1/*
2 *  linux/kernel/time/tick-sched.c
3 *
4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 *
8 *  No idle tick implementation for low and high resolution timers
9 *
10 *  Started by: Thomas Gleixner and Ingo Molnar
11 *
12 *  Distribute under GPLv2.
13 */
14#include <linux/cpu.h>
15#include <linux/err.h>
16#include <linux/hrtimer.h>
17#include <linux/interrupt.h>
18#include <linux/kernel_stat.h>
19#include <linux/percpu.h>
20#include <linux/profile.h>
21#include <linux/sched.h>
22#include <linux/module.h>
23#include <linux/irq_work.h>
24#include <linux/posix-timers.h>
25#include <linux/perf_event.h>
26#include <linux/context_tracking.h>
27
28#include <asm/irq_regs.h>
29
30#include "tick-internal.h"
31
32#include <trace/events/timer.h>
33
34/*
35 * Per cpu nohz control structure
36 */
37static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38
39/*
40 * The time, when the last jiffy update happened. Protected by jiffies_lock.
41 */
42static ktime_t last_jiffies_update;
43
44struct tick_sched *tick_get_tick_sched(int cpu)
45{
46	return &per_cpu(tick_cpu_sched, cpu);
47}
48
49/*
50 * Must be called with interrupts disabled !
51 */
52static void tick_do_update_jiffies64(ktime_t now)
53{
54	unsigned long ticks = 0;
55	ktime_t delta;
56
57	/*
58	 * Do a quick check without holding jiffies_lock:
59	 */
60	delta = ktime_sub(now, last_jiffies_update);
61	if (delta.tv64 < tick_period.tv64)
62		return;
63
64	/* Reevalute with jiffies_lock held */
65	write_seqlock(&jiffies_lock);
66
67	delta = ktime_sub(now, last_jiffies_update);
68	if (delta.tv64 >= tick_period.tv64) {
69
70		delta = ktime_sub(delta, tick_period);
71		last_jiffies_update = ktime_add(last_jiffies_update,
72						tick_period);
73
74		/* Slow path for long timeouts */
75		if (unlikely(delta.tv64 >= tick_period.tv64)) {
76			s64 incr = ktime_to_ns(tick_period);
77
78			ticks = ktime_divns(delta, incr);
79
80			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81							   incr * ticks);
82		}
83		do_timer(++ticks);
84
85		/* Keep the tick_next_period variable up to date */
86		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87	} else {
88		write_sequnlock(&jiffies_lock);
89		return;
90	}
91	write_sequnlock(&jiffies_lock);
92	update_wall_time();
93}
94
95/*
96 * Initialize and return retrieve the jiffies update.
97 */
98static ktime_t tick_init_jiffy_update(void)
99{
100	ktime_t period;
101
102	write_seqlock(&jiffies_lock);
103	/* Did we start the jiffies update yet ? */
104	if (last_jiffies_update.tv64 == 0)
105		last_jiffies_update = tick_next_period;
106	period = last_jiffies_update;
107	write_sequnlock(&jiffies_lock);
108	return period;
109}
110
111
112static void tick_sched_do_timer(ktime_t now)
113{
114	int cpu = smp_processor_id();
115
116#ifdef CONFIG_NO_HZ_COMMON
117	/*
118	 * Check if the do_timer duty was dropped. We don't care about
119	 * concurrency: This happens only when the cpu in charge went
120	 * into a long sleep. If two cpus happen to assign themself to
121	 * this duty, then the jiffies update is still serialized by
122	 * jiffies_lock.
123	 */
124	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125	    && !tick_nohz_full_cpu(cpu))
126		tick_do_timer_cpu = cpu;
127#endif
128
129	/* Check, if the jiffies need an update */
130	if (tick_do_timer_cpu == cpu)
131		tick_do_update_jiffies64(now);
132}
133
134static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135{
136#ifdef CONFIG_NO_HZ_COMMON
137	/*
138	 * When we are idle and the tick is stopped, we have to touch
139	 * the watchdog as we might not schedule for a really long
140	 * time. This happens on complete idle SMP systems while
141	 * waiting on the login prompt. We also increment the "start of
142	 * idle" jiffy stamp so the idle accounting adjustment we do
143	 * when we go busy again does not account too much ticks.
