1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/ksm.h>
49#include <linux/rmap.h>
50#include <linux/export.h>
51#include <linux/delayacct.h>
52#include <linux/init.h>
53#include <linux/writeback.h>
54#include <linux/memcontrol.h>
55#include <linux/mmu_notifier.h>
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
59#include <linux/gfp.h>
60#include <linux/migrate.h>
61#include <linux/string.h>
62#include <linux/dma-debug.h>
63#include <linux/debugfs.h>
64#include <linux/userfaultfd_k.h>
65
66#include <asm/io.h>
67#include <asm/pgalloc.h>
68#include <asm/uaccess.h>
69#include <asm/tlb.h>
70#include <asm/tlbflush.h>
71#include <asm/pgtable.h>
72
73#include "internal.h"
74
75#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
76#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
77#endif
78
79#ifndef CONFIG_NEED_MULTIPLE_NODES
80/* use the per-pgdat data instead for discontigmem - mbligh */
81unsigned long max_mapnr;
82struct page *mem_map;
83
84EXPORT_SYMBOL(max_mapnr);
85EXPORT_SYMBOL(mem_map);
86#endif
87
88/*
89 * A number of key systems in x86 including ioremap() rely on the assumption
90 * that high_memory defines the upper bound on direct map memory, then end
91 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
92 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
93 * and ZONE_HIGHMEM.
94 */
95void * high_memory;
96
97EXPORT_SYMBOL(high_memory);
98
99/*
100 * Randomize the address space (stacks, mmaps, brk, etc.).
101 *
102 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
103 *   as ancient (libc5 based) binaries can segfault. )
104 */
105int randomize_va_space __read_mostly =
106#ifdef CONFIG_COMPAT_BRK
107					1;
108#else
109					2;
110#endif
111
112static int __init disable_randmaps(char *s)
113{
114	randomize_va_space = 0;
115	return 1;
116}
117__setup("norandmaps", disable_randmaps);
118
119unsigned long zero_pfn __read_mostly;
120unsigned long highest_memmap_pfn __read_mostly;
121
122EXPORT_SYMBOL(zero_pfn);
123
124/*
125 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
126 */
127static int __init init_zero_pfn(void)
128{
129	zero_pfn = page_to_pfn(ZERO_PAGE(0));
130	return 0;
131}
132core_initcall(init_zero_pfn);
133
134
135#if defined(SPLIT_RSS_COUNTING)
136
137void sync_mm_rss(struct mm_struct *mm)
138{
139	int i;
140
141	for (i = 0; i < NR_MM_COUNTERS; i++) {
142		if (current->rss_stat.count[i]) {
143			add_mm_counter(mm, i, current->rss_stat.count[i]);
144			current->rss_stat.count[i] = 0;
145		}
146	}
147	current->rss_stat.events = 0;
148}
149
150static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
151{
152	struct task_struct *task = current;
153
154	if (likely(task->mm == mm))
155		task->rss_stat.count[member] += val;
156	else
157		add_mm_counter(mm, member, val);
158}
159#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
160#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
161
162/* sync counter once per 64 page faults */
163#define TASK_RSS_EVENTS_THRESH	(64)
164static void check_sync_rss_stat(struct task_struct *task)
165{
166	if (unlikely(task != current))
167		return;
168	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
169		sync_mm_rss(task->mm);
170}
171#else /* SPLIT_RSS_COUNTING */
172
173#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
174#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
175
176static void check_sync_rss_stat(struct task_struct *task)
177{
178}
179
180#endif /* SPLIT_RSS_COUNTING */
181
182#ifdef HAVE_GENERIC_MMU_GATHER
183
184static bool tlb_next_batch(struct mmu_gather *tlb)
185{
186	struct mmu_gather_batch *batch;
187
188	batch = tlb->active;
189	if (batch->next) {
190		tlb->active = batch->next;
191		return true;
192	}
193
194	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
195		return false;
196
197	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
198	if (!batch)
199		return false;
200
201	tlb->batch_count++;
202	batch->next = NULL;
203	batch->nr   = 0;
204	batch->max  = MAX_GATHER_BATCH;
205
206	tlb->active->next = batch;
207	tlb->active = batch;
208
209	return true;
210}
211
212/* tlb_gather_mmu
213 *	Called to initialize an (on-stack) mmu_gather structure for page-table
214 *	tear-down from @mm. The @fullmm argument is used when @mm is without
215 *	users and we're going to destroy the full address space (exit/execve).
216 */
217void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
218{
219	tlb->mm = mm;
220
221	/* Is it from 0 to ~0? */
222	tlb->fullmm     = !(start | (end+1));
223	tlb->need_flush_all = 0;
224	tlb->local.next = NULL;
225	tlb->local.nr   = 0;
226	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
227	tlb->active     = &tlb->local;
228	tlb->batch_count = 0;
229
230#ifdef CONFIG_HAVE_RCU_TABLE_FREE
231	tlb->batch = NULL;
232#endif
233
234	__tlb_reset_range(tlb);
235}
236
237static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
238{
239	if (!tlb->end)
240		return;
241
242	tlb_flush(tlb);
243	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
244#ifdef CONFIG_HAVE_RCU_TABLE_FREE
245	tlb_table_flush(tlb);
246#endif
247	__tlb_reset_range(tlb);
248}
249
250static void tlb_flush_mmu_free(struct mmu_gather *tlb)
251{
252	struct mmu_gather_batch *batch;
253
254	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
255		free_pages_and_swap_cache(batch->pages, batch->nr);
256		batch->nr = 0;
257	}
258	tlb->active = &tlb->local;
259}
260
261void tlb_flush_mmu(struct mmu_gather *tlb)
262{
263	tlb_flush_mmu_tlbonly(tlb);
264	tlb_flush_mmu_free(tlb);
265}
266
267/* tlb_finish_mmu
268 *	Called at the end of the shootdown operation to free up any resources
269 *	that were required.
270 */
271void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
272{
273	struct mmu_gather_batch *batch, *next;
274
275	tlb_flush_mmu(tlb);
276
277	/* keep the page table cache within bounds */
278	check_pgt_cache();
279
280	for (batch = tlb->local.next; batch; batch = next) {
281		next = batch->next;
282		free_pages((unsigned long)batch, 0);
283	}
284	tlb->local.next = NULL;
285}
286
287/* __tlb_remove_page
288 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
289 *	handling the additional races in SMP caused by other CPUs caching valid
290 *	mappings in their TLBs. Returns the number of free page slots left.
291 *	When out of page slots we must call tlb_flush_mmu().
292 */
293int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
294{
295	struct mmu_gather_batch *batch;
296
297	VM_BUG_ON(!tlb->end);
298
299	batch = tlb->active;
300	batch->pages[batch->nr++] = page;
301	if (batch->nr == batch->max) {
302		if (!tlb_next_batch(tlb))
303			return 0;
304		batch = tlb->active;
305	}
306	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
307
308	return batch->max - batch->nr;
309}
310
311#endif /* HAVE_GENERIC_MMU_GATHER */
312
313#ifdef CONFIG_HAVE_RCU_TABLE_FREE
314
315/*
316 * See the comment near struct mmu_table_batch.
317 */
318
319static void tlb_remove_table_smp_sync(void *arg)
320{
321	/* Simply deliver the interrupt */
322}
323
324static void tlb_remove_table_one(void *table)
325{
326	/*
327	 * This isn't an RCU grace period and hence the page-tables cannot be
328	 * assumed to be actually RCU-freed.
329	 *
330	 * It is however sufficient for software page-table walkers that rely on
331	 * IRQ disabling. See the comment near struct mmu_table_batch.
332	 */
333	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
334	__tlb_remove_table(table);
335}
336
337static void tlb_remove_table_rcu(struct rcu_head *head)
338{
339	struct mmu_table_batch *batch;
340	int i;
341
342	batch = container_of(head, struct mmu_table_batch, rcu);
343
344	for (i = 0; i < batch->nr; i++)
345		__tlb_remove_table(batch->tables[i]);
346
347	free_page((unsigned long)batch);
348}
349
350void tlb_table_flush(struct mmu_gather *tlb)
351{
352	struct mmu_table_batch **batch = &tlb->batch;
353
354	if (*batch) {
355		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
356		*batch = NULL;
357	}
358}
359
360void tlb_remove_table(struct mmu_gather *tlb, void *table)
361{
362	struct mmu_table_batch **batch = &tlb->batch;
363
364	/*
365	 * When there's less then two users of this mm there cannot be a
366	 * concurrent page-table walk.
367	 */
368	if (atomic_read(&tlb->mm->mm_users) < 2) {
369		__tlb_remove_table(table);
370		return;
371	}
372
373	if (*batch == NULL) {
374		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
375		if (*batch == NULL) {
376			tlb_remove_table_one(table);
377			return;
378		}
379		(*batch)->nr = 0;
380	}
381	(*batch)->tables[(*batch)->nr++] = table;
382	if ((*batch)->nr == MAX_TABLE_BATCH)
383		tlb_table_flush(tlb);
384}
385
386#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387
388/*
389 * Note: this doesn't free the actual pages themselves. That
390 * has been handled earlier when unmapping all the memory regions.
391 */
392static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
393			   unsigned long addr)
394{
395	pgtable_t token = pmd_pgtable(*pmd);
396	pmd_clear(pmd);
397	pte_free_tlb(tlb, token, addr);
398	atomic_long_dec(&tlb->mm->nr_ptes);
399}
400
401static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
402				unsigned long addr, unsigned long end,
403				unsigned long floor, unsigned long ceiling)
404{
405	pmd_t *pmd;
406	unsigned long next;
407	unsigned long start;
408
409	start = addr;
410	pmd = pmd_offset(pud, addr);
411	do {
412		next = pmd_addr_end(addr, end);
413		if (pmd_none_or_clear_bad(pmd))
414			continue;
415		free_pte_range(tlb, pmd, addr);
416	} while (pmd++, addr = next, addr != end);
417
418	start &= PUD_MASK;
419	if (start < floor)
420		return;
421	if (ceiling) {
422		ceiling &= PUD_MASK;
423		if (!ceiling)
424			return;
425	}
426	if (end - 1 > ceiling - 1)
427		return;
428
429	pmd = pmd_offset(pud, start);
430	pud_clear(pud);
431	pmd_free_tlb(tlb, pmd, start);
432	mm_dec_nr_pmds(tlb->mm);
433}
434
435static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
436				unsigned long addr, unsigned long end,
437				unsigned long floor, unsigned long ceiling)
438{
439	pud_t *pud;
440	unsigned long next;
441	unsigned long start;
442
443	start = addr;
444	pud = pud_offset(pgd, addr);
445	do {
446		next = pud_addr_end(addr, end);
447		if (pud_none_or_clear_bad(pud))
448			continue;
449		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
450	} while (pud++, addr = next, addr != end);
451
452	start &= PGDIR_MASK;
453	if (start < floor)
454		return;
455	if (ceiling) {
456		ceiling &= PGDIR_MASK;
457		if (!ceiling)
458			return;
459	}
460	if (end - 1 > ceiling - 1)
461		return;
462
463	pud = pud_offset(pgd, start);
464	pgd_clear(pgd);
465	pud_free_tlb(tlb, pud, start);
466}
467
468/*
469 * This function frees user-level page tables of a process.
470 */
471void free_pgd_range(struct mmu_gather *tlb,
472			unsigned long addr, unsigned long end,
473			unsigned long floor, unsigned long ceiling)
474{
475	pgd_t *pgd;
476	unsigned long next;
477
478	/*
479	 * The next few lines have given us lots of grief...
480	 *
481	 * Why are we testing PMD* at this top level?  Because often
482	 * there will be no work to do at all, and we'd prefer not to
483	 * go all the way down to the bottom just to discover that.
484	 *
485	 * Why all these "- 1"s?  Because 0 represents both the bottom
486	 * of the address space and the top of it (using -1 for the
487	 * top wouldn't help much: the masks would do the wrong thing).
488	 * The rule is that addr 0 and floor 0 refer to the bottom of
489	 * the address space, but end 0 and ceiling 0 refer to the top
490	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
491	 * that end 0 case should be mythical).
492	 *
493	 * Wherever addr is brought up or ceiling brought down, we must
494	 * be careful to reject "the opposite 0" before it confuses the
495	 * subsequent tests.  But what about where end is brought down
496	 * by PMD_SIZE below? no, end can't go down to 0 there.
497	 *
498	 * Whereas we round start (addr) and ceiling down, by different
499	 * masks at different levels, in order to test whether a table
500	 * now has no other vmas using it, so can be freed, we don't
501	 * bother to round floor or end up - the tests don't need that.
502	 */
503
504	addr &= PMD_MASK;
505	if (addr < floor) {
506		addr += PMD_SIZE;
507		if (!addr)
508			return;
509	}
510	if (ceiling) {
511		ceiling &= PMD_MASK;
512		if (!ceiling)
513			return;
514	}
515	if (end - 1 > ceiling - 1)
516		end -= PMD_SIZE;
517	if (addr > end - 1)
518		return;
519
520	pgd = pgd_offset(tlb->mm, addr);
521	do {
522		next = pgd_addr_end(addr, end);
523		if (pgd_none_or_clear_bad(pgd))
524			continue;
525		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
526	} while (pgd++, addr = next, addr != end);
527}
528
529void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
530		unsigned long floor, unsigned long ceiling)
531{
532	while (vma) {
533		struct vm_area_struct *next = vma->vm_next;
534		unsigned long addr = vma->vm_start;
535
536		/*
537		 * Hide vma from rmap and truncate_pagecache before freeing
538		 * pgtables
539		 */
540		unlink_anon_vmas(vma);
541		unlink_file_vma(vma);
542
543		if (is_vm_hugetlb_page(vma)) {
544			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
545				floor, next? next->vm_start: ceiling);
546		} else {
547			/*
548			 * Optimization: gather nearby vmas into one call down
549			 */
550			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
551			       && !is_vm_hugetlb_page(next)) {
552				vma = next;
553				next = vma->vm_next;
554				unlink_anon_vmas(vma);
555				unlink_file_vma(vma);
556			}
557			free_pgd_range(tlb, addr, vma->vm_end,
558				floor, next? next->vm_start: ceiling);
559		}
560		vma = next;
561	}
562}
563
564int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
565		pmd_t *pmd, unsigned long address)
566{
567	spinlock_t *ptl;
568	pgtable_t new = pte_alloc_one(mm, address);
569	int wait_split_huge_page;
570	if (!new)
571		return -ENOMEM;
572
573	/*
574	 * Ensure all pte setup (eg. pte page lock and page clearing) are
575	 * visible before the pte is made visible to other CPUs by being
576	 * put into page tables.
577	 *
578	 * The other side of the story is the pointer chasing in the page
579	 * table walking code (when walking the page table without locking;
580	 * ie. most of the time). Fortunately, these data accesses consist
581	 * of a chain of data-dependent loads, meaning most CPUs (alpha
582	 * being the notable exception) will already guarantee loads are
583	 * seen in-order. See the alpha page table accessors for the
584	 * smp_read_barrier_depends() barriers in page table walking code.
