1/* 2 * mm/kmemleak.c 3 * 4 * Copyright (C) 2008 ARM Limited 5 * Written by Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 * 21 * For more information on the algorithm and kmemleak usage, please see 22 * Documentation/kmemleak.txt. 23 * 24 * Notes on locking 25 * ---------------- 26 * 27 * The following locks and mutexes are used by kmemleak: 28 * 29 * - kmemleak_lock (rwlock): protects the object_list modifications and 30 * accesses to the object_tree_root. The object_list is the main list 31 * holding the metadata (struct kmemleak_object) for the allocated memory 32 * blocks. The object_tree_root is a red black tree used to look-up 33 * metadata based on a pointer to the corresponding memory block. The 34 * kmemleak_object structures are added to the object_list and 35 * object_tree_root in the create_object() function called from the 36 * kmemleak_alloc() callback and removed in delete_object() called from the 37 * kmemleak_free() callback 38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to 39 * the metadata (e.g. count) are protected by this lock. Note that some 40 * members of this structure may be protected by other means (atomic or 41 * kmemleak_lock). This lock is also held when scanning the corresponding 42 * memory block to avoid the kernel freeing it via the kmemleak_free() 43 * callback. This is less heavyweight than holding a global lock like 44 * kmemleak_lock during scanning 45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 46 * unreferenced objects at a time. The gray_list contains the objects which 47 * are already referenced or marked as false positives and need to be 48 * scanned. This list is only modified during a scanning episode when the 49 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 50 * Note that the kmemleak_object.use_count is incremented when an object is 51 * added to the gray_list and therefore cannot be freed. This mutex also 52 * prevents multiple users of the "kmemleak" debugfs file together with 53 * modifications to the memory scanning parameters including the scan_thread 54 * pointer 55 * 56 * Locks and mutexes are acquired/nested in the following order: 57 * 58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 59 * 60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 61 * regions. 62 * 63 * The kmemleak_object structures have a use_count incremented or decremented 64 * using the get_object()/put_object() functions. When the use_count becomes 65 * 0, this count can no longer be incremented and put_object() schedules the 66 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 67 * function must be protected by rcu_read_lock() to avoid accessing a freed 68 * structure. 69 */ 70 71#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73#include <linux/init.h> 74#include <linux/kernel.h> 75#include <linux/list.h> 76#include <linux/sched.h> 77#include <linux/jiffies.h> 78#include <linux/delay.h> 79#include <linux/export.h> 80#include <linux/kthread.h> 81#include <linux/rbtree.h> 82#include <linux/fs.h> 83#include <linux/debugfs.h> 84#include <linux/seq_file.h> 85#include <linux/cpumask.h> 86#include <linux/spinlock.h> 87#include <linux/mutex.h> 88#include <linux/rcupdate.h> 89#include <linux/stacktrace.h> 90#include <linux/cache.h> 91#include <linux/percpu.h> 92#include <linux/hardirq.h> 93#include <linux/mmzone.h> 94#include <linux/slab.h> 95#include <linux/thread_info.h> 96#include <linux/err.h> 97#include <linux/uaccess.h> 98#include <linux/string.h> 99#include <linux/nodemask.h> 100#include <linux/mm.h> 101#include <linux/workqueue.h> 102#include <linux/crc32.h> 103 104#include <asm/sections.h> 105#include <asm/processor.h> 106#include <linux/atomic.h> 107 108#include <linux/kasan.h> 109#include <linux/kmemcheck.h> 110#include <linux/kmemleak.h> 111#include <linux/memory_hotplug.h> 112 113/* 114 * Kmemleak configuration and common defines. 115 */ 116#define MAX_TRACE 16 /* stack trace length */ 117#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 118#define SECS_FIRST_SCAN 60 /* delay before the first scan */ 119#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 120#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 121 122#define BYTES_PER_POINTER sizeof(void *) 123 124/* GFP bitmask for kmemleak internal allocations */ 125#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \ 126 __GFP_NOACCOUNT)) | \ 127 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 128 __GFP_NOWARN) 129 130/* scanning area inside a memory block */ 131struct kmemleak_scan_area { 132 struct hlist_node node; 133 unsigned long start; 134 size_t size; 135}; 136 137#define KMEMLEAK_GREY 0 138#define KMEMLEAK_BLACK -1 139 140/* 141 * Structure holding the metadata for each allocated memory block. 142 * Modifications to such objects should be made while holding the 143 * object->lock. Insertions or deletions from object_list, gray_list or 144 * rb_node are already protected by the corresponding locks or mutex (see 145 * the notes on locking above). These objects are reference-counted 146 * (use_count) and freed using the RCU mechanism. 147 */ 148struct kmemleak_object { 149 spinlock_t lock; 150 unsigned long flags; /* object status flags */ 151 struct list_head object_list; 152 struct list_head gray_list; 153 struct rb_node rb_node; 154 struct rcu_head rcu; /* object_list lockless traversal */ 155 /* object usage count; object freed when use_count == 0 */ 156 atomic_t use_count; 157 unsigned long pointer; 158 size_t size; 159 /* minimum number of a pointers found before it is considered leak */ 160 int min_count; 161 /* the total number of pointers found pointing to this object */ 162 int count; 163 /* checksum for detecting modified objects */ 164 u32 checksum; 165 /* memory ranges to be scanned inside an object (empty for all) */ 166 struct hlist_head area_list; 167 unsigned long trace[MAX_TRACE]; 168 unsigned int trace_len; 169 unsigned long jiffies; /* creation timestamp */ 170 pid_t pid; /* pid of the current task */ 171 char comm[TASK_COMM_LEN]; /* executable name */ 172}; 173 174/* flag representing the memory block allocation status */ 175#define OBJECT_ALLOCATED (1 << 0) 176/* flag set after the first reporting of an unreference object */ 177#define OBJECT_REPORTED (1 << 1) 178/* flag set to not scan the object */ 179#define OBJECT_NO_SCAN (1 << 2) 180 181/* number of bytes to print per line; must be 16 or 32 */ 182#define HEX_ROW_SIZE 16 183/* number of bytes to print at a time (1, 2, 4, 8) */ 184#define HEX_GROUP_SIZE 1 185/* include ASCII after the hex output */ 186#define HEX_ASCII 1 187/* max number of lines to be printed */ 188#define HEX_MAX_LINES 2 189 190/* the list of all allocated objects */ 191static LIST_HEAD(object_list); 192/* the list of gray-colored objects (see color_gray comment below) */ 193static LIST_HEAD(gray_list); 194/* search tree for object boundaries */ 195static struct rb_root object_tree_root = RB_ROOT; 196/* rw_lock protecting the access to object_list and object_tree_root */ 197static DEFINE_RWLOCK(kmemleak_lock); 198 199/* allocation caches for kmemleak internal data */ 200static struct kmem_cache *object_cache; 201static struct kmem_cache *scan_area_cache; 202 203/* set if tracing memory operations is enabled */ 204static int kmemleak_enabled; 205/* same as above but only for the kmemleak_free() callback */ 206static int kmemleak_free_enabled; 207/* set in the late_initcall if there were no errors */ 208static int kmemleak_initialized; 209/* enables or disables early logging of the memory operations */ 210static int kmemleak_early_log = 1; 211/* set if a kmemleak warning was issued */ 212static int kmemleak_warning; 213/* set if a fatal kmemleak error has occurred */ 214static int kmemleak_error; 215 216/* minimum and maximum address that may be valid pointers */ 217static unsigned long min_addr = ULONG_MAX; 218static unsigned long max_addr; 219 220static struct task_struct *scan_thread; 221/* used to avoid reporting of recently allocated objects */ 222static unsigned long jiffies_min_age; 223static unsigned long jiffies_last_scan; 224/* delay between automatic memory scannings */ 225static signed long jiffies_scan_wait; 226/* enables or disables the task stacks scanning */ 227static int kmemleak_stack_scan = 1; 228/* protects the memory scanning, parameters and debug/kmemleak file access */ 229static DEFINE_MUTEX(scan_mutex); 230/* setting kmemleak=on, will set this var, skipping the disable */ 231static int kmemleak_skip_disable; 232/* If there are leaks that can be reported */ 233static bool kmemleak_found_leaks; 234 235/* 236 * Early object allocation/freeing logging. Kmemleak is initialized after the 237 * kernel allocator. However, both the kernel allocator and kmemleak may 238 * allocate memory blocks which need to be tracked. Kmemleak defines an 239 * arbitrary buffer to hold the allocation/freeing information before it is 240 * fully initialized. 241 */ 242 243/* kmemleak operation type for early logging */ 244enum { 245 KMEMLEAK_ALLOC, 246 KMEMLEAK_ALLOC_PERCPU, 247 KMEMLEAK_FREE, 248 KMEMLEAK_FREE_PART, 249 KMEMLEAK_FREE_PERCPU, 250 KMEMLEAK_NOT_LEAK, 251 KMEMLEAK_IGNORE, 252 KMEMLEAK_SCAN_AREA, 253 KMEMLEAK_NO_SCAN 254}; 255 256/* 257 * Structure holding the information passed to kmemleak callbacks during the 258 * early logging. 259 */ 260struct early_log { 261 int op_type; /* kmemleak operation type */ 262 const void *ptr; /* allocated/freed memory block */ 263 size_t size; /* memory block size */ 264 int min_count; /* minimum reference count */ 265 unsigned long trace[MAX_TRACE]; /* stack trace */ 266 unsigned int trace_len; /* stack trace length */ 267}; 268 269/* early logging buffer and current position */ 270static struct early_log 271 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata; 272static int crt_early_log __initdata; 273 274static void kmemleak_disable(void); 275 276/* 277 * Print a warning and dump the stack trace. 278 */ 279#define kmemleak_warn(x...) do { \ 280 pr_warning(x); \ 281 dump_stack(); \ 282 kmemleak_warning = 1; \ 283} while (0) 284 285/* 286 * Macro invoked when a serious kmemleak condition occurred and cannot be 287 * recovered from. Kmemleak will be disabled and further allocation/freeing 288 * tracing no longer available. 289 */ 290#define kmemleak_stop(x...) do { \ 291 kmemleak_warn(x); \ 292 kmemleak_disable(); \ 293} while (0) 294 295/* 296 * Printing of the objects hex dump to the seq file. The number of lines to be 297 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 298 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 299 * with the object->lock held. 300 */ 301static void hex_dump_object(struct seq_file *seq, 302 struct kmemleak_object *object) 303{ 304 const u8 *ptr = (const u8 *)object->pointer; 305 size_t len; 306 307 /* limit the number of lines to HEX_MAX_LINES */ 308 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 309 310 seq_printf(seq, " hex dump (first %zu bytes):\n", len); 311 seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE, 312 HEX_GROUP_SIZE, ptr, len, HEX_ASCII); 313} 314 315/* 316 * Object colors, encoded with count and min_count: 317 * - white - orphan object, not enough references to it (count < min_count) 318 * - gray - not orphan, not marked as false positive (min_count == 0) or 319 * sufficient references to it (count >= min_count) 320 * - black - ignore, it doesn't contain references (e.g. text section) 321 * (min_count == -1). No function defined for this color. 322 * Newly created objects don't have any color assigned (object->count == -1) 323 * before the next memory scan when they become white. 324 */ 325static bool color_white(const struct kmemleak_object *object) 326{ 327 return object->count != KMEMLEAK_BLACK && 328 object->count < object->min_count; 329} 330 331static bool color_gray(const struct kmemleak_object *object) 332{ 333 return object->min_count != KMEMLEAK_BLACK && 334 object->count >= object->min_count; 335} 336 337/* 338 * Objects are considered unreferenced only if their color is white, they have 339 * not be deleted and have a minimum age to avoid false positives caused by 340 * pointers temporarily stored in CPU registers. 341 */ 342static bool unreferenced_object(struct kmemleak_object *object) 343{ 344 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 345 time_before_eq(object->jiffies + jiffies_min_age, 346 jiffies_last_scan); 347} 348 349/* 350 * Printing of the unreferenced objects information to the seq file. The 351 * print_unreferenced function must be called with the object->lock held. 352 */ 353static void print_unreferenced(struct seq_file *seq, 354 struct kmemleak_object *object) 355{ 356 int i; 357 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 358 359 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 360 object->pointer, object->size); 361 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 362 object->comm, object->pid, object->jiffies, 363 msecs_age / 1000, msecs_age % 1000); 364 hex_dump_object(seq, object); 365 seq_printf(seq, " backtrace:\n"); 366 367 for (i = 0; i < object->trace_len; i++) { 368 void *ptr = (void *)object->trace[i]; 369 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 370 } 371} 372 373/* 374 * Print the kmemleak_object information. This function is used mainly for 375 * debugging special cases when kmemleak operations. It must be called with 376 * the object->lock held. 377 */ 378static void dump_object_info(struct kmemleak_object *object) 379{ 380 struct stack_trace trace; 381 382 trace.nr_entries = object->trace_len; 383 trace.entries = object->trace; 384 385 pr_notice("Object 0x%08lx (size %zu):\n", 386 object->pointer, object->size); 387 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 388 object->comm, object->pid, object->jiffies); 389 pr_notice(" min_count = %d\n", object->min_count); 390 pr_notice(" count = %d\n", object->count); 391 pr_notice(" flags = 0x%lx\n", object->flags); 392 pr_notice(" checksum = %u\n", object->checksum); 393 pr_notice(" backtrace:\n"); 394 print_stack_trace(&trace, 4); 395} 396 397/* 398 * Look-up a memory block metadata (kmemleak_object) in the object search 399 * tree based on a pointer value. If alias is 0, only values pointing to the 400 * beginning of the memory block are allowed. The kmemleak_lock must be held 401 * when calling this function. 402 */ 403static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 404{ 405 struct rb_node *rb = object_tree_root.rb_node; 406 407 while (rb) { 408 struct kmemleak_object *object = 409 rb_entry(rb, struct kmemleak_object, rb_node); 410 if (ptr < object->pointer) 411 rb = object->rb_node.rb_left; 412 else if (object->pointer + object->size <= ptr) 413 rb = object->rb_node.rb_right; 414 else if (object->pointer == ptr || alias) 415 return object; 416 else { 417 kmemleak_warn("Found object by alias at 0x%08lx\n", 418 ptr); 419 dump_object_info(object); 420 break; 421 } 422 } 423 return NULL; 424} 425 426/* 427 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 428 * that once an object's use_count reached 0, the RCU freeing was already 429 * registered and the object should no longer be used. This function must be 430 * called under the protection of rcu_read_lock(). 