144	 */
145	if (ts->tick_stopped) {
146		touch_softlockup_watchdog();
147		if (is_idle_task(current))
148			ts->idle_jiffies++;
149	}
150#endif
151	update_process_times(user_mode(regs));
152	profile_tick(CPU_PROFILING);
153}
154
155#ifdef CONFIG_NO_HZ_FULL
156cpumask_var_t tick_nohz_full_mask;
157cpumask_var_t housekeeping_mask;
158bool tick_nohz_full_running;
159
160static bool can_stop_full_tick(void)
161{
162	WARN_ON_ONCE(!irqs_disabled());
163
164	if (!sched_can_stop_tick()) {
165		trace_tick_stop(0, "more than 1 task in runqueue\n");
166		return false;
167	}
168
169	if (!posix_cpu_timers_can_stop_tick(current)) {
170		trace_tick_stop(0, "posix timers running\n");
171		return false;
172	}
173
174	if (!perf_event_can_stop_tick()) {
175		trace_tick_stop(0, "perf events running\n");
176		return false;
177	}
178
179	/* sched_clock_tick() needs us? */
180#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
181	/*
182	 * TODO: kick full dynticks CPUs when
183	 * sched_clock_stable is set.
184	 */
185	if (!sched_clock_stable()) {
186		trace_tick_stop(0, "unstable sched clock\n");
187		/*
188		 * Don't allow the user to think they can get
189		 * full NO_HZ with this machine.
190		 */
191		WARN_ONCE(tick_nohz_full_running,
192			  "NO_HZ FULL will not work with unstable sched clock");
193		return false;
194	}
195#endif
196
197	return true;
198}
199
200static void nohz_full_kick_work_func(struct irq_work *work)
201{
202	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
203}
204
205static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
206	.func = nohz_full_kick_work_func,
207};
208
209/*
210 * Kick this CPU if it's full dynticks in order to force it to
211 * re-evaluate its dependency on the tick and restart it if necessary.
212 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
213 * is NMI safe.
214 */
215void tick_nohz_full_kick(void)
216{
217	if (!tick_nohz_full_cpu(smp_processor_id()))
218		return;
219
220	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
221}
222
223/*
224 * Kick the CPU if it's full dynticks in order to force it to
225 * re-evaluate its dependency on the tick and restart it if necessary.
226 */
227void tick_nohz_full_kick_cpu(int cpu)
228{
229	if (!tick_nohz_full_cpu(cpu))
230		return;
231
232	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
233}
234
235static void nohz_full_kick_ipi(void *info)
236{
237	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
238}
239
240/*
241 * Kick all full dynticks CPUs in order to force these to re-evaluate
242 * their dependency on the tick and restart it if necessary.
243 */
244void tick_nohz_full_kick_all(void)
245{
246	if (!tick_nohz_full_running)
247		return;
248
249	preempt_disable();
250	smp_call_function_many(tick_nohz_full_mask,
251			       nohz_full_kick_ipi, NULL, false);
252	tick_nohz_full_kick();
253	preempt_enable();
254}
255
256/*
257 * Re-evaluate the need for the tick as we switch the current task.
258 * It might need the tick due to per task/process properties:
259 * perf events, posix cpu timers, ...
260 */
261void __tick_nohz_task_switch(void)
262{
263	unsigned long flags;
264
265	local_irq_save(flags);
266
267	if (!tick_nohz_full_cpu(smp_processor_id()))
268		goto out;
269
270	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
271		tick_nohz_full_kick();
272
273out:
274	local_irq_restore(flags);
275}
276
277/* Parse the boot-time nohz CPU list from the kernel parameters. */
278static int __init tick_nohz_full_setup(char *str)
279{
280	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
281	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
282		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
283		free_bootmem_cpumask_var(tick_nohz_full_mask);
284		return 1;
285	}
286	tick_nohz_full_running = true;
287
288	return 1;
289}
290__setup("nohz_full=", tick_nohz_full_setup);
291
292static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
293				       unsigned long action,
294				       void *hcpu)
295{
296	unsigned int cpu = (unsigned long)hcpu;
297
298	switch (action & ~CPU_TASKS_FROZEN) {
299	case CPU_DOWN_PREPARE:
300		/*
301		 * The boot CPU handles housekeeping duty (unbound timers,
302		 * workqueues, timekeeping, ...) on behalf of full dynticks
303		 * CPUs. It must remain online when nohz full is enabled.
