1/*
2 * Flexible array managed in PAGE_SIZE parts
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2009
19 *
20 * Author: Dave Hansen <dave@linux.vnet.ibm.com>
21 */
22
23#include <linux/flex_array.h>
24#include <linux/slab.h>
25#include <linux/stddef.h>
26#include <linux/export.h>
27#include <linux/reciprocal_div.h>
28
29struct flex_array_part {
30	char elements[FLEX_ARRAY_PART_SIZE];
31};
32
33/*
34 * If a user requests an allocation which is small
35 * enough, we may simply use the space in the
36 * flex_array->parts[] array to store the user
37 * data.
38 */
39static inline int elements_fit_in_base(struct flex_array *fa)
40{
41	int data_size = fa->element_size * fa->total_nr_elements;
42	if (data_size <= FLEX_ARRAY_BASE_BYTES_LEFT)
43		return 1;
44	return 0;
45}
46
47/**
48 * flex_array_alloc - allocate a new flexible array
49 * @element_size:	the size of individual elements in the array
50 * @total:		total number of elements that this should hold
51 * @flags:		page allocation flags to use for base array
52 *
53 * Note: all locking must be provided by the caller.
54 *
55 * @total is used to size internal structures.  If the user ever
56 * accesses any array indexes >=@total, it will produce errors.
57 *
58 * The maximum number of elements is defined as: the number of
59 * elements that can be stored in a page times the number of
60 * page pointers that we can fit in the base structure or (using
61 * integer math):
62 *
63 * 	(PAGE_SIZE/element_size) * (PAGE_SIZE-8)/sizeof(void *)
64 *
65 * Here's a table showing example capacities.  Note that the maximum
66 * index that the get/put() functions is just nr_objects-1.   This
67 * basically means that you get 4MB of storage on 32-bit and 2MB on
68 * 64-bit.
69 *
70 *
71 * Element size | Objects | Objects |
72 * PAGE_SIZE=4k |  32-bit |  64-bit |
73 * ---------------------------------|
74 *      1 bytes | 4177920 | 2088960 |
75 *      2 bytes | 2088960 | 1044480 |
76 *      3 bytes | 1392300 |  696150 |
77 *      4 bytes | 1044480 |  522240 |
78 *     32 bytes |  130560 |   65408 |
79 *     33 bytes |  126480 |   63240 |
80 *   2048 bytes |    2040 |    1020 |
81 *   2049 bytes |    1020 |     510 |
82 *       void * | 1044480 |  261120 |
83 *
84 * Since 64-bit pointers are twice the size, we lose half the
85 * capacity in the base structure.  Also note that no effort is made
86 * to efficiently pack objects across page boundaries.
87 */
88struct flex_array *flex_array_alloc(int element_size, unsigned int total,
89					gfp_t flags)
90{
91	struct flex_array *ret;
92	int elems_per_part = 0;
93	int max_size = 0;
94	struct reciprocal_value reciprocal_elems = { 0 };
95
96	if (element_size) {
97		elems_per_part = FLEX_ARRAY_ELEMENTS_PER_PART(element_size);
98		reciprocal_elems = reciprocal_value(elems_per_part);
99		max_size = FLEX_ARRAY_NR_BASE_PTRS * elems_per_part;
100	}
101
102	/* max_size will end up 0 if element_size > PAGE_SIZE */
103	if (total > max_size)
104		return NULL;
105	ret = kzalloc(sizeof(struct flex_array), flags);
106	if (!ret)
107		return NULL;
108	ret->element_size = element_size;
109	ret->total_nr_elements = total;
110	ret->elems_per_part = elems_per_part;
111	ret->reciprocal_elems = reciprocal_elems;
112	if (elements_fit_in_base(ret) && !(flags & __GFP_ZERO))
113		memset(&ret->parts[0], FLEX_ARRAY_FREE,
114						FLEX_ARRAY_BASE_BYTES_LEFT);
115	return ret;
116}
117EXPORT_SYMBOL(flex_array_alloc);
118
119static int fa_element_to_part_nr(struct flex_array *fa,
120					unsigned int element_nr)
121{
122	/*
123	 * if element_size == 0 we don't get here, so we never touch
124	 * the zeroed fa->reciprocal_elems, which would yield invalid
125	 * results
126	 */
127	return reciprocal_divide(element_nr, fa->reciprocal_elems);
128}
129
130/**
131 * flex_array_free_parts - just free the second-level pages
132 * @fa:		the flex array from which to free parts
133 *
134 * This is to be used in cases where the base 'struct flex_array'
135 * has been statically allocated and should not be free.
