1/* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7/* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12/* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23/* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31/* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41#include <linux/kernel_stat.h> 42#include <linux/mm.h> 43#include <linux/hugetlb.h> 44#include <linux/mman.h> 45#include <linux/swap.h> 46#include <linux/highmem.h> 47#include <linux/pagemap.h> 48#include <linux/ksm.h> 49#include <linux/rmap.h> 50#include <linux/export.h> 51#include <linux/delayacct.h> 52#include <linux/init.h> 53#include <linux/writeback.h> 54#include <linux/memcontrol.h> 55#include <linux/mmu_notifier.h> 56#include <linux/kallsyms.h> 57#include <linux/swapops.h> 58#include <linux/elf.h> 59#include <linux/gfp.h> 60#include <linux/migrate.h> 61#include <linux/string.h> 62#include <linux/dma-debug.h> 63#include <linux/debugfs.h> 64#include <linux/userfaultfd_k.h> 65 66#include <asm/io.h> 67#include <asm/pgalloc.h> 68#include <asm/uaccess.h> 69#include <asm/tlb.h> 70#include <asm/tlbflush.h> 71#include <asm/pgtable.h> 72 73#include "internal.h" 74 75#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 76#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 77#endif 78 79#ifndef CONFIG_NEED_MULTIPLE_NODES 80/* use the per-pgdat data instead for discontigmem - mbligh */ 81unsigned long max_mapnr; 82struct page *mem_map; 83 84EXPORT_SYMBOL(max_mapnr); 85EXPORT_SYMBOL(mem_map); 86#endif 87 88/* 89 * A number of key systems in x86 including ioremap() rely on the assumption 90 * that high_memory defines the upper bound on direct map memory, then end 91 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 92 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 93 * and ZONE_HIGHMEM. 94 */ 95void * high_memory; 96 97EXPORT_SYMBOL(high_memory); 98 99/* 100 * Randomize the address space (stacks, mmaps, brk, etc.). 101 * 102 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 103 * as ancient (libc5 based) binaries can segfault. ) 104 */ 105int randomize_va_space __read_mostly = 106#ifdef CONFIG_COMPAT_BRK 107 1; 108#else 109 2; 110#endif 111 112static int __init disable_randmaps(char *s) 113{ 114 randomize_va_space = 0; 115 return 1; 116} 117__setup("norandmaps", disable_randmaps); 118 119unsigned long zero_pfn __read_mostly; 120unsigned long highest_memmap_pfn __read_mostly; 121 122EXPORT_SYMBOL(zero_pfn); 123 124/* 125 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 126 */ 127static int __init init_zero_pfn(void) 128{ 129 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 130 return 0; 131} 132core_initcall(init_zero_pfn); 133 134 135#if defined(SPLIT_RSS_COUNTING) 136 137void sync_mm_rss(struct mm_struct *mm) 138{ 139 int i; 140 141 for (i = 0; i < NR_MM_COUNTERS; i++) { 142 if (current->rss_stat.count[i]) { 143 add_mm_counter(mm, i, current->rss_stat.count[i]); 144 current->rss_stat.count[i] = 0; 145 } 146 } 147 current->rss_stat.events = 0; 148} 149 150static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 151{ 152 struct task_struct *task = current; 153 154 if (likely(task->mm == mm)) 155 task->rss_stat.count[member] += val; 156 else 157 add_mm_counter(mm, member, val); 158} 159#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 160#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 161 162/* sync counter once per 64 page faults */ 163#define TASK_RSS_EVENTS_THRESH (64) 164static void check_sync_rss_stat(struct task_struct *task) 165{ 166 if (unlikely(task != current)) 167 return; 168 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 169 sync_mm_rss(task->mm); 170} 171#else /* SPLIT_RSS_COUNTING */ 172 173#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 174#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 175 176static void check_sync_rss_stat(struct task_struct *task) 177{ 178} 179 180#endif /* SPLIT_RSS_COUNTING */ 181 182#ifdef HAVE_GENERIC_MMU_GATHER 183 184static bool tlb_next_batch(struct mmu_gather *tlb) 185{ 186 struct mmu_gather_batch *batch; 187 188 batch = tlb->active; 189 if (batch->next) { 190 tlb->active = batch->next; 191 return true; 192 } 193 194 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 195 return false; 196 197 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 198 if (!batch) 199 return false; 200 201 tlb->batch_count++; 202 batch->next = NULL; 203 batch->nr = 0; 204 batch->max = MAX_GATHER_BATCH; 205 206 tlb->active->next = batch; 207 tlb->active = batch; 208 209 return true; 210} 211 212/* tlb_gather_mmu 213 * Called to initialize an (on-stack) mmu_gather structure for page-table 214 * tear-down from @mm. The @fullmm argument is used when @mm is without 215 * users and we're going to destroy the full address space (exit/execve). 216 */ 217void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 218{ 219 tlb->mm = mm; 220 221 /* Is it from 0 to ~0? */ 222 tlb->fullmm = !(start | (end+1)); 223 tlb->need_flush_all = 0; 224 tlb->local.next = NULL; 225 tlb->local.nr = 0; 226 tlb->local.max = ARRAY_SIZE(tlb->__pages); 227 tlb->active = &tlb->local; 228 tlb->batch_count = 0; 229 230#ifdef CONFIG_HAVE_RCU_TABLE_FREE 231 tlb->batch = NULL; 232#endif 233 234 __tlb_reset_range(tlb); 235} 236 237static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 238{ 239 if (!tlb->end) 240 return; 241 242 tlb_flush(tlb); 243 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 244#ifdef CONFIG_HAVE_RCU_TABLE_FREE 245 tlb_table_flush(tlb); 246#endif 247 __tlb_reset_range(tlb); 248} 249 250static void tlb_flush_mmu_free(struct mmu_gather *tlb) 251{ 252 struct mmu_gather_batch *batch; 253 254 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 255 free_pages_and_swap_cache(batch->pages, batch->nr); 256 batch->nr = 0; 257 } 258 tlb->active = &tlb->local; 259} 260 261void tlb_flush_mmu(struct mmu_gather *tlb) 262{ 263 tlb_flush_mmu_tlbonly(tlb); 264 tlb_flush_mmu_free(tlb); 265} 266 267/* tlb_finish_mmu 268 * Called at the end of the shootdown operation to free up any resources 269 * that were required. 270 */ 271void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 272{ 273 struct mmu_gather_batch *batch, *next; 274 275 tlb_flush_mmu(tlb); 276 277 /* keep the page table cache within bounds */ 278 check_pgt_cache(); 279 280 for (batch = tlb->local.next; batch; batch = next) { 281 next = batch->next; 282 free_pages((unsigned long)batch, 0); 283 } 284 tlb->local.next = NULL; 285} 286 287/* __tlb_remove_page 288 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 289 * handling the additional races in SMP caused by other CPUs caching valid 290 * mappings in their TLBs. Returns the number of free page slots left. 291 * When out of page slots we must call tlb_flush_mmu(). 292 */ 293int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 294{ 295 struct mmu_gather_batch *batch; 296 297 VM_BUG_ON(!tlb->end); 298 299 batch = tlb->active; 300 batch->pages[batch->nr++] = page; 301 if (batch->nr == batch->max) { 302 if (!tlb_next_batch(tlb)) 303 return 0; 304 batch = tlb->active; 305 } 306 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 307 308 return batch->max - batch->nr; 309} 310 311#endif /* HAVE_GENERIC_MMU_GATHER */ 312 313#ifdef CONFIG_HAVE_RCU_TABLE_FREE 314 315/* 316 * See the comment near struct mmu_table_batch. 317 */ 318 319static void tlb_remove_table_smp_sync(void *arg) 320{ 321 /* Simply deliver the interrupt */ 322} 323 324static void tlb_remove_table_one(void *table) 325{ 326 /* 327 * This isn't an RCU grace period and hence the page-tables cannot be 328 * assumed to be actually RCU-freed. 329 * 330 * It is however sufficient for software page-table walkers that rely on 331 * IRQ disabling. See the comment near struct mmu_table_batch. 332 */ 333 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 334 __tlb_remove_table(table); 335} 336 337static void tlb_remove_table_rcu(struct rcu_head *head) 338{ 339 struct mmu_table_batch *batch; 340 int i; 341 342 batch = container_of(head, struct mmu_table_batch, rcu); 343 344 for (i = 0; i < batch->nr; i++) 345 __tlb_remove_table(batch->tables[i]); 346 347 free_page((unsigned long)batch); 348} 349 350void tlb_table_flush(struct mmu_gather *tlb) 351{ 352 struct mmu_table_batch **batch = &tlb->batch; 353 354 if (*batch) { 355 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 356 *batch = NULL; 357 } 358} 359 360void tlb_remove_table(struct mmu_gather *tlb, void *table) 361{ 362 struct mmu_table_batch **batch = &tlb->batch; 363 364 /* 365 * When there's less then two users of this mm there cannot be a 366 * concurrent page-table walk. 367 */ 368 if (atomic_read(&tlb->mm->mm_users) < 2) { 369 __tlb_remove_table(table); 370 return; 371 } 372 373 if (*batch == NULL) { 374 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 375 if (*batch == NULL) { 376 tlb_remove_table_one(table); 377 return; 378 } 379 (*batch)->nr = 0; 380 } 381 (*batch)->tables[(*batch)->nr++] = table; 382 if ((*batch)->nr == MAX_TABLE_BATCH) 383 tlb_table_flush(tlb); 384} 385 386#endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 387 388/* 389 * Note: this doesn't free the actual pages themselves. That 390 * has been handled earlier when unmapping all the memory regions. 391 */ 392static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 393 unsigned long addr) 394{ 395 pgtable_t token = pmd_pgtable(*pmd); 396 pmd_clear(pmd); 397 pte_free_tlb(tlb, token, addr); 398 atomic_long_dec(&tlb->mm->nr_ptes); 399} 400 401static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 402 unsigned long addr, unsigned long end, 403 unsigned long floor, unsigned long ceiling) 404{ 405 pmd_t *pmd; 406 unsigned long next; 407 unsigned long start; 408 409 start = addr; 410 pmd = pmd_offset(pud, addr); 411 do { 412 next = pmd_addr_end(addr, end); 413 if (pmd_none_or_clear_bad(pmd)) 414 continue; 415 free_pte_range(tlb, pmd, addr); 416 } while (pmd++, addr = next, addr != end); 417 418 start &= PUD_MASK; 419 if (start < floor) 420 return; 421 if (ceiling) { 422 ceiling &= PUD_MASK; 423 if (!ceiling) 424 return; 425 } 426 if (end - 1 > ceiling - 1) 427 return; 428 429 pmd = pmd_offset(pud, start); 430 pud_clear(pud); 431 pmd_free_tlb(tlb, pmd, start); 432 mm_dec_nr_pmds(tlb->mm); 433} 434 435static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 436 unsigned long addr, unsigned long end, 437 unsigned long floor, unsigned long ceiling) 438{ 439 pud_t *pud; 440 unsigned long next; 441 unsigned long start; 442 443 start = addr; 444 pud = pud_offset(pgd, addr); 445 do { 446 next = pud_addr_end(addr, end); 447 if (pud_none_or_clear_bad(pud)) 448 continue; 449 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 450 } while (pud++, addr = next, addr != end); 451 452 start &= PGDIR_MASK; 453 if (start < floor) 454 return; 455 if (ceiling) { 456 ceiling &= PGDIR_MASK; 457 if (!ceiling) 458 return; 459 } 460 if (end - 1 > ceiling - 1) 461 return; 462 463 pud = pud_offset(pgd, start); 464 pgd_clear(pgd); 465 pud_free_tlb(tlb, pud, start); 466} 467 468/* 469 * This function frees user-level page tables of a process. 470 */ 471void free_pgd_range(struct mmu_gather *tlb, 472 unsigned long addr, unsigned long end, 473 unsigned long floor, unsigned long ceiling) 474{ 475 pgd_t *pgd; 476 unsigned long next; 477 478 /* 479 * The next few lines have given us lots of grief... 480 * 481 * Why are we testing PMD* at this top level? Because often 482 * there will be no work to do at all, and we'd prefer not to 483 * go all the way down to the bottom just to discover that. 484 * 485 * Why all these "- 1"s? Because 0 represents both the bottom 486 * of the address space and the top of it (using -1 for the 487 * top wouldn't help much: the masks would do the wrong thing). 488 * The rule is that addr 0 and floor 0 refer to the bottom of 489 * the address space, but end 0 and ceiling 0 refer to the top 490 * Comparisons need to use "end - 1" and "ceiling - 1" (though 491 * that end 0 case should be mythical). 492 * 493 * Wherever addr is brought up or ceiling brought down, we must 494 * be careful to reject "the opposite 0" before it confuses the 495 * subsequent tests. But what about where end is brought down 496 * by PMD_SIZE below? no, end can't go down to 0 there. 497 * 498 * Whereas we round start (addr) and ceiling down, by different 499 * masks at different levels, in order to test whether a table 500 * now has no other vmas using it, so can be freed, we don't 501 * bother to round floor or end up - the tests don't need that. 502 */ 503 504 addr &= PMD_MASK; 505 if (addr < floor) { 506 addr += PMD_SIZE; 507 if (!addr) 508 return; 509 } 510 if (ceiling) { 511 ceiling &= PMD_MASK; 512 if (!ceiling) 513 return; 514 } 515 if (end - 1 > ceiling - 1) 516 end -= PMD_SIZE; 517 if (addr > end - 1) 518 return; 519 520 pgd = pgd_offset(tlb->mm, addr); 521 do { 522 next = pgd_addr_end(addr, end); 523 if (pgd_none_or_clear_bad(pgd)) 524 continue; 525 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 526 } while (pgd++, addr = next, addr != end); 527} 528 529void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 530 unsigned long floor, unsigned long ceiling) 531{ 532 while (vma) { 533 struct vm_area_struct *next = vma->vm_next; 534 unsigned long addr = vma->vm_start; 535 536 /* 537 * Hide vma from rmap and truncate_pagecache before freeing 538 * pgtables 539 */ 540 unlink_anon_vmas(vma); 541 unlink_file_vma(vma); 542 543 if (is_vm_hugetlb_page(vma)) { 544 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 545 floor, next? next->vm_start: ceiling); 546 } else { 547 /* 548 * Optimization: gather nearby vmas into one call down 549 */ 550 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 551 && !is_vm_hugetlb_page(next)) { 552 vma = next; 553 next = vma->vm_next; 554 unlink_anon_vmas(vma); 555 unlink_file_vma(vma); 556 } 557 free_pgd_range(tlb, addr, vma->vm_end, 558 floor, next? next->vm_start: ceiling); 559 } 560 vma = next; 561 } 562} 563 564int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 565 pmd_t *pmd, unsigned long address) 566{ 567 spinlock_t *ptl; 568 pgtable_t new = pte_alloc_one(mm, address); 569 int wait_split_huge_page; 570 if (!new) 571 return -ENOMEM; 572 573 /* 574 * Ensure all pte setup (eg. pte page lock and page clearing) are 575 * visible before the pte is made visible to other CPUs by being 576 * put into page tables. 