304		 */
305		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
306			return NOTIFY_BAD;
307		break;
308	}
309	return NOTIFY_OK;
310}
311
312static int tick_nohz_init_all(void)
313{
314	int err = -1;
315
316#ifdef CONFIG_NO_HZ_FULL_ALL
317	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
318		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
319		return err;
320	}
321	err = 0;
322	cpumask_setall(tick_nohz_full_mask);
323	tick_nohz_full_running = true;
324#endif
325	return err;
326}
327
328void __init tick_nohz_init(void)
329{
330	int cpu;
331
332	if (!tick_nohz_full_running) {
333		if (tick_nohz_init_all() < 0)
334			return;
335	}
336
337	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
338		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
339		cpumask_clear(tick_nohz_full_mask);
340		tick_nohz_full_running = false;
341		return;
342	}
343
344	/*
345	 * Full dynticks uses irq work to drive the tick rescheduling on safe
346	 * locking contexts. But then we need irq work to raise its own
347	 * interrupts to avoid circular dependency on the tick
348	 */
349	if (!arch_irq_work_has_interrupt()) {
350		pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
351			   "support irq work self-IPIs\n");
352		cpumask_clear(tick_nohz_full_mask);
353		cpumask_copy(housekeeping_mask, cpu_possible_mask);
354		tick_nohz_full_running = false;
355		return;
356	}
357
358	cpu = smp_processor_id();
359
360	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
361		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
362		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
363	}
364
365	cpumask_andnot(housekeeping_mask,
366		       cpu_possible_mask, tick_nohz_full_mask);
367
368	for_each_cpu(cpu, tick_nohz_full_mask)
369		context_tracking_cpu_set(cpu);
370
371	cpu_notifier(tick_nohz_cpu_down_callback, 0);
372	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
373		cpumask_pr_args(tick_nohz_full_mask));
374
375	/*
376	 * We need at least one CPU to handle housekeeping work such
377	 * as timekeeping, unbound timers, workqueues, ...
378	 */
379	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
380}
381#endif
382
383/*
384 * NOHZ - aka dynamic tick functionality
385 */
386#ifdef CONFIG_NO_HZ_COMMON
387/*
388 * NO HZ enabled ?
389 */
390static int tick_nohz_enabled __read_mostly  = 1;
391unsigned long tick_nohz_active  __read_mostly;
392/*
393 * Enable / Disable tickless mode
394 */
395static int __init setup_tick_nohz(char *str)
396{
397	if (!strcmp(str, "off"))
398		tick_nohz_enabled = 0;
399	else if (!strcmp(str, "on"))
400		tick_nohz_enabled = 1;
401	else
402		return 0;
403	return 1;
404}
405
406__setup("nohz=", setup_tick_nohz);
407
408int tick_nohz_tick_stopped(void)
409{
410	return __this_cpu_read(tick_cpu_sched.tick_stopped);
411}
412
413/**
414 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
415 *
416 * Called from interrupt entry when the CPU was idle
417 *
418 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
419 * must be updated. Otherwise an interrupt handler could use a stale jiffy
420 * value. We do this unconditionally on any cpu, as we don't know whether the
421 * cpu, which has the update task assigned is in a long sleep.
