1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6#include "sched.h"
7
8#include <linux/slab.h>
9#include <linux/irq_work.h>
10
11int sched_rr_timeslice = RR_TIMESLICE;
12
13static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15struct rt_bandwidth def_rt_bandwidth;
16
17static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18{
19	struct rt_bandwidth *rt_b =
20		container_of(timer, struct rt_bandwidth, rt_period_timer);
21	int idle = 0;
22	int overrun;
23
24	raw_spin_lock(&rt_b->rt_runtime_lock);
25	for (;;) {
26		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27		if (!overrun)
28			break;
29
30		raw_spin_unlock(&rt_b->rt_runtime_lock);
31		idle = do_sched_rt_period_timer(rt_b, overrun);
32		raw_spin_lock(&rt_b->rt_runtime_lock);
33	}
34	if (idle)
35		rt_b->rt_period_active = 0;
36	raw_spin_unlock(&rt_b->rt_runtime_lock);
37
38	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39}
40
41void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42{
43	rt_b->rt_period = ns_to_ktime(period);
44	rt_b->rt_runtime = runtime;
45
46	raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48	hrtimer_init(&rt_b->rt_period_timer,
49			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50	rt_b->rt_period_timer.function = sched_rt_period_timer;
51}
52
53static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54{
55	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56		return;
57
58	raw_spin_lock(&rt_b->rt_runtime_lock);
59	if (!rt_b->rt_period_active) {
60		rt_b->rt_period_active = 1;
61		hrtimer_forward_now(&rt_b->rt_period_timer, rt_b->rt_period);
62		hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
63	}
64	raw_spin_unlock(&rt_b->rt_runtime_lock);
65}
66
67#if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
68static void push_irq_work_func(struct irq_work *work);
69#endif
70
71void init_rt_rq(struct rt_rq *rt_rq)
72{
73	struct rt_prio_array *array;
74	int i;
75
76	array = &rt_rq->active;
77	for (i = 0; i < MAX_RT_PRIO; i++) {
78		INIT_LIST_HEAD(array->queue + i);
79		__clear_bit(i, array->bitmap);
80	}
81	/* delimiter for bitsearch: */
82	__set_bit(MAX_RT_PRIO, array->bitmap);
83
84#if defined CONFIG_SMP
85	rt_rq->highest_prio.curr = MAX_RT_PRIO;
86	rt_rq->highest_prio.next = MAX_RT_PRIO;
87	rt_rq->rt_nr_migratory = 0;
88	rt_rq->overloaded = 0;
89	plist_head_init(&rt_rq->pushable_tasks);
90
91#ifdef HAVE_RT_PUSH_IPI
92	rt_rq->push_flags = 0;
93	rt_rq->push_cpu = nr_cpu_ids;
94	raw_spin_lock_init(&rt_rq->push_lock);
95	init_irq_work(&rt_rq->push_work, push_irq_work_func);
96#endif
97#endif /* CONFIG_SMP */
98	/* We start is dequeued state, because no RT tasks are queued */
99	rt_rq->rt_queued = 0;
100
101	rt_rq->rt_time = 0;
102	rt_rq->rt_throttled = 0;
103	rt_rq->rt_runtime = 0;
104	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
105}
106
107#ifdef CONFIG_RT_GROUP_SCHED
108static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
109{
110	hrtimer_cancel(&rt_b->rt_period_timer);
111}
112
113#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
114
115static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
116{
117#ifdef CONFIG_SCHED_DEBUG
118	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
119#endif
120	return container_of(rt_se, struct task_struct, rt);
121}
122
123static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
124{
125	return rt_rq->rq;
126}
127
128static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
129{
130	return rt_se->rt_rq;
131}
132
133static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
134{
135	struct rt_rq *rt_rq = rt_se->rt_rq;
136
137	return rt_rq->rq;
138}
139
140void free_rt_sched_group(struct task_group *tg)
141{
142	int i;
143
144	if (tg->rt_se)
145		destroy_rt_bandwidth(&tg->rt_bandwidth);
146
147	for_each_possible_cpu(i) {
148		if (tg->rt_rq)
149			kfree(tg->rt_rq[i]);
150		if (tg->rt_se)
151			kfree(tg->rt_se[i]);
152	}
153
154	kfree(tg->rt_rq);
155	kfree(tg->rt_se);
156}
157
158void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
159		struct sched_rt_entity *rt_se, int cpu,
160		struct sched_rt_entity *parent)
161{
162	struct rq *rq = cpu_rq(cpu);
163
164	rt_rq->highest_prio.curr = MAX_RT_PRIO;
165	rt_rq->rt_nr_boosted = 0;
166	rt_rq->rq = rq;
167	rt_rq->tg = tg;
168
169	tg->rt_rq[cpu] = rt_rq;
170	tg->rt_se[cpu] = rt_se;
171
172	if (!rt_se)
173		return;
174
175	if (!parent)
176		rt_se->rt_rq = &rq->rt;
177	else
178		rt_se->rt_rq = parent->my_q;
179
180	rt_se->my_q = rt_rq;
181	rt_se->parent = parent;
182	INIT_LIST_HEAD(&rt_se->run_list);
183}
184
185int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
186{
187	struct rt_rq *rt_rq;
188	struct sched_rt_entity *rt_se;
189	int i;
190
191	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
192	if (!tg->rt_rq)
193		goto err;
194	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
195	if (!tg->rt_se)
196		goto err;
197
198	init_rt_bandwidth(&tg->rt_bandwidth,
199			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
200
201	for_each_possible_cpu(i) {
202		rt_rq = kzalloc_node(sizeof(struct rt_rq),
203				     GFP_KERNEL, cpu_to_node(i));
204		if (!rt_rq)
205			goto err;
206
207		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
208				     GFP_KERNEL, cpu_to_node(i));
209		if (!rt_se)
210			goto err_free_rq;
211
212		init_rt_rq(rt_rq);
213		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
214		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
215	}
216
217	return 1;
218
219err_free_rq:
220	kfree(rt_rq);
221err:
222	return 0;
223}
224
225#else /* CONFIG_RT_GROUP_SCHED */
226
227#define rt_entity_is_task(rt_se) (1)
228
229static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
230{
231	return container_of(rt_se, struct task_struct, rt);
232}
233
234static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
235{
236	return container_of(rt_rq, struct rq, rt);
237}
238
239static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
240{
241	struct task_struct *p = rt_task_of(rt_se);
242
243	return task_rq(p);
244}
245
246static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
247{
248	struct rq *rq = rq_of_rt_se(rt_se);
249
250	return &rq->rt;
251}
252
253void free_rt_sched_group(struct task_group *tg) { }
254
255int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
256{
257	return 1;
258}
259#endif /* CONFIG_RT_GROUP_SCHED */
260
261#ifdef CONFIG_SMP
262
263static void pull_rt_task(struct rq *this_rq);
264
265static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
266{
267	/* Try to pull RT tasks here if we lower this rq's prio */
268	return rq->rt.highest_prio.curr > prev->prio;
269}
270
271static inline int rt_overloaded(struct rq *rq)
272{
273	return atomic_read(&rq->rd->rto_count);
274}
275
276static inline void rt_set_overload(struct rq *rq)
277{
278	if (!rq->online)
279		return;
280
281	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
282	/*
283	 * Make sure the mask is visible before we set
284	 * the overload count. That is checked to determine
285	 * if we should look at the mask. It would be a shame
286	 * if we looked at the mask, but the mask was not
287	 * updated yet.
288	 *
289	 * Matched by the barrier in pull_rt_task().
