1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31 * GNU General Public License for more details.
32 */
33
34#include <linux/page_counter.h>
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
37#include <linux/mm.h>
38#include <linux/hugetlb.h>
39#include <linux/pagemap.h>
40#include <linux/smp.h>
41#include <linux/page-flags.h>
42#include <linux/backing-dev.h>
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
45#include <linux/limits.h>
46#include <linux/export.h>
47#include <linux/mutex.h>
48#include <linux/rbtree.h>
49#include <linux/slab.h>
50#include <linux/swap.h>
51#include <linux/swapops.h>
52#include <linux/spinlock.h>
53#include <linux/eventfd.h>
54#include <linux/poll.h>
55#include <linux/sort.h>
56#include <linux/fs.h>
57#include <linux/seq_file.h>
58#include <linux/vmpressure.h>
59#include <linux/mm_inline.h>
60#include <linux/swap_cgroup.h>
61#include <linux/cpu.h>
62#include <linux/oom.h>
63#include <linux/lockdep.h>
64#include <linux/file.h>
65#include <linux/tracehook.h>
66#include "internal.h"
67#include <net/sock.h>
68#include <net/ip.h>
69#include <net/tcp_memcontrol.h>
70#include "slab.h"
71
72#include <asm/uaccess.h>
73
74#include <trace/events/vmscan.h>
75
76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77EXPORT_SYMBOL(memory_cgrp_subsys);
78
79#define MEM_CGROUP_RECLAIM_RETRIES	5
80static struct mem_cgroup *root_mem_cgroup __read_mostly;
81struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
82
83/* Whether the swap controller is active */
84#ifdef CONFIG_MEMCG_SWAP
85int do_swap_account __read_mostly;
86#else
87#define do_swap_account		0
88#endif
89
90static const char * const mem_cgroup_stat_names[] = {
91	"cache",
92	"rss",
93	"rss_huge",
94	"mapped_file",
95	"dirty",
96	"writeback",
97	"swap",
98};
99
100static const char * const mem_cgroup_events_names[] = {
101	"pgpgin",
102	"pgpgout",
103	"pgfault",
104	"pgmajfault",
105};
106
107static const char * const mem_cgroup_lru_names[] = {
108	"inactive_anon",
109	"active_anon",
110	"inactive_file",
111	"active_file",
112	"unevictable",
113};
114
115#define THRESHOLDS_EVENTS_TARGET 128
116#define SOFTLIMIT_EVENTS_TARGET 1024
117#define NUMAINFO_EVENTS_TARGET	1024
118
119/*
120 * Cgroups above their limits are maintained in a RB-Tree, independent of
121 * their hierarchy representation
122 */
123
124struct mem_cgroup_tree_per_zone {
125	struct rb_root rb_root;
126	spinlock_t lock;
127};
128
129struct mem_cgroup_tree_per_node {
130	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
131};
132
133struct mem_cgroup_tree {
134	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
135};
136
137static struct mem_cgroup_tree soft_limit_tree __read_mostly;
138
139/* for OOM */
140struct mem_cgroup_eventfd_list {
141	struct list_head list;
142	struct eventfd_ctx *eventfd;
143};
144
145/*
146 * cgroup_event represents events which userspace want to receive.
147 */
148struct mem_cgroup_event {
149	/*
150	 * memcg which the event belongs to.
151	 */
152	struct mem_cgroup *memcg;
153	/*
154	 * eventfd to signal userspace about the event.
155	 */
156	struct eventfd_ctx *eventfd;
157	/*
158	 * Each of these stored in a list by the cgroup.
159	 */
160	struct list_head list;
161	/*
162	 * register_event() callback will be used to add new userspace
163	 * waiter for changes related to this event.  Use eventfd_signal()
164	 * on eventfd to send notification to userspace.
165	 */
166	int (*register_event)(struct mem_cgroup *memcg,
167			      struct eventfd_ctx *eventfd, const char *args);
168	/*
169	 * unregister_event() callback will be called when userspace closes
170	 * the eventfd or on cgroup removing.  This callback must be set,
171	 * if you want provide notification functionality.
172	 */
173	void (*unregister_event)(struct mem_cgroup *memcg,
174				 struct eventfd_ctx *eventfd);
175	/*
176	 * All fields below needed to unregister event when
177	 * userspace closes eventfd.
178	 */
179	poll_table pt;
180	wait_queue_head_t *wqh;
181	wait_queue_t wait;
182	struct work_struct remove;
183};
184
185static void mem_cgroup_threshold(struct mem_cgroup *memcg);
186static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
187
188/* Stuffs for move charges at task migration. */
189/*
190 * Types of charges to be moved.
191 */
192#define MOVE_ANON	0x1U
193#define MOVE_FILE	0x2U
194#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
195
196/* "mc" and its members are protected by cgroup_mutex */
197static struct move_charge_struct {
198	spinlock_t	  lock; /* for from, to */
199	struct mm_struct  *mm;
200	struct mem_cgroup *from;
201	struct mem_cgroup *to;
202	unsigned long flags;
203	unsigned long precharge;
204	unsigned long moved_charge;
205	unsigned long moved_swap;
206	struct task_struct *moving_task;	/* a task moving charges */
207	wait_queue_head_t waitq;		/* a waitq for other context */
208} mc = {
209	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
210	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
211};
212
213/*
214 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
215 * limit reclaim to prevent infinite loops, if they ever occur.
216 */
217#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
218#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
219
220enum charge_type {
221	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
222	MEM_CGROUP_CHARGE_TYPE_ANON,
223	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
224	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
225	NR_CHARGE_TYPE,
226};
227
228/* for encoding cft->private value on file */
229enum res_type {
230	_MEM,
231	_MEMSWAP,
232	_OOM_TYPE,
233	_KMEM,
234};
235
236#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
237#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
238#define MEMFILE_ATTR(val)	((val) & 0xffff)
239/* Used for OOM nofiier */
240#define OOM_CONTROL		(0)
241
242/*
243 * The memcg_create_mutex will be held whenever a new cgroup is created.
244 * As a consequence, any change that needs to protect against new child cgroups
245 * appearing has to hold it as well.
246 */
247static DEFINE_MUTEX(memcg_create_mutex);
248
249/* Some nice accessors for the vmpressure. */
250struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
251{
252	if (!memcg)
253		memcg = root_mem_cgroup;
254	return &memcg->vmpressure;
255}
256
257struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
258{
259	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
260}
261
262static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
263{
264	return (memcg == root_mem_cgroup);
265}
266
267/*
268 * We restrict the id in the range of [1, 65535], so it can fit into
269 * an unsigned short.
270 */
271#define MEM_CGROUP_ID_MAX	USHRT_MAX
272
273static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
274{
275	return memcg->css.id;
276}
277
278/*
279 * A helper function to get mem_cgroup from ID. must be called under
280 * rcu_read_lock().  The caller is responsible for calling
281 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
282 * refcnt from swap can be called against removed memcg.)
283 */
284static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
285{
286	struct cgroup_subsys_state *css;
287
288	css = css_from_id(id, &memory_cgrp_subsys);
289	return mem_cgroup_from_css(css);
290}
291
292/* Writing them here to avoid exposing memcg's inner layout */
293#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
294
295void sock_update_memcg(struct sock *sk)
296{
297	if (mem_cgroup_sockets_enabled) {
298		struct mem_cgroup *memcg;
299		struct cg_proto *cg_proto;
300
301		BUG_ON(!sk->sk_prot->proto_cgroup);
302
303		/* Socket cloning can throw us here with sk_cgrp already
304		 * filled. It won't however, necessarily happen from
305		 * process context. So the test for root memcg given
306		 * the current task's memcg won't help us in this case.
307		 *
308		 * Respecting the original socket's memcg is a better
309		 * decision in this case.
310		 */
311		if (sk->sk_cgrp) {
312			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
313			css_get(&sk->sk_cgrp->memcg->css);
314			return;
315		}
316
317		rcu_read_lock();
318		memcg = mem_cgroup_from_task(current);
319		cg_proto = sk->sk_prot->proto_cgroup(memcg);
320		if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
321		    css_tryget_online(&memcg->css)) {
322			sk->sk_cgrp = cg_proto;
323		}
324		rcu_read_unlock();
325	}
326}
327EXPORT_SYMBOL(sock_update_memcg);
328
329void sock_release_memcg(struct sock *sk)
330{
331	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
332		struct mem_cgroup *memcg;
333		WARN_ON(!sk->sk_cgrp->memcg);
334		memcg = sk->sk_cgrp->memcg;
335		css_put(&sk->sk_cgrp->memcg->css);
336	}
337}
338
339struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
340{
341	if (!memcg || mem_cgroup_is_root(memcg))
342		return NULL;
343
344	return &memcg->tcp_mem;
345}
346EXPORT_SYMBOL(tcp_proto_cgroup);
347
348#endif
349
350#ifdef CONFIG_MEMCG_KMEM
351/*
352 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
353 * The main reason for not using cgroup id for this:
354 *  this works better in sparse environments, where we have a lot of memcgs,
355 *  but only a few kmem-limited. Or also, if we have, for instance, 200
356 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
357 *  200 entry array for that.
358 *
359 * The current size of the caches array is stored in memcg_nr_cache_ids. It
360 * will double each time we have to increase it.
361 */
362static DEFINE_IDA(memcg_cache_ida);
363int memcg_nr_cache_ids;
364
365/* Protects memcg_nr_cache_ids */
366static DECLARE_RWSEM(memcg_cache_ids_sem);
367
368void memcg_get_cache_ids(void)
369{
370	down_read(&memcg_cache_ids_sem);
371}
372
373void memcg_put_cache_ids(void)
374{
375	up_read(&memcg_cache_ids_sem);
376}
377
378/*
379 * MIN_SIZE is different than 1, because we would like to avoid going through
380 * the alloc/free process all the time. In a small machine, 4 kmem-limited
381 * cgroups is a reasonable guess. In the future, it could be a parameter or
382 * tunable, but that is strictly not necessary.
383 *
384 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
385 * this constant directly from cgroup, but it is understandable that this is
386 * better kept as an internal representation in cgroup.c. In any case, the
387 * cgrp_id space is not getting any smaller, and we don't have to necessarily
388 * increase ours as well if it increases.
389 */
390#define MEMCG_CACHES_MIN_SIZE 4
391#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
392
393/*
394 * A lot of the calls to the cache allocation functions are expected to be
395 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
396 * conditional to this static branch, we'll have to allow modules that does
397 * kmem_cache_alloc and the such to see this symbol as well
398 */
399struct static_key memcg_kmem_enabled_key;
400EXPORT_SYMBOL(memcg_kmem_enabled_key);
401
402#endif /* CONFIG_MEMCG_KMEM */
403
404static struct mem_cgroup_per_zone *
405mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
406{
407	int nid = zone_to_nid(zone);
408	int zid = zone_idx(zone);
409
410	return &memcg->nodeinfo[nid]->zoneinfo[zid];
411}
412
413/**
414 * mem_cgroup_css_from_page - css of the memcg associated with a page
415 * @page: page of interest
416 *
417 * If memcg is bound to the default hierarchy, css of the memcg associated
418 * with @page is returned.  The returned css remains associated with @page
419 * until it is released.
420 *
421 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
422 * is returned.
423 *
424 * XXX: The above description of behavior on the default hierarchy isn't
425 * strictly true yet as replace_page_cache_page() can modify the
426 * association before @page is released even on the default hierarchy;
427 * however, the current and planned usages don't mix the the two functions
428 * and replace_page_cache_page() will soon be updated to make the invariant
429 * actually true.
430 */
431struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
432{
433	struct mem_cgroup *memcg;
434
435	rcu_read_lock();
436
437	memcg = page->mem_cgroup;
438
439	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
440		memcg = root_mem_cgroup;
441
442	rcu_read_unlock();
443	return &memcg->css;
444}
445
446/**
447 * page_cgroup_ino - return inode number of the memcg a page is charged to
448 * @page: the page
449 *
450 * Look up the closest online ancestor of the memory cgroup @page is charged to
451 * and return its inode number or 0 if @page is not charged to any cgroup. It
452 * is safe to call this function without holding a reference to @page.
453 *
454 * Note, this function is inherently racy, because there is nothing to prevent
455 * the cgroup inode from getting torn down and potentially reallocated a moment
456 * after page_cgroup_ino() returns, so it only should be used by callers that
457 * do not care (such as procfs interfaces).
458 */
459ino_t page_cgroup_ino(struct page *page)
460{
461	struct mem_cgroup *memcg;
462	unsigned long ino = 0;
463
464	rcu_read_lock();
465	memcg = READ_ONCE(page->mem_cgroup);
466	while (memcg && !(memcg->css.flags & CSS_ONLINE))
467		memcg = parent_mem_cgroup(memcg);
468	if (memcg)
469		ino = cgroup_ino(memcg->css.cgroup);
470	rcu_read_unlock();
471	return ino;
472}
473
474static struct mem_cgroup_per_zone *
475mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
476{
477	int nid = page_to_nid(page);
478	int zid = page_zonenum(page);
479
480	return &memcg->nodeinfo[nid]->zoneinfo[zid];
481}
482
483static struct mem_cgroup_tree_per_zone *
484soft_limit_tree_node_zone(int nid, int zid)
485{
486	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
487}
488
489static struct mem_cgroup_tree_per_zone *
490soft_limit_tree_from_page(struct page *page)
491{
492	int nid = page_to_nid(page);
493	int zid = page_zonenum(page);
494
495	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
496}
497
498static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
499					 struct mem_cgroup_tree_per_zone *mctz,
500					 unsigned long new_usage_in_excess)
501{
502	struct rb_node **p = &mctz->rb_root.rb_node;
503	struct rb_node *parent = NULL;
504	struct mem_cgroup_per_zone *mz_node;
505
506	if (mz->on_tree)
507		return;
508
509	mz->usage_in_excess = new_usage_in_excess;
510	if (!mz->usage_in_excess)
511		return;
512	while (*p) {
513		parent = *p;
514		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
515					tree_node);
516		if (mz->usage_in_excess < mz_node->usage_in_excess)
517			p = &(*p)->rb_left;
518		/*
519		 * We can't avoid mem cgroups that are over their soft
520		 * limit by the same amount
521		 */
522		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
523			p = &(*p)->rb_right;
524	}
525	rb_link_node(&mz->tree_node, parent, p);
526	rb_insert_color(&mz->tree_node, &mctz->rb_root);
527	mz->on_tree = true;
528}
529
530static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
531					 struct mem_cgroup_tree_per_zone *mctz)
532{
533	if (!mz->on_tree)
534		return;
535	rb_erase(&mz->tree_node, &mctz->rb_root);
536	mz->on_tree = false;
537}
538
539static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
540				       struct mem_cgroup_tree_per_zone *mctz)
541{
542	unsigned long flags;
543
544	spin_lock_irqsave(&mctz->lock, flags);
545	__mem_cgroup_remove_exceeded(mz, mctz);
546	spin_unlock_irqrestore(&mctz->lock, flags);
547}
548
549static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
550{
551	unsigned long nr_pages = page_counter_read(&memcg->memory);
552	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
553	unsigned long excess = 0;
554
555	if (nr_pages > soft_limit)
556		excess = nr_pages - soft_limit;
557
558	return excess;
559}
560
561static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
562{
563	unsigned long excess;
564	struct mem_cgroup_per_zone *mz;
565	struct mem_cgroup_tree_per_zone *mctz;
566
567	mctz = soft_limit_tree_from_page(page);
568	/*
569	 * Necessary to update all ancestors when hierarchy is used.
570	 * because their event counter is not touched.
571	 */
572	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
573		mz = mem_cgroup_page_zoneinfo(memcg, page);
574		excess = soft_limit_excess(memcg);
575		/*
576		 * We have to update the tree if mz is on RB-tree or
577		 * mem is over its softlimit.
578		 */
579		if (excess || mz->on_tree) {
580			unsigned long flags;
581
582			spin_lock_irqsave(&mctz->lock, flags);
583			/* if on-tree, remove it */
584			if (mz->on_tree)
585				__mem_cgroup_remove_exceeded(mz, mctz);
586			/*
587			 * Insert again. mz->usage_in_excess will be updated.
588			 * If excess is 0, no tree ops.
589			 */
590			__mem_cgroup_insert_exceeded(mz, mctz, excess);
591			spin_unlock_irqrestore(&mctz->lock, flags);
592		}
593	}
594}
595
596static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
597{
598	struct mem_cgroup_tree_per_zone *mctz;
599	struct mem_cgroup_per_zone *mz;
600	int nid, zid;
601
602	for_each_node(nid) {
603		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
604			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
605			mctz = soft_limit_tree_node_zone(nid, zid);
606			mem_cgroup_remove_exceeded(mz, mctz);
607		}
608	}
609}
610
611static struct mem_cgroup_per_zone *
612__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
613{
614	struct rb_node *rightmost = NULL;
615	struct mem_cgroup_per_zone *mz;
616
617retry:
618	mz = NULL;
619	rightmost = rb_last(&mctz->rb_root);
620	if (!rightmost)
621		goto done;		/* Nothing to reclaim from */
622
623	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
624	/*
625	 * Remove the node now but someone else can add it back,
626	 * we will to add it back at the end of reclaim to its correct
627	 * position in the tree.
628	 */
629	__mem_cgroup_remove_exceeded(mz, mctz);
630	if (!soft_limit_excess(mz->memcg) ||
631	    !css_tryget_online(&mz->memcg->css))
632		goto retry;
633done:
634	return mz;
635}
636
637static struct mem_cgroup_per_zone *
638mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
639{
640	struct mem_cgroup_per_zone *mz;
641
642	spin_lock_irq(&mctz->lock);
643	mz = __mem_cgroup_largest_soft_limit_node(mctz);
644	spin_unlock_irq(&mctz->lock);
645	return mz;
646}
647
648/*
649 * Return page count for single (non recursive) @memcg.
650 *
651 * Implementation Note: reading percpu statistics for memcg.
652 *
653 * Both of vmstat[] and percpu_counter has threshold and do periodic
654 * synchronization to implement "quick" read. There are trade-off between
655 * reading cost and precision of value. Then, we may have a chance to implement
656 * a periodic synchronization of counter in memcg's counter.
657 *
658 * But this _read() function is used for user interface now. The user accounts
659 * memory usage by memory cgroup and he _always_ requires exact value because
660 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
661 * have to visit all online cpus and make sum. So, for now, unnecessary
662 * synchronization is not implemented. (just implemented for cpu hotplug)
663 *
664 * If there are kernel internal actions which can make use of some not-exact
665 * value, and reading all cpu value can be performance bottleneck in some
666 * common workload, threshold and synchronization as vmstat[] should be
667 * implemented.
668 */
669static unsigned long
670mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
671{
672	long val = 0;
673	int cpu;
674
675	/* Per-cpu values can be negative, use a signed accumulator */
676	for_each_possible_cpu(cpu)
677		val += per_cpu(memcg->stat->count[idx], cpu);
678	/*
679	 * Summing races with updates, so val may be negative.  Avoid exposing
680	 * transient negative values.
681	 */
682	if (val < 0)
683		val = 0;
684	return val;
685}
686
687static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
688					    enum mem_cgroup_events_index idx)
689{
690	unsigned long val = 0;
691	int cpu;
692
693	for_each_possible_cpu(cpu)
694		val += per_cpu(memcg->stat->events[idx], cpu);
695	return val;
696}
697
698static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
699					 struct page *page,
700					 int nr_pages)
701{
702	/*
703	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
704	 * counted as CACHE even if it's on ANON LRU.
705	 */
706	if (PageAnon(page))
707		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
708				nr_pages);
709	else
710		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
711				nr_pages);
712
713	if (PageTransHuge(page))
714		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
715				nr_pages);
716
717	/* pagein of a big page is an event. So, ignore page size */
718	if (nr_pages > 0)
719		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
720	else {
721		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
722		nr_pages = -nr_pages; /* for event */
723	}
724
725	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
726}
727
728static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
729						  int nid,
730						  unsigned int lru_mask)
731{
732	unsigned long nr = 0;
733	int zid;
734
735	VM_BUG_ON((unsigned)nid >= nr_node_ids);
736
737	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
738		struct mem_cgroup_per_zone *mz;
739		enum lru_list lru;
740
741		for_each_lru(lru) {
742			if (!(BIT(lru) & lru_mask))
743				continue;
744			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
745			nr += mz->lru_size[lru];
746		}
747	}
748	return nr;
749}
750
751static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
752			unsigned int lru_mask)
753{
754	unsigned long nr = 0;
755	int nid;
756
757	for_each_node_state(nid, N_MEMORY)
758		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
759	return nr;
760}
761
762static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
763				       enum mem_cgroup_events_target target)
764{
765	unsigned long val, next;
766
767	val = __this_cpu_read(memcg->stat->nr_page_events);
768	next = __this_cpu_read(memcg->stat->targets[target]);
769	/* from time_after() in jiffies.h */
770	if ((long)next - (long)val < 0) {
771		switch (target) {
772		case MEM_CGROUP_TARGET_THRESH:
773			next = val + THRESHOLDS_EVENTS_TARGET;
774			break;
775		case MEM_CGROUP_TARGET_SOFTLIMIT:
776			next = val + SOFTLIMIT_EVENTS_TARGET;
777			break;
778		case MEM_CGROUP_TARGET_NUMAINFO:
779			next = val + NUMAINFO_EVENTS_TARGET;
780			break;
781		default:
782			break;
783		}
784		__this_cpu_write(memcg->stat->targets[target], next);
785		return true;
786	}
787	return false;
788}
789
790/*
791 * Check events in order.