431 */ 432static int get_object(struct kmemleak_object *object) 433{ 434 return atomic_inc_not_zero(&object->use_count); 435} 436 437/* 438 * RCU callback to free a kmemleak_object. 439 */ 440static void free_object_rcu(struct rcu_head *rcu) 441{ 442 struct hlist_node *tmp; 443 struct kmemleak_scan_area *area; 444 struct kmemleak_object *object = 445 container_of(rcu, struct kmemleak_object, rcu); 446 447 /* 448 * Once use_count is 0 (guaranteed by put_object), there is no other 449 * code accessing this object, hence no need for locking. 450 */ 451 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 452 hlist_del(&area->node); 453 kmem_cache_free(scan_area_cache, area); 454 } 455 kmem_cache_free(object_cache, object); 456} 457 458/* 459 * Decrement the object use_count. Once the count is 0, free the object using 460 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 461 * delete_object() path, the delayed RCU freeing ensures that there is no 462 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 463 * is also possible. 464 */ 465static void put_object(struct kmemleak_object *object) 466{ 467 if (!atomic_dec_and_test(&object->use_count)) 468 return; 469 470 /* should only get here after delete_object was called */ 471 WARN_ON(object->flags & OBJECT_ALLOCATED); 472 473 call_rcu(&object->rcu, free_object_rcu); 474} 475 476/* 477 * Look up an object in the object search tree and increase its use_count. 478 */ 479static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 480{ 481 unsigned long flags; 482 struct kmemleak_object *object; 483 484 rcu_read_lock(); 485 read_lock_irqsave(&kmemleak_lock, flags); 486 object = lookup_object(ptr, alias); 487 read_unlock_irqrestore(&kmemleak_lock, flags); 488 489 /* check whether the object is still available */ 490 if (object && !get_object(object)) 491 object = NULL; 492 rcu_read_unlock(); 493 494 return object; 495} 496 497/* 498 * Look up an object in the object search tree and remove it from both 499 * object_tree_root and object_list. The returned object's use_count should be 500 * at least 1, as initially set by create_object(). 501 */ 502static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) 503{ 504 unsigned long flags; 505 struct kmemleak_object *object; 506 507 write_lock_irqsave(&kmemleak_lock, flags); 508 object = lookup_object(ptr, alias); 509 if (object) { 510 rb_erase(&object->rb_node, &object_tree_root); 511 list_del_rcu(&object->object_list); 512 } 513 write_unlock_irqrestore(&kmemleak_lock, flags); 514 515 return object; 516} 517 518/* 519 * Save stack trace to the given array of MAX_TRACE size. 520 */ 521static int __save_stack_trace(unsigned long *trace) 522{ 523 struct stack_trace stack_trace; 524 525 stack_trace.max_entries = MAX_TRACE; 526 stack_trace.nr_entries = 0; 527 stack_trace.entries = trace; 528 stack_trace.skip = 2; 529 save_stack_trace(&stack_trace); 530 531 return stack_trace.nr_entries; 532} 533 534/* 535 * Create the metadata (struct kmemleak_object) corresponding to an allocated 536 * memory block and add it to the object_list and object_tree_root. 537 */ 538static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 539 int min_count, gfp_t gfp) 540{ 541 unsigned long flags; 542 struct kmemleak_object *object, *parent; 543 struct rb_node **link, *rb_parent; 544 545 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 546 if (!object) { 547 pr_warning("Cannot allocate a kmemleak_object structure\n"); 548 kmemleak_disable(); 549 return NULL; 550 } 551 552 INIT_LIST_HEAD(&object->object_list); 553 INIT_LIST_HEAD(&object->gray_list); 554 INIT_HLIST_HEAD(&object->area_list); 555 spin_lock_init(&object->lock); 556 atomic_set(&object->use_count, 1); 557 object->flags = OBJECT_ALLOCATED; 558 object->pointer = ptr; 559 object->size = size; 560 object->min_count = min_count; 561 object->count = 0; /* white color initially */ 562 object->jiffies = jiffies; 563 object->checksum = 0; 564 565 /* task information */ 566 if (in_irq()) { 567 object->pid = 0; 568 strncpy(object->comm, "hardirq", sizeof(object->comm)); 569 } else if (in_softirq()) { 570 object->pid = 0; 571 strncpy(object->comm, "softirq", sizeof(object->comm)); 572 } else { 573 object->pid = current->pid; 574 /* 575 * There is a small chance of a race with set_task_comm(), 576 * however using get_task_comm() here may cause locking 577 * dependency issues with current->alloc_lock. In the worst 578 * case, the command line is not correct. 579 */ 580 strncpy(object->comm, current->comm, sizeof(object->comm)); 581 } 582 583 /* kernel backtrace */ 584 object->trace_len = __save_stack_trace(object->trace); 585 586 write_lock_irqsave(&kmemleak_lock, flags); 587 588 min_addr = min(min_addr, ptr); 589 max_addr = max(max_addr, ptr + size); 590 link = &object_tree_root.rb_node; 591 rb_parent = NULL; 592 while (*link) { 593 rb_parent = *link; 594 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 595 if (ptr + size <= parent->pointer) 596 link = &parent->rb_node.rb_left; 597 else if (parent->pointer + parent->size <= ptr) 598 link = &parent->rb_node.rb_right; 599 else { 600 kmemleak_stop("Cannot insert 0x%lx into the object " 601 "search tree (overlaps existing)\n", 602 ptr); 603 /* 604 * No need for parent->lock here since "parent" cannot 605 * be freed while the kmemleak_lock is held. 606 */ 607 dump_object_info(parent); 608 kmem_cache_free(object_cache, object); 609 object = NULL; 610 goto out; 611 } 612 } 613 rb_link_node(&object->rb_node, rb_parent, link); 614 rb_insert_color(&object->rb_node, &object_tree_root); 615 616 list_add_tail_rcu(&object->object_list, &object_list); 617out: 618 write_unlock_irqrestore(&kmemleak_lock, flags); 619 return object; 620} 621 622/* 623 * Mark the object as not allocated and schedule RCU freeing via put_object(). 624 */ 625static void __delete_object(struct kmemleak_object *object) 626{ 627 unsigned long flags; 628 629 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 630 WARN_ON(atomic_read(&object->use_count) < 1); 631 632 /* 633 * Locking here also ensures that the corresponding memory block 634 * cannot be freed when it is being scanned. 635 */ 636 spin_lock_irqsave(&object->lock, flags); 637 object->flags &= ~OBJECT_ALLOCATED; 638 spin_unlock_irqrestore(&object->lock, flags); 639 put_object(object); 640} 641 642/* 643 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 644 * delete it. 645 */ 646static void delete_object_full(unsigned long ptr) 647{ 648 struct kmemleak_object *object; 649 650 object = find_and_remove_object(ptr, 0); 651 if (!object) { 652#ifdef DEBUG 653 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 654 ptr); 655#endif 656 return; 657 } 658 __delete_object(object); 659} 660 661/* 662 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 663 * delete it. If the memory block is partially freed, the function may create 664 * additional metadata for the remaining parts of the block. 665 */ 666static void delete_object_part(unsigned long ptr, size_t size) 667{ 668 struct kmemleak_object *object; 669 unsigned long start, end; 670 671 object = find_and_remove_object(ptr, 1); 672 if (!object) { 673#ifdef DEBUG 674 kmemleak_warn("Partially freeing unknown object at 0x%08lx " 675 "(size %zu)\n", ptr, size); 676#endif 677 return; 678 } 679 680 /* 681 * Create one or two objects that may result from the memory block 682 * split. Note that partial freeing is only done by free_bootmem() and 683 * this happens before kmemleak_init() is called. The path below is 684 * only executed during early log recording in kmemleak_init(), so 685 * GFP_KERNEL is enough. 