1/*
2 *  linux/mm/mempool.c
3 *
4 *  memory buffer pool support. Such pools are mostly used
5 *  for guaranteed, deadlock-free memory allocations during
6 *  extreme VM load.
7 *
8 *  started by Ingo Molnar, Copyright (C) 2001
9 *  debugging by David Rientjes, Copyright (C) 2015
10 */
11
12#include <linux/mm.h>
13#include <linux/slab.h>
14#include <linux/highmem.h>
15#include <linux/kasan.h>
16#include <linux/kmemleak.h>
17#include <linux/export.h>
18#include <linux/mempool.h>
19#include <linux/blkdev.h>
20#include <linux/writeback.h>
21#include "slab.h"
22
23#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
24static void poison_error(mempool_t *pool, void *element, size_t size,
25			 size_t byte)
26{
27	const int nr = pool->curr_nr;
28	const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
29	const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
30	int i;
31
32	pr_err("BUG: mempool element poison mismatch\n");
33	pr_err("Mempool %p size %zu\n", pool, size);
34	pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
35	for (i = start; i < end; i++)
36		pr_cont("%x ", *(u8 *)(element + i));
37	pr_cont("%s\n", end < size ? "..." : "");
38	dump_stack();
39}
40
41static void __check_element(mempool_t *pool, void *element, size_t size)
42{
43	u8 *obj = element;
44	size_t i;
45
46	for (i = 0; i < size; i++) {
47		u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
48
49		if (obj[i] != exp) {
50			poison_error(pool, element, size, i);
51			return;
52		}
53	}
54	memset(obj, POISON_INUSE, size);
55}
56
57static void check_element(mempool_t *pool, void *element)
58{
59	/* Mempools backed by slab allocator */
60	if (pool->free == mempool_free_slab || pool->free == mempool_kfree)
61		__check_element(pool, element, ksize(element));
62
63	/* Mempools backed by page allocator */
64	if (pool->free == mempool_free_pages) {
65		int order = (int)(long)pool->pool_data;
66		void *addr = kmap_atomic((struct page *)element);
67
68		__check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
69		kunmap_atomic(addr);
70	}
71}
72
73static void __poison_element(void *element, size_t size)
74{
75	u8 *obj = element;
76
77	memset(obj, POISON_FREE, size - 1);
78	obj[size - 1] = POISON_END;
79}
80
81static void poison_element(mempool_t *pool, void *element)
82{
83	/* Mempools backed by slab allocator */
84	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
85		__poison_element(element, ksize(element));
86
87	/* Mempools backed by page allocator */
88	if (pool->alloc == mempool_alloc_pages) {
89		int order = (int)(long)pool->pool_data;
90		void *addr = kmap_atomic((struct page *)element);
91
92		__poison_element(addr, 1UL << (PAGE_SHIFT + order));
93		kunmap_atomic(addr);
94	}
95}
96#else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
97static inline void check_element(mempool_t *pool, void *element)
98{
99}
100static inline void poison_element(mempool_t *pool, void *element)
101{
102}
103#endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
104
105static void kasan_poison_element(mempool_t *pool, void *element)
106{
107	if (pool->alloc == mempool_alloc_slab)
108		kasan_slab_free(pool->pool_data, element);
109	if (pool->alloc == mempool_kmalloc)
110		kasan_kfree(element);
111	if (pool->alloc == mempool_alloc_pages)
112		kasan_free_pages(element, (unsigned long)pool->pool_data);
113}
114
115static void kasan_unpoison_element(mempool_t *pool, void *element)
116{
117	if (pool->alloc == mempool_alloc_slab)
118		kasan_slab_alloc(pool->pool_data, element);
119	if (pool->alloc == mempool_kmalloc)
120		kasan_krealloc(element, (size_t)pool->pool_data);
121	if (pool->alloc == mempool_alloc_pages)
122		kasan_alloc_pages(element, (unsigned long)pool->pool_data);
123}
124
125static void add_element(mempool_t *pool, void *element)
126{
127	BUG_ON(pool->curr_nr >= pool->min_nr);
128	poison_element(pool, element);
129	kasan_poison_element(pool, element);
130	pool->elements[pool->curr_nr++] = element;
131}
132
133static void *remove_element(mempool_t *pool)
134{
135	void *element = pool->elements[--pool->curr_nr];
136
137	BUG_ON(pool->curr_nr < 0);
138	check_element(pool, element);
139	kasan_unpoison_element(pool, element);
140	return element;
141}
142
143/**
144 * mempool_destroy - deallocate a memory pool
145 * @pool:      pointer to the memory pool which was allocated via
146 *             mempool_create().