585	 */
586	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587
588	ptl = pmd_lock(mm, pmd);
589	wait_split_huge_page = 0;
590	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
591		atomic_long_inc(&mm->nr_ptes);
592		pmd_populate(mm, pmd, new);
593		new = NULL;
594	} else if (unlikely(pmd_trans_splitting(*pmd)))
595		wait_split_huge_page = 1;
596	spin_unlock(ptl);
597	if (new)
598		pte_free(mm, new);
599	if (wait_split_huge_page)
600		wait_split_huge_page(vma->anon_vma, pmd);
601	return 0;
602}
603
604int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
605{
606	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
607	if (!new)
608		return -ENOMEM;
609
610	smp_wmb(); /* See comment in __pte_alloc */
611
612	spin_lock(&init_mm.page_table_lock);
613	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
614		pmd_populate_kernel(&init_mm, pmd, new);
615		new = NULL;
616	} else
617		VM_BUG_ON(pmd_trans_splitting(*pmd));
618	spin_unlock(&init_mm.page_table_lock);
619	if (new)
620		pte_free_kernel(&init_mm, new);
621	return 0;
622}
623
624static inline void init_rss_vec(int *rss)
625{
626	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
627}
628
629static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
630{
631	int i;
632
633	if (current->mm == mm)
634		sync_mm_rss(mm);
635	for (i = 0; i < NR_MM_COUNTERS; i++)
636		if (rss[i])
637			add_mm_counter(mm, i, rss[i]);
638}
639
640/*
641 * This function is called to print an error when a bad pte
642 * is found. For example, we might have a PFN-mapped pte in
643 * a region that doesn't allow it.
644 *
645 * The calling function must still handle the error.
646 */
647static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
648			  pte_t pte, struct page *page)
649{
650	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
651	pud_t *pud = pud_offset(pgd, addr);
652	pmd_t *pmd = pmd_offset(pud, addr);
653	struct address_space *mapping;
654	pgoff_t index;
655	static unsigned long resume;
656	static unsigned long nr_shown;
657	static unsigned long nr_unshown;
658
659	/*
660	 * Allow a burst of 60 reports, then keep quiet for that minute;
661	 * or allow a steady drip of one report per second.
662	 */
663	if (nr_shown == 60) {
664		if (time_before(jiffies, resume)) {
665			nr_unshown++;
666			return;
667		}
668		if (nr_unshown) {
669			printk(KERN_ALERT
670				"BUG: Bad page map: %lu messages suppressed\n",
671				nr_unshown);
672			nr_unshown = 0;
673		}
674		nr_shown = 0;
675	}
676	if (nr_shown++ == 0)
677		resume = jiffies + 60 * HZ;
678
679	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
680	index = linear_page_index(vma, addr);
681
682	printk(KERN_ALERT
683		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
684		current->comm,
685		(long long)pte_val(pte), (long long)pmd_val(*pmd));
686	if (page)
687		dump_page(page, "bad pte");
688	printk(KERN_ALERT
689		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
690		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
691	/*
692	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
693	 */
694	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
695		 vma->vm_file,
696		 vma->vm_ops ? vma->vm_ops->fault : NULL,
697		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
698		 mapping ? mapping->a_ops->readpage : NULL);
699	dump_stack();
700	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
701}
702
703/*
704 * vm_normal_page -- This function gets the "struct page" associated with a pte.
705 *
706 * "Special" mappings do not wish to be associated with a "struct page" (either
707 * it doesn't exist, or it exists but they don't want to touch it). In this
708 * case, NULL is returned here. "Normal" mappings do have a struct page.
709 *
710 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
711 * pte bit, in which case this function is trivial. Secondly, an architecture
712 * may not have a spare pte bit, which requires a more complicated scheme,
713 * described below.
714 *
715 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
716 * special mapping (even if there are underlying and valid "struct pages").
717 * COWed pages of a VM_PFNMAP are always normal.
718 *
719 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
720 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
721 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
722 * mapping will always honor the rule
723 *
724 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
725 *
726 * And for normal mappings this is false.
727 *
728 * This restricts such mappings to be a linear translation from virtual address
729 * to pfn. To get around this restriction, we allow arbitrary mappings so long
730 * as the vma is not a COW mapping; in that case, we know that all ptes are
731 * special (because none can have been COWed).
732 *
733 *
734 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
735 *
736 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
737 * page" backing, however the difference is that _all_ pages with a struct
738 * page (that is, those where pfn_valid is true) are refcounted and considered
739 * normal pages by the VM. The disadvantage is that pages are refcounted
740 * (which can be slower and simply not an option for some PFNMAP users). The
741 * advantage is that we don't have to follow the strict linearity rule of
742 * PFNMAP mappings in order to support COWable mappings.
743 *
744 */
745#ifdef __HAVE_ARCH_PTE_SPECIAL
746# define HAVE_PTE_SPECIAL 1
747#else
748# define HAVE_PTE_SPECIAL 0
749#endif
750struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
751				pte_t pte)
752{
753	unsigned long pfn = pte_pfn(pte);
754
755	if (HAVE_PTE_SPECIAL) {
756		if (likely(!pte_special(pte)))
757			goto check_pfn;
758		if (vma->vm_ops && vma->vm_ops->find_special_page)
759			return vma->vm_ops->find_special_page(vma, addr);
760		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
761			return NULL;
762		if (!is_zero_pfn(pfn))
763			print_bad_pte(vma, addr, pte, NULL);
764		return NULL;
765	}
766
767	/* !HAVE_PTE_SPECIAL case follows: */
768
769	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
770		if (vma->vm_flags & VM_MIXEDMAP) {
771			if (!pfn_valid(pfn))
772				return NULL;
773			goto out;
774		} else {
775			unsigned long off;
776			off = (addr - vma->vm_start) >> PAGE_SHIFT;
777			if (pfn == vma->vm_pgoff + off)
778				return NULL;
779			if (!is_cow_mapping(vma->vm_flags))
780				return NULL;
781		}
782	}
783
784	if (is_zero_pfn(pfn))
785		return NULL;
786check_pfn:
787	if (unlikely(pfn > highest_memmap_pfn)) {
788		print_bad_pte(vma, addr, pte, NULL);
789		return NULL;
790	}
791
792	/*
793	 * NOTE! We still have PageReserved() pages in the page tables.
794	 * eg. VDSO mappings can cause them to exist.
795	 */
796out:
797	return pfn_to_page(pfn);
798}
799
800#ifdef CONFIG_TRANSPARENT_HUGEPAGE
801struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
802				pmd_t pmd)
803{
804	unsigned long pfn = pmd_pfn(pmd);
805
806	/*
807	 * There is no pmd_special() but there may be special pmds, e.g.
808	 * in a direct-access (dax) mapping, so let's just replicate the
809	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
810	 */
811	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
812		if (vma->vm_flags & VM_MIXEDMAP) {
813			if (!pfn_valid(pfn))
814				return NULL;
815			goto out;
816		} else {
817			unsigned long off;
818			off = (addr - vma->vm_start) >> PAGE_SHIFT;
819			if (pfn == vma->vm_pgoff + off)
820				return NULL;
821			if (!is_cow_mapping(vma->vm_flags))
822				return NULL;
823		}
824	}
825
826	if (is_zero_pfn(pfn))
827		return NULL;
828	if (unlikely(pfn > highest_memmap_pfn))
829		return NULL;
830
831	/*
832	 * NOTE! We still have PageReserved() pages in the page tables.
833	 * eg. VDSO mappings can cause them to exist.
834	 */
835out:
836	return pfn_to_page(pfn);
837}
838#endif
839
840/*
841 * copy one vm_area from one task to the other. Assumes the page tables
842 * already present in the new task to be cleared in the whole range
843 * covered by this vma.
844 */
845
846static inline unsigned long
847copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
849		unsigned long addr, int *rss)
850{
851	unsigned long vm_flags = vma->vm_flags;
852	pte_t pte = *src_pte;
853	struct page *page;
854
855	/* pte contains position in swap or file, so copy. */
856	if (unlikely(!pte_present(pte))) {
857		swp_entry_t entry = pte_to_swp_entry(pte);
858
859		if (likely(!non_swap_entry(entry))) {
860			if (swap_duplicate(entry) < 0)
861				return entry.val;
862
863			/* make sure dst_mm is on swapoff's mmlist. */
864			if (unlikely(list_empty(&dst_mm->mmlist))) {
865				spin_lock(&mmlist_lock);
866				if (list_empty(&dst_mm->mmlist))
867					list_add(&dst_mm->mmlist,
868							&src_mm->mmlist);
869				spin_unlock(&mmlist_lock);
870			}
871			rss[MM_SWAPENTS]++;
872		} else if (is_migration_entry(entry)) {
873			page = migration_entry_to_page(entry);
874
875			if (PageAnon(page))
876				rss[MM_ANONPAGES]++;
877			else
878				rss[MM_FILEPAGES]++;
879
880			if (is_write_migration_entry(entry) &&
881					is_cow_mapping(vm_flags)) {
882				/*
883				 * COW mappings require pages in both
884				 * parent and child to be set to read.
885				 */
886				make_migration_entry_read(&entry);
887				pte = swp_entry_to_pte(entry);
888				if (pte_swp_soft_dirty(*src_pte))
889					pte = pte_swp_mksoft_dirty(pte);
890				set_pte_at(src_mm, addr, src_pte, pte);
891			}
892		}
893		goto out_set_pte;
894	}
895
896	/*
897	 * If it's a COW mapping, write protect it both
898	 * in the parent and the child
899	 */
900	if (is_cow_mapping(vm_flags)) {
901		ptep_set_wrprotect(src_mm, addr, src_pte);
902		pte = pte_wrprotect(pte);
903	}
904
905	/*
906	 * If it's a shared mapping, mark it clean in
907	 * the child
908	 */
909	if (vm_flags & VM_SHARED)
910		pte = pte_mkclean(pte);
911	pte = pte_mkold(pte);
912
913	page = vm_normal_page(vma, addr, pte);
914	if (page) {
915		get_page(page);
916		page_dup_rmap(page);
917		if (PageAnon(page))
918			rss[MM_ANONPAGES]++;
919		else
920			rss[MM_FILEPAGES]++;
921	}
922
923out_set_pte:
924	set_pte_at(dst_mm, addr, dst_pte, pte);
925	return 0;
926}
927
928static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
929		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
930		   unsigned long addr, unsigned long end)
931{
932	pte_t *orig_src_pte, *orig_dst_pte;
933	pte_t *src_pte, *dst_pte;
934	spinlock_t *src_ptl, *dst_ptl;
935	int progress = 0;
936	int rss[NR_MM_COUNTERS];
937	swp_entry_t entry = (swp_entry_t){0};
938
939again:
940	init_rss_vec(rss);
941
942	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
943	if (!dst_pte)
944		return -ENOMEM;
945	src_pte = pte_offset_map(src_pmd, addr);
946	src_ptl = pte_lockptr(src_mm, src_pmd);
947	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
948	orig_src_pte = src_pte;
949	orig_dst_pte = dst_pte;
950	arch_enter_lazy_mmu_mode();
951
952	do {
953		/*
954		 * We are holding two locks at this point - either of them
955		 * could generate latencies in another task on another CPU.
956		 */
957		if (progress >= 32) {
958			progress = 0;
959			if (need_resched() ||
960			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
961				break;
962		}
963		if (pte_none(*src_pte)) {
964			progress++;
965			continue;
966		}
967		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
968							vma, addr, rss);
969		if (entry.val)
970			break;
971		progress += 8;
972	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
973
974	arch_leave_lazy_mmu_mode();
975	spin_unlock(src_ptl);
976	pte_unmap(orig_src_pte);
977	add_mm_rss_vec(dst_mm, rss);
978	pte_unmap_unlock(orig_dst_pte, dst_ptl);
979	cond_resched();
980
981	if (entry.val) {
982		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
983			return -ENOMEM;
984		progress = 0;
985	}
986	if (addr != end)
987		goto again;
988	return 0;
989}
990
991static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
992		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
993		unsigned long addr, unsigned long end)
994{
995	pmd_t *src_pmd, *dst_pmd;
996	unsigned long next;
997
998	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
999	if (!dst_pmd)
1000		return -ENOMEM;
1001	src_pmd = pmd_offset(src_pud, addr);
1002	do {
1003		next = pmd_addr_end(addr, end);
1004		if (pmd_trans_huge(*src_pmd)) {
1005			int err;
1006			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1007			err = copy_huge_pmd(dst_mm, src_mm,
1008					    dst_pmd, src_pmd, addr, vma);
1009			if (err == -ENOMEM)
1010				return -ENOMEM;
1011			if (!err)
1012				continue;
1013			/* fall through */
1014		}
1015		if (pmd_none_or_clear_bad(src_pmd))
1016			continue;
1017		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1018						vma, addr, next))
1019			return -ENOMEM;
1020	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1021	return 0;
1022}
1023
1024static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1025		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1026		unsigned long addr, unsigned long end)
1027{
1028	pud_t *src_pud, *dst_pud;
1029	unsigned long next;
1030
1031	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1032	if (!dst_pud)
1033		return -ENOMEM;
1034	src_pud = pud_offset(src_pgd, addr);
1035	do {
1036		next = pud_addr_end(addr, end);
1037		if (pud_none_or_clear_bad(src_pud))
1038			continue;
1039		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1040						vma, addr, next))
1041			return -ENOMEM;
1042	} while (dst_pud++, src_pud++, addr = next, addr != end);
1043	return 0;
1044}
1045
1046int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1047		struct vm_area_struct *vma)
1048{
1049	pgd_t *src_pgd, *dst_pgd;
1050	unsigned long next;
1051	unsigned long addr = vma->vm_start;
1052	unsigned long end = vma->vm_end;
1053	unsigned long mmun_start;	/* For mmu_notifiers */
1054	unsigned long mmun_end;		/* For mmu_notifiers */
1055	bool is_cow;
1056	int ret;
1057
1058	/*
1059	 * Don't copy ptes where a page fault will fill them correctly.
1060	 * Fork becomes much lighter when there are big shared or private
1061	 * readonly mappings. The tradeoff is that copy_page_range is more
1062	 * efficient than faulting.
1063	 */
1064	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1065			!vma->anon_vma)
1066		return 0;
1067
1068	if (is_vm_hugetlb_page(vma))
1069		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1070
1071	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1072		/*
1073		 * We do not free on error cases below as remove_vma
1074		 * gets called on error from higher level routine
1075		 */
1076		ret = track_pfn_copy(vma);
1077		if (ret)
1078			return ret;
1079	}
1080
1081	/*
1082	 * We need to invalidate the secondary MMU mappings only when
1083	 * there could be a permission downgrade on the ptes of the
1084	 * parent mm. And a permission downgrade will only happen if
1085	 * is_cow_mapping() returns true.
