1/*
2 *  linux/kernel/time.c
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 *
6 *  This file contains the interface functions for the various
7 *  time related system calls: time, stime, gettimeofday, settimeofday,
8 *			       adjtime
9 */
10/*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02    Philip Gladstone
14 *      Created file with time related functions from sched/core.c and adjtimex()
15 * 1993-10-08    Torsten Duwe
16 *      adjtime interface update and CMOS clock write code
17 * 1995-08-13    Torsten Duwe
18 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16    Ulrich Windl
20 *	Introduced error checking for many cases in adjtimex().
21 *	Updated NTP code according to technical memorandum Jan '96
22 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
23 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 *	(Even though the technical memorandum forbids it)
25 * 2004-07-14	 Christoph Lameter
26 *	Added getnstimeofday to allow the posix timer functions to return
27 *	with nanosecond accuracy
28 */
29
30#include <linux/export.h>
31#include <linux/timex.h>
32#include <linux/capability.h>
33#include <linux/timekeeper_internal.h>
34#include <linux/errno.h>
35#include <linux/syscalls.h>
36#include <linux/security.h>
37#include <linux/fs.h>
38#include <linux/math64.h>
39#include <linux/ptrace.h>
40
41#include <asm/uaccess.h>
42#include <asm/unistd.h>
43
44#include <generated/timeconst.h>
45#include "timekeeping.h"
46
47/*
48 * The timezone where the local system is located.  Used as a default by some
49 * programs who obtain this value by using gettimeofday.
50 */
51struct timezone sys_tz;
52
53EXPORT_SYMBOL(sys_tz);
54
55#ifdef __ARCH_WANT_SYS_TIME
56
57/*
58 * sys_time() can be implemented in user-level using
59 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
60 * why not move it into the appropriate arch directory (for those
61 * architectures that need it).
62 */
63SYSCALL_DEFINE1(time, time_t __user *, tloc)
64{
65	time_t i = get_seconds();
66
67	if (tloc) {
68		if (put_user(i,tloc))
69			return -EFAULT;
70	}
71	force_successful_syscall_return();
72	return i;
73}
74
75/*
76 * sys_stime() can be implemented in user-level using
77 * sys_settimeofday().  Is this for backwards compatibility?  If so,
78 * why not move it into the appropriate arch directory (for those
79 * architectures that need it).
80 */
81
82SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83{
84	struct timespec tv;
85	int err;
86
87	if (get_user(tv.tv_sec, tptr))
88		return -EFAULT;
89
90	tv.tv_nsec = 0;
91
92	err = security_settime(&tv, NULL);
93	if (err)
94		return err;
95
96	do_settimeofday(&tv);
97	return 0;
98}
99
100#endif /* __ARCH_WANT_SYS_TIME */
101
102SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103		struct timezone __user *, tz)
104{
105	if (likely(tv != NULL)) {
106		struct timeval ktv;
107		do_gettimeofday(&ktv);
108		if (copy_to_user(tv, &ktv, sizeof(ktv)))
109			return -EFAULT;
110	}
111	if (unlikely(tz != NULL)) {
112		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113			return -EFAULT;
114	}
115	return 0;
116}
117
118/*
119 * Indicates if there is an offset between the system clock and the hardware
120 * clock/persistent clock/rtc.
121 */
122int persistent_clock_is_local;
123
124/*
125 * Adjust the time obtained from the CMOS to be UTC time instead of
126 * local time.
127 *
128 * This is ugly, but preferable to the alternatives.  Otherwise we
129 * would either need to write a program to do it in /etc/rc (and risk
130 * confusion if the program gets run more than once; it would also be
131 * hard to make the program warp the clock precisely n hours)  or
132 * compile in the timezone information into the kernel.  Bad, bad....
133 *
134 *						- TYT, 1992-01-01
135 *
136 * The best thing to do is to keep the CMOS clock in universal time (UTC)
137 * as real UNIX machines always do it. This avoids all headaches about
138 * daylight saving times and warping kernel clocks.
139 */
140static inline void warp_clock(void)
141{
142	if (sys_tz.tz_minuteswest != 0) {
143		struct timespec adjust;
144
145		persistent_clock_is_local = 1;
146		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147		adjust.tv_nsec = 0;
148		timekeeping_inject_offset(&adjust);
149	}
150}
151
152/*
153 * In case for some reason the CMOS clock has not already been running
154 * in UTC, but in some local time: The first time we set the timezone,
155 * we will warp the clock so that it is ticking UTC time instead of
156 * local time. Presumably, if someone is setting the timezone then we
157 * are running in an environment where the programs understand about
158 * timezones. This should be done at boot time in the /etc/rc script,
159 * as soon as possible, so that the clock can be set right. Otherwise,
160 * various programs will get confused when the clock gets warped.