792 *
793 */
794static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
795{
796	/* threshold event is triggered in finer grain than soft limit */
797	if (unlikely(mem_cgroup_event_ratelimit(memcg,
798						MEM_CGROUP_TARGET_THRESH))) {
799		bool do_softlimit;
800		bool do_numainfo __maybe_unused;
801
802		do_softlimit = mem_cgroup_event_ratelimit(memcg,
803						MEM_CGROUP_TARGET_SOFTLIMIT);
804#if MAX_NUMNODES > 1
805		do_numainfo = mem_cgroup_event_ratelimit(memcg,
806						MEM_CGROUP_TARGET_NUMAINFO);
807#endif
808		mem_cgroup_threshold(memcg);
809		if (unlikely(do_softlimit))
810			mem_cgroup_update_tree(memcg, page);
811#if MAX_NUMNODES > 1
812		if (unlikely(do_numainfo))
813			atomic_inc(&memcg->numainfo_events);
814#endif
815	}
816}
817
818struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
819{
820	/*
821	 * mm_update_next_owner() may clear mm->owner to NULL
822	 * if it races with swapoff, page migration, etc.
823	 * So this can be called with p == NULL.
824	 */
825	if (unlikely(!p))
826		return NULL;
827
828	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
829}
830EXPORT_SYMBOL(mem_cgroup_from_task);
831
832static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
833{
834	struct mem_cgroup *memcg = NULL;
835
836	rcu_read_lock();
837	do {
838		/*
839		 * Page cache insertions can happen withou an
840		 * actual mm context, e.g. during disk probing
841		 * on boot, loopback IO, acct() writes etc.
842		 */
843		if (unlikely(!mm))
844			memcg = root_mem_cgroup;
845		else {
846			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
847			if (unlikely(!memcg))
848				memcg = root_mem_cgroup;
849		}
850	} while (!css_tryget_online(&memcg->css));
851	rcu_read_unlock();
852	return memcg;
853}
854
855/**
856 * mem_cgroup_iter - iterate over memory cgroup hierarchy
857 * @root: hierarchy root
858 * @prev: previously returned memcg, NULL on first invocation
859 * @reclaim: cookie for shared reclaim walks, NULL for full walks
860 *
861 * Returns references to children of the hierarchy below @root, or
862 * @root itself, or %NULL after a full round-trip.
863 *
864 * Caller must pass the return value in @prev on subsequent
865 * invocations for reference counting, or use mem_cgroup_iter_break()
866 * to cancel a hierarchy walk before the round-trip is complete.
867 *
868 * Reclaimers can specify a zone and a priority level in @reclaim to
869 * divide up the memcgs in the hierarchy among all concurrent
870 * reclaimers operating on the same zone and priority.
871 */
872struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
873				   struct mem_cgroup *prev,
874				   struct mem_cgroup_reclaim_cookie *reclaim)
875{
876	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
877	struct cgroup_subsys_state *css = NULL;
878	struct mem_cgroup *memcg = NULL;
879	struct mem_cgroup *pos = NULL;
880
881	if (mem_cgroup_disabled())
882		return NULL;
883
884	if (!root)
885		root = root_mem_cgroup;
886
887	if (prev && !reclaim)
888		pos = prev;
889
890	if (!root->use_hierarchy && root != root_mem_cgroup) {
891		if (prev)
892			goto out;
893		return root;
894	}
895
896	rcu_read_lock();
897
898	if (reclaim) {
899		struct mem_cgroup_per_zone *mz;
900
901		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
902		iter = &mz->iter[reclaim->priority];
903
904		if (prev && reclaim->generation != iter->generation)
905			goto out_unlock;
906
907		while (1) {
908			pos = READ_ONCE(iter->position);
909			if (!pos || css_tryget(&pos->css))
910				break;
911			/*
912			 * css reference reached zero, so iter->position will
913			 * be cleared by ->css_released. However, we should not
914			 * rely on this happening soon, because ->css_released
915			 * is called from a work queue, and by busy-waiting we
916			 * might block it. So we clear iter->position right
917			 * away.
918			 */
919			(void)cmpxchg(&iter->position, pos, NULL);
920		}
921	}
922
923	if (pos)
924		css = &pos->css;
925
926	for (;;) {
927		css = css_next_descendant_pre(css, &root->css);
928		if (!css) {
929			/*
930			 * Reclaimers share the hierarchy walk, and a
931			 * new one might jump in right at the end of
932			 * the hierarchy - make sure they see at least
933			 * one group and restart from the beginning.
934			 */
935			if (!prev)
936				continue;
937			break;
938		}
939
940		/*
941		 * Verify the css and acquire a reference.  The root
942		 * is provided by the caller, so we know it's alive
943		 * and kicking, and don't take an extra reference.
944		 */
945		memcg = mem_cgroup_from_css(css);
946
947		if (css == &root->css)
948			break;
949
950		if (css_tryget(css)) {
951			/*
952			 * Make sure the memcg is initialized:
953			 * mem_cgroup_css_online() orders the the
954			 * initialization against setting the flag.
955			 */
956			if (smp_load_acquire(&memcg->initialized))
957				break;
958
959			css_put(css);
960		}
961
962		memcg = NULL;
963	}
964
965	if (reclaim) {
966		/*
967		 * The position could have already been updated by a competing
968		 * thread, so check that the value hasn't changed since we read
969		 * it to avoid reclaiming from the same cgroup twice.
970		 */
971		(void)cmpxchg(&iter->position, pos, memcg);
972
973		if (pos)
974			css_put(&pos->css);
975
976		if (!memcg)
977			iter->generation++;
978		else if (!prev)
979			reclaim->generation = iter->generation;
980	}
981
982out_unlock:
983	rcu_read_unlock();
984out:
985	if (prev && prev != root)
986		css_put(&prev->css);
987
988	return memcg;
989}
990
991/**
992 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
993 * @root: hierarchy root
994 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
995 */
996void mem_cgroup_iter_break(struct mem_cgroup *root,
997			   struct mem_cgroup *prev)
998{
999	if (!root)
1000		root = root_mem_cgroup;
1001	if (prev && prev != root)
1002		css_put(&prev->css);
1003}
1004
1005static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1006{
1007	struct mem_cgroup *memcg = dead_memcg;
1008	struct mem_cgroup_reclaim_iter *iter;
1009	struct mem_cgroup_per_zone *mz;
1010	int nid, zid;
1011	int i;
1012
1013	while ((memcg = parent_mem_cgroup(memcg))) {
1014		for_each_node(nid) {
1015			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1016				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
1017				for (i = 0; i <= DEF_PRIORITY; i++) {
1018					iter = &mz->iter[i];
1019					cmpxchg(&iter->position,
1020						dead_memcg, NULL);
1021				}
1022			}
1023		}
1024	}
1025}
1026
1027/*
1028 * Iteration constructs for visiting all cgroups (under a tree).  If
1029 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1030 * be used for reference counting.
1031 */
1032#define for_each_mem_cgroup_tree(iter, root)		\
1033	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1034	     iter != NULL;				\
1035	     iter = mem_cgroup_iter(root, iter, NULL))
1036
1037#define for_each_mem_cgroup(iter)			\
1038	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1039	     iter != NULL;				\
1040	     iter = mem_cgroup_iter(NULL, iter, NULL))
1041
1042/**
1043 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1044 * @zone: zone of the wanted lruvec
1045 * @memcg: memcg of the wanted lruvec
1046 *
1047 * Returns the lru list vector holding pages for the given @zone and
1048 * @mem.  This can be the global zone lruvec, if the memory controller
1049 * is disabled.
1050 */
1051struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1052				      struct mem_cgroup *memcg)
1053{
1054	struct mem_cgroup_per_zone *mz;
1055	struct lruvec *lruvec;
1056
1057	if (mem_cgroup_disabled()) {
1058		lruvec = &zone->lruvec;
1059		goto out;
1060	}
1061
1062	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1063	lruvec = &mz->lruvec;
1064out:
1065	/*
1066	 * Since a node can be onlined after the mem_cgroup was created,
1067	 * we have to be prepared to initialize lruvec->zone here;
1068	 * and if offlined then reonlined, we need to reinitialize it.
1069	 */
1070	if (unlikely(lruvec->zone != zone))
1071		lruvec->zone = zone;
1072	return lruvec;
1073}
1074
1075/**
1076 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1077 * @page: the page
1078 * @zone: zone of the page
1079 *
1080 * This function is only safe when following the LRU page isolation
1081 * and putback protocol: the LRU lock must be held, and the page must
1082 * either be PageLRU() or the caller must have isolated/allocated it.
1083 */
1084struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1085{
1086	struct mem_cgroup_per_zone *mz;
1087	struct mem_cgroup *memcg;
1088	struct lruvec *lruvec;
1089
1090	if (mem_cgroup_disabled()) {
1091		lruvec = &zone->lruvec;
1092		goto out;
1093	}
1094
1095	memcg = page->mem_cgroup;
1096	/*
1097	 * Swapcache readahead pages are added to the LRU - and
1098	 * possibly migrated - before they are charged.
1099	 */
1100	if (!memcg)
1101		memcg = root_mem_cgroup;
1102
1103	mz = mem_cgroup_page_zoneinfo(memcg, page);
1104	lruvec = &mz->lruvec;
1105out:
1106	/*
1107	 * Since a node can be onlined after the mem_cgroup was created,
1108	 * we have to be prepared to initialize lruvec->zone here;
1109	 * and if offlined then reonlined, we need to reinitialize it.
1110	 */
1111	if (unlikely(lruvec->zone != zone))
1112		lruvec->zone = zone;
1113	return lruvec;
1114}
1115
1116/**
1117 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1118 * @lruvec: mem_cgroup per zone lru vector
1119 * @lru: index of lru list the page is sitting on
1120 * @nr_pages: positive when adding or negative when removing
1121 *
1122 * This function must be called when a page is added to or removed from an
1123 * lru list.
1124 */
1125void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1126				int nr_pages)
1127{
1128	struct mem_cgroup_per_zone *mz;
1129	unsigned long *lru_size;
1130
1131	if (mem_cgroup_disabled())
1132		return;
1133
1134	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1135	lru_size = mz->lru_size + lru;
1136	*lru_size += nr_pages;
1137	VM_BUG_ON((long)(*lru_size) < 0);
1138}
1139
1140bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1141{
1142	struct mem_cgroup *task_memcg;
1143	struct task_struct *p;
1144	bool ret;
1145
1146	p = find_lock_task_mm(task);
1147	if (p) {
1148		task_memcg = get_mem_cgroup_from_mm(p->mm);
1149		task_unlock(p);
1150	} else {
1151		/*
1152		 * All threads may have already detached their mm's, but the oom
1153		 * killer still needs to detect if they have already been oom
1154		 * killed to prevent needlessly killing additional tasks.
1155		 */
1156		rcu_read_lock();
1157		task_memcg = mem_cgroup_from_task(task);
1158		css_get(&task_memcg->css);
1159		rcu_read_unlock();
1160	}
1161	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1162	css_put(&task_memcg->css);
1163	return ret;
1164}
1165
1166#define mem_cgroup_from_counter(counter, member)	\
1167	container_of(counter, struct mem_cgroup, member)
1168
1169/**
1170 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1171 * @memcg: the memory cgroup
1172 *
1173 * Returns the maximum amount of memory @mem can be charged with, in
1174 * pages.
1175 */
1176static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1177{
1178	unsigned long margin = 0;
1179	unsigned long count;
1180	unsigned long limit;
1181
1182	count = page_counter_read(&memcg->memory);
1183	limit = READ_ONCE(memcg->memory.limit);
1184	if (count < limit)
1185		margin = limit - count;
1186
1187	if (do_swap_account) {
1188		count = page_counter_read(&memcg->memsw);
1189		limit = READ_ONCE(memcg->memsw.limit);
1190		if (count <= limit)
1191			margin = min(margin, limit - count);
1192	}
1193
1194	return margin;
1195}
1196
1197/*
1198 * A routine for checking "mem" is under move_account() or not.
1199 *
1200 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1201 * moving cgroups. This is for waiting at high-memory pressure
1202 * caused by "move".
1203 */
1204static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1205{
1206	struct mem_cgroup *from;
1207	struct mem_cgroup *to;
1208	bool ret = false;
1209	/*
1210	 * Unlike task_move routines, we access mc.to, mc.from not under
1211	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1212	 */
1213	spin_lock(&mc.lock);
1214	from = mc.from;
1215	to = mc.to;
1216	if (!from)
1217		goto unlock;
1218
1219	ret = mem_cgroup_is_descendant(from, memcg) ||
1220		mem_cgroup_is_descendant(to, memcg);
1221unlock:
1222	spin_unlock(&mc.lock);
1223	return ret;
1224}
1225
1226static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1227{
1228	if (mc.moving_task && current != mc.moving_task) {
1229		if (mem_cgroup_under_move(memcg)) {
1230			DEFINE_WAIT(wait);
1231			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1232			/* moving charge context might have finished. */
1233			if (mc.moving_task)
1234				schedule();
1235			finish_wait(&mc.waitq, &wait);
1236			return true;
1237		}
1238	}
1239	return false;
1240}
1241
1242#define K(x) ((x) << (PAGE_SHIFT-10))
1243/**
1244 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1245 * @memcg: The memory cgroup that went over limit
1246 * @p: Task that is going to be killed
1247 *
1248 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1249 * enabled
1250 */
1251void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1252{
1253	/* oom_info_lock ensures that parallel ooms do not interleave */
1254	static DEFINE_MUTEX(oom_info_lock);
1255	struct mem_cgroup *iter;
1256	unsigned int i;
1257
1258	mutex_lock(&oom_info_lock);
1259	rcu_read_lock();
1260
1261	if (p) {
1262		pr_info("Task in ");
1263		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1264		pr_cont(" killed as a result of limit of ");
1265	} else {
1266		pr_info("Memory limit reached of cgroup ");
1267	}
1268
1269	pr_cont_cgroup_path(memcg->css.cgroup);
1270	pr_cont("\n");
1271
1272	rcu_read_unlock();
1273
1274	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1275		K((u64)page_counter_read(&memcg->memory)),
1276		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1277	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1278		K((u64)page_counter_read(&memcg->memsw)),
1279		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1280	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1281		K((u64)page_counter_read(&memcg->kmem)),
1282		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1283
1284	for_each_mem_cgroup_tree(iter, memcg) {
1285		pr_info("Memory cgroup stats for ");
1286		pr_cont_cgroup_path(iter->css.cgroup);
1287		pr_cont(":");
1288
1289		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1290			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1291				continue;
1292			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1293				K(mem_cgroup_read_stat(iter, i)));
1294		}
1295
1296		for (i = 0; i < NR_LRU_LISTS; i++)
1297			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1298				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1299
1300		pr_cont("\n");
1301	}
1302	mutex_unlock(&oom_info_lock);
1303}
1304
1305/*
1306 * This function returns the number of memcg under hierarchy tree. Returns
1307 * 1(self count) if no children.
1308 */
1309static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1310{
1311	int num = 0;
1312	struct mem_cgroup *iter;
1313
1314	for_each_mem_cgroup_tree(iter, memcg)
1315		num++;
1316	return num;
1317}
1318
1319/*
1320 * Return the memory (and swap, if configured) limit for a memcg.
1321 */
1322static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1323{
1324	unsigned long limit;
1325
1326	limit = memcg->memory.limit;
1327	if (mem_cgroup_swappiness(memcg)) {
1328		unsigned long memsw_limit;
1329
1330		memsw_limit = memcg->memsw.limit;
1331		limit = min(limit + total_swap_pages, memsw_limit);
1332	}
1333	return limit;
1334}
1335
1336static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1337				     int order)
1338{
1339	struct oom_control oc = {
1340		.zonelist = NULL,
1341		.nodemask = NULL,
1342		.gfp_mask = gfp_mask,
1343		.order = order,
1344	};
1345	struct mem_cgroup *iter;
1346	unsigned long chosen_points = 0;
1347	unsigned long totalpages;
1348	unsigned int points = 0;
1349	struct task_struct *chosen = NULL;
1350
1351	mutex_lock(&oom_lock);
1352
1353	/*
1354	 * If current has a pending SIGKILL or is exiting, then automatically
1355	 * select it.  The goal is to allow it to allocate so that it may
1356	 * quickly exit and free its memory.
1357	 */
1358	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1359		mark_oom_victim(current);
1360		goto unlock;
1361	}
1362
1363	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1364	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1365	for_each_mem_cgroup_tree(iter, memcg) {
1366		struct css_task_iter it;
1367		struct task_struct *task;
1368
1369		css_task_iter_start(&iter->css, &it);
1370		while ((task = css_task_iter_next(&it))) {
1371			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1372			case OOM_SCAN_SELECT:
1373				if (chosen)
1374					put_task_struct(chosen);
1375				chosen = task;
1376				chosen_points = ULONG_MAX;
1377				get_task_struct(chosen);
1378				/* fall through */
1379			case OOM_SCAN_CONTINUE:
1380				continue;
1381			case OOM_SCAN_ABORT:
1382				css_task_iter_end(&it);
1383				mem_cgroup_iter_break(memcg, iter);
1384				if (chosen)
1385					put_task_struct(chosen);
1386				goto unlock;
1387			case OOM_SCAN_OK:
1388				break;
1389			};
1390			points = oom_badness(task, memcg, NULL, totalpages);
1391			if (!points || points < chosen_points)
1392				continue;
1393			/* Prefer thread group leaders for display purposes */
1394			if (points == chosen_points &&
1395			    thread_group_leader(chosen))
1396				continue;
1397
1398			if (chosen)
1399				put_task_struct(chosen);
1400			chosen = task;
1401			chosen_points = points;
1402			get_task_struct(chosen);
1403		}
1404		css_task_iter_end(&it);
1405	}
1406
1407	if (chosen) {
1408		points = chosen_points * 1000 / totalpages;
1409		oom_kill_process(&oc, chosen, points, totalpages, memcg,
1410				 "Memory cgroup out of memory");
1411	}
1412unlock:
1413	mutex_unlock(&oom_lock);
1414	return chosen;
1415}
1416
1417#if MAX_NUMNODES > 1
1418
1419/**
1420 * test_mem_cgroup_node_reclaimable
1421 * @memcg: the target memcg
1422 * @nid: the node ID to be checked.
1423 * @noswap : specify true here if the user wants flle only information.
1424 *
1425 * This function returns whether the specified memcg contains any
1426 * reclaimable pages on a node. Returns true if there are any reclaimable
1427 * pages in the node.
1428 */
1429static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1430		int nid, bool noswap)
1431{
1432	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1433		return true;
1434	if (noswap || !total_swap_pages)
1435		return false;
1436	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1437		return true;
1438	return false;
1439
1440}
1441
1442/*
1443 * Always updating the nodemask is not very good - even if we have an empty
1444 * list or the wrong list here, we can start from some node and traverse all
1445 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1446 *
1447 */
1448static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1449{
1450	int nid;
1451	/*
1452	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1453	 * pagein/pageout changes since the last update.
1454	 */
1455	if (!atomic_read(&memcg->numainfo_events))
1456		return;
1457	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1458		return;
1459
1460	/* make a nodemask where this memcg uses memory from */
1461	memcg->scan_nodes = node_states[N_MEMORY];
1462
1463	for_each_node_mask(nid, node_states[N_MEMORY]) {
1464
1465		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1466			node_clear(nid, memcg->scan_nodes);
1467	}
1468
1469	atomic_set(&memcg->numainfo_events, 0);
1470	atomic_set(&memcg->numainfo_updating, 0);
1471}
1472
1473/*
1474 * Selecting a node where we start reclaim from. Because what we need is just
1475 * reducing usage counter, start from anywhere is O,K. Considering
1476 * memory reclaim from current node, there are pros. and cons.
1477 *
1478 * Freeing memory from current node means freeing memory from a node which
1479 * we'll use or we've used. So, it may make LRU bad. And if several threads
1480 * hit limits, it will see a contention on a node. But freeing from remote
1481 * node means more costs for memory reclaim because of memory latency.
1482 *
1483 * Now, we use round-robin. Better algorithm is welcomed.
1484 */
1485int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1486{
1487	int node;
1488
1489	mem_cgroup_may_update_nodemask(memcg);
1490	node = memcg->last_scanned_node;
1491
1492	node = next_node(node, memcg->scan_nodes);
1493	if (node == MAX_NUMNODES)
1494		node = first_node(memcg->scan_nodes);
1495	/*
1496	 * We call this when we hit limit, not when pages are added to LRU.