290	 */
291	smp_wmb();
292	atomic_inc(&rq->rd->rto_count);
293}
294
295static inline void rt_clear_overload(struct rq *rq)
296{
297	if (!rq->online)
298		return;
299
300	/* the order here really doesn't matter */
301	atomic_dec(&rq->rd->rto_count);
302	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
303}
304
305static void update_rt_migration(struct rt_rq *rt_rq)
306{
307	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
308		if (!rt_rq->overloaded) {
309			rt_set_overload(rq_of_rt_rq(rt_rq));
310			rt_rq->overloaded = 1;
311		}
312	} else if (rt_rq->overloaded) {
313		rt_clear_overload(rq_of_rt_rq(rt_rq));
314		rt_rq->overloaded = 0;
315	}
316}
317
318static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
319{
320	struct task_struct *p;
321
322	if (!rt_entity_is_task(rt_se))
323		return;
324
325	p = rt_task_of(rt_se);
326	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
327
328	rt_rq->rt_nr_total++;
329	if (p->nr_cpus_allowed > 1)
330		rt_rq->rt_nr_migratory++;
331
332	update_rt_migration(rt_rq);
333}
334
335static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
336{
337	struct task_struct *p;
338
339	if (!rt_entity_is_task(rt_se))
340		return;
341
342	p = rt_task_of(rt_se);
343	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
344
345	rt_rq->rt_nr_total--;
346	if (p->nr_cpus_allowed > 1)
347		rt_rq->rt_nr_migratory--;
348
349	update_rt_migration(rt_rq);
350}
351
352static inline int has_pushable_tasks(struct rq *rq)
353{
354	return !plist_head_empty(&rq->rt.pushable_tasks);
355}
356
357static DEFINE_PER_CPU(struct callback_head, rt_push_head);
358static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
359
360static void push_rt_tasks(struct rq *);
361static void pull_rt_task(struct rq *);
362
363static inline void queue_push_tasks(struct rq *rq)
364{
365	if (!has_pushable_tasks(rq))
366		return;
367
368	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
369}
370
371static inline void queue_pull_task(struct rq *rq)
372{
373	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
374}
375
376static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
377{
378	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
379	plist_node_init(&p->pushable_tasks, p->prio);
380	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
381
382	/* Update the highest prio pushable task */
383	if (p->prio < rq->rt.highest_prio.next)
384		rq->rt.highest_prio.next = p->prio;
385}
386
387static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
388{
389	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
390
391	/* Update the new highest prio pushable task */
392	if (has_pushable_tasks(rq)) {
393		p = plist_first_entry(&rq->rt.pushable_tasks,
394				      struct task_struct, pushable_tasks);
395		rq->rt.highest_prio.next = p->prio;
396	} else
397		rq->rt.highest_prio.next = MAX_RT_PRIO;
398}
399
400#else
401
402static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
403{
404}
405
406static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
407{
408}
409
410static inline
411void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
412{
413}
414
415static inline
416void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
417{
418}
419
420static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
421{
422	return false;
423}
424
425static inline void pull_rt_task(struct rq *this_rq)
426{
427}
428
429static inline void queue_push_tasks(struct rq *rq)
430{
431}
432#endif /* CONFIG_SMP */
433
434static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
435static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
436
437static inline int on_rt_rq(struct sched_rt_entity *rt_se)
438{
439	return !list_empty(&rt_se->run_list);
440}
441
442#ifdef CONFIG_RT_GROUP_SCHED
443
444static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
445{
446	if (!rt_rq->tg)
447		return RUNTIME_INF;
448
449	return rt_rq->rt_runtime;
450}
451
452static inline u64 sched_rt_period(struct rt_rq *rt_rq)
453{
454	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
455}
456
457typedef struct task_group *rt_rq_iter_t;
458
459static inline struct task_group *next_task_group(struct task_group *tg)
460{
461	do {
462		tg = list_entry_rcu(tg->list.next,
463			typeof(struct task_group), list);
464	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
465
466	if (&tg->list == &task_groups)
467		tg = NULL;
468
469	return tg;
470}
471
472#define for_each_rt_rq(rt_rq, iter, rq)					\
473	for (iter = container_of(&task_groups, typeof(*iter), list);	\
474		(iter = next_task_group(iter)) &&			\
475		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
476
477#define for_each_sched_rt_entity(rt_se) \
478	for (; rt_se; rt_se = rt_se->parent)
479
480static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
481{
482	return rt_se->my_q;
483}
484
485static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
486static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
487
488static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
489{
490	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
491	struct rq *rq = rq_of_rt_rq(rt_rq);
492	struct sched_rt_entity *rt_se;
493
494	int cpu = cpu_of(rq);
495
496	rt_se = rt_rq->tg->rt_se[cpu];
497
498	if (rt_rq->rt_nr_running) {
499		if (!rt_se)
500			enqueue_top_rt_rq(rt_rq);
501		else if (!on_rt_rq(rt_se))
502			enqueue_rt_entity(rt_se, false);
503
504		if (rt_rq->highest_prio.curr < curr->prio)
505			resched_curr(rq);
506	}
507}
508
509static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
510{
511	struct sched_rt_entity *rt_se;
512	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
513
514	rt_se = rt_rq->tg->rt_se[cpu];
515
516	if (!rt_se)
517		dequeue_top_rt_rq(rt_rq);
518	else if (on_rt_rq(rt_se))
519		dequeue_rt_entity(rt_se);
520}
521
522static inline int rt_rq_throttled(struct rt_rq *rt_rq)
523{
524	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
525}
526
527static int rt_se_boosted(struct sched_rt_entity *rt_se)
528{
529	struct rt_rq *rt_rq = group_rt_rq(rt_se);
530	struct task_struct *p;
531
532	if (rt_rq)
533		return !!rt_rq->rt_nr_boosted;
534
535	p = rt_task_of(rt_se);
536	return p->prio != p->normal_prio;
537}
538
539#ifdef CONFIG_SMP
540static inline const struct cpumask *sched_rt_period_mask(void)
541{
542	return this_rq()->rd->span;
543}
544#else
545static inline const struct cpumask *sched_rt_period_mask(void)
546{
547	return cpu_online_mask;
548}
549#endif
550
551static inline
552struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
553{
554	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
555}
556
557static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
558{
559	return &rt_rq->tg->rt_bandwidth;
560}
561
562#else /* !CONFIG_RT_GROUP_SCHED */
563
564static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
565{
566	return rt_rq->rt_runtime;
567}
568
569static inline u64 sched_rt_period(struct rt_rq *rt_rq)
570{
571	return ktime_to_ns(def_rt_bandwidth.rt_period);
572}
573
574typedef struct rt_rq *rt_rq_iter_t;
575
576#define for_each_rt_rq(rt_rq, iter, rq) \
577	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
578
579#define for_each_sched_rt_entity(rt_se) \
580	for (; rt_se; rt_se = NULL)
581
582static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
583{
584	return NULL;
585}
586
587static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
588{
589	struct rq *rq = rq_of_rt_rq(rt_rq);
590
591	if (!rt_rq->rt_nr_running)
592		return;
593
594	enqueue_top_rt_rq(rt_rq);
595	resched_curr(rq);
596}
597
598static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
599{
600	dequeue_top_rt_rq(rt_rq);
601}
602
603static inline int rt_rq_throttled(struct rt_rq *rt_rq)
604{
605	return rt_rq->rt_throttled;
606}
607
608static inline const struct cpumask *sched_rt_period_mask(void)
609{
610	return cpu_online_mask;
611}
612
613static inline
614struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
615{
616	return &cpu_rq(cpu)->rt;
617}
618
619static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
620{
621	return &def_rt_bandwidth;
622}
623
624#endif /* CONFIG_RT_GROUP_SCHED */
625
626bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
627{
628	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
629
630	return (hrtimer_active(&rt_b->rt_period_timer) ||
631		rt_rq->rt_time < rt_b->rt_runtime);
632}
633
634#ifdef CONFIG_SMP
635/*
636 * We ran out of runtime, see if we can borrow some from our neighbours.
637 */
638static void do_balance_runtime(struct rt_rq *rt_rq)
639{
640	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
641	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
642	int i, weight;
643	u64 rt_period;
644
645	weight = cpumask_weight(rd->span);
646
647	raw_spin_lock(&rt_b->rt_runtime_lock);
648	rt_period = ktime_to_ns(rt_b->rt_period);
649	for_each_cpu(i, rd->span) {
650		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
651		s64 diff;
652
653		if (iter == rt_rq)
654			continue;
655
656		raw_spin_lock(&iter->rt_runtime_lock);
657		/*
658		 * Either all rqs have inf runtime and there's nothing to steal
659		 * or __disable_runtime() below sets a specific rq to inf to
660		 * indicate its been disabled and disalow stealing.
