1/*
2 *	linux/kernel/resource.c
3 *
4 * Copyright (C) 1999	Linus Torvalds
5 * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
6 *
7 * Arbitrary resource management.
8 */
9
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/export.h>
13#include <linux/errno.h>
14#include <linux/ioport.h>
15#include <linux/init.h>
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/proc_fs.h>
20#include <linux/sched.h>
21#include <linux/seq_file.h>
22#include <linux/device.h>
23#include <linux/pfn.h>
24#include <linux/mm.h>
25#include <linux/resource_ext.h>
26#include <asm/io.h>
27
28
29struct resource ioport_resource = {
30	.name	= "PCI IO",
31	.start	= 0,
32	.end	= IO_SPACE_LIMIT,
33	.flags	= IORESOURCE_IO,
34};
35EXPORT_SYMBOL(ioport_resource);
36
37struct resource iomem_resource = {
38	.name	= "PCI mem",
39	.start	= 0,
40	.end	= -1,
41	.flags	= IORESOURCE_MEM,
42};
43EXPORT_SYMBOL(iomem_resource);
44
45/* constraints to be met while allocating resources */
46struct resource_constraint {
47	resource_size_t min, max, align;
48	resource_size_t (*alignf)(void *, const struct resource *,
49			resource_size_t, resource_size_t);
50	void *alignf_data;
51};
52
53static DEFINE_RWLOCK(resource_lock);
54
55/*
56 * For memory hotplug, there is no way to free resource entries allocated
57 * by boot mem after the system is up. So for reusing the resource entry
58 * we need to remember the resource.
59 */
60static struct resource *bootmem_resource_free;
61static DEFINE_SPINLOCK(bootmem_resource_lock);
62
63static struct resource *next_resource(struct resource *p, bool sibling_only)
64{
65	/* Caller wants to traverse through siblings only */
66	if (sibling_only)
67		return p->sibling;
68
69	if (p->child)
70		return p->child;
71	while (!p->sibling && p->parent)
72		p = p->parent;
73	return p->sibling;
74}
75
76static void *r_next(struct seq_file *m, void *v, loff_t *pos)
77{
78	struct resource *p = v;
79	(*pos)++;
80	return (void *)next_resource(p, false);
81}
82
83#ifdef CONFIG_PROC_FS
84
85enum { MAX_IORES_LEVEL = 5 };
86
87static void *r_start(struct seq_file *m, loff_t *pos)
88	__acquires(resource_lock)
89{
90	struct resource *p = m->private;
91	loff_t l = 0;
92	read_lock(&resource_lock);
93	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
94		;
95	return p;
96}
97
98static void r_stop(struct seq_file *m, void *v)
99	__releases(resource_lock)
100{
101	read_unlock(&resource_lock);
102}
103
104static int r_show(struct seq_file *m, void *v)
105{
106	struct resource *root = m->private;
107	struct resource *r = v, *p;
108	int width = root->end < 0x10000 ? 4 : 8;
109	int depth;
110
111	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
112		if (p->parent == root)
113			break;
114	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
115			depth * 2, "",
116			width, (unsigned long long) r->start,
117			width, (unsigned long long) r->end,
118			r->name ? r->name : "<BAD>");
119	return 0;
120}
121
122static const struct seq_operations resource_op = {
123	.start	= r_start,
124	.next	= r_next,
125	.stop	= r_stop,
126	.show	= r_show,
127};
128
129static int ioports_open(struct inode *inode, struct file *file)
130{
131	int res = seq_open(file, &resource_op);
132	if (!res) {
133		struct seq_file *m = file->private_data;
134		m->private = &ioport_resource;
135	}
136	return res;
137}
138
139static int iomem_open(struct inode *inode, struct file *file)
140{
141	int res = seq_open(file, &resource_op);
142	if (!res) {
143		struct seq_file *m = file->private_data;
144		m->private = &iomem_resource;
145	}
146	return res;
147}
148
149static const struct file_operations proc_ioports_operations = {
150	.open		= ioports_open,
151	.read		= seq_read,
152	.llseek		= seq_lseek,
153	.release	= seq_release,
154};
155
156static const struct file_operations proc_iomem_operations = {
157	.open		= iomem_open,
158	.read		= seq_read,
159	.llseek		= seq_lseek,
160	.release	= seq_release,
161};
162
163static int __init ioresources_init(void)
164{
165	proc_create("ioports", 0, NULL, &proc_ioports_operations);
166	proc_create("iomem", 0, NULL, &proc_iomem_operations);