1497	 * No LRU may hold pages because all pages are UNEVICTABLE or
1498	 * memcg is too small and all pages are not on LRU. In that case,
1499	 * we use curret node.
1500	 */
1501	if (unlikely(node == MAX_NUMNODES))
1502		node = numa_node_id();
1503
1504	memcg->last_scanned_node = node;
1505	return node;
1506}
1507#else
1508int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1509{
1510	return 0;
1511}
1512#endif
1513
1514static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1515				   struct zone *zone,
1516				   gfp_t gfp_mask,
1517				   unsigned long *total_scanned)
1518{
1519	struct mem_cgroup *victim = NULL;
1520	int total = 0;
1521	int loop = 0;
1522	unsigned long excess;
1523	unsigned long nr_scanned;
1524	struct mem_cgroup_reclaim_cookie reclaim = {
1525		.zone = zone,
1526		.priority = 0,
1527	};
1528
1529	excess = soft_limit_excess(root_memcg);
1530
1531	while (1) {
1532		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1533		if (!victim) {
1534			loop++;
1535			if (loop >= 2) {
1536				/*
1537				 * If we have not been able to reclaim
1538				 * anything, it might because there are
1539				 * no reclaimable pages under this hierarchy
1540				 */
1541				if (!total)
1542					break;
1543				/*
1544				 * We want to do more targeted reclaim.
1545				 * excess >> 2 is not to excessive so as to
1546				 * reclaim too much, nor too less that we keep
1547				 * coming back to reclaim from this cgroup
1548				 */
1549				if (total >= (excess >> 2) ||
1550					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1551					break;
1552			}
1553			continue;
1554		}
1555		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1556						     zone, &nr_scanned);
1557		*total_scanned += nr_scanned;
1558		if (!soft_limit_excess(root_memcg))
1559			break;
1560	}
1561	mem_cgroup_iter_break(root_memcg, victim);
1562	return total;
1563}
1564
1565#ifdef CONFIG_LOCKDEP
1566static struct lockdep_map memcg_oom_lock_dep_map = {
1567	.name = "memcg_oom_lock",
1568};
1569#endif
1570
1571static DEFINE_SPINLOCK(memcg_oom_lock);
1572
1573/*
1574 * Check OOM-Killer is already running under our hierarchy.
1575 * If someone is running, return false.
1576 */
1577static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1578{
1579	struct mem_cgroup *iter, *failed = NULL;
1580
1581	spin_lock(&memcg_oom_lock);
1582
1583	for_each_mem_cgroup_tree(iter, memcg) {
1584		if (iter->oom_lock) {
1585			/*
1586			 * this subtree of our hierarchy is already locked
1587			 * so we cannot give a lock.
1588			 */
1589			failed = iter;
1590			mem_cgroup_iter_break(memcg, iter);
1591			break;
1592		} else
1593			iter->oom_lock = true;
1594	}
1595
1596	if (failed) {
1597		/*
1598		 * OK, we failed to lock the whole subtree so we have
1599		 * to clean up what we set up to the failing subtree
1600		 */
1601		for_each_mem_cgroup_tree(iter, memcg) {
1602			if (iter == failed) {
1603				mem_cgroup_iter_break(memcg, iter);
1604				break;
1605			}
1606			iter->oom_lock = false;
1607		}
1608	} else
1609		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1610
1611	spin_unlock(&memcg_oom_lock);
1612
1613	return !failed;
1614}
1615
1616static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1617{
1618	struct mem_cgroup *iter;
1619
1620	spin_lock(&memcg_oom_lock);
1621	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1622	for_each_mem_cgroup_tree(iter, memcg)
1623		iter->oom_lock = false;
1624	spin_unlock(&memcg_oom_lock);
1625}
1626
1627static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1628{
1629	struct mem_cgroup *iter;
1630
1631	spin_lock(&memcg_oom_lock);
1632	for_each_mem_cgroup_tree(iter, memcg)
1633		iter->under_oom++;
1634	spin_unlock(&memcg_oom_lock);
1635}
1636
1637static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1638{
1639	struct mem_cgroup *iter;
1640
1641	/*
1642	 * When a new child is created while the hierarchy is under oom,
1643	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1644	 */
1645	spin_lock(&memcg_oom_lock);
1646	for_each_mem_cgroup_tree(iter, memcg)
1647		if (iter->under_oom > 0)
1648			iter->under_oom--;
1649	spin_unlock(&memcg_oom_lock);
1650}
1651
1652static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1653
1654struct oom_wait_info {
1655	struct mem_cgroup *memcg;
1656	wait_queue_t	wait;
1657};
1658
1659static int memcg_oom_wake_function(wait_queue_t *wait,
1660	unsigned mode, int sync, void *arg)
1661{
1662	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1663	struct mem_cgroup *oom_wait_memcg;
1664	struct oom_wait_info *oom_wait_info;
1665
1666	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1667	oom_wait_memcg = oom_wait_info->memcg;
1668
1669	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1670	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1671		return 0;
1672	return autoremove_wake_function(wait, mode, sync, arg);
1673}
1674
1675static void memcg_oom_recover(struct mem_cgroup *memcg)
1676{
1677	/*
1678	 * For the following lockless ->under_oom test, the only required
1679	 * guarantee is that it must see the state asserted by an OOM when
1680	 * this function is called as a result of userland actions
1681	 * triggered by the notification of the OOM.  This is trivially
1682	 * achieved by invoking mem_cgroup_mark_under_oom() before
1683	 * triggering notification.
1684	 */
1685	if (memcg && memcg->under_oom)
1686		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1687}
1688
1689static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1690{
1691	if (!current->memcg_may_oom)
1692		return;
1693	/*
1694	 * We are in the middle of the charge context here, so we
1695	 * don't want to block when potentially sitting on a callstack
1696	 * that holds all kinds of filesystem and mm locks.
1697	 *
1698	 * Also, the caller may handle a failed allocation gracefully
1699	 * (like optional page cache readahead) and so an OOM killer
1700	 * invocation might not even be necessary.
1701	 *
1702	 * That's why we don't do anything here except remember the
1703	 * OOM context and then deal with it at the end of the page
1704	 * fault when the stack is unwound, the locks are released,
1705	 * and when we know whether the fault was overall successful.
1706	 */
1707	css_get(&memcg->css);
1708	current->memcg_in_oom = memcg;
1709	current->memcg_oom_gfp_mask = mask;
1710	current->memcg_oom_order = order;
1711}
1712
1713/**
1714 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1715 * @handle: actually kill/wait or just clean up the OOM state
1716 *
1717 * This has to be called at the end of a page fault if the memcg OOM
1718 * handler was enabled.
1719 *
1720 * Memcg supports userspace OOM handling where failed allocations must
1721 * sleep on a waitqueue until the userspace task resolves the
1722 * situation.  Sleeping directly in the charge context with all kinds
1723 * of locks held is not a good idea, instead we remember an OOM state
1724 * in the task and mem_cgroup_oom_synchronize() has to be called at
1725 * the end of the page fault to complete the OOM handling.
1726 *
1727 * Returns %true if an ongoing memcg OOM situation was detected and
1728 * completed, %false otherwise.
1729 */
1730bool mem_cgroup_oom_synchronize(bool handle)
1731{
1732	struct mem_cgroup *memcg = current->memcg_in_oom;
1733	struct oom_wait_info owait;
1734	bool locked;
1735
1736	/* OOM is global, do not handle */
1737	if (!memcg)
1738		return false;
1739
1740	if (!handle || oom_killer_disabled)
1741		goto cleanup;
1742
1743	owait.memcg = memcg;
1744	owait.wait.flags = 0;
1745	owait.wait.func = memcg_oom_wake_function;
1746	owait.wait.private = current;
1747	INIT_LIST_HEAD(&owait.wait.task_list);
1748
1749	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1750	mem_cgroup_mark_under_oom(memcg);
1751
1752	locked = mem_cgroup_oom_trylock(memcg);
1753
1754	if (locked)
1755		mem_cgroup_oom_notify(memcg);
1756
1757	if (locked && !memcg->oom_kill_disable) {
1758		mem_cgroup_unmark_under_oom(memcg);
1759		finish_wait(&memcg_oom_waitq, &owait.wait);
1760		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1761					 current->memcg_oom_order);
1762	} else {
1763		schedule();
1764		mem_cgroup_unmark_under_oom(memcg);
1765		finish_wait(&memcg_oom_waitq, &owait.wait);
1766	}
1767
1768	if (locked) {
1769		mem_cgroup_oom_unlock(memcg);
1770		/*
1771		 * There is no guarantee that an OOM-lock contender
1772		 * sees the wakeups triggered by the OOM kill
1773		 * uncharges.  Wake any sleepers explicitely.
1774		 */
1775		memcg_oom_recover(memcg);
1776	}
1777cleanup:
1778	current->memcg_in_oom = NULL;
1779	css_put(&memcg->css);
1780	return true;
1781}
1782
1783/**
1784 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1785 * @page: page that is going to change accounted state
1786 *
1787 * This function must mark the beginning of an accounted page state
1788 * change to prevent double accounting when the page is concurrently
1789 * being moved to another memcg:
1790 *
1791 *   memcg = mem_cgroup_begin_page_stat(page);
1792 *   if (TestClearPageState(page))
1793 *     mem_cgroup_update_page_stat(memcg, state, -1);
1794 *   mem_cgroup_end_page_stat(memcg);
1795 */
1796struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1797{
1798	struct mem_cgroup *memcg;
1799	unsigned long flags;
1800
1801	/*
1802	 * The RCU lock is held throughout the transaction.  The fast
1803	 * path can get away without acquiring the memcg->move_lock
1804	 * because page moving starts with an RCU grace period.
1805	 *
1806	 * The RCU lock also protects the memcg from being freed when
1807	 * the page state that is going to change is the only thing
1808	 * preventing the page from being uncharged.
1809	 * E.g. end-writeback clearing PageWriteback(), which allows
1810	 * migration to go ahead and uncharge the page before the
1811	 * account transaction might be complete.
1812	 */
1813	rcu_read_lock();
1814
1815	if (mem_cgroup_disabled())
1816		return NULL;
1817again:
1818	memcg = page->mem_cgroup;
1819	if (unlikely(!memcg))
1820		return NULL;
1821
1822	if (atomic_read(&memcg->moving_account) <= 0)
1823		return memcg;
1824
1825	spin_lock_irqsave(&memcg->move_lock, flags);
1826	if (memcg != page->mem_cgroup) {
1827		spin_unlock_irqrestore(&memcg->move_lock, flags);
1828		goto again;
1829	}
1830
1831	/*
1832	 * When charge migration first begins, we can have locked and
1833	 * unlocked page stat updates happening concurrently.  Track
1834	 * the task who has the lock for mem_cgroup_end_page_stat().
1835	 */
1836	memcg->move_lock_task = current;
1837	memcg->move_lock_flags = flags;
1838
1839	return memcg;
1840}
1841EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1842
1843/**
1844 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1845 * @memcg: the memcg that was accounted against
1846 */
1847void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1848{
1849	if (memcg && memcg->move_lock_task == current) {
1850		unsigned long flags = memcg->move_lock_flags;
1851
1852		memcg->move_lock_task = NULL;
1853		memcg->move_lock_flags = 0;
1854
1855		spin_unlock_irqrestore(&memcg->move_lock, flags);
1856	}
1857
1858	rcu_read_unlock();
1859}
1860EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1861
1862/*
1863 * size of first charge trial. "32" comes from vmscan.c's magic value.
1864 * TODO: maybe necessary to use big numbers in big irons.
1865 */
1866#define CHARGE_BATCH	32U
1867struct memcg_stock_pcp {
1868	struct mem_cgroup *cached; /* this never be root cgroup */
1869	unsigned int nr_pages;
1870	struct work_struct work;
1871	unsigned long flags;
1872#define FLUSHING_CACHED_CHARGE	0
1873};
1874static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1875static DEFINE_MUTEX(percpu_charge_mutex);
1876
1877/**
1878 * consume_stock: Try to consume stocked charge on this cpu.
1879 * @memcg: memcg to consume from.
1880 * @nr_pages: how many pages to charge.
1881 *
1882 * The charges will only happen if @memcg matches the current cpu's memcg
1883 * stock, and at least @nr_pages are available in that stock.  Failure to
1884 * service an allocation will refill the stock.
1885 *
1886 * returns true if successful, false otherwise.
1887 */
1888static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1889{
1890	struct memcg_stock_pcp *stock;
1891	bool ret = false;
1892
1893	if (nr_pages > CHARGE_BATCH)
1894		return ret;
1895
1896	stock = &get_cpu_var(memcg_stock);
1897	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1898		stock->nr_pages -= nr_pages;
1899		ret = true;
1900	}
1901	put_cpu_var(memcg_stock);
1902	return ret;
1903}
1904
1905/*
1906 * Returns stocks cached in percpu and reset cached information.
1907 */
1908static void drain_stock(struct memcg_stock_pcp *stock)
1909{
1910	struct mem_cgroup *old = stock->cached;
1911
1912	if (stock->nr_pages) {
1913		page_counter_uncharge(&old->memory, stock->nr_pages);
1914		if (do_swap_account)
1915			page_counter_uncharge(&old->memsw, stock->nr_pages);
1916		css_put_many(&old->css, stock->nr_pages);
1917		stock->nr_pages = 0;
1918	}
1919	stock->cached = NULL;
1920}
1921
1922/*
1923 * This must be called under preempt disabled or must be called by
1924 * a thread which is pinned to local cpu.
1925 */
1926static void drain_local_stock(struct work_struct *dummy)
1927{
1928	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1929	drain_stock(stock);
1930	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1931}
1932
1933/*
1934 * Cache charges(val) to local per_cpu area.
1935 * This will be consumed by consume_stock() function, later.
1936 */
1937static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1938{
1939	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1940
1941	if (stock->cached != memcg) { /* reset if necessary */
1942		drain_stock(stock);
1943		stock->cached = memcg;
1944	}
1945	stock->nr_pages += nr_pages;
1946	put_cpu_var(memcg_stock);
1947}
1948
1949/*
1950 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1951 * of the hierarchy under it.
1952 */
1953static void drain_all_stock(struct mem_cgroup *root_memcg)
1954{
1955	int cpu, curcpu;
1956
1957	/* If someone's already draining, avoid adding running more workers. */
1958	if (!mutex_trylock(&percpu_charge_mutex))
1959		return;
1960	/* Notify other cpus that system-wide "drain" is running */
1961	get_online_cpus();
1962	curcpu = get_cpu();
1963	for_each_online_cpu(cpu) {
1964		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1965		struct mem_cgroup *memcg;
1966
1967		memcg = stock->cached;
1968		if (!memcg || !stock->nr_pages)
1969			continue;
1970		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1971			continue;
1972		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1973			if (cpu == curcpu)
1974				drain_local_stock(&stock->work);
1975			else
1976				schedule_work_on(cpu, &stock->work);
1977		}
1978	}
1979	put_cpu();
1980	put_online_cpus();
1981	mutex_unlock(&percpu_charge_mutex);
1982}
1983
1984static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1985					unsigned long action,
1986					void *hcpu)
1987{
1988	int cpu = (unsigned long)hcpu;
1989	struct memcg_stock_pcp *stock;
1990
1991	if (action == CPU_ONLINE)
1992		return NOTIFY_OK;
1993
1994	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1995		return NOTIFY_OK;
1996
1997	stock = &per_cpu(memcg_stock, cpu);
1998	drain_stock(stock);
1999	return NOTIFY_OK;
2000}
2001
2002/*
2003 * Scheduled by try_charge() to be executed from the userland return path
2004 * and reclaims memory over the high limit.
2005 */
2006void mem_cgroup_handle_over_high(void)
2007{
2008	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2009	struct mem_cgroup *memcg, *pos;
2010
2011	if (likely(!nr_pages))
2012		return;
2013
2014	pos = memcg = get_mem_cgroup_from_mm(current->mm);
2015
2016	do {
2017		if (page_counter_read(&pos->memory) <= pos->high)
2018			continue;
2019		mem_cgroup_events(pos, MEMCG_HIGH, 1);
2020		try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
2021	} while ((pos = parent_mem_cgroup(pos)));
2022
2023	css_put(&memcg->css);
2024	current->memcg_nr_pages_over_high = 0;
2025}
2026
2027static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2028		      unsigned int nr_pages)
2029{
2030	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2031	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2032	struct mem_cgroup *mem_over_limit;
2033	struct page_counter *counter;
2034	unsigned long nr_reclaimed;
2035	bool may_swap = true;
2036	bool drained = false;
2037
2038	if (mem_cgroup_is_root(memcg))
2039		return 0;
2040retry:
2041	if (consume_stock(memcg, nr_pages))
2042		return 0;
2043
2044	if (!do_swap_account ||
2045	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2046		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2047			goto done_restock;
2048		if (do_swap_account)
2049			page_counter_uncharge(&memcg->memsw, batch);
2050		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2051	} else {
2052		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2053		may_swap = false;
2054	}
2055
2056	if (batch > nr_pages) {
2057		batch = nr_pages;
2058		goto retry;
2059	}
2060
2061	/*
2062	 * Unlike in global OOM situations, memcg is not in a physical
2063	 * memory shortage.  Allow dying and OOM-killed tasks to
2064	 * bypass the last charges so that they can exit quickly and
2065	 * free their memory.
2066	 */
2067	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2068		     fatal_signal_pending(current) ||
2069		     current->flags & PF_EXITING))
2070		goto force;
2071
2072	if (unlikely(task_in_memcg_oom(current)))
2073		goto nomem;
2074
2075	if (!gfpflags_allow_blocking(gfp_mask))
2076		goto nomem;
2077
2078	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2079
2080	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2081						    gfp_mask, may_swap);
2082
2083	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2084		goto retry;
2085
2086	if (!drained) {
2087		drain_all_stock(mem_over_limit);
2088		drained = true;
2089		goto retry;
2090	}
2091
2092	if (gfp_mask & __GFP_NORETRY)
2093		goto nomem;
2094	/*
2095	 * Even though the limit is exceeded at this point, reclaim
2096	 * may have been able to free some pages.  Retry the charge
2097	 * before killing the task.
2098	 *
2099	 * Only for regular pages, though: huge pages are rather
2100	 * unlikely to succeed so close to the limit, and we fall back
2101	 * to regular pages anyway in case of failure.
2102	 */
2103	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2104		goto retry;
2105	/*
2106	 * At task move, charge accounts can be doubly counted. So, it's
2107	 * better to wait until the end of task_move if something is going on.
2108	 */
2109	if (mem_cgroup_wait_acct_move(mem_over_limit))
2110		goto retry;
2111
2112	if (nr_retries--)
2113		goto retry;
2114
2115	if (gfp_mask & __GFP_NOFAIL)
2116		goto force;
2117
2118	if (fatal_signal_pending(current))
2119		goto force;
2120
2121	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2122
2123	mem_cgroup_oom(mem_over_limit, gfp_mask,
2124		       get_order(nr_pages * PAGE_SIZE));
2125nomem:
2126	if (!(gfp_mask & __GFP_NOFAIL))
2127		return -ENOMEM;
2128force:
2129	/*
2130	 * The allocation either can't fail or will lead to more memory
2131	 * being freed very soon.  Allow memory usage go over the limit
2132	 * temporarily by force charging it.
2133	 */
2134	page_counter_charge(&memcg->memory, nr_pages);
2135	if (do_swap_account)
2136		page_counter_charge(&memcg->memsw, nr_pages);
2137	css_get_many(&memcg->css, nr_pages);
2138
2139	return 0;
2140
2141done_restock:
2142	css_get_many(&memcg->css, batch);
2143	if (batch > nr_pages)
2144		refill_stock(memcg, batch - nr_pages);
2145
2146	/*
2147	 * If the hierarchy is above the normal consumption range, schedule
2148	 * reclaim on returning to userland.  We can perform reclaim here
2149	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2150	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2151	 * not recorded as it most likely matches current's and won't
2152	 * change in the meantime.  As high limit is checked again before
2153	 * reclaim, the cost of mismatch is negligible.