1086	 */
1087	is_cow = is_cow_mapping(vma->vm_flags);
1088	mmun_start = addr;
1089	mmun_end   = end;
1090	if (is_cow)
1091		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1092						    mmun_end);
1093
1094	ret = 0;
1095	dst_pgd = pgd_offset(dst_mm, addr);
1096	src_pgd = pgd_offset(src_mm, addr);
1097	do {
1098		next = pgd_addr_end(addr, end);
1099		if (pgd_none_or_clear_bad(src_pgd))
1100			continue;
1101		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1102					    vma, addr, next))) {
1103			ret = -ENOMEM;
1104			break;
1105		}
1106	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1107
1108	if (is_cow)
1109		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1110	return ret;
1111}
1112
1113static unsigned long zap_pte_range(struct mmu_gather *tlb,
1114				struct vm_area_struct *vma, pmd_t *pmd,
1115				unsigned long addr, unsigned long end,
1116				struct zap_details *details)
1117{
1118	struct mm_struct *mm = tlb->mm;
1119	int force_flush = 0;
1120	int rss[NR_MM_COUNTERS];
1121	spinlock_t *ptl;
1122	pte_t *start_pte;
1123	pte_t *pte;
1124	swp_entry_t entry;
1125
1126again:
1127	init_rss_vec(rss);
1128	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1129	pte = start_pte;
1130	arch_enter_lazy_mmu_mode();
1131	do {
1132		pte_t ptent = *pte;
1133		if (pte_none(ptent)) {
1134			continue;
1135		}
1136
1137		if (pte_present(ptent)) {
1138			struct page *page;
1139
1140			page = vm_normal_page(vma, addr, ptent);
1141			if (unlikely(details) && page) {
1142				/*
1143				 * unmap_shared_mapping_pages() wants to
1144				 * invalidate cache without truncating:
1145				 * unmap shared but keep private pages.
1146				 */
1147				if (details->check_mapping &&
1148				    details->check_mapping != page->mapping)
1149					continue;
1150			}
1151			ptent = ptep_get_and_clear_full(mm, addr, pte,
1152							tlb->fullmm);
1153			tlb_remove_tlb_entry(tlb, pte, addr);
1154			if (unlikely(!page))
1155				continue;
1156			if (PageAnon(page))
1157				rss[MM_ANONPAGES]--;
1158			else {
1159				if (pte_dirty(ptent)) {
1160					force_flush = 1;
1161					set_page_dirty(page);
1162				}
1163				if (pte_young(ptent) &&
1164				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1165					mark_page_accessed(page);
1166				rss[MM_FILEPAGES]--;
1167			}
1168			page_remove_rmap(page);
1169			if (unlikely(page_mapcount(page) < 0))
1170				print_bad_pte(vma, addr, ptent, page);
1171			if (unlikely(!__tlb_remove_page(tlb, page))) {
1172				force_flush = 1;
1173				addr += PAGE_SIZE;
1174				break;
1175			}
1176			continue;
1177		}
1178		/* If details->check_mapping, we leave swap entries. */
1179		if (unlikely(details))
1180			continue;
1181
1182		entry = pte_to_swp_entry(ptent);
1183		if (!non_swap_entry(entry))
1184			rss[MM_SWAPENTS]--;
1185		else if (is_migration_entry(entry)) {
1186			struct page *page;
1187
1188			page = migration_entry_to_page(entry);
1189
1190			if (PageAnon(page))
1191				rss[MM_ANONPAGES]--;
1192			else
1193				rss[MM_FILEPAGES]--;
1194		}
1195		if (unlikely(!free_swap_and_cache(entry)))
1196			print_bad_pte(vma, addr, ptent, NULL);
1197		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198	} while (pte++, addr += PAGE_SIZE, addr != end);
1199
1200	add_mm_rss_vec(mm, rss);
1201	arch_leave_lazy_mmu_mode();
1202
1203	/* Do the actual TLB flush before dropping ptl */
1204	if (force_flush)
1205		tlb_flush_mmu_tlbonly(tlb);
1206	pte_unmap_unlock(start_pte, ptl);
1207
1208	/*
1209	 * If we forced a TLB flush (either due to running out of
1210	 * batch buffers or because we needed to flush dirty TLB
1211	 * entries before releasing the ptl), free the batched
1212	 * memory too. Restart if we didn't do everything.
1213	 */
1214	if (force_flush) {
1215		force_flush = 0;
1216		tlb_flush_mmu_free(tlb);
1217
1218		if (addr != end)
1219			goto again;
1220	}
1221
1222	return addr;
1223}
1224
1225static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1226				struct vm_area_struct *vma, pud_t *pud,
1227				unsigned long addr, unsigned long end,
1228				struct zap_details *details)
1229{
1230	pmd_t *pmd;
1231	unsigned long next;
1232
1233	pmd = pmd_offset(pud, addr);
1234	do {
1235		next = pmd_addr_end(addr, end);
1236		if (pmd_trans_huge(*pmd)) {
1237			if (next - addr != HPAGE_PMD_SIZE) {
1238#ifdef CONFIG_DEBUG_VM
1239				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1240					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1241						__func__, addr, end,
1242						vma->vm_start,
1243						vma->vm_end);
1244					BUG();
1245				}
1246#endif
1247				split_huge_page_pmd(vma, addr, pmd);
1248			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1249				goto next;
1250			/* fall through */
1251		}
1252		/*
1253		 * Here there can be other concurrent MADV_DONTNEED or
1254		 * trans huge page faults running, and if the pmd is
1255		 * none or trans huge it can change under us. This is
1256		 * because MADV_DONTNEED holds the mmap_sem in read
1257		 * mode.
1258		 */
1259		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1260			goto next;
1261		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1262next:
1263		cond_resched();
1264	} while (pmd++, addr = next, addr != end);
1265
1266	return addr;
1267}
1268
1269static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1270				struct vm_area_struct *vma, pgd_t *pgd,
1271				unsigned long addr, unsigned long end,
1272				struct zap_details *details)
1273{
1274	pud_t *pud;
1275	unsigned long next;
1276
1277	pud = pud_offset(pgd, addr);
1278	do {
1279		next = pud_addr_end(addr, end);
1280		if (pud_none_or_clear_bad(pud))
1281			continue;
1282		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1283	} while (pud++, addr = next, addr != end);
1284
1285	return addr;
1286}
1287
1288static void unmap_page_range(struct mmu_gather *tlb,
1289			     struct vm_area_struct *vma,
1290			     unsigned long addr, unsigned long end,
1291			     struct zap_details *details)
1292{
1293	pgd_t *pgd;
1294	unsigned long next;
1295
1296	if (details && !details->check_mapping)
1297		details = NULL;
1298
1299	BUG_ON(addr >= end);
1300	tlb_start_vma(tlb, vma);
1301	pgd = pgd_offset(vma->vm_mm, addr);
1302	do {
1303		next = pgd_addr_end(addr, end);
1304		if (pgd_none_or_clear_bad(pgd))
1305			continue;
1306		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1307	} while (pgd++, addr = next, addr != end);
1308	tlb_end_vma(tlb, vma);
1309}
1310
1311
1312static void unmap_single_vma(struct mmu_gather *tlb,
1313		struct vm_area_struct *vma, unsigned long start_addr,
1314		unsigned long end_addr,
1315		struct zap_details *details)
1316{
1317	unsigned long start = max(vma->vm_start, start_addr);
1318	unsigned long end;
1319
1320	if (start >= vma->vm_end)
1321		return;
1322	end = min(vma->vm_end, end_addr);
1323	if (end <= vma->vm_start)
1324		return;
1325
1326	if (vma->vm_file)
1327		uprobe_munmap(vma, start, end);
1328
1329	if (unlikely(vma->vm_flags & VM_PFNMAP))
1330		untrack_pfn(vma, 0, 0);
1331
1332	if (start != end) {
1333		if (unlikely(is_vm_hugetlb_page(vma))) {
1334			/*
1335			 * It is undesirable to test vma->vm_file as it
1336			 * should be non-null for valid hugetlb area.
1337			 * However, vm_file will be NULL in the error
1338			 * cleanup path of mmap_region. When
1339			 * hugetlbfs ->mmap method fails,
1340			 * mmap_region() nullifies vma->vm_file
1341			 * before calling this function to clean up.
1342			 * Since no pte has actually been setup, it is
1343			 * safe to do nothing in this case.
1344			 */
1345			if (vma->vm_file) {
1346				i_mmap_lock_write(vma->vm_file->f_mapping);
1347				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1348				i_mmap_unlock_write(vma->vm_file->f_mapping);
1349			}
1350		} else
1351			unmap_page_range(tlb, vma, start, end, details);
1352	}
1353}
1354
1355/**
1356 * unmap_vmas - unmap a range of memory covered by a list of vma's
1357 * @tlb: address of the caller's struct mmu_gather
1358 * @vma: the starting vma
1359 * @start_addr: virtual address at which to start unmapping
1360 * @end_addr: virtual address at which to end unmapping
1361 *
1362 * Unmap all pages in the vma list.
1363 *
1364 * Only addresses between `start' and `end' will be unmapped.
1365 *
1366 * The VMA list must be sorted in ascending virtual address order.
1367 *
1368 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1369 * range after unmap_vmas() returns.  So the only responsibility here is to
1370 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1371 * drops the lock and schedules.
1372 */
1373void unmap_vmas(struct mmu_gather *tlb,
1374		struct vm_area_struct *vma, unsigned long start_addr,
1375		unsigned long end_addr)
1376{
1377	struct mm_struct *mm = vma->vm_mm;
1378
1379	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1380	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1381		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1382	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1383}
1384
1385/**
1386 * zap_page_range - remove user pages in a given range
1387 * @vma: vm_area_struct holding the applicable pages
1388 * @start: starting address of pages to zap
1389 * @size: number of bytes to zap
1390 * @details: details of shared cache invalidation
1391 *
1392 * Caller must protect the VMA list
1393 */
1394void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1395		unsigned long size, struct zap_details *details)
1396{
1397	struct mm_struct *mm = vma->vm_mm;
1398	struct mmu_gather tlb;
1399	unsigned long end = start + size;
1400
1401	lru_add_drain();
1402	tlb_gather_mmu(&tlb, mm, start, end);
1403	update_hiwater_rss(mm);
1404	mmu_notifier_invalidate_range_start(mm, start, end);
1405	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1406		unmap_single_vma(&tlb, vma, start, end, details);
1407	mmu_notifier_invalidate_range_end(mm, start, end);
1408	tlb_finish_mmu(&tlb, start, end);
1409}
1410
1411/**
1412 * zap_page_range_single - remove user pages in a given range
1413 * @vma: vm_area_struct holding the applicable pages
1414 * @address: starting address of pages to zap
1415 * @size: number of bytes to zap
1416 * @details: details of shared cache invalidation
1417 *
1418 * The range must fit into one VMA.
1419 */
1420static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1421		unsigned long size, struct zap_details *details)
1422{
1423	struct mm_struct *mm = vma->vm_mm;
1424	struct mmu_gather tlb;
1425	unsigned long end = address + size;
1426
1427	lru_add_drain();
1428	tlb_gather_mmu(&tlb, mm, address, end);
1429	update_hiwater_rss(mm);
1430	mmu_notifier_invalidate_range_start(mm, address, end);
1431	unmap_single_vma(&tlb, vma, address, end, details);
1432	mmu_notifier_invalidate_range_end(mm, address, end);
1433	tlb_finish_mmu(&tlb, address, end);
1434}
1435
1436/**
1437 * zap_vma_ptes - remove ptes mapping the vma
1438 * @vma: vm_area_struct holding ptes to be zapped
1439 * @address: starting address of pages to zap
1440 * @size: number of bytes to zap
1441 *
1442 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1443 *
1444 * The entire address range must be fully contained within the vma.
1445 *
1446 * Returns 0 if successful.
1447 */
1448int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1449		unsigned long size)
1450{
1451	if (address < vma->vm_start || address + size > vma->vm_end ||
1452	    		!(vma->vm_flags & VM_PFNMAP))
1453		return -1;
1454	zap_page_range_single(vma, address, size, NULL);
1455	return 0;
1456}
1457EXPORT_SYMBOL_GPL(zap_vma_ptes);
1458
1459pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1460			spinlock_t **ptl)
1461{
1462	pgd_t * pgd = pgd_offset(mm, addr);
1463	pud_t * pud = pud_alloc(mm, pgd, addr);
1464	if (pud) {
1465		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1466		if (pmd) {
1467			VM_BUG_ON(pmd_trans_huge(*pmd));
1468			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1469		}
1470	}
1471	return NULL;
1472}
1473
1474/*
1475 * This is the old fallback for page remapping.
1476 *
1477 * For historical reasons, it only allows reserved pages. Only
1478 * old drivers should use this, and they needed to mark their
1479 * pages reserved for the old functions anyway.
1480 */
1481static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1482			struct page *page, pgprot_t prot)
1483{
1484	struct mm_struct *mm = vma->vm_mm;
1485	int retval;
1486	pte_t *pte;
1487	spinlock_t *ptl;
1488
1489	retval = -EINVAL;
1490	if (PageAnon(page))
1491		goto out;
1492	retval = -ENOMEM;
1493	flush_dcache_page(page);
1494	pte = get_locked_pte(mm, addr, &ptl);
1495	if (!pte)
1496		goto out;
1497	retval = -EBUSY;
1498	if (!pte_none(*pte))
1499		goto out_unlock;
1500
1501	/* Ok, finally just insert the thing.. */
1502	get_page(page);
1503	inc_mm_counter_fast(mm, MM_FILEPAGES);
1504	page_add_file_rmap(page);
1505	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1506
1507	retval = 0;
1508	pte_unmap_unlock(pte, ptl);
1509	return retval;
1510out_unlock:
1511	pte_unmap_unlock(pte, ptl);
1512out:
1513	return retval;
1514}
1515
1516/**
1517 * vm_insert_page - insert single page into user vma
1518 * @vma: user vma to map to
1519 * @addr: target user address of this page
1520 * @page: source kernel page
1521 *
1522 * This allows drivers to insert individual pages they've allocated
1523 * into a user vma.
1524 *
1525 * The page has to be a nice clean _individual_ kernel allocation.
1526 * If you allocate a compound page, you need to have marked it as
1527 * such (__GFP_COMP), or manually just split the page up yourself
1528 * (see split_page()).
1529 *
1530 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1531 * took an arbitrary page protection parameter. This doesn't allow
1532 * that. Your vma protection will have to be set up correctly, which
1533 * means that if you want a shared writable mapping, you'd better
1534 * ask for a shared writable mapping!
1535 *
1536 * The page does not need to be reserved.
1537 *
1538 * Usually this function is called from f_op->mmap() handler
1539 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1540 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1541 * function from other places, for example from page-fault handler.