422 */
423static void tick_nohz_update_jiffies(ktime_t now)
424{
425	unsigned long flags;
426
427	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
428
429	local_irq_save(flags);
430	tick_do_update_jiffies64(now);
431	local_irq_restore(flags);
432
433	touch_softlockup_watchdog();
434}
435
436/*
437 * Updates the per cpu time idle statistics counters
438 */
439static void
440update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
441{
442	ktime_t delta;
443
444	if (ts->idle_active) {
445		delta = ktime_sub(now, ts->idle_entrytime);
446		if (nr_iowait_cpu(cpu) > 0)
447			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
448		else
449			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
450		ts->idle_entrytime = now;
451	}
452
453	if (last_update_time)
454		*last_update_time = ktime_to_us(now);
455
456}
457
458static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
459{
460	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
461	ts->idle_active = 0;
462
463	sched_clock_idle_wakeup_event(0);
464}
465
466static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
467{
468	ktime_t now = ktime_get();
469
470	ts->idle_entrytime = now;
471	ts->idle_active = 1;
472	sched_clock_idle_sleep_event();
473	return now;
474}
475
476/**
477 * get_cpu_idle_time_us - get the total idle time of a cpu
478 * @cpu: CPU number to query
479 * @last_update_time: variable to store update time in. Do not update
480 * counters if NULL.
481 *
482 * Return the cummulative idle time (since boot) for a given
483 * CPU, in microseconds.
484 *
485 * This time is measured via accounting rather than sampling,
486 * and is as accurate as ktime_get() is.
487 *
488 * This function returns -1 if NOHZ is not enabled.
489 */
490u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
491{
492	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
493	ktime_t now, idle;
494
495	if (!tick_nohz_active)
496		return -1;
497
498	now = ktime_get();
499	if (last_update_time) {
500		update_ts_time_stats(cpu, ts, now, last_update_time);
501		idle = ts->idle_sleeptime;
502	} else {
503		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
504			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
505
506			idle = ktime_add(ts->idle_sleeptime, delta);
507		} else {
508			idle = ts->idle_sleeptime;
509		}
510	}
511
512	return ktime_to_us(idle);
513
514}
515EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
516
517/**
518 * get_cpu_iowait_time_us - get the total iowait time of a cpu
519 * @cpu: CPU number to query
520 * @last_update_time: variable to store update time in. Do not update
521 * counters if NULL.
522 *
523 * Return the cummulative iowait time (since boot) for a given
524 * CPU, in microseconds.
525 *
526 * This time is measured via accounting rather than sampling,
527 * and is as accurate as ktime_get() is.
528 *
529 * This function returns -1 if NOHZ is not enabled.
530 */
531u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
532{
533	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
534	ktime_t now, iowait;
535
536	if (!tick_nohz_active)
537		return -1;
538
539	now = ktime_get();
540	if (last_update_time) {
541		update_ts_time_stats(cpu, ts, now, last_update_time);
542		iowait = ts->iowait_sleeptime;
543	} else {
544		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
545			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
546
547			iowait = ktime_add(ts->iowait_sleeptime, delta);
548		} else {
549			iowait = ts->iowait_sleeptime;
550		}
551	}
552
553	return ktime_to_us(iowait);
554}
555EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
556
557static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
558{
559	hrtimer_cancel(&ts->sched_timer);
560	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
561
562	/* Forward the time to expire in the future */
563	hrtimer_forward(&ts->sched_timer, now, tick_period);
564
565	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
566		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
567	else
568		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
569}
570
571static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
572					 ktime_t now, int cpu)
573{
574	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
575	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
576	unsigned long seq, basejiff;
577	ktime_t	tick;
578
579	/* Read jiffies and the time when jiffies were updated last */
580	do {
581		seq = read_seqbegin(&jiffies_lock);
582		basemono = last_jiffies_update.tv64;
583		basejiff = jiffies;
584	} while (read_seqretry(&jiffies_lock, seq));
585	ts->last_jiffies = basejiff;
586
587	if (rcu_needs_cpu(basemono, &next_rcu) ||
588	    arch_needs_cpu() || irq_work_needs_cpu()) {
589		next_tick = basemono + TICK_NSEC;
590	} else {
591		/*
592		 * Get the next pending timer. If high resolution
593		 * timers are enabled this only takes the timer wheel
594		 * timers into account. If high resolution timers are
595		 * disabled this also looks at the next expiring
596		 * hrtimer.
597		 */
598		next_tmr = get_next_timer_interrupt(basejiff, basemono);
599		ts->next_timer = next_tmr;
600		/* Take the next rcu event into account */
601		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
602	}
603
604	/*
605	 * If the tick is due in the next period, keep it ticking or
606	 * restart it proper.