2154	 */
2155	do {
2156		if (page_counter_read(&memcg->memory) > memcg->high) {
2157			current->memcg_nr_pages_over_high += batch;
2158			set_notify_resume(current);
2159			break;
2160		}
2161	} while ((memcg = parent_mem_cgroup(memcg)));
2162
2163	return 0;
2164}
2165
2166static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2167{
2168	if (mem_cgroup_is_root(memcg))
2169		return;
2170
2171	page_counter_uncharge(&memcg->memory, nr_pages);
2172	if (do_swap_account)
2173		page_counter_uncharge(&memcg->memsw, nr_pages);
2174
2175	css_put_many(&memcg->css, nr_pages);
2176}
2177
2178static void lock_page_lru(struct page *page, int *isolated)
2179{
2180	struct zone *zone = page_zone(page);
2181
2182	spin_lock_irq(&zone->lru_lock);
2183	if (PageLRU(page)) {
2184		struct lruvec *lruvec;
2185
2186		lruvec = mem_cgroup_page_lruvec(page, zone);
2187		ClearPageLRU(page);
2188		del_page_from_lru_list(page, lruvec, page_lru(page));
2189		*isolated = 1;
2190	} else
2191		*isolated = 0;
2192}
2193
2194static void unlock_page_lru(struct page *page, int isolated)
2195{
2196	struct zone *zone = page_zone(page);
2197
2198	if (isolated) {
2199		struct lruvec *lruvec;
2200
2201		lruvec = mem_cgroup_page_lruvec(page, zone);
2202		VM_BUG_ON_PAGE(PageLRU(page), page);
2203		SetPageLRU(page);
2204		add_page_to_lru_list(page, lruvec, page_lru(page));
2205	}
2206	spin_unlock_irq(&zone->lru_lock);
2207}
2208
2209static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2210			  bool lrucare)
2211{
2212	int isolated;
2213
2214	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2215
2216	/*
2217	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2218	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2219	 */
2220	if (lrucare)
2221		lock_page_lru(page, &isolated);
2222
2223	/*
2224	 * Nobody should be changing or seriously looking at
2225	 * page->mem_cgroup at this point:
2226	 *
2227	 * - the page is uncharged
2228	 *
2229	 * - the page is off-LRU
2230	 *
2231	 * - an anonymous fault has exclusive page access, except for
2232	 *   a locked page table
2233	 *
2234	 * - a page cache insertion, a swapin fault, or a migration
2235	 *   have the page locked
2236	 */
2237	page->mem_cgroup = memcg;
2238
2239	if (lrucare)
2240		unlock_page_lru(page, isolated);
2241}
2242
2243#ifdef CONFIG_MEMCG_KMEM
2244static int memcg_alloc_cache_id(void)
2245{
2246	int id, size;
2247	int err;
2248
2249	id = ida_simple_get(&memcg_cache_ida,
2250			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2251	if (id < 0)
2252		return id;
2253
2254	if (id < memcg_nr_cache_ids)
2255		return id;
2256
2257	/*
2258	 * There's no space for the new id in memcg_caches arrays,
2259	 * so we have to grow them.
2260	 */
2261	down_write(&memcg_cache_ids_sem);
2262
2263	size = 2 * (id + 1);
2264	if (size < MEMCG_CACHES_MIN_SIZE)
2265		size = MEMCG_CACHES_MIN_SIZE;
2266	else if (size > MEMCG_CACHES_MAX_SIZE)
2267		size = MEMCG_CACHES_MAX_SIZE;
2268
2269	err = memcg_update_all_caches(size);
2270	if (!err)
2271		err = memcg_update_all_list_lrus(size);
2272	if (!err)
2273		memcg_nr_cache_ids = size;
2274
2275	up_write(&memcg_cache_ids_sem);
2276
2277	if (err) {
2278		ida_simple_remove(&memcg_cache_ida, id);
2279		return err;
2280	}
2281	return id;
2282}
2283
2284static void memcg_free_cache_id(int id)
2285{
2286	ida_simple_remove(&memcg_cache_ida, id);
2287}
2288
2289struct memcg_kmem_cache_create_work {
2290	struct mem_cgroup *memcg;
2291	struct kmem_cache *cachep;
2292	struct work_struct work;
2293};
2294
2295static void memcg_kmem_cache_create_func(struct work_struct *w)
2296{
2297	struct memcg_kmem_cache_create_work *cw =
2298		container_of(w, struct memcg_kmem_cache_create_work, work);
2299	struct mem_cgroup *memcg = cw->memcg;
2300	struct kmem_cache *cachep = cw->cachep;
2301
2302	memcg_create_kmem_cache(memcg, cachep);
2303
2304	css_put(&memcg->css);
2305	kfree(cw);
2306}
2307
2308/*
2309 * Enqueue the creation of a per-memcg kmem_cache.
2310 */
2311static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2312					       struct kmem_cache *cachep)
2313{
2314	struct memcg_kmem_cache_create_work *cw;
2315
2316	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2317	if (!cw)
2318		return;
2319
2320	css_get(&memcg->css);
2321
2322	cw->memcg = memcg;
2323	cw->cachep = cachep;
2324	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2325
2326	schedule_work(&cw->work);
2327}
2328
2329static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2330					     struct kmem_cache *cachep)
2331{
2332	/*
2333	 * We need to stop accounting when we kmalloc, because if the
2334	 * corresponding kmalloc cache is not yet created, the first allocation
2335	 * in __memcg_schedule_kmem_cache_create will recurse.
2336	 *
2337	 * However, it is better to enclose the whole function. Depending on
2338	 * the debugging options enabled, INIT_WORK(), for instance, can
2339	 * trigger an allocation. This too, will make us recurse. Because at
2340	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2341	 * the safest choice is to do it like this, wrapping the whole function.
2342	 */
2343	current->memcg_kmem_skip_account = 1;
2344	__memcg_schedule_kmem_cache_create(memcg, cachep);
2345	current->memcg_kmem_skip_account = 0;
2346}
2347
2348/*
2349 * Return the kmem_cache we're supposed to use for a slab allocation.
2350 * We try to use the current memcg's version of the cache.
2351 *
2352 * If the cache does not exist yet, if we are the first user of it,
2353 * we either create it immediately, if possible, or create it asynchronously
2354 * in a workqueue.
2355 * In the latter case, we will let the current allocation go through with
2356 * the original cache.
2357 *
2358 * Can't be called in interrupt context or from kernel threads.
2359 * This function needs to be called with rcu_read_lock() held.
2360 */
2361struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2362{
2363	struct mem_cgroup *memcg;
2364	struct kmem_cache *memcg_cachep;
2365	int kmemcg_id;
2366
2367	VM_BUG_ON(!is_root_cache(cachep));
2368
2369	if (current->memcg_kmem_skip_account)
2370		return cachep;
2371
2372	memcg = get_mem_cgroup_from_mm(current->mm);
2373	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2374	if (kmemcg_id < 0)
2375		goto out;
2376
2377	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2378	if (likely(memcg_cachep))
2379		return memcg_cachep;
2380
2381	/*
2382	 * If we are in a safe context (can wait, and not in interrupt
2383	 * context), we could be be predictable and return right away.
2384	 * This would guarantee that the allocation being performed
2385	 * already belongs in the new cache.
2386	 *
2387	 * However, there are some clashes that can arrive from locking.
2388	 * For instance, because we acquire the slab_mutex while doing
2389	 * memcg_create_kmem_cache, this means no further allocation
2390	 * could happen with the slab_mutex held. So it's better to
2391	 * defer everything.
2392	 */
2393	memcg_schedule_kmem_cache_create(memcg, cachep);
2394out:
2395	css_put(&memcg->css);
2396	return cachep;
2397}
2398
2399void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2400{
2401	if (!is_root_cache(cachep))
2402		css_put(&cachep->memcg_params.memcg->css);
2403}
2404
2405int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2406			      struct mem_cgroup *memcg)
2407{
2408	unsigned int nr_pages = 1 << order;
2409	struct page_counter *counter;
2410	int ret;
2411
2412	if (!memcg_kmem_is_active(memcg))
2413		return 0;
2414
2415	if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2416		return -ENOMEM;
2417
2418	ret = try_charge(memcg, gfp, nr_pages);
2419	if (ret) {
2420		page_counter_uncharge(&memcg->kmem, nr_pages);
2421		return ret;
2422	}
2423
2424	page->mem_cgroup = memcg;
2425
2426	return 0;
2427}
2428
2429int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2430{
2431	struct mem_cgroup *memcg;
2432	int ret;
2433
2434	memcg = get_mem_cgroup_from_mm(current->mm);
2435	ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2436	css_put(&memcg->css);
2437	return ret;
2438}
2439
2440void __memcg_kmem_uncharge(struct page *page, int order)
2441{
2442	struct mem_cgroup *memcg = page->mem_cgroup;
2443	unsigned int nr_pages = 1 << order;
2444
2445	if (!memcg)
2446		return;
2447
2448	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2449
2450	page_counter_uncharge(&memcg->kmem, nr_pages);
2451	page_counter_uncharge(&memcg->memory, nr_pages);
2452	if (do_swap_account)
2453		page_counter_uncharge(&memcg->memsw, nr_pages);
2454
2455	page->mem_cgroup = NULL;
2456	css_put_many(&memcg->css, nr_pages);
2457}
2458#endif /* CONFIG_MEMCG_KMEM */
2459
2460#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2461
2462/*
2463 * Because tail pages are not marked as "used", set it. We're under
2464 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2465 * charge/uncharge will be never happen and move_account() is done under
2466 * compound_lock(), so we don't have to take care of races.
2467 */
2468void mem_cgroup_split_huge_fixup(struct page *head)
2469{
2470	int i;
2471
2472	if (mem_cgroup_disabled())
2473		return;
2474
2475	for (i = 1; i < HPAGE_PMD_NR; i++)
2476		head[i].mem_cgroup = head->mem_cgroup;
2477
2478	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2479		       HPAGE_PMD_NR);
2480}
2481#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2482
2483#ifdef CONFIG_MEMCG_SWAP
2484static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2485					 bool charge)
2486{
2487	int val = (charge) ? 1 : -1;
2488	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2489}
2490
2491/**
2492 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2493 * @entry: swap entry to be moved
2494 * @from:  mem_cgroup which the entry is moved from
2495 * @to:  mem_cgroup which the entry is moved to
2496 *
2497 * It succeeds only when the swap_cgroup's record for this entry is the same
2498 * as the mem_cgroup's id of @from.
2499 *
2500 * Returns 0 on success, -EINVAL on failure.
2501 *
2502 * The caller must have charged to @to, IOW, called page_counter_charge() about
2503 * both res and memsw, and called css_get().
2504 */
2505static int mem_cgroup_move_swap_account(swp_entry_t entry,
2506				struct mem_cgroup *from, struct mem_cgroup *to)
2507{
2508	unsigned short old_id, new_id;
2509
2510	old_id = mem_cgroup_id(from);
2511	new_id = mem_cgroup_id(to);
2512
2513	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2514		mem_cgroup_swap_statistics(from, false);
2515		mem_cgroup_swap_statistics(to, true);
2516		return 0;
2517	}
2518	return -EINVAL;
2519}
2520#else
2521static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2522				struct mem_cgroup *from, struct mem_cgroup *to)
2523{
2524	return -EINVAL;
2525}
2526#endif
2527
2528static DEFINE_MUTEX(memcg_limit_mutex);
2529
2530static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2531				   unsigned long limit)
2532{
2533	unsigned long curusage;
2534	unsigned long oldusage;
2535	bool enlarge = false;
2536	int retry_count;
2537	int ret;
2538
2539	/*
2540	 * For keeping hierarchical_reclaim simple, how long we should retry
2541	 * is depends on callers. We set our retry-count to be function
2542	 * of # of children which we should visit in this loop.
2543	 */
2544	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2545		      mem_cgroup_count_children(memcg);
2546
2547	oldusage = page_counter_read(&memcg->memory);
2548
2549	do {
2550		if (signal_pending(current)) {
2551			ret = -EINTR;
2552			break;
2553		}
2554
2555		mutex_lock(&memcg_limit_mutex);
2556		if (limit > memcg->memsw.limit) {
2557			mutex_unlock(&memcg_limit_mutex);
2558			ret = -EINVAL;
2559			break;
2560		}
2561		if (limit > memcg->memory.limit)
2562			enlarge = true;
2563		ret = page_counter_limit(&memcg->memory, limit);
2564		mutex_unlock(&memcg_limit_mutex);
2565
2566		if (!ret)
2567			break;
2568
2569		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2570
2571		curusage = page_counter_read(&memcg->memory);
2572		/* Usage is reduced ? */
2573		if (curusage >= oldusage)
2574			retry_count--;
2575		else
2576			oldusage = curusage;
2577	} while (retry_count);
2578
2579	if (!ret && enlarge)
2580		memcg_oom_recover(memcg);
2581
2582	return ret;
2583}
2584
2585static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2586					 unsigned long limit)
2587{
2588	unsigned long curusage;
2589	unsigned long oldusage;
2590	bool enlarge = false;
2591	int retry_count;
2592	int ret;
2593
2594	/* see mem_cgroup_resize_res_limit */
2595	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2596		      mem_cgroup_count_children(memcg);
2597
2598	oldusage = page_counter_read(&memcg->memsw);
2599
2600	do {
2601		if (signal_pending(current)) {
2602			ret = -EINTR;
2603			break;
2604		}
2605
2606		mutex_lock(&memcg_limit_mutex);
2607		if (limit < memcg->memory.limit) {
2608			mutex_unlock(&memcg_limit_mutex);
2609			ret = -EINVAL;
2610			break;
2611		}
2612		if (limit > memcg->memsw.limit)
2613			enlarge = true;
2614		ret = page_counter_limit(&memcg->memsw, limit);
2615		mutex_unlock(&memcg_limit_mutex);
2616
2617		if (!ret)
2618			break;
2619
2620		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2621
2622		curusage = page_counter_read(&memcg->memsw);
2623		/* Usage is reduced ? */
2624		if (curusage >= oldusage)
2625			retry_count--;
2626		else
2627			oldusage = curusage;
2628	} while (retry_count);
2629
2630	if (!ret && enlarge)
2631		memcg_oom_recover(memcg);
2632
2633	return ret;
2634}
2635
2636unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2637					    gfp_t gfp_mask,
2638					    unsigned long *total_scanned)
2639{
2640	unsigned long nr_reclaimed = 0;
2641	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2642	unsigned long reclaimed;
2643	int loop = 0;
2644	struct mem_cgroup_tree_per_zone *mctz;
2645	unsigned long excess;
2646	unsigned long nr_scanned;
2647
2648	if (order > 0)
2649		return 0;
2650
2651	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2652	/*
2653	 * This loop can run a while, specially if mem_cgroup's continuously
2654	 * keep exceeding their soft limit and putting the system under
2655	 * pressure
2656	 */
2657	do {
2658		if (next_mz)
2659			mz = next_mz;
2660		else
2661			mz = mem_cgroup_largest_soft_limit_node(mctz);
2662		if (!mz)
2663			break;
2664
2665		nr_scanned = 0;
2666		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2667						    gfp_mask, &nr_scanned);
2668		nr_reclaimed += reclaimed;
2669		*total_scanned += nr_scanned;
2670		spin_lock_irq(&mctz->lock);
2671		__mem_cgroup_remove_exceeded(mz, mctz);
2672
2673		/*
2674		 * If we failed to reclaim anything from this memory cgroup
2675		 * it is time to move on to the next cgroup
2676		 */
2677		next_mz = NULL;
2678		if (!reclaimed)
2679			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2680
2681		excess = soft_limit_excess(mz->memcg);
2682		/*
2683		 * One school of thought says that we should not add
2684		 * back the node to the tree if reclaim returns 0.
2685		 * But our reclaim could return 0, simply because due
2686		 * to priority we are exposing a smaller subset of
2687		 * memory to reclaim from. Consider this as a longer
2688		 * term TODO.
2689		 */
2690		/* If excess == 0, no tree ops */
2691		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2692		spin_unlock_irq(&mctz->lock);
2693		css_put(&mz->memcg->css);
2694		loop++;
2695		/*
2696		 * Could not reclaim anything and there are no more
2697		 * mem cgroups to try or we seem to be looping without
2698		 * reclaiming anything.
2699		 */
2700		if (!nr_reclaimed &&
2701			(next_mz == NULL ||
2702			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2703			break;
2704	} while (!nr_reclaimed);
2705	if (next_mz)
2706		css_put(&next_mz->memcg->css);
2707	return nr_reclaimed;
2708}
2709
2710/*
2711 * Test whether @memcg has children, dead or alive.  Note that this
2712 * function doesn't care whether @memcg has use_hierarchy enabled and
2713 * returns %true if there are child csses according to the cgroup
2714 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2715 */
2716static inline bool memcg_has_children(struct mem_cgroup *memcg)
2717{
2718	bool ret;
2719
2720	/*
2721	 * The lock does not prevent addition or deletion of children, but
2722	 * it prevents a new child from being initialized based on this
2723	 * parent in css_online(), so it's enough to decide whether
2724	 * hierarchically inherited attributes can still be changed or not.
2725	 */
2726	lockdep_assert_held(&memcg_create_mutex);
2727
2728	rcu_read_lock();
2729	ret = css_next_child(NULL, &memcg->css);
2730	rcu_read_unlock();
2731	return ret;
2732}
2733
2734/*
2735 * Reclaims as many pages from the given memcg as possible and moves
2736 * the rest to the parent.
2737 *
2738 * Caller is responsible for holding css reference for memcg.
2739 */
2740static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2741{
2742	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2743
2744	/* we call try-to-free pages for make this cgroup empty */
2745	lru_add_drain_all();
2746	/* try to free all pages in this cgroup */
2747	while (nr_retries && page_counter_read(&memcg->memory)) {
2748		int progress;
2749
2750		if (signal_pending(current))
2751			return -EINTR;
2752
2753		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2754							GFP_KERNEL, true);
2755		if (!progress) {
2756			nr_retries--;
2757			/* maybe some writeback is necessary */
2758			congestion_wait(BLK_RW_ASYNC, HZ/10);
2759		}
2760
2761	}
2762
2763	return 0;
2764}
2765
2766static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2767					    char *buf, size_t nbytes,
2768					    loff_t off)
2769{
2770	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2771
2772	if (mem_cgroup_is_root(memcg))
2773		return -EINVAL;
2774	return mem_cgroup_force_empty(memcg) ?: nbytes;
2775}
2776
2777static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2778				     struct cftype *cft)
2779{
2780	return mem_cgroup_from_css(css)->use_hierarchy;
2781}
2782
2783static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2784				      struct cftype *cft, u64 val)
2785{
2786	int retval = 0;
2787	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2788	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2789
2790	mutex_lock(&memcg_create_mutex);
2791
2792	if (memcg->use_hierarchy == val)
2793		goto out;
2794
2795	/*
2796	 * If parent's use_hierarchy is set, we can't make any modifications
2797	 * in the child subtrees. If it is unset, then the change can
2798	 * occur, provided the current cgroup has no children.
2799	 *
2800	 * For the root cgroup, parent_mem is NULL, we allow value to be
2801	 * set if there are no children.
2802	 */
2803	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2804				(val == 1 || val == 0)) {
2805		if (!memcg_has_children(memcg))
2806			memcg->use_hierarchy = val;
2807		else
2808			retval = -EBUSY;
2809	} else
2810		retval = -EINVAL;
2811
2812out:
2813	mutex_unlock(&memcg_create_mutex);
2814
2815	return retval;
2816}
2817
2818static unsigned long tree_stat(struct mem_cgroup *memcg,
2819			       enum mem_cgroup_stat_index idx)
2820{
2821	struct mem_cgroup *iter;
2822	unsigned long val = 0;
2823
2824	for_each_mem_cgroup_tree(iter, memcg)
2825		val += mem_cgroup_read_stat(iter, idx);
2826
2827	return val;
2828}
2829
2830static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2831{
2832	unsigned long val;
2833
2834	if (mem_cgroup_is_root(memcg)) {
2835		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2836		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2837		if (swap)
2838			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2839	} else {
2840		if (!swap)
2841			val = page_counter_read(&memcg->memory);
2842		else
2843			val = page_counter_read(&memcg->memsw);
2844	}
2845	return val;
2846}
2847
2848enum {
2849	RES_USAGE,
2850	RES_LIMIT,
2851	RES_MAX_USAGE,
2852	RES_FAILCNT,
2853	RES_SOFT_LIMIT,
2854};
2855
2856static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2857			       struct cftype *cft)
2858{
2859	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2860	struct page_counter *counter;
2861
2862	switch (MEMFILE_TYPE(cft->private)) {
2863	case _MEM:
2864		counter = &memcg->memory;
2865		break;
2866	case _MEMSWAP:
2867		counter = &memcg->memsw;
2868		break;
2869	case _KMEM:
2870		counter = &memcg->kmem;
2871		break;
2872	default:
2873		BUG();
2874	}
2875
2876	switch (MEMFILE_ATTR(cft->private)) {
2877	case RES_USAGE:
2878		if (counter == &memcg->memory)
2879			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2880		if (counter == &memcg->memsw)
2881			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2882		return (u64)page_counter_read(counter) * PAGE_SIZE;
2883	case RES_LIMIT:
2884		return (u64)counter->limit * PAGE_SIZE;
2885	case RES_MAX_USAGE:
2886		return (u64)counter->watermark * PAGE_SIZE;
2887	case RES_FAILCNT:
2888		return counter->failcnt;
2889	case RES_SOFT_LIMIT:
2890		return (u64)memcg->soft_limit * PAGE_SIZE;
2891	default:
2892		BUG();
2893	}
2894}
2895
2896#ifdef CONFIG_MEMCG_KMEM
2897static int memcg_activate_kmem(struct mem_cgroup *memcg,
2898			       unsigned long nr_pages)
2899{
2900	int err = 0;
2901	int memcg_id;
2902
2903	BUG_ON(memcg->kmemcg_id >= 0);
2904	BUG_ON(memcg->kmem_acct_activated);
2905	BUG_ON(memcg->kmem_acct_active);
2906
2907	/*
2908	 * For simplicity, we won't allow this to be disabled.  It also can't
2909	 * be changed if the cgroup has children already, or if tasks had
2910	 * already joined.