1542 */
1543int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1544			struct page *page)
1545{
1546	if (addr < vma->vm_start || addr >= vma->vm_end)
1547		return -EFAULT;
1548	if (!page_count(page))
1549		return -EINVAL;
1550	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1551		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1552		BUG_ON(vma->vm_flags & VM_PFNMAP);
1553		vma->vm_flags |= VM_MIXEDMAP;
1554	}
1555	return insert_page(vma, addr, page, vma->vm_page_prot);
1556}
1557EXPORT_SYMBOL(vm_insert_page);
1558
1559static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1560			unsigned long pfn, pgprot_t prot)
1561{
1562	struct mm_struct *mm = vma->vm_mm;
1563	int retval;
1564	pte_t *pte, entry;
1565	spinlock_t *ptl;
1566
1567	retval = -ENOMEM;
1568	pte = get_locked_pte(mm, addr, &ptl);
1569	if (!pte)
1570		goto out;
1571	retval = -EBUSY;
1572	if (!pte_none(*pte))
1573		goto out_unlock;
1574
1575	/* Ok, finally just insert the thing.. */
1576	entry = pte_mkspecial(pfn_pte(pfn, prot));
1577	set_pte_at(mm, addr, pte, entry);
1578	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1579
1580	retval = 0;
1581out_unlock:
1582	pte_unmap_unlock(pte, ptl);
1583out:
1584	return retval;
1585}
1586
1587/**
1588 * vm_insert_pfn - insert single pfn into user vma
1589 * @vma: user vma to map to
1590 * @addr: target user address of this page
1591 * @pfn: source kernel pfn
1592 *
1593 * Similar to vm_insert_page, this allows drivers to insert individual pages
1594 * they've allocated into a user vma. Same comments apply.
1595 *
1596 * This function should only be called from a vm_ops->fault handler, and
1597 * in that case the handler should return NULL.
1598 *
1599 * vma cannot be a COW mapping.
1600 *
1601 * As this is called only for pages that do not currently exist, we
1602 * do not need to flush old virtual caches or the TLB.
1603 */
1604int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1605			unsigned long pfn)
1606{
1607	int ret;
1608	pgprot_t pgprot = vma->vm_page_prot;
1609	/*
1610	 * Technically, architectures with pte_special can avoid all these
1611	 * restrictions (same for remap_pfn_range).  However we would like
1612	 * consistency in testing and feature parity among all, so we should
1613	 * try to keep these invariants in place for everybody.
1614	 */
1615	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1616	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1617						(VM_PFNMAP|VM_MIXEDMAP));
1618	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1619	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1620
1621	if (addr < vma->vm_start || addr >= vma->vm_end)
1622		return -EFAULT;
1623	if (track_pfn_insert(vma, &pgprot, pfn))
1624		return -EINVAL;
1625
1626	ret = insert_pfn(vma, addr, pfn, pgprot);
1627
1628	return ret;
1629}
1630EXPORT_SYMBOL(vm_insert_pfn);
1631
1632int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1633			unsigned long pfn)
1634{
1635	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1636
1637	if (addr < vma->vm_start || addr >= vma->vm_end)
1638		return -EFAULT;
1639
1640	/*
1641	 * If we don't have pte special, then we have to use the pfn_valid()
1642	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1643	 * refcount the page if pfn_valid is true (hence insert_page rather
1644	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1645	 * without pte special, it would there be refcounted as a normal page.
1646	 */
1647	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1648		struct page *page;
1649
1650		page = pfn_to_page(pfn);
1651		return insert_page(vma, addr, page, vma->vm_page_prot);
1652	}
1653	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1654}
1655EXPORT_SYMBOL(vm_insert_mixed);
1656
1657/*
1658 * maps a range of physical memory into the requested pages. the old
1659 * mappings are removed. any references to nonexistent pages results
1660 * in null mappings (currently treated as "copy-on-access")
1661 */
1662static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1663			unsigned long addr, unsigned long end,
1664			unsigned long pfn, pgprot_t prot)
1665{
1666	pte_t *pte;
1667	spinlock_t *ptl;
1668
1669	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1670	if (!pte)
1671		return -ENOMEM;
1672	arch_enter_lazy_mmu_mode();
1673	do {
1674		BUG_ON(!pte_none(*pte));
1675		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1676		pfn++;
1677	} while (pte++, addr += PAGE_SIZE, addr != end);
1678	arch_leave_lazy_mmu_mode();
1679	pte_unmap_unlock(pte - 1, ptl);
1680	return 0;
1681}
1682
1683static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1684			unsigned long addr, unsigned long end,
1685			unsigned long pfn, pgprot_t prot)
1686{
1687	pmd_t *pmd;
1688	unsigned long next;
1689
1690	pfn -= addr >> PAGE_SHIFT;
1691	pmd = pmd_alloc(mm, pud, addr);
1692	if (!pmd)
1693		return -ENOMEM;
1694	VM_BUG_ON(pmd_trans_huge(*pmd));
1695	do {
1696		next = pmd_addr_end(addr, end);
1697		if (remap_pte_range(mm, pmd, addr, next,
1698				pfn + (addr >> PAGE_SHIFT), prot))
1699			return -ENOMEM;
1700	} while (pmd++, addr = next, addr != end);
1701	return 0;
1702}
1703
1704static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1705			unsigned long addr, unsigned long end,
1706			unsigned long pfn, pgprot_t prot)
1707{
1708	pud_t *pud;
1709	unsigned long next;
1710
1711	pfn -= addr >> PAGE_SHIFT;
1712	pud = pud_alloc(mm, pgd, addr);
1713	if (!pud)
1714		return -ENOMEM;
1715	do {
1716		next = pud_addr_end(addr, end);
1717		if (remap_pmd_range(mm, pud, addr, next,
1718				pfn + (addr >> PAGE_SHIFT), prot))
1719			return -ENOMEM;
1720	} while (pud++, addr = next, addr != end);
1721	return 0;
1722}
1723
1724/**
1725 * remap_pfn_range - remap kernel memory to userspace
1726 * @vma: user vma to map to
1727 * @addr: target user address to start at
1728 * @pfn: physical address of kernel memory
1729 * @size: size of map area
1730 * @prot: page protection flags for this mapping
1731 *
1732 *  Note: this is only safe if the mm semaphore is held when called.
1733 */
1734int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1735		    unsigned long pfn, unsigned long size, pgprot_t prot)
1736{
1737	pgd_t *pgd;
1738	unsigned long next;
1739	unsigned long end = addr + PAGE_ALIGN(size);
1740	struct mm_struct *mm = vma->vm_mm;
1741	int err;
1742
1743	/*
1744	 * Physically remapped pages are special. Tell the
1745	 * rest of the world about it:
1746	 *   VM_IO tells people not to look at these pages
1747	 *	(accesses can have side effects).
1748	 *   VM_PFNMAP tells the core MM that the base pages are just
1749	 *	raw PFN mappings, and do not have a "struct page" associated
1750	 *	with them.
1751	 *   VM_DONTEXPAND
1752	 *      Disable vma merging and expanding with mremap().
1753	 *   VM_DONTDUMP
1754	 *      Omit vma from core dump, even when VM_IO turned off.
1755	 *
1756	 * There's a horrible special case to handle copy-on-write
1757	 * behaviour that some programs depend on. We mark the "original"
1758	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1759	 * See vm_normal_page() for details.
1760	 */
1761	if (is_cow_mapping(vma->vm_flags)) {
1762		if (addr != vma->vm_start || end != vma->vm_end)
1763			return -EINVAL;
1764		vma->vm_pgoff = pfn;
1765	}
1766
1767	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1768	if (err)
1769		return -EINVAL;
1770
1771	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1772
1773	BUG_ON(addr >= end);
1774	pfn -= addr >> PAGE_SHIFT;
1775	pgd = pgd_offset(mm, addr);
1776	flush_cache_range(vma, addr, end);
1777	do {
1778		next = pgd_addr_end(addr, end);
1779		err = remap_pud_range(mm, pgd, addr, next,
1780				pfn + (addr >> PAGE_SHIFT), prot);
1781		if (err)
1782			break;
1783	} while (pgd++, addr = next, addr != end);
1784
1785	if (err)
1786		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1787
1788	return err;
1789}
1790EXPORT_SYMBOL(remap_pfn_range);
1791
1792/**
1793 * vm_iomap_memory - remap memory to userspace
1794 * @vma: user vma to map to
1795 * @start: start of area
1796 * @len: size of area
1797 *
1798 * This is a simplified io_remap_pfn_range() for common driver use. The
1799 * driver just needs to give us the physical memory range to be mapped,
1800 * we'll figure out the rest from the vma information.
1801 *
1802 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1803 * whatever write-combining details or similar.
1804 */
1805int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1806{
1807	unsigned long vm_len, pfn, pages;
1808
1809	/* Check that the physical memory area passed in looks valid */
1810	if (start + len < start)
1811		return -EINVAL;
1812	/*
1813	 * You *really* shouldn't map things that aren't page-aligned,
1814	 * but we've historically allowed it because IO memory might
1815	 * just have smaller alignment.
1816	 */
1817	len += start & ~PAGE_MASK;
1818	pfn = start >> PAGE_SHIFT;
1819	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1820	if (pfn + pages < pfn)
1821		return -EINVAL;
1822
1823	/* We start the mapping 'vm_pgoff' pages into the area */
1824	if (vma->vm_pgoff > pages)
1825		return -EINVAL;
1826	pfn += vma->vm_pgoff;
1827	pages -= vma->vm_pgoff;
1828
1829	/* Can we fit all of the mapping? */
1830	vm_len = vma->vm_end - vma->vm_start;
1831	if (vm_len >> PAGE_SHIFT > pages)
1832		return -EINVAL;
1833
1834	/* Ok, let it rip */
1835	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1836}
1837EXPORT_SYMBOL(vm_iomap_memory);
1838
1839static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1840				     unsigned long addr, unsigned long end,
1841				     pte_fn_t fn, void *data)
1842{
1843	pte_t *pte;
1844	int err;
1845	pgtable_t token;
1846	spinlock_t *uninitialized_var(ptl);
1847
1848	pte = (mm == &init_mm) ?
1849		pte_alloc_kernel(pmd, addr) :
1850		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1851	if (!pte)
1852		return -ENOMEM;
1853
1854	BUG_ON(pmd_huge(*pmd));
1855
1856	arch_enter_lazy_mmu_mode();
1857
1858	token = pmd_pgtable(*pmd);
1859
1860	do {
1861		err = fn(pte++, token, addr, data);
1862		if (err)
1863			break;
1864	} while (addr += PAGE_SIZE, addr != end);
1865
1866	arch_leave_lazy_mmu_mode();
1867
1868	if (mm != &init_mm)
1869		pte_unmap_unlock(pte-1, ptl);
1870	return err;
1871}
1872
1873static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1874				     unsigned long addr, unsigned long end,
1875				     pte_fn_t fn, void *data)
1876{
1877	pmd_t *pmd;
1878	unsigned long next;
1879	int err;
1880
1881	BUG_ON(pud_huge(*pud));
1882
1883	pmd = pmd_alloc(mm, pud, addr);
1884	if (!pmd)
1885		return -ENOMEM;
1886	do {
1887		next = pmd_addr_end(addr, end);
1888		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1889		if (err)
1890			break;
1891	} while (pmd++, addr = next, addr != end);
1892	return err;
1893}
1894
1895static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1896				     unsigned long addr, unsigned long end,
1897				     pte_fn_t fn, void *data)
1898{
1899	pud_t *pud;
1900	unsigned long next;
1901	int err;
1902
1903	pud = pud_alloc(mm, pgd, addr);
1904	if (!pud)
1905		return -ENOMEM;
1906	do {
1907		next = pud_addr_end(addr, end);
1908		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1909		if (err)
1910			break;
1911	} while (pud++, addr = next, addr != end);
1912	return err;
1913}
1914
1915/*
1916 * Scan a region of virtual memory, filling in page tables as necessary
1917 * and calling a provided function on each leaf page table.
1918 */
1919int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1920			unsigned long size, pte_fn_t fn, void *data)
1921{
1922	pgd_t *pgd;
1923	unsigned long next;
1924	unsigned long end = addr + size;
1925	int err;
1926
1927	BUG_ON(addr >= end);
1928	pgd = pgd_offset(mm, addr);
1929	do {
1930		next = pgd_addr_end(addr, end);
1931		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1932		if (err)
1933			break;
1934	} while (pgd++, addr = next, addr != end);
1935
1936	return err;
1937}
1938EXPORT_SYMBOL_GPL(apply_to_page_range);
1939
1940/*
1941 * handle_pte_fault chooses page fault handler according to an entry which was
1942 * read non-atomically.  Before making any commitment, on those architectures
1943 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1944 * parts, do_swap_page must check under lock before unmapping the pte and
1945 * proceeding (but do_wp_page is only called after already making such a check;
1946 * and do_anonymous_page can safely check later on).
1947 */
1948static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1949				pte_t *page_table, pte_t orig_pte)
1950{
1951	int same = 1;
1952#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1953	if (sizeof(pte_t) > sizeof(unsigned long)) {
1954		spinlock_t *ptl = pte_lockptr(mm, pmd);
1955		spin_lock(ptl);
1956		same = pte_same(*page_table, orig_pte);
1957		spin_unlock(ptl);
1958	}
1959#endif
1960	pte_unmap(page_table);
1961	return same;
1962}
1963
1964static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1965{
1966	debug_dma_assert_idle(src);
1967
1968	/*
1969	 * If the source page was a PFN mapping, we don't have
1970	 * a "struct page" for it. We do a best-effort copy by
1971	 * just copying from the original user address. If that
1972	 * fails, we just zero-fill it. Live with it.
1973	 */
1974	if (unlikely(!src)) {
1975		void *kaddr = kmap_atomic(dst);
1976		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1977
1978		/*
1979		 * This really shouldn't fail, because the page is there
1980		 * in the page tables. But it might just be unreadable,
1981		 * in which case we just give up and fill the result with
1982		 * zeroes.
1983		 */
1984		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1985			clear_page(kaddr);
1986		kunmap_atomic(kaddr);
1987		flush_dcache_page(dst);
1988	} else
1989		copy_user_highpage(dst, src, va, vma);
1990}
1991
1992/*
1993 * Notify the address space that the page is about to become writable so that
1994 * it can prohibit this or wait for the page to get into an appropriate state.
1995 *
1996 * We do this without the lock held, so that it can sleep if it needs to.
1997 */
1998static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1999	       unsigned long address)
2000{
2001	struct vm_fault vmf;
2002	int ret;
2003
2004	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2005	vmf.pgoff = page->index;
2006	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2007	vmf.page = page;
2008	vmf.cow_page = NULL;
2009
2010	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2011	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2012		return ret;
2013	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2014		lock_page(page);
2015		if (!page->mapping) {
2016			unlock_page(page);
2017			return 0; /* retry */
2018		}
2019		ret |= VM_FAULT_LOCKED;
2020	} else
2021		VM_BUG_ON_PAGE(!PageLocked(page), page);
2022	return ret;
2023}
2024
2025/*
2026 * Handle write page faults for pages that can be reused in the current vma
2027 *
2028 * This can happen either due to the mapping being with the VM_SHARED flag,
2029 * or due to us being the last reference standing to the page. In either
2030 * case, all we need to do here is to mark the page as writable and update
2031 * any related book-keeping.
2032 */
2033static inline int wp_page_reuse(struct mm_struct *mm,
2034			struct vm_area_struct *vma, unsigned long address,
2035			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2036			struct page *page, int page_mkwrite,
2037			int dirty_shared)
2038	__releases(ptl)
2039{
2040	pte_t entry;
2041	/*
2042	 * Clear the pages cpupid information as the existing
2043	 * information potentially belongs to a now completely
2044	 * unrelated process.
