit_pages);
2131		if (rc < 0)
2132			panic("failed to map percpu area, err=%d\n", rc);
2133
2134		/*
2135		 * FIXME: Archs with virtual cache should flush local
2136		 * cache for the linear mapping here - something
2137		 * equivalent to flush_cache_vmap() on the local cpu.
2138		 * flush_cache_vmap() can't be used as most supporting
2139		 * data structures are not set up yet.
2140		 */
2141
2142		/* copy static data */
2143		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2144	}
2145
2146	/* we're ready, commit */
2147	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2148		unit_pages, psize_str, vm.addr, ai->static_size,
2149		ai->reserved_size, ai->dyn_size);
2150
2151	rc = pcpu_setup_first_chunk(ai, vm.addr);
2152	goto out_free_ar;
2153
2154enomem:
2155	while (--j >= 0)
2156		free_fn(page_address(pages[j]), PAGE_SIZE);
2157	rc = -ENOMEM;
2158out_free_ar:
2159	memblock_free_early(__pa(pages), pages_size);
2160	pcpu_free_alloc_info(ai);
2161	return rc;
2162}
2163#endif /* BUILD_PAGE_FIRST_CHUNK */
2164
2165#ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2166/*
2167 * Generic SMP percpu area setup.
2168 *
2169 * The embedding helper is used because its behavior closely resembles
2170 * the original non-dynamic generic percpu area setup.  This is
2171 * important because many archs have addressing restrictions and might
2172 * fail if the percpu area is located far away from the previous
2173 * location.  As an added bonus, in non-NUMA cases, embedding is
2174 * generally a good idea TLB-wise because percpu area can piggy back
2175 * on the physical linear memory mapping which uses large page
2176 * mappings on applicable archs.
2177 */
2178unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2179EXPORT_SYMBOL(__per_cpu_offset);
2180
2181static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2182				       size_t align)
2183{
2184	return  memblock_virt_alloc_from_nopanic(
2185			size, align, __pa(MAX_DMA_ADDRESS));
2186}
2187
2188static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2189{
2190	memblock_free_early(__pa(ptr), size);
2191}
2192
2193void __init setup_per_cpu_areas(void)
2194{
2195	unsigned long delta;
2196	unsigned int cpu;
2197	int rc;
2198
2199	/*
2200	 * Always reserve area for module percpu variables.  That's
2201	 * what the legacy allocator did.
2202	 */
2203	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2204				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2205				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2206	if (rc < 0)
2207		panic("Failed to initialize percpu areas.");
2208
2209	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2210	for_each_possible_cpu(cpu)
2211		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2212}
2213#endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2214
2215#else	/* CONFIG_SMP */
2216
2217/*
2218 * UP percpu area setup.
2219 *
2220 * UP always uses km-based percpu allocator with identity mapping.
2221 * Static percpu variables are indistinguishable from the usual static
2222 * variables and don't require any special preparation.
2223 */
2224void __init setup_per_cpu_areas(void)
2225{
2226	const size_t unit_size =
2227		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2228					 PERCPU_DYNAMIC_RESERVE));
2229	struct pcpu_alloc_info *ai;
2230	void *fc;
2231
2232	ai = pcpu_alloc_alloc_info(1, 1);
2233	fc = memblock_virt_alloc_from_nopanic(unit_size,
2234					      PAGE_SIZE,
2235					      __pa(MAX_DMA_ADDRESS));
2236	if (!ai || !fc)
2237		panic("Failed to allocate memory for percpu areas.");
2238	/* kmemleak tracks the percpu allocations separately */
2239	kmemleak_free(fc);
2240
2241	ai->dyn_size = unit_size;
2242	ai->unit_size = unit_size;
2243	ai->atom_size = unit_size;
2244	ai->alloc_size = unit_size;
2245	ai->groups[0].nr_units = 1;
2246	ai->groups[0].cpu_map[0] = 0;
2247
2248	if (pcpu_setup_first_chunk(ai, fc) < 0)
2249		panic("Failed to initialize percpu areas.");
2250}
2251
2252#endif	/* CONFIG_SMP */
2253
2254/*
2255 * First and reserved chunks are initialized with temporary allocation
2256 * map in initdata so that they can be used before slab is online.
2257 * This function is called after slab is brought up and replaces those
2258 * with properly allocated maps.
2259 */
2260void __init percpu_init_late(void)
2261{
2262	struct pcpu_chunk *target_chunks[] =
2263		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2264	struct pcpu_chunk *chunk;
2265	unsigned long flags;
2266	int i;
2267
2268	for (i = 0; (chunk = target_chunks[i]); i++) {
2269		int *map;
2270		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2271
2272		BUILD_BUG_ON(size > PAGE_SIZE);
2273
2274		map = pcpu_mem_zalloc(size);
2275		BUG_ON(!map);
2276
2277		spin_lock_irqsave(&pcpu_lock, flags);
2278		memcpy(map, chunk->map, size);
2279		chunk->map = map;
2280		spin_unlock_irqrestore(&pcpu_lock, flags);
2281	}
2282}
2283
2284/*
2285 * Percpu allocator is initialized early during boot when neither slab or
2286 * workqueue is available.  Plug async management until everything is up
2287 * and running.
2288 */
2289static int __init percpu_enable_async(void)
2290{
2291	pcpu_async_enabled = true;
2292	return 0;
2293}
2294subsys_initcall(percpu_enable_async);
2295