577 * 578 * The other side of the story is the pointer chasing in the page 579 * table walking code (when walking the page table without locking; 580 * ie. most of the time). Fortunately, these data accesses consist 581 * of a chain of data-dependent loads, meaning most CPUs (alpha 582 * being the notable exception) will already guarantee loads are 583 * seen in-order. See the alpha page table accessors for the 584 * smp_read_barrier_depends() barriers in page table walking code. 585 */ 586 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 587 588 ptl = pmd_lock(mm, pmd); 589 wait_split_huge_page = 0; 590 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 591 atomic_long_inc(&mm->nr_ptes); 592 pmd_populate(mm, pmd, new); 593 new = NULL; 594 } else if (unlikely(pmd_trans_splitting(*pmd))) 595 wait_split_huge_page = 1; 596 spin_unlock(ptl); 597 if (new) 598 pte_free(mm, new); 599 if (wait_split_huge_page) 600 wait_split_huge_page(vma->anon_vma, pmd); 601 return 0; 602} 603 604int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 605{ 606 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 607 if (!new) 608 return -ENOMEM; 609 610 smp_wmb(); /* See comment in __pte_alloc */ 611 612 spin_lock(&init_mm.page_table_lock); 613 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 614 pmd_populate_kernel(&init_mm, pmd, new); 615 new = NULL; 616 } else 617 VM_BUG_ON(pmd_trans_splitting(*pmd)); 618 spin_unlock(&init_mm.page_table_lock); 619 if (new) 620 pte_free_kernel(&init_mm, new); 621 return 0; 622} 623 624static inline void init_rss_vec(int *rss) 625{ 626 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 627} 628 629static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 630{ 631 int i; 632 633 if (current->mm == mm) 634 sync_mm_rss(mm); 635 for (i = 0; i < NR_MM_COUNTERS; i++) 636 if (rss[i]) 637 add_mm_counter(mm, i, rss[i]); 638} 639 640/* 641 * This function is called to print an error when a bad pte 642 * is found. For example, we might have a PFN-mapped pte in 643 * a region that doesn't allow it. 644 * 645 * The calling function must still handle the error. 646 */ 647static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 648 pte_t pte, struct page *page) 649{ 650 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 651 pud_t *pud = pud_offset(pgd, addr); 652 pmd_t *pmd = pmd_offset(pud, addr); 653 struct address_space *mapping; 654 pgoff_t index; 655 static unsigned long resume; 656 static unsigned long nr_shown; 657 static unsigned long nr_unshown; 658 659 /* 660 * Allow a burst of 60 reports, then keep quiet for that minute; 661 * or allow a steady drip of one report per second. 662 */ 663 if (nr_shown == 60) { 664 if (time_before(jiffies, resume)) { 665 nr_unshown++; 666 return; 667 } 668 if (nr_unshown) { 669 printk(KERN_ALERT 670 "BUG: Bad page map: %lu messages suppressed\n", 671 nr_unshown); 672 nr_unshown = 0; 673 } 674 nr_shown = 0; 675 } 676 if (nr_shown++ == 0) 677 resume = jiffies + 60 * HZ; 678 679 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 680 index = linear_page_index(vma, addr); 681 682 printk(KERN_ALERT 683 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 684 current->comm, 685 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 686 if (page) 687 dump_page(page, "bad pte"); 688 printk(KERN_ALERT 689 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 690 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 691 /* 692 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 693 */ 694 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 695 vma->vm_file, 696 vma->vm_ops ? vma->vm_ops->fault : NULL, 697 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 698 mapping ? mapping->a_ops->readpage : NULL); 699 dump_stack(); 700 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 701} 702 703/* 704 * vm_normal_page -- This function gets the "struct page" associated with a pte. 705 * 706 * "Special" mappings do not wish to be associated with a "struct page" (either 707 * it doesn't exist, or it exists but they don't want to touch it). In this 708 * case, NULL is returned here. "Normal" mappings do have a struct page. 709 * 710 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 711 * pte bit, in which case this function is trivial. Secondly, an architecture 712 * may not have a spare pte bit, which requires a more complicated scheme, 713 * described below. 714 * 715 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 716 * special mapping (even if there are underlying and valid "struct pages"). 717 * COWed pages of a VM_PFNMAP are always normal. 718 * 719 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 720 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 721 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 722 * mapping will always honor the rule 723 * 724 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 725 * 726 * And for normal mappings this is false. 727 * 728 * This restricts such mappings to be a linear translation from virtual address 729 * to pfn. To get around this restriction, we allow arbitrary mappings so long 730 * as the vma is not a COW mapping; in that case, we know that all ptes are 731 * special (because none can have been COWed). 732 * 733 * 734 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 735 * 736 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 737 * page" backing, however the difference is that _all_ pages with a struct 738 * page (that is, those where pfn_valid is true) are refcounted and considered 739 * normal pages by the VM. The disadvantage is that pages are refcounted 740 * (which can be slower and simply not an option for some PFNMAP users). The 741 * advantage is that we don't have to follow the strict linearity rule of 742 * PFNMAP mappings in order to support COWable mappings. 743 * 744 */ 745#ifdef __HAVE_ARCH_PTE_SPECIAL 746# define HAVE_PTE_SPECIAL 1 747#else 748# define HAVE_PTE_SPECIAL 0 749#endif 750struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 751 pte_t pte) 752{ 753 unsigned long pfn = pte_pfn(pte); 754 755 if (HAVE_PTE_SPECIAL) { 756 if (likely(!pte_special(pte))) 757 goto check_pfn; 758 if (vma->vm_ops && vma->vm_ops->find_special_page) 759 return vma->vm_ops->find_special_page(vma, addr); 760 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 761 return NULL; 762 if (!is_zero_pfn(pfn)) 763 print_bad_pte(vma, addr, pte, NULL); 764 return NULL; 765 } 766 767 /* !HAVE_PTE_SPECIAL case follows: */ 768 769 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 770 if (vma->vm_flags & VM_MIXEDMAP) { 771 if (!pfn_valid(pfn)) 772 return NULL; 773 goto out; 774 } else { 775 unsigned long off; 776 off = (addr - vma->vm_start) >> PAGE_SHIFT; 777 if (pfn == vma->vm_pgoff + off) 778 return NULL; 779 if (!is_cow_mapping(vma->vm_flags)) 780 return NULL; 781 } 782 } 783 784 if (is_zero_pfn(pfn)) 785 return NULL; 786check_pfn: 787 if (unlikely(pfn > highest_memmap_pfn)) { 788 print_bad_pte(vma, addr, pte, NULL); 789 return NULL; 790 } 791 792 /* 793 * NOTE! We still have PageReserved() pages in the page tables. 794 * eg. VDSO mappings can cause them to exist. 795 */ 796out: 797 return pfn_to_page(pfn); 798} 799 800#ifdef CONFIG_TRANSPARENT_HUGEPAGE 801struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 802 pmd_t pmd) 803{ 804 unsigned long pfn = pmd_pfn(pmd); 805 806 /* 807 * There is no pmd_special() but there may be special pmds, e.g. 808 * in a direct-access (dax) mapping, so let's just replicate the 809 * !HAVE_PTE_SPECIAL case from vm_normal_page() here. 810 */ 811 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 812 if (vma->vm_flags & VM_MIXEDMAP) { 813 if (!pfn_valid(pfn)) 814 return NULL; 815 goto out; 816 } else { 817 unsigned long off; 818 off = (addr - vma->vm_start) >> PAGE_SHIFT; 819 if (pfn == vma->vm_pgoff + off) 820 return NULL; 821 if (!is_cow_mapping(vma->vm_flags)) 822 return NULL; 823 } 824 } 825 826 if (is_zero_pfn(pfn)) 827 return NULL; 828 if (unlikely(pfn > highest_memmap_pfn)) 829 return NULL; 830 831 /* 832 * NOTE! We still have PageReserved() pages in the page tables. 833 * eg. VDSO mappings can cause them to exist. 834 */ 835out: 836 return pfn_to_page(pfn); 837} 838#endif 839 840/* 841 * copy one vm_area from one task to the other. Assumes the page tables 842 * already present in the new task to be cleared in the whole range 843 * covered by this vma. 844 */ 845 846static inline unsigned long 847copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 848 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 849 unsigned long addr, int *rss) 850{ 851 unsigned long vm_flags = vma->vm_flags; 852 pte_t pte = *src_pte; 853 struct page *page; 854 855 /* pte contains position in swap or file, so copy. */ 856 if (unlikely(!pte_present(pte))) { 857 swp_entry_t entry = pte_to_swp_entry(pte); 858 859 if (likely(!non_swap_entry(entry))) { 860 if (swap_duplicate(entry) < 0) 861 return entry.val; 862 863 /* make sure dst_mm is on swapoff's mmlist. */ 864 if (unlikely(list_empty(&dst_mm->mmlist))) { 865 spin_lock(&mmlist_lock); 866 if (list_empty(&dst_mm->mmlist)) 867 list_add(&dst_mm->mmlist, 868 &src_mm->mmlist); 869 spin_unlock(&mmlist_lock); 870 } 871 rss[MM_SWAPENTS]++; 872 } else if (is_migration_entry(entry)) { 873 page = migration_entry_to_page(entry); 874 875 if (PageAnon(page)) 876 rss[MM_ANONPAGES]++; 877 else 878 rss[MM_FILEPAGES]++; 879 880 if (is_write_migration_entry(entry) && 881 is_cow_mapping(vm_flags)) { 882 /* 883 * COW mappings require pages in both 884 * parent and child to be set to read. 885 */ 886 make_migration_entry_read(&entry); 887 pte = swp_entry_to_pte(entry); 888 if (pte_swp_soft_dirty(*src_pte)) 889 pte = pte_swp_mksoft_dirty(pte); 890 set_pte_at(src_mm, addr, src_pte, pte); 891 } 892 } 893 goto out_set_pte; 894 } 895 896 /* 897 * If it's a COW mapping, write protect it both 898 * in the parent and the child 899 */ 900 if (is_cow_mapping(vm_flags)) { 901 ptep_set_wrprotect(src_mm, addr, src_pte); 902 pte = pte_wrprotect(pte); 903 } 904 905 /* 906 * If it's a shared mapping, mark it clean in 907 * the child 908 */ 909 if (vm_flags & VM_SHARED) 910 pte = pte_mkclean(pte); 911 pte = pte_mkold(pte); 912 913 page = vm_normal_page(vma, addr, pte); 914 if (page) { 915 get_page(page); 916 page_dup_rmap(page); 917 if (PageAnon(page)) 918 rss[MM_ANONPAGES]++; 919 else 920 rss[MM_FILEPAGES]++; 921 } 922 923out_set_pte: 924 set_pte_at(dst_mm, addr, dst_pte, pte); 925 return 0; 926} 927 928static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 929 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 930 unsigned long addr, unsigned long end) 931{ 932 pte_t *orig_src_pte, *orig_dst_pte; 933 pte_t *src_pte, *dst_pte; 934 spinlock_t *src_ptl, *dst_ptl; 935 int progress = 0; 936 int rss[NR_MM_COUNTERS]; 937 swp_entry_t entry = (swp_entry_t){0}; 938 939again: 940 init_rss_vec(rss); 941 942 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 943 if (!dst_pte) 944 return -ENOMEM; 945 src_pte = pte_offset_map(src_pmd, addr); 946 src_ptl = pte_lockptr(src_mm, src_pmd); 947 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 948 orig_src_pte = src_pte; 949 orig_dst_pte = dst_pte; 950 arch_enter_lazy_mmu_mode(); 951 952 do { 953 /* 954 * We are holding two locks at this point - either of them 955 * could generate latencies in another task on another CPU. 956 */ 957 if (progress >= 32) { 958 progress = 0; 959 if (need_resched() || 960 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 961 break; 962 } 963 if (pte_none(*src_pte)) { 964 progress++; 965 continue; 966 } 967 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 968 vma, addr, rss); 969 if (entry.val) 970 break; 971 progress += 8; 972 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 973 974 arch_leave_lazy_mmu_mode(); 975 spin_unlock(src_ptl); 976 pte_unmap(orig_src_pte); 977 add_mm_rss_vec(dst_mm, rss); 978 pte_unmap_unlock(orig_dst_pte, dst_ptl); 979 cond_resched(); 980 981 if (entry.val) { 982 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 983 return -ENOMEM; 984 progress = 0; 985 } 986 if (addr != end) 987 goto again; 988 return 0; 989} 990 991static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 992 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 993 unsigned long addr, unsigned long end) 994{ 995 pmd_t *src_pmd, *dst_pmd; 996 unsigned long next; 997 998 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 999 if (!dst_pmd) 1000 return -ENOMEM; 1001 src_pmd = pmd_offset(src_pud, addr); 1002 do { 1003 next = pmd_addr_end(addr, end); 1004 if (pmd_trans_huge(*src_pmd)) { 1005 int err; 1006 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 1007 err = copy_huge_pmd(dst_mm, src_mm, 1008 dst_pmd, src_pmd, addr, vma); 1009 if (err == -ENOMEM) 1010 return -ENOMEM; 1011 if (!err) 1012 continue; 1013 /* fall through */ 1014 } 1015 if (pmd_none_or_clear_bad(src_pmd)) 1016 continue; 1017 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1018 vma, addr, next)) 1019 return -ENOMEM; 1020 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1021 return 0; 1022} 1023 1024static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1025 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1026 unsigned long addr, unsigned long end) 1027{ 1028 pud_t *src_pud, *dst_pud; 1029 unsigned long next; 1030 1031 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 1032 if (!dst_pud) 1033 return -ENOMEM; 1034 src_pud = pud_offset(src_pgd, addr); 1035 do { 1036 next = pud_addr_end(addr, end); 1037 if (pud_none_or_clear_bad(src_pud)) 1038 continue; 1039 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1040 vma, addr, next)) 1041 return -ENOMEM; 1042 } while (dst_pud++, src_pud++, addr = next, addr != end); 1043 return 0; 1044} 1045 1046int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1047 struct vm_area_struct *vma) 1048{ 1049 pgd_t *src_pgd, *dst_pgd; 1050 unsigned long next; 1051 unsigned long addr = vma->vm_start; 1052 unsigned long end = vma->vm_end; 1053 unsigned long mmun_start; /* For mmu_notifiers */ 1054 unsigned long mmun_end; /* For mmu_notifiers */ 1055 bool is_cow; 1056 int ret; 1057 1058 /* 1059 * Don't copy ptes where a page fault will fill them correctly. 1060 * Fork becomes much lighter when there are big shared or private 1061 * readonly mappings. The tradeoff is that copy_page_range is more 1062 * efficient than faulting. 