686 */ 687 start = object->pointer; 688 end = object->pointer + object->size; 689 if (ptr > start) 690 create_object(start, ptr - start, object->min_count, 691 GFP_KERNEL); 692 if (ptr + size < end) 693 create_object(ptr + size, end - ptr - size, object->min_count, 694 GFP_KERNEL); 695 696 __delete_object(object); 697} 698 699static void __paint_it(struct kmemleak_object *object, int color) 700{ 701 object->min_count = color; 702 if (color == KMEMLEAK_BLACK) 703 object->flags |= OBJECT_NO_SCAN; 704} 705 706static void paint_it(struct kmemleak_object *object, int color) 707{ 708 unsigned long flags; 709 710 spin_lock_irqsave(&object->lock, flags); 711 __paint_it(object, color); 712 spin_unlock_irqrestore(&object->lock, flags); 713} 714 715static void paint_ptr(unsigned long ptr, int color) 716{ 717 struct kmemleak_object *object; 718 719 object = find_and_get_object(ptr, 0); 720 if (!object) { 721 kmemleak_warn("Trying to color unknown object " 722 "at 0x%08lx as %s\n", ptr, 723 (color == KMEMLEAK_GREY) ? "Grey" : 724 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 725 return; 726 } 727 paint_it(object, color); 728 put_object(object); 729} 730 731/* 732 * Mark an object permanently as gray-colored so that it can no longer be 733 * reported as a leak. This is used in general to mark a false positive. 734 */ 735static void make_gray_object(unsigned long ptr) 736{ 737 paint_ptr(ptr, KMEMLEAK_GREY); 738} 739 740/* 741 * Mark the object as black-colored so that it is ignored from scans and 742 * reporting. 743 */ 744static void make_black_object(unsigned long ptr) 745{ 746 paint_ptr(ptr, KMEMLEAK_BLACK); 747} 748 749/* 750 * Add a scanning area to the object. If at least one such area is added, 751 * kmemleak will only scan these ranges rather than the whole memory block. 752 */ 753static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 754{ 755 unsigned long flags; 756 struct kmemleak_object *object; 757 struct kmemleak_scan_area *area; 758 759 object = find_and_get_object(ptr, 1); 760 if (!object) { 761 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 762 ptr); 763 return; 764 } 765 766 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 767 if (!area) { 768 pr_warning("Cannot allocate a scan area\n"); 769 goto out; 770 } 771 772 spin_lock_irqsave(&object->lock, flags); 773 if (size == SIZE_MAX) { 774 size = object->pointer + object->size - ptr; 775 } else if (ptr + size > object->pointer + object->size) { 776 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 777 dump_object_info(object); 778 kmem_cache_free(scan_area_cache, area); 779 goto out_unlock; 780 } 781 782 INIT_HLIST_NODE(&area->node); 783 area->start = ptr; 784 area->size = size; 785 786 hlist_add_head(&area->node, &object->area_list); 787out_unlock: 788 spin_unlock_irqrestore(&object->lock, flags); 789out: 790 put_object(object); 791} 792 793/* 794 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 795 * pointer. Such object will not be scanned by kmemleak but references to it 796 * are searched. 797 */ 798static void object_no_scan(unsigned long ptr) 799{ 800 unsigned long flags; 801 struct kmemleak_object *object; 802 803 object = find_and_get_object(ptr, 0); 804 if (!object) { 805 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 806 return; 807 } 808 809 spin_lock_irqsave(&object->lock, flags); 810 object->flags |= OBJECT_NO_SCAN; 811 spin_unlock_irqrestore(&object->lock, flags); 812 put_object(object); 813} 814 815/* 816 * Log an early kmemleak_* call to the early_log buffer. These calls will be 817 * processed later once kmemleak is fully initialized. 818 */ 819static void __init log_early(int op_type, const void *ptr, size_t size, 820 int min_count) 821{ 822 unsigned long flags; 823 struct early_log *log; 824 825 if (kmemleak_error) { 826 /* kmemleak stopped recording, just count the requests */ 827 crt_early_log++; 828 return; 829 } 830 831 if (crt_early_log >= ARRAY_SIZE(early_log)) { 832 crt_early_log++; 833 kmemleak_disable(); 834 return; 835 } 836 837 /* 838 * There is no need for locking since the kernel is still in UP mode 839 * at this stage. Disabling the IRQs is enough. 840 */ 841 local_irq_save(flags); 842 log = &early_log[crt_early_log]; 843 log->op_type = op_type; 844 log->ptr = ptr; 845 log->size = size; 846 log->min_count = min_count; 847 log->trace_len = __save_stack_trace(log->trace); 848 crt_early_log++; 849 local_irq_restore(flags); 850} 851 852/* 853 * Log an early allocated block and populate the stack trace. 854 */ 855static void early_alloc(struct early_log *log) 856{ 857 struct kmemleak_object *object; 858 unsigned long flags; 859 int i; 860 861 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr)) 862 return; 863 864 /* 865 * RCU locking needed to ensure object is not freed via put_object(). 866 */ 867 rcu_read_lock(); 868 object = create_object((unsigned long)log->ptr, log->size, 869 log->min_count, GFP_ATOMIC); 870 if (!object) 871 goto out; 872 spin_lock_irqsave(&object->lock, flags); 873 for (i = 0; i < log->trace_len; i++) 874 object->trace[i] = log->trace[i]; 875 object->trace_len = log->trace_len; 876 spin_unlock_irqrestore(&object->lock, flags); 877out: 878 rcu_read_unlock(); 879} 880 881/* 882 * Log an early allocated block and populate the stack trace. 883 */ 884static void early_alloc_percpu(struct early_log *log) 885{ 886 unsigned int cpu; 887 const void __percpu *ptr = log->ptr; 888 889 for_each_possible_cpu(cpu) { 890 log->ptr = per_cpu_ptr(ptr, cpu); 891 early_alloc(log); 892 } 893} 894 895/** 896 * kmemleak_alloc - register a newly allocated object 897 * @ptr: pointer to beginning of the object 898 * @size: size of the object 899 * @min_count: minimum number of references to this object. If during memory 900 * scanning a number of references less than @min_count is found, 901 * the object is reported as a memory leak. If @min_count is 0, 902 * the object is never reported as a leak. If @min_count is -1, 903 * the object is ignored (not scanned and not reported as a leak) 904 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 905 * 906 * This function is called from the kernel allocators when a new object 907 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.). 908 */ 909void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 910 gfp_t gfp) 911{ 912 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 913 914 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 915 create_object((unsigned long)ptr, size, min_count, gfp); 916 else if (kmemleak_early_log) 917 log_early(KMEMLEAK_ALLOC, ptr, size, min_count); 918} 919EXPORT_SYMBOL_GPL(kmemleak_alloc); 920 921/** 922 * kmemleak_alloc_percpu - register a newly allocated __percpu object 923 * @ptr: __percpu pointer to beginning of the object 924 * @size: size of the object 925 * @gfp: flags used for kmemleak internal memory allocations 926 * 927 * This function is called from the kernel percpu allocator when a new object 928 * (memory block) is allocated (alloc_percpu). 929 */ 930void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 931 gfp_t gfp) 932{ 933 unsigned int cpu; 934 935 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 936 937 /* 938 * Percpu allocations are only scanned and not reported as leaks 939 * (min_count is set to 0). 