2911	 *
2912	 * If tasks join before we set the limit, a person looking at
2913	 * kmem.usage_in_bytes will have no way to determine when it took
2914	 * place, which makes the value quite meaningless.
2915	 *
2916	 * After it first became limited, changes in the value of the limit are
2917	 * of course permitted.
2918	 */
2919	mutex_lock(&memcg_create_mutex);
2920	if (cgroup_is_populated(memcg->css.cgroup) ||
2921	    (memcg->use_hierarchy && memcg_has_children(memcg)))
2922		err = -EBUSY;
2923	mutex_unlock(&memcg_create_mutex);
2924	if (err)
2925		goto out;
2926
2927	memcg_id = memcg_alloc_cache_id();
2928	if (memcg_id < 0) {
2929		err = memcg_id;
2930		goto out;
2931	}
2932
2933	/*
2934	 * We couldn't have accounted to this cgroup, because it hasn't got
2935	 * activated yet, so this should succeed.
2936	 */
2937	err = page_counter_limit(&memcg->kmem, nr_pages);
2938	VM_BUG_ON(err);
2939
2940	static_key_slow_inc(&memcg_kmem_enabled_key);
2941	/*
2942	 * A memory cgroup is considered kmem-active as soon as it gets
2943	 * kmemcg_id. Setting the id after enabling static branching will
2944	 * guarantee no one starts accounting before all call sites are
2945	 * patched.
2946	 */
2947	memcg->kmemcg_id = memcg_id;
2948	memcg->kmem_acct_activated = true;
2949	memcg->kmem_acct_active = true;
2950out:
2951	return err;
2952}
2953
2954static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2955				   unsigned long limit)
2956{
2957	int ret;
2958
2959	mutex_lock(&memcg_limit_mutex);
2960	if (!memcg_kmem_is_active(memcg))
2961		ret = memcg_activate_kmem(memcg, limit);
2962	else
2963		ret = page_counter_limit(&memcg->kmem, limit);
2964	mutex_unlock(&memcg_limit_mutex);
2965	return ret;
2966}
2967
2968static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2969{
2970	int ret = 0;
2971	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2972
2973	if (!parent)
2974		return 0;
2975
2976	mutex_lock(&memcg_limit_mutex);
2977	/*
2978	 * If the parent cgroup is not kmem-active now, it cannot be activated
2979	 * after this point, because it has at least one child already.
2980	 */
2981	if (memcg_kmem_is_active(parent))
2982		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2983	mutex_unlock(&memcg_limit_mutex);
2984	return ret;
2985}
2986#else
2987static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2988				   unsigned long limit)
2989{
2990	return -EINVAL;
2991}
2992#endif /* CONFIG_MEMCG_KMEM */
2993
2994/*
2995 * The user of this function is...
2996 * RES_LIMIT.
2997 */
2998static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2999				char *buf, size_t nbytes, loff_t off)
3000{
3001	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3002	unsigned long nr_pages;
3003	int ret;
3004
3005	buf = strstrip(buf);
3006	ret = page_counter_memparse(buf, "-1", &nr_pages);
3007	if (ret)
3008		return ret;
3009
3010	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3011	case RES_LIMIT:
3012		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3013			ret = -EINVAL;
3014			break;
3015		}
3016		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3017		case _MEM:
3018			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3019			break;
3020		case _MEMSWAP:
3021			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3022			break;
3023		case _KMEM:
3024			ret = memcg_update_kmem_limit(memcg, nr_pages);
3025			break;
3026		}
3027		break;
3028	case RES_SOFT_LIMIT:
3029		memcg->soft_limit = nr_pages;
3030		ret = 0;
3031		break;
3032	}
3033	return ret ?: nbytes;
3034}
3035
3036static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3037				size_t nbytes, loff_t off)
3038{
3039	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3040	struct page_counter *counter;
3041
3042	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3043	case _MEM:
3044		counter = &memcg->memory;
3045		break;
3046	case _MEMSWAP:
3047		counter = &memcg->memsw;
3048		break;
3049	case _KMEM:
3050		counter = &memcg->kmem;
3051		break;
3052	default:
3053		BUG();
3054	}
3055
3056	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3057	case RES_MAX_USAGE:
3058		page_counter_reset_watermark(counter);
3059		break;
3060	case RES_FAILCNT:
3061		counter->failcnt = 0;
3062		break;
3063	default:
3064		BUG();
3065	}
3066
3067	return nbytes;
3068}
3069
3070static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3071					struct cftype *cft)
3072{
3073	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3074}
3075
3076#ifdef CONFIG_MMU
3077static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3078					struct cftype *cft, u64 val)
3079{
3080	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3081
3082	if (val & ~MOVE_MASK)
3083		return -EINVAL;
3084
3085	/*
3086	 * No kind of locking is needed in here, because ->can_attach() will
3087	 * check this value once in the beginning of the process, and then carry
3088	 * on with stale data. This means that changes to this value will only
3089	 * affect task migrations starting after the change.
3090	 */
3091	memcg->move_charge_at_immigrate = val;
3092	return 0;
3093}
3094#else
3095static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3096					struct cftype *cft, u64 val)
3097{
3098	return -ENOSYS;
3099}
3100#endif
3101
3102#ifdef CONFIG_NUMA
3103static int memcg_numa_stat_show(struct seq_file *m, void *v)
3104{
3105	struct numa_stat {
3106		const char *name;
3107		unsigned int lru_mask;
3108	};
3109
3110	static const struct numa_stat stats[] = {
3111		{ "total", LRU_ALL },
3112		{ "file", LRU_ALL_FILE },
3113		{ "anon", LRU_ALL_ANON },
3114		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3115	};
3116	const struct numa_stat *stat;
3117	int nid;
3118	unsigned long nr;
3119	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3120
3121	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3122		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3123		seq_printf(m, "%s=%lu", stat->name, nr);
3124		for_each_node_state(nid, N_MEMORY) {
3125			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3126							  stat->lru_mask);
3127			seq_printf(m, " N%d=%lu", nid, nr);
3128		}
3129		seq_putc(m, '\n');
3130	}
3131
3132	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3133		struct mem_cgroup *iter;
3134
3135		nr = 0;
3136		for_each_mem_cgroup_tree(iter, memcg)
3137			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3138		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3139		for_each_node_state(nid, N_MEMORY) {
3140			nr = 0;
3141			for_each_mem_cgroup_tree(iter, memcg)
3142				nr += mem_cgroup_node_nr_lru_pages(
3143					iter, nid, stat->lru_mask);
3144			seq_printf(m, " N%d=%lu", nid, nr);
3145		}
3146		seq_putc(m, '\n');
3147	}
3148
3149	return 0;
3150}
3151#endif /* CONFIG_NUMA */
3152
3153static int memcg_stat_show(struct seq_file *m, void *v)
3154{
3155	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3156	unsigned long memory, memsw;
3157	struct mem_cgroup *mi;
3158	unsigned int i;
3159
3160	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3161		     MEM_CGROUP_STAT_NSTATS);
3162	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3163		     MEM_CGROUP_EVENTS_NSTATS);
3164	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3165
3166	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3167		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3168			continue;
3169		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3170			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3171	}
3172
3173	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3174		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3175			   mem_cgroup_read_events(memcg, i));
3176
3177	for (i = 0; i < NR_LRU_LISTS; i++)
3178		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3179			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3180
3181	/* Hierarchical information */
3182	memory = memsw = PAGE_COUNTER_MAX;
3183	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3184		memory = min(memory, mi->memory.limit);
3185		memsw = min(memsw, mi->memsw.limit);
3186	}
3187	seq_printf(m, "hierarchical_memory_limit %llu\n",
3188		   (u64)memory * PAGE_SIZE);
3189	if (do_swap_account)
3190		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3191			   (u64)memsw * PAGE_SIZE);
3192
3193	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3194		unsigned long long val = 0;
3195
3196		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3197			continue;
3198		for_each_mem_cgroup_tree(mi, memcg)
3199			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3200		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3201	}
3202
3203	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3204		unsigned long long val = 0;
3205
3206		for_each_mem_cgroup_tree(mi, memcg)
3207			val += mem_cgroup_read_events(mi, i);
3208		seq_printf(m, "total_%s %llu\n",
3209			   mem_cgroup_events_names[i], val);
3210	}
3211
3212	for (i = 0; i < NR_LRU_LISTS; i++) {
3213		unsigned long long val = 0;
3214
3215		for_each_mem_cgroup_tree(mi, memcg)
3216			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3217		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3218	}
3219
3220#ifdef CONFIG_DEBUG_VM
3221	{
3222		int nid, zid;
3223		struct mem_cgroup_per_zone *mz;
3224		struct zone_reclaim_stat *rstat;
3225		unsigned long recent_rotated[2] = {0, 0};
3226		unsigned long recent_scanned[2] = {0, 0};
3227
3228		for_each_online_node(nid)
3229			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3230				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3231				rstat = &mz->lruvec.reclaim_stat;
3232
3233				recent_rotated[0] += rstat->recent_rotated[0];
3234				recent_rotated[1] += rstat->recent_rotated[1];
3235				recent_scanned[0] += rstat->recent_scanned[0];
3236				recent_scanned[1] += rstat->recent_scanned[1];
3237			}
3238		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3239		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3240		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3241		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3242	}
3243#endif
3244
3245	return 0;
3246}
3247
3248static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3249				      struct cftype *cft)
3250{
3251	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3252
3253	return mem_cgroup_swappiness(memcg);
3254}
3255
3256static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3257				       struct cftype *cft, u64 val)
3258{
3259	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3260
3261	if (val > 100)
3262		return -EINVAL;
3263
3264	if (css->parent)
3265		memcg->swappiness = val;
3266	else
3267		vm_swappiness = val;
3268
3269	return 0;
3270}
3271
3272static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3273{
3274	struct mem_cgroup_threshold_ary *t;
3275	unsigned long usage;
3276	int i;
3277
3278	rcu_read_lock();
3279	if (!swap)
3280		t = rcu_dereference(memcg->thresholds.primary);
3281	else
3282		t = rcu_dereference(memcg->memsw_thresholds.primary);
3283
3284	if (!t)
3285		goto unlock;
3286
3287	usage = mem_cgroup_usage(memcg, swap);
3288
3289	/*
3290	 * current_threshold points to threshold just below or equal to usage.
3291	 * If it's not true, a threshold was crossed after last
3292	 * call of __mem_cgroup_threshold().
3293	 */
3294	i = t->current_threshold;
3295
3296	/*
3297	 * Iterate backward over array of thresholds starting from
3298	 * current_threshold and check if a threshold is crossed.
3299	 * If none of thresholds below usage is crossed, we read
3300	 * only one element of the array here.
3301	 */
3302	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3303		eventfd_signal(t->entries[i].eventfd, 1);
3304
3305	/* i = current_threshold + 1 */
3306	i++;
3307
3308	/*
3309	 * Iterate forward over array of thresholds starting from
3310	 * current_threshold+1 and check if a threshold is crossed.
3311	 * If none of thresholds above usage is crossed, we read
3312	 * only one element of the array here.
3313	 */
3314	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3315		eventfd_signal(t->entries[i].eventfd, 1);
3316
3317	/* Update current_threshold */
3318	t->current_threshold = i - 1;
3319unlock:
3320	rcu_read_unlock();
3321}
3322
3323static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3324{
3325	while (memcg) {
3326		__mem_cgroup_threshold(memcg, false);
3327		if (do_swap_account)
3328			__mem_cgroup_threshold(memcg, true);
3329
3330		memcg = parent_mem_cgroup(memcg);
3331	}
3332}
3333
3334static int compare_thresholds(const void *a, const void *b)
3335{
3336	const struct mem_cgroup_threshold *_a = a;
3337	const struct mem_cgroup_threshold *_b = b;
3338
3339	if (_a->threshold > _b->threshold)
3340		return 1;
3341
3342	if (_a->threshold < _b->threshold)
3343		return -1;
3344
3345	return 0;
3346}
3347
3348static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3349{
3350	struct mem_cgroup_eventfd_list *ev;
3351
3352	spin_lock(&memcg_oom_lock);
3353
3354	list_for_each_entry(ev, &memcg->oom_notify, list)
3355		eventfd_signal(ev->eventfd, 1);
3356
3357	spin_unlock(&memcg_oom_lock);
3358	return 0;
3359}
3360
3361static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3362{
3363	struct mem_cgroup *iter;
3364
3365	for_each_mem_cgroup_tree(iter, memcg)
3366		mem_cgroup_oom_notify_cb(iter);
3367}
3368
3369static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3370	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3371{
3372	struct mem_cgroup_thresholds *thresholds;
3373	struct mem_cgroup_threshold_ary *new;
3374	unsigned long threshold;
3375	unsigned long usage;
3376	int i, size, ret;
3377
3378	ret = page_counter_memparse(args, "-1", &threshold);
3379	if (ret)
3380		return ret;
3381
3382	mutex_lock(&memcg->thresholds_lock);
3383
3384	if (type == _MEM) {
3385		thresholds = &memcg->thresholds;
3386		usage = mem_cgroup_usage(memcg, false);
3387	} else if (type == _MEMSWAP) {
3388		thresholds = &memcg->memsw_thresholds;
3389		usage = mem_cgroup_usage(memcg, true);
3390	} else
3391		BUG();
3392
3393	/* Check if a threshold crossed before adding a new one */
3394	if (thresholds->primary)
3395		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3396
3397	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3398
3399	/* Allocate memory for new array of thresholds */
3400	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3401			GFP_KERNEL);
3402	if (!new) {
3403		ret = -ENOMEM;
3404		goto unlock;
3405	}
3406	new->size = size;
3407
3408	/* Copy thresholds (if any) to new array */
3409	if (thresholds->primary) {
3410		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3411				sizeof(struct mem_cgroup_threshold));
3412	}
3413
3414	/* Add new threshold */
3415	new->entries[size - 1].eventfd = eventfd;
3416	new->entries[size - 1].threshold = threshold;
3417
3418	/* Sort thresholds. Registering of new threshold isn't time-critical */
3419	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3420			compare_thresholds, NULL);
3421
3422	/* Find current threshold */
3423	new->current_threshold = -1;
3424	for (i = 0; i < size; i++) {
3425		if (new->entries[i].threshold <= usage) {
3426			/*
3427			 * new->current_threshold will not be used until
3428			 * rcu_assign_pointer(), so it's safe to increment
3429			 * it here.
3430			 */
3431			++new->current_threshold;
3432		} else
3433			break;
3434	}
3435
3436	/* Free old spare buffer and save old primary buffer as spare */
3437	kfree(thresholds->spare);
3438	thresholds->spare = thresholds->primary;
3439
3440	rcu_assign_pointer(thresholds->primary, new);
3441
3442	/* To be sure that nobody uses thresholds */
3443	synchronize_rcu();
3444
3445unlock:
3446	mutex_unlock(&memcg->thresholds_lock);
3447
3448	return ret;
3449}
3450
3451static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3452	struct eventfd_ctx *eventfd, const char *args)
3453{
3454	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3455}
3456
3457static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3458	struct eventfd_ctx *eventfd, const char *args)
3459{
3460	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3461}
3462
3463static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3464	struct eventfd_ctx *eventfd, enum res_type type)
3465{
3466	struct mem_cgroup_thresholds *thresholds;
3467	struct mem_cgroup_threshold_ary *new;
3468	unsigned long usage;
3469	int i, j, size;
3470
3471	mutex_lock(&memcg->thresholds_lock);
3472
3473	if (type == _MEM) {
3474		thresholds = &memcg->thresholds;
3475		usage = mem_cgroup_usage(memcg, false);
3476	} else if (type == _MEMSWAP) {
3477		thresholds = &memcg->memsw_thresholds;
3478		usage = mem_cgroup_usage(memcg, true);
3479	} else
3480		BUG();
3481
3482	if (!thresholds->primary)
3483		goto unlock;
3484
3485	/* Check if a threshold crossed before removing */
3486	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3487
3488	/* Calculate new number of threshold */
3489	size = 0;
3490	for (i = 0; i < thresholds->primary->size; i++) {
3491		if (thresholds->primary->entries[i].eventfd != eventfd)
3492			size++;
3493	}
3494
3495	new = thresholds->spare;
3496
3497	/* Set thresholds array to NULL if we don't have thresholds */
3498	if (!size) {
3499		kfree(new);
3500		new = NULL;
3501		goto swap_buffers;
3502	}
3503
3504	new->size = size;
3505
3506	/* Copy thresholds and find current threshold */
3507	new->current_threshold = -1;
3508	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3509		if (thresholds->primary->entries[i].eventfd == eventfd)
3510			continue;
3511
3512		new->entries[j] = thresholds->primary->entries[i];
3513		if (new->entries[j].threshold <= usage) {
3514			/*
3515			 * new->current_threshold will not be used
3516			 * until rcu_assign_pointer(), so it's safe to increment
3517			 * it here.
3518			 */
3519			++new->current_threshold;
3520		}
3521		j++;
3522	}
3523
3524swap_buffers:
3525	/* Swap primary and spare array */
3526	thresholds->spare = thresholds->primary;
3527
3528	rcu_assign_pointer(thresholds->primary, new);
3529
3530	/* To be sure that nobody uses thresholds */
3531	synchronize_rcu();
3532
3533	/* If all events are unregistered, free the spare array */
3534	if (!new) {
3535		kfree(thresholds->spare);
3536		thresholds->spare = NULL;
3537	}
3538unlock:
3539	mutex_unlock(&memcg->thresholds_lock);
3540}
3541
3542static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3543	struct eventfd_ctx *eventfd)
3544{
3545	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3546}
3547
3548static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3549	struct eventfd_ctx *eventfd)
3550{
3551	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3552}
3553
3554static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3555	struct eventfd_ctx *eventfd, const char *args)
3556{
3557	struct mem_cgroup_eventfd_list *event;
3558
3559	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3560	if (!event)
3561		return -ENOMEM;
3562
3563	spin_lock(&memcg_oom_lock);
3564
3565	event->eventfd = eventfd;
3566	list_add(&event->list, &memcg->oom_notify);
3567
3568	/* already in OOM ? */
3569	if (memcg->under_oom)
3570		eventfd_signal(eventfd, 1);
3571	spin_unlock(&memcg_oom_lock);
3572
3573	return 0;
3574}
3575
3576static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3577	struct eventfd_ctx *eventfd)
3578{
3579	struct mem_cgroup_eventfd_list *ev, *tmp;
3580
3581	spin_lock(&memcg_oom_lock);
3582
3583	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3584		if (ev->eventfd == eventfd) {
3585			list_del(&ev->list);
3586			kfree(ev);
3587		}
3588	}
3589
3590	spin_unlock(&memcg_oom_lock);
3591}
3592
3593static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3594{
3595	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3596
3597	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3598	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3599	return 0;
3600}
3601
3602static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3603	struct cftype *cft, u64 val)
3604{
3605	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3606
3607	/* cannot set to root cgroup and only 0 and 1 are allowed */
3608	if (!css->parent || !((val == 0) || (val == 1)))
3609		return -EINVAL;
3610
3611	memcg->oom_kill_disable = val;
3612	if (!val)
3613		memcg_oom_recover(memcg);
3614
3615	return 0;
3616}
3617
3618#ifdef CONFIG_MEMCG_KMEM
3619static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3620{
3621	int ret;
3622
3623	ret = memcg_propagate_kmem(memcg);
3624	if (ret)
3625		return ret;
3626
3627	return mem_cgroup_sockets_init(memcg, ss);
3628}
3629
3630static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3631{
3632	struct cgroup_subsys_state *css;
3633	struct mem_cgroup *parent, *child;
3634	int kmemcg_id;
3635
3636	if (!memcg->kmem_acct_active)
3637		return;
3638
3639	/*
3640	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3641	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3642	 * guarantees no cache will be created for this cgroup after we are
3643	 * done (see memcg_create_kmem_cache()).
3644	 */
3645	memcg->kmem_acct_active = false;
3646
3647	memcg_deactivate_kmem_caches(memcg);
3648
3649	kmemcg_id = memcg->kmemcg_id;
3650	BUG_ON(kmemcg_id < 0);
3651
3652	parent = parent_mem_cgroup(memcg);
3653	if (!parent)
3654		parent = root_mem_cgroup;
3655
3656	/*
3657	 * Change kmemcg_id of this cgroup and all its descendants to the
3658	 * parent's id, and then move all entries from this cgroup's list_lrus
3659	 * to ones of the parent. After we have finished, all list_lrus
3660	 * corresponding to this cgroup are guaranteed to remain empty. The
3661	 * ordering is imposed by list_lru_node->lock taken by
3662	 * memcg_drain_all_list_lrus().