1063 */ 1064 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1065 !vma->anon_vma) 1066 return 0; 1067 1068 if (is_vm_hugetlb_page(vma)) 1069 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1070 1071 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1072 /* 1073 * We do not free on error cases below as remove_vma 1074 * gets called on error from higher level routine 1075 */ 1076 ret = track_pfn_copy(vma); 1077 if (ret) 1078 return ret; 1079 } 1080 1081 /* 1082 * We need to invalidate the secondary MMU mappings only when 1083 * there could be a permission downgrade on the ptes of the 1084 * parent mm. And a permission downgrade will only happen if 1085 * is_cow_mapping() returns true. 1086 */ 1087 is_cow = is_cow_mapping(vma->vm_flags); 1088 mmun_start = addr; 1089 mmun_end = end; 1090 if (is_cow) 1091 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1092 mmun_end); 1093 1094 ret = 0; 1095 dst_pgd = pgd_offset(dst_mm, addr); 1096 src_pgd = pgd_offset(src_mm, addr); 1097 do { 1098 next = pgd_addr_end(addr, end); 1099 if (pgd_none_or_clear_bad(src_pgd)) 1100 continue; 1101 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1102 vma, addr, next))) { 1103 ret = -ENOMEM; 1104 break; 1105 } 1106 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1107 1108 if (is_cow) 1109 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1110 return ret; 1111} 1112 1113static unsigned long zap_pte_range(struct mmu_gather *tlb, 1114 struct vm_area_struct *vma, pmd_t *pmd, 1115 unsigned long addr, unsigned long end, 1116 struct zap_details *details) 1117{ 1118 struct mm_struct *mm = tlb->mm; 1119 int force_flush = 0; 1120 int rss[NR_MM_COUNTERS]; 1121 spinlock_t *ptl; 1122 pte_t *start_pte; 1123 pte_t *pte; 1124 swp_entry_t entry; 1125 1126again: 1127 init_rss_vec(rss); 1128 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1129 pte = start_pte; 1130 arch_enter_lazy_mmu_mode(); 1131 do { 1132 pte_t ptent = *pte; 1133 if (pte_none(ptent)) { 1134 continue; 1135 } 1136 1137 if (pte_present(ptent)) { 1138 struct page *page; 1139 1140 page = vm_normal_page(vma, addr, ptent); 1141 if (unlikely(details) && page) { 1142 /* 1143 * unmap_shared_mapping_pages() wants to 1144 * invalidate cache without truncating: 1145 * unmap shared but keep private pages. 1146 */ 1147 if (details->check_mapping && 1148 details->check_mapping != page->mapping) 1149 continue; 1150 } 1151 ptent = ptep_get_and_clear_full(mm, addr, pte, 1152 tlb->fullmm); 1153 tlb_remove_tlb_entry(tlb, pte, addr); 1154 if (unlikely(!page)) 1155 continue; 1156 if (PageAnon(page)) 1157 rss[MM_ANONPAGES]--; 1158 else { 1159 if (pte_dirty(ptent)) { 1160 force_flush = 1; 1161 set_page_dirty(page); 1162 } 1163 if (pte_young(ptent) && 1164 likely(!(vma->vm_flags & VM_SEQ_READ))) 1165 mark_page_accessed(page); 1166 rss[MM_FILEPAGES]--; 1167 } 1168 page_remove_rmap(page); 1169 if (unlikely(page_mapcount(page) < 0)) 1170 print_bad_pte(vma, addr, ptent, page); 1171 if (unlikely(!__tlb_remove_page(tlb, page))) { 1172 force_flush = 1; 1173 addr += PAGE_SIZE; 1174 break; 1175 } 1176 continue; 1177 } 1178 /* If details->check_mapping, we leave swap entries. */ 1179 if (unlikely(details)) 1180 continue; 1181 1182 entry = pte_to_swp_entry(ptent); 1183 if (!non_swap_entry(entry)) 1184 rss[MM_SWAPENTS]--; 1185 else if (is_migration_entry(entry)) { 1186 struct page *page; 1187 1188 page = migration_entry_to_page(entry); 1189 1190 if (PageAnon(page)) 1191 rss[MM_ANONPAGES]--; 1192 else 1193 rss[MM_FILEPAGES]--; 1194 } 1195 if (unlikely(!free_swap_and_cache(entry))) 1196 print_bad_pte(vma, addr, ptent, NULL); 1197 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1198 } while (pte++, addr += PAGE_SIZE, addr != end); 1199 1200 add_mm_rss_vec(mm, rss); 1201 arch_leave_lazy_mmu_mode(); 1202 1203 /* Do the actual TLB flush before dropping ptl */ 1204 if (force_flush) 1205 tlb_flush_mmu_tlbonly(tlb); 1206 pte_unmap_unlock(start_pte, ptl); 1207 1208 /* 1209 * If we forced a TLB flush (either due to running out of 1210 * batch buffers or because we needed to flush dirty TLB 1211 * entries before releasing the ptl), free the batched 1212 * memory too. Restart if we didn't do everything. 1213 */ 1214 if (force_flush) { 1215 force_flush = 0; 1216 tlb_flush_mmu_free(tlb); 1217 1218 if (addr != end) 1219 goto again; 1220 } 1221 1222 return addr; 1223} 1224 1225static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1226 struct vm_area_struct *vma, pud_t *pud, 1227 unsigned long addr, unsigned long end, 1228 struct zap_details *details) 1229{ 1230 pmd_t *pmd; 1231 unsigned long next; 1232 1233 pmd = pmd_offset(pud, addr); 1234 do { 1235 next = pmd_addr_end(addr, end); 1236 if (pmd_trans_huge(*pmd)) { 1237 if (next - addr != HPAGE_PMD_SIZE) { 1238#ifdef CONFIG_DEBUG_VM 1239 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1240 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1241 __func__, addr, end, 1242 vma->vm_start, 1243 vma->vm_end); 1244 BUG(); 1245 } 1246#endif 1247 split_huge_page_pmd(vma, addr, pmd); 1248 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1249 goto next; 1250 /* fall through */ 1251 } 1252 /* 1253 * Here there can be other concurrent MADV_DONTNEED or 1254 * trans huge page faults running, and if the pmd is 1255 * none or trans huge it can change under us. This is 1256 * because MADV_DONTNEED holds the mmap_sem in read 1257 * mode. 1258 */ 1259 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1260 goto next; 1261 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1262next: 1263 cond_resched(); 1264 } while (pmd++, addr = next, addr != end); 1265 1266 return addr; 1267} 1268 1269static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1270 struct vm_area_struct *vma, pgd_t *pgd, 1271 unsigned long addr, unsigned long end, 1272 struct zap_details *details) 1273{ 1274 pud_t *pud; 1275 unsigned long next; 1276 1277 pud = pud_offset(pgd, addr); 1278 do { 1279 next = pud_addr_end(addr, end); 1280 if (pud_none_or_clear_bad(pud)) 1281 continue; 1282 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1283 } while (pud++, addr = next, addr != end); 1284 1285 return addr; 1286} 1287 1288static void unmap_page_range(struct mmu_gather *tlb, 1289 struct vm_area_struct *vma, 1290 unsigned long addr, unsigned long end, 1291 struct zap_details *details) 1292{ 1293 pgd_t *pgd; 1294 unsigned long next; 1295 1296 if (details && !details->check_mapping) 1297 details = NULL; 1298 1299 BUG_ON(addr >= end); 1300 tlb_start_vma(tlb, vma); 1301 pgd = pgd_offset(vma->vm_mm, addr); 1302 do { 1303 next = pgd_addr_end(addr, end); 1304 if (pgd_none_or_clear_bad(pgd)) 1305 continue; 1306 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1307 } while (pgd++, addr = next, addr != end); 1308 tlb_end_vma(tlb, vma); 1309} 1310 1311 1312static void unmap_single_vma(struct mmu_gather *tlb, 1313 struct vm_area_struct *vma, unsigned long start_addr, 1314 unsigned long end_addr, 1315 struct zap_details *details) 1316{ 1317 unsigned long start = max(vma->vm_start, start_addr); 1318 unsigned long end; 1319 1320 if (start >= vma->vm_end) 1321 return; 1322 end = min(vma->vm_end, end_addr); 1323 if (end <= vma->vm_start) 1324 return; 1325 1326 if (vma->vm_file) 1327 uprobe_munmap(vma, start, end); 1328 1329 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1330 untrack_pfn(vma, 0, 0); 1331 1332 if (start != end) { 1333 if (unlikely(is_vm_hugetlb_page(vma))) { 1334 /* 1335 * It is undesirable to test vma->vm_file as it 1336 * should be non-null for valid hugetlb area. 1337 * However, vm_file will be NULL in the error 1338 * cleanup path of mmap_region. When 1339 * hugetlbfs ->mmap method fails, 1340 * mmap_region() nullifies vma->vm_file 1341 * before calling this function to clean up. 1342 * Since no pte has actually been setup, it is 1343 * safe to do nothing in this case. 1344 */ 1345 if (vma->vm_file) { 1346 i_mmap_lock_write(vma->vm_file->f_mapping); 1347 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1348 i_mmap_unlock_write(vma->vm_file->f_mapping); 1349 } 1350 } else 1351 unmap_page_range(tlb, vma, start, end, details); 1352 } 1353} 1354 1355/** 1356 * unmap_vmas - unmap a range of memory covered by a list of vma's 1357 * @tlb: address of the caller's struct mmu_gather 1358 * @vma: the starting vma 1359 * @start_addr: virtual address at which to start unmapping 1360 * @end_addr: virtual address at which to end unmapping 1361 * 1362 * Unmap all pages in the vma list. 1363 * 1364 * Only addresses between `start' and `end' will be unmapped. 1365 * 1366 * The VMA list must be sorted in ascending virtual address order. 1367 * 1368 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1369 * range after unmap_vmas() returns. So the only responsibility here is to 1370 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1371 * drops the lock and schedules. 1372 */ 1373void unmap_vmas(struct mmu_gather *tlb, 1374 struct vm_area_struct *vma, unsigned long start_addr, 1375 unsigned long end_addr) 1376{ 1377 struct mm_struct *mm = vma->vm_mm; 1378 1379 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1380 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1381 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1382 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1383} 1384 1385/** 1386 * zap_page_range - remove user pages in a given range 1387 * @vma: vm_area_struct holding the applicable pages 1388 * @start: starting address of pages to zap 1389 * @size: number of bytes to zap 1390 * @details: details of shared cache invalidation 1391 * 1392 * Caller must protect the VMA list 1393 */ 1394void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1395 unsigned long size, struct zap_details *details) 1396{ 1397 struct mm_struct *mm = vma->vm_mm; 1398 struct mmu_gather tlb; 1399 unsigned long end = start + size; 1400 1401 lru_add_drain(); 1402 tlb_gather_mmu(&tlb, mm, start, end); 1403 update_hiwater_rss(mm); 1404 mmu_notifier_invalidate_range_start(mm, start, end); 1405 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1406 unmap_single_vma(&tlb, vma, start, end, details); 1407 mmu_notifier_invalidate_range_end(mm, start, end); 1408 tlb_finish_mmu(&tlb, start, end); 1409} 1410 1411/** 1412 * zap_page_range_single - remove user pages in a given range 1413 * @vma: vm_area_struct holding the applicable pages 1414 * @address: starting address of pages to zap 1415 * @size: number of bytes to zap 1416 * @details: details of shared cache invalidation 1417 * 1418 * The range must fit into one VMA. 1419 */ 1420static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1421 unsigned long size, struct zap_details *details) 1422{ 1423 struct mm_struct *mm = vma->vm_mm; 1424 struct mmu_gather tlb; 1425 unsigned long end = address + size; 1426 1427 lru_add_drain(); 1428 tlb_gather_mmu(&tlb, mm, address, end); 1429 update_hiwater_rss(mm); 1430 mmu_notifier_invalidate_range_start(mm, address, end); 1431 unmap_single_vma(&tlb, vma, address, end, details); 1432 mmu_notifier_invalidate_range_end(mm, address, end); 1433 tlb_finish_mmu(&tlb, address, end); 1434} 1435 1436/** 1437 * zap_vma_ptes - remove ptes mapping the vma 1438 * @vma: vm_area_struct holding ptes to be zapped 1439 * @address: starting address of pages to zap 1440 * @size: number of bytes to zap 1441 * 1442 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1443 * 1444 * The entire address range must be fully contained within the vma. 1445 * 1446 * Returns 0 if successful. 1447 */ 1448int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1449 unsigned long size) 1450{ 1451 if (address < vma->vm_start || address + size > vma->vm_end || 1452 !(vma->vm_flags & VM_PFNMAP)) 1453 return -1; 1454 zap_page_range_single(vma, address, size, NULL); 1455 return 0; 1456} 1457EXPORT_SYMBOL_GPL(zap_vma_ptes); 1458 1459pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1460 spinlock_t **ptl) 1461{ 1462 pgd_t * pgd = pgd_offset(mm, addr); 1463 pud_t * pud = pud_alloc(mm, pgd, addr); 1464 if (pud) { 1465 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1466 if (pmd) { 1467 VM_BUG_ON(pmd_trans_huge(*pmd)); 1468 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1469 } 1470 } 1471 return NULL; 1472} 1473 1474/* 1475 * This is the old fallback for page remapping. 1476 * 1477 * For historical reasons, it only allows reserved pages. Only 1478 * old drivers should use this, and they needed to mark their 1479 * pages reserved for the old functions anyway. 1480 */ 1481static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1482 struct page *page, pgprot_t prot) 1483{ 1484 struct mm_struct *mm = vma->vm_mm; 1485 int retval; 1486 pte_t *pte; 1487 spinlock_t *ptl; 1488 1489 retval = -EINVAL; 1490 if (PageAnon(page)) 1491 goto out; 1492 retval = -ENOMEM; 1493 flush_dcache_page(page); 1494 pte = get_locked_pte(mm, addr, &ptl); 1495 if (!pte) 1496 goto out; 1497 retval = -EBUSY; 1498 if (!pte_none(*pte)) 1499 goto out_unlock; 1500 1501 /* Ok, finally just insert the thing.. */ 1502 get_page(page); 1503 inc_mm_counter_fast(mm, MM_FILEPAGES); 1504 page_add_file_rmap(page); 1505 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1506 1507 retval = 0; 1508 pte_unmap_unlock(pte, ptl); 1509 return retval; 1510out_unlock: 1511 pte_unmap_unlock(pte, ptl); 1512out: 1513 return retval; 1514} 1515 1516/** 1517 * vm_insert_page - insert single page into user vma 1518 * @vma: user vma to map to 1519 * @addr: target user address of this page 1520 * @page: source kernel page 1521 * 1522 * This allows drivers to insert individual pages they've allocated 1523 * into a user vma. 1524 * 1525 * The page has to be a nice clean _individual_ kernel allocation. 1526 * If you allocate a compound page, you need to have marked it as 1527 * such (__GFP_COMP), or manually just split the page up yourself 1528 * (see split_page()). 1529 * 1530 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1531 * took an arbitrary page protection parameter. This doesn't allow 1532 * that. Your vma protection will have to be set up correctly, which 1533 * means that if you want a shared writable mapping, you'd better 1534 * ask for a shared writable mapping! 1535 * 1536 * The page does not need to be reserved. 1537 * 1538 * Usually this function is called from f_op->mmap() handler 1539 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1540 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1541 * function from other places, for example from page-fault handler. 1542 */ 1543int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1544 struct page *page) 1545{ 1546 if (addr < vma->vm_start || addr >= vma->vm_end) 1547 return -EFAULT; 1548 if (!page_count(page)) 1549 return -EINVAL; 1550 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1551 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1552 BUG_ON(vma->vm_flags & VM_PFNMAP); 1553 vma->vm_flags |= VM_MIXEDMAP; 1554 } 1555 return insert_page(vma, addr, page, vma->vm_page_prot); 1556} 1557EXPORT_SYMBOL(vm_insert_page); 1558 1559static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1560 unsigned long pfn, pgprot_t prot) 1561{ 1562 struct mm_struct *mm = vma->vm_mm; 1563 int retval; 1564 pte_t *pte, entry; 1565 spinlock_t *ptl; 1566 1567 retval = -ENOMEM; 1568 pte = get_locked_pte(mm, addr, &ptl); 1569 if (!pte) 1570 goto out; 1571 retval = -EBUSY; 1572 if (!pte_none(*pte)) 1573 goto out_unlock; 1574 1575 /* Ok, finally just insert the thing.. */ 1576 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1577 set_pte_at(mm, addr, pte, entry); 1578 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1579 1580 retval = 0; 1581out_unlock: 1582 pte_unmap_unlock(pte, ptl); 1583out: 1584 return retval; 1585} 1586 1587/** 1588 * vm_insert_pfn - insert single pfn into user vma 1589 * @vma: user vma to map to 1590 * @addr: target user address of this page 1591 * @pfn: source kernel pfn 1592 * 1593 * Similar to vm_insert_page, this allows drivers to insert individual pages 1594 * they've allocated into a user vma. Same comments apply. 