607	 */
608	delta = next_tick - basemono;
609	if (delta <= (u64)TICK_NSEC) {
610		tick.tv64 = 0;
611		if (!ts->tick_stopped)
612			goto out;
613		if (delta == 0) {
614			/* Tick is stopped, but required now. Enforce it */
615			tick_nohz_restart(ts, now);
616			goto out;
617		}
618	}
619
620	/*
621	 * If this cpu is the one which updates jiffies, then give up
622	 * the assignment and let it be taken by the cpu which runs
623	 * the tick timer next, which might be this cpu as well. If we
624	 * don't drop this here the jiffies might be stale and
625	 * do_timer() never invoked. Keep track of the fact that it
626	 * was the one which had the do_timer() duty last. If this cpu
627	 * is the one which had the do_timer() duty last, we limit the
628	 * sleep time to the timekeeping max_deferement value.
629	 * Otherwise we can sleep as long as we want.
630	 */
631	delta = timekeeping_max_deferment();
632	if (cpu == tick_do_timer_cpu) {
633		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
634		ts->do_timer_last = 1;
635	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
636		delta = KTIME_MAX;
637		ts->do_timer_last = 0;
638	} else if (!ts->do_timer_last) {
639		delta = KTIME_MAX;
640	}
641
642#ifdef CONFIG_NO_HZ_FULL
643	/* Limit the tick delta to the maximum scheduler deferment */
644	if (!ts->inidle)
645		delta = min(delta, scheduler_tick_max_deferment());
646#endif
647
648	/* Calculate the next expiry time */
649	if (delta < (KTIME_MAX - basemono))
650		expires = basemono + delta;
651	else
652		expires = KTIME_MAX;
653
654	expires = min_t(u64, expires, next_tick);
655	tick.tv64 = expires;
656
657	/* Skip reprogram of event if its not changed */
658	if (ts->tick_stopped && (expires == dev->next_event.tv64))
659		goto out;
660
661	/*
662	 * nohz_stop_sched_tick can be called several times before
663	 * the nohz_restart_sched_tick is called. This happens when
664	 * interrupts arrive which do not cause a reschedule. In the
665	 * first call we save the current tick time, so we can restart
666	 * the scheduler tick in nohz_restart_sched_tick.
667	 */
668	if (!ts->tick_stopped) {
669		nohz_balance_enter_idle(cpu);
670		calc_load_enter_idle();
671
672		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
673		ts->tick_stopped = 1;
674		trace_tick_stop(1, " ");
675	}
676
677	/*
678	 * If the expiration time == KTIME_MAX, then we simply stop
679	 * the tick timer.
680	 */
681	if (unlikely(expires == KTIME_MAX)) {
682		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
683			hrtimer_cancel(&ts->sched_timer);
684		goto out;
685	}
686
687	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
688		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
689	else
690		tick_program_event(tick, 1);
691out:
692	/* Update the estimated sleep length */
693	ts->sleep_length = ktime_sub(dev->next_event, now);
694	return tick;
695}
696
697static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
698{
699	/* Update jiffies first */
700	tick_do_update_jiffies64(now);
701	update_cpu_load_nohz();
702
703	calc_load_exit_idle();
704	touch_softlockup_watchdog();
705	/*
706	 * Cancel the scheduled timer and restore the tick
707	 */
708	ts->tick_stopped  = 0;
709	ts->idle_exittime = now;
710
711	tick_nohz_restart(ts, now);
712}
713
714static void tick_nohz_full_update_tick(struct tick_sched *ts)
715{
716#ifdef CONFIG_NO_HZ_FULL
717	int cpu = smp_processor_id();
718
719	if (!tick_nohz_full_cpu(cpu))
720		return;
721
722	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
723		return;
724
725	if (can_stop_full_tick())
726		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
727	else if (ts->tick_stopped)
728		tick_nohz_restart_sched_tick(ts, ktime_get());
729#endif
730}
731
732static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
733{
734	/*
735	 * If this cpu is offline and it is the one which updates
736	 * jiffies, then give up the assignment and let it be taken by
737	 * the cpu which runs the tick timer next. If we don't drop
738	 * this here the jiffies might be stale and do_timer() never
739	 * invoked.