136 */
137void flex_array_free_parts(struct flex_array *fa)
138{
139	int part_nr;
140
141	if (elements_fit_in_base(fa))
142		return;
143	for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++)
144		kfree(fa->parts[part_nr]);
145}
146EXPORT_SYMBOL(flex_array_free_parts);
147
148void flex_array_free(struct flex_array *fa)
149{
150	flex_array_free_parts(fa);
151	kfree(fa);
152}
153EXPORT_SYMBOL(flex_array_free);
154
155static unsigned int index_inside_part(struct flex_array *fa,
156					unsigned int element_nr,
157					unsigned int part_nr)
158{
159	unsigned int part_offset;
160
161	part_offset = element_nr - part_nr * fa->elems_per_part;
162	return part_offset * fa->element_size;
163}
164
165static struct flex_array_part *
166__fa_get_part(struct flex_array *fa, int part_nr, gfp_t flags)
167{
168	struct flex_array_part *part = fa->parts[part_nr];
169	if (!part) {
170		part = kmalloc(sizeof(struct flex_array_part), flags);
171		if (!part)
172			return NULL;
173		if (!(flags & __GFP_ZERO))
174			memset(part, FLEX_ARRAY_FREE,
175				sizeof(struct flex_array_part));
176		fa->parts[part_nr] = part;
177	}
178	return part;
179}
180
181/**
182 * flex_array_put - copy data into the array at @element_nr
183 * @fa:		the flex array to copy data into
184 * @element_nr:	index of the position in which to insert
185 * 		the new element.
186 * @src:	address of data to copy into the array
187 * @flags:	page allocation flags to use for array expansion
188 *
189 *
190 * Note that this *copies* the contents of @src into
191 * the array.  If you are trying to store an array of
192 * pointers, make sure to pass in &ptr instead of ptr.
193 * You may instead wish to use the flex_array_put_ptr()
194 * helper function.
195 *
196 * Locking must be provided by the caller.
197 */
198int flex_array_put(struct flex_array *fa, unsigned int element_nr, void *src,
199			gfp_t flags)
200{
201	int part_nr = 0;
202	struct flex_array_part *part;
203	void *dst;
204
205	if (element_nr >= fa->total_nr_elements)
206		return -ENOSPC;
207	if (!fa->element_size)
208		return 0;
209	if (elements_fit_in_base(fa))
210		part = (struct flex_array_part *)&fa->parts[0];
211	else {
212		part_nr = fa_element_to_part_nr(fa, element_nr);
213		part = __fa_get_part(fa, part_nr, flags);
214		if (!part)
215			return -ENOMEM;
216	}
217	dst = &part->elements[index_inside_part(fa, element_nr, part_nr)];
218	memcpy(dst, src, fa->element_size);
219	return 0;
220}
221EXPORT_SYMBOL(flex_array_put);
222
223/**
224 * flex_array_clear - clear element in array at @element_nr
225 * @fa:		the flex array of the element.
226 * @element_nr:	index of the position to clear.
227 *
228 * Locking must be provided by the caller.
229 */
230int flex_array_clear(struct flex_array *fa, unsigned int element_nr)
231{
232	int part_nr = 0;
233	struct flex_array_part *part;
234	void *dst;
235
236	if (element_nr >= fa->total_nr_elements)
237		return -ENOSPC;
238	if (!fa->element_size)
239		return 0;
240	if (elements_fit_in_base(fa))
241		part = (struct flex_array_part *)&fa->parts[0];
242	else {
243		part_nr = fa_element_to_part_nr(fa, element_nr);
244		part = fa->parts[part_nr];
245		if (!part)
246			return -EINVAL;
247	}
248	dst = &part->elements[index_inside_part(fa, element_nr, part_nr)];
249	memset(dst, FLEX_ARRAY_FREE, fa->element_size);
250	return 0;
251}
252EXPORT_SYMBOL(flex_array_clear);
253
254/**
255 * flex_array_prealloc - guarantee that array space exists
256 * @fa:			the flex array for which to preallocate parts
257 * @start:		index of first array element for which space is allocated
258 * @nr_elements:	number of elements for which space is allocated
259 * @flags:		page allocation flags
260 *
261 * This will guarantee that no future calls to flex_array_put()
262 * will allocate memory.  It can be used if you are expecting to
263 * be holding a lock or in some atomic context while writing
264 * data into the array.