1595 * 1596 * This function should only be called from a vm_ops->fault handler, and 1597 * in that case the handler should return NULL. 1598 * 1599 * vma cannot be a COW mapping. 1600 * 1601 * As this is called only for pages that do not currently exist, we 1602 * do not need to flush old virtual caches or the TLB. 1603 */ 1604int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1605 unsigned long pfn) 1606{ 1607 int ret; 1608 pgprot_t pgprot = vma->vm_page_prot; 1609 /* 1610 * Technically, architectures with pte_special can avoid all these 1611 * restrictions (same for remap_pfn_range). However we would like 1612 * consistency in testing and feature parity among all, so we should 1613 * try to keep these invariants in place for everybody. 1614 */ 1615 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1616 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1617 (VM_PFNMAP|VM_MIXEDMAP)); 1618 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1619 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1620 1621 if (addr < vma->vm_start || addr >= vma->vm_end) 1622 return -EFAULT; 1623 if (track_pfn_insert(vma, &pgprot, pfn)) 1624 return -EINVAL; 1625 1626 ret = insert_pfn(vma, addr, pfn, pgprot); 1627 1628 return ret; 1629} 1630EXPORT_SYMBOL(vm_insert_pfn); 1631 1632int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1633 unsigned long pfn) 1634{ 1635 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1636 1637 if (addr < vma->vm_start || addr >= vma->vm_end) 1638 return -EFAULT; 1639 1640 /* 1641 * If we don't have pte special, then we have to use the pfn_valid() 1642 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1643 * refcount the page if pfn_valid is true (hence insert_page rather 1644 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1645 * without pte special, it would there be refcounted as a normal page. 1646 */ 1647 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1648 struct page *page; 1649 1650 page = pfn_to_page(pfn); 1651 return insert_page(vma, addr, page, vma->vm_page_prot); 1652 } 1653 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1654} 1655EXPORT_SYMBOL(vm_insert_mixed); 1656 1657/* 1658 * maps a range of physical memory into the requested pages. the old 1659 * mappings are removed. any references to nonexistent pages results 1660 * in null mappings (currently treated as "copy-on-access") 1661 */ 1662static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1663 unsigned long addr, unsigned long end, 1664 unsigned long pfn, pgprot_t prot) 1665{ 1666 pte_t *pte; 1667 spinlock_t *ptl; 1668 1669 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1670 if (!pte) 1671 return -ENOMEM; 1672 arch_enter_lazy_mmu_mode(); 1673 do { 1674 BUG_ON(!pte_none(*pte)); 1675 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1676 pfn++; 1677 } while (pte++, addr += PAGE_SIZE, addr != end); 1678 arch_leave_lazy_mmu_mode(); 1679 pte_unmap_unlock(pte - 1, ptl); 1680 return 0; 1681} 1682 1683static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1684 unsigned long addr, unsigned long end, 1685 unsigned long pfn, pgprot_t prot) 1686{ 1687 pmd_t *pmd; 1688 unsigned long next; 1689 1690 pfn -= addr >> PAGE_SHIFT; 1691 pmd = pmd_alloc(mm, pud, addr); 1692 if (!pmd) 1693 return -ENOMEM; 1694 VM_BUG_ON(pmd_trans_huge(*pmd)); 1695 do { 1696 next = pmd_addr_end(addr, end); 1697 if (remap_pte_range(mm, pmd, addr, next, 1698 pfn + (addr >> PAGE_SHIFT), prot)) 1699 return -ENOMEM; 1700 } while (pmd++, addr = next, addr != end); 1701 return 0; 1702} 1703 1704static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1705 unsigned long addr, unsigned long end, 1706 unsigned long pfn, pgprot_t prot) 1707{ 1708 pud_t *pud; 1709 unsigned long next; 1710 1711 pfn -= addr >> PAGE_SHIFT; 1712 pud = pud_alloc(mm, pgd, addr); 1713 if (!pud) 1714 return -ENOMEM; 1715 do { 1716 next = pud_addr_end(addr, end); 1717 if (remap_pmd_range(mm, pud, addr, next, 1718 pfn + (addr >> PAGE_SHIFT), prot)) 1719 return -ENOMEM; 1720 } while (pud++, addr = next, addr != end); 1721 return 0; 1722} 1723 1724/** 1725 * remap_pfn_range - remap kernel memory to userspace 1726 * @vma: user vma to map to 1727 * @addr: target user address to start at 1728 * @pfn: physical address of kernel memory 1729 * @size: size of map area 1730 * @prot: page protection flags for this mapping 1731 * 1732 * Note: this is only safe if the mm semaphore is held when called. 1733 */ 1734int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1735 unsigned long pfn, unsigned long size, pgprot_t prot) 1736{ 1737 pgd_t *pgd; 1738 unsigned long next; 1739 unsigned long end = addr + PAGE_ALIGN(size); 1740 struct mm_struct *mm = vma->vm_mm; 1741 int err; 1742 1743 /* 1744 * Physically remapped pages are special. Tell the 1745 * rest of the world about it: 1746 * VM_IO tells people not to look at these pages 1747 * (accesses can have side effects). 1748 * VM_PFNMAP tells the core MM that the base pages are just 1749 * raw PFN mappings, and do not have a "struct page" associated 1750 * with them. 1751 * VM_DONTEXPAND 1752 * Disable vma merging and expanding with mremap(). 1753 * VM_DONTDUMP 1754 * Omit vma from core dump, even when VM_IO turned off. 1755 * 1756 * There's a horrible special case to handle copy-on-write 1757 * behaviour that some programs depend on. We mark the "original" 1758 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1759 * See vm_normal_page() for details. 1760 */ 1761 if (is_cow_mapping(vma->vm_flags)) { 1762 if (addr != vma->vm_start || end != vma->vm_end) 1763 return -EINVAL; 1764 vma->vm_pgoff = pfn; 1765 } 1766 1767 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 1768 if (err) 1769 return -EINVAL; 1770 1771 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1772 1773 BUG_ON(addr >= end); 1774 pfn -= addr >> PAGE_SHIFT; 1775 pgd = pgd_offset(mm, addr); 1776 flush_cache_range(vma, addr, end); 1777 do { 1778 next = pgd_addr_end(addr, end); 1779 err = remap_pud_range(mm, pgd, addr, next, 1780 pfn + (addr >> PAGE_SHIFT), prot); 1781 if (err) 1782 break; 1783 } while (pgd++, addr = next, addr != end); 1784 1785 if (err) 1786 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 1787 1788 return err; 1789} 1790EXPORT_SYMBOL(remap_pfn_range); 1791 1792/** 1793 * vm_iomap_memory - remap memory to userspace 1794 * @vma: user vma to map to 1795 * @start: start of area 1796 * @len: size of area 1797 * 1798 * This is a simplified io_remap_pfn_range() for common driver use. The 1799 * driver just needs to give us the physical memory range to be mapped, 1800 * we'll figure out the rest from the vma information. 1801 * 1802 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1803 * whatever write-combining details or similar. 1804 */ 1805int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1806{ 1807 unsigned long vm_len, pfn, pages; 1808 1809 /* Check that the physical memory area passed in looks valid */ 1810 if (start + len < start) 1811 return -EINVAL; 1812 /* 1813 * You *really* shouldn't map things that aren't page-aligned, 1814 * but we've historically allowed it because IO memory might 1815 * just have smaller alignment. 1816 */ 1817 len += start & ~PAGE_MASK; 1818 pfn = start >> PAGE_SHIFT; 1819 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1820 if (pfn + pages < pfn) 1821 return -EINVAL; 1822 1823 /* We start the mapping 'vm_pgoff' pages into the area */ 1824 if (vma->vm_pgoff > pages) 1825 return -EINVAL; 1826 pfn += vma->vm_pgoff; 1827 pages -= vma->vm_pgoff; 1828 1829 /* Can we fit all of the mapping? */ 1830 vm_len = vma->vm_end - vma->vm_start; 1831 if (vm_len >> PAGE_SHIFT > pages) 1832 return -EINVAL; 1833 1834 /* Ok, let it rip */ 1835 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1836} 1837EXPORT_SYMBOL(vm_iomap_memory); 1838 1839static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1840 unsigned long addr, unsigned long end, 1841 pte_fn_t fn, void *data) 1842{ 1843 pte_t *pte; 1844 int err; 1845 pgtable_t token; 1846 spinlock_t *uninitialized_var(ptl); 1847 1848 pte = (mm == &init_mm) ? 1849 pte_alloc_kernel(pmd, addr) : 1850 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1851 if (!pte) 1852 return -ENOMEM; 1853 1854 BUG_ON(pmd_huge(*pmd)); 1855 1856 arch_enter_lazy_mmu_mode(); 1857 1858 token = pmd_pgtable(*pmd); 1859 1860 do { 1861 err = fn(pte++, token, addr, data); 1862 if (err) 1863 break; 1864 } while (addr += PAGE_SIZE, addr != end); 1865 1866 arch_leave_lazy_mmu_mode(); 1867 1868 if (mm != &init_mm) 1869 pte_unmap_unlock(pte-1, ptl); 1870 return err; 1871} 1872 1873static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1874 unsigned long addr, unsigned long end, 1875 pte_fn_t fn, void *data) 1876{ 1877 pmd_t *pmd; 1878 unsigned long next; 1879 int err; 1880 1881 BUG_ON(pud_huge(*pud)); 1882 1883 pmd = pmd_alloc(mm, pud, addr); 1884 if (!pmd) 1885 return -ENOMEM; 1886 do { 1887 next = pmd_addr_end(addr, end); 1888 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1889 if (err) 1890 break; 1891 } while (pmd++, addr = next, addr != end); 1892 return err; 1893} 1894 1895static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1896 unsigned long addr, unsigned long end, 1897 pte_fn_t fn, void *data) 1898{ 1899 pud_t *pud; 1900 unsigned long next; 1901 int err; 1902 1903 pud = pud_alloc(mm, pgd, addr); 1904 if (!pud) 1905 return -ENOMEM; 1906 do { 1907 next = pud_addr_end(addr, end); 1908 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1909 if (err) 1910 break; 1911 } while (pud++, addr = next, addr != end); 1912 return err; 1913} 1914 1915/* 1916 * Scan a region of virtual memory, filling in page tables as necessary 1917 * and calling a provided function on each leaf page table. 1918 */ 1919int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1920 unsigned long size, pte_fn_t fn, void *data) 1921{ 1922 pgd_t *pgd; 1923 unsigned long next; 1924 unsigned long end = addr + size; 1925 int err; 1926 1927 BUG_ON(addr >= end); 1928 pgd = pgd_offset(mm, addr); 1929 do { 1930 next = pgd_addr_end(addr, end); 1931 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1932 if (err) 1933 break; 1934 } while (pgd++, addr = next, addr != end); 1935 1936 return err; 1937} 1938EXPORT_SYMBOL_GPL(apply_to_page_range); 1939 1940/* 1941 * handle_pte_fault chooses page fault handler according to an entry which was 1942 * read non-atomically. Before making any commitment, on those architectures 1943 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 1944 * parts, do_swap_page must check under lock before unmapping the pte and 1945 * proceeding (but do_wp_page is only called after already making such a check; 1946 * and do_anonymous_page can safely check later on). 1947 */ 1948static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1949 pte_t *page_table, pte_t orig_pte) 1950{ 1951 int same = 1; 1952#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1953 if (sizeof(pte_t) > sizeof(unsigned long)) { 1954 spinlock_t *ptl = pte_lockptr(mm, pmd); 1955 spin_lock(ptl); 1956 same = pte_same(*page_table, orig_pte); 1957 spin_unlock(ptl); 1958 } 1959#endif 1960 pte_unmap(page_table); 1961 return same; 1962} 1963 1964static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1965{ 1966 debug_dma_assert_idle(src); 1967 1968 /* 1969 * If the source page was a PFN mapping, we don't have 1970 * a "struct page" for it. We do a best-effort copy by 1971 * just copying from the original user address. If that 1972 * fails, we just zero-fill it. Live with it. 1973 */ 1974 if (unlikely(!src)) { 1975 void *kaddr = kmap_atomic(dst); 1976 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1977 1978 /* 1979 * This really shouldn't fail, because the page is there 1980 * in the page tables. But it might just be unreadable, 1981 * in which case we just give up and fill the result with 1982 * zeroes. 1983 */ 1984 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1985 clear_page(kaddr); 1986 kunmap_atomic(kaddr); 1987 flush_dcache_page(dst); 1988 } else 1989 copy_user_highpage(dst, src, va, vma); 1990} 1991 1992/* 1993 * Notify the address space that the page is about to become writable so that 1994 * it can prohibit this or wait for the page to get into an appropriate state. 1995 * 1996 * We do this without the lock held, so that it can sleep if it needs to. 1997 */ 1998static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page, 1999 unsigned long address) 2000{ 2001 struct vm_fault vmf; 2002 int ret; 2003 2004 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2005 vmf.pgoff = page->index; 2006 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2007 vmf.page = page; 2008 vmf.cow_page = NULL; 2009 2010 ret = vma->vm_ops->page_mkwrite(vma, &vmf); 2011 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2012 return ret; 2013 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2014 lock_page(page); 2015 if (!page->mapping) { 2016 unlock_page(page); 2017 return 0; /* retry */ 2018 } 2019 ret |= VM_FAULT_LOCKED; 2020 } else 2021 VM_BUG_ON_PAGE(!PageLocked(page), page); 2022 return ret; 2023} 2024 2025/* 2026 * Handle write page faults for pages that can be reused in the current vma 2027 * 2028 * This can happen either due to the mapping being with the VM_SHARED flag, 2029 * or due to us being the last reference standing to the page. In either 2030 * case, all we need to do here is to mark the page as writable and update 2031 * any related book-keeping. 2032 */ 2033static inline int wp_page_reuse(struct mm_struct *mm, 2034 struct vm_area_struct *vma, unsigned long address, 2035 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte, 2036 struct page *page, int page_mkwrite, 2037 int dirty_shared) 2038 __releases(ptl) 2039{ 2040 pte_t entry; 2041 /* 2042 * Clear the pages cpupid information as the existing 2043 * information potentially belongs to a now completely 2044 * unrelated process. 