161 */
162
163int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
164{
165	static int firsttime = 1;
166	int error = 0;
167
168	if (tv && !timespec_valid(tv))
169		return -EINVAL;
170
171	error = security_settime(tv, tz);
172	if (error)
173		return error;
174
175	if (tz) {
176		/* Verify we're witin the +-15 hrs range */
177		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
178			return -EINVAL;
179
180		sys_tz = *tz;
181		update_vsyscall_tz();
182		if (firsttime) {
183			firsttime = 0;
184			if (!tv)
185				warp_clock();
186		}
187	}
188	if (tv)
189		return do_settimeofday(tv);
190	return 0;
191}
192
193SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
194		struct timezone __user *, tz)
195{
196	struct timeval user_tv;
197	struct timespec	new_ts;
198	struct timezone new_tz;
199
200	if (tv) {
201		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
202			return -EFAULT;
203
204		if (!timeval_valid(&user_tv))
205			return -EINVAL;
206
207		new_ts.tv_sec = user_tv.tv_sec;
208		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
209	}
210	if (tz) {
211		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
212			return -EFAULT;
213	}
214
215	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
216}
217
218SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
219{
220	struct timex txc;		/* Local copy of parameter */
221	int ret;
222
223	/* Copy the user data space into the kernel copy
224	 * structure. But bear in mind that the structures
225	 * may change
226	 */
227	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
228		return -EFAULT;
229	ret = do_adjtimex(&txc);
230	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
231}
232
233/**
234 * current_fs_time - Return FS time
235 * @sb: Superblock.
236 *
237 * Return the current time truncated to the time granularity supported by
238 * the fs.
239 */
240struct timespec current_fs_time(struct super_block *sb)
241{
242	struct timespec now = current_kernel_time();
243	return timespec_trunc(now, sb->s_time_gran);
244}
245EXPORT_SYMBOL(current_fs_time);
246
247/*
248 * Convert jiffies to milliseconds and back.
249 *
250 * Avoid unnecessary multiplications/divisions in the
251 * two most common HZ cases:
252 */
253unsigned int jiffies_to_msecs(const unsigned long j)
254{
255#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
256	return (MSEC_PER_SEC / HZ) * j;
257#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
258	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
259#else
260# if BITS_PER_LONG == 32
261	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
262# else
263	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
264# endif
265#endif
266}
267EXPORT_SYMBOL(jiffies_to_msecs);
268
269unsigned int jiffies_to_usecs(const unsigned long j)
270{
271	/*
272	 * Hz usually doesn't go much further MSEC_PER_SEC.
273	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
274	 */
275	BUILD_BUG_ON(HZ > USEC_PER_SEC);
276
277#if !(USEC_PER_SEC % HZ)
278	return (USEC_PER_SEC / HZ) * j;
279#else
280# if BITS_PER_LONG == 32
281	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
282# else
283	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
284# endif
285#endif
286}
287EXPORT_SYMBOL(jiffies_to_usecs);
288
289/**
290 * timespec_trunc - Truncate timespec to a granularity
291 * @t: Timespec
292 * @gran: Granularity in ns.
293 *
294 * Truncate a timespec to a granularity. Always rounds down. gran must
295 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
296 */
297struct timespec timespec_trunc(struct timespec t, unsigned gran)
298{
299	/* Avoid division in the common cases 1 ns and 1 s. */
300	if (gran == 1) {
301		/* nothing */
302	} else if (gran == NSEC_PER_SEC) {
303		t.tv_nsec = 0;
304	} else if (gran > 1 && gran < NSEC_PER_SEC) {
305		t.tv_nsec -= t.tv_nsec % gran;
306	} else {
307		WARN(1, "illegal file time granularity: %u", gran);
308	}
309	return t;
310}
311EXPORT_SYMBOL(timespec_trunc);
312
313/*
314 * mktime64 - Converts date to seconds.
315 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
316 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
317 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
318 *
319 * [For the Julian calendar (which was used in Russia before 1917,
320 * Britain & colonies before 1752, anywhere else before 1582,
321 * and is still in use by some communities) leave out the
322 * -year/100+year/400 terms, and add 10.]