740	 */
741	if (unlikely(!cpu_online(cpu))) {
742		if (cpu == tick_do_timer_cpu)
743			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
744		return false;
745	}
746
747	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
748		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
749		return false;
750	}
751
752	if (need_resched())
753		return false;
754
755	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
756		static int ratelimit;
757
758		if (ratelimit < 10 &&
759		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
760			pr_warn("NOHZ: local_softirq_pending %02x\n",
761				(unsigned int) local_softirq_pending());
762			ratelimit++;
763		}
764		return false;
765	}
766
767	if (tick_nohz_full_enabled()) {
768		/*
769		 * Keep the tick alive to guarantee timekeeping progression
770		 * if there are full dynticks CPUs around
771		 */
772		if (tick_do_timer_cpu == cpu)
773			return false;
774		/*
775		 * Boot safety: make sure the timekeeping duty has been
776		 * assigned before entering dyntick-idle mode,
777		 */
778		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
779			return false;
780	}
781
782	return true;
783}
784
785static void __tick_nohz_idle_enter(struct tick_sched *ts)
786{
787	ktime_t now, expires;
788	int cpu = smp_processor_id();
789
790	now = tick_nohz_start_idle(ts);
791
792	if (can_stop_idle_tick(cpu, ts)) {
793		int was_stopped = ts->tick_stopped;
794
795		ts->idle_calls++;
796
797		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
798		if (expires.tv64 > 0LL) {
799			ts->idle_sleeps++;
800			ts->idle_expires = expires;
801		}
802
803		if (!was_stopped && ts->tick_stopped)
804			ts->idle_jiffies = ts->last_jiffies;
805	}
806}
807
808/**
809 * tick_nohz_idle_enter - stop the idle tick from the idle task
810 *
811 * When the next event is more than a tick into the future, stop the idle tick
812 * Called when we start the idle loop.
813 *
814 * The arch is responsible of calling:
815 *
816 * - rcu_idle_enter() after its last use of RCU before the CPU is put
817 *  to sleep.
818 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
819 */
820void tick_nohz_idle_enter(void)
821{
822	struct tick_sched *ts;
823
824	WARN_ON_ONCE(irqs_disabled());
825
826	/*
827 	 * Update the idle state in the scheduler domain hierarchy
828 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
829 	 * State will be updated to busy during the first busy tick after
830 	 * exiting idle.
831 	 */
832	set_cpu_sd_state_idle();
833
834	local_irq_disable();
835
836	ts = this_cpu_ptr(&tick_cpu_sched);
837	ts->inidle = 1;
838	__tick_nohz_idle_enter(ts);
839
840	local_irq_enable();
841}
842
843/**
844 * tick_nohz_irq_exit - update next tick event from interrupt exit
845 *
846 * When an interrupt fires while we are idle and it doesn't cause
847 * a reschedule, it may still add, modify or delete a timer, enqueue
848 * an RCU callback, etc...
849 * So we need to re-calculate and reprogram the next tick event.
850 */
851void tick_nohz_irq_exit(void)
852{
853	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
854
855	if (ts->inidle)
856		__tick_nohz_idle_enter(ts);
857	else
858		tick_nohz_full_update_tick(ts);
859}
860
861/**
862 * tick_nohz_get_sleep_length - return the length of the current sleep
863 *
864 * Called from power state control code with interrupts disabled
865 */
866ktime_t tick_nohz_get_sleep_length(void)
867{
868	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
869
870	return ts->sleep_length;
871}
872
873static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
874{
875#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
876	unsigned long ticks;
877
878	if (vtime_accounting_enabled())
879		return;
880	/*
881	 * We stopped the tick in idle. Update process times would miss the
882	 * time we slept as update_process_times does only a 1 tick
883	 * accounting. Enforce that this is accounted to idle !
884	 */
885	ticks = jiffies - ts->idle_jiffies;
886	/*
887	 * We might be one off. Do not randomly account a huge number of ticks!