2045 */ 2046 if (page) 2047 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2048 2049 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2050 entry = pte_mkyoung(orig_pte); 2051 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2052 if (ptep_set_access_flags(vma, address, page_table, entry, 1)) 2053 update_mmu_cache(vma, address, page_table); 2054 pte_unmap_unlock(page_table, ptl); 2055 2056 if (dirty_shared) { 2057 struct address_space *mapping; 2058 int dirtied; 2059 2060 if (!page_mkwrite) 2061 lock_page(page); 2062 2063 dirtied = set_page_dirty(page); 2064 VM_BUG_ON_PAGE(PageAnon(page), page); 2065 mapping = page->mapping; 2066 unlock_page(page); 2067 page_cache_release(page); 2068 2069 if ((dirtied || page_mkwrite) && mapping) { 2070 /* 2071 * Some device drivers do not set page.mapping 2072 * but still dirty their pages 2073 */ 2074 balance_dirty_pages_ratelimited(mapping); 2075 } 2076 2077 if (!page_mkwrite) 2078 file_update_time(vma->vm_file); 2079 } 2080 2081 return VM_FAULT_WRITE; 2082} 2083 2084/* 2085 * Handle the case of a page which we actually need to copy to a new page. 2086 * 2087 * Called with mmap_sem locked and the old page referenced, but 2088 * without the ptl held. 2089 * 2090 * High level logic flow: 2091 * 2092 * - Allocate a page, copy the content of the old page to the new one. 2093 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2094 * - Take the PTL. If the pte changed, bail out and release the allocated page 2095 * - If the pte is still the way we remember it, update the page table and all 2096 * relevant references. This includes dropping the reference the page-table 2097 * held to the old page, as well as updating the rmap. 2098 * - In any case, unlock the PTL and drop the reference we took to the old page. 2099 */ 2100static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma, 2101 unsigned long address, pte_t *page_table, pmd_t *pmd, 2102 pte_t orig_pte, struct page *old_page) 2103{ 2104 struct page *new_page = NULL; 2105 spinlock_t *ptl = NULL; 2106 pte_t entry; 2107 int page_copied = 0; 2108 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */ 2109 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */ 2110 struct mem_cgroup *memcg; 2111 2112 if (unlikely(anon_vma_prepare(vma))) 2113 goto oom; 2114 2115 if (is_zero_pfn(pte_pfn(orig_pte))) { 2116 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2117 if (!new_page) 2118 goto oom; 2119 } else { 2120 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2121 if (!new_page) 2122 goto oom; 2123 cow_user_page(new_page, old_page, address, vma); 2124 } 2125 2126 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) 2127 goto oom_free_new; 2128 2129 __SetPageUptodate(new_page); 2130 2131 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2132 2133 /* 2134 * Re-check the pte - we dropped the lock 2135 */ 2136 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2137 if (likely(pte_same(*page_table, orig_pte))) { 2138 if (old_page) { 2139 if (!PageAnon(old_page)) { 2140 dec_mm_counter_fast(mm, MM_FILEPAGES); 2141 inc_mm_counter_fast(mm, MM_ANONPAGES); 2142 } 2143 } else { 2144 inc_mm_counter_fast(mm, MM_ANONPAGES); 2145 } 2146 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2147 entry = mk_pte(new_page, vma->vm_page_prot); 2148 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2149 /* 2150 * Clear the pte entry and flush it first, before updating the 2151 * pte with the new entry. This will avoid a race condition 2152 * seen in the presence of one thread doing SMC and another 2153 * thread doing COW. 2154 */ 2155 ptep_clear_flush_notify(vma, address, page_table); 2156 page_add_new_anon_rmap(new_page, vma, address); 2157 mem_cgroup_commit_charge(new_page, memcg, false); 2158 lru_cache_add_active_or_unevictable(new_page, vma); 2159 /* 2160 * We call the notify macro here because, when using secondary 2161 * mmu page tables (such as kvm shadow page tables), we want the 2162 * new page to be mapped directly into the secondary page table. 2163 */ 2164 set_pte_at_notify(mm, address, page_table, entry); 2165 update_mmu_cache(vma, address, page_table); 2166 if (old_page) { 2167 /* 2168 * Only after switching the pte to the new page may 2169 * we remove the mapcount here. Otherwise another 2170 * process may come and find the rmap count decremented 2171 * before the pte is switched to the new page, and 2172 * "reuse" the old page writing into it while our pte 2173 * here still points into it and can be read by other 2174 * threads. 2175 * 2176 * The critical issue is to order this 2177 * page_remove_rmap with the ptp_clear_flush above. 2178 * Those stores are ordered by (if nothing else,) 2179 * the barrier present in the atomic_add_negative 2180 * in page_remove_rmap. 2181 * 2182 * Then the TLB flush in ptep_clear_flush ensures that 2183 * no process can access the old page before the 2184 * decremented mapcount is visible. And the old page 2185 * cannot be reused until after the decremented 2186 * mapcount is visible. So transitively, TLBs to 2187 * old page will be flushed before it can be reused. 2188 */ 2189 page_remove_rmap(old_page); 2190 } 2191 2192 /* Free the old page.. */ 2193 new_page = old_page; 2194 page_copied = 1; 2195 } else { 2196 mem_cgroup_cancel_charge(new_page, memcg); 2197 } 2198 2199 if (new_page) 2200 page_cache_release(new_page); 2201 2202 pte_unmap_unlock(page_table, ptl); 2203 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2204 if (old_page) { 2205 /* 2206 * Don't let another task, with possibly unlocked vma, 2207 * keep the mlocked page. 2208 */ 2209 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2210 lock_page(old_page); /* LRU manipulation */ 2211 munlock_vma_page(old_page); 2212 unlock_page(old_page); 2213 } 2214 page_cache_release(old_page); 2215 } 2216 return page_copied ? VM_FAULT_WRITE : 0; 2217oom_free_new: 2218 page_cache_release(new_page); 2219oom: 2220 if (old_page) 2221 page_cache_release(old_page); 2222 return VM_FAULT_OOM; 2223} 2224 2225/* 2226 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2227 * mapping 2228 */ 2229static int wp_pfn_shared(struct mm_struct *mm, 2230 struct vm_area_struct *vma, unsigned long address, 2231 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte, 2232 pmd_t *pmd) 2233{ 2234 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2235 struct vm_fault vmf = { 2236 .page = NULL, 2237 .pgoff = linear_page_index(vma, address), 2238 .virtual_address = (void __user *)(address & PAGE_MASK), 2239 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE, 2240 }; 2241 int ret; 2242 2243 pte_unmap_unlock(page_table, ptl); 2244 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf); 2245 if (ret & VM_FAULT_ERROR) 2246 return ret; 2247 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2248 /* 2249 * We might have raced with another page fault while we 2250 * released the pte_offset_map_lock. 2251 */ 2252 if (!pte_same(*page_table, orig_pte)) { 2253 pte_unmap_unlock(page_table, ptl); 2254 return 0; 2255 } 2256 } 2257 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte, 2258 NULL, 0, 0); 2259} 2260 2261static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma, 2262 unsigned long address, pte_t *page_table, 2263 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte, 2264 struct page *old_page) 2265 __releases(ptl) 2266{ 2267 int page_mkwrite = 0; 2268 2269 page_cache_get(old_page); 2270 2271 /* 2272 * Only catch write-faults on shared writable pages, 2273 * read-only shared pages can get COWed by 2274 * get_user_pages(.write=1, .force=1). 2275 */ 2276 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2277 int tmp; 2278 2279 pte_unmap_unlock(page_table, ptl); 2280 tmp = do_page_mkwrite(vma, old_page, address); 2281 if (unlikely(!tmp || (tmp & 2282 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2283 page_cache_release(old_page); 2284 return tmp; 2285 } 2286 /* 2287 * Since we dropped the lock we need to revalidate 2288 * the PTE as someone else may have changed it. If 2289 * they did, we just return, as we can count on the 2290 * MMU to tell us if they didn't also make it writable. 2291 */ 2292 page_table = pte_offset_map_lock(mm, pmd, address, 2293 &ptl); 2294 if (!pte_same(*page_table, orig_pte)) { 2295 unlock_page(old_page); 2296 pte_unmap_unlock(page_table, ptl); 2297 page_cache_release(old_page); 2298 return 0; 2299 } 2300 page_mkwrite = 1; 2301 } 2302 2303 return wp_page_reuse(mm, vma, address, page_table, ptl, 2304 orig_pte, old_page, page_mkwrite, 1); 2305} 2306 2307/* 2308 * This routine handles present pages, when users try to write 2309 * to a shared page. It is done by copying the page to a new address 2310 * and decrementing the shared-page counter for the old page. 2311 * 2312 * Note that this routine assumes that the protection checks have been 2313 * done by the caller (the low-level page fault routine in most cases). 2314 * Thus we can safely just mark it writable once we've done any necessary 2315 * COW. 2316 * 2317 * We also mark the page dirty at this point even though the page will 2318 * change only once the write actually happens. This avoids a few races, 2319 * and potentially makes it more efficient. 2320 * 2321 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2322 * but allow concurrent faults), with pte both mapped and locked. 2323 * We return with mmap_sem still held, but pte unmapped and unlocked. 2324 */ 2325static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2326 unsigned long address, pte_t *page_table, pmd_t *pmd, 2327 spinlock_t *ptl, pte_t orig_pte) 2328 __releases(ptl) 2329{ 2330 struct page *old_page; 2331 2332 old_page = vm_normal_page(vma, address, orig_pte); 2333 if (!old_page) { 2334 /* 2335 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2336 * VM_PFNMAP VMA. 2337 * 2338 * We should not cow pages in a shared writeable mapping. 2339 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2340 */ 2341 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2342 (VM_WRITE|VM_SHARED)) 2343 return wp_pfn_shared(mm, vma, address, page_table, ptl, 2344 orig_pte, pmd); 2345 2346 pte_unmap_unlock(page_table, ptl); 2347 return wp_page_copy(mm, vma, address, page_table, pmd, 2348 orig_pte, old_page); 2349 } 2350 2351 /* 2352 * Take out anonymous pages first, anonymous shared vmas are 2353 * not dirty accountable. 2354 */ 2355 if (PageAnon(old_page) && !PageKsm(old_page)) { 2356 if (!trylock_page(old_page)) { 2357 page_cache_get(old_page); 2358 pte_unmap_unlock(page_table, ptl); 2359 lock_page(old_page); 2360 page_table = pte_offset_map_lock(mm, pmd, address, 2361 &ptl); 2362 if (!pte_same(*page_table, orig_pte)) { 2363 unlock_page(old_page); 2364 pte_unmap_unlock(page_table, ptl); 2365 page_cache_release(old_page); 2366 return 0; 2367 } 2368 page_cache_release(old_page); 2369 } 2370 if (reuse_swap_page(old_page)) { 2371 /* 2372 * The page is all ours. Move it to our anon_vma so 2373 * the rmap code will not search our parent or siblings. 2374 * Protected against the rmap code by the page lock. 2375 */ 2376 page_move_anon_rmap(old_page, vma, address); 2377 unlock_page(old_page); 2378 return wp_page_reuse(mm, vma, address, page_table, ptl, 2379 orig_pte, old_page, 0, 0); 2380 } 2381 unlock_page(old_page); 2382 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2383 (VM_WRITE|VM_SHARED))) { 2384 return wp_page_shared(mm, vma, address, page_table, pmd, 2385 ptl, orig_pte, old_page); 2386 } 2387 2388 /* 2389 * Ok, we need to copy. Oh, well.. 2390 */ 2391 page_cache_get(old_page); 2392 2393 pte_unmap_unlock(page_table, ptl); 2394 return wp_page_copy(mm, vma, address, page_table, pmd, 2395 orig_pte, old_page); 2396} 2397 2398static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2399 unsigned long start_addr, unsigned long end_addr, 2400 struct zap_details *details) 2401{ 2402 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2403} 2404 2405static inline void unmap_mapping_range_tree(struct rb_root *root, 2406 struct zap_details *details) 2407{ 2408 struct vm_area_struct *vma; 2409 pgoff_t vba, vea, zba, zea; 2410 2411 vma_interval_tree_foreach(vma, root, 2412 details->first_index, details->last_index) { 2413 2414 vba = vma->vm_pgoff; 2415 vea = vba + vma_pages(vma) - 1; 2416 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2417 zba = details->first_index; 2418 if (zba < vba) 2419 zba = vba; 2420 zea = details->last_index; 2421 if (zea > vea) 2422 zea = vea; 2423 2424 unmap_mapping_range_vma(vma, 2425 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2426 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2427 details); 2428 } 2429} 2430 2431/** 2432 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2433 * address_space corresponding to the specified page range in the underlying 2434 * file. 2435 * 2436 * @mapping: the address space containing mmaps to be unmapped. 2437 * @holebegin: byte in first page to unmap, relative to the start of 2438 * the underlying file. This will be rounded down to a PAGE_SIZE 2439 * boundary. Note that this is different from truncate_pagecache(), which 2440 * must keep the partial page. In contrast, we must get rid of 2441 * partial pages. 2442 * @holelen: size of prospective hole in bytes. This will be rounded 2443 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2444 * end of the file. 2445 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2446 * but 0 when invalidating pagecache, don't throw away private data. 2447 */ 2448void unmap_mapping_range(struct address_space *mapping, 2449 loff_t const holebegin, loff_t const holelen, int even_cows) 2450{ 2451 struct zap_details details; 2452 pgoff_t hba = holebegin >> PAGE_SHIFT; 2453 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2454 2455 /* Check for overflow. */ 2456 if (sizeof(holelen) > sizeof(hlen)) { 2457 long long holeend = 2458 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2459 if (holeend & ~(long long)ULONG_MAX) 2460 hlen = ULONG_MAX - hba + 1; 2461 } 2462 2463 details.check_mapping = even_cows? NULL: mapping; 2464 details.first_index = hba; 2465 details.last_index = hba + hlen - 1; 2466 if (details.last_index < details.first_index) 2467 details.last_index = ULONG_MAX; 2468 2469 2470 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */ 2471 i_mmap_lock_write(mapping); 2472 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2473 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2474 i_mmap_unlock_write(mapping); 2475} 2476EXPORT_SYMBOL(unmap_mapping_range); 2477 2478/* 2479 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2480 * but allow concurrent faults), and pte mapped but not yet locked. 2481 * We return with pte unmapped and unlocked. 2482 * 2483 * We return with the mmap_sem locked or unlocked in the same cases 2484 * as does filemap_fault(). 