323 *
324 * This algorithm was first published by Gauss (I think).
325 */
326time64_t mktime64(const unsigned int year0, const unsigned int mon0,
327		const unsigned int day, const unsigned int hour,
328		const unsigned int min, const unsigned int sec)
329{
330	unsigned int mon = mon0, year = year0;
331
332	/* 1..12 -> 11,12,1..10 */
333	if (0 >= (int) (mon -= 2)) {
334		mon += 12;	/* Puts Feb last since it has leap day */
335		year -= 1;
336	}
337
338	return ((((time64_t)
339		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
340		  year*365 - 719499
341	    )*24 + hour /* now have hours */
342	  )*60 + min /* now have minutes */
343	)*60 + sec; /* finally seconds */
344}
345EXPORT_SYMBOL(mktime64);
346
347/**
348 * set_normalized_timespec - set timespec sec and nsec parts and normalize
349 *
350 * @ts:		pointer to timespec variable to be set
351 * @sec:	seconds to set
352 * @nsec:	nanoseconds to set
353 *
354 * Set seconds and nanoseconds field of a timespec variable and
355 * normalize to the timespec storage format
356 *
357 * Note: The tv_nsec part is always in the range of
358 *	0 <= tv_nsec < NSEC_PER_SEC
359 * For negative values only the tv_sec field is negative !
360 */
361void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
362{
363	while (nsec >= NSEC_PER_SEC) {
364		/*
365		 * The following asm() prevents the compiler from
366		 * optimising this loop into a modulo operation. See
367		 * also __iter_div_u64_rem() in include/linux/time.h
368		 */
369		asm("" : "+rm"(nsec));
370		nsec -= NSEC_PER_SEC;
371		++sec;
372	}
373	while (nsec < 0) {
374		asm("" : "+rm"(nsec));
375		nsec += NSEC_PER_SEC;
376		--sec;
377	}
378	ts->tv_sec = sec;
379	ts->tv_nsec = nsec;
380}
381EXPORT_SYMBOL(set_normalized_timespec);
382
383/**
384 * ns_to_timespec - Convert nanoseconds to timespec
385 * @nsec:       the nanoseconds value to be converted
386 *
387 * Returns the timespec representation of the nsec parameter.
388 */
389struct timespec ns_to_timespec(const s64 nsec)
390{
391	struct timespec ts;
392	s32 rem;
393
394	if (!nsec)
395		return (struct timespec) {0, 0};
396
397	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
398	if (unlikely(rem < 0)) {
399		ts.tv_sec--;
400		rem += NSEC_PER_SEC;
401	}
402	ts.tv_nsec = rem;
403
404	return ts;
405}
406EXPORT_SYMBOL(ns_to_timespec);
407
408/**
409 * ns_to_timeval - Convert nanoseconds to timeval
410 * @nsec:       the nanoseconds value to be converted
411 *
412 * Returns the timeval representation of the nsec parameter.
413 */
414struct timeval ns_to_timeval(const s64 nsec)
415{
416	struct timespec ts = ns_to_timespec(nsec);
417	struct timeval tv;
418
419	tv.tv_sec = ts.tv_sec;
420	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
421
422	return tv;
423}
424EXPORT_SYMBOL(ns_to_timeval);
425
426#if BITS_PER_LONG == 32
427/**
428 * set_normalized_timespec - set timespec sec and nsec parts and normalize
429 *
430 * @ts:		pointer to timespec variable to be set
431 * @sec:	seconds to set
432 * @nsec:	nanoseconds to set
433 *
434 * Set seconds and nanoseconds field of a timespec variable and
435 * normalize to the timespec storage format
436 *
437 * Note: The tv_nsec part is always in the range of
438 *	0 <= tv_nsec < NSEC_PER_SEC
439 * For negative values only the tv_sec field is negative !
440 */
441void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
442{
443	while (nsec >= NSEC_PER_SEC) {
444		/*
445		 * The following asm() prevents the compiler from
446		 * optimising this loop into a modulo operation. See
447		 * also __iter_div_u64_rem() in include/linux/time.h
448		 */
449		asm("" : "+rm"(nsec));
450		nsec -= NSEC_PER_SEC;
451		++sec;
452	}
453	while (nsec < 0) {
454		asm("" : "+rm"(nsec));
455		nsec += NSEC_PER_SEC;
456		--sec;
457	}
458	ts->tv_sec = sec;
459	ts->tv_nsec = nsec;
460}
461EXPORT_SYMBOL(set_normalized_timespec64);
462
463/**
464 * ns_to_timespec64 - Convert nanoseconds to timespec64
465 * @nsec:       the nanoseconds value to be converted
466 *
467 * Returns the timespec64 representation of the nsec parameter.