2045	 */
2046	if (page)
2047		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2048
2049	flush_cache_page(vma, address, pte_pfn(orig_pte));
2050	entry = pte_mkyoung(orig_pte);
2051	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2052	if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2053		update_mmu_cache(vma, address, page_table);
2054	pte_unmap_unlock(page_table, ptl);
2055
2056	if (dirty_shared) {
2057		struct address_space *mapping;
2058		int dirtied;
2059
2060		if (!page_mkwrite)
2061			lock_page(page);
2062
2063		dirtied = set_page_dirty(page);
2064		VM_BUG_ON_PAGE(PageAnon(page), page);
2065		mapping = page->mapping;
2066		unlock_page(page);
2067		page_cache_release(page);
2068
2069		if ((dirtied || page_mkwrite) && mapping) {
2070			/*
2071			 * Some device drivers do not set page.mapping
2072			 * but still dirty their pages
2073			 */
2074			balance_dirty_pages_ratelimited(mapping);
2075		}
2076
2077		if (!page_mkwrite)
2078			file_update_time(vma->vm_file);
2079	}
2080
2081	return VM_FAULT_WRITE;
2082}
2083
2084/*
2085 * Handle the case of a page which we actually need to copy to a new page.
2086 *
2087 * Called with mmap_sem locked and the old page referenced, but
2088 * without the ptl held.
2089 *
2090 * High level logic flow:
2091 *
2092 * - Allocate a page, copy the content of the old page to the new one.
2093 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2094 * - Take the PTL. If the pte changed, bail out and release the allocated page
2095 * - If the pte is still the way we remember it, update the page table and all
2096 *   relevant references. This includes dropping the reference the page-table
2097 *   held to the old page, as well as updating the rmap.
2098 * - In any case, unlock the PTL and drop the reference we took to the old page.
2099 */
2100static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2101			unsigned long address, pte_t *page_table, pmd_t *pmd,
2102			pte_t orig_pte, struct page *old_page)
2103{
2104	struct page *new_page = NULL;
2105	spinlock_t *ptl = NULL;
2106	pte_t entry;
2107	int page_copied = 0;
2108	const unsigned long mmun_start = address & PAGE_MASK;	/* For mmu_notifiers */
2109	const unsigned long mmun_end = mmun_start + PAGE_SIZE;	/* For mmu_notifiers */
2110	struct mem_cgroup *memcg;
2111
2112	if (unlikely(anon_vma_prepare(vma)))
2113		goto oom;
2114
2115	if (is_zero_pfn(pte_pfn(orig_pte))) {
2116		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2117		if (!new_page)
2118			goto oom;
2119	} else {
2120		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2121		if (!new_page)
2122			goto oom;
2123		cow_user_page(new_page, old_page, address, vma);
2124	}
2125
2126	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2127		goto oom_free_new;
2128
2129	__SetPageUptodate(new_page);
2130
2131	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2132
2133	/*
2134	 * Re-check the pte - we dropped the lock
2135	 */
2136	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2137	if (likely(pte_same(*page_table, orig_pte))) {
2138		if (old_page) {
2139			if (!PageAnon(old_page)) {
2140				dec_mm_counter_fast(mm, MM_FILEPAGES);
2141				inc_mm_counter_fast(mm, MM_ANONPAGES);
2142			}
2143		} else {
2144			inc_mm_counter_fast(mm, MM_ANONPAGES);
2145		}
2146		flush_cache_page(vma, address, pte_pfn(orig_pte));
2147		entry = mk_pte(new_page, vma->vm_page_prot);
2148		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2149		/*
2150		 * Clear the pte entry and flush it first, before updating the
2151		 * pte with the new entry. This will avoid a race condition
2152		 * seen in the presence of one thread doing SMC and another
2153		 * thread doing COW.
2154		 */
2155		ptep_clear_flush_notify(vma, address, page_table);
2156		page_add_new_anon_rmap(new_page, vma, address);
2157		mem_cgroup_commit_charge(new_page, memcg, false);
2158		lru_cache_add_active_or_unevictable(new_page, vma);
2159		/*
2160		 * We call the notify macro here because, when using secondary
2161		 * mmu page tables (such as kvm shadow page tables), we want the
2162		 * new page to be mapped directly into the secondary page table.
2163		 */
2164		set_pte_at_notify(mm, address, page_table, entry);
2165		update_mmu_cache(vma, address, page_table);
2166		if (old_page) {
2167			/*
2168			 * Only after switching the pte to the new page may
2169			 * we remove the mapcount here. Otherwise another
2170			 * process may come and find the rmap count decremented
2171			 * before the pte is switched to the new page, and
2172			 * "reuse" the old page writing into it while our pte
2173			 * here still points into it and can be read by other
2174			 * threads.
2175			 *
2176			 * The critical issue is to order this
2177			 * page_remove_rmap with the ptp_clear_flush above.
2178			 * Those stores are ordered by (if nothing else,)
2179			 * the barrier present in the atomic_add_negative
2180			 * in page_remove_rmap.
2181			 *
2182			 * Then the TLB flush in ptep_clear_flush ensures that
2183			 * no process can access the old page before the
2184			 * decremented mapcount is visible. And the old page
2185			 * cannot be reused until after the decremented
2186			 * mapcount is visible. So transitively, TLBs to
2187			 * old page will be flushed before it can be reused.
2188			 */
2189			page_remove_rmap(old_page);
2190		}
2191
2192		/* Free the old page.. */
2193		new_page = old_page;
2194		page_copied = 1;
2195	} else {
2196		mem_cgroup_cancel_charge(new_page, memcg);
2197	}
2198
2199	if (new_page)
2200		page_cache_release(new_page);
2201
2202	pte_unmap_unlock(page_table, ptl);
2203	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2204	if (old_page) {
2205		/*
2206		 * Don't let another task, with possibly unlocked vma,
2207		 * keep the mlocked page.
2208		 */
2209		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2210			lock_page(old_page);	/* LRU manipulation */
2211			munlock_vma_page(old_page);
2212			unlock_page(old_page);
2213		}
2214		page_cache_release(old_page);
2215	}
2216	return page_copied ? VM_FAULT_WRITE : 0;
2217oom_free_new:
2218	page_cache_release(new_page);
2219oom:
2220	if (old_page)
2221		page_cache_release(old_page);
2222	return VM_FAULT_OOM;
2223}
2224
2225/*
2226 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2227 * mapping
2228 */
2229static int wp_pfn_shared(struct mm_struct *mm,
2230			struct vm_area_struct *vma, unsigned long address,
2231			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2232			pmd_t *pmd)
2233{
2234	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2235		struct vm_fault vmf = {
2236			.page = NULL,
2237			.pgoff = linear_page_index(vma, address),
2238			.virtual_address = (void __user *)(address & PAGE_MASK),
2239			.flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2240		};
2241		int ret;
2242
2243		pte_unmap_unlock(page_table, ptl);
2244		ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2245		if (ret & VM_FAULT_ERROR)
2246			return ret;
2247		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2248		/*
2249		 * We might have raced with another page fault while we
2250		 * released the pte_offset_map_lock.
2251		 */
2252		if (!pte_same(*page_table, orig_pte)) {
2253			pte_unmap_unlock(page_table, ptl);
2254			return 0;
2255		}
2256	}
2257	return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2258			     NULL, 0, 0);
2259}
2260
2261static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2262			  unsigned long address, pte_t *page_table,
2263			  pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2264			  struct page *old_page)
2265	__releases(ptl)
2266{
2267	int page_mkwrite = 0;
2268
2269	page_cache_get(old_page);
2270
2271	/*
2272	 * Only catch write-faults on shared writable pages,
2273	 * read-only shared pages can get COWed by
2274	 * get_user_pages(.write=1, .force=1).
2275	 */
2276	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2277		int tmp;
2278
2279		pte_unmap_unlock(page_table, ptl);
2280		tmp = do_page_mkwrite(vma, old_page, address);
2281		if (unlikely(!tmp || (tmp &
2282				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2283			page_cache_release(old_page);
2284			return tmp;
2285		}
2286		/*
2287		 * Since we dropped the lock we need to revalidate
2288		 * the PTE as someone else may have changed it.  If
2289		 * they did, we just return, as we can count on the
2290		 * MMU to tell us if they didn't also make it writable.
2291		 */
2292		page_table = pte_offset_map_lock(mm, pmd, address,
2293						 &ptl);
2294		if (!pte_same(*page_table, orig_pte)) {
2295			unlock_page(old_page);
2296			pte_unmap_unlock(page_table, ptl);
2297			page_cache_release(old_page);
2298			return 0;
2299		}
2300		page_mkwrite = 1;
2301	}
2302
2303	return wp_page_reuse(mm, vma, address, page_table, ptl,
2304			     orig_pte, old_page, page_mkwrite, 1);
2305}
2306
2307/*
2308 * This routine handles present pages, when users try to write
2309 * to a shared page. It is done by copying the page to a new address
2310 * and decrementing the shared-page counter for the old page.
2311 *
2312 * Note that this routine assumes that the protection checks have been
2313 * done by the caller (the low-level page fault routine in most cases).
2314 * Thus we can safely just mark it writable once we've done any necessary
2315 * COW.
2316 *
2317 * We also mark the page dirty at this point even though the page will
2318 * change only once the write actually happens. This avoids a few races,
2319 * and potentially makes it more efficient.
2320 *
2321 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2322 * but allow concurrent faults), with pte both mapped and locked.
2323 * We return with mmap_sem still held, but pte unmapped and unlocked.
2324 */
2325static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2326		unsigned long address, pte_t *page_table, pmd_t *pmd,
2327		spinlock_t *ptl, pte_t orig_pte)
2328	__releases(ptl)
2329{
2330	struct page *old_page;
2331
2332	old_page = vm_normal_page(vma, address, orig_pte);
2333	if (!old_page) {
2334		/*
2335		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2336		 * VM_PFNMAP VMA.
2337		 *
2338		 * We should not cow pages in a shared writeable mapping.
2339		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2340		 */
2341		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2342				     (VM_WRITE|VM_SHARED))
2343			return wp_pfn_shared(mm, vma, address, page_table, ptl,
2344					     orig_pte, pmd);
2345
2346		pte_unmap_unlock(page_table, ptl);
2347		return wp_page_copy(mm, vma, address, page_table, pmd,
2348				    orig_pte, old_page);
2349	}
2350
2351	/*
2352	 * Take out anonymous pages first, anonymous shared vmas are
2353	 * not dirty accountable.
2354	 */
2355	if (PageAnon(old_page) && !PageKsm(old_page)) {
2356		if (!trylock_page(old_page)) {
2357			page_cache_get(old_page);
2358			pte_unmap_unlock(page_table, ptl);
2359			lock_page(old_page);
2360			page_table = pte_offset_map_lock(mm, pmd, address,
2361							 &ptl);
2362			if (!pte_same(*page_table, orig_pte)) {
2363				unlock_page(old_page);
2364				pte_unmap_unlock(page_table, ptl);
2365				page_cache_release(old_page);
2366				return 0;
2367			}
2368			page_cache_release(old_page);
2369		}
2370		if (reuse_swap_page(old_page)) {
2371			/*
2372			 * The page is all ours.  Move it to our anon_vma so
2373			 * the rmap code will not search our parent or siblings.
2374			 * Protected against the rmap code by the page lock.
2375			 */
2376			page_move_anon_rmap(old_page, vma, address);
2377			unlock_page(old_page);
2378			return wp_page_reuse(mm, vma, address, page_table, ptl,
2379					     orig_pte, old_page, 0, 0);
2380		}
2381		unlock_page(old_page);
2382	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2383					(VM_WRITE|VM_SHARED))) {
2384		return wp_page_shared(mm, vma, address, page_table, pmd,
2385				      ptl, orig_pte, old_page);
2386	}
2387
2388	/*
2389	 * Ok, we need to copy. Oh, well..
2390	 */
2391	page_cache_get(old_page);
2392
2393	pte_unmap_unlock(page_table, ptl);
2394	return wp_page_copy(mm, vma, address, page_table, pmd,
2395			    orig_pte, old_page);
2396}
2397
2398static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2399		unsigned long start_addr, unsigned long end_addr,
2400		struct zap_details *details)
2401{
2402	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2403}
2404
2405static inline void unmap_mapping_range_tree(struct rb_root *root,
2406					    struct zap_details *details)
2407{
2408	struct vm_area_struct *vma;
2409	pgoff_t vba, vea, zba, zea;
2410
2411	vma_interval_tree_foreach(vma, root,
2412			details->first_index, details->last_index) {
2413
2414		vba = vma->vm_pgoff;
2415		vea = vba + vma_pages(vma) - 1;
2416		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2417		zba = details->first_index;
2418		if (zba < vba)
2419			zba = vba;
2420		zea = details->last_index;
2421		if (zea > vea)
2422			zea = vea;
2423
2424		unmap_mapping_range_vma(vma,
2425			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2426			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2427				details);
2428	}
2429}
2430
2431/**
2432 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2433 * address_space corresponding to the specified page range in the underlying
2434 * file.
2435 *
2436 * @mapping: the address space containing mmaps to be unmapped.
2437 * @holebegin: byte in first page to unmap, relative to the start of
2438 * the underlying file.  This will be rounded down to a PAGE_SIZE
2439 * boundary.  Note that this is different from truncate_pagecache(), which
2440 * must keep the partial page.  In contrast, we must get rid of
2441 * partial pages.
2442 * @holelen: size of prospective hole in bytes.  This will be rounded
2443 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2444 * end of the file.
2445 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2446 * but 0 when invalidating pagecache, don't throw away private data.
2447 */
2448void unmap_mapping_range(struct address_space *mapping,
2449		loff_t const holebegin, loff_t const holelen, int even_cows)
2450{
2451	struct zap_details details;
2452	pgoff_t hba = holebegin >> PAGE_SHIFT;
2453	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2454
2455	/* Check for overflow. */
2456	if (sizeof(holelen) > sizeof(hlen)) {
2457		long long holeend =
2458			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2459		if (holeend & ~(long long)ULONG_MAX)
2460			hlen = ULONG_MAX - hba + 1;
2461	}
2462
2463	details.check_mapping = even_cows? NULL: mapping;
2464	details.first_index = hba;
2465	details.last_index = hba + hlen - 1;
2466	if (details.last_index < details.first_index)
2467		details.last_index = ULONG_MAX;
2468
2469
2470	/* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2471	i_mmap_lock_write(mapping);
2472	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2473		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2474	i_mmap_unlock_write(mapping);
2475}
2476EXPORT_SYMBOL(unmap_mapping_range);
2477
2478/*
2479 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2480 * but allow concurrent faults), and pte mapped but not yet locked.
2481 * We return with pte unmapped and unlocked.
2482 *
2483 * We return with the mmap_sem locked or unlocked in the same cases
2484 * as does filemap_fault().