2485 */ 2486static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2487 unsigned long address, pte_t *page_table, pmd_t *pmd, 2488 unsigned int flags, pte_t orig_pte) 2489{ 2490 spinlock_t *ptl; 2491 struct page *page, *swapcache; 2492 struct mem_cgroup *memcg; 2493 swp_entry_t entry; 2494 pte_t pte; 2495 int locked; 2496 int exclusive = 0; 2497 int ret = 0; 2498 2499 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2500 goto out; 2501 2502 entry = pte_to_swp_entry(orig_pte); 2503 if (unlikely(non_swap_entry(entry))) { 2504 if (is_migration_entry(entry)) { 2505 migration_entry_wait(mm, pmd, address); 2506 } else if (is_hwpoison_entry(entry)) { 2507 ret = VM_FAULT_HWPOISON; 2508 } else { 2509 print_bad_pte(vma, address, orig_pte, NULL); 2510 ret = VM_FAULT_SIGBUS; 2511 } 2512 goto out; 2513 } 2514 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2515 page = lookup_swap_cache(entry); 2516 if (!page) { 2517 page = swapin_readahead(entry, 2518 GFP_HIGHUSER_MOVABLE, vma, address); 2519 if (!page) { 2520 /* 2521 * Back out if somebody else faulted in this pte 2522 * while we released the pte lock. 2523 */ 2524 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2525 if (likely(pte_same(*page_table, orig_pte))) 2526 ret = VM_FAULT_OOM; 2527 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2528 goto unlock; 2529 } 2530 2531 /* Had to read the page from swap area: Major fault */ 2532 ret = VM_FAULT_MAJOR; 2533 count_vm_event(PGMAJFAULT); 2534 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2535 } else if (PageHWPoison(page)) { 2536 /* 2537 * hwpoisoned dirty swapcache pages are kept for killing 2538 * owner processes (which may be unknown at hwpoison time) 2539 */ 2540 ret = VM_FAULT_HWPOISON; 2541 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2542 swapcache = page; 2543 goto out_release; 2544 } 2545 2546 swapcache = page; 2547 locked = lock_page_or_retry(page, mm, flags); 2548 2549 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2550 if (!locked) { 2551 ret |= VM_FAULT_RETRY; 2552 goto out_release; 2553 } 2554 2555 /* 2556 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2557 * release the swapcache from under us. The page pin, and pte_same 2558 * test below, are not enough to exclude that. Even if it is still 2559 * swapcache, we need to check that the page's swap has not changed. 2560 */ 2561 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2562 goto out_page; 2563 2564 page = ksm_might_need_to_copy(page, vma, address); 2565 if (unlikely(!page)) { 2566 ret = VM_FAULT_OOM; 2567 page = swapcache; 2568 goto out_page; 2569 } 2570 2571 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) { 2572 ret = VM_FAULT_OOM; 2573 goto out_page; 2574 } 2575 2576 /* 2577 * Back out if somebody else already faulted in this pte. 2578 */ 2579 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2580 if (unlikely(!pte_same(*page_table, orig_pte))) 2581 goto out_nomap; 2582 2583 if (unlikely(!PageUptodate(page))) { 2584 ret = VM_FAULT_SIGBUS; 2585 goto out_nomap; 2586 } 2587 2588 /* 2589 * The page isn't present yet, go ahead with the fault. 2590 * 2591 * Be careful about the sequence of operations here. 2592 * To get its accounting right, reuse_swap_page() must be called 2593 * while the page is counted on swap but not yet in mapcount i.e. 2594 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2595 * must be called after the swap_free(), or it will never succeed. 2596 */ 2597 2598 inc_mm_counter_fast(mm, MM_ANONPAGES); 2599 dec_mm_counter_fast(mm, MM_SWAPENTS); 2600 pte = mk_pte(page, vma->vm_page_prot); 2601 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2602 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2603 flags &= ~FAULT_FLAG_WRITE; 2604 ret |= VM_FAULT_WRITE; 2605 exclusive = 1; 2606 } 2607 flush_icache_page(vma, page); 2608 if (pte_swp_soft_dirty(orig_pte)) 2609 pte = pte_mksoft_dirty(pte); 2610 set_pte_at(mm, address, page_table, pte); 2611 if (page == swapcache) { 2612 do_page_add_anon_rmap(page, vma, address, exclusive); 2613 mem_cgroup_commit_charge(page, memcg, true); 2614 } else { /* ksm created a completely new copy */ 2615 page_add_new_anon_rmap(page, vma, address); 2616 mem_cgroup_commit_charge(page, memcg, false); 2617 lru_cache_add_active_or_unevictable(page, vma); 2618 } 2619 2620 swap_free(entry); 2621 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2622 try_to_free_swap(page); 2623 unlock_page(page); 2624 if (page != swapcache) { 2625 /* 2626 * Hold the lock to avoid the swap entry to be reused 2627 * until we take the PT lock for the pte_same() check 2628 * (to avoid false positives from pte_same). For 2629 * further safety release the lock after the swap_free 2630 * so that the swap count won't change under a 2631 * parallel locked swapcache. 2632 */ 2633 unlock_page(swapcache); 2634 page_cache_release(swapcache); 2635 } 2636 2637 if (flags & FAULT_FLAG_WRITE) { 2638 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2639 if (ret & VM_FAULT_ERROR) 2640 ret &= VM_FAULT_ERROR; 2641 goto out; 2642 } 2643 2644 /* No need to invalidate - it was non-present before */ 2645 update_mmu_cache(vma, address, page_table); 2646unlock: 2647 pte_unmap_unlock(page_table, ptl); 2648out: 2649 return ret; 2650out_nomap: 2651 mem_cgroup_cancel_charge(page, memcg); 2652 pte_unmap_unlock(page_table, ptl); 2653out_page: 2654 unlock_page(page); 2655out_release: 2656 page_cache_release(page); 2657 if (page != swapcache) { 2658 unlock_page(swapcache); 2659 page_cache_release(swapcache); 2660 } 2661 return ret; 2662} 2663 2664/* 2665 * This is like a special single-page "expand_{down|up}wards()", 2666 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2667 * doesn't hit another vma. 2668 */ 2669static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2670{ 2671 address &= PAGE_MASK; 2672 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2673 struct vm_area_struct *prev = vma->vm_prev; 2674 2675 /* 2676 * Is there a mapping abutting this one below? 2677 * 2678 * That's only ok if it's the same stack mapping 2679 * that has gotten split.. 2680 */ 2681 if (prev && prev->vm_end == address) 2682 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2683 2684 return expand_downwards(vma, address - PAGE_SIZE); 2685 } 2686 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2687 struct vm_area_struct *next = vma->vm_next; 2688 2689 /* As VM_GROWSDOWN but s/below/above/ */ 2690 if (next && next->vm_start == address + PAGE_SIZE) 2691 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2692 2693 return expand_upwards(vma, address + PAGE_SIZE); 2694 } 2695 return 0; 2696} 2697 2698/* 2699 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2700 * but allow concurrent faults), and pte mapped but not yet locked. 2701 * We return with mmap_sem still held, but pte unmapped and unlocked. 2702 */ 2703static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2704 unsigned long address, pte_t *page_table, pmd_t *pmd, 2705 unsigned int flags) 2706{ 2707 struct mem_cgroup *memcg; 2708 struct page *page; 2709 spinlock_t *ptl; 2710 pte_t entry; 2711 2712 pte_unmap(page_table); 2713 2714 /* File mapping without ->vm_ops ? */ 2715 if (vma->vm_flags & VM_SHARED) 2716 return VM_FAULT_SIGBUS; 2717 2718 /* Check if we need to add a guard page to the stack */ 2719 if (check_stack_guard_page(vma, address) < 0) 2720 return VM_FAULT_SIGSEGV; 2721 2722 /* Use the zero-page for reads */ 2723 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) { 2724 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2725 vma->vm_page_prot)); 2726 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2727 if (!pte_none(*page_table)) 2728 goto unlock; 2729 /* Deliver the page fault to userland, check inside PT lock */ 2730 if (userfaultfd_missing(vma)) { 2731 pte_unmap_unlock(page_table, ptl); 2732 return handle_userfault(vma, address, flags, 2733 VM_UFFD_MISSING); 2734 } 2735 goto setpte; 2736 } 2737 2738 /* Allocate our own private page. */ 2739 if (unlikely(anon_vma_prepare(vma))) 2740 goto oom; 2741 page = alloc_zeroed_user_highpage_movable(vma, address); 2742 if (!page) 2743 goto oom; 2744 2745 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) 2746 goto oom_free_page; 2747 2748 /* 2749 * The memory barrier inside __SetPageUptodate makes sure that 2750 * preceeding stores to the page contents become visible before 2751 * the set_pte_at() write. 2752 */ 2753 __SetPageUptodate(page); 2754 2755 entry = mk_pte(page, vma->vm_page_prot); 2756 if (vma->vm_flags & VM_WRITE) 2757 entry = pte_mkwrite(pte_mkdirty(entry)); 2758 2759 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2760 if (!pte_none(*page_table)) 2761 goto release; 2762 2763 /* Deliver the page fault to userland, check inside PT lock */ 2764 if (userfaultfd_missing(vma)) { 2765 pte_unmap_unlock(page_table, ptl); 2766 mem_cgroup_cancel_charge(page, memcg); 2767 page_cache_release(page); 2768 return handle_userfault(vma, address, flags, 2769 VM_UFFD_MISSING); 2770 } 2771 2772 inc_mm_counter_fast(mm, MM_ANONPAGES); 2773 page_add_new_anon_rmap(page, vma, address); 2774 mem_cgroup_commit_charge(page, memcg, false); 2775 lru_cache_add_active_or_unevictable(page, vma); 2776setpte: 2777 set_pte_at(mm, address, page_table, entry); 2778 2779 /* No need to invalidate - it was non-present before */ 2780 update_mmu_cache(vma, address, page_table); 2781unlock: 2782 pte_unmap_unlock(page_table, ptl); 2783 return 0; 2784release: 2785 mem_cgroup_cancel_charge(page, memcg); 2786 page_cache_release(page); 2787 goto unlock; 2788oom_free_page: 2789 page_cache_release(page); 2790oom: 2791 return VM_FAULT_OOM; 2792} 2793 2794/* 2795 * The mmap_sem must have been held on entry, and may have been 2796 * released depending on flags and vma->vm_ops->fault() return value. 2797 * See filemap_fault() and __lock_page_retry(). 2798 */ 2799static int __do_fault(struct vm_area_struct *vma, unsigned long address, 2800 pgoff_t pgoff, unsigned int flags, 2801 struct page *cow_page, struct page **page) 2802{ 2803 struct vm_fault vmf; 2804 int ret; 2805 2806 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2807 vmf.pgoff = pgoff; 2808 vmf.flags = flags; 2809 vmf.page = NULL; 2810 vmf.cow_page = cow_page; 2811 2812 ret = vma->vm_ops->fault(vma, &vmf); 2813 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2814 return ret; 2815 if (!vmf.page) 2816 goto out; 2817 2818 if (unlikely(PageHWPoison(vmf.page))) { 2819 if (ret & VM_FAULT_LOCKED) 2820 unlock_page(vmf.page); 2821 page_cache_release(vmf.page); 2822 return VM_FAULT_HWPOISON; 2823 } 2824 2825 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2826 lock_page(vmf.page); 2827 else 2828 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page); 2829 2830 out: 2831 *page = vmf.page; 2832 return ret; 2833} 2834 2835/** 2836 * do_set_pte - setup new PTE entry for given page and add reverse page mapping. 2837 * 2838 * @vma: virtual memory area 2839 * @address: user virtual address 2840 * @page: page to map 2841 * @pte: pointer to target page table entry 2842 * @write: true, if new entry is writable 2843 * @anon: true, if it's anonymous page 2844 * 2845 * Caller must hold page table lock relevant for @pte. 2846 * 2847 * Target users are page handler itself and implementations of 2848 * vm_ops->map_pages. 2849 */ 2850void do_set_pte(struct vm_area_struct *vma, unsigned long address, 2851 struct page *page, pte_t *pte, bool write, bool anon) 2852{ 2853 pte_t entry; 2854 2855 flush_icache_page(vma, page); 2856 entry = mk_pte(page, vma->vm_page_prot); 2857 if (write) 2858 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2859 if (anon) { 2860 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2861 page_add_new_anon_rmap(page, vma, address); 2862 } else { 2863 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES); 2864 page_add_file_rmap(page); 2865 } 2866 set_pte_at(vma->vm_mm, address, pte, entry); 2867 2868 /* no need to invalidate: a not-present page won't be cached */ 2869 update_mmu_cache(vma, address, pte); 2870} 2871 2872static unsigned long fault_around_bytes __read_mostly = 2873 rounddown_pow_of_two(65536); 2874 2875#ifdef CONFIG_DEBUG_FS 2876static int fault_around_bytes_get(void *data, u64 *val) 2877{ 2878 *val = fault_around_bytes; 2879 return 0; 2880} 2881 2882/* 2883 * fault_around_pages() and fault_around_mask() expects fault_around_bytes 2884 * rounded down to nearest page order. It's what do_fault_around() expects to 2885 * see. 2886 */ 2887static int fault_around_bytes_set(void *data, u64 val) 2888{ 2889 if (val / PAGE_SIZE > PTRS_PER_PTE) 2890 return -EINVAL; 2891 if (val > PAGE_SIZE) 2892 fault_around_bytes = rounddown_pow_of_two(val); 2893 else 2894 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 2895 return 0; 2896} 2897DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, 2898 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 2899 2900static int __init fault_around_debugfs(void) 2901{ 2902 void *ret; 2903 2904 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, 2905 &fault_around_bytes_fops); 2906 if (!ret) 2907 pr_warn("Failed to create fault_around_bytes in debugfs"); 2908 return 0; 2909} 2910late_initcall(fault_around_debugfs); 2911#endif 2912 2913/* 2914 * do_fault_around() tries to map few pages around the fault address. The hope 2915 * is that the pages will be needed soon and this will lower the number of 2916 * faults to handle. 2917 * 2918 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 2919 * not ready to be mapped: not up-to-date, locked, etc. 2920 * 2921 * This function is called with the page table lock taken. In the split ptlock 2922 * case the page table lock only protects only those entries which belong to 2923 * the page table corresponding to the fault address. 2924 * 2925 * This function doesn't cross the VMA boundaries, in order to call map_pages() 2926 * only once. 2927 * 2928 * fault_around_pages() defines how many pages we'll try to map. 2929 * do_fault_around() expects it to return a power of two less than or equal to 2930 * PTRS_PER_PTE. 2931 * 2932 * The virtual address of the area that we map is naturally aligned to the 2933 * fault_around_pages() value (and therefore to page order). This way it's 2934 * easier to guarantee that we don't cross page table boundaries. 2935 */ 2936static void do_fault_around(struct vm_area_struct *vma, unsigned long address, 2937 pte_t *pte, pgoff_t pgoff, unsigned int flags) 2938{ 2939 unsigned long start_addr, nr_pages, mask; 2940 pgoff_t max_pgoff; 2941 struct vm_fault vmf; 2942 int off; 2943 2944 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 2945 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 2946 2947 start_addr = max(address & mask, vma->vm_start); 2948 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 2949 pte -= off; 2950 pgoff -= off; 2951 2952 /* 2953 * max_pgoff is either end of page table or end of vma 2954 * or fault_around_pages() from pgoff, depending what is nearest. 