888	 */
889	if (ticks && ticks < LONG_MAX)
890		account_idle_ticks(ticks);
891#endif
892}
893
894/**
895 * tick_nohz_idle_exit - restart the idle tick from the idle task
896 *
897 * Restart the idle tick when the CPU is woken up from idle
898 * This also exit the RCU extended quiescent state. The CPU
899 * can use RCU again after this function is called.
900 */
901void tick_nohz_idle_exit(void)
902{
903	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
904	ktime_t now;
905
906	local_irq_disable();
907
908	WARN_ON_ONCE(!ts->inidle);
909
910	ts->inidle = 0;
911
912	if (ts->idle_active || ts->tick_stopped)
913		now = ktime_get();
914
915	if (ts->idle_active)
916		tick_nohz_stop_idle(ts, now);
917
918	if (ts->tick_stopped) {
919		tick_nohz_restart_sched_tick(ts, now);
920		tick_nohz_account_idle_ticks(ts);
921	}
922
923	local_irq_enable();
924}
925
926/*
927 * The nohz low res interrupt handler
928 */
929static void tick_nohz_handler(struct clock_event_device *dev)
930{
931	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
932	struct pt_regs *regs = get_irq_regs();
933	ktime_t now = ktime_get();
934
935	dev->next_event.tv64 = KTIME_MAX;
936
937	tick_sched_do_timer(now);
938	tick_sched_handle(ts, regs);
939
940	/* No need to reprogram if we are running tickless  */
941	if (unlikely(ts->tick_stopped))
942		return;
943
944	hrtimer_forward(&ts->sched_timer, now, tick_period);
945	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
946}
947
948static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
949{
950	if (!tick_nohz_enabled)
951		return;
952	ts->nohz_mode = mode;
953	/* One update is enough */
954	if (!test_and_set_bit(0, &tick_nohz_active))
955		timers_update_migration(true);
956}
957
958/**
959 * tick_nohz_switch_to_nohz - switch to nohz mode
960 */
961static void tick_nohz_switch_to_nohz(void)
962{
963	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
964	ktime_t next;
965
966	if (!tick_nohz_enabled)
967		return;
968
969	if (tick_switch_to_oneshot(tick_nohz_handler))
970		return;
971
972	/*
973	 * Recycle the hrtimer in ts, so we can share the
974	 * hrtimer_forward with the highres code.
975	 */
976	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
977	/* Get the next period */
978	next = tick_init_jiffy_update();
979
980	hrtimer_set_expires(&ts->sched_timer, next);
981	hrtimer_forward_now(&ts->sched_timer, tick_period);
982	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
983	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
984}
985
986/*
987 * When NOHZ is enabled and the tick is stopped, we need to kick the
988 * tick timer from irq_enter() so that the jiffies update is kept
989 * alive during long running softirqs. That's ugly as hell, but
990 * correctness is key even if we need to fix the offending softirq in
991 * the first place.
992 *
993 * Note, this is different to tick_nohz_restart. We just kick the
994 * timer and do not touch the other magic bits which need to be done
995 * when idle is left.
996 */
997static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
998{
999#if 0
1000	/* Switch back to 2.6.27 behaviour */
1001	ktime_t delta;
1002
1003	/*
1004	 * Do not touch the tick device, when the next expiry is either
1005	 * already reached or less/equal than the tick period.
1006	 */
1007	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1008	if (delta.tv64 <= tick_period.tv64)
1009		return;
1010
1011	tick_nohz_restart(ts, now);
1012#endif
1013}
1014
1015static inline void tick_nohz_irq_enter(void)
1016{
1017	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1018	ktime_t now;
1019
1020	if (!ts->idle_active && !ts->tick_stopped)
1021		return;
1022	now = ktime_get();
1023	if (ts->idle_active)
1024		tick_nohz_stop_idle(ts, now);
1025	if (ts->tick_stopped) {
1026		tick_nohz_update_jiffies(now);
1027		tick_nohz_kick_tick(ts, now);
1028	}
1029}
1030
1031#else
1032
1033static inline void tick_nohz_switch_to_nohz(void) { }
1034static inline void tick_nohz_irq_enter(void) { }
1035static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1036
1037#endif /* CONFIG_NO_HZ_COMMON */
1038
1039/*
1040 * Called from irq_enter to notify about the possible interruption of idle()
1041 */
1042void tick_irq_enter(void)
1043{
1044	tick_check_oneshot_broadcast_this_cpu();
1045	tick_nohz_irq_enter();
1046}
1047
1048/*
1049 * High resolution timer specific code
1050 */
1051#ifdef CONFIG_HIGH_RES_TIMERS
1052/*
1053 * We rearm the timer until we get disabled by the idle code.