661		 */
662		if (iter->rt_runtime == RUNTIME_INF)
663			goto next;
664
665		/*
666		 * From runqueues with spare time, take 1/n part of their
667		 * spare time, but no more than our period.
668		 */
669		diff = iter->rt_runtime - iter->rt_time;
670		if (diff > 0) {
671			diff = div_u64((u64)diff, weight);
672			if (rt_rq->rt_runtime + diff > rt_period)
673				diff = rt_period - rt_rq->rt_runtime;
674			iter->rt_runtime -= diff;
675			rt_rq->rt_runtime += diff;
676			if (rt_rq->rt_runtime == rt_period) {
677				raw_spin_unlock(&iter->rt_runtime_lock);
678				break;
679			}
680		}
681next:
682		raw_spin_unlock(&iter->rt_runtime_lock);
683	}
684	raw_spin_unlock(&rt_b->rt_runtime_lock);
685}
686
687/*
688 * Ensure this RQ takes back all the runtime it lend to its neighbours.
689 */
690static void __disable_runtime(struct rq *rq)
691{
692	struct root_domain *rd = rq->rd;
693	rt_rq_iter_t iter;
694	struct rt_rq *rt_rq;
695
696	if (unlikely(!scheduler_running))
697		return;
698
699	for_each_rt_rq(rt_rq, iter, rq) {
700		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
701		s64 want;
702		int i;
703
704		raw_spin_lock(&rt_b->rt_runtime_lock);
705		raw_spin_lock(&rt_rq->rt_runtime_lock);
706		/*
707		 * Either we're all inf and nobody needs to borrow, or we're
708		 * already disabled and thus have nothing to do, or we have
709		 * exactly the right amount of runtime to take out.
710		 */
711		if (rt_rq->rt_runtime == RUNTIME_INF ||
712				rt_rq->rt_runtime == rt_b->rt_runtime)
713			goto balanced;
714		raw_spin_unlock(&rt_rq->rt_runtime_lock);
715
716		/*
717		 * Calculate the difference between what we started out with
718		 * and what we current have, that's the amount of runtime
719		 * we lend and now have to reclaim.
720		 */
721		want = rt_b->rt_runtime - rt_rq->rt_runtime;
722
723		/*
724		 * Greedy reclaim, take back as much as we can.
725		 */
726		for_each_cpu(i, rd->span) {
727			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
728			s64 diff;
729
730			/*
731			 * Can't reclaim from ourselves or disabled runqueues.
732			 */
733			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
734				continue;
735
736			raw_spin_lock(&iter->rt_runtime_lock);
737			if (want > 0) {
738				diff = min_t(s64, iter->rt_runtime, want);
739				iter->rt_runtime -= diff;
740				want -= diff;
741			} else {
742				iter->rt_runtime -= want;
743				want -= want;
744			}
745			raw_spin_unlock(&iter->rt_runtime_lock);
746
747			if (!want)
748				break;
749		}
750
751		raw_spin_lock(&rt_rq->rt_runtime_lock);
752		/*
753		 * We cannot be left wanting - that would mean some runtime
754		 * leaked out of the system.
755		 */
756		BUG_ON(want);
757balanced:
758		/*
759		 * Disable all the borrow logic by pretending we have inf
760		 * runtime - in which case borrowing doesn't make sense.
761		 */
762		rt_rq->rt_runtime = RUNTIME_INF;
763		rt_rq->rt_throttled = 0;
764		raw_spin_unlock(&rt_rq->rt_runtime_lock);
765		raw_spin_unlock(&rt_b->rt_runtime_lock);
766
767		/* Make rt_rq available for pick_next_task() */
768		sched_rt_rq_enqueue(rt_rq);
769	}
770}
771
772static void __enable_runtime(struct rq *rq)
773{
774	rt_rq_iter_t iter;
775	struct rt_rq *rt_rq;
776
777	if (unlikely(!scheduler_running))
778		return;
779
780	/*
781	 * Reset each runqueue's bandwidth settings
782	 */
783	for_each_rt_rq(rt_rq, iter, rq) {
784		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
785
786		raw_spin_lock(&rt_b->rt_runtime_lock);
787		raw_spin_lock(&rt_rq->rt_runtime_lock);
788		rt_rq->rt_runtime = rt_b->rt_runtime;
789		rt_rq->rt_time = 0;
790		rt_rq->rt_throttled = 0;
791		raw_spin_unlock(&rt_rq->rt_runtime_lock);
792		raw_spin_unlock(&rt_b->rt_runtime_lock);
793	}
794}
795
796static void balance_runtime(struct rt_rq *rt_rq)
797{
798	if (!sched_feat(RT_RUNTIME_SHARE))
799		return;
800
801	if (rt_rq->rt_time > rt_rq->rt_runtime) {
802		raw_spin_unlock(&rt_rq->rt_runtime_lock);
803		do_balance_runtime(rt_rq);
804		raw_spin_lock(&rt_rq->rt_runtime_lock);
805	}
806}
807#else /* !CONFIG_SMP */
808static inline void balance_runtime(struct rt_rq *rt_rq) {}
809#endif /* CONFIG_SMP */
810
811static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
812{
813	int i, idle = 1, throttled = 0;
814	const struct cpumask *span;
815
816	span = sched_rt_period_mask();
817#ifdef CONFIG_RT_GROUP_SCHED
818	/*
819	 * FIXME: isolated CPUs should really leave the root task group,
820	 * whether they are isolcpus or were isolated via cpusets, lest
821	 * the timer run on a CPU which does not service all runqueues,
822	 * potentially leaving other CPUs indefinitely throttled.  If
823	 * isolation is really required, the user will turn the throttle
824	 * off to kill the perturbations it causes anyway.  Meanwhile,
825	 * this maintains functionality for boot and/or troubleshooting.
826	 */
827	if (rt_b == &root_task_group.rt_bandwidth)
828		span = cpu_online_mask;
829#endif
830	for_each_cpu(i, span) {
831		int enqueue = 0;
832		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
833		struct rq *rq = rq_of_rt_rq(rt_rq);
834
835		raw_spin_lock(&rq->lock);
836		if (rt_rq->rt_time) {
837			u64 runtime;
838
839			raw_spin_lock(&rt_rq->rt_runtime_lock);
840			if (rt_rq->rt_throttled)
841				balance_runtime(rt_rq);
842			runtime = rt_rq->rt_runtime;
843			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
844			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
845				rt_rq->rt_throttled = 0;
846				enqueue = 1;
847
848				/*
849				 * When we're idle and a woken (rt) task is
850				 * throttled check_preempt_curr() will set
851				 * skip_update and the time between the wakeup
852				 * and this unthrottle will get accounted as
853				 * 'runtime'.
854				 */
855				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
856					rq_clock_skip_update(rq, false);
857			}
858			if (rt_rq->rt_time || rt_rq->rt_nr_running)
859				idle = 0;
860			raw_spin_unlock(&rt_rq->rt_runtime_lock);
861		} else if (rt_rq->rt_nr_running) {
862			idle = 0;
863			if (!rt_rq_throttled(rt_rq))
864				enqueue = 1;
865		}
866		if (rt_rq->rt_throttled)
867			throttled = 1;
868
869		if (enqueue)
870			sched_rt_rq_enqueue(rt_rq);
871		raw_spin_unlock(&rq->lock);
872	}
873
874	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
875		return 1;
876
877	return idle;
878}
879
880static inline int rt_se_prio(struct sched_rt_entity *rt_se)
881{
882#ifdef CONFIG_RT_GROUP_SCHED
883	struct rt_rq *rt_rq = group_rt_rq(rt_se);
884
885	if (rt_rq)
886		return rt_rq->highest_prio.curr;
887#endif
888
889	return rt_task_of(rt_se)->prio;
890}
891
892static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
893{
894	u64 runtime = sched_rt_runtime(rt_rq);
895
896	if (rt_rq->rt_throttled)
897		return rt_rq_throttled(rt_rq);
898
899	if (runtime >= sched_rt_period(rt_rq))
900		return 0;
901
902	balance_runtime(rt_rq);
903	runtime = sched_rt_runtime(rt_rq);
904	if (runtime == RUNTIME_INF)
905		return 0;
906
907	if (rt_rq->rt_time > runtime) {
908		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
909
910		/*
911		 * Don't actually throttle groups that have no runtime assigned
912		 * but accrue some time due to boosting.