167	return 0;
168}
169__initcall(ioresources_init);
170
171#endif /* CONFIG_PROC_FS */
172
173static void free_resource(struct resource *res)
174{
175	if (!res)
176		return;
177
178	if (!PageSlab(virt_to_head_page(res))) {
179		spin_lock(&bootmem_resource_lock);
180		res->sibling = bootmem_resource_free;
181		bootmem_resource_free = res;
182		spin_unlock(&bootmem_resource_lock);
183	} else {
184		kfree(res);
185	}
186}
187
188static struct resource *alloc_resource(gfp_t flags)
189{
190	struct resource *res = NULL;
191
192	spin_lock(&bootmem_resource_lock);
193	if (bootmem_resource_free) {
194		res = bootmem_resource_free;
195		bootmem_resource_free = res->sibling;
196	}
197	spin_unlock(&bootmem_resource_lock);
198
199	if (res)
200		memset(res, 0, sizeof(struct resource));
201	else
202		res = kzalloc(sizeof(struct resource), flags);
203
204	return res;
205}
206
207/* Return the conflict entry if you can't request it */
208static struct resource * __request_resource(struct resource *root, struct resource *new)
209{
210	resource_size_t start = new->start;
211	resource_size_t end = new->end;
212	struct resource *tmp, **p;
213
214	if (end < start)
215		return root;
216	if (start < root->start)
217		return root;
218	if (end > root->end)
219		return root;
220	p = &root->child;
221	for (;;) {
222		tmp = *p;
223		if (!tmp || tmp->start > end) {
224			new->sibling = tmp;
225			*p = new;
226			new->parent = root;
227			return NULL;
228		}
229		p = &tmp->sibling;
230		if (tmp->end < start)
231			continue;
232		return tmp;
233	}
234}
235
236static int __release_resource(struct resource *old)
237{
238	struct resource *tmp, **p;
239
240	p = &old->parent->child;
241	for (;;) {
242		tmp = *p;
243		if (!tmp)
244			break;
245		if (tmp == old) {
246			*p = tmp->sibling;
247			old->parent = NULL;
248			return 0;
249		}
250		p = &tmp->sibling;
251	}
252	return -EINVAL;
253}
254
255static void __release_child_resources(struct resource *r)
256{
257	struct resource *tmp, *p;
258	resource_size_t size;
259
260	p = r->child;
261	r->child = NULL;
262	while (p) {
263		tmp = p;
264		p = p->sibling;
265
266		tmp->parent = NULL;
267		tmp->sibling = NULL;
268		__release_child_resources(tmp);
269
270		printk(KERN_DEBUG "release child resource %pR\n", tmp);
271		/* need to restore size, and keep flags */
272		size = resource_size(tmp);
273		tmp->start = 0;
274		tmp->end = size - 1;
275	}
276}
277
278void release_child_resources(struct resource *r)
279{
280	write_lock(&resource_lock);
281	__release_child_resources(r);
282	write_unlock(&resource_lock);
283}
284
285/**
286 * request_resource_conflict - request and reserve an I/O or memory resource
287 * @root: root resource descriptor
288 * @new: resource descriptor desired by caller
289 *
290 * Returns 0 for success, conflict resource on error.
291 */
292struct resource *request_resource_conflict(struct resource *root, struct resource *new)
293{
294	struct resource *conflict;
295
296	write_lock(&resource_lock);
297	conflict = __request_resource(root, new);
298	write_unlock(&resource_lock);
299	return conflict;
300}
301
302/**
303 * request_resource - request and reserve an I/O or memory resource
304 * @root: root resource descriptor
305 * @new: resource descriptor desired by caller
306 *
307 * Returns 0 for success, negative error code on error.
308 */
309int request_resource(struct resource *root, struct resource *new)
310{
311	struct resource *conflict;
312
313	conflict = request_resource_conflict(root, new);
314	return conflict ? -EBUSY : 0;
315}
316
317EXPORT_SYMBOL(request_resource);
318
319/**
320 * release_resource - release a previously reserved resource
321 * @old: resource pointer
322 */
323int release_resource(struct resource *old)
324{
325	int retval;
326
327	write_lock(&resource_lock);
328	retval = __release_resource(old);
329	write_unlock(&resource_lock);
330	return retval;
331}
332
333EXPORT_SYMBOL(release_resource);
334
335/*
336 * Finds the lowest iomem reosurce exists with-in [res->start.res->end)
337 * the caller must specify res->start, res->end, res->flags and "name".