940 */ 941 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 942 for_each_possible_cpu(cpu) 943 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 944 size, 0, gfp); 945 else if (kmemleak_early_log) 946 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0); 947} 948EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 949 950/** 951 * kmemleak_free - unregister a previously registered object 952 * @ptr: pointer to beginning of the object 953 * 954 * This function is called from the kernel allocators when an object (memory 955 * block) is freed (kmem_cache_free, kfree, vfree etc.). 956 */ 957void __ref kmemleak_free(const void *ptr) 958{ 959 pr_debug("%s(0x%p)\n", __func__, ptr); 960 961 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 962 delete_object_full((unsigned long)ptr); 963 else if (kmemleak_early_log) 964 log_early(KMEMLEAK_FREE, ptr, 0, 0); 965} 966EXPORT_SYMBOL_GPL(kmemleak_free); 967 968/** 969 * kmemleak_free_part - partially unregister a previously registered object 970 * @ptr: pointer to the beginning or inside the object. This also 971 * represents the start of the range to be freed 972 * @size: size to be unregistered 973 * 974 * This function is called when only a part of a memory block is freed 975 * (usually from the bootmem allocator). 976 */ 977void __ref kmemleak_free_part(const void *ptr, size_t size) 978{ 979 pr_debug("%s(0x%p)\n", __func__, ptr); 980 981 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 982 delete_object_part((unsigned long)ptr, size); 983 else if (kmemleak_early_log) 984 log_early(KMEMLEAK_FREE_PART, ptr, size, 0); 985} 986EXPORT_SYMBOL_GPL(kmemleak_free_part); 987 988/** 989 * kmemleak_free_percpu - unregister a previously registered __percpu object 990 * @ptr: __percpu pointer to beginning of the object 991 * 992 * This function is called from the kernel percpu allocator when an object 993 * (memory block) is freed (free_percpu). 994 */ 995void __ref kmemleak_free_percpu(const void __percpu *ptr) 996{ 997 unsigned int cpu; 998 999 pr_debug("%s(0x%p)\n", __func__, ptr); 1000 1001 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1002 for_each_possible_cpu(cpu) 1003 delete_object_full((unsigned long)per_cpu_ptr(ptr, 1004 cpu)); 1005 else if (kmemleak_early_log) 1006 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0); 1007} 1008EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1009 1010/** 1011 * kmemleak_update_trace - update object allocation stack trace 1012 * @ptr: pointer to beginning of the object 1013 * 1014 * Override the object allocation stack trace for cases where the actual 1015 * allocation place is not always useful. 1016 */ 1017void __ref kmemleak_update_trace(const void *ptr) 1018{ 1019 struct kmemleak_object *object; 1020 unsigned long flags; 1021 1022 pr_debug("%s(0x%p)\n", __func__, ptr); 1023 1024 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1025 return; 1026 1027 object = find_and_get_object((unsigned long)ptr, 1); 1028 if (!object) { 1029#ifdef DEBUG 1030 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1031 ptr); 1032#endif 1033 return; 1034 } 1035 1036 spin_lock_irqsave(&object->lock, flags); 1037 object->trace_len = __save_stack_trace(object->trace); 1038 spin_unlock_irqrestore(&object->lock, flags); 1039 1040 put_object(object); 1041} 1042EXPORT_SYMBOL(kmemleak_update_trace); 1043 1044/** 1045 * kmemleak_not_leak - mark an allocated object as false positive 1046 * @ptr: pointer to beginning of the object 1047 * 1048 * Calling this function on an object will cause the memory block to no longer 1049 * be reported as leak and always be scanned. 1050 */ 1051void __ref kmemleak_not_leak(const void *ptr) 1052{ 1053 pr_debug("%s(0x%p)\n", __func__, ptr); 1054 1055 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1056 make_gray_object((unsigned long)ptr); 1057 else if (kmemleak_early_log) 1058 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0); 1059} 1060EXPORT_SYMBOL(kmemleak_not_leak); 1061 1062/** 1063 * kmemleak_ignore - ignore an allocated object 1064 * @ptr: pointer to beginning of the object 1065 * 1066 * Calling this function on an object will cause the memory block to be 1067 * ignored (not scanned and not reported as a leak). This is usually done when 1068 * it is known that the corresponding block is not a leak and does not contain 1069 * any references to other allocated memory blocks. 1070 */ 1071void __ref kmemleak_ignore(const void *ptr) 1072{ 1073 pr_debug("%s(0x%p)\n", __func__, ptr); 1074 1075 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1076 make_black_object((unsigned long)ptr); 1077 else if (kmemleak_early_log) 1078 log_early(KMEMLEAK_IGNORE, ptr, 0, 0); 1079} 1080EXPORT_SYMBOL(kmemleak_ignore); 1081 1082/** 1083 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1084 * @ptr: pointer to beginning or inside the object. This also 1085 * represents the start of the scan area 1086 * @size: size of the scan area 1087 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1088 * 1089 * This function is used when it is known that only certain parts of an object 1090 * contain references to other objects. Kmemleak will only scan these areas 1091 * reducing the number false negatives. 1092 */ 1093void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1094{ 1095 pr_debug("%s(0x%p)\n", __func__, ptr); 1096 1097 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1098 add_scan_area((unsigned long)ptr, size, gfp); 1099 else if (kmemleak_early_log) 1100 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0); 1101} 1102EXPORT_SYMBOL(kmemleak_scan_area); 1103 1104/** 1105 * kmemleak_no_scan - do not scan an allocated object 1106 * @ptr: pointer to beginning of the object 1107 * 1108 * This function notifies kmemleak not to scan the given memory block. Useful 1109 * in situations where it is known that the given object does not contain any 1110 * references to other objects. Kmemleak will not scan such objects reducing 1111 * the number of false negatives. 1112 */ 1113void __ref kmemleak_no_scan(const void *ptr) 1114{ 1115 pr_debug("%s(0x%p)\n", __func__, ptr); 1116 1117 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1118 object_no_scan((unsigned long)ptr); 1119 else if (kmemleak_early_log) 1120 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0); 1121} 1122EXPORT_SYMBOL(kmemleak_no_scan); 1123 1124/* 1125 * Update an object's checksum and return true if it was modified. 1126 */ 1127static bool update_checksum(struct kmemleak_object *object) 1128{ 1129 u32 old_csum = object->checksum; 1130 1131 if (!kmemcheck_is_obj_initialized(object->pointer, object->size)) 1132 return false; 1133 1134 kasan_disable_current(); 1135 object->checksum = crc32(0, (void *)object->pointer, object->size); 1136 kasan_enable_current(); 1137 1138 return object->checksum != old_csum; 1139} 1140 1141/* 1142 * Memory scanning is a long process and it needs to be interruptable. This 1143 * function checks whether such interrupt condition occurred. 1144 */ 1145static int scan_should_stop(void) 1146{ 1147 if (!kmemleak_enabled) 1148 return 1; 1149 1150 /* 1151 * This function may be called from either process or kthread context, 1152 * hence the need to check for both stop conditions. 