913		 */
914		if (likely(rt_b->rt_runtime)) {
915			rt_rq->rt_throttled = 1;
916			printk_deferred_once("sched: RT throttling activated\n");
917		} else {
918			/*
919			 * In case we did anyway, make it go away,
920			 * replenishment is a joke, since it will replenish us
921			 * with exactly 0 ns.
922			 */
923			rt_rq->rt_time = 0;
924		}
925
926		if (rt_rq_throttled(rt_rq)) {
927			sched_rt_rq_dequeue(rt_rq);
928			return 1;
929		}
930	}
931
932	return 0;
933}
934
935/*
936 * Update the current task's runtime statistics. Skip current tasks that
937 * are not in our scheduling class.
938 */
939static void update_curr_rt(struct rq *rq)
940{
941	struct task_struct *curr = rq->curr;
942	struct sched_rt_entity *rt_se = &curr->rt;
943	u64 delta_exec;
944
945	if (curr->sched_class != &rt_sched_class)
946		return;
947
948	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
949	if (unlikely((s64)delta_exec <= 0))
950		return;
951
952	schedstat_set(curr->se.statistics.exec_max,
953		      max(curr->se.statistics.exec_max, delta_exec));
954
955	curr->se.sum_exec_runtime += delta_exec;
956	account_group_exec_runtime(curr, delta_exec);
957
958	curr->se.exec_start = rq_clock_task(rq);
959	cpuacct_charge(curr, delta_exec);
960
961	sched_rt_avg_update(rq, delta_exec);
962
963	if (!rt_bandwidth_enabled())
964		return;
965
966	for_each_sched_rt_entity(rt_se) {
967		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
968
969		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
970			raw_spin_lock(&rt_rq->rt_runtime_lock);
971			rt_rq->rt_time += delta_exec;
972			if (sched_rt_runtime_exceeded(rt_rq))
973				resched_curr(rq);
974			raw_spin_unlock(&rt_rq->rt_runtime_lock);
975		}
976	}
977}
978
979static void
980dequeue_top_rt_rq(struct rt_rq *rt_rq)
981{
982	struct rq *rq = rq_of_rt_rq(rt_rq);
983
984	BUG_ON(&rq->rt != rt_rq);
985
986	if (!rt_rq->rt_queued)
987		return;
988
989	BUG_ON(!rq->nr_running);
990
991	sub_nr_running(rq, rt_rq->rt_nr_running);
992	rt_rq->rt_queued = 0;
993}
994
995static void
996enqueue_top_rt_rq(struct rt_rq *rt_rq)
997{
998	struct rq *rq = rq_of_rt_rq(rt_rq);
999
1000	BUG_ON(&rq->rt != rt_rq);
1001
1002	if (rt_rq->rt_queued)
1003		return;
1004	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1005		return;
1006
1007	add_nr_running(rq, rt_rq->rt_nr_running);
1008	rt_rq->rt_queued = 1;
1009}
1010
1011#if defined CONFIG_SMP
1012
1013static void
1014inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1015{
1016	struct rq *rq = rq_of_rt_rq(rt_rq);
1017
1018#ifdef CONFIG_RT_GROUP_SCHED
1019	/*
1020	 * Change rq's cpupri only if rt_rq is the top queue.
1021	 */
1022	if (&rq->rt != rt_rq)
1023		return;
1024#endif
1025	if (rq->online && prio < prev_prio)
1026		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1027}
1028
1029static void
1030dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1031{
1032	struct rq *rq = rq_of_rt_rq(rt_rq);
1033
1034#ifdef CONFIG_RT_GROUP_SCHED
1035	/*
1036	 * Change rq's cpupri only if rt_rq is the top queue.
1037	 */
1038	if (&rq->rt != rt_rq)
1039		return;
1040#endif
1041	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1042		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1043}
1044
1045#else /* CONFIG_SMP */
1046
1047static inline
1048void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1049static inline
1050void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1051
1052#endif /* CONFIG_SMP */
1053
1054#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1055static void
1056inc_rt_prio(struct rt_rq *rt_rq, int prio)
1057{
1058	int prev_prio = rt_rq->highest_prio.curr;
1059
1060	if (prio < prev_prio)
1061		rt_rq->highest_prio.curr = prio;
1062
1063	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1064}
1065
1066static void
1067dec_rt_prio(struct rt_rq *rt_rq, int prio)
1068{
1069	int prev_prio = rt_rq->highest_prio.curr;
1070
1071	if (rt_rq->rt_nr_running) {
1072
1073		WARN_ON(prio < prev_prio);
1074
1075		/*
1076		 * This may have been our highest task, and therefore
1077		 * we may have some recomputation to do
1078		 */
1079		if (prio == prev_prio) {
1080			struct rt_prio_array *array = &rt_rq->active;
1081
1082			rt_rq->highest_prio.curr =
1083				sched_find_first_bit(array->bitmap);
1084		}
1085
1086	} else
1087		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1088
1089	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1090}
1091
1092#else
1093
1094static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1095static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1096
1097#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1098
1099#ifdef CONFIG_RT_GROUP_SCHED
1100
1101static void
1102inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1103{
1104	if (rt_se_boosted(rt_se))
1105		rt_rq->rt_nr_boosted++;
1106
1107	if (rt_rq->tg)
1108		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1109}
1110
1111static void
1112dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1113{
1114	if (rt_se_boosted(rt_se))
1115		rt_rq->rt_nr_boosted--;
1116
1117	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1118}
1119
1120#else /* CONFIG_RT_GROUP_SCHED */
1121
1122static void
1123inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1124{
1125	start_rt_bandwidth(&def_rt_bandwidth);
1126}
1127
1128static inline
1129void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1130
1131#endif /* CONFIG_RT_GROUP_SCHED */
1132
1133static inline
1134unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1135{
1136	struct rt_rq *group_rq = group_rt_rq(rt_se);
1137
1138	if (group_rq)
1139		return group_rq->rt_nr_running;
1140	else
1141		return 1;
1142}
1143
1144static inline
1145void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1146{
1147	int prio = rt_se_prio(rt_se);
1148
1149	WARN_ON(!rt_prio(prio));
1150	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1151
1152	inc_rt_prio(rt_rq, prio);
1153	inc_rt_migration(rt_se, rt_rq);
1154	inc_rt_group(rt_se, rt_rq);
1155}
1156
1157static inline
1158void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1159{
1160	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1161	WARN_ON(!rt_rq->rt_nr_running);
1162	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1163
1164	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1165	dec_rt_migration(rt_se, rt_rq);
1166	dec_rt_group(rt_se, rt_rq);
1167}
1168
1169static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1170{
1171	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1172	struct rt_prio_array *array = &rt_rq->active;
1173	struct rt_rq *group_rq = group_rt_rq(rt_se);
1174	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1175
1176	/*
1177	 * Don't enqueue the group if its throttled, or when empty.
1178	 * The latter is a consequence of the former when a child group
1179	 * get throttled and the current group doesn't have any other
1180	 * active members.
1181	 */
1182	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1183		return;
1184
1185	if (head)
1186		list_add(&rt_se->run_list, queue);
1187	else
1188		list_add_tail(&rt_se->run_list, queue);
1189	__set_bit(rt_se_prio(rt_se), array->bitmap);
1190
1191	inc_rt_tasks(rt_se, rt_rq);
1192}
1193
1194static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1195{
1196	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1197	struct rt_prio_array *array = &rt_rq->active;
1198
1199	list_del_init(&rt_se->run_list);
1200	if (list_empty(array->queue + rt_se_prio(rt_se)))
1201		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1202
1203	dec_rt_tasks(rt_se, rt_rq);
1204}
1205
1206/*
1207 * Because the prio of an upper entry depends on the lower
1208 * entries, we must remove entries top - down.