338 * If found, returns 0, res is overwritten, if not found, returns -1.
339 * This walks through whole tree and not just first level children
340 * until and unless first_level_children_only is true.
341 */
342static int find_next_iomem_res(struct resource *res, char *name,
343			       bool first_level_children_only)
344{
345	resource_size_t start, end;
346	struct resource *p;
347	bool sibling_only = false;
348
349	BUG_ON(!res);
350
351	start = res->start;
352	end = res->end;
353	BUG_ON(start >= end);
354
355	if (first_level_children_only)
356		sibling_only = true;
357
358	read_lock(&resource_lock);
359
360	for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) {
361		if (p->flags != res->flags)
362			continue;
363		if (name && strcmp(p->name, name))
364			continue;
365		if (p->start > end) {
366			p = NULL;
367			break;
368		}
369		if ((p->end >= start) && (p->start < end))
370			break;
371	}
372
373	read_unlock(&resource_lock);
374	if (!p)
375		return -1;
376	/* copy data */
377	if (res->start < p->start)
378		res->start = p->start;
379	if (res->end > p->end)
380		res->end = p->end;
381	return 0;
382}
383
384/*
385 * Walks through iomem resources and calls func() with matching resource
386 * ranges. This walks through whole tree and not just first level children.
387 * All the memory ranges which overlap start,end and also match flags and
388 * name are valid candidates.
389 *
390 * @name: name of resource
391 * @flags: resource flags
392 * @start: start addr
393 * @end: end addr
394 */
395int walk_iomem_res(char *name, unsigned long flags, u64 start, u64 end,
396		void *arg, int (*func)(u64, u64, void *))
397{
398	struct resource res;
399	u64 orig_end;
400	int ret = -1;
401
402	res.start = start;
403	res.end = end;
404	res.flags = flags;
405	orig_end = res.end;
406	while ((res.start < res.end) &&
407		(!find_next_iomem_res(&res, name, false))) {
408		ret = (*func)(res.start, res.end, arg);
409		if (ret)
410			break;
411		res.start = res.end + 1;
412		res.end = orig_end;
413	}
414	return ret;
415}
416
417/*
418 * This function calls callback against all memory range of "System RAM"
419 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
420 * Now, this function is only for "System RAM". This function deals with
421 * full ranges and not pfn. If resources are not pfn aligned, dealing
422 * with pfn can truncate ranges.
423 */
424int walk_system_ram_res(u64 start, u64 end, void *arg,
425				int (*func)(u64, u64, void *))
426{
427	struct resource res;
428	u64 orig_end;
429	int ret = -1;
430
431	res.start = start;
432	res.end = end;
433	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
434	orig_end = res.end;
435	while ((res.start < res.end) &&
436		(!find_next_iomem_res(&res, "System RAM", true))) {
437		ret = (*func)(res.start, res.end, arg);
438		if (ret)
439			break;
440		res.start = res.end + 1;
441		res.end = orig_end;
442	}
443	return ret;
444}
445
446#if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
447
448/*
449 * This function calls callback against all memory range of "System RAM"
450 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
451 * Now, this function is only for "System RAM".
452 */
453int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
454		void *arg, int (*func)(unsigned long, unsigned long, void *))
455{
456	struct resource res;
457	unsigned long pfn, end_pfn;
458	u64 orig_end;
459	int ret = -1;
460
461	res.start = (u64) start_pfn << PAGE_SHIFT;
462	res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
463	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
464	orig_end = res.end;
465	while ((res.start < res.end) &&
466		(find_next_iomem_res(&res, "System RAM", true) >= 0)) {
467		pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
468		end_pfn = (res.end + 1) >> PAGE_SHIFT;
469		if (end_pfn > pfn)
470			ret = (*func)(pfn, end_pfn - pfn, arg);
471		if (ret)
472			break;
473		res.start = res.end + 1;
474		res.end = orig_end;
475	}
476	return ret;
477}
478
479#endif
480
481static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
482{
483	return 1;
484}
485/*
486 * This generic page_is_ram() returns true if specified address is
487 * registered as "System RAM" in iomem_resource list.