265 *
266 * Locking must be provided by the caller.
267 */
268int flex_array_prealloc(struct flex_array *fa, unsigned int start,
269			unsigned int nr_elements, gfp_t flags)
270{
271	int start_part;
272	int end_part;
273	int part_nr;
274	unsigned int end;
275	struct flex_array_part *part;
276
277	if (!start && !nr_elements)
278		return 0;
279	if (start >= fa->total_nr_elements)
280		return -ENOSPC;
281	if (!nr_elements)
282		return 0;
283
284	end = start + nr_elements - 1;
285
286	if (end >= fa->total_nr_elements)
287		return -ENOSPC;
288	if (!fa->element_size)
289		return 0;
290	if (elements_fit_in_base(fa))
291		return 0;
292	start_part = fa_element_to_part_nr(fa, start);
293	end_part = fa_element_to_part_nr(fa, end);
294	for (part_nr = start_part; part_nr <= end_part; part_nr++) {
295		part = __fa_get_part(fa, part_nr, flags);
296		if (!part)
297			return -ENOMEM;
298	}
299	return 0;
300}
301EXPORT_SYMBOL(flex_array_prealloc);
302
303/**
304 * flex_array_get - pull data back out of the array
305 * @fa:		the flex array from which to extract data
306 * @element_nr:	index of the element to fetch from the array
307 *
308 * Returns a pointer to the data at index @element_nr.  Note
309 * that this is a copy of the data that was passed in.  If you
310 * are using this to store pointers, you'll get back &ptr.  You
311 * may instead wish to use the flex_array_get_ptr helper.
312 *
313 * Locking must be provided by the caller.
314 */
315void *flex_array_get(struct flex_array *fa, unsigned int element_nr)
316{
317	int part_nr = 0;
318	struct flex_array_part *part;
319
320	if (!fa->element_size)
321		return NULL;
322	if (element_nr >= fa->total_nr_elements)
323		return NULL;
324	if (elements_fit_in_base(fa))
325		part = (struct flex_array_part *)&fa->parts[0];
326	else {
327		part_nr = fa_element_to_part_nr(fa, element_nr);
328		part = fa->parts[part_nr];
329		if (!part)
330			return NULL;
331	}
332	return &part->elements[index_inside_part(fa, element_nr, part_nr)];
333}
334EXPORT_SYMBOL(flex_array_get);
335
336/**
337 * flex_array_get_ptr - pull a ptr back out of the array
338 * @fa:		the flex array from which to extract data
339 * @element_nr:	index of the element to fetch from the array
340 *
341 * Returns the pointer placed in the flex array at element_nr using
342 * flex_array_put_ptr().  This function should not be called if the
343 * element in question was not set using the _put_ptr() helper.
344 */
345void *flex_array_get_ptr(struct flex_array *fa, unsigned int element_nr)
346{
347	void **tmp;
348
349	tmp = flex_array_get(fa, element_nr);
350	if (!tmp)
351		return NULL;
352
353	return *tmp;
354}
355EXPORT_SYMBOL(flex_array_get_ptr);
356
357static int part_is_free(struct flex_array_part *part)
358{
359	int i;
360
361	for (i = 0; i < sizeof(struct flex_array_part); i++)
362		if (part->elements[i] != FLEX_ARRAY_FREE)
363			return 0;
364	return 1;
365}
366
367/**
368 * flex_array_shrink - free unused second-level pages
369 * @fa:		the flex array to shrink
370 *
371 * Frees all second-level pages that consist solely of unused
372 * elements.  Returns the number of pages freed.
373 *
374 * Locking must be provided by the caller.
375 */
376int flex_array_shrink(struct flex_array *fa)
377{
378	struct flex_array_part *part;
379	int part_nr;
380	int ret = 0;
381
382	if (!fa->total_nr_elements || !fa->element_size)
383		return 0;
384	if (elements_fit_in_base(fa))
385		return ret;
386	for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++) {
387		part = fa->parts[part_nr];
388		if (!part)
389			continue;
390		if (part_is_free(part)) {
391			fa->parts[part_nr] = NULL;
392			kfree(part);
393			ret++;
394		}
395	}
396	return ret;
397}
398EXPORT_SYMBOL(flex_array_shrink);
399