1209 */
1210static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1211{
1212	struct sched_rt_entity *back = NULL;
1213
1214	for_each_sched_rt_entity(rt_se) {
1215		rt_se->back = back;
1216		back = rt_se;
1217	}
1218
1219	dequeue_top_rt_rq(rt_rq_of_se(back));
1220
1221	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1222		if (on_rt_rq(rt_se))
1223			__dequeue_rt_entity(rt_se);
1224	}
1225}
1226
1227static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1228{
1229	struct rq *rq = rq_of_rt_se(rt_se);
1230
1231	dequeue_rt_stack(rt_se);
1232	for_each_sched_rt_entity(rt_se)
1233		__enqueue_rt_entity(rt_se, head);
1234	enqueue_top_rt_rq(&rq->rt);
1235}
1236
1237static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1238{
1239	struct rq *rq = rq_of_rt_se(rt_se);
1240
1241	dequeue_rt_stack(rt_se);
1242
1243	for_each_sched_rt_entity(rt_se) {
1244		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1245
1246		if (rt_rq && rt_rq->rt_nr_running)
1247			__enqueue_rt_entity(rt_se, false);
1248	}
1249	enqueue_top_rt_rq(&rq->rt);
1250}
1251
1252/*
1253 * Adding/removing a task to/from a priority array:
1254 */
1255static void
1256enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1257{
1258	struct sched_rt_entity *rt_se = &p->rt;
1259
1260	if (flags & ENQUEUE_WAKEUP)
1261		rt_se->timeout = 0;
1262
1263	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1264
1265	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1266		enqueue_pushable_task(rq, p);
1267}
1268
1269static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1270{
1271	struct sched_rt_entity *rt_se = &p->rt;
1272
1273	update_curr_rt(rq);
1274	dequeue_rt_entity(rt_se);
1275
1276	dequeue_pushable_task(rq, p);
1277}
1278
1279/*
1280 * Put task to the head or the end of the run list without the overhead of
1281 * dequeue followed by enqueue.
1282 */
1283static void
1284requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1285{
1286	if (on_rt_rq(rt_se)) {
1287		struct rt_prio_array *array = &rt_rq->active;
1288		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1289
1290		if (head)
1291			list_move(&rt_se->run_list, queue);
1292		else
1293			list_move_tail(&rt_se->run_list, queue);
1294	}
1295}
1296
1297static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1298{
1299	struct sched_rt_entity *rt_se = &p->rt;
1300	struct rt_rq *rt_rq;
1301
1302	for_each_sched_rt_entity(rt_se) {
1303		rt_rq = rt_rq_of_se(rt_se);
1304		requeue_rt_entity(rt_rq, rt_se, head);
1305	}
1306}
1307
1308static void yield_task_rt(struct rq *rq)
1309{
1310	requeue_task_rt(rq, rq->curr, 0);
1311}
1312
1313#ifdef CONFIG_SMP
1314static int find_lowest_rq(struct task_struct *task);
1315
1316static int
1317select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1318{
1319	struct task_struct *curr;
1320	struct rq *rq;
1321
1322	/* For anything but wake ups, just return the task_cpu */
1323	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1324		goto out;
1325
1326	rq = cpu_rq(cpu);
1327
1328	rcu_read_lock();
1329	curr = READ_ONCE(rq->curr); /* unlocked access */
1330
1331	/*
1332	 * If the current task on @p's runqueue is an RT task, then
1333	 * try to see if we can wake this RT task up on another
1334	 * runqueue. Otherwise simply start this RT task
1335	 * on its current runqueue.
1336	 *
1337	 * We want to avoid overloading runqueues. If the woken
1338	 * task is a higher priority, then it will stay on this CPU
1339	 * and the lower prio task should be moved to another CPU.
1340	 * Even though this will probably make the lower prio task
1341	 * lose its cache, we do not want to bounce a higher task
1342	 * around just because it gave up its CPU, perhaps for a
1343	 * lock?
1344	 *
1345	 * For equal prio tasks, we just let the scheduler sort it out.
1346	 *
1347	 * Otherwise, just let it ride on the affined RQ and the
1348	 * post-schedule router will push the preempted task away
1349	 *
1350	 * This test is optimistic, if we get it wrong the load-balancer
1351	 * will have to sort it out.
1352	 */
1353	if (curr && unlikely(rt_task(curr)) &&
1354	    (curr->nr_cpus_allowed < 2 ||
1355	     curr->prio <= p->prio)) {
1356		int target = find_lowest_rq(p);
1357
1358		/*
1359		 * Don't bother moving it if the destination CPU is
1360		 * not running a lower priority task.
1361		 */
1362		if (target != -1 &&
1363		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1364			cpu = target;
1365	}
1366	rcu_read_unlock();
1367
1368out:
1369	return cpu;
1370}
1371
1372static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1373{
1374	/*
1375	 * Current can't be migrated, useless to reschedule,
1376	 * let's hope p can move out.
1377	 */
1378	if (rq->curr->nr_cpus_allowed == 1 ||
1379	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1380		return;
1381
1382	/*
1383	 * p is migratable, so let's not schedule it and
1384	 * see if it is pushed or pulled somewhere else.
1385	 */
1386	if (p->nr_cpus_allowed != 1
1387	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1388		return;
1389
1390	/*
1391	 * There appears to be other cpus that can accept
1392	 * current and none to run 'p', so lets reschedule
1393	 * to try and push current away:
1394	 */
1395	requeue_task_rt(rq, p, 1);
1396	resched_curr(rq);
1397}
1398
1399#endif /* CONFIG_SMP */
1400
1401/*
1402 * Preempt the current task with a newly woken task if needed:
1403 */
1404static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1405{
1406	if (p->prio < rq->curr->prio) {
1407		resched_curr(rq);
1408		return;
1409	}
1410
1411#ifdef CONFIG_SMP
1412	/*
1413	 * If:
1414	 *
1415	 * - the newly woken task is of equal priority to the current task
1416	 * - the newly woken task is non-migratable while current is migratable
1417	 * - current will be preempted on the next reschedule
1418	 *
1419	 * we should check to see if current can readily move to a different
1420	 * cpu.  If so, we will reschedule to allow the push logic to try
1421	 * to move current somewhere else, making room for our non-migratable
1422	 * task.
1423	 */
1424	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1425		check_preempt_equal_prio(rq, p);
1426#endif
1427}
1428
1429static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1430						   struct rt_rq *rt_rq)
1431{
1432	struct rt_prio_array *array = &rt_rq->active;
1433	struct sched_rt_entity *next = NULL;
1434	struct list_head *queue;
1435	int idx;
1436
1437	idx = sched_find_first_bit(array->bitmap);
1438	BUG_ON(idx >= MAX_RT_PRIO);
1439
1440	queue = array->queue + idx;
1441	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1442
1443	return next;
1444}
1445
1446static struct task_struct *_pick_next_task_rt(struct rq *rq)
1447{
1448	struct sched_rt_entity *rt_se;
1449	struct task_struct *p;
1450	struct rt_rq *rt_rq  = &rq->rt;
1451
1452	do {
1453		rt_se = pick_next_rt_entity(rq, rt_rq);
1454		BUG_ON(!rt_se);
1455		rt_rq = group_rt_rq(rt_se);
1456	} while (rt_rq);
1457
1458	p = rt_task_of(rt_se);
1459	p->se.exec_start = rq_clock_task(rq);
1460
1461	return p;
1462}
1463
1464static struct task_struct *
1465pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1466{
1467	struct task_struct *p;
1468	struct rt_rq *rt_rq = &rq->rt;
1469
1470	if (need_pull_rt_task(rq, prev)) {
1471		/*
1472		 * This is OK, because current is on_cpu, which avoids it being
1473		 * picked for load-balance and preemption/IRQs are still
1474		 * disabled avoiding further scheduler activity on it and we're
1475		 * being very careful to re-start the picking loop.
1476		 */
1477		lockdep_unpin_lock(&rq->lock);
1478		pull_rt_task(rq);
1479		lockdep_pin_lock(&rq->lock);
1480		/*
1481		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1482		 * means a dl or stop task can slip in, in which case we need
1483		 * to re-start task selection.
1484		 */
1485		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1486			     rq->dl.dl_nr_running))
1487			return RETRY_TASK;
1488	}
1489
1490	/*
1491	 * We may dequeue prev's rt_rq in put_prev_task().
1492	 * So, we update time before rt_nr_running check.