3663	 */
3664	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3665	css_for_each_descendant_pre(css, &memcg->css) {
3666		child = mem_cgroup_from_css(css);
3667		BUG_ON(child->kmemcg_id != kmemcg_id);
3668		child->kmemcg_id = parent->kmemcg_id;
3669		if (!memcg->use_hierarchy)
3670			break;
3671	}
3672	rcu_read_unlock();
3673
3674	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3675
3676	memcg_free_cache_id(kmemcg_id);
3677}
3678
3679static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3680{
3681	if (memcg->kmem_acct_activated) {
3682		memcg_destroy_kmem_caches(memcg);
3683		static_key_slow_dec(&memcg_kmem_enabled_key);
3684		WARN_ON(page_counter_read(&memcg->kmem));
3685	}
3686	mem_cgroup_sockets_destroy(memcg);
3687}
3688#else
3689static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3690{
3691	return 0;
3692}
3693
3694static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3695{
3696}
3697
3698static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3699{
3700}
3701#endif
3702
3703#ifdef CONFIG_CGROUP_WRITEBACK
3704
3705struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3706{
3707	return &memcg->cgwb_list;
3708}
3709
3710static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3711{
3712	return wb_domain_init(&memcg->cgwb_domain, gfp);
3713}
3714
3715static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3716{
3717	wb_domain_exit(&memcg->cgwb_domain);
3718}
3719
3720static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3721{
3722	wb_domain_size_changed(&memcg->cgwb_domain);
3723}
3724
3725struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3726{
3727	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3728
3729	if (!memcg->css.parent)
3730		return NULL;
3731
3732	return &memcg->cgwb_domain;
3733}
3734
3735/**
3736 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3737 * @wb: bdi_writeback in question
3738 * @pfilepages: out parameter for number of file pages
3739 * @pheadroom: out parameter for number of allocatable pages according to memcg
3740 * @pdirty: out parameter for number of dirty pages
3741 * @pwriteback: out parameter for number of pages under writeback
3742 *
3743 * Determine the numbers of file, headroom, dirty, and writeback pages in
3744 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3745 * is a bit more involved.
3746 *
3747 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3748 * headroom is calculated as the lowest headroom of itself and the
3749 * ancestors.  Note that this doesn't consider the actual amount of
3750 * available memory in the system.  The caller should further cap
3751 * *@pheadroom accordingly.
3752 */
3753void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3754			 unsigned long *pheadroom, unsigned long *pdirty,
3755			 unsigned long *pwriteback)
3756{
3757	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3758	struct mem_cgroup *parent;
3759
3760	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3761
3762	/* this should eventually include NR_UNSTABLE_NFS */
3763	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3764	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3765						     (1 << LRU_ACTIVE_FILE));
3766	*pheadroom = PAGE_COUNTER_MAX;
3767
3768	while ((parent = parent_mem_cgroup(memcg))) {
3769		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3770		unsigned long used = page_counter_read(&memcg->memory);
3771
3772		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3773		memcg = parent;
3774	}
3775}
3776
3777#else	/* CONFIG_CGROUP_WRITEBACK */
3778
3779static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3780{
3781	return 0;
3782}
3783
3784static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3785{
3786}
3787
3788static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3789{
3790}
3791
3792#endif	/* CONFIG_CGROUP_WRITEBACK */
3793
3794/*
3795 * DO NOT USE IN NEW FILES.
3796 *
3797 * "cgroup.event_control" implementation.
3798 *
3799 * This is way over-engineered.  It tries to support fully configurable
3800 * events for each user.  Such level of flexibility is completely
3801 * unnecessary especially in the light of the planned unified hierarchy.
3802 *
3803 * Please deprecate this and replace with something simpler if at all
3804 * possible.
3805 */
3806
3807/*
3808 * Unregister event and free resources.
3809 *
3810 * Gets called from workqueue.
3811 */
3812static void memcg_event_remove(struct work_struct *work)
3813{
3814	struct mem_cgroup_event *event =
3815		container_of(work, struct mem_cgroup_event, remove);
3816	struct mem_cgroup *memcg = event->memcg;
3817
3818	remove_wait_queue(event->wqh, &event->wait);
3819
3820	event->unregister_event(memcg, event->eventfd);
3821
3822	/* Notify userspace the event is going away. */
3823	eventfd_signal(event->eventfd, 1);
3824
3825	eventfd_ctx_put(event->eventfd);
3826	kfree(event);
3827	css_put(&memcg->css);
3828}
3829
3830/*
3831 * Gets called on POLLHUP on eventfd when user closes it.
3832 *
3833 * Called with wqh->lock held and interrupts disabled.
3834 */
3835static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3836			    int sync, void *key)
3837{
3838	struct mem_cgroup_event *event =
3839		container_of(wait, struct mem_cgroup_event, wait);
3840	struct mem_cgroup *memcg = event->memcg;
3841	unsigned long flags = (unsigned long)key;
3842
3843	if (flags & POLLHUP) {
3844		/*
3845		 * If the event has been detached at cgroup removal, we
3846		 * can simply return knowing the other side will cleanup
3847		 * for us.
3848		 *
3849		 * We can't race against event freeing since the other
3850		 * side will require wqh->lock via remove_wait_queue(),
3851		 * which we hold.
3852		 */
3853		spin_lock(&memcg->event_list_lock);
3854		if (!list_empty(&event->list)) {
3855			list_del_init(&event->list);
3856			/*
3857			 * We are in atomic context, but cgroup_event_remove()
3858			 * may sleep, so we have to call it in workqueue.
3859			 */
3860			schedule_work(&event->remove);
3861		}
3862		spin_unlock(&memcg->event_list_lock);
3863	}
3864
3865	return 0;
3866}
3867
3868static void memcg_event_ptable_queue_proc(struct file *file,
3869		wait_queue_head_t *wqh, poll_table *pt)
3870{
3871	struct mem_cgroup_event *event =
3872		container_of(pt, struct mem_cgroup_event, pt);
3873
3874	event->wqh = wqh;
3875	add_wait_queue(wqh, &event->wait);
3876}
3877
3878/*
3879 * DO NOT USE IN NEW FILES.
3880 *
3881 * Parse input and register new cgroup event handler.
3882 *
3883 * Input must be in format '<event_fd> <control_fd> <args>'.
3884 * Interpretation of args is defined by control file implementation.
3885 */
3886static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3887					 char *buf, size_t nbytes, loff_t off)
3888{
3889	struct cgroup_subsys_state *css = of_css(of);
3890	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3891	struct mem_cgroup_event *event;
3892	struct cgroup_subsys_state *cfile_css;
3893	unsigned int efd, cfd;
3894	struct fd efile;
3895	struct fd cfile;
3896	const char *name;
3897	char *endp;
3898	int ret;
3899
3900	buf = strstrip(buf);
3901
3902	efd = simple_strtoul(buf, &endp, 10);
3903	if (*endp != ' ')
3904		return -EINVAL;
3905	buf = endp + 1;
3906
3907	cfd = simple_strtoul(buf, &endp, 10);
3908	if ((*endp != ' ') && (*endp != '\0'))
3909		return -EINVAL;
3910	buf = endp + 1;
3911
3912	event = kzalloc(sizeof(*event), GFP_KERNEL);
3913	if (!event)
3914		return -ENOMEM;
3915
3916	event->memcg = memcg;
3917	INIT_LIST_HEAD(&event->list);
3918	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3919	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3920	INIT_WORK(&event->remove, memcg_event_remove);
3921
3922	efile = fdget(efd);
3923	if (!efile.file) {
3924		ret = -EBADF;
3925		goto out_kfree;
3926	}
3927
3928	event->eventfd = eventfd_ctx_fileget(efile.file);
3929	if (IS_ERR(event->eventfd)) {
3930		ret = PTR_ERR(event->eventfd);
3931		goto out_put_efile;
3932	}
3933
3934	cfile = fdget(cfd);
3935	if (!cfile.file) {
3936		ret = -EBADF;
3937		goto out_put_eventfd;
3938	}
3939
3940	/* the process need read permission on control file */
3941	/* AV: shouldn't we check that it's been opened for read instead? */
3942	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3943	if (ret < 0)
3944		goto out_put_cfile;
3945
3946	/*
3947	 * Determine the event callbacks and set them in @event.  This used
3948	 * to be done via struct cftype but cgroup core no longer knows
3949	 * about these events.  The following is crude but the whole thing
3950	 * is for compatibility anyway.
3951	 *
3952	 * DO NOT ADD NEW FILES.
3953	 */
3954	name = cfile.file->f_path.dentry->d_name.name;
3955
3956	if (!strcmp(name, "memory.usage_in_bytes")) {
3957		event->register_event = mem_cgroup_usage_register_event;
3958		event->unregister_event = mem_cgroup_usage_unregister_event;
3959	} else if (!strcmp(name, "memory.oom_control")) {
3960		event->register_event = mem_cgroup_oom_register_event;
3961		event->unregister_event = mem_cgroup_oom_unregister_event;
3962	} else if (!strcmp(name, "memory.pressure_level")) {
3963		event->register_event = vmpressure_register_event;
3964		event->unregister_event = vmpressure_unregister_event;
3965	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3966		event->register_event = memsw_cgroup_usage_register_event;
3967		event->unregister_event = memsw_cgroup_usage_unregister_event;
3968	} else {
3969		ret = -EINVAL;
3970		goto out_put_cfile;
3971	}
3972
3973	/*
3974	 * Verify @cfile should belong to @css.  Also, remaining events are
3975	 * automatically removed on cgroup destruction but the removal is
3976	 * asynchronous, so take an extra ref on @css.
3977	 */
3978	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3979					       &memory_cgrp_subsys);
3980	ret = -EINVAL;
3981	if (IS_ERR(cfile_css))
3982		goto out_put_cfile;
3983	if (cfile_css != css) {
3984		css_put(cfile_css);
3985		goto out_put_cfile;
3986	}
3987
3988	ret = event->register_event(memcg, event->eventfd, buf);
3989	if (ret)
3990		goto out_put_css;
3991
3992	efile.file->f_op->poll(efile.file, &event->pt);
3993
3994	spin_lock(&memcg->event_list_lock);
3995	list_add(&event->list, &memcg->event_list);
3996	spin_unlock(&memcg->event_list_lock);
3997
3998	fdput(cfile);
3999	fdput(efile);
4000
4001	return nbytes;
4002
4003out_put_css:
4004	css_put(css);
4005out_put_cfile:
4006	fdput(cfile);
4007out_put_eventfd:
4008	eventfd_ctx_put(event->eventfd);
4009out_put_efile:
4010	fdput(efile);
4011out_kfree:
4012	kfree(event);
4013
4014	return ret;
4015}
4016
4017static struct cftype mem_cgroup_legacy_files[] = {
4018	{
4019		.name = "usage_in_bytes",
4020		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4021		.read_u64 = mem_cgroup_read_u64,
4022	},
4023	{
4024		.name = "max_usage_in_bytes",
4025		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4026		.write = mem_cgroup_reset,
4027		.read_u64 = mem_cgroup_read_u64,
4028	},
4029	{
4030		.name = "limit_in_bytes",
4031		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4032		.write = mem_cgroup_write,
4033		.read_u64 = mem_cgroup_read_u64,
4034	},
4035	{
4036		.name = "soft_limit_in_bytes",
4037		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4038		.write = mem_cgroup_write,
4039		.read_u64 = mem_cgroup_read_u64,
4040	},
4041	{
4042		.name = "failcnt",
4043		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4044		.write = mem_cgroup_reset,
4045		.read_u64 = mem_cgroup_read_u64,
4046	},
4047	{
4048		.name = "stat",
4049		.seq_show = memcg_stat_show,
4050	},
4051	{
4052		.name = "force_empty",
4053		.write = mem_cgroup_force_empty_write,
4054	},
4055	{
4056		.name = "use_hierarchy",
4057		.write_u64 = mem_cgroup_hierarchy_write,
4058		.read_u64 = mem_cgroup_hierarchy_read,
4059	},
4060	{
4061		.name = "cgroup.event_control",		/* XXX: for compat */
4062		.write = memcg_write_event_control,
4063		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4064	},
4065	{
4066		.name = "swappiness",
4067		.read_u64 = mem_cgroup_swappiness_read,
4068		.write_u64 = mem_cgroup_swappiness_write,
4069	},
4070	{
4071		.name = "move_charge_at_immigrate",
4072		.read_u64 = mem_cgroup_move_charge_read,
4073		.write_u64 = mem_cgroup_move_charge_write,
4074	},
4075	{
4076		.name = "oom_control",
4077		.seq_show = mem_cgroup_oom_control_read,
4078		.write_u64 = mem_cgroup_oom_control_write,
4079		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4080	},
4081	{
4082		.name = "pressure_level",
4083	},
4084#ifdef CONFIG_NUMA
4085	{
4086		.name = "numa_stat",
4087		.seq_show = memcg_numa_stat_show,
4088	},
4089#endif
4090#ifdef CONFIG_MEMCG_KMEM
4091	{
4092		.name = "kmem.limit_in_bytes",
4093		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4094		.write = mem_cgroup_write,
4095		.read_u64 = mem_cgroup_read_u64,
4096	},
4097	{
4098		.name = "kmem.usage_in_bytes",
4099		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4100		.read_u64 = mem_cgroup_read_u64,
4101	},
4102	{
4103		.name = "kmem.failcnt",
4104		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4105		.write = mem_cgroup_reset,
4106		.read_u64 = mem_cgroup_read_u64,
4107	},
4108	{
4109		.name = "kmem.max_usage_in_bytes",
4110		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4111		.write = mem_cgroup_reset,
4112		.read_u64 = mem_cgroup_read_u64,
4113	},
4114#ifdef CONFIG_SLABINFO
4115	{
4116		.name = "kmem.slabinfo",
4117		.seq_start = slab_start,
4118		.seq_next = slab_next,
4119		.seq_stop = slab_stop,
4120		.seq_show = memcg_slab_show,
4121	},
4122#endif
4123#endif
4124	{ },	/* terminate */
4125};
4126
4127static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4128{
4129	struct mem_cgroup_per_node *pn;
4130	struct mem_cgroup_per_zone *mz;
4131	int zone, tmp = node;
4132	/*
4133	 * This routine is called against possible nodes.
4134	 * But it's BUG to call kmalloc() against offline node.
4135	 *
4136	 * TODO: this routine can waste much memory for nodes which will
4137	 *       never be onlined. It's better to use memory hotplug callback
4138	 *       function.
4139	 */
4140	if (!node_state(node, N_NORMAL_MEMORY))
4141		tmp = -1;
4142	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4143	if (!pn)
4144		return 1;
4145
4146	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4147		mz = &pn->zoneinfo[zone];
4148		lruvec_init(&mz->lruvec);
4149		mz->usage_in_excess = 0;
4150		mz->on_tree = false;
4151		mz->memcg = memcg;
4152	}
4153	memcg->nodeinfo[node] = pn;
4154	return 0;
4155}
4156
4157static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4158{
4159	kfree(memcg->nodeinfo[node]);
4160}
4161
4162static struct mem_cgroup *mem_cgroup_alloc(void)
4163{
4164	struct mem_cgroup *memcg;
4165	size_t size;
4166
4167	size = sizeof(struct mem_cgroup);
4168	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4169
4170	memcg = kzalloc(size, GFP_KERNEL);
4171	if (!memcg)
4172		return NULL;
4173
4174	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4175	if (!memcg->stat)
4176		goto out_free;
4177
4178	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4179		goto out_free_stat;
4180
4181	return memcg;
4182
4183out_free_stat:
4184	free_percpu(memcg->stat);
4185out_free:
4186	kfree(memcg);
4187	return NULL;
4188}
4189
4190/*
4191 * At destroying mem_cgroup, references from swap_cgroup can remain.
4192 * (scanning all at force_empty is too costly...)
4193 *
4194 * Instead of clearing all references at force_empty, we remember
4195 * the number of reference from swap_cgroup and free mem_cgroup when
4196 * it goes down to 0.
4197 *
4198 * Removal of cgroup itself succeeds regardless of refs from swap.
4199 */
4200
4201static void __mem_cgroup_free(struct mem_cgroup *memcg)
4202{
4203	int node;
4204
4205	mem_cgroup_remove_from_trees(memcg);
4206
4207	for_each_node(node)
4208		free_mem_cgroup_per_zone_info(memcg, node);
4209
4210	free_percpu(memcg->stat);
4211	memcg_wb_domain_exit(memcg);
4212	kfree(memcg);
4213}
4214
4215/*
4216 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4217 */
4218struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4219{
4220	if (!memcg->memory.parent)
4221		return NULL;
4222	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4223}
4224EXPORT_SYMBOL(parent_mem_cgroup);
4225
4226static struct cgroup_subsys_state * __ref
4227mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4228{
4229	struct mem_cgroup *memcg;
4230	long error = -ENOMEM;
4231	int node;
4232
4233	memcg = mem_cgroup_alloc();
4234	if (!memcg)
4235		return ERR_PTR(error);
4236
4237	for_each_node(node)
4238		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4239			goto free_out;
4240
4241	/* root ? */
4242	if (parent_css == NULL) {
4243		root_mem_cgroup = memcg;
4244		mem_cgroup_root_css = &memcg->css;
4245		page_counter_init(&memcg->memory, NULL);
4246		memcg->high = PAGE_COUNTER_MAX;
4247		memcg->soft_limit = PAGE_COUNTER_MAX;
4248		page_counter_init(&memcg->memsw, NULL);
4249		page_counter_init(&memcg->kmem, NULL);
4250	}
4251
4252	memcg->last_scanned_node = MAX_NUMNODES;
4253	INIT_LIST_HEAD(&memcg->oom_notify);
4254	memcg->move_charge_at_immigrate = 0;
4255	mutex_init(&memcg->thresholds_lock);
4256	spin_lock_init(&memcg->move_lock);
4257	vmpressure_init(&memcg->vmpressure);
4258	INIT_LIST_HEAD(&memcg->event_list);
4259	spin_lock_init(&memcg->event_list_lock);
4260#ifdef CONFIG_MEMCG_KMEM
4261	memcg->kmemcg_id = -1;
4262#endif
4263#ifdef CONFIG_CGROUP_WRITEBACK
4264	INIT_LIST_HEAD(&memcg->cgwb_list);
4265#endif
4266	return &memcg->css;
4267
4268free_out:
4269	__mem_cgroup_free(memcg);
4270	return ERR_PTR(error);
4271}
4272
4273static int
4274mem_cgroup_css_online(struct cgroup_subsys_state *css)
4275{
4276	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4277	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4278	int ret;
4279
4280	if (css->id > MEM_CGROUP_ID_MAX)
4281		return -ENOSPC;
4282
4283	if (!parent)
4284		return 0;
4285
4286	mutex_lock(&memcg_create_mutex);
4287
4288	memcg->use_hierarchy = parent->use_hierarchy;
4289	memcg->oom_kill_disable = parent->oom_kill_disable;
4290	memcg->swappiness = mem_cgroup_swappiness(parent);
4291
4292	if (parent->use_hierarchy) {
4293		page_counter_init(&memcg->memory, &parent->memory);
4294		memcg->high = PAGE_COUNTER_MAX;
4295		memcg->soft_limit = PAGE_COUNTER_MAX;
4296		page_counter_init(&memcg->memsw, &parent->memsw);
4297		page_counter_init(&memcg->kmem, &parent->kmem);
4298
4299		/*
4300		 * No need to take a reference to the parent because cgroup
4301		 * core guarantees its existence.
4302		 */
4303	} else {
4304		page_counter_init(&memcg->memory, NULL);
4305		memcg->high = PAGE_COUNTER_MAX;
4306		memcg->soft_limit = PAGE_COUNTER_MAX;
4307		page_counter_init(&memcg->memsw, NULL);
4308		page_counter_init(&memcg->kmem, NULL);
4309		/*
4310		 * Deeper hierachy with use_hierarchy == false doesn't make
4311		 * much sense so let cgroup subsystem know about this
4312		 * unfortunate state in our controller.
4313		 */
4314		if (parent != root_mem_cgroup)
4315			memory_cgrp_subsys.broken_hierarchy = true;
4316	}
4317	mutex_unlock(&memcg_create_mutex);
4318
4319	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4320	if (ret)
4321		return ret;
4322
4323	/*
4324	 * Make sure the memcg is initialized: mem_cgroup_iter()
4325	 * orders reading memcg->initialized against its callers
4326	 * reading the memcg members.
4327	 */
4328	smp_store_release(&memcg->initialized, 1);
4329
4330	return 0;
4331}
4332
4333static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4334{
4335	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4336	struct mem_cgroup_event *event, *tmp;
4337
4338	/*
4339	 * Unregister events and notify userspace.
4340	 * Notify userspace about cgroup removing only after rmdir of cgroup
4341	 * directory to avoid race between userspace and kernelspace.