147 *
148 * Free all reserved elements in @pool and @pool itself.  This function
149 * only sleeps if the free_fn() function sleeps.
150 */
151void mempool_destroy(mempool_t *pool)
152{
153	if (unlikely(!pool))
154		return;
155
156	while (pool->curr_nr) {
157		void *element = remove_element(pool);
158		pool->free(element, pool->pool_data);
159	}
160	kfree(pool->elements);
161	kfree(pool);
162}
163EXPORT_SYMBOL(mempool_destroy);
164
165/**
166 * mempool_create - create a memory pool
167 * @min_nr:    the minimum number of elements guaranteed to be
168 *             allocated for this pool.
169 * @alloc_fn:  user-defined element-allocation function.
170 * @free_fn:   user-defined element-freeing function.
171 * @pool_data: optional private data available to the user-defined functions.
172 *
173 * this function creates and allocates a guaranteed size, preallocated
174 * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
175 * functions. This function might sleep. Both the alloc_fn() and the free_fn()
176 * functions might sleep - as long as the mempool_alloc() function is not called
177 * from IRQ contexts.
178 */
179mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
180				mempool_free_t *free_fn, void *pool_data)
181{
182	return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,
183				   GFP_KERNEL, NUMA_NO_NODE);
184}
185EXPORT_SYMBOL(mempool_create);
186
187mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
188			       mempool_free_t *free_fn, void *pool_data,
189			       gfp_t gfp_mask, int node_id)
190{
191	mempool_t *pool;
192	pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
193	if (!pool)
194		return NULL;
195	pool->elements = kmalloc_node(min_nr * sizeof(void *),
196				      gfp_mask, node_id);
197	if (!pool->elements) {
198		kfree(pool);
199		return NULL;
200	}
201	spin_lock_init(&pool->lock);
202	pool->min_nr = min_nr;
203	pool->pool_data = pool_data;
204	init_waitqueue_head(&pool->wait);
205	pool->alloc = alloc_fn;
206	pool->free = free_fn;
207
208	/*
209	 * First pre-allocate the guaranteed number of buffers.
210	 */
211	while (pool->curr_nr < pool->min_nr) {
212		void *element;
213
214		element = pool->alloc(gfp_mask, pool->pool_data);
215		if (unlikely(!element)) {
216			mempool_destroy(pool);
217			return NULL;
218		}
219		add_element(pool, element);
220	}
221	return pool;
222}
223EXPORT_SYMBOL(mempool_create_node);
224
225/**
226 * mempool_resize - resize an existing memory pool
227 * @pool:       pointer to the memory pool which was allocated via
228 *              mempool_create().
229 * @new_min_nr: the new minimum number of elements guaranteed to be
230 *              allocated for this pool.
231 *
232 * This function shrinks/grows the pool. In the case of growing,
233 * it cannot be guaranteed that the pool will be grown to the new
234 * size immediately, but new mempool_free() calls will refill it.
235 * This function may sleep.
236 *
237 * Note, the caller must guarantee that no mempool_destroy is called
238 * while this function is running. mempool_alloc() & mempool_free()
239 * might be called (eg. from IRQ contexts) while this function executes.