1493	 */
1494	if (prev->sched_class == &rt_sched_class)
1495		update_curr_rt(rq);
1496
1497	if (!rt_rq->rt_queued)
1498		return NULL;
1499
1500	put_prev_task(rq, prev);
1501
1502	p = _pick_next_task_rt(rq);
1503
1504	/* The running task is never eligible for pushing */
1505	dequeue_pushable_task(rq, p);
1506
1507	queue_push_tasks(rq);
1508
1509	return p;
1510}
1511
1512static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1513{
1514	update_curr_rt(rq);
1515
1516	/*
1517	 * The previous task needs to be made eligible for pushing
1518	 * if it is still active
1519	 */
1520	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1521		enqueue_pushable_task(rq, p);
1522}
1523
1524#ifdef CONFIG_SMP
1525
1526/* Only try algorithms three times */
1527#define RT_MAX_TRIES 3
1528
1529static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1530{
1531	if (!task_running(rq, p) &&
1532	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1533		return 1;
1534	return 0;
1535}
1536
1537/*
1538 * Return the highest pushable rq's task, which is suitable to be executed
1539 * on the cpu, NULL otherwise
1540 */
1541static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1542{
1543	struct plist_head *head = &rq->rt.pushable_tasks;
1544	struct task_struct *p;
1545
1546	if (!has_pushable_tasks(rq))
1547		return NULL;
1548
1549	plist_for_each_entry(p, head, pushable_tasks) {
1550		if (pick_rt_task(rq, p, cpu))
1551			return p;
1552	}
1553
1554	return NULL;
1555}
1556
1557static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1558
1559static int find_lowest_rq(struct task_struct *task)
1560{
1561	struct sched_domain *sd;
1562	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1563	int this_cpu = smp_processor_id();
1564	int cpu      = task_cpu(task);
1565
1566	/* Make sure the mask is initialized first */
1567	if (unlikely(!lowest_mask))
1568		return -1;
1569
1570	if (task->nr_cpus_allowed == 1)
1571		return -1; /* No other targets possible */
1572
1573	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1574		return -1; /* No targets found */
1575
1576	/*
1577	 * At this point we have built a mask of cpus representing the
1578	 * lowest priority tasks in the system.  Now we want to elect
1579	 * the best one based on our affinity and topology.
1580	 *
1581	 * We prioritize the last cpu that the task executed on since
1582	 * it is most likely cache-hot in that location.
1583	 */
1584	if (cpumask_test_cpu(cpu, lowest_mask))
1585		return cpu;
1586
1587	/*
1588	 * Otherwise, we consult the sched_domains span maps to figure
1589	 * out which cpu is logically closest to our hot cache data.
1590	 */
1591	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1592		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1593
1594	rcu_read_lock();
1595	for_each_domain(cpu, sd) {
1596		if (sd->flags & SD_WAKE_AFFINE) {
1597			int best_cpu;
1598
1599			/*
1600			 * "this_cpu" is cheaper to preempt than a
1601			 * remote processor.
1602			 */
1603			if (this_cpu != -1 &&
1604			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1605				rcu_read_unlock();
1606				return this_cpu;
1607			}
1608
1609			best_cpu = cpumask_first_and(lowest_mask,
1610						     sched_domain_span(sd));
1611			if (best_cpu < nr_cpu_ids) {
1612				rcu_read_unlock();
1613				return best_cpu;
1614			}
1615		}
1616	}
1617	rcu_read_unlock();
1618
1619	/*
1620	 * And finally, if there were no matches within the domains
1621	 * just give the caller *something* to work with from the compatible
1622	 * locations.
1623	 */
1624	if (this_cpu != -1)
1625		return this_cpu;
1626
1627	cpu = cpumask_any(lowest_mask);
1628	if (cpu < nr_cpu_ids)
1629		return cpu;
1630	return -1;
1631}
1632
1633/* Will lock the rq it finds */
1634static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1635{
1636	struct rq *lowest_rq = NULL;
1637	int tries;
1638	int cpu;
1639
1640	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1641		cpu = find_lowest_rq(task);
1642
1643		if ((cpu == -1) || (cpu == rq->cpu))
1644			break;
1645
1646		lowest_rq = cpu_rq(cpu);
1647
1648		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1649			/*
1650			 * Target rq has tasks of equal or higher priority,
1651			 * retrying does not release any lock and is unlikely
1652			 * to yield a different result.
1653			 */
1654			lowest_rq = NULL;
1655			break;
1656		}
1657
1658		/* if the prio of this runqueue changed, try again */
1659		if (double_lock_balance(rq, lowest_rq)) {
1660			/*
1661			 * We had to unlock the run queue. In
1662			 * the mean time, task could have
1663			 * migrated already or had its affinity changed.
1664			 * Also make sure that it wasn't scheduled on its rq.
1665			 */
1666			if (unlikely(task_rq(task) != rq ||
1667				     !cpumask_test_cpu(lowest_rq->cpu,
1668						       tsk_cpus_allowed(task)) ||
1669				     task_running(rq, task) ||
1670				     !task_on_rq_queued(task))) {
1671
1672				double_unlock_balance(rq, lowest_rq);
1673				lowest_rq = NULL;
1674				break;
1675			}
1676		}
1677
1678		/* If this rq is still suitable use it. */
1679		if (lowest_rq->rt.highest_prio.curr > task->prio)
1680			break;
1681
1682		/* try again */
1683		double_unlock_balance(rq, lowest_rq);
1684		lowest_rq = NULL;
1685	}
1686
1687	return lowest_rq;
1688}
1689
1690static struct task_struct *pick_next_pushable_task(struct rq *rq)
1691{
1692	struct task_struct *p;
1693
1694	if (!has_pushable_tasks(rq))
1695		return NULL;
1696
1697	p = plist_first_entry(&rq->rt.pushable_tasks,
1698			      struct task_struct, pushable_tasks);
1699
1700	BUG_ON(rq->cpu != task_cpu(p));
1701	BUG_ON(task_current(rq, p));
1702	BUG_ON(p->nr_cpus_allowed <= 1);
1703
1704	BUG_ON(!task_on_rq_queued(p));
1705	BUG_ON(!rt_task(p));
1706
1707	return p;
1708}
1709
1710/*
1711 * If the current CPU has more than one RT task, see if the non
1712 * running task can migrate over to a CPU that is running a task
1713 * of lesser priority.
1714 */
1715static int push_rt_task(struct rq *rq)
1716{
1717	struct task_struct *next_task;
1718	struct rq *lowest_rq;
1719	int ret = 0;
1720
1721	if (!rq->rt.overloaded)
1722		return 0;
1723
1724	next_task = pick_next_pushable_task(rq);
1725	if (!next_task)
1726		return 0;
1727
1728retry:
1729	if (unlikely(next_task == rq->curr)) {
1730		WARN_ON(1);
1731		return 0;
1732	}
1733
1734	/*
1735	 * It's possible that the next_task slipped in of
1736	 * higher priority than current. If that's the case
1737	 * just reschedule current.
1738	 */
1739	if (unlikely(next_task->prio < rq->curr->prio)) {
1740		resched_curr(rq);
1741		return 0;
1742	}
1743
1744	/* We might release rq lock */
1745	get_task_struct(next_task);
1746
1747	/* find_lock_lowest_rq locks the rq if found */
1748	lowest_rq = find_lock_lowest_rq(next_task, rq);
1749	if (!lowest_rq) {
1750		struct task_struct *task;
1751		/*
1752		 * find_lock_lowest_rq releases rq->lock
1753		 * so it is possible that next_task has migrated.
1754		 *
1755		 * We need to make sure that the task is still on the same
1756		 * run-queue and is also still the next task eligible for
1757		 * pushing.
1758		 */
1759		task = pick_next_pushable_task(rq);
1760		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1761			/*
1762			 * The task hasn't migrated, and is still the next
1763			 * eligible task, but we failed to find a run-queue
1764			 * to push it to.  Do not retry in this case, since
1765			 * other cpus will pull from us when ready.
1766			 */
1767			goto out;
1768		}
1769
1770		if (!task)
1771			/* No more tasks, just exit */
1772			goto out;
1773
1774		/*
1775		 * Something has shifted, try again.