4342	 */
4343	spin_lock(&memcg->event_list_lock);
4344	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4345		list_del_init(&event->list);
4346		schedule_work(&event->remove);
4347	}
4348	spin_unlock(&memcg->event_list_lock);
4349
4350	vmpressure_cleanup(&memcg->vmpressure);
4351
4352	memcg_deactivate_kmem(memcg);
4353
4354	wb_memcg_offline(memcg);
4355}
4356
4357static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4358{
4359	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4360
4361	invalidate_reclaim_iterators(memcg);
4362}
4363
4364static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4365{
4366	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4367
4368	memcg_destroy_kmem(memcg);
4369	__mem_cgroup_free(memcg);
4370}
4371
4372/**
4373 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4374 * @css: the target css
4375 *
4376 * Reset the states of the mem_cgroup associated with @css.  This is
4377 * invoked when the userland requests disabling on the default hierarchy
4378 * but the memcg is pinned through dependency.  The memcg should stop
4379 * applying policies and should revert to the vanilla state as it may be
4380 * made visible again.
4381 *
4382 * The current implementation only resets the essential configurations.
4383 * This needs to be expanded to cover all the visible parts.
4384 */
4385static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4386{
4387	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4388
4389	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4390	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4391	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4392	memcg->low = 0;
4393	memcg->high = PAGE_COUNTER_MAX;
4394	memcg->soft_limit = PAGE_COUNTER_MAX;
4395	memcg_wb_domain_size_changed(memcg);
4396}
4397
4398#ifdef CONFIG_MMU
4399/* Handlers for move charge at task migration. */
4400static int mem_cgroup_do_precharge(unsigned long count)
4401{
4402	int ret;
4403
4404	/* Try a single bulk charge without reclaim first, kswapd may wake */
4405	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4406	if (!ret) {
4407		mc.precharge += count;
4408		return ret;
4409	}
4410
4411	/* Try charges one by one with reclaim */
4412	while (count--) {
4413		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4414		if (ret)
4415			return ret;
4416		mc.precharge++;
4417		cond_resched();
4418	}
4419	return 0;
4420}
4421
4422/**
4423 * get_mctgt_type - get target type of moving charge
4424 * @vma: the vma the pte to be checked belongs
4425 * @addr: the address corresponding to the pte to be checked
4426 * @ptent: the pte to be checked
4427 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4428 *
4429 * Returns
4430 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4431 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4432 *     move charge. if @target is not NULL, the page is stored in target->page
4433 *     with extra refcnt got(Callers should handle it).
4434 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4435 *     target for charge migration. if @target is not NULL, the entry is stored
4436 *     in target->ent.
4437 *
4438 * Called with pte lock held.
4439 */
4440union mc_target {
4441	struct page	*page;
4442	swp_entry_t	ent;
4443};
4444
4445enum mc_target_type {
4446	MC_TARGET_NONE = 0,
4447	MC_TARGET_PAGE,
4448	MC_TARGET_SWAP,
4449};
4450
4451static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4452						unsigned long addr, pte_t ptent)
4453{
4454	struct page *page = vm_normal_page(vma, addr, ptent);
4455
4456	if (!page || !page_mapped(page))
4457		return NULL;
4458	if (PageAnon(page)) {
4459		if (!(mc.flags & MOVE_ANON))
4460			return NULL;
4461	} else {
4462		if (!(mc.flags & MOVE_FILE))
4463			return NULL;
4464	}
4465	if (!get_page_unless_zero(page))
4466		return NULL;
4467
4468	return page;
4469}
4470
4471#ifdef CONFIG_SWAP
4472static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4473			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4474{
4475	struct page *page = NULL;
4476	swp_entry_t ent = pte_to_swp_entry(ptent);
4477
4478	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4479		return NULL;
4480	/*
4481	 * Because lookup_swap_cache() updates some statistics counter,
4482	 * we call find_get_page() with swapper_space directly.
4483	 */
4484	page = find_get_page(swap_address_space(ent), ent.val);
4485	if (do_swap_account)
4486		entry->val = ent.val;
4487
4488	return page;
4489}
4490#else
4491static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4492			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4493{
4494	return NULL;
4495}
4496#endif
4497
4498static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4499			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4500{
4501	struct page *page = NULL;
4502	struct address_space *mapping;
4503	pgoff_t pgoff;
4504
4505	if (!vma->vm_file) /* anonymous vma */
4506		return NULL;
4507	if (!(mc.flags & MOVE_FILE))
4508		return NULL;
4509
4510	mapping = vma->vm_file->f_mapping;
4511	pgoff = linear_page_index(vma, addr);
4512
4513	/* page is moved even if it's not RSS of this task(page-faulted). */
4514#ifdef CONFIG_SWAP
4515	/* shmem/tmpfs may report page out on swap: account for that too. */
4516	if (shmem_mapping(mapping)) {
4517		page = find_get_entry(mapping, pgoff);
4518		if (radix_tree_exceptional_entry(page)) {
4519			swp_entry_t swp = radix_to_swp_entry(page);
4520			if (do_swap_account)
4521				*entry = swp;
4522			page = find_get_page(swap_address_space(swp), swp.val);
4523		}
4524	} else
4525		page = find_get_page(mapping, pgoff);
4526#else
4527	page = find_get_page(mapping, pgoff);
4528#endif
4529	return page;
4530}
4531
4532/**
4533 * mem_cgroup_move_account - move account of the page
4534 * @page: the page
4535 * @nr_pages: number of regular pages (>1 for huge pages)
4536 * @from: mem_cgroup which the page is moved from.
4537 * @to:	mem_cgroup which the page is moved to. @from != @to.
4538 *
4539 * The caller must confirm following.
4540 * - page is not on LRU (isolate_page() is useful.)
4541 * - compound_lock is held when nr_pages > 1
4542 *
4543 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4544 * from old cgroup.
4545 */
4546static int mem_cgroup_move_account(struct page *page,
4547				   unsigned int nr_pages,
4548				   struct mem_cgroup *from,
4549				   struct mem_cgroup *to)
4550{
4551	unsigned long flags;
4552	int ret;
4553	bool anon;
4554
4555	VM_BUG_ON(from == to);
4556	VM_BUG_ON_PAGE(PageLRU(page), page);
4557	/*
4558	 * The page is isolated from LRU. So, collapse function
4559	 * will not handle this page. But page splitting can happen.
4560	 * Do this check under compound_page_lock(). The caller should
4561	 * hold it.
4562	 */
4563	ret = -EBUSY;
4564	if (nr_pages > 1 && !PageTransHuge(page))
4565		goto out;
4566
4567	/*
4568	 * Prevent mem_cgroup_replace_page() from looking at
4569	 * page->mem_cgroup of its source page while we change it.
4570	 */
4571	if (!trylock_page(page))
4572		goto out;
4573
4574	ret = -EINVAL;
4575	if (page->mem_cgroup != from)
4576		goto out_unlock;
4577
4578	anon = PageAnon(page);
4579
4580	spin_lock_irqsave(&from->move_lock, flags);
4581
4582	if (!anon && page_mapped(page)) {
4583		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4584			       nr_pages);
4585		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4586			       nr_pages);
4587	}
4588
4589	/*
4590	 * move_lock grabbed above and caller set from->moving_account, so
4591	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4592	 * So mapping should be stable for dirty pages.
4593	 */
4594	if (!anon && PageDirty(page)) {
4595		struct address_space *mapping = page_mapping(page);
4596
4597		if (mapping_cap_account_dirty(mapping)) {
4598			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4599				       nr_pages);
4600			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4601				       nr_pages);
4602		}
4603	}
4604
4605	if (PageWriteback(page)) {
4606		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4607			       nr_pages);
4608		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4609			       nr_pages);
4610	}
4611
4612	/*
4613	 * It is safe to change page->mem_cgroup here because the page
4614	 * is referenced, charged, and isolated - we can't race with
4615	 * uncharging, charging, migration, or LRU putback.
4616	 */
4617
4618	/* caller should have done css_get */
4619	page->mem_cgroup = to;
4620	spin_unlock_irqrestore(&from->move_lock, flags);
4621
4622	ret = 0;
4623
4624	local_irq_disable();
4625	mem_cgroup_charge_statistics(to, page, nr_pages);
4626	memcg_check_events(to, page);
4627	mem_cgroup_charge_statistics(from, page, -nr_pages);
4628	memcg_check_events(from, page);
4629	local_irq_enable();
4630out_unlock:
4631	unlock_page(page);
4632out:
4633	return ret;
4634}
4635
4636static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4637		unsigned long addr, pte_t ptent, union mc_target *target)
4638{
4639	struct page *page = NULL;
4640	enum mc_target_type ret = MC_TARGET_NONE;
4641	swp_entry_t ent = { .val = 0 };
4642
4643	if (pte_present(ptent))
4644		page = mc_handle_present_pte(vma, addr, ptent);
4645	else if (is_swap_pte(ptent))
4646		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4647	else if (pte_none(ptent))
4648		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4649
4650	if (!page && !ent.val)
4651		return ret;
4652	if (page) {
4653		/*
4654		 * Do only loose check w/o serialization.
4655		 * mem_cgroup_move_account() checks the page is valid or
4656		 * not under LRU exclusion.
4657		 */
4658		if (page->mem_cgroup == mc.from) {
4659			ret = MC_TARGET_PAGE;
4660			if (target)
4661				target->page = page;
4662		}
4663		if (!ret || !target)
4664			put_page(page);
4665	}
4666	/* There is a swap entry and a page doesn't exist or isn't charged */
4667	if (ent.val && !ret &&
4668	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4669		ret = MC_TARGET_SWAP;
4670		if (target)
4671			target->ent = ent;
4672	}
4673	return ret;
4674}
4675
4676#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4677/*
4678 * We don't consider swapping or file mapped pages because THP does not
4679 * support them for now.
4680 * Caller should make sure that pmd_trans_huge(pmd) is true.
4681 */
4682static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4683		unsigned long addr, pmd_t pmd, union mc_target *target)
4684{
4685	struct page *page = NULL;
4686	enum mc_target_type ret = MC_TARGET_NONE;
4687
4688	page = pmd_page(pmd);
4689	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4690	if (!(mc.flags & MOVE_ANON))
4691		return ret;
4692	if (page->mem_cgroup == mc.from) {
4693		ret = MC_TARGET_PAGE;
4694		if (target) {
4695			get_page(page);
4696			target->page = page;
4697		}
4698	}
4699	return ret;
4700}
4701#else
4702static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4703		unsigned long addr, pmd_t pmd, union mc_target *target)
4704{
4705	return MC_TARGET_NONE;
4706}
4707#endif
4708
4709static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4710					unsigned long addr, unsigned long end,
4711					struct mm_walk *walk)
4712{
4713	struct vm_area_struct *vma = walk->vma;
4714	pte_t *pte;
4715	spinlock_t *ptl;
4716
4717	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4718		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4719			mc.precharge += HPAGE_PMD_NR;
4720		spin_unlock(ptl);
4721		return 0;
4722	}
4723
4724	if (pmd_trans_unstable(pmd))
4725		return 0;
4726	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4727	for (; addr != end; pte++, addr += PAGE_SIZE)
4728		if (get_mctgt_type(vma, addr, *pte, NULL))
4729			mc.precharge++;	/* increment precharge temporarily */
4730	pte_unmap_unlock(pte - 1, ptl);
4731	cond_resched();
4732
4733	return 0;
4734}
4735
4736static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4737{
4738	unsigned long precharge;
4739
4740	struct mm_walk mem_cgroup_count_precharge_walk = {
4741		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4742		.mm = mm,
4743	};
4744	down_read(&mm->mmap_sem);
4745	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4746	up_read(&mm->mmap_sem);
4747
4748	precharge = mc.precharge;
4749	mc.precharge = 0;
4750
4751	return precharge;
4752}
4753
4754static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4755{
4756	unsigned long precharge = mem_cgroup_count_precharge(mm);
4757
4758	VM_BUG_ON(mc.moving_task);
4759	mc.moving_task = current;
4760	return mem_cgroup_do_precharge(precharge);
4761}
4762
4763/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4764static void __mem_cgroup_clear_mc(void)
4765{
4766	struct mem_cgroup *from = mc.from;
4767	struct mem_cgroup *to = mc.to;
4768
4769	/* we must uncharge all the leftover precharges from mc.to */
4770	if (mc.precharge) {
4771		cancel_charge(mc.to, mc.precharge);
4772		mc.precharge = 0;
4773	}
4774	/*
4775	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4776	 * we must uncharge here.
4777	 */
4778	if (mc.moved_charge) {
4779		cancel_charge(mc.from, mc.moved_charge);
4780		mc.moved_charge = 0;
4781	}
4782	/* we must fixup refcnts and charges */
4783	if (mc.moved_swap) {
4784		/* uncharge swap account from the old cgroup */
4785		if (!mem_cgroup_is_root(mc.from))
4786			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4787
4788		/*
4789		 * we charged both to->memory and to->memsw, so we
4790		 * should uncharge to->memory.
4791		 */
4792		if (!mem_cgroup_is_root(mc.to))
4793			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4794
4795		css_put_many(&mc.from->css, mc.moved_swap);
4796
4797		/* we've already done css_get(mc.to) */
4798		mc.moved_swap = 0;
4799	}
4800	memcg_oom_recover(from);
4801	memcg_oom_recover(to);
4802	wake_up_all(&mc.waitq);
4803}
4804
4805static void mem_cgroup_clear_mc(void)
4806{
4807	struct mm_struct *mm = mc.mm;
4808
4809	/*
4810	 * we must clear moving_task before waking up waiters at the end of
4811	 * task migration.
4812	 */
4813	mc.moving_task = NULL;
4814	__mem_cgroup_clear_mc();
4815	spin_lock(&mc.lock);
4816	mc.from = NULL;
4817	mc.to = NULL;
4818	mc.mm = NULL;
4819	spin_unlock(&mc.lock);
4820
4821	mmput(mm);
4822}
4823
4824static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4825{
4826	struct cgroup_subsys_state *css;
4827	struct mem_cgroup *memcg;
4828	struct mem_cgroup *from;
4829	struct task_struct *leader, *p;
4830	struct mm_struct *mm;
4831	unsigned long move_flags;
4832	int ret = 0;
4833
4834	/* charge immigration isn't supported on the default hierarchy */
4835	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4836		return 0;
4837
4838	/*
4839	 * Multi-process migrations only happen on the default hierarchy
4840	 * where charge immigration is not used.  Perform charge
4841	 * immigration if @tset contains a leader and whine if there are
4842	 * multiple.
4843	 */
4844	p = NULL;
4845	cgroup_taskset_for_each_leader(leader, css, tset) {
4846		WARN_ON_ONCE(p);
4847		p = leader;
4848		memcg = mem_cgroup_from_css(css);
4849	}
4850	if (!p)
4851		return 0;
4852
4853	/*
4854	 * We are now commited to this value whatever it is. Changes in this
4855	 * tunable will only affect upcoming migrations, not the current one.
4856	 * So we need to save it, and keep it going.
4857	 */
4858	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4859	if (!move_flags)
4860		return 0;
4861
4862	from = mem_cgroup_from_task(p);
4863
4864	VM_BUG_ON(from == memcg);
4865
4866	mm = get_task_mm(p);
4867	if (!mm)
4868		return 0;
4869	/* We move charges only when we move a owner of the mm */
4870	if (mm->owner == p) {
4871		VM_BUG_ON(mc.from);
4872		VM_BUG_ON(mc.to);
4873		VM_BUG_ON(mc.precharge);
4874		VM_BUG_ON(mc.moved_charge);
4875		VM_BUG_ON(mc.moved_swap);
4876
4877		spin_lock(&mc.lock);
4878		mc.mm = mm;
4879		mc.from = from;
4880		mc.to = memcg;
4881		mc.flags = move_flags;
4882		spin_unlock(&mc.lock);
4883		/* We set mc.moving_task later */
4884
4885		ret = mem_cgroup_precharge_mc(mm);
4886		if (ret)
4887			mem_cgroup_clear_mc();
4888	} else {
4889		mmput(mm);
4890	}
4891	return ret;
4892}
4893
4894static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4895{
4896	if (mc.to)
4897		mem_cgroup_clear_mc();
4898}
4899
4900static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4901				unsigned long addr, unsigned long end,
4902				struct mm_walk *walk)
4903{
4904	int ret = 0;
4905	struct vm_area_struct *vma = walk->vma;
4906	pte_t *pte;
4907	spinlock_t *ptl;
4908	enum mc_target_type target_type;
4909	union mc_target target;
4910	struct page *page;
4911
4912	/*
4913	 * We don't take compound_lock() here but no race with splitting thp
4914	 * happens because:
4915	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4916	 *    under splitting, which means there's no concurrent thp split,
4917	 *  - if another thread runs into split_huge_page() just after we
4918	 *    entered this if-block, the thread must wait for page table lock
4919	 *    to be unlocked in __split_huge_page_splitting(), where the main
4920	 *    part of thp split is not executed yet.
4921	 */
4922	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4923		if (mc.precharge < HPAGE_PMD_NR) {
4924			spin_unlock(ptl);
4925			return 0;
4926		}
4927		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4928		if (target_type == MC_TARGET_PAGE) {
4929			page = target.page;
4930			if (!isolate_lru_page(page)) {
4931				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4932							     mc.from, mc.to)) {
4933					mc.precharge -= HPAGE_PMD_NR;
4934					mc.moved_charge += HPAGE_PMD_NR;
4935				}
4936				putback_lru_page(page);
4937			}
4938			put_page(page);
4939		}
4940		spin_unlock(ptl);
4941		return 0;
4942	}
4943
4944	if (pmd_trans_unstable(pmd))
4945		return 0;
4946retry:
4947	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4948	for (; addr != end; addr += PAGE_SIZE) {
4949		pte_t ptent = *(pte++);
4950		swp_entry_t ent;
4951
4952		if (!mc.precharge)
4953			break;
4954
4955		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4956		case MC_TARGET_PAGE:
4957			page = target.page;
4958			if (isolate_lru_page(page))
4959				goto put;
4960			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4961				mc.precharge--;
4962				/* we uncharge from mc.from later. */
4963				mc.moved_charge++;
4964			}
4965			putback_lru_page(page);
4966put:			/* get_mctgt_type() gets the page */
4967			put_page(page);
4968			break;
4969		case MC_TARGET_SWAP:
4970			ent = target.ent;
4971			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4972				mc.precharge--;
4973				/* we fixup refcnts and charges later. */
4974				mc.moved_swap++;
4975			}
4976			break;
4977		default:
4978			break;
4979		}
4980	}
4981	pte_unmap_unlock(pte - 1, ptl);
4982	cond_resched();
4983
4984	if (addr != end) {
4985		/*
4986		 * We have consumed all precharges we got in can_attach().
4987		 * We try charge one by one, but don't do any additional
4988		 * charges to mc.to if we have failed in charge once in attach()
4989		 * phase.
4990		 */
4991		ret = mem_cgroup_do_precharge(1);
4992		if (!ret)
4993			goto retry;
4994	}
4995
4996	return ret;
4997}
4998
4999static void mem_cgroup_move_charge(void)
5000{
5001	struct mm_walk mem_cgroup_move_charge_walk = {
5002		.pmd_entry = mem_cgroup_move_charge_pte_range,
5003		.mm = mc.mm,
5004	};
5005
5006	lru_add_drain_all();
5007	/*
5008	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5009	 * move_lock while we're moving its pages to another memcg.
5010	 * Then wait for already started RCU-only updates to finish.
5011	 */
5012	atomic_inc(&mc.from->moving_account);
5013	synchronize_rcu();
5014retry:
5015	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5016		/*
5017		 * Someone who are holding the mmap_sem might be waiting in
5018		 * waitq. So we cancel all extra charges, wake up all waiters,
5019		 * and retry. Because we cancel precharges, we might not be able
5020		 * to move enough charges, but moving charge is a best-effort
5021		 * feature anyway, so it wouldn't be a big problem.
5022		 */
5023		__mem_cgroup_clear_mc();
5024		cond_resched();
5025		goto retry;
5026	}
5027	/*
5028	 * When we have consumed all precharges and failed in doing
5029	 * additional charge, the page walk just aborts.
5030	 */
5031	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5032	up_read(&mc.mm->mmap_sem);
5033	atomic_dec(&mc.from->moving_account);
5034}
5035
5036static void mem_cgroup_move_task(void)
5037{
5038	if (mc.to) {
5039		mem_cgroup_move_charge();
5040		mem_cgroup_clear_mc();
5041	}
5042}
5043#else	/* !CONFIG_MMU */
5044static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5045{
5046	return 0;
5047}
5048static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5049{
5050}
5051static void mem_cgroup_move_task(void)
5052{
5053}
5054#endif
5055
5056/*
5057 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5058 * to verify whether we're attached to the default hierarchy on each mount
5059 * attempt.
5060 */
5061static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5062{
5063	/*
5064	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5065	 * guarantees that @root doesn't have any children, so turning it
5066	 * on for the root memcg is enough.