1153 */ 1154 if (current->mm) 1155 return signal_pending(current); 1156 else 1157 return kthread_should_stop(); 1158 1159 return 0; 1160} 1161 1162/* 1163 * Scan a memory block (exclusive range) for valid pointers and add those 1164 * found to the gray list. 1165 */ 1166static void scan_block(void *_start, void *_end, 1167 struct kmemleak_object *scanned) 1168{ 1169 unsigned long *ptr; 1170 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1171 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1172 unsigned long flags; 1173 1174 read_lock_irqsave(&kmemleak_lock, flags); 1175 for (ptr = start; ptr < end; ptr++) { 1176 struct kmemleak_object *object; 1177 unsigned long pointer; 1178 1179 if (scan_should_stop()) 1180 break; 1181 1182 /* don't scan uninitialized memory */ 1183 if (!kmemcheck_is_obj_initialized((unsigned long)ptr, 1184 BYTES_PER_POINTER)) 1185 continue; 1186 1187 kasan_disable_current(); 1188 pointer = *ptr; 1189 kasan_enable_current(); 1190 1191 if (pointer < min_addr || pointer >= max_addr) 1192 continue; 1193 1194 /* 1195 * No need for get_object() here since we hold kmemleak_lock. 1196 * object->use_count cannot be dropped to 0 while the object 1197 * is still present in object_tree_root and object_list 1198 * (with updates protected by kmemleak_lock). 1199 */ 1200 object = lookup_object(pointer, 1); 1201 if (!object) 1202 continue; 1203 if (object == scanned) 1204 /* self referenced, ignore */ 1205 continue; 1206 1207 /* 1208 * Avoid the lockdep recursive warning on object->lock being 1209 * previously acquired in scan_object(). These locks are 1210 * enclosed by scan_mutex. 1211 */ 1212 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1213 if (!color_white(object)) { 1214 /* non-orphan, ignored or new */ 1215 spin_unlock(&object->lock); 1216 continue; 1217 } 1218 1219 /* 1220 * Increase the object's reference count (number of pointers 1221 * to the memory block). If this count reaches the required 1222 * minimum, the object's color will become gray and it will be 1223 * added to the gray_list. 1224 */ 1225 object->count++; 1226 if (color_gray(object)) { 1227 /* put_object() called when removing from gray_list */ 1228 WARN_ON(!get_object(object)); 1229 list_add_tail(&object->gray_list, &gray_list); 1230 } 1231 spin_unlock(&object->lock); 1232 } 1233 read_unlock_irqrestore(&kmemleak_lock, flags); 1234} 1235 1236/* 1237 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1238 */ 1239static void scan_large_block(void *start, void *end) 1240{ 1241 void *next; 1242 1243 while (start < end) { 1244 next = min(start + MAX_SCAN_SIZE, end); 1245 scan_block(start, next, NULL); 1246 start = next; 1247 cond_resched(); 1248 } 1249} 1250 1251/* 1252 * Scan a memory block corresponding to a kmemleak_object. A condition is 1253 * that object->use_count >= 1. 1254 */ 1255static void scan_object(struct kmemleak_object *object) 1256{ 1257 struct kmemleak_scan_area *area; 1258 unsigned long flags; 1259 1260 /* 1261 * Once the object->lock is acquired, the corresponding memory block 1262 * cannot be freed (the same lock is acquired in delete_object). 1263 */ 1264 spin_lock_irqsave(&object->lock, flags); 1265 if (object->flags & OBJECT_NO_SCAN) 1266 goto out; 1267 if (!(object->flags & OBJECT_ALLOCATED)) 1268 /* already freed object */ 1269 goto out; 1270 if (hlist_empty(&object->area_list)) { 1271 void *start = (void *)object->pointer; 1272 void *end = (void *)(object->pointer + object->size); 1273 void *next; 1274 1275 do { 1276 next = min(start + MAX_SCAN_SIZE, end); 1277 scan_block(start, next, object); 1278 1279 start = next; 1280 if (start >= end) 1281 break; 1282 1283 spin_unlock_irqrestore(&object->lock, flags); 1284 cond_resched(); 1285 spin_lock_irqsave(&object->lock, flags); 1286 } while (object->flags & OBJECT_ALLOCATED); 1287 } else 1288 hlist_for_each_entry(area, &object->area_list, node) 1289 scan_block((void *)area->start, 1290 (void *)(area->start + area->size), 1291 object); 1292out: 1293 spin_unlock_irqrestore(&object->lock, flags); 1294} 1295 1296/* 1297 * Scan the objects already referenced (gray objects). More objects will be 1298 * referenced and, if there are no memory leaks, all the objects are scanned. 1299 */ 1300static void scan_gray_list(void) 1301{ 1302 struct kmemleak_object *object, *tmp; 1303 1304 /* 1305 * The list traversal is safe for both tail additions and removals 1306 * from inside the loop. The kmemleak objects cannot be freed from 1307 * outside the loop because their use_count was incremented. 1308 */ 1309 object = list_entry(gray_list.next, typeof(*object), gray_list); 1310 while (&object->gray_list != &gray_list) { 1311 cond_resched(); 1312 1313 /* may add new objects to the list */ 1314 if (!scan_should_stop()) 1315 scan_object(object); 1316 1317 tmp = list_entry(object->gray_list.next, typeof(*object), 1318 gray_list); 1319 1320 /* remove the object from the list and release it */ 1321 list_del(&object->gray_list); 1322 put_object(object); 1323 1324 object = tmp; 1325 } 1326 WARN_ON(!list_empty(&gray_list)); 1327} 1328 1329/* 1330 * Scan data sections and all the referenced memory blocks allocated via the 1331 * kernel's standard allocators. This function must be called with the 1332 * scan_mutex held. 1333 */ 1334static void kmemleak_scan(void) 1335{ 1336 unsigned long flags; 1337 struct kmemleak_object *object; 1338 int i; 1339 int new_leaks = 0; 1340 1341 jiffies_last_scan = jiffies; 1342 1343 /* prepare the kmemleak_object's */ 1344 rcu_read_lock(); 1345 list_for_each_entry_rcu(object, &object_list, object_list) { 1346 spin_lock_irqsave(&object->lock, flags); 1347#ifdef DEBUG 1348 /* 1349 * With a few exceptions there should be a maximum of 1350 * 1 reference to any object at this point. 1351 */ 1352 if (atomic_read(&object->use_count) > 1) { 1353 pr_debug("object->use_count = %d\n", 1354 atomic_read(&object->use_count)); 1355 dump_object_info(object); 1356 } 1357#endif 1358 /* reset the reference count (whiten the object) */ 1359 object->count = 0; 1360 if (color_gray(object) && get_object(object)) 1361 list_add_tail(&object->gray_list, &gray_list); 1362 1363 spin_unlock_irqrestore(&object->lock, flags); 1364 } 1365 rcu_read_unlock(); 1366 1367 /* data/bss scanning */ 1368 scan_large_block(_sdata, _edata); 1369 scan_large_block(__bss_start, __bss_stop); 1370 1371#ifdef CONFIG_SMP 1372 /* per-cpu sections scanning */ 1373 for_each_possible_cpu(i) 1374 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1375 __per_cpu_end + per_cpu_offset(i)); 1376#endif 1377 1378 /* 1379 * Struct page scanning for each node. 1380 */ 1381 get_online_mems(); 1382 for_each_online_node(i) { 1383 unsigned long start_pfn = node_start_pfn(i); 1384 unsigned long end_pfn = node_end_pfn(i); 1385 unsigned long pfn; 1386 1387 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1388 struct page *page; 1389 1390 if (!pfn_valid(pfn)) 1391 continue; 1392 page = pfn_to_page(pfn); 1393 /* only scan if page is in use */ 1394 if (page_count(page) == 0) 1395 continue; 1396 scan_block(page, page + 1, NULL); 1397 } 1398 } 1399 put_online_mems(); 1400 1401 /* 1402 * Scanning the task stacks (may introduce false negatives). 1403 */ 1404 if (kmemleak_stack_scan) { 1405 struct task_struct *p, *g; 1406 1407 read_lock(&tasklist_lock); 1408 do_each_thread(g, p) { 1409 scan_block(task_stack_page(p), task_stack_page(p) + 1410 THREAD_SIZE, NULL); 1411 } while_each_thread(g, p); 1412 read_unlock(&tasklist_lock); 1413 } 1414 1415 /* 1416 * Scan the objects already referenced from the sections scanned 1417 * above. 