1776		 */
1777		put_task_struct(next_task);
1778		next_task = task;
1779		goto retry;
1780	}
1781
1782	deactivate_task(rq, next_task, 0);
1783	set_task_cpu(next_task, lowest_rq->cpu);
1784	activate_task(lowest_rq, next_task, 0);
1785	ret = 1;
1786
1787	resched_curr(lowest_rq);
1788
1789	double_unlock_balance(rq, lowest_rq);
1790
1791out:
1792	put_task_struct(next_task);
1793
1794	return ret;
1795}
1796
1797static void push_rt_tasks(struct rq *rq)
1798{
1799	/* push_rt_task will return true if it moved an RT */
1800	while (push_rt_task(rq))
1801		;
1802}
1803
1804#ifdef HAVE_RT_PUSH_IPI
1805/*
1806 * The search for the next cpu always starts at rq->cpu and ends
1807 * when we reach rq->cpu again. It will never return rq->cpu.
1808 * This returns the next cpu to check, or nr_cpu_ids if the loop
1809 * is complete.
1810 *
1811 * rq->rt.push_cpu holds the last cpu returned by this function,
1812 * or if this is the first instance, it must hold rq->cpu.
1813 */
1814static int rto_next_cpu(struct rq *rq)
1815{
1816	int prev_cpu = rq->rt.push_cpu;
1817	int cpu;
1818
1819	cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1820
1821	/*
1822	 * If the previous cpu is less than the rq's CPU, then it already
1823	 * passed the end of the mask, and has started from the beginning.
1824	 * We end if the next CPU is greater or equal to rq's CPU.
1825	 */
1826	if (prev_cpu < rq->cpu) {
1827		if (cpu >= rq->cpu)
1828			return nr_cpu_ids;
1829
1830	} else if (cpu >= nr_cpu_ids) {
1831		/*
1832		 * We passed the end of the mask, start at the beginning.
1833		 * If the result is greater or equal to the rq's CPU, then
1834		 * the loop is finished.
1835		 */
1836		cpu = cpumask_first(rq->rd->rto_mask);
1837		if (cpu >= rq->cpu)
1838			return nr_cpu_ids;
1839	}
1840	rq->rt.push_cpu = cpu;
1841
1842	/* Return cpu to let the caller know if the loop is finished or not */
1843	return cpu;
1844}
1845
1846static int find_next_push_cpu(struct rq *rq)
1847{
1848	struct rq *next_rq;
1849	int cpu;
1850
1851	while (1) {
1852		cpu = rto_next_cpu(rq);
1853		if (cpu >= nr_cpu_ids)
1854			break;
1855		next_rq = cpu_rq(cpu);
1856
1857		/* Make sure the next rq can push to this rq */
1858		if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1859			break;
1860	}
1861
1862	return cpu;
1863}
1864
1865#define RT_PUSH_IPI_EXECUTING		1
1866#define RT_PUSH_IPI_RESTART		2
1867
1868static void tell_cpu_to_push(struct rq *rq)
1869{
1870	int cpu;
1871
1872	if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1873		raw_spin_lock(&rq->rt.push_lock);
1874		/* Make sure it's still executing */
1875		if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1876			/*
1877			 * Tell the IPI to restart the loop as things have
1878			 * changed since it started.
1879			 */
1880			rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1881			raw_spin_unlock(&rq->rt.push_lock);
1882			return;
1883		}
1884		raw_spin_unlock(&rq->rt.push_lock);
1885	}
1886
1887	/* When here, there's no IPI going around */
1888
1889	rq->rt.push_cpu = rq->cpu;
1890	cpu = find_next_push_cpu(rq);
1891	if (cpu >= nr_cpu_ids)
1892		return;
1893
1894	rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1895
1896	irq_work_queue_on(&rq->rt.push_work, cpu);
1897}
1898
1899/* Called from hardirq context */
1900static void try_to_push_tasks(void *arg)
1901{
1902	struct rt_rq *rt_rq = arg;
1903	struct rq *rq, *src_rq;
1904	int this_cpu;
1905	int cpu;
1906
1907	this_cpu = rt_rq->push_cpu;
1908
1909	/* Paranoid check */
1910	BUG_ON(this_cpu != smp_processor_id());
1911
1912	rq = cpu_rq(this_cpu);
1913	src_rq = rq_of_rt_rq(rt_rq);
1914
1915again:
1916	if (has_pushable_tasks(rq)) {
1917		raw_spin_lock(&rq->lock);
1918		push_rt_task(rq);
1919		raw_spin_unlock(&rq->lock);
1920	}
1921
1922	/* Pass the IPI to the next rt overloaded queue */
1923	raw_spin_lock(&rt_rq->push_lock);
1924	/*
1925	 * If the source queue changed since the IPI went out,
1926	 * we need to restart the search from that CPU again.
1927	 */
1928	if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1929		rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1930		rt_rq->push_cpu = src_rq->cpu;
1931	}
1932
1933	cpu = find_next_push_cpu(src_rq);
1934
1935	if (cpu >= nr_cpu_ids)
1936		rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
1937	raw_spin_unlock(&rt_rq->push_lock);
1938
1939	if (cpu >= nr_cpu_ids)
1940		return;
1941
1942	/*
1943	 * It is possible that a restart caused this CPU to be
1944	 * chosen again. Don't bother with an IPI, just see if we
1945	 * have more to push.
1946	 */
1947	if (unlikely(cpu == rq->cpu))
1948		goto again;
1949
1950	/* Try the next RT overloaded CPU */
1951	irq_work_queue_on(&rt_rq->push_work, cpu);
1952}
1953
1954static void push_irq_work_func(struct irq_work *work)
1955{
1956	struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
1957
1958	try_to_push_tasks(rt_rq);
1959}
1960#endif /* HAVE_RT_PUSH_IPI */
1961
1962static void pull_rt_task(struct rq *this_rq)
1963{
1964	int this_cpu = this_rq->cpu, cpu;
1965	bool resched = false;
1966	struct task_struct *p;
1967	struct rq *src_rq;
1968
1969	if (likely(!rt_overloaded(this_rq)))
1970		return;
1971
1972	/*
1973	 * Match the barrier from rt_set_overloaded; this guarantees that if we
1974	 * see overloaded we must also see the rto_mask bit.
1975	 */
1976	smp_rmb();
1977
1978#ifdef HAVE_RT_PUSH_IPI
1979	if (sched_feat(RT_PUSH_IPI)) {
1980		tell_cpu_to_push(this_rq);
1981		return;
1982	}
1983#endif
1984
1985	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1986		if (this_cpu == cpu)
1987			continue;
1988
1989		src_rq = cpu_rq(cpu);
1990
1991		/*
1992		 * Don't bother taking the src_rq->lock if the next highest
1993		 * task is known to be lower-priority than our current task.
1994		 * This may look racy, but if this value is about to go
1995		 * logically higher, the src_rq will push this task away.
1996		 * And if its going logically lower, we do not care
1997		 */
1998		if (src_rq->rt.highest_prio.next >=
1999		    this_rq->rt.highest_prio.curr)
2000			continue;
2001
2002		/*
2003		 * We can potentially drop this_rq's lock in
2004		 * double_lock_balance, and another CPU could
2005		 * alter this_rq
2006		 */
2007		double_lock_balance(this_rq, src_rq);
2008
2009		/*
2010		 * We can pull only a task, which is pushable
2011		 * on its rq, and no others.
2012		 */
2013		p = pick_highest_pushable_task(src_rq, this_cpu);
2014
2015		/*
2016		 * Do we have an RT task that preempts
2017		 * the to-be-scheduled task?
2018		 */
2019		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2020			WARN_ON(p == src_rq->curr);
2021			WARN_ON(!task_on_rq_queued(p));
2022
2023			/*
2024			 * There's a chance that p is higher in priority
2025			 * than what's currently running on its cpu.