2485 */
2486static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2487		unsigned long address, pte_t *page_table, pmd_t *pmd,
2488		unsigned int flags, pte_t orig_pte)
2489{
2490	spinlock_t *ptl;
2491	struct page *page, *swapcache;
2492	struct mem_cgroup *memcg;
2493	swp_entry_t entry;
2494	pte_t pte;
2495	int locked;
2496	int exclusive = 0;
2497	int ret = 0;
2498
2499	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2500		goto out;
2501
2502	entry = pte_to_swp_entry(orig_pte);
2503	if (unlikely(non_swap_entry(entry))) {
2504		if (is_migration_entry(entry)) {
2505			migration_entry_wait(mm, pmd, address);
2506		} else if (is_hwpoison_entry(entry)) {
2507			ret = VM_FAULT_HWPOISON;
2508		} else {
2509			print_bad_pte(vma, address, orig_pte, NULL);
2510			ret = VM_FAULT_SIGBUS;
2511		}
2512		goto out;
2513	}
2514	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2515	page = lookup_swap_cache(entry);
2516	if (!page) {
2517		page = swapin_readahead(entry,
2518					GFP_HIGHUSER_MOVABLE, vma, address);
2519		if (!page) {
2520			/*
2521			 * Back out if somebody else faulted in this pte
2522			 * while we released the pte lock.
2523			 */
2524			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2525			if (likely(pte_same(*page_table, orig_pte)))
2526				ret = VM_FAULT_OOM;
2527			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2528			goto unlock;
2529		}
2530
2531		/* Had to read the page from swap area: Major fault */
2532		ret = VM_FAULT_MAJOR;
2533		count_vm_event(PGMAJFAULT);
2534		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2535	} else if (PageHWPoison(page)) {
2536		/*
2537		 * hwpoisoned dirty swapcache pages are kept for killing
2538		 * owner processes (which may be unknown at hwpoison time)
2539		 */
2540		ret = VM_FAULT_HWPOISON;
2541		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2542		swapcache = page;
2543		goto out_release;
2544	}
2545
2546	swapcache = page;
2547	locked = lock_page_or_retry(page, mm, flags);
2548
2549	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2550	if (!locked) {
2551		ret |= VM_FAULT_RETRY;
2552		goto out_release;
2553	}
2554
2555	/*
2556	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2557	 * release the swapcache from under us.  The page pin, and pte_same
2558	 * test below, are not enough to exclude that.  Even if it is still
2559	 * swapcache, we need to check that the page's swap has not changed.
2560	 */
2561	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2562		goto out_page;
2563
2564	page = ksm_might_need_to_copy(page, vma, address);
2565	if (unlikely(!page)) {
2566		ret = VM_FAULT_OOM;
2567		page = swapcache;
2568		goto out_page;
2569	}
2570
2571	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2572		ret = VM_FAULT_OOM;
2573		goto out_page;
2574	}
2575
2576	/*
2577	 * Back out if somebody else already faulted in this pte.
2578	 */
2579	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2580	if (unlikely(!pte_same(*page_table, orig_pte)))
2581		goto out_nomap;
2582
2583	if (unlikely(!PageUptodate(page))) {
2584		ret = VM_FAULT_SIGBUS;
2585		goto out_nomap;
2586	}
2587
2588	/*
2589	 * The page isn't present yet, go ahead with the fault.
2590	 *
2591	 * Be careful about the sequence of operations here.
2592	 * To get its accounting right, reuse_swap_page() must be called
2593	 * while the page is counted on swap but not yet in mapcount i.e.
2594	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2595	 * must be called after the swap_free(), or it will never succeed.
2596	 */
2597
2598	inc_mm_counter_fast(mm, MM_ANONPAGES);
2599	dec_mm_counter_fast(mm, MM_SWAPENTS);
2600	pte = mk_pte(page, vma->vm_page_prot);
2601	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2602		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2603		flags &= ~FAULT_FLAG_WRITE;
2604		ret |= VM_FAULT_WRITE;
2605		exclusive = 1;
2606	}
2607	flush_icache_page(vma, page);
2608	if (pte_swp_soft_dirty(orig_pte))
2609		pte = pte_mksoft_dirty(pte);
2610	set_pte_at(mm, address, page_table, pte);
2611	if (page == swapcache) {
2612		do_page_add_anon_rmap(page, vma, address, exclusive);
2613		mem_cgroup_commit_charge(page, memcg, true);
2614	} else { /* ksm created a completely new copy */
2615		page_add_new_anon_rmap(page, vma, address);
2616		mem_cgroup_commit_charge(page, memcg, false);
2617		lru_cache_add_active_or_unevictable(page, vma);
2618	}
2619
2620	swap_free(entry);
2621	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2622		try_to_free_swap(page);
2623	unlock_page(page);
2624	if (page != swapcache) {
2625		/*
2626		 * Hold the lock to avoid the swap entry to be reused
2627		 * until we take the PT lock for the pte_same() check
2628		 * (to avoid false positives from pte_same). For
2629		 * further safety release the lock after the swap_free
2630		 * so that the swap count won't change under a
2631		 * parallel locked swapcache.
2632		 */
2633		unlock_page(swapcache);
2634		page_cache_release(swapcache);
2635	}
2636
2637	if (flags & FAULT_FLAG_WRITE) {
2638		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2639		if (ret & VM_FAULT_ERROR)
2640			ret &= VM_FAULT_ERROR;
2641		goto out;
2642	}
2643
2644	/* No need to invalidate - it was non-present before */
2645	update_mmu_cache(vma, address, page_table);
2646unlock:
2647	pte_unmap_unlock(page_table, ptl);
2648out:
2649	return ret;
2650out_nomap:
2651	mem_cgroup_cancel_charge(page, memcg);
2652	pte_unmap_unlock(page_table, ptl);
2653out_page:
2654	unlock_page(page);
2655out_release:
2656	page_cache_release(page);
2657	if (page != swapcache) {
2658		unlock_page(swapcache);
2659		page_cache_release(swapcache);
2660	}
2661	return ret;
2662}
2663
2664/*
2665 * This is like a special single-page "expand_{down|up}wards()",
2666 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2667 * doesn't hit another vma.
2668 */
2669static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2670{
2671	address &= PAGE_MASK;
2672	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2673		struct vm_area_struct *prev = vma->vm_prev;
2674
2675		/*
2676		 * Is there a mapping abutting this one below?
2677		 *
2678		 * That's only ok if it's the same stack mapping
2679		 * that has gotten split..
2680		 */
2681		if (prev && prev->vm_end == address)
2682			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2683
2684		return expand_downwards(vma, address - PAGE_SIZE);
2685	}
2686	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2687		struct vm_area_struct *next = vma->vm_next;
2688
2689		/* As VM_GROWSDOWN but s/below/above/ */
2690		if (next && next->vm_start == address + PAGE_SIZE)
2691			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2692
2693		return expand_upwards(vma, address + PAGE_SIZE);
2694	}
2695	return 0;
2696}
2697
2698/*
2699 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2700 * but allow concurrent faults), and pte mapped but not yet locked.
2701 * We return with mmap_sem still held, but pte unmapped and unlocked.
2702 */
2703static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2704		unsigned long address, pte_t *page_table, pmd_t *pmd,
2705		unsigned int flags)
2706{
2707	struct mem_cgroup *memcg;
2708	struct page *page;
2709	spinlock_t *ptl;
2710	pte_t entry;
2711
2712	pte_unmap(page_table);
2713
2714	/* File mapping without ->vm_ops ? */
2715	if (vma->vm_flags & VM_SHARED)
2716		return VM_FAULT_SIGBUS;
2717
2718	/* Check if we need to add a guard page to the stack */
2719	if (check_stack_guard_page(vma, address) < 0)
2720		return VM_FAULT_SIGSEGV;
2721
2722	/* Use the zero-page for reads */
2723	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2724		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2725						vma->vm_page_prot));
2726		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2727		if (!pte_none(*page_table))
2728			goto unlock;
2729		/* Deliver the page fault to userland, check inside PT lock */
2730		if (userfaultfd_missing(vma)) {
2731			pte_unmap_unlock(page_table, ptl);
2732			return handle_userfault(vma, address, flags,
2733						VM_UFFD_MISSING);
2734		}
2735		goto setpte;
2736	}
2737
2738	/* Allocate our own private page. */
2739	if (unlikely(anon_vma_prepare(vma)))
2740		goto oom;
2741	page = alloc_zeroed_user_highpage_movable(vma, address);
2742	if (!page)
2743		goto oom;
2744
2745	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2746		goto oom_free_page;
2747
2748	/*
2749	 * The memory barrier inside __SetPageUptodate makes sure that
2750	 * preceeding stores to the page contents become visible before
2751	 * the set_pte_at() write.
2752	 */
2753	__SetPageUptodate(page);
2754
2755	entry = mk_pte(page, vma->vm_page_prot);
2756	if (vma->vm_flags & VM_WRITE)
2757		entry = pte_mkwrite(pte_mkdirty(entry));
2758
2759	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2760	if (!pte_none(*page_table))
2761		goto release;
2762
2763	/* Deliver the page fault to userland, check inside PT lock */
2764	if (userfaultfd_missing(vma)) {
2765		pte_unmap_unlock(page_table, ptl);
2766		mem_cgroup_cancel_charge(page, memcg);
2767		page_cache_release(page);
2768		return handle_userfault(vma, address, flags,
2769					VM_UFFD_MISSING);
2770	}
2771
2772	inc_mm_counter_fast(mm, MM_ANONPAGES);
2773	page_add_new_anon_rmap(page, vma, address);
2774	mem_cgroup_commit_charge(page, memcg, false);
2775	lru_cache_add_active_or_unevictable(page, vma);
2776setpte:
2777	set_pte_at(mm, address, page_table, entry);
2778
2779	/* No need to invalidate - it was non-present before */
2780	update_mmu_cache(vma, address, page_table);
2781unlock:
2782	pte_unmap_unlock(page_table, ptl);
2783	return 0;
2784release:
2785	mem_cgroup_cancel_charge(page, memcg);
2786	page_cache_release(page);
2787	goto unlock;
2788oom_free_page:
2789	page_cache_release(page);
2790oom:
2791	return VM_FAULT_OOM;
2792}
2793
2794/*
2795 * The mmap_sem must have been held on entry, and may have been
2796 * released depending on flags and vma->vm_ops->fault() return value.
2797 * See filemap_fault() and __lock_page_retry().
2798 */
2799static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2800			pgoff_t pgoff, unsigned int flags,
2801			struct page *cow_page, struct page **page)
2802{
2803	struct vm_fault vmf;
2804	int ret;
2805
2806	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2807	vmf.pgoff = pgoff;
2808	vmf.flags = flags;
2809	vmf.page = NULL;
2810	vmf.cow_page = cow_page;
2811
2812	ret = vma->vm_ops->fault(vma, &vmf);
2813	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2814		return ret;
2815	if (!vmf.page)
2816		goto out;
2817
2818	if (unlikely(PageHWPoison(vmf.page))) {
2819		if (ret & VM_FAULT_LOCKED)
2820			unlock_page(vmf.page);
2821		page_cache_release(vmf.page);
2822		return VM_FAULT_HWPOISON;
2823	}
2824
2825	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2826		lock_page(vmf.page);
2827	else
2828		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2829
2830 out:
2831	*page = vmf.page;
2832	return ret;
2833}
2834
2835/**
2836 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2837 *
2838 * @vma: virtual memory area
2839 * @address: user virtual address
2840 * @page: page to map
2841 * @pte: pointer to target page table entry
2842 * @write: true, if new entry is writable
2843 * @anon: true, if it's anonymous page
2844 *
2845 * Caller must hold page table lock relevant for @pte.
2846 *
2847 * Target users are page handler itself and implementations of
2848 * vm_ops->map_pages.
2849 */
2850void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2851		struct page *page, pte_t *pte, bool write, bool anon)
2852{
2853	pte_t entry;
2854
2855	flush_icache_page(vma, page);
2856	entry = mk_pte(page, vma->vm_page_prot);
2857	if (write)
2858		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2859	if (anon) {
2860		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2861		page_add_new_anon_rmap(page, vma, address);
2862	} else {
2863		inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2864		page_add_file_rmap(page);
2865	}
2866	set_pte_at(vma->vm_mm, address, pte, entry);
2867
2868	/* no need to invalidate: a not-present page won't be cached */
2869	update_mmu_cache(vma, address, pte);
2870}
2871
2872static unsigned long fault_around_bytes __read_mostly =
2873	rounddown_pow_of_two(65536);
2874
2875#ifdef CONFIG_DEBUG_FS
2876static int fault_around_bytes_get(void *data, u64 *val)
2877{
2878	*val = fault_around_bytes;
2879	return 0;
2880}
2881
2882/*
2883 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2884 * rounded down to nearest page order. It's what do_fault_around() expects to
2885 * see.
2886 */
2887static int fault_around_bytes_set(void *data, u64 val)
2888{
2889	if (val / PAGE_SIZE > PTRS_PER_PTE)
2890		return -EINVAL;
2891	if (val > PAGE_SIZE)
2892		fault_around_bytes = rounddown_pow_of_two(val);
2893	else
2894		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2895	return 0;
2896}
2897DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2898		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2899
2900static int __init fault_around_debugfs(void)
2901{
2902	void *ret;
2903
2904	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2905			&fault_around_bytes_fops);
2906	if (!ret)
2907		pr_warn("Failed to create fault_around_bytes in debugfs");
2908	return 0;
2909}
2910late_initcall(fault_around_debugfs);
2911#endif
2912
2913/*
2914 * do_fault_around() tries to map few pages around the fault address. The hope
2915 * is that the pages will be needed soon and this will lower the number of
2916 * faults to handle.
2917 *
2918 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2919 * not ready to be mapped: not up-to-date, locked, etc.
2920 *
2921 * This function is called with the page table lock taken. In the split ptlock
2922 * case the page table lock only protects only those entries which belong to
2923 * the page table corresponding to the fault address.
2924 *
2925 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2926 * only once.
2927 *
2928 * fault_around_pages() defines how many pages we'll try to map.
2929 * do_fault_around() expects it to return a power of two less than or equal to
2930 * PTRS_PER_PTE.
2931 *
2932 * The virtual address of the area that we map is naturally aligned to the
2933 * fault_around_pages() value (and therefore to page order).  This way it's
2934 * easier to guarantee that we don't cross page table boundaries.
2935 */
2936static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2937		pte_t *pte, pgoff_t pgoff, unsigned int flags)
2938{
2939	unsigned long start_addr, nr_pages, mask;
2940	pgoff_t max_pgoff;
2941	struct vm_fault vmf;
2942	int off;
2943
2944	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2945	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2946
2947	start_addr = max(address & mask, vma->vm_start);
2948	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2949	pte -= off;
2950	pgoff -= off;
2951
2952	/*
2953	 *  max_pgoff is either end of page table or end of vma
2954	 *  or fault_around_pages() from pgoff, depending what is nearest.