1418 */ 1419 scan_gray_list(); 1420 1421 /* 1422 * Check for new or unreferenced objects modified since the previous 1423 * scan and color them gray until the next scan. 1424 */ 1425 rcu_read_lock(); 1426 list_for_each_entry_rcu(object, &object_list, object_list) { 1427 spin_lock_irqsave(&object->lock, flags); 1428 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1429 && update_checksum(object) && get_object(object)) { 1430 /* color it gray temporarily */ 1431 object->count = object->min_count; 1432 list_add_tail(&object->gray_list, &gray_list); 1433 } 1434 spin_unlock_irqrestore(&object->lock, flags); 1435 } 1436 rcu_read_unlock(); 1437 1438 /* 1439 * Re-scan the gray list for modified unreferenced objects. 1440 */ 1441 scan_gray_list(); 1442 1443 /* 1444 * If scanning was stopped do not report any new unreferenced objects. 1445 */ 1446 if (scan_should_stop()) 1447 return; 1448 1449 /* 1450 * Scanning result reporting. 1451 */ 1452 rcu_read_lock(); 1453 list_for_each_entry_rcu(object, &object_list, object_list) { 1454 spin_lock_irqsave(&object->lock, flags); 1455 if (unreferenced_object(object) && 1456 !(object->flags & OBJECT_REPORTED)) { 1457 object->flags |= OBJECT_REPORTED; 1458 new_leaks++; 1459 } 1460 spin_unlock_irqrestore(&object->lock, flags); 1461 } 1462 rcu_read_unlock(); 1463 1464 if (new_leaks) { 1465 kmemleak_found_leaks = true; 1466 1467 pr_info("%d new suspected memory leaks (see " 1468 "/sys/kernel/debug/kmemleak)\n", new_leaks); 1469 } 1470 1471} 1472 1473/* 1474 * Thread function performing automatic memory scanning. Unreferenced objects 1475 * at the end of a memory scan are reported but only the first time. 1476 */ 1477static int kmemleak_scan_thread(void *arg) 1478{ 1479 static int first_run = 1; 1480 1481 pr_info("Automatic memory scanning thread started\n"); 1482 set_user_nice(current, 10); 1483 1484 /* 1485 * Wait before the first scan to allow the system to fully initialize. 1486 */ 1487 if (first_run) { 1488 first_run = 0; 1489 ssleep(SECS_FIRST_SCAN); 1490 } 1491 1492 while (!kthread_should_stop()) { 1493 signed long timeout = jiffies_scan_wait; 1494 1495 mutex_lock(&scan_mutex); 1496 kmemleak_scan(); 1497 mutex_unlock(&scan_mutex); 1498 1499 /* wait before the next scan */ 1500 while (timeout && !kthread_should_stop()) 1501 timeout = schedule_timeout_interruptible(timeout); 1502 } 1503 1504 pr_info("Automatic memory scanning thread ended\n"); 1505 1506 return 0; 1507} 1508 1509/* 1510 * Start the automatic memory scanning thread. This function must be called 1511 * with the scan_mutex held. 1512 */ 1513static void start_scan_thread(void) 1514{ 1515 if (scan_thread) 1516 return; 1517 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1518 if (IS_ERR(scan_thread)) { 1519 pr_warning("Failed to create the scan thread\n"); 1520 scan_thread = NULL; 1521 } 1522} 1523 1524/* 1525 * Stop the automatic memory scanning thread. This function must be called 1526 * with the scan_mutex held. 1527 */ 1528static void stop_scan_thread(void) 1529{ 1530 if (scan_thread) { 1531 kthread_stop(scan_thread); 1532 scan_thread = NULL; 1533 } 1534} 1535 1536/* 1537 * Iterate over the object_list and return the first valid object at or after 1538 * the required position with its use_count incremented. The function triggers 1539 * a memory scanning when the pos argument points to the first position. 1540 */ 1541static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1542{ 1543 struct kmemleak_object *object; 1544 loff_t n = *pos; 1545 int err; 1546 1547 err = mutex_lock_interruptible(&scan_mutex); 1548 if (err < 0) 1549 return ERR_PTR(err); 1550 1551 rcu_read_lock(); 1552 list_for_each_entry_rcu(object, &object_list, object_list) { 1553 if (n-- > 0) 1554 continue; 1555 if (get_object(object)) 1556 goto out; 1557 } 1558 object = NULL; 1559out: 1560 return object; 1561} 1562 1563/* 1564 * Return the next object in the object_list. The function decrements the 1565 * use_count of the previous object and increases that of the next one. 1566 */ 1567static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1568{ 1569 struct kmemleak_object *prev_obj = v; 1570 struct kmemleak_object *next_obj = NULL; 1571 struct kmemleak_object *obj = prev_obj; 1572 1573 ++(*pos); 1574 1575 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1576 if (get_object(obj)) { 1577 next_obj = obj; 1578 break; 1579 } 1580 } 1581 1582 put_object(prev_obj); 1583 return next_obj; 1584} 1585 1586/* 1587 * Decrement the use_count of the last object required, if any. 1588 */ 1589static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1590{ 1591 if (!IS_ERR(v)) { 1592 /* 1593 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1594 * waiting was interrupted, so only release it if !IS_ERR. 1595 */ 1596 rcu_read_unlock(); 1597 mutex_unlock(&scan_mutex); 1598 if (v) 1599 put_object(v); 1600 } 1601} 1602 1603/* 1604 * Print the information for an unreferenced object to the seq file. 1605 */ 1606static int kmemleak_seq_show(struct seq_file *seq, void *v) 1607{ 1608 struct kmemleak_object *object = v; 1609 unsigned long flags; 1610 1611 spin_lock_irqsave(&object->lock, flags); 1612 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1613 print_unreferenced(seq, object); 1614 spin_unlock_irqrestore(&object->lock, flags); 1615 return 0; 1616} 1617 1618static const struct seq_operations kmemleak_seq_ops = { 1619 .start = kmemleak_seq_start, 1620 .next = kmemleak_seq_next, 1621 .stop = kmemleak_seq_stop, 1622 .show = kmemleak_seq_show, 1623}; 1624 1625static int kmemleak_open(struct inode *inode, struct file *file) 1626{ 1627 return seq_open(file, &kmemleak_seq_ops); 1628} 1629 1630static int dump_str_object_info(const char *str) 1631{ 1632 unsigned long flags; 1633 struct kmemleak_object *object; 1634 unsigned long addr; 1635 1636 if (kstrtoul(str, 0, &addr)) 1637 return -EINVAL; 1638 object = find_and_get_object(addr, 0); 1639 if (!object) { 1640 pr_info("Unknown object at 0x%08lx\n", addr); 1641 return -EINVAL; 1642 } 1643 1644 spin_lock_irqsave(&object->lock, flags); 1645 dump_object_info(object); 1646 spin_unlock_irqrestore(&object->lock, flags); 1647 1648 put_object(object); 1649 return 0; 1650} 1651 1652/* 1653 * We use grey instead of black to ensure we can do future scans on the same 1654 * objects. If we did not do future scans these black objects could 1655 * potentially contain references to newly allocated objects in the future and 1656 * we'd end up with false positives. 1657 */ 1658static void kmemleak_clear(void) 1659{ 1660 struct kmemleak_object *object; 1661 unsigned long flags; 1662 1663 rcu_read_lock(); 1664 list_for_each_entry_rcu(object, &object_list, object_list) { 1665 spin_lock_irqsave(&object->lock, flags); 1666 if ((object->flags & OBJECT_REPORTED) && 1667 unreferenced_object(object)) 1668 __paint_it(object, KMEMLEAK_GREY); 1669 spin_unlock_irqrestore(&object->lock, flags); 1670 } 1671 rcu_read_unlock(); 1672 1673 kmemleak_found_leaks = false; 1674} 1675 1676static void __kmemleak_do_cleanup(void); 1677 1678/* 1679 * File write operation to configure kmemleak at run-time. The following 1680 * commands can be written to the /sys/kernel/debug/kmemleak file: 1681 * off - disable kmemleak (irreversible) 1682 * stack=on - enable the task stacks scanning 1683 * stack=off - disable the tasks stacks scanning 1684 * scan=on - start the automatic memory scanning thread 1685 * scan=off - stop the automatic memory scanning thread 1686 * scan=... - set the automatic memory scanning period in seconds (0 to 1687 * disable it) 1688 * scan - trigger a memory scan 1689 * clear - mark all current reported unreferenced kmemleak objects as 1690 * grey to ignore printing them, or free all kmemleak objects 1691 * if kmemleak has been disabled. 