240 */
241int mempool_resize(mempool_t *pool, int new_min_nr)
242{
243	void *element;
244	void **new_elements;
245	unsigned long flags;
246
247	BUG_ON(new_min_nr <= 0);
248	might_sleep();
249
250	spin_lock_irqsave(&pool->lock, flags);
251	if (new_min_nr <= pool->min_nr) {
252		while (new_min_nr < pool->curr_nr) {
253			element = remove_element(pool);
254			spin_unlock_irqrestore(&pool->lock, flags);
255			pool->free(element, pool->pool_data);
256			spin_lock_irqsave(&pool->lock, flags);
257		}
258		pool->min_nr = new_min_nr;
259		goto out_unlock;
260	}
261	spin_unlock_irqrestore(&pool->lock, flags);
262
263	/* Grow the pool */
264	new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
265				     GFP_KERNEL);
266	if (!new_elements)
267		return -ENOMEM;
268
269	spin_lock_irqsave(&pool->lock, flags);
270	if (unlikely(new_min_nr <= pool->min_nr)) {
271		/* Raced, other resize will do our work */
272		spin_unlock_irqrestore(&pool->lock, flags);
273		kfree(new_elements);
274		goto out;
275	}
276	memcpy(new_elements, pool->elements,
277			pool->curr_nr * sizeof(*new_elements));
278	kfree(pool->elements);
279	pool->elements = new_elements;
280	pool->min_nr = new_min_nr;
281
282	while (pool->curr_nr < pool->min_nr) {
283		spin_unlock_irqrestore(&pool->lock, flags);
284		element = pool->alloc(GFP_KERNEL, pool->pool_data);
285		if (!element)
286			goto out;
287		spin_lock_irqsave(&pool->lock, flags);
288		if (pool->curr_nr < pool->min_nr) {
289			add_element(pool, element);
290		} else {
291			spin_unlock_irqrestore(&pool->lock, flags);
292			pool->free(element, pool->pool_data);	/* Raced */
293			goto out;
294		}
295	}
296out_unlock:
297	spin_unlock_irqrestore(&pool->lock, flags);
298out:
299	return 0;
300}
301EXPORT_SYMBOL(mempool_resize);
302
303/**
304 * mempool_alloc - allocate an element from a specific memory pool
305 * @pool:      pointer to the memory pool which was allocated via
306 *             mempool_create().
307 * @gfp_mask:  the usual allocation bitmask.
308 *
309 * this function only sleeps if the alloc_fn() function sleeps or
310 * returns NULL. Note that due to preallocation, this function
311 * *never* fails when called from process contexts. (it might
312 * fail if called from an IRQ context.)
313 * Note: using __GFP_ZERO is not supported.
314 */
315void * mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
316{
317	void *element;
318	unsigned long flags;
319	wait_queue_t wait;
320	gfp_t gfp_temp;
321
322	VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
323	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
324
325	gfp_mask |= __GFP_NOMEMALLOC;	/* don't allocate emergency reserves */
326	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
327	gfp_mask |= __GFP_NOWARN;	/* failures are OK */
328
329	gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
330
331repeat_alloc:
332
333	element = pool->alloc(gfp_temp, pool->pool_data);
334	if (likely(element != NULL))
335		return element;
336
337	spin_lock_irqsave(&pool->lock, flags);
338	if (likely(pool->curr_nr)) {
339		element = remove_element(pool);
340		spin_unlock_irqrestore(&pool->lock, flags);
341		/* paired with rmb in mempool_free(), read comment there */
342		smp_wmb();
343		/*
344		 * Update the allocation stack trace as this is more useful
345		 * for debugging.
346		 */
347		kmemleak_update_trace(element);
348		return element;
349	}
350
351	/*
352	 * We use gfp mask w/o direct reclaim or IO for the first round.  If
353	 * alloc failed with that and @pool was empty, retry immediately.
354	 */
355	if (gfp_temp != gfp_mask) {
356		spin_unlock_irqrestore(&pool->lock, flags);
357		gfp_temp = gfp_mask;
358		goto repeat_alloc;
359	}
360
361	/* We must not sleep if !__GFP_DIRECT_RECLAIM */
362	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
363		spin_unlock_irqrestore(&pool->lock, flags);
364		return NULL;
365	}
366
367	/* Let's wait for someone else to return an element to @pool */
368	init_wait(&wait);
369	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
370
371	spin_unlock_irqrestore(&pool->lock, flags);
372
373	/*
374	 * FIXME: this should be io_schedule().  The timeout is there as a
375	 * workaround for some DM problems in 2.6.18.