2955	 */
2956	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2957		PTRS_PER_PTE - 1;
2958	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2959			pgoff + nr_pages - 1);
2960
2961	/* Check if it makes any sense to call ->map_pages */
2962	while (!pte_none(*pte)) {
2963		if (++pgoff > max_pgoff)
2964			return;
2965		start_addr += PAGE_SIZE;
2966		if (start_addr >= vma->vm_end)
2967			return;
2968		pte++;
2969	}
2970
2971	vmf.virtual_address = (void __user *) start_addr;
2972	vmf.pte = pte;
2973	vmf.pgoff = pgoff;
2974	vmf.max_pgoff = max_pgoff;
2975	vmf.flags = flags;
2976	vma->vm_ops->map_pages(vma, &vmf);
2977}
2978
2979static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2980		unsigned long address, pmd_t *pmd,
2981		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2982{
2983	struct page *fault_page;
2984	spinlock_t *ptl;
2985	pte_t *pte;
2986	int ret = 0;
2987
2988	/*
2989	 * Let's call ->map_pages() first and use ->fault() as fallback
2990	 * if page by the offset is not ready to be mapped (cold cache or
2991	 * something).
2992	 */
2993	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2994		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2995		do_fault_around(vma, address, pte, pgoff, flags);
2996		if (!pte_same(*pte, orig_pte))
2997			goto unlock_out;
2998		pte_unmap_unlock(pte, ptl);
2999	}
3000
3001	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3002	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3003		return ret;
3004
3005	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3006	if (unlikely(!pte_same(*pte, orig_pte))) {
3007		pte_unmap_unlock(pte, ptl);
3008		unlock_page(fault_page);
3009		page_cache_release(fault_page);
3010		return ret;
3011	}
3012	do_set_pte(vma, address, fault_page, pte, false, false);
3013	unlock_page(fault_page);
3014unlock_out:
3015	pte_unmap_unlock(pte, ptl);
3016	return ret;
3017}
3018
3019static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3020		unsigned long address, pmd_t *pmd,
3021		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3022{
3023	struct page *fault_page, *new_page;
3024	struct mem_cgroup *memcg;
3025	spinlock_t *ptl;
3026	pte_t *pte;
3027	int ret;
3028
3029	if (unlikely(anon_vma_prepare(vma)))
3030		return VM_FAULT_OOM;
3031
3032	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3033	if (!new_page)
3034		return VM_FAULT_OOM;
3035
3036	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
3037		page_cache_release(new_page);
3038		return VM_FAULT_OOM;
3039	}
3040
3041	ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3042	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3043		goto uncharge_out;
3044
3045	if (fault_page)
3046		copy_user_highpage(new_page, fault_page, address, vma);
3047	__SetPageUptodate(new_page);
3048
3049	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3050	if (unlikely(!pte_same(*pte, orig_pte))) {
3051		pte_unmap_unlock(pte, ptl);
3052		if (fault_page) {
3053			unlock_page(fault_page);
3054			page_cache_release(fault_page);
3055		} else {
3056			/*
3057			 * The fault handler has no page to lock, so it holds
3058			 * i_mmap_lock for read to protect against truncate.
3059			 */
3060			i_mmap_unlock_read(vma->vm_file->f_mapping);
3061		}
3062		goto uncharge_out;
3063	}
3064	do_set_pte(vma, address, new_page, pte, true, true);
3065	mem_cgroup_commit_charge(new_page, memcg, false);
3066	lru_cache_add_active_or_unevictable(new_page, vma);
3067	pte_unmap_unlock(pte, ptl);
3068	if (fault_page) {
3069		unlock_page(fault_page);
3070		page_cache_release(fault_page);
3071	} else {
3072		/*
3073		 * The fault handler has no page to lock, so it holds
3074		 * i_mmap_lock for read to protect against truncate.
3075		 */
3076		i_mmap_unlock_read(vma->vm_file->f_mapping);
3077	}
3078	return ret;
3079uncharge_out:
3080	mem_cgroup_cancel_charge(new_page, memcg);
3081	page_cache_release(new_page);
3082	return ret;
3083}
3084
3085static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3086		unsigned long address, pmd_t *pmd,
3087		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3088{
3089	struct page *fault_page;
3090	struct address_space *mapping;
3091	spinlock_t *ptl;
3092	pte_t *pte;
3093	int dirtied = 0;
3094	int ret, tmp;
3095
3096	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3097	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3098		return ret;
3099
3100	/*
3101	 * Check if the backing address space wants to know that the page is
3102	 * about to become writable
3103	 */
3104	if (vma->vm_ops->page_mkwrite) {
3105		unlock_page(fault_page);
3106		tmp = do_page_mkwrite(vma, fault_page, address);
3107		if (unlikely(!tmp ||
3108				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3109			page_cache_release(fault_page);
3110			return tmp;
3111		}
3112	}
3113
3114	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3115	if (unlikely(!pte_same(*pte, orig_pte))) {
3116		pte_unmap_unlock(pte, ptl);
3117		unlock_page(fault_page);
3118		page_cache_release(fault_page);
3119		return ret;
3120	}
3121	do_set_pte(vma, address, fault_page, pte, true, false);
3122	pte_unmap_unlock(pte, ptl);
3123
3124	if (set_page_dirty(fault_page))
3125		dirtied = 1;
3126	/*
3127	 * Take a local copy of the address_space - page.mapping may be zeroed
3128	 * by truncate after unlock_page().   The address_space itself remains
3129	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3130	 * release semantics to prevent the compiler from undoing this copying.
3131	 */
3132	mapping = fault_page->mapping;
3133	unlock_page(fault_page);
3134	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3135		/*
3136		 * Some device drivers do not set page.mapping but still
3137		 * dirty their pages
3138		 */
3139		balance_dirty_pages_ratelimited(mapping);
3140	}
3141
3142	if (!vma->vm_ops->page_mkwrite)
3143		file_update_time(vma->vm_file);
3144
3145	return ret;
3146}
3147
3148/*
3149 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3150 * but allow concurrent faults).
3151 * The mmap_sem may have been released depending on flags and our
3152 * return value.  See filemap_fault() and __lock_page_or_retry().
3153 */
3154static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3155		unsigned long address, pte_t *page_table, pmd_t *pmd,
3156		unsigned int flags, pte_t orig_pte)
3157{
3158	pgoff_t pgoff = (((address & PAGE_MASK)
3159			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3160
3161	pte_unmap(page_table);
3162	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3163	if (!vma->vm_ops->fault)
3164		return VM_FAULT_SIGBUS;
3165	if (!(flags & FAULT_FLAG_WRITE))
3166		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3167				orig_pte);
3168	if (!(vma->vm_flags & VM_SHARED))
3169		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3170				orig_pte);
3171	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3172}
3173
3174static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3175				unsigned long addr, int page_nid,
3176				int *flags)
3177{
3178	get_page(page);
3179
3180	count_vm_numa_event(NUMA_HINT_FAULTS);
3181	if (page_nid == numa_node_id()) {
3182		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3183		*flags |= TNF_FAULT_LOCAL;
3184	}
3185
3186	return mpol_misplaced(page, vma, addr);
3187}
3188
3189static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3190		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3191{
3192	struct page *page = NULL;
3193	spinlock_t *ptl;
3194	int page_nid = -1;
3195	int last_cpupid;
3196	int target_nid;
3197	bool migrated = false;
3198	bool was_writable = pte_write(pte);
3199	int flags = 0;
3200
3201	/* A PROT_NONE fault should not end up here */
3202	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3203
3204	/*
3205	* The "pte" at this point cannot be used safely without
3206	* validation through pte_unmap_same(). It's of NUMA type but
3207	* the pfn may be screwed if the read is non atomic.
3208	*
3209	* We can safely just do a "set_pte_at()", because the old
3210	* page table entry is not accessible, so there would be no
3211	* concurrent hardware modifications to the PTE.
3212	*/
3213	ptl = pte_lockptr(mm, pmd);
3214	spin_lock(ptl);
3215	if (unlikely(!pte_same(*ptep, pte))) {
3216		pte_unmap_unlock(ptep, ptl);
3217		goto out;
3218	}
3219
3220	/* Make it present again */
3221	pte = pte_modify(pte, vma->vm_page_prot);
3222	pte = pte_mkyoung(pte);
3223	if (was_writable)
3224		pte = pte_mkwrite(pte);
3225	set_pte_at(mm, addr, ptep, pte);
3226	update_mmu_cache(vma, addr, ptep);
3227
3228	page = vm_normal_page(vma, addr, pte);
3229	if (!page) {
3230		pte_unmap_unlock(ptep, ptl);
3231		return 0;
3232	}
3233
3234	/*
3235	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3236	 * much anyway since they can be in shared cache state. This misses
3237	 * the case where a mapping is writable but the process never writes
3238	 * to it but pte_write gets cleared during protection updates and
3239	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3240	 * background writeback, dirty balancing and application behaviour.
3241	 */
3242	if (!(vma->vm_flags & VM_WRITE))
3243		flags |= TNF_NO_GROUP;
3244
3245	/*
3246	 * Flag if the page is shared between multiple address spaces. This
3247	 * is later used when determining whether to group tasks together
3248	 */
3249	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3250		flags |= TNF_SHARED;
3251
3252	last_cpupid = page_cpupid_last(page);
3253	page_nid = page_to_nid(page);
3254	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3255	pte_unmap_unlock(ptep, ptl);
3256	if (target_nid == -1) {
3257		put_page(page);
3258		goto out;
3259	}
3260
3261	/* Migrate to the requested node */
3262	migrated = migrate_misplaced_page(page, vma, target_nid);
3263	if (migrated) {
3264		page_nid = target_nid;
3265		flags |= TNF_MIGRATED;
3266	} else
3267		flags |= TNF_MIGRATE_FAIL;
3268
3269out:
3270	if (page_nid != -1)
3271		task_numa_fault(last_cpupid, page_nid, 1, flags);
3272	return 0;
3273}
3274
3275static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3276			unsigned long address, pmd_t *pmd, unsigned int flags)
3277{
3278	if (vma_is_anonymous(vma))
3279		return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3280	if (vma->vm_ops->pmd_fault)
3281		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3282	return VM_FAULT_FALLBACK;
3283}
3284
3285static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3286			unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3287			unsigned int flags)
3288{
3289	if (vma_is_anonymous(vma))
3290		return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3291	if (vma->vm_ops->pmd_fault)
3292		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3293	return VM_FAULT_FALLBACK;
3294}
3295
3296/*
3297 * These routines also need to handle stuff like marking pages dirty
3298 * and/or accessed for architectures that don't do it in hardware (most
3299 * RISC architectures).  The early dirtying is also good on the i386.
3300 *
3301 * There is also a hook called "update_mmu_cache()" that architectures
3302 * with external mmu caches can use to update those (ie the Sparc or
3303 * PowerPC hashed page tables that act as extended TLBs).
3304 *
3305 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3306 * but allow concurrent faults), and pte mapped but not yet locked.
3307 * We return with pte unmapped and unlocked.
3308 *
3309 * The mmap_sem may have been released depending on flags and our
3310 * return value.  See filemap_fault() and __lock_page_or_retry().
3311 */
3312static int handle_pte_fault(struct mm_struct *mm,
3313		     struct vm_area_struct *vma, unsigned long address,
3314		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3315{
3316	pte_t entry;
3317	spinlock_t *ptl;
3318
3319	/*
3320	 * some architectures can have larger ptes than wordsize,
3321	 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3322	 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3323	 * The code below just needs a consistent view for the ifs and
3324	 * we later double check anyway with the ptl lock held. So here
3325	 * a barrier will do.
3326	 */
3327	entry = *pte;
3328	barrier();
3329	if (!pte_present(entry)) {
3330		if (pte_none(entry)) {
3331			if (vma_is_anonymous(vma))
3332				return do_anonymous_page(mm, vma, address,
3333							 pte, pmd, flags);
3334			else
3335				return do_fault(mm, vma, address, pte, pmd,
3336						flags, entry);
3337		}
3338		return do_swap_page(mm, vma, address,
3339					pte, pmd, flags, entry);
3340	}
3341
3342	if (pte_protnone(entry))
3343		return do_numa_page(mm, vma, address, entry, pte, pmd);
3344
3345	ptl = pte_lockptr(mm, pmd);
3346	spin_lock(ptl);
3347	if (unlikely(!pte_same(*pte, entry)))
3348		goto unlock;
3349	if (flags & FAULT_FLAG_WRITE) {
3350		if (!pte_write(entry))
3351			return do_wp_page(mm, vma, address,
3352					pte, pmd, ptl, entry);
3353		entry = pte_mkdirty(entry);
3354	}
3355	entry = pte_mkyoung(entry);
3356	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3357		update_mmu_cache(vma, address, pte);
3358	} else {
3359		/*
3360		 * This is needed only for protection faults but the arch code
3361		 * is not yet telling us if this is a protection fault or not.
3362		 * This still avoids useless tlb flushes for .text page faults
3363		 * with threads.
3364		 */
3365		if (flags & FAULT_FLAG_WRITE)
3366			flush_tlb_fix_spurious_fault(vma, address);
3367	}
3368unlock:
3369	pte_unmap_unlock(pte, ptl);
3370	return 0;
3371}
3372
3373/*
3374 * By the time we get here, we already hold the mm semaphore
3375 *
3376 * The mmap_sem may have been released depending on flags and our
3377 * return value.  See filemap_fault() and __lock_page_or_retry().
3378 */
3379static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3380			     unsigned long address, unsigned int flags)
3381{
3382	pgd_t *pgd;
3383	pud_t *pud;
3384	pmd_t *pmd;
3385	pte_t *pte;
3386
3387	if (unlikely(is_vm_hugetlb_page(vma)))
3388		return hugetlb_fault(mm, vma, address, flags);
3389
3390	pgd = pgd_offset(mm, address);
3391	pud = pud_alloc(mm, pgd, address);
3392	if (!pud)
3393		return VM_FAULT_OOM;
3394	pmd = pmd_alloc(mm, pud, address);
3395	if (!pmd)
3396		return VM_FAULT_OOM;
3397	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3398		int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3399		if (!(ret & VM_FAULT_FALLBACK))
3400			return ret;
3401	} else {
3402		pmd_t orig_pmd = *pmd;
3403		int ret;
3404
3405		barrier();
3406		if (pmd_trans_huge(orig_pmd)) {
3407			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3408
3409			/*
3410			 * If the pmd is splitting, return and retry the
3411			 * the fault.  Alternative: wait until the split
3412			 * is done, and goto retry.
3413			 */
3414			if (pmd_trans_splitting(orig_pmd))
3415				return 0;
3416
3417			if (pmd_protnone(orig_pmd))
3418				return do_huge_pmd_numa_page(mm, vma, address,
3419							     orig_pmd, pmd);
3420
3421			if (dirty && !pmd_write(orig_pmd)) {
3422				ret = wp_huge_pmd(mm, vma, address, pmd,
3423							orig_pmd, flags);
3424				if (!(ret & VM_FAULT_FALLBACK))
3425					return ret;
3426			} else {
3427				huge_pmd_set_accessed(mm, vma, address, pmd,
3428						      orig_pmd, dirty);
3429				return 0;
3430			}
3431		}
3432	}
3433
3434	/*
3435	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3436	 * run pte_offset_map on the pmd, if an huge pmd could
3437	 * materialize from under us from a different thread.