2026			 * This is just that p is wakeing up and hasn't
2027			 * had a chance to schedule. We only pull
2028			 * p if it is lower in priority than the
2029			 * current task on the run queue
2030			 */
2031			if (p->prio < src_rq->curr->prio)
2032				goto skip;
2033
2034			resched = true;
2035
2036			deactivate_task(src_rq, p, 0);
2037			set_task_cpu(p, this_cpu);
2038			activate_task(this_rq, p, 0);
2039			/*
2040			 * We continue with the search, just in
2041			 * case there's an even higher prio task
2042			 * in another runqueue. (low likelihood
2043			 * but possible)
2044			 */
2045		}
2046skip:
2047		double_unlock_balance(this_rq, src_rq);
2048	}
2049
2050	if (resched)
2051		resched_curr(this_rq);
2052}
2053
2054/*
2055 * If we are not running and we are not going to reschedule soon, we should
2056 * try to push tasks away now
2057 */
2058static void task_woken_rt(struct rq *rq, struct task_struct *p)
2059{
2060	if (!task_running(rq, p) &&
2061	    !test_tsk_need_resched(rq->curr) &&
2062	    p->nr_cpus_allowed > 1 &&
2063	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2064	    (rq->curr->nr_cpus_allowed < 2 ||
2065	     rq->curr->prio <= p->prio))
2066		push_rt_tasks(rq);
2067}
2068
2069/* Assumes rq->lock is held */
2070static void rq_online_rt(struct rq *rq)
2071{
2072	if (rq->rt.overloaded)
2073		rt_set_overload(rq);
2074
2075	__enable_runtime(rq);
2076
2077	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2078}
2079
2080/* Assumes rq->lock is held */
2081static void rq_offline_rt(struct rq *rq)
2082{
2083	if (rq->rt.overloaded)
2084		rt_clear_overload(rq);
2085
2086	__disable_runtime(rq);
2087
2088	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2089}
2090
2091/*
2092 * When switch from the rt queue, we bring ourselves to a position
2093 * that we might want to pull RT tasks from other runqueues.
2094 */
2095static void switched_from_rt(struct rq *rq, struct task_struct *p)
2096{
2097	/*
2098	 * If there are other RT tasks then we will reschedule
2099	 * and the scheduling of the other RT tasks will handle
2100	 * the balancing. But if we are the last RT task
2101	 * we may need to handle the pulling of RT tasks
2102	 * now.
2103	 */
2104	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2105		return;
2106
2107	queue_pull_task(rq);
2108}
2109
2110void __init init_sched_rt_class(void)
2111{
2112	unsigned int i;
2113
2114	for_each_possible_cpu(i) {
2115		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2116					GFP_KERNEL, cpu_to_node(i));
2117	}
2118}
2119#endif /* CONFIG_SMP */
2120
2121/*
2122 * When switching a task to RT, we may overload the runqueue
2123 * with RT tasks. In this case we try to push them off to
2124 * other runqueues.
2125 */
2126static void switched_to_rt(struct rq *rq, struct task_struct *p)
2127{
2128	/*
2129	 * If we are already running, then there's nothing
2130	 * that needs to be done. But if we are not running
2131	 * we may need to preempt the current running task.
2132	 * If that current running task is also an RT task
2133	 * then see if we can move to another run queue.
2134	 */
2135	if (task_on_rq_queued(p) && rq->curr != p) {
2136#ifdef CONFIG_SMP
2137		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2138			queue_push_tasks(rq);
2139#else
2140		if (p->prio < rq->curr->prio)
2141			resched_curr(rq);
2142#endif /* CONFIG_SMP */
2143	}
2144}
2145
2146/*
2147 * Priority of the task has changed. This may cause
2148 * us to initiate a push or pull.
2149 */
2150static void
2151prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2152{
2153	if (!task_on_rq_queued(p))
2154		return;
2155
2156	if (rq->curr == p) {
2157#ifdef CONFIG_SMP
2158		/*
2159		 * If our priority decreases while running, we
2160		 * may need to pull tasks to this runqueue.
2161		 */
2162		if (oldprio < p->prio)
2163			queue_pull_task(rq);
2164
2165		/*
2166		 * If there's a higher priority task waiting to run
2167		 * then reschedule.
2168		 */
2169		if (p->prio > rq->rt.highest_prio.curr)
2170			resched_curr(rq);
2171#else
2172		/* For UP simply resched on drop of prio */
2173		if (oldprio < p->prio)
2174			resched_curr(rq);
2175#endif /* CONFIG_SMP */
2176	} else {
2177		/*
2178		 * This task is not running, but if it is
2179		 * greater than the current running task
2180		 * then reschedule.
2181		 */
2182		if (p->prio < rq->curr->prio)
2183			resched_curr(rq);
2184	}
2185}
2186
2187static void watchdog(struct rq *rq, struct task_struct *p)
2188{
2189	unsigned long soft, hard;
2190
2191	/* max may change after cur was read, this will be fixed next tick */
2192	soft = task_rlimit(p, RLIMIT_RTTIME);
2193	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2194
2195	if (soft != RLIM_INFINITY) {
2196		unsigned long next;
2197
2198		if (p->rt.watchdog_stamp != jiffies) {
2199			p->rt.timeout++;
2200			p->rt.watchdog_stamp = jiffies;
2201		}
2202
2203		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2204		if (p->rt.timeout > next)
2205			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2206	}
2207}
2208
2209static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2210{
2211	struct sched_rt_entity *rt_se = &p->rt;
2212
2213	update_curr_rt(rq);
2214
2215	watchdog(rq, p);
2216
2217	/*
2218	 * RR tasks need a special form of timeslice management.
2219	 * FIFO tasks have no timeslices.
2220	 */
2221	if (p->policy != SCHED_RR)
2222		return;
2223
2224	if (--p->rt.time_slice)
2225		return;
2226
2227	p->rt.time_slice = sched_rr_timeslice;
2228
2229	/*
2230	 * Requeue to the end of queue if we (and all of our ancestors) are not
2231	 * the only element on the queue
2232	 */
2233	for_each_sched_rt_entity(rt_se) {
2234		if (rt_se->run_list.prev != rt_se->run_list.next) {
2235			requeue_task_rt(rq, p, 0);
2236			resched_curr(rq);
2237			return;
2238		}
2239	}
2240}
2241
2242static void set_curr_task_rt(struct rq *rq)
2243{
2244	struct task_struct *p = rq->curr;
2245
2246	p->se.exec_start = rq_clock_task(rq);
2247
2248	/* The running task is never eligible for pushing */
2249	dequeue_pushable_task(rq, p);
2250}
2251
2252static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2253{
2254	/*
2255	 * Time slice is 0 for SCHED_FIFO tasks
2256	 */
2257	if (task->policy == SCHED_RR)
2258		return sched_rr_timeslice;
2259	else
2260		return 0;
2261}
2262
2263const struct sched_class rt_sched_class = {
2264	.next			= &fair_sched_class,
2265	.enqueue_task		= enqueue_task_rt,
2266	.dequeue_task		= dequeue_task_rt,
2267	.yield_task		= yield_task_rt,
2268
2269	.check_preempt_curr	= check_preempt_curr_rt,
2270
2271	.pick_next_task		= pick_next_task_rt,
2272	.put_prev_task		= put_prev_task_rt,
2273
2274#ifdef CONFIG_SMP
2275	.select_task_rq		= select_task_rq_rt,
2276
2277	.set_cpus_allowed       = set_cpus_allowed_common,
2278	.rq_online              = rq_online_rt,
2279	.rq_offline             = rq_offline_rt,
2280	.task_woken		= task_woken_rt,
2281	.switched_from		= switched_from_rt,
2282#endif
2283
2284	.set_curr_task          = set_curr_task_rt,
2285	.task_tick		= task_tick_rt,
2286
2287	.get_rr_interval	= get_rr_interval_rt,
2288
2289	.prio_changed		= prio_changed_rt,
2290	.switched_to		= switched_to_rt,
2291
2292	.update_curr		= update_curr_rt,
2293};
2294
2295#ifdef CONFIG_SCHED_DEBUG
2296extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2297
2298void print_rt_stats(struct seq_file *m, int cpu)
2299{
2300	rt_rq_iter_t iter;
2301	struct rt_rq *rt_rq;
2302
2303	rcu_read_lock();
2304	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2305		print_rt_rq(m, cpu, rt_rq);
2306	rcu_read_unlock();
2307}
2308#endif /* CONFIG_SCHED_DEBUG */
2309