376	 */
377	io_schedule_timeout(5*HZ);
378
379	finish_wait(&pool->wait, &wait);
380	goto repeat_alloc;
381}
382EXPORT_SYMBOL(mempool_alloc);
383
384/**
385 * mempool_free - return an element to the pool.
386 * @element:   pool element pointer.
387 * @pool:      pointer to the memory pool which was allocated via
388 *             mempool_create().
389 *
390 * this function only sleeps if the free_fn() function sleeps.
391 */
392void mempool_free(void *element, mempool_t *pool)
393{
394	unsigned long flags;
395
396	if (unlikely(element == NULL))
397		return;
398
399	/*
400	 * Paired with the wmb in mempool_alloc().  The preceding read is
401	 * for @element and the following @pool->curr_nr.  This ensures
402	 * that the visible value of @pool->curr_nr is from after the
403	 * allocation of @element.  This is necessary for fringe cases
404	 * where @element was passed to this task without going through
405	 * barriers.
406	 *
407	 * For example, assume @p is %NULL at the beginning and one task
408	 * performs "p = mempool_alloc(...);" while another task is doing
409	 * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
410	 * may end up using curr_nr value which is from before allocation
411	 * of @p without the following rmb.
412	 */
413	smp_rmb();
414
415	/*
416	 * For correctness, we need a test which is guaranteed to trigger
417	 * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
418	 * without locking achieves that and refilling as soon as possible
419	 * is desirable.
420	 *
421	 * Because curr_nr visible here is always a value after the
422	 * allocation of @element, any task which decremented curr_nr below
423	 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
424	 * incremented to min_nr afterwards.  If curr_nr gets incremented
425	 * to min_nr after the allocation of @element, the elements
426	 * allocated after that are subject to the same guarantee.
427	 *
428	 * Waiters happen iff curr_nr is 0 and the above guarantee also
429	 * ensures that there will be frees which return elements to the
430	 * pool waking up the waiters.
431	 */
432	if (unlikely(pool->curr_nr < pool->min_nr)) {
433		spin_lock_irqsave(&pool->lock, flags);
434		if (likely(pool->curr_nr < pool->min_nr)) {
435			add_element(pool, element);
436			spin_unlock_irqrestore(&pool->lock, flags);
437			wake_up(&pool->wait);
438			return;
439		}
440		spin_unlock_irqrestore(&pool->lock, flags);
441	}
442	pool->free(element, pool->pool_data);
443}
444EXPORT_SYMBOL(mempool_free);
445
446/*
447 * A commonly used alloc and free fn.
448 */
449void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
450{
451	struct kmem_cache *mem = pool_data;
452	VM_BUG_ON(mem->ctor);
453	return kmem_cache_alloc(mem, gfp_mask);
454}
455EXPORT_SYMBOL(mempool_alloc_slab);
456
457void mempool_free_slab(void *element, void *pool_data)
458{
459	struct kmem_cache *mem = pool_data;
460	kmem_cache_free(mem, element);
461}
462EXPORT_SYMBOL(mempool_free_slab);
463
464/*
465 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
466 * specified by pool_data
467 */
468void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
469{
470	size_t size = (size_t)pool_data;
471	return kmalloc(size, gfp_mask);
472}
473EXPORT_SYMBOL(mempool_kmalloc);
474
475void mempool_kfree(void *element, void *pool_data)
476{
477	kfree(element);
478}
479EXPORT_SYMBOL(mempool_kfree);
480
481/*
482 * A simple mempool-backed page allocator that allocates pages
483 * of the order specified by pool_data.
484 */
485void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
486{
487	int order = (int)(long)pool_data;
488	return alloc_pages(gfp_mask, order);
489}
490EXPORT_SYMBOL(mempool_alloc_pages);
491
492void mempool_free_pages(void *element, void *pool_data)
493{
494	int order = (int)(long)pool_data;
495	__free_pages(element, order);
496}
497EXPORT_SYMBOL(mempool_free_pages);
498