5067	 */
5068	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5069		root_mem_cgroup->use_hierarchy = true;
5070	else
5071		root_mem_cgroup->use_hierarchy = false;
5072}
5073
5074static u64 memory_current_read(struct cgroup_subsys_state *css,
5075			       struct cftype *cft)
5076{
5077	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5078
5079	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5080}
5081
5082static int memory_low_show(struct seq_file *m, void *v)
5083{
5084	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5085	unsigned long low = READ_ONCE(memcg->low);
5086
5087	if (low == PAGE_COUNTER_MAX)
5088		seq_puts(m, "max\n");
5089	else
5090		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5091
5092	return 0;
5093}
5094
5095static ssize_t memory_low_write(struct kernfs_open_file *of,
5096				char *buf, size_t nbytes, loff_t off)
5097{
5098	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5099	unsigned long low;
5100	int err;
5101
5102	buf = strstrip(buf);
5103	err = page_counter_memparse(buf, "max", &low);
5104	if (err)
5105		return err;
5106
5107	memcg->low = low;
5108
5109	return nbytes;
5110}
5111
5112static int memory_high_show(struct seq_file *m, void *v)
5113{
5114	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5115	unsigned long high = READ_ONCE(memcg->high);
5116
5117	if (high == PAGE_COUNTER_MAX)
5118		seq_puts(m, "max\n");
5119	else
5120		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5121
5122	return 0;
5123}
5124
5125static ssize_t memory_high_write(struct kernfs_open_file *of,
5126				 char *buf, size_t nbytes, loff_t off)
5127{
5128	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5129	unsigned long nr_pages;
5130	unsigned long high;
5131	int err;
5132
5133	buf = strstrip(buf);
5134	err = page_counter_memparse(buf, "max", &high);
5135	if (err)
5136		return err;
5137
5138	memcg->high = high;
5139
5140	nr_pages = page_counter_read(&memcg->memory);
5141	if (nr_pages > high)
5142		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5143					     GFP_KERNEL, true);
5144
5145	memcg_wb_domain_size_changed(memcg);
5146	return nbytes;
5147}
5148
5149static int memory_max_show(struct seq_file *m, void *v)
5150{
5151	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5152	unsigned long max = READ_ONCE(memcg->memory.limit);
5153
5154	if (max == PAGE_COUNTER_MAX)
5155		seq_puts(m, "max\n");
5156	else
5157		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5158
5159	return 0;
5160}
5161
5162static ssize_t memory_max_write(struct kernfs_open_file *of,
5163				char *buf, size_t nbytes, loff_t off)
5164{
5165	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5166	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5167	bool drained = false;
5168	unsigned long max;
5169	int err;
5170
5171	buf = strstrip(buf);
5172	err = page_counter_memparse(buf, "max", &max);
5173	if (err)
5174		return err;
5175
5176	xchg(&memcg->memory.limit, max);
5177
5178	for (;;) {
5179		unsigned long nr_pages = page_counter_read(&memcg->memory);
5180
5181		if (nr_pages <= max)
5182			break;
5183
5184		if (signal_pending(current)) {
5185			err = -EINTR;
5186			break;
5187		}
5188
5189		if (!drained) {
5190			drain_all_stock(memcg);
5191			drained = true;
5192			continue;
5193		}
5194
5195		if (nr_reclaims) {
5196			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5197							  GFP_KERNEL, true))
5198				nr_reclaims--;
5199			continue;
5200		}
5201
5202		mem_cgroup_events(memcg, MEMCG_OOM, 1);
5203		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5204			break;
5205	}
5206
5207	memcg_wb_domain_size_changed(memcg);
5208	return nbytes;
5209}
5210
5211static int memory_events_show(struct seq_file *m, void *v)
5212{
5213	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5214
5215	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5216	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5217	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5218	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5219
5220	return 0;
5221}
5222
5223static struct cftype memory_files[] = {
5224	{
5225		.name = "current",
5226		.flags = CFTYPE_NOT_ON_ROOT,
5227		.read_u64 = memory_current_read,
5228	},
5229	{
5230		.name = "low",
5231		.flags = CFTYPE_NOT_ON_ROOT,
5232		.seq_show = memory_low_show,
5233		.write = memory_low_write,
5234	},
5235	{
5236		.name = "high",
5237		.flags = CFTYPE_NOT_ON_ROOT,
5238		.seq_show = memory_high_show,
5239		.write = memory_high_write,
5240	},
5241	{
5242		.name = "max",
5243		.flags = CFTYPE_NOT_ON_ROOT,
5244		.seq_show = memory_max_show,
5245		.write = memory_max_write,
5246	},
5247	{
5248		.name = "events",
5249		.flags = CFTYPE_NOT_ON_ROOT,
5250		.file_offset = offsetof(struct mem_cgroup, events_file),
5251		.seq_show = memory_events_show,
5252	},
5253	{ }	/* terminate */
5254};
5255
5256struct cgroup_subsys memory_cgrp_subsys = {
5257	.css_alloc = mem_cgroup_css_alloc,
5258	.css_online = mem_cgroup_css_online,
5259	.css_offline = mem_cgroup_css_offline,
5260	.css_released = mem_cgroup_css_released,
5261	.css_free = mem_cgroup_css_free,
5262	.css_reset = mem_cgroup_css_reset,
5263	.can_attach = mem_cgroup_can_attach,
5264	.cancel_attach = mem_cgroup_cancel_attach,
5265	.post_attach = mem_cgroup_move_task,
5266	.bind = mem_cgroup_bind,
5267	.dfl_cftypes = memory_files,
5268	.legacy_cftypes = mem_cgroup_legacy_files,
5269	.early_init = 0,
5270};
5271
5272/**
5273 * mem_cgroup_low - check if memory consumption is below the normal range
5274 * @root: the highest ancestor to consider
5275 * @memcg: the memory cgroup to check
5276 *
5277 * Returns %true if memory consumption of @memcg, and that of all
5278 * configurable ancestors up to @root, is below the normal range.
5279 */
5280bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5281{
5282	if (mem_cgroup_disabled())
5283		return false;
5284
5285	/*
5286	 * The toplevel group doesn't have a configurable range, so
5287	 * it's never low when looked at directly, and it is not
5288	 * considered an ancestor when assessing the hierarchy.
5289	 */
5290
5291	if (memcg == root_mem_cgroup)
5292		return false;
5293
5294	if (page_counter_read(&memcg->memory) >= memcg->low)
5295		return false;
5296
5297	while (memcg != root) {
5298		memcg = parent_mem_cgroup(memcg);
5299
5300		if (memcg == root_mem_cgroup)
5301			break;
5302
5303		if (page_counter_read(&memcg->memory) >= memcg->low)
5304			return false;
5305	}
5306	return true;
5307}
5308
5309/**
5310 * mem_cgroup_try_charge - try charging a page
5311 * @page: page to charge
5312 * @mm: mm context of the victim
5313 * @gfp_mask: reclaim mode
5314 * @memcgp: charged memcg return
5315 *
5316 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5317 * pages according to @gfp_mask if necessary.
5318 *
5319 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5320 * Otherwise, an error code is returned.
5321 *
5322 * After page->mapping has been set up, the caller must finalize the
5323 * charge with mem_cgroup_commit_charge().  Or abort the transaction
5324 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5325 */
5326int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5327			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
5328{
5329	struct mem_cgroup *memcg = NULL;
5330	unsigned int nr_pages = 1;
5331	int ret = 0;
5332
5333	if (mem_cgroup_disabled())
5334		goto out;
5335
5336	if (PageSwapCache(page)) {
5337		/*
5338		 * Every swap fault against a single page tries to charge the
5339		 * page, bail as early as possible.  shmem_unuse() encounters
5340		 * already charged pages, too.  The USED bit is protected by
5341		 * the page lock, which serializes swap cache removal, which
5342		 * in turn serializes uncharging.
5343		 */
5344		VM_BUG_ON_PAGE(!PageLocked(page), page);
5345		if (page->mem_cgroup)
5346			goto out;
5347
5348		if (do_swap_account) {
5349			swp_entry_t ent = { .val = page_private(page), };
5350			unsigned short id = lookup_swap_cgroup_id(ent);
5351
5352			rcu_read_lock();
5353			memcg = mem_cgroup_from_id(id);
5354			if (memcg && !css_tryget_online(&memcg->css))
5355				memcg = NULL;
5356			rcu_read_unlock();
5357		}
5358	}
5359
5360	if (PageTransHuge(page)) {
5361		nr_pages <<= compound_order(page);
5362		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5363	}
5364
5365	if (!memcg)
5366		memcg = get_mem_cgroup_from_mm(mm);
5367
5368	ret = try_charge(memcg, gfp_mask, nr_pages);
5369
5370	css_put(&memcg->css);
5371out:
5372	*memcgp = memcg;
5373	return ret;
5374}
5375
5376/**
5377 * mem_cgroup_commit_charge - commit a page charge
5378 * @page: page to charge
5379 * @memcg: memcg to charge the page to
5380 * @lrucare: page might be on LRU already
5381 *
5382 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5383 * after page->mapping has been set up.  This must happen atomically
5384 * as part of the page instantiation, i.e. under the page table lock
5385 * for anonymous pages, under the page lock for page and swap cache.
5386 *
5387 * In addition, the page must not be on the LRU during the commit, to
5388 * prevent racing with task migration.  If it might be, use @lrucare.
5389 *
5390 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5391 */
5392void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5393			      bool lrucare)
5394{
5395	unsigned int nr_pages = 1;
5396
5397	VM_BUG_ON_PAGE(!page->mapping, page);
5398	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5399
5400	if (mem_cgroup_disabled())
5401		return;
5402	/*
5403	 * Swap faults will attempt to charge the same page multiple
5404	 * times.  But reuse_swap_page() might have removed the page
5405	 * from swapcache already, so we can't check PageSwapCache().
5406	 */
5407	if (!memcg)
5408		return;
5409
5410	commit_charge(page, memcg, lrucare);
5411
5412	if (PageTransHuge(page)) {
5413		nr_pages <<= compound_order(page);
5414		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5415	}
5416
5417	local_irq_disable();
5418	mem_cgroup_charge_statistics(memcg, page, nr_pages);
5419	memcg_check_events(memcg, page);
5420	local_irq_enable();
5421
5422	if (do_swap_account && PageSwapCache(page)) {
5423		swp_entry_t entry = { .val = page_private(page) };
5424		/*
5425		 * The swap entry might not get freed for a long time,
5426		 * let's not wait for it.  The page already received a
5427		 * memory+swap charge, drop the swap entry duplicate.
5428		 */
5429		mem_cgroup_uncharge_swap(entry);
5430	}
5431}
5432
5433/**
5434 * mem_cgroup_cancel_charge - cancel a page charge
5435 * @page: page to charge
5436 * @memcg: memcg to charge the page to
5437 *
5438 * Cancel a charge transaction started by mem_cgroup_try_charge().
5439 */
5440void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5441{
5442	unsigned int nr_pages = 1;
5443
5444	if (mem_cgroup_disabled())
5445		return;
5446	/*
5447	 * Swap faults will attempt to charge the same page multiple
5448	 * times.  But reuse_swap_page() might have removed the page
5449	 * from swapcache already, so we can't check PageSwapCache().
5450	 */
5451	if (!memcg)
5452		return;
5453
5454	if (PageTransHuge(page)) {
5455		nr_pages <<= compound_order(page);
5456		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5457	}
5458
5459	cancel_charge(memcg, nr_pages);
5460}
5461
5462static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5463			   unsigned long nr_anon, unsigned long nr_file,
5464			   unsigned long nr_huge, struct page *dummy_page)
5465{
5466	unsigned long nr_pages = nr_anon + nr_file;
5467	unsigned long flags;
5468
5469	if (!mem_cgroup_is_root(memcg)) {
5470		page_counter_uncharge(&memcg->memory, nr_pages);
5471		if (do_swap_account)
5472			page_counter_uncharge(&memcg->memsw, nr_pages);
5473		memcg_oom_recover(memcg);
5474	}
5475
5476	local_irq_save(flags);
5477	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5478	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5479	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5480	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5481	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5482	memcg_check_events(memcg, dummy_page);
5483	local_irq_restore(flags);
5484
5485	if (!mem_cgroup_is_root(memcg))
5486		css_put_many(&memcg->css, nr_pages);
5487}
5488
5489static void uncharge_list(struct list_head *page_list)
5490{
5491	struct mem_cgroup *memcg = NULL;
5492	unsigned long nr_anon = 0;
5493	unsigned long nr_file = 0;
5494	unsigned long nr_huge = 0;
5495	unsigned long pgpgout = 0;
5496	struct list_head *next;
5497	struct page *page;
5498
5499	next = page_list->next;
5500	do {
5501		unsigned int nr_pages = 1;
5502
5503		page = list_entry(next, struct page, lru);
5504		next = page->lru.next;
5505
5506		VM_BUG_ON_PAGE(PageLRU(page), page);
5507		VM_BUG_ON_PAGE(page_count(page), page);
5508
5509		if (!page->mem_cgroup)
5510			continue;
5511
5512		/*
5513		 * Nobody should be changing or seriously looking at
5514		 * page->mem_cgroup at this point, we have fully
5515		 * exclusive access to the page.
5516		 */
5517
5518		if (memcg != page->mem_cgroup) {
5519			if (memcg) {
5520				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5521					       nr_huge, page);
5522				pgpgout = nr_anon = nr_file = nr_huge = 0;
5523			}
5524			memcg = page->mem_cgroup;
5525		}
5526
5527		if (PageTransHuge(page)) {
5528			nr_pages <<= compound_order(page);
5529			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5530			nr_huge += nr_pages;
5531		}
5532
5533		if (PageAnon(page))
5534			nr_anon += nr_pages;
5535		else
5536			nr_file += nr_pages;
5537
5538		page->mem_cgroup = NULL;
5539
5540		pgpgout++;
5541	} while (next != page_list);
5542
5543	if (memcg)
5544		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5545			       nr_huge, page);
5546}
5547
5548/**
5549 * mem_cgroup_uncharge - uncharge a page
5550 * @page: page to uncharge
5551 *
5552 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5553 * mem_cgroup_commit_charge().
5554 */
5555void mem_cgroup_uncharge(struct page *page)
5556{
5557	if (mem_cgroup_disabled())
5558		return;
5559
5560	/* Don't touch page->lru of any random page, pre-check: */
5561	if (!page->mem_cgroup)
5562		return;
5563
5564	INIT_LIST_HEAD(&page->lru);
5565	uncharge_list(&page->lru);
5566}
5567
5568/**
5569 * mem_cgroup_uncharge_list - uncharge a list of page
5570 * @page_list: list of pages to uncharge
5571 *
5572 * Uncharge a list of pages previously charged with
5573 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5574 */
5575void mem_cgroup_uncharge_list(struct list_head *page_list)
5576{
5577	if (mem_cgroup_disabled())
5578		return;
5579
5580	if (!list_empty(page_list))
5581		uncharge_list(page_list);
5582}
5583
5584/**
5585 * mem_cgroup_replace_page - migrate a charge to another page
5586 * @oldpage: currently charged page
5587 * @newpage: page to transfer the charge to
5588 *
5589 * Migrate the charge from @oldpage to @newpage.
5590 *
5591 * Both pages must be locked, @newpage->mapping must be set up.
5592 * Either or both pages might be on the LRU already.
5593 */
5594void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5595{
5596	struct mem_cgroup *memcg;
5597	int isolated;
5598
5599	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5600	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5601	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5602	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5603		       newpage);
5604
5605	if (mem_cgroup_disabled())
5606		return;
5607
5608	/* Page cache replacement: new page already charged? */
5609	if (newpage->mem_cgroup)
5610		return;
5611
5612	/* Swapcache readahead pages can get replaced before being charged */
5613	memcg = oldpage->mem_cgroup;
5614	if (!memcg)
5615		return;
5616
5617	lock_page_lru(oldpage, &isolated);
5618	oldpage->mem_cgroup = NULL;
5619	unlock_page_lru(oldpage, isolated);
5620
5621	commit_charge(newpage, memcg, true);
5622}
5623
5624/*
5625 * subsys_initcall() for memory controller.
5626 *
5627 * Some parts like hotcpu_notifier() have to be initialized from this context
5628 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5629 * everything that doesn't depend on a specific mem_cgroup structure should
5630 * be initialized from here.
5631 */
5632static int __init mem_cgroup_init(void)
5633{
5634	int cpu, node;
5635
5636	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5637
5638	for_each_possible_cpu(cpu)
5639		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5640			  drain_local_stock);
5641
5642	for_each_node(node) {
5643		struct mem_cgroup_tree_per_node *rtpn;
5644		int zone;
5645
5646		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5647				    node_online(node) ? node : NUMA_NO_NODE);
5648
5649		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5650			struct mem_cgroup_tree_per_zone *rtpz;
5651
5652			rtpz = &rtpn->rb_tree_per_zone[zone];
5653			rtpz->rb_root = RB_ROOT;
5654			spin_lock_init(&rtpz->lock);
5655		}
5656		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5657	}
5658
5659	return 0;
5660}
5661subsys_initcall(mem_cgroup_init);
5662
5663#ifdef CONFIG_MEMCG_SWAP
5664/**
5665 * mem_cgroup_swapout - transfer a memsw charge to swap
5666 * @page: page whose memsw charge to transfer
5667 * @entry: swap entry to move the charge to
5668 *
5669 * Transfer the memsw charge of @page to @entry.
5670 */
5671void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5672{
5673	struct mem_cgroup *memcg;
5674	unsigned short oldid;
5675
5676	VM_BUG_ON_PAGE(PageLRU(page), page);
5677	VM_BUG_ON_PAGE(page_count(page), page);
5678
5679	if (!do_swap_account)
5680		return;
5681
5682	memcg = page->mem_cgroup;
5683
5684	/* Readahead page, never charged */
5685	if (!memcg)
5686		return;
5687
5688	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5689	VM_BUG_ON_PAGE(oldid, page);
5690	mem_cgroup_swap_statistics(memcg, true);
5691
5692	page->mem_cgroup = NULL;
5693
5694	if (!mem_cgroup_is_root(memcg))
5695		page_counter_uncharge(&memcg->memory, 1);
5696
5697	/*
5698	 * Interrupts should be disabled here because the caller holds the
5699	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5700	 * important here to have the interrupts disabled because it is the
5701	 * only synchronisation we have for udpating the per-CPU variables.
5702	 */
5703	VM_BUG_ON(!irqs_disabled());
5704	mem_cgroup_charge_statistics(memcg, page, -1);
5705	memcg_check_events(memcg, page);
5706}
5707
5708/**
5709 * mem_cgroup_uncharge_swap - uncharge a swap entry
5710 * @entry: swap entry to uncharge
5711 *
5712 * Drop the memsw charge associated with @entry.
5713 */
5714void mem_cgroup_uncharge_swap(swp_entry_t entry)
5715{
5716	struct mem_cgroup *memcg;
5717	unsigned short id;
5718
5719	if (!do_swap_account)
5720		return;
5721
5722	id = swap_cgroup_record(entry, 0);
5723	rcu_read_lock();
5724	memcg = mem_cgroup_from_id(id);
5725	if (memcg) {
5726		if (!mem_cgroup_is_root(memcg))
5727			page_counter_uncharge(&memcg->memsw, 1);
5728		mem_cgroup_swap_statistics(memcg, false);
5729		css_put(&memcg->css);
5730	}
5731	rcu_read_unlock();
5732}
5733
5734/* for remember boot option*/
5735#ifdef CONFIG_MEMCG_SWAP_ENABLED
5736static int really_do_swap_account __initdata = 1;
5737#else
5738static int really_do_swap_account __initdata;
5739#endif
5740
5741static int __init enable_swap_account(char *s)
5742{
5743	if (!strcmp(s, "1"))
5744		really_do_swap_account = 1;
5745	else if (!strcmp(s, "0"))
5746		really_do_swap_account = 0;
5747	return 1;
5748}
5749__setup("swapaccount=", enable_swap_account);
5750
5751static struct cftype memsw_cgroup_files[] = {
5752	{
5753		.name = "memsw.usage_in_bytes",
5754		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5755		.read_u64 = mem_cgroup_read_u64,
5756	},
5757	{
5758		.name = "memsw.max_usage_in_bytes",
5759		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5760		.write = mem_cgroup_reset,
5761		.read_u64 = mem_cgroup_read_u64,
5762	},
5763	{
5764		.name = "memsw.limit_in_bytes",
5765		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5766		.write = mem_cgroup_write,
5767		.read_u64 = mem_cgroup_read_u64,
5768	},
5769	{
5770		.name = "memsw.failcnt",
5771		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5772		.write = mem_cgroup_reset,
5773		.read_u64 = mem_cgroup_read_u64,
5774	},
5775	{ },	/* terminate */
5776};
5777
5778static int __init mem_cgroup_swap_init(void)
5779{
5780	if (!mem_cgroup_disabled() && really_do_swap_account) {
5781		do_swap_account = 1;
5782		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5783						  memsw_cgroup_files));
5784	}
5785	return 0;
5786}
5787subsys_initcall(mem_cgroup_swap_init);
5788
5789#endif /* CONFIG_MEMCG_SWAP */
5790