3438	 */
3439	if (unlikely(pmd_none(*pmd)) &&
3440	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3441		return VM_FAULT_OOM;
3442	/*
3443	 * If a huge pmd materialized under us just retry later.  Use
3444	 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3445	 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3446	 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3447	 * in a different thread of this mm, in turn leading to a misleading
3448	 * pmd_trans_huge() retval.  All we have to ensure is that it is a
3449	 * regular pmd that we can walk with pte_offset_map() and we can do that
3450	 * through an atomic read in C, which is what pmd_trans_unstable()
3451	 * provides.
3452	 */
3453	if (unlikely(pmd_trans_unstable(pmd)))
3454		return 0;
3455	/*
3456	 * A regular pmd is established and it can't morph into a huge pmd
3457	 * from under us anymore at this point because we hold the mmap_sem
3458	 * read mode and khugepaged takes it in write mode. So now it's
3459	 * safe to run pte_offset_map().
3460	 */
3461	pte = pte_offset_map(pmd, address);
3462
3463	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3464}
3465
3466/*
3467 * By the time we get here, we already hold the mm semaphore
3468 *
3469 * The mmap_sem may have been released depending on flags and our
3470 * return value.  See filemap_fault() and __lock_page_or_retry().
3471 */
3472int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3473		    unsigned long address, unsigned int flags)
3474{
3475	int ret;
3476
3477	__set_current_state(TASK_RUNNING);
3478
3479	count_vm_event(PGFAULT);
3480	mem_cgroup_count_vm_event(mm, PGFAULT);
3481
3482	/* do counter updates before entering really critical section. */
3483	check_sync_rss_stat(current);
3484
3485	/*
3486	 * Enable the memcg OOM handling for faults triggered in user
3487	 * space.  Kernel faults are handled more gracefully.
3488	 */
3489	if (flags & FAULT_FLAG_USER)
3490		mem_cgroup_oom_enable();
3491
3492	ret = __handle_mm_fault(mm, vma, address, flags);
3493
3494	if (flags & FAULT_FLAG_USER) {
3495		mem_cgroup_oom_disable();
3496                /*
3497                 * The task may have entered a memcg OOM situation but
3498                 * if the allocation error was handled gracefully (no
3499                 * VM_FAULT_OOM), there is no need to kill anything.
3500                 * Just clean up the OOM state peacefully.
3501                 */
3502                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3503                        mem_cgroup_oom_synchronize(false);
3504	}
3505
3506	return ret;
3507}
3508EXPORT_SYMBOL_GPL(handle_mm_fault);
3509
3510#ifndef __PAGETABLE_PUD_FOLDED
3511/*
3512 * Allocate page upper directory.
3513 * We've already handled the fast-path in-line.
3514 */
3515int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3516{
3517	pud_t *new = pud_alloc_one(mm, address);
3518	if (!new)
3519		return -ENOMEM;
3520
3521	smp_wmb(); /* See comment in __pte_alloc */
3522
3523	spin_lock(&mm->page_table_lock);
3524	if (pgd_present(*pgd))		/* Another has populated it */
3525		pud_free(mm, new);
3526	else
3527		pgd_populate(mm, pgd, new);
3528	spin_unlock(&mm->page_table_lock);
3529	return 0;
3530}
3531#endif /* __PAGETABLE_PUD_FOLDED */
3532
3533#ifndef __PAGETABLE_PMD_FOLDED
3534/*
3535 * Allocate page middle directory.
3536 * We've already handled the fast-path in-line.
3537 */
3538int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3539{
3540	pmd_t *new = pmd_alloc_one(mm, address);
3541	if (!new)
3542		return -ENOMEM;
3543
3544	smp_wmb(); /* See comment in __pte_alloc */
3545
3546	spin_lock(&mm->page_table_lock);
3547#ifndef __ARCH_HAS_4LEVEL_HACK
3548	if (!pud_present(*pud)) {
3549		mm_inc_nr_pmds(mm);
3550		pud_populate(mm, pud, new);
3551	} else	/* Another has populated it */
3552		pmd_free(mm, new);
3553#else
3554	if (!pgd_present(*pud)) {
3555		mm_inc_nr_pmds(mm);
3556		pgd_populate(mm, pud, new);
3557	} else /* Another has populated it */
3558		pmd_free(mm, new);
3559#endif /* __ARCH_HAS_4LEVEL_HACK */
3560	spin_unlock(&mm->page_table_lock);
3561	return 0;
3562}
3563#endif /* __PAGETABLE_PMD_FOLDED */
3564
3565static int __follow_pte(struct mm_struct *mm, unsigned long address,
3566		pte_t **ptepp, spinlock_t **ptlp)
3567{
3568	pgd_t *pgd;
3569	pud_t *pud;
3570	pmd_t *pmd;
3571	pte_t *ptep;
3572
3573	pgd = pgd_offset(mm, address);
3574	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3575		goto out;
3576
3577	pud = pud_offset(pgd, address);
3578	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3579		goto out;
3580
3581	pmd = pmd_offset(pud, address);
3582	VM_BUG_ON(pmd_trans_huge(*pmd));
3583	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3584		goto out;
3585
3586	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3587	if (pmd_huge(*pmd))
3588		goto out;
3589
3590	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3591	if (!ptep)
3592		goto out;
3593	if (!pte_present(*ptep))
3594		goto unlock;
3595	*ptepp = ptep;
3596	return 0;
3597unlock:
3598	pte_unmap_unlock(ptep, *ptlp);
3599out:
3600	return -EINVAL;
3601}
3602
3603static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3604			     pte_t **ptepp, spinlock_t **ptlp)
3605{
3606	int res;
3607
3608	/* (void) is needed to make gcc happy */
3609	(void) __cond_lock(*ptlp,
3610			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3611	return res;
3612}
3613
3614/**
3615 * follow_pfn - look up PFN at a user virtual address
3616 * @vma: memory mapping
3617 * @address: user virtual address
3618 * @pfn: location to store found PFN
3619 *
3620 * Only IO mappings and raw PFN mappings are allowed.
3621 *
3622 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3623 */
3624int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3625	unsigned long *pfn)
3626{
3627	int ret = -EINVAL;
3628	spinlock_t *ptl;
3629	pte_t *ptep;
3630
3631	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3632		return ret;
3633
3634	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3635	if (ret)
3636		return ret;
3637	*pfn = pte_pfn(*ptep);
3638	pte_unmap_unlock(ptep, ptl);
3639	return 0;
3640}
3641EXPORT_SYMBOL(follow_pfn);
3642
3643#ifdef CONFIG_HAVE_IOREMAP_PROT
3644int follow_phys(struct vm_area_struct *vma,
3645		unsigned long address, unsigned int flags,
3646		unsigned long *prot, resource_size_t *phys)
3647{
3648	int ret = -EINVAL;
3649	pte_t *ptep, pte;
3650	spinlock_t *ptl;
3651
3652	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3653		goto out;
3654
3655	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3656		goto out;
3657	pte = *ptep;
3658
3659	if ((flags & FOLL_WRITE) && !pte_write(pte))
3660		goto unlock;
3661
3662	*prot = pgprot_val(pte_pgprot(pte));
3663	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3664
3665	ret = 0;
3666unlock:
3667	pte_unmap_unlock(ptep, ptl);
3668out:
3669	return ret;
3670}
3671
3672int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3673			void *buf, int len, int write)
3674{
3675	resource_size_t phys_addr;
3676	unsigned long prot = 0;
3677	void __iomem *maddr;
3678	int offset = addr & (PAGE_SIZE-1);
3679
3680	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3681		return -EINVAL;
3682
3683	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3684	if (write)
3685		memcpy_toio(maddr + offset, buf, len);
3686	else
3687		memcpy_fromio(buf, maddr + offset, len);
3688	iounmap(maddr);
3689
3690	return len;
3691}
3692EXPORT_SYMBOL_GPL(generic_access_phys);
3693#endif
3694
3695/*
3696 * Access another process' address space as given in mm.  If non-NULL, use the
3697 * given task for page fault accounting.
3698 */
3699static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3700		unsigned long addr, void *buf, int len, int write)
3701{
3702	struct vm_area_struct *vma;
3703	void *old_buf = buf;
3704
3705	down_read(&mm->mmap_sem);
3706	/* ignore errors, just check how much was successfully transferred */
3707	while (len) {
3708		int bytes, ret, offset;
3709		void *maddr;
3710		struct page *page = NULL;
3711
3712		ret = get_user_pages(tsk, mm, addr, 1,
3713				write, 1, &page, &vma);
3714		if (ret <= 0) {
3715#ifndef CONFIG_HAVE_IOREMAP_PROT
3716			break;
3717#else
3718			/*
3719			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3720			 * we can access using slightly different code.
3721			 */
3722			vma = find_vma(mm, addr);
3723			if (!vma || vma->vm_start > addr)
3724				break;
3725			if (vma->vm_ops && vma->vm_ops->access)
3726				ret = vma->vm_ops->access(vma, addr, buf,
3727							  len, write);
3728			if (ret <= 0)
3729				break;
3730			bytes = ret;
3731#endif
3732		} else {
3733			bytes = len;
3734			offset = addr & (PAGE_SIZE-1);
3735			if (bytes > PAGE_SIZE-offset)
3736				bytes = PAGE_SIZE-offset;
3737
3738			maddr = kmap(page);
3739			if (write) {
3740				copy_to_user_page(vma, page, addr,
3741						  maddr + offset, buf, bytes);
3742				set_page_dirty_lock(page);
3743			} else {
3744				copy_from_user_page(vma, page, addr,
3745						    buf, maddr + offset, bytes);
3746			}
3747			kunmap(page);
3748			page_cache_release(page);
3749		}
3750		len -= bytes;
3751		buf += bytes;
3752		addr += bytes;
3753	}
3754	up_read(&mm->mmap_sem);
3755
3756	return buf - old_buf;
3757}
3758
3759/**
3760 * access_remote_vm - access another process' address space
3761 * @mm:		the mm_struct of the target address space
3762 * @addr:	start address to access
3763 * @buf:	source or destination buffer
3764 * @len:	number of bytes to transfer
3765 * @write:	whether the access is a write
3766 *
3767 * The caller must hold a reference on @mm.
3768 */
3769int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3770		void *buf, int len, int write)
3771{
3772	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3773}
3774
3775/*
3776 * Access another process' address space.
3777 * Source/target buffer must be kernel space,
3778 * Do not walk the page table directly, use get_user_pages
3779 */
3780int access_process_vm(struct task_struct *tsk, unsigned long addr,
3781		void *buf, int len, int write)
3782{
3783	struct mm_struct *mm;
3784	int ret;
3785
3786	mm = get_task_mm(tsk);
3787	if (!mm)
3788		return 0;
3789
3790	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3791	mmput(mm);
3792
3793	return ret;
3794}
3795
3796/*
3797 * Print the name of a VMA.
3798 */
3799void print_vma_addr(char *prefix, unsigned long ip)
3800{
3801	struct mm_struct *mm = current->mm;
3802	struct vm_area_struct *vma;
3803
3804	/*
3805	 * Do not print if we are in atomic
3806	 * contexts (in exception stacks, etc.):
3807	 */
3808	if (preempt_count())
3809		return;
3810
3811	down_read(&mm->mmap_sem);
3812	vma = find_vma(mm, ip);
3813	if (vma && vma->vm_file) {
3814		struct file *f = vma->vm_file;
3815		char *buf = (char *)__get_free_page(GFP_KERNEL);
3816		if (buf) {
3817			char *p;
3818
3819			p = file_path(f, buf, PAGE_SIZE);
3820			if (IS_ERR(p))
3821				p = "?";
3822			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3823					vma->vm_start,
3824					vma->vm_end - vma->vm_start);
3825			free_page((unsigned long)buf);
3826		}
3827	}
3828	up_read(&mm->mmap_sem);
3829}
3830
3831#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3832void __might_fault(const char *file, int line)
3833{
3834	/*
3835	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3836	 * holding the mmap_sem, this is safe because kernel memory doesn't
3837	 * get paged out, therefore we'll never actually fault, and the
3838	 * below annotations will generate false positives.
3839	 */
3840	if (segment_eq(get_fs(), KERNEL_DS))
3841		return;
3842	if (pagefault_disabled())
3843		return;
3844	__might_sleep(file, line, 0);
3845#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3846	if (current->mm)
3847		might_lock_read(&current->mm->mmap_sem);
3848#endif
3849}
3850EXPORT_SYMBOL(__might_fault);
3851#endif
3852
3853#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3854static void clear_gigantic_page(struct page *page,
3855				unsigned long addr,
3856				unsigned int pages_per_huge_page)
3857{
3858	int i;
3859	struct page *p = page;
3860
3861	might_sleep();
3862	for (i = 0; i < pages_per_huge_page;
3863	     i++, p = mem_map_next(p, page, i)) {
3864		cond_resched();
3865		clear_user_highpage(p, addr + i * PAGE_SIZE);
3866	}
3867}
3868void clear_huge_page(struct page *page,
3869		     unsigned long addr, unsigned int pages_per_huge_page)
3870{
3871	int i;
3872
3873	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3874		clear_gigantic_page(page, addr, pages_per_huge_page);
3875		return;
3876	}
3877
3878	might_sleep();
3879	for (i = 0; i < pages_per_huge_page; i++) {
3880		cond_resched();
3881		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3882	}
3883}
3884
3885static void copy_user_gigantic_page(struct page *dst, struct page *src,
3886				    unsigned long addr,
3887				    struct vm_area_struct *vma,
3888				    unsigned int pages_per_huge_page)
3889{
3890	int i;
3891	struct page *dst_base = dst;
3892	struct page *src_base = src;
3893
3894	for (i = 0; i < pages_per_huge_page; ) {
3895		cond_resched();
3896		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3897
3898		i++;
3899		dst = mem_map_next(dst, dst_base, i);
3900		src = mem_map_next(src, src_base, i);
3901	}
3902}
3903
3904void copy_user_huge_page(struct page *dst, struct page *src,
3905			 unsigned long addr, struct vm_area_struct *vma,
3906			 unsigned int pages_per_huge_page)
3907{
3908	int i;
3909
3910	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3911		copy_user_gigantic_page(dst, src, addr, vma,
3912					pages_per_huge_page);
3913		return;
3914	}
3915
3916	might_sleep();
3917	for (i = 0; i < pages_per_huge_page; i++) {
3918		cond_resched();
3919		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3920	}
3921}
3922#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3923
3924#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3925
3926static struct kmem_cache *page_ptl_cachep;
3927
3928void __init ptlock_cache_init(void)
3929{
3930	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3931			SLAB_PANIC, NULL);
3932}
3933
3934bool ptlock_alloc(struct page *page)
3935{
3936	spinlock_t *ptl;
3937
3938	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3939	if (!ptl)
3940		return false;
3941	page->ptl = ptl;
3942	return true;
3943}
3944
3945void ptlock_free(struct page *page)
3946{
3947	kmem_cache_free(page_ptl_cachep, page->ptl);
3948}
3949#endif
3950