2955 */ 2956 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 2957 PTRS_PER_PTE - 1; 2958 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1, 2959 pgoff + nr_pages - 1); 2960 2961 /* Check if it makes any sense to call ->map_pages */ 2962 while (!pte_none(*pte)) { 2963 if (++pgoff > max_pgoff) 2964 return; 2965 start_addr += PAGE_SIZE; 2966 if (start_addr >= vma->vm_end) 2967 return; 2968 pte++; 2969 } 2970 2971 vmf.virtual_address = (void __user *) start_addr; 2972 vmf.pte = pte; 2973 vmf.pgoff = pgoff; 2974 vmf.max_pgoff = max_pgoff; 2975 vmf.flags = flags; 2976 vma->vm_ops->map_pages(vma, &vmf); 2977} 2978 2979static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2980 unsigned long address, pmd_t *pmd, 2981 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2982{ 2983 struct page *fault_page; 2984 spinlock_t *ptl; 2985 pte_t *pte; 2986 int ret = 0; 2987 2988 /* 2989 * Let's call ->map_pages() first and use ->fault() as fallback 2990 * if page by the offset is not ready to be mapped (cold cache or 2991 * something). 2992 */ 2993 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 2994 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2995 do_fault_around(vma, address, pte, pgoff, flags); 2996 if (!pte_same(*pte, orig_pte)) 2997 goto unlock_out; 2998 pte_unmap_unlock(pte, ptl); 2999 } 3000 3001 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page); 3002 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3003 return ret; 3004 3005 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3006 if (unlikely(!pte_same(*pte, orig_pte))) { 3007 pte_unmap_unlock(pte, ptl); 3008 unlock_page(fault_page); 3009 page_cache_release(fault_page); 3010 return ret; 3011 } 3012 do_set_pte(vma, address, fault_page, pte, false, false); 3013 unlock_page(fault_page); 3014unlock_out: 3015 pte_unmap_unlock(pte, ptl); 3016 return ret; 3017} 3018 3019static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3020 unsigned long address, pmd_t *pmd, 3021 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3022{ 3023 struct page *fault_page, *new_page; 3024 struct mem_cgroup *memcg; 3025 spinlock_t *ptl; 3026 pte_t *pte; 3027 int ret; 3028 3029 if (unlikely(anon_vma_prepare(vma))) 3030 return VM_FAULT_OOM; 3031 3032 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 3033 if (!new_page) 3034 return VM_FAULT_OOM; 3035 3036 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) { 3037 page_cache_release(new_page); 3038 return VM_FAULT_OOM; 3039 } 3040 3041 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page); 3042 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3043 goto uncharge_out; 3044 3045 if (fault_page) 3046 copy_user_highpage(new_page, fault_page, address, vma); 3047 __SetPageUptodate(new_page); 3048 3049 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3050 if (unlikely(!pte_same(*pte, orig_pte))) { 3051 pte_unmap_unlock(pte, ptl); 3052 if (fault_page) { 3053 unlock_page(fault_page); 3054 page_cache_release(fault_page); 3055 } else { 3056 /* 3057 * The fault handler has no page to lock, so it holds 3058 * i_mmap_lock for read to protect against truncate. 3059 */ 3060 i_mmap_unlock_read(vma->vm_file->f_mapping); 3061 } 3062 goto uncharge_out; 3063 } 3064 do_set_pte(vma, address, new_page, pte, true, true); 3065 mem_cgroup_commit_charge(new_page, memcg, false); 3066 lru_cache_add_active_or_unevictable(new_page, vma); 3067 pte_unmap_unlock(pte, ptl); 3068 if (fault_page) { 3069 unlock_page(fault_page); 3070 page_cache_release(fault_page); 3071 } else { 3072 /* 3073 * The fault handler has no page to lock, so it holds 3074 * i_mmap_lock for read to protect against truncate. 3075 */ 3076 i_mmap_unlock_read(vma->vm_file->f_mapping); 3077 } 3078 return ret; 3079uncharge_out: 3080 mem_cgroup_cancel_charge(new_page, memcg); 3081 page_cache_release(new_page); 3082 return ret; 3083} 3084 3085static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3086 unsigned long address, pmd_t *pmd, 3087 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3088{ 3089 struct page *fault_page; 3090 struct address_space *mapping; 3091 spinlock_t *ptl; 3092 pte_t *pte; 3093 int dirtied = 0; 3094 int ret, tmp; 3095 3096 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page); 3097 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3098 return ret; 3099 3100 /* 3101 * Check if the backing address space wants to know that the page is 3102 * about to become writable 3103 */ 3104 if (vma->vm_ops->page_mkwrite) { 3105 unlock_page(fault_page); 3106 tmp = do_page_mkwrite(vma, fault_page, address); 3107 if (unlikely(!tmp || 3108 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3109 page_cache_release(fault_page); 3110 return tmp; 3111 } 3112 } 3113 3114 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3115 if (unlikely(!pte_same(*pte, orig_pte))) { 3116 pte_unmap_unlock(pte, ptl); 3117 unlock_page(fault_page); 3118 page_cache_release(fault_page); 3119 return ret; 3120 } 3121 do_set_pte(vma, address, fault_page, pte, true, false); 3122 pte_unmap_unlock(pte, ptl); 3123 3124 if (set_page_dirty(fault_page)) 3125 dirtied = 1; 3126 /* 3127 * Take a local copy of the address_space - page.mapping may be zeroed 3128 * by truncate after unlock_page(). The address_space itself remains 3129 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 3130 * release semantics to prevent the compiler from undoing this copying. 3131 */ 3132 mapping = fault_page->mapping; 3133 unlock_page(fault_page); 3134 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) { 3135 /* 3136 * Some device drivers do not set page.mapping but still 3137 * dirty their pages 3138 */ 3139 balance_dirty_pages_ratelimited(mapping); 3140 } 3141 3142 if (!vma->vm_ops->page_mkwrite) 3143 file_update_time(vma->vm_file); 3144 3145 return ret; 3146} 3147 3148/* 3149 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3150 * but allow concurrent faults). 3151 * The mmap_sem may have been released depending on flags and our 3152 * return value. See filemap_fault() and __lock_page_or_retry(). 3153 */ 3154static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3155 unsigned long address, pte_t *page_table, pmd_t *pmd, 3156 unsigned int flags, pte_t orig_pte) 3157{ 3158 pgoff_t pgoff = (((address & PAGE_MASK) 3159 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3160 3161 pte_unmap(page_table); 3162 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 3163 if (!vma->vm_ops->fault) 3164 return VM_FAULT_SIGBUS; 3165 if (!(flags & FAULT_FLAG_WRITE)) 3166 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3167 orig_pte); 3168 if (!(vma->vm_flags & VM_SHARED)) 3169 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3170 orig_pte); 3171 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3172} 3173 3174static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3175 unsigned long addr, int page_nid, 3176 int *flags) 3177{ 3178 get_page(page); 3179 3180 count_vm_numa_event(NUMA_HINT_FAULTS); 3181 if (page_nid == numa_node_id()) { 3182 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3183 *flags |= TNF_FAULT_LOCAL; 3184 } 3185 3186 return mpol_misplaced(page, vma, addr); 3187} 3188 3189static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3190 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3191{ 3192 struct page *page = NULL; 3193 spinlock_t *ptl; 3194 int page_nid = -1; 3195 int last_cpupid; 3196 int target_nid; 3197 bool migrated = false; 3198 bool was_writable = pte_write(pte); 3199 int flags = 0; 3200 3201 /* A PROT_NONE fault should not end up here */ 3202 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))); 3203 3204 /* 3205 * The "pte" at this point cannot be used safely without 3206 * validation through pte_unmap_same(). It's of NUMA type but 3207 * the pfn may be screwed if the read is non atomic. 3208 * 3209 * We can safely just do a "set_pte_at()", because the old 3210 * page table entry is not accessible, so there would be no 3211 * concurrent hardware modifications to the PTE. 3212 */ 3213 ptl = pte_lockptr(mm, pmd); 3214 spin_lock(ptl); 3215 if (unlikely(!pte_same(*ptep, pte))) { 3216 pte_unmap_unlock(ptep, ptl); 3217 goto out; 3218 } 3219 3220 /* Make it present again */ 3221 pte = pte_modify(pte, vma->vm_page_prot); 3222 pte = pte_mkyoung(pte); 3223 if (was_writable) 3224 pte = pte_mkwrite(pte); 3225 set_pte_at(mm, addr, ptep, pte); 3226 update_mmu_cache(vma, addr, ptep); 3227 3228 page = vm_normal_page(vma, addr, pte); 3229 if (!page) { 3230 pte_unmap_unlock(ptep, ptl); 3231 return 0; 3232 } 3233 3234 /* 3235 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3236 * much anyway since they can be in shared cache state. This misses 3237 * the case where a mapping is writable but the process never writes 3238 * to it but pte_write gets cleared during protection updates and 3239 * pte_dirty has unpredictable behaviour between PTE scan updates, 3240 * background writeback, dirty balancing and application behaviour. 3241 */ 3242 if (!(vma->vm_flags & VM_WRITE)) 3243 flags |= TNF_NO_GROUP; 3244 3245 /* 3246 * Flag if the page is shared between multiple address spaces. This 3247 * is later used when determining whether to group tasks together 3248 */ 3249 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3250 flags |= TNF_SHARED; 3251 3252 last_cpupid = page_cpupid_last(page); 3253 page_nid = page_to_nid(page); 3254 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags); 3255 pte_unmap_unlock(ptep, ptl); 3256 if (target_nid == -1) { 3257 put_page(page); 3258 goto out; 3259 } 3260 3261 /* Migrate to the requested node */ 3262 migrated = migrate_misplaced_page(page, vma, target_nid); 3263 if (migrated) { 3264 page_nid = target_nid; 3265 flags |= TNF_MIGRATED; 3266 } else 3267 flags |= TNF_MIGRATE_FAIL; 3268 3269out: 3270 if (page_nid != -1) 3271 task_numa_fault(last_cpupid, page_nid, 1, flags); 3272 return 0; 3273} 3274 3275static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 3276 unsigned long address, pmd_t *pmd, unsigned int flags) 3277{ 3278 if (vma_is_anonymous(vma)) 3279 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags); 3280 if (vma->vm_ops->pmd_fault) 3281 return vma->vm_ops->pmd_fault(vma, address, pmd, flags); 3282 return VM_FAULT_FALLBACK; 3283} 3284 3285static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 3286 unsigned long address, pmd_t *pmd, pmd_t orig_pmd, 3287 unsigned int flags) 3288{ 3289 if (vma_is_anonymous(vma)) 3290 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd); 3291 if (vma->vm_ops->pmd_fault) 3292 return vma->vm_ops->pmd_fault(vma, address, pmd, flags); 3293 return VM_FAULT_FALLBACK; 3294} 3295 3296/* 3297 * These routines also need to handle stuff like marking pages dirty 3298 * and/or accessed for architectures that don't do it in hardware (most 3299 * RISC architectures). The early dirtying is also good on the i386. 3300 * 3301 * There is also a hook called "update_mmu_cache()" that architectures 3302 * with external mmu caches can use to update those (ie the Sparc or 3303 * PowerPC hashed page tables that act as extended TLBs). 3304 * 3305 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3306 * but allow concurrent faults), and pte mapped but not yet locked. 3307 * We return with pte unmapped and unlocked. 3308 * 3309 * The mmap_sem may have been released depending on flags and our 3310 * return value. See filemap_fault() and __lock_page_or_retry(). 3311 */ 3312static int handle_pte_fault(struct mm_struct *mm, 3313 struct vm_area_struct *vma, unsigned long address, 3314 pte_t *pte, pmd_t *pmd, unsigned int flags) 3315{ 3316 pte_t entry; 3317 spinlock_t *ptl; 3318 3319 /* 3320 * some architectures can have larger ptes than wordsize, 3321 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y, 3322 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses. 3323 * The code below just needs a consistent view for the ifs and 3324 * we later double check anyway with the ptl lock held. So here 3325 * a barrier will do. 3326 */ 3327 entry = *pte; 3328 barrier(); 3329 if (!pte_present(entry)) { 3330 if (pte_none(entry)) { 3331 if (vma_is_anonymous(vma)) 3332 return do_anonymous_page(mm, vma, address, 3333 pte, pmd, flags); 3334 else 3335 return do_fault(mm, vma, address, pte, pmd, 3336 flags, entry); 3337 } 3338 return do_swap_page(mm, vma, address, 3339 pte, pmd, flags, entry); 3340 } 3341 3342 if (pte_protnone(entry)) 3343 return do_numa_page(mm, vma, address, entry, pte, pmd); 3344 3345 ptl = pte_lockptr(mm, pmd); 3346 spin_lock(ptl); 3347 if (unlikely(!pte_same(*pte, entry))) 3348 goto unlock; 3349 if (flags & FAULT_FLAG_WRITE) { 3350 if (!pte_write(entry)) 3351 return do_wp_page(mm, vma, address, 3352 pte, pmd, ptl, entry); 3353 entry = pte_mkdirty(entry); 3354 } 3355 entry = pte_mkyoung(entry); 3356 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3357 update_mmu_cache(vma, address, pte); 3358 } else { 3359 /* 3360 * This is needed only for protection faults but the arch code 3361 * is not yet telling us if this is a protection fault or not. 3362 * This still avoids useless tlb flushes for .text page faults 3363 * with threads. 3364 */ 3365 if (flags & FAULT_FLAG_WRITE) 3366 flush_tlb_fix_spurious_fault(vma, address); 3367 } 3368unlock: 3369 pte_unmap_unlock(pte, ptl); 3370 return 0; 3371} 3372 3373/* 3374 * By the time we get here, we already hold the mm semaphore 3375 * 3376 * The mmap_sem may have been released depending on flags and our 3377 * return value. See filemap_fault() and __lock_page_or_retry(). 3378 */ 3379static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3380 unsigned long address, unsigned int flags) 3381{ 3382 pgd_t *pgd; 3383 pud_t *pud; 3384 pmd_t *pmd; 3385 pte_t *pte; 3386 3387 if (unlikely(is_vm_hugetlb_page(vma))) 3388 return hugetlb_fault(mm, vma, address, flags); 3389 3390 pgd = pgd_offset(mm, address); 3391 pud = pud_alloc(mm, pgd, address); 3392 if (!pud) 3393 return VM_FAULT_OOM; 3394 pmd = pmd_alloc(mm, pud, address); 3395 if (!pmd) 3396 return VM_FAULT_OOM; 3397 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3398 int ret = create_huge_pmd(mm, vma, address, pmd, flags); 3399 if (!(ret & VM_FAULT_FALLBACK)) 3400 return ret; 3401 } else { 3402 pmd_t orig_pmd = *pmd; 3403 int ret; 3404 3405 barrier(); 3406 if (pmd_trans_huge(orig_pmd)) { 3407 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3408 3409 /* 3410 * If the pmd is splitting, return and retry the 3411 * the fault. Alternative: wait until the split 3412 * is done, and goto retry. 