468 */
469struct timespec64 ns_to_timespec64(const s64 nsec)
470{
471	struct timespec64 ts;
472	s32 rem;
473
474	if (!nsec)
475		return (struct timespec64) {0, 0};
476
477	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
478	if (unlikely(rem < 0)) {
479		ts.tv_sec--;
480		rem += NSEC_PER_SEC;
481	}
482	ts.tv_nsec = rem;
483
484	return ts;
485}
486EXPORT_SYMBOL(ns_to_timespec64);
487#endif
488/**
489 * msecs_to_jiffies: - convert milliseconds to jiffies
490 * @m:	time in milliseconds
491 *
492 * conversion is done as follows:
493 *
494 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
495 *
496 * - 'too large' values [that would result in larger than
497 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
498 *
499 * - all other values are converted to jiffies by either multiplying
500 *   the input value by a factor or dividing it with a factor and
501 *   handling any 32-bit overflows.
502 *   for the details see __msecs_to_jiffies()
503 *
504 * msecs_to_jiffies() checks for the passed in value being a constant
505 * via __builtin_constant_p() allowing gcc to eliminate most of the
506 * code, __msecs_to_jiffies() is called if the value passed does not
507 * allow constant folding and the actual conversion must be done at
508 * runtime.
509 * the _msecs_to_jiffies helpers are the HZ dependent conversion
510 * routines found in include/linux/jiffies.h
511 */
512unsigned long __msecs_to_jiffies(const unsigned int m)
513{
514	/*
515	 * Negative value, means infinite timeout:
516	 */
517	if ((int)m < 0)
518		return MAX_JIFFY_OFFSET;
519	return _msecs_to_jiffies(m);
520}
521EXPORT_SYMBOL(__msecs_to_jiffies);
522
523unsigned long __usecs_to_jiffies(const unsigned int u)
524{
525	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
526		return MAX_JIFFY_OFFSET;
527	return _usecs_to_jiffies(u);
528}
529EXPORT_SYMBOL(__usecs_to_jiffies);
530
531/*
532 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
533 * that a remainder subtract here would not do the right thing as the
534 * resolution values don't fall on second boundries.  I.e. the line:
535 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
536 * Note that due to the small error in the multiplier here, this
537 * rounding is incorrect for sufficiently large values of tv_nsec, but
538 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
539 * OK.
540 *
541 * Rather, we just shift the bits off the right.
542 *
543 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
544 * value to a scaled second value.
545 */
546static unsigned long
547__timespec64_to_jiffies(u64 sec, long nsec)
548{
549	nsec = nsec + TICK_NSEC - 1;
550
551	if (sec >= MAX_SEC_IN_JIFFIES){
552		sec = MAX_SEC_IN_JIFFIES;
553		nsec = 0;
554	}
555	return ((sec * SEC_CONVERSION) +
556		(((u64)nsec * NSEC_CONVERSION) >>
557		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
558
559}
560
561static unsigned long
562__timespec_to_jiffies(unsigned long sec, long nsec)
563{
564	return __timespec64_to_jiffies((u64)sec, nsec);
565}
566
567unsigned long
568timespec64_to_jiffies(const struct timespec64 *value)
569{
570	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
571}
572EXPORT_SYMBOL(timespec64_to_jiffies);
573
574void
575jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
576{
577	/*
578	 * Convert jiffies to nanoseconds and separate with
579	 * one divide.
580	 */
581	u32 rem;
582	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
583				    NSEC_PER_SEC, &rem);
584	value->tv_nsec = rem;
585}
586EXPORT_SYMBOL(jiffies_to_timespec64);
587
588/*
589 * We could use a similar algorithm to timespec_to_jiffies (with a
590 * different multiplier for usec instead of nsec). But this has a
591 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
592 * usec value, since it's not necessarily integral.
593 *
594 * We could instead round in the intermediate scaled representation
595 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
596 * perilous: the scaling introduces a small positive error, which
597 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
598 * units to the intermediate before shifting) leads to accidental
599 * overflow and overestimates.