1054 * Called with interrupts disabled.
1055 */
1056static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1057{
1058	struct tick_sched *ts =
1059		container_of(timer, struct tick_sched, sched_timer);
1060	struct pt_regs *regs = get_irq_regs();
1061	ktime_t now = ktime_get();
1062
1063	tick_sched_do_timer(now);
1064
1065	/*
1066	 * Do not call, when we are not in irq context and have
1067	 * no valid regs pointer
1068	 */
1069	if (regs)
1070		tick_sched_handle(ts, regs);
1071
1072	/* No need to reprogram if we are in idle or full dynticks mode */
1073	if (unlikely(ts->tick_stopped))
1074		return HRTIMER_NORESTART;
1075
1076	hrtimer_forward(timer, now, tick_period);
1077
1078	return HRTIMER_RESTART;
1079}
1080
1081static int sched_skew_tick;
1082
1083static int __init skew_tick(char *str)
1084{
1085	get_option(&str, &sched_skew_tick);
1086
1087	return 0;
1088}
1089early_param("skew_tick", skew_tick);
1090
1091/**
1092 * tick_setup_sched_timer - setup the tick emulation timer
1093 */
1094void tick_setup_sched_timer(void)
1095{
1096	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1097	ktime_t now = ktime_get();
1098
1099	/*
1100	 * Emulate tick processing via per-CPU hrtimers:
1101	 */
1102	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1103	ts->sched_timer.function = tick_sched_timer;
1104
1105	/* Get the next period (per cpu) */
1106	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1107
1108	/* Offset the tick to avert jiffies_lock contention. */
1109	if (sched_skew_tick) {
1110		u64 offset = ktime_to_ns(tick_period) >> 1;
1111		do_div(offset, num_possible_cpus());
1112		offset *= smp_processor_id();
1113		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1114	}
1115
1116	hrtimer_forward(&ts->sched_timer, now, tick_period);
1117	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1118	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1119}
1120#endif /* HIGH_RES_TIMERS */
1121
1122#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1123void tick_cancel_sched_timer(int cpu)
1124{
1125	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1126
1127# ifdef CONFIG_HIGH_RES_TIMERS
1128	if (ts->sched_timer.base)
1129		hrtimer_cancel(&ts->sched_timer);
1130# endif
1131
1132	memset(ts, 0, sizeof(*ts));
1133}
1134#endif
1135
1136/**
1137 * Async notification about clocksource changes
1138 */
1139void tick_clock_notify(void)
1140{
1141	int cpu;
1142
1143	for_each_possible_cpu(cpu)
1144		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1145}
1146
1147/*
1148 * Async notification about clock event changes
1149 */
1150void tick_oneshot_notify(void)
1151{
1152	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1153
1154	set_bit(0, &ts->check_clocks);
1155}
1156
1157/**
1158 * Check, if a change happened, which makes oneshot possible.
1159 *
1160 * Called cyclic from the hrtimer softirq (driven by the timer
1161 * softirq) allow_nohz signals, that we can switch into low-res nohz
1162 * mode, because high resolution timers are disabled (either compile
1163 * or runtime). Called with interrupts disabled.
1164 */
1165int tick_check_oneshot_change(int allow_nohz)
1166{
1167	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1168
1169	if (!test_and_clear_bit(0, &ts->check_clocks))
1170		return 0;
1171
1172	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1173		return 0;
1174
1175	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1176		return 0;
1177
1178	if (!allow_nohz)
1179		return 1;
1180
1181	tick_nohz_switch_to_nohz();
1182	return 0;
1183}
1184