3413 */ 3414 if (pmd_trans_splitting(orig_pmd)) 3415 return 0; 3416 3417 if (pmd_protnone(orig_pmd)) 3418 return do_huge_pmd_numa_page(mm, vma, address, 3419 orig_pmd, pmd); 3420 3421 if (dirty && !pmd_write(orig_pmd)) { 3422 ret = wp_huge_pmd(mm, vma, address, pmd, 3423 orig_pmd, flags); 3424 if (!(ret & VM_FAULT_FALLBACK)) 3425 return ret; 3426 } else { 3427 huge_pmd_set_accessed(mm, vma, address, pmd, 3428 orig_pmd, dirty); 3429 return 0; 3430 } 3431 } 3432 } 3433 3434 /* 3435 * Use __pte_alloc instead of pte_alloc_map, because we can't 3436 * run pte_offset_map on the pmd, if an huge pmd could 3437 * materialize from under us from a different thread. 3438 */ 3439 if (unlikely(pmd_none(*pmd)) && 3440 unlikely(__pte_alloc(mm, vma, pmd, address))) 3441 return VM_FAULT_OOM; 3442 /* 3443 * If a huge pmd materialized under us just retry later. Use 3444 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd 3445 * didn't become pmd_trans_huge under us and then back to pmd_none, as 3446 * a result of MADV_DONTNEED running immediately after a huge pmd fault 3447 * in a different thread of this mm, in turn leading to a misleading 3448 * pmd_trans_huge() retval. All we have to ensure is that it is a 3449 * regular pmd that we can walk with pte_offset_map() and we can do that 3450 * through an atomic read in C, which is what pmd_trans_unstable() 3451 * provides. 3452 */ 3453 if (unlikely(pmd_trans_unstable(pmd))) 3454 return 0; 3455 /* 3456 * A regular pmd is established and it can't morph into a huge pmd 3457 * from under us anymore at this point because we hold the mmap_sem 3458 * read mode and khugepaged takes it in write mode. So now it's 3459 * safe to run pte_offset_map(). 3460 */ 3461 pte = pte_offset_map(pmd, address); 3462 3463 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3464} 3465 3466/* 3467 * By the time we get here, we already hold the mm semaphore 3468 * 3469 * The mmap_sem may have been released depending on flags and our 3470 * return value. See filemap_fault() and __lock_page_or_retry(). 3471 */ 3472int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3473 unsigned long address, unsigned int flags) 3474{ 3475 int ret; 3476 3477 __set_current_state(TASK_RUNNING); 3478 3479 count_vm_event(PGFAULT); 3480 mem_cgroup_count_vm_event(mm, PGFAULT); 3481 3482 /* do counter updates before entering really critical section. */ 3483 check_sync_rss_stat(current); 3484 3485 /* 3486 * Enable the memcg OOM handling for faults triggered in user 3487 * space. Kernel faults are handled more gracefully. 3488 */ 3489 if (flags & FAULT_FLAG_USER) 3490 mem_cgroup_oom_enable(); 3491 3492 ret = __handle_mm_fault(mm, vma, address, flags); 3493 3494 if (flags & FAULT_FLAG_USER) { 3495 mem_cgroup_oom_disable(); 3496 /* 3497 * The task may have entered a memcg OOM situation but 3498 * if the allocation error was handled gracefully (no 3499 * VM_FAULT_OOM), there is no need to kill anything. 3500 * Just clean up the OOM state peacefully. 3501 */ 3502 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3503 mem_cgroup_oom_synchronize(false); 3504 } 3505 3506 return ret; 3507} 3508EXPORT_SYMBOL_GPL(handle_mm_fault); 3509 3510#ifndef __PAGETABLE_PUD_FOLDED 3511/* 3512 * Allocate page upper directory. 3513 * We've already handled the fast-path in-line. 3514 */ 3515int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3516{ 3517 pud_t *new = pud_alloc_one(mm, address); 3518 if (!new) 3519 return -ENOMEM; 3520 3521 smp_wmb(); /* See comment in __pte_alloc */ 3522 3523 spin_lock(&mm->page_table_lock); 3524 if (pgd_present(*pgd)) /* Another has populated it */ 3525 pud_free(mm, new); 3526 else 3527 pgd_populate(mm, pgd, new); 3528 spin_unlock(&mm->page_table_lock); 3529 return 0; 3530} 3531#endif /* __PAGETABLE_PUD_FOLDED */ 3532 3533#ifndef __PAGETABLE_PMD_FOLDED 3534/* 3535 * Allocate page middle directory. 3536 * We've already handled the fast-path in-line. 3537 */ 3538int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3539{ 3540 pmd_t *new = pmd_alloc_one(mm, address); 3541 if (!new) 3542 return -ENOMEM; 3543 3544 smp_wmb(); /* See comment in __pte_alloc */ 3545 3546 spin_lock(&mm->page_table_lock); 3547#ifndef __ARCH_HAS_4LEVEL_HACK 3548 if (!pud_present(*pud)) { 3549 mm_inc_nr_pmds(mm); 3550 pud_populate(mm, pud, new); 3551 } else /* Another has populated it */ 3552 pmd_free(mm, new); 3553#else 3554 if (!pgd_present(*pud)) { 3555 mm_inc_nr_pmds(mm); 3556 pgd_populate(mm, pud, new); 3557 } else /* Another has populated it */ 3558 pmd_free(mm, new); 3559#endif /* __ARCH_HAS_4LEVEL_HACK */ 3560 spin_unlock(&mm->page_table_lock); 3561 return 0; 3562} 3563#endif /* __PAGETABLE_PMD_FOLDED */ 3564 3565static int __follow_pte(struct mm_struct *mm, unsigned long address, 3566 pte_t **ptepp, spinlock_t **ptlp) 3567{ 3568 pgd_t *pgd; 3569 pud_t *pud; 3570 pmd_t *pmd; 3571 pte_t *ptep; 3572 3573 pgd = pgd_offset(mm, address); 3574 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3575 goto out; 3576 3577 pud = pud_offset(pgd, address); 3578 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3579 goto out; 3580 3581 pmd = pmd_offset(pud, address); 3582 VM_BUG_ON(pmd_trans_huge(*pmd)); 3583 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3584 goto out; 3585 3586 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3587 if (pmd_huge(*pmd)) 3588 goto out; 3589 3590 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3591 if (!ptep) 3592 goto out; 3593 if (!pte_present(*ptep)) 3594 goto unlock; 3595 *ptepp = ptep; 3596 return 0; 3597unlock: 3598 pte_unmap_unlock(ptep, *ptlp); 3599out: 3600 return -EINVAL; 3601} 3602 3603static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3604 pte_t **ptepp, spinlock_t **ptlp) 3605{ 3606 int res; 3607 3608 /* (void) is needed to make gcc happy */ 3609 (void) __cond_lock(*ptlp, 3610 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3611 return res; 3612} 3613 3614/** 3615 * follow_pfn - look up PFN at a user virtual address 3616 * @vma: memory mapping 3617 * @address: user virtual address 3618 * @pfn: location to store found PFN 3619 * 3620 * Only IO mappings and raw PFN mappings are allowed. 3621 * 3622 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3623 */ 3624int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3625 unsigned long *pfn) 3626{ 3627 int ret = -EINVAL; 3628 spinlock_t *ptl; 3629 pte_t *ptep; 3630 3631 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3632 return ret; 3633 3634 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3635 if (ret) 3636 return ret; 3637 *pfn = pte_pfn(*ptep); 3638 pte_unmap_unlock(ptep, ptl); 3639 return 0; 3640} 3641EXPORT_SYMBOL(follow_pfn); 3642 3643#ifdef CONFIG_HAVE_IOREMAP_PROT 3644int follow_phys(struct vm_area_struct *vma, 3645 unsigned long address, unsigned int flags, 3646 unsigned long *prot, resource_size_t *phys) 3647{ 3648 int ret = -EINVAL; 3649 pte_t *ptep, pte; 3650 spinlock_t *ptl; 3651 3652 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3653 goto out; 3654 3655 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3656 goto out; 3657 pte = *ptep; 3658 3659 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3660 goto unlock; 3661 3662 *prot = pgprot_val(pte_pgprot(pte)); 3663 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3664 3665 ret = 0; 3666unlock: 3667 pte_unmap_unlock(ptep, ptl); 3668out: 3669 return ret; 3670} 3671 3672int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3673 void *buf, int len, int write) 3674{ 3675 resource_size_t phys_addr; 3676 unsigned long prot = 0; 3677 void __iomem *maddr; 3678 int offset = addr & (PAGE_SIZE-1); 3679 3680 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3681 return -EINVAL; 3682 3683 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 3684 if (write) 3685 memcpy_toio(maddr + offset, buf, len); 3686 else 3687 memcpy_fromio(buf, maddr + offset, len); 3688 iounmap(maddr); 3689 3690 return len; 3691} 3692EXPORT_SYMBOL_GPL(generic_access_phys); 3693#endif 3694 3695/* 3696 * Access another process' address space as given in mm. If non-NULL, use the 3697 * given task for page fault accounting. 3698 */ 3699static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3700 unsigned long addr, void *buf, int len, int write) 3701{ 3702 struct vm_area_struct *vma; 3703 void *old_buf = buf; 3704 3705 down_read(&mm->mmap_sem); 3706 /* ignore errors, just check how much was successfully transferred */ 3707 while (len) { 3708 int bytes, ret, offset; 3709 void *maddr; 3710 struct page *page = NULL; 3711 3712 ret = get_user_pages(tsk, mm, addr, 1, 3713 write, 1, &page, &vma); 3714 if (ret <= 0) { 3715#ifndef CONFIG_HAVE_IOREMAP_PROT 3716 break; 3717#else 3718 /* 3719 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3720 * we can access using slightly different code. 3721 */ 3722 vma = find_vma(mm, addr); 3723 if (!vma || vma->vm_start > addr) 3724 break; 3725 if (vma->vm_ops && vma->vm_ops->access) 3726 ret = vma->vm_ops->access(vma, addr, buf, 3727 len, write); 3728 if (ret <= 0) 3729 break; 3730 bytes = ret; 3731#endif 3732 } else { 3733 bytes = len; 3734 offset = addr & (PAGE_SIZE-1); 3735 if (bytes > PAGE_SIZE-offset) 3736 bytes = PAGE_SIZE-offset; 3737 3738 maddr = kmap(page); 3739 if (write) { 3740 copy_to_user_page(vma, page, addr, 3741 maddr + offset, buf, bytes); 3742 set_page_dirty_lock(page); 3743 } else { 3744 copy_from_user_page(vma, page, addr, 3745 buf, maddr + offset, bytes); 3746 } 3747 kunmap(page); 3748 page_cache_release(page); 3749 } 3750 len -= bytes; 3751 buf += bytes; 3752 addr += bytes; 3753 } 3754 up_read(&mm->mmap_sem); 3755 3756 return buf - old_buf; 3757} 3758 3759/** 3760 * access_remote_vm - access another process' address space 3761 * @mm: the mm_struct of the target address space 3762 * @addr: start address to access 3763 * @buf: source or destination buffer 3764 * @len: number of bytes to transfer 3765 * @write: whether the access is a write 3766 * 3767 * The caller must hold a reference on @mm. 3768 */ 3769int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3770 void *buf, int len, int write) 3771{ 3772 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3773} 3774 3775/* 3776 * Access another process' address space. 3777 * Source/target buffer must be kernel space, 3778 * Do not walk the page table directly, use get_user_pages 3779 */ 3780int access_process_vm(struct task_struct *tsk, unsigned long addr, 3781 void *buf, int len, int write) 3782{ 3783 struct mm_struct *mm; 3784 int ret; 3785 3786 mm = get_task_mm(tsk); 3787 if (!mm) 3788 return 0; 3789 3790 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3791 mmput(mm); 3792 3793 return ret; 3794} 3795 3796/* 3797 * Print the name of a VMA. 3798 */ 3799void print_vma_addr(char *prefix, unsigned long ip) 3800{ 3801 struct mm_struct *mm = current->mm; 3802 struct vm_area_struct *vma; 3803 3804 /* 3805 * Do not print if we are in atomic 3806 * contexts (in exception stacks, etc.): 3807 */ 3808 if (preempt_count()) 3809 return; 3810 3811 down_read(&mm->mmap_sem); 3812 vma = find_vma(mm, ip); 3813 if (vma && vma->vm_file) { 3814 struct file *f = vma->vm_file; 3815 char *buf = (char *)__get_free_page(GFP_KERNEL); 3816 if (buf) { 3817 char *p; 3818 3819 p = file_path(f, buf, PAGE_SIZE); 3820 if (IS_ERR(p)) 3821 p = "?"; 3822 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 3823 vma->vm_start, 3824 vma->vm_end - vma->vm_start); 3825 free_page((unsigned long)buf); 3826 } 3827 } 3828 up_read(&mm->mmap_sem); 3829} 3830 3831#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 3832void __might_fault(const char *file, int line) 3833{ 3834 /* 3835 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3836 * holding the mmap_sem, this is safe because kernel memory doesn't 3837 * get paged out, therefore we'll never actually fault, and the 3838 * below annotations will generate false positives. 3839 */ 3840 if (segment_eq(get_fs(), KERNEL_DS)) 3841 return; 3842 if (pagefault_disabled()) 3843 return; 3844 __might_sleep(file, line, 0); 3845#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 3846 if (current->mm) 3847 might_lock_read(¤t->mm->mmap_sem); 3848#endif 3849} 3850EXPORT_SYMBOL(__might_fault); 3851#endif 3852 3853#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3854static void clear_gigantic_page(struct page *page, 3855 unsigned long addr, 3856 unsigned int pages_per_huge_page) 3857{ 3858 int i; 3859 struct page *p = page; 3860 3861 might_sleep(); 3862 for (i = 0; i < pages_per_huge_page; 3863 i++, p = mem_map_next(p, page, i)) { 3864 cond_resched(); 3865 clear_user_highpage(p, addr + i * PAGE_SIZE); 3866 } 3867} 3868void clear_huge_page(struct page *page, 3869 unsigned long addr, unsigned int pages_per_huge_page) 3870{ 3871 int i; 3872 3873 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3874 clear_gigantic_page(page, addr, pages_per_huge_page); 3875 return; 3876 } 3877 3878 might_sleep(); 3879 for (i = 0; i < pages_per_huge_page; i++) { 3880 cond_resched(); 3881 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3882 } 3883} 3884 3885static void copy_user_gigantic_page(struct page *dst, struct page *src, 3886 unsigned long addr, 3887 struct vm_area_struct *vma, 3888 unsigned int pages_per_huge_page) 3889{ 3890 int i; 3891 struct page *dst_base = dst; 3892 struct page *src_base = src; 3893 3894 for (i = 0; i < pages_per_huge_page; ) { 3895 cond_resched(); 3896 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3897 3898 i++; 3899 dst = mem_map_next(dst, dst_base, i); 3900 src = mem_map_next(src, src_base, i); 3901 } 3902} 3903 3904void copy_user_huge_page(struct page *dst, struct page *src, 3905 unsigned long addr, struct vm_area_struct *vma, 3906 unsigned int pages_per_huge_page) 3907{ 3908 int i; 3909 3910 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3911 copy_user_gigantic_page(dst, src, addr, vma, 3912 pages_per_huge_page); 3913 return; 3914 } 3915 3916 might_sleep(); 3917 for (i = 0; i < pages_per_huge_page; i++) { 3918 cond_resched(); 3919 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 3920 } 3921} 3922#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3923 3924#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 3925 3926static struct kmem_cache *page_ptl_cachep; 3927 3928void __init ptlock_cache_init(void) 3929{ 3930 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 3931 SLAB_PANIC, NULL); 3932} 3933 3934bool ptlock_alloc(struct page *page) 3935{ 3936 spinlock_t *ptl; 3937 3938 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 3939 if (!ptl) 3940 return false; 3941 page->ptl = ptl; 3942 return true; 3943} 3944 3945void ptlock_free(struct page *page) 3946{ 3947 kmem_cache_free(page_ptl_cachep, page->ptl); 3948} 3949#endif 3950