1692 * dump=... - dump information about the object found at the given address 1693 */ 1694static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1695 size_t size, loff_t *ppos) 1696{ 1697 char buf[64]; 1698 int buf_size; 1699 int ret; 1700 1701 buf_size = min(size, (sizeof(buf) - 1)); 1702 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1703 return -EFAULT; 1704 buf[buf_size] = 0; 1705 1706 ret = mutex_lock_interruptible(&scan_mutex); 1707 if (ret < 0) 1708 return ret; 1709 1710 if (strncmp(buf, "clear", 5) == 0) { 1711 if (kmemleak_enabled) 1712 kmemleak_clear(); 1713 else 1714 __kmemleak_do_cleanup(); 1715 goto out; 1716 } 1717 1718 if (!kmemleak_enabled) { 1719 ret = -EBUSY; 1720 goto out; 1721 } 1722 1723 if (strncmp(buf, "off", 3) == 0) 1724 kmemleak_disable(); 1725 else if (strncmp(buf, "stack=on", 8) == 0) 1726 kmemleak_stack_scan = 1; 1727 else if (strncmp(buf, "stack=off", 9) == 0) 1728 kmemleak_stack_scan = 0; 1729 else if (strncmp(buf, "scan=on", 7) == 0) 1730 start_scan_thread(); 1731 else if (strncmp(buf, "scan=off", 8) == 0) 1732 stop_scan_thread(); 1733 else if (strncmp(buf, "scan=", 5) == 0) { 1734 unsigned long secs; 1735 1736 ret = kstrtoul(buf + 5, 0, &secs); 1737 if (ret < 0) 1738 goto out; 1739 stop_scan_thread(); 1740 if (secs) { 1741 jiffies_scan_wait = msecs_to_jiffies(secs * 1000); 1742 start_scan_thread(); 1743 } 1744 } else if (strncmp(buf, "scan", 4) == 0) 1745 kmemleak_scan(); 1746 else if (strncmp(buf, "dump=", 5) == 0) 1747 ret = dump_str_object_info(buf + 5); 1748 else 1749 ret = -EINVAL; 1750 1751out: 1752 mutex_unlock(&scan_mutex); 1753 if (ret < 0) 1754 return ret; 1755 1756 /* ignore the rest of the buffer, only one command at a time */ 1757 *ppos += size; 1758 return size; 1759} 1760 1761static const struct file_operations kmemleak_fops = { 1762 .owner = THIS_MODULE, 1763 .open = kmemleak_open, 1764 .read = seq_read, 1765 .write = kmemleak_write, 1766 .llseek = seq_lseek, 1767 .release = seq_release, 1768}; 1769 1770static void __kmemleak_do_cleanup(void) 1771{ 1772 struct kmemleak_object *object; 1773 1774 rcu_read_lock(); 1775 list_for_each_entry_rcu(object, &object_list, object_list) 1776 delete_object_full(object->pointer); 1777 rcu_read_unlock(); 1778} 1779 1780/* 1781 * Stop the memory scanning thread and free the kmemleak internal objects if 1782 * no previous scan thread (otherwise, kmemleak may still have some useful 1783 * information on memory leaks). 1784 */ 1785static void kmemleak_do_cleanup(struct work_struct *work) 1786{ 1787 stop_scan_thread(); 1788 1789 /* 1790 * Once the scan thread has stopped, it is safe to no longer track 1791 * object freeing. Ordering of the scan thread stopping and the memory 1792 * accesses below is guaranteed by the kthread_stop() function. 1793 */ 1794 kmemleak_free_enabled = 0; 1795 1796 if (!kmemleak_found_leaks) 1797 __kmemleak_do_cleanup(); 1798 else 1799 pr_info("Kmemleak disabled without freeing internal data. " 1800 "Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n"); 1801} 1802 1803static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1804 1805/* 1806 * Disable kmemleak. No memory allocation/freeing will be traced once this 1807 * function is called. Disabling kmemleak is an irreversible operation. 1808 */ 1809static void kmemleak_disable(void) 1810{ 1811 /* atomically check whether it was already invoked */ 1812 if (cmpxchg(&kmemleak_error, 0, 1)) 1813 return; 1814 1815 /* stop any memory operation tracing */ 1816 kmemleak_enabled = 0; 1817 1818 /* check whether it is too early for a kernel thread */ 1819 if (kmemleak_initialized) 1820 schedule_work(&cleanup_work); 1821 else 1822 kmemleak_free_enabled = 0; 1823 1824 pr_info("Kernel memory leak detector disabled\n"); 1825} 1826 1827/* 1828 * Allow boot-time kmemleak disabling (enabled by default). 1829 */ 1830static int kmemleak_boot_config(char *str) 1831{ 1832 if (!str) 1833 return -EINVAL; 1834 if (strcmp(str, "off") == 0) 1835 kmemleak_disable(); 1836 else if (strcmp(str, "on") == 0) 1837 kmemleak_skip_disable = 1; 1838 else 1839 return -EINVAL; 1840 return 0; 1841} 1842early_param("kmemleak", kmemleak_boot_config); 1843 1844static void __init print_log_trace(struct early_log *log) 1845{ 1846 struct stack_trace trace; 1847 1848 trace.nr_entries = log->trace_len; 1849 trace.entries = log->trace; 1850 1851 pr_notice("Early log backtrace:\n"); 1852 print_stack_trace(&trace, 2); 1853} 1854 1855/* 1856 * Kmemleak initialization. 1857 */ 1858void __init kmemleak_init(void) 1859{ 1860 int i; 1861 unsigned long flags; 1862 1863#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 1864 if (!kmemleak_skip_disable) { 1865 kmemleak_early_log = 0; 1866 kmemleak_disable(); 1867 return; 1868 } 1869#endif 1870 1871 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 1872 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 1873 1874 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 1875 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 1876 1877 if (crt_early_log > ARRAY_SIZE(early_log)) 1878 pr_warning("Early log buffer exceeded (%d), please increase " 1879 "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log); 1880 1881 /* the kernel is still in UP mode, so disabling the IRQs is enough */ 1882 local_irq_save(flags); 1883 kmemleak_early_log = 0; 1884 if (kmemleak_error) { 1885 local_irq_restore(flags); 1886 return; 1887 } else { 1888 kmemleak_enabled = 1; 1889 kmemleak_free_enabled = 1; 1890 } 1891 local_irq_restore(flags); 1892 1893 /* 1894 * This is the point where tracking allocations is safe. Automatic 1895 * scanning is started during the late initcall. Add the early logged 1896 * callbacks to the kmemleak infrastructure. 1897 */ 1898 for (i = 0; i < crt_early_log; i++) { 1899 struct early_log *log = &early_log[i]; 1900 1901 switch (log->op_type) { 1902 case KMEMLEAK_ALLOC: 1903 early_alloc(log); 1904 break; 1905 case KMEMLEAK_ALLOC_PERCPU: 1906 early_alloc_percpu(log); 1907 break; 1908 case KMEMLEAK_FREE: 1909 kmemleak_free(log->ptr); 1910 break; 1911 case KMEMLEAK_FREE_PART: 1912 kmemleak_free_part(log->ptr, log->size); 1913 break; 1914 case KMEMLEAK_FREE_PERCPU: 1915 kmemleak_free_percpu(log->ptr); 1916 break; 1917 case KMEMLEAK_NOT_LEAK: 1918 kmemleak_not_leak(log->ptr); 1919 break; 1920 case KMEMLEAK_IGNORE: 1921 kmemleak_ignore(log->ptr); 1922 break; 1923 case KMEMLEAK_SCAN_AREA: 1924 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL); 1925 break; 1926 case KMEMLEAK_NO_SCAN: 1927 kmemleak_no_scan(log->ptr); 1928 break; 1929 default: 1930 kmemleak_warn("Unknown early log operation: %d\n", 1931 log->op_type); 1932 } 1933 1934 if (kmemleak_warning) { 1935 print_log_trace(log); 1936 kmemleak_warning = 0; 1937 } 1938 } 1939} 1940 1941/* 1942 * Late initialization function. 1943 */ 1944static int __init kmemleak_late_init(void) 1945{ 1946 struct dentry *dentry; 1947 1948 kmemleak_initialized = 1; 1949 1950 if (kmemleak_error) { 1951 /* 1952 * Some error occurred and kmemleak was disabled. There is a 1953 * small chance that kmemleak_disable() was called immediately 1954 * after setting kmemleak_initialized and we may end up with 1955 * two clean-up threads but serialized by scan_mutex. 1956 */ 1957 schedule_work(&cleanup_work); 1958 return -ENOMEM; 1959 } 1960 1961 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL, 1962 &kmemleak_fops); 1963 if (!dentry) 1964 pr_warning("Failed to create the debugfs kmemleak file\n"); 1965 mutex_lock(&scan_mutex); 1966 start_scan_thread(); 1967 mutex_unlock(&scan_mutex); 1968 1969 pr_info("Kernel memory leak detector initialized\n"); 1970 1971 return 0; 1972} 1973late_initcall(kmemleak_late_init); 1974