600 *
601 * At the cost of one additional multiplication by a constant, just
602 * use the timespec implementation.
603 */
604unsigned long
605timeval_to_jiffies(const struct timeval *value)
606{
607	return __timespec_to_jiffies(value->tv_sec,
608				     value->tv_usec * NSEC_PER_USEC);
609}
610EXPORT_SYMBOL(timeval_to_jiffies);
611
612void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
613{
614	/*
615	 * Convert jiffies to nanoseconds and separate with
616	 * one divide.
617	 */
618	u32 rem;
619
620	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
621				    NSEC_PER_SEC, &rem);
622	value->tv_usec = rem / NSEC_PER_USEC;
623}
624EXPORT_SYMBOL(jiffies_to_timeval);
625
626/*
627 * Convert jiffies/jiffies_64 to clock_t and back.
628 */
629clock_t jiffies_to_clock_t(unsigned long x)
630{
631#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
632# if HZ < USER_HZ
633	return x * (USER_HZ / HZ);
634# else
635	return x / (HZ / USER_HZ);
636# endif
637#else
638	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
639#endif
640}
641EXPORT_SYMBOL(jiffies_to_clock_t);
642
643unsigned long clock_t_to_jiffies(unsigned long x)
644{
645#if (HZ % USER_HZ)==0
646	if (x >= ~0UL / (HZ / USER_HZ))
647		return ~0UL;
648	return x * (HZ / USER_HZ);
649#else
650	/* Don't worry about loss of precision here .. */
651	if (x >= ~0UL / HZ * USER_HZ)
652		return ~0UL;
653
654	/* .. but do try to contain it here */
655	return div_u64((u64)x * HZ, USER_HZ);
656#endif
657}
658EXPORT_SYMBOL(clock_t_to_jiffies);
659
660u64 jiffies_64_to_clock_t(u64 x)
661{
662#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
663# if HZ < USER_HZ
664	x = div_u64(x * USER_HZ, HZ);
665# elif HZ > USER_HZ
666	x = div_u64(x, HZ / USER_HZ);
667# else
668	/* Nothing to do */
669# endif
670#else
671	/*
672	 * There are better ways that don't overflow early,
673	 * but even this doesn't overflow in hundreds of years
674	 * in 64 bits, so..
675	 */
676	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
677#endif
678	return x;
679}
680EXPORT_SYMBOL(jiffies_64_to_clock_t);
681
682u64 nsec_to_clock_t(u64 x)
683{
684#if (NSEC_PER_SEC % USER_HZ) == 0
685	return div_u64(x, NSEC_PER_SEC / USER_HZ);
686#elif (USER_HZ % 512) == 0
687	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
688#else
689	/*
690         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
691         * overflow after 64.99 years.
692         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
693         */
694	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
695#endif
696}
697
698/**
699 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
700 *
701 * @n:	nsecs in u64
702 *
703 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
704 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
705 * for scheduler, not for use in device drivers to calculate timeout value.
706 *
707 * note:
708 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
709 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
710 */
711u64 nsecs_to_jiffies64(u64 n)
712{
713#if (NSEC_PER_SEC % HZ) == 0
714	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
715	return div_u64(n, NSEC_PER_SEC / HZ);
716#elif (HZ % 512) == 0
717	/* overflow after 292 years if HZ = 1024 */
718	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
719#else
720	/*
721	 * Generic case - optimized for cases where HZ is a multiple of 3.
722	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
723	 */
724	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
725#endif
726}
727EXPORT_SYMBOL(nsecs_to_jiffies64);
728
729/**
730 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
731 *
732 * @n:	nsecs in u64
733 *
734 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
735 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
736 * for scheduler, not for use in device drivers to calculate timeout value.
737 *
738 * note:
739 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
740 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
741 */
742unsigned long nsecs_to_jiffies(u64 n)
743{
744	return (unsigned long)nsecs_to_jiffies64(n);
745}
746EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
747
748/*
749 * Add two timespec values and do a safety check for overflow.
750 * It's assumed that both values are valid (>= 0)
751 */
752struct timespec timespec_add_safe(const struct timespec lhs,
753				  const struct timespec rhs)
754{
755	struct timespec res;
756
757	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
758				lhs.tv_nsec + rhs.tv_nsec);
759
760	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
761		res.tv_sec = TIME_T_MAX;
762
763	return res;
764}
765