488 */
489int __weak page_is_ram(unsigned long pfn)
490{
491	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
492}
493EXPORT_SYMBOL_GPL(page_is_ram);
494
495/**
496 * region_intersects() - determine intersection of region with known resources
497 * @start: region start address
498 * @size: size of region
499 * @name: name of resource (in iomem_resource)
500 *
501 * Check if the specified region partially overlaps or fully eclipses a
502 * resource identified by @name.  Return REGION_DISJOINT if the region
503 * does not overlap @name, return REGION_MIXED if the region overlaps
504 * @type and another resource, and return REGION_INTERSECTS if the
505 * region overlaps @type and no other defined resource. Note, that
506 * REGION_INTERSECTS is also returned in the case when the specified
507 * region overlaps RAM and undefined memory holes.
508 *
509 * region_intersect() is used by memory remapping functions to ensure
510 * the user is not remapping RAM and is a vast speed up over walking
511 * through the resource table page by page.
512 */
513int region_intersects(resource_size_t start, size_t size, const char *name)
514{
515	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
516	resource_size_t end = start + size - 1;
517	int type = 0; int other = 0;
518	struct resource *p;
519
520	read_lock(&resource_lock);
521	for (p = iomem_resource.child; p ; p = p->sibling) {
522		bool is_type = strcmp(p->name, name) == 0 && p->flags == flags;
523
524		if (start >= p->start && start <= p->end)
525			is_type ? type++ : other++;
526		if (end >= p->start && end <= p->end)
527			is_type ? type++ : other++;
528		if (p->start >= start && p->end <= end)
529			is_type ? type++ : other++;
530	}
531	read_unlock(&resource_lock);
532
533	if (other == 0)
534		return type ? REGION_INTERSECTS : REGION_DISJOINT;
535
536	if (type)
537		return REGION_MIXED;
538
539	return REGION_DISJOINT;
540}
541
542void __weak arch_remove_reservations(struct resource *avail)
543{
544}
545
546static resource_size_t simple_align_resource(void *data,
547					     const struct resource *avail,
548					     resource_size_t size,
549					     resource_size_t align)
550{
551	return avail->start;
552}
553
554static void resource_clip(struct resource *res, resource_size_t min,
555			  resource_size_t max)
556{
557	if (res->start < min)
558		res->start = min;
559	if (res->end > max)
560		res->end = max;
561}
562
563/*
564 * Find empty slot in the resource tree with the given range and
565 * alignment constraints
566 */
567static int __find_resource(struct resource *root, struct resource *old,
568			 struct resource *new,
569			 resource_size_t  size,
570			 struct resource_constraint *constraint)
571{
572	struct resource *this = root->child;
573	struct resource tmp = *new, avail, alloc;
574
575	tmp.start = root->start;
576	/*
577	 * Skip past an allocated resource that starts at 0, since the assignment
578	 * of this->start - 1 to tmp->end below would cause an underflow.
579	 */
580	if (this && this->start == root->start) {
581		tmp.start = (this == old) ? old->start : this->end + 1;
582		this = this->sibling;
583	}
584	for(;;) {
585		if (this)
586			tmp.end = (this == old) ?  this->end : this->start - 1;
587		else
588			tmp.end = root->end;
589
590		if (tmp.end < tmp.start)
591			goto next;
592
593		resource_clip(&tmp, constraint->min, constraint->max);
594		arch_remove_reservations(&tmp);
595
596		/* Check for overflow after ALIGN() */
597		avail.start = ALIGN(tmp.start, constraint->align);
598		avail.end = tmp.end;
599		avail.flags = new->flags & ~IORESOURCE_UNSET;
600		if (avail.start >= tmp.start) {
601			alloc.flags = avail.flags;
602			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
603					size, constraint->align);
604			alloc.end = alloc.start + size - 1;
605			if (resource_contains(&avail, &alloc)) {
606				new->start = alloc.start;
607				new->end = alloc.end;
608				return 0;
609			}
610		}
611
612next:		if (!this || this->end == root->end)
613			break;
614
615		if (this != old)
616			tmp.start = this->end + 1;
617		this = this->sibling;
618	}
619	return -EBUSY;
620}
621
622/*
623 * Find empty slot in the resource tree given range and alignment.
624 */
625static int find_resource(struct resource *root, struct resource *new,
626			resource_size_t size,
627			struct resource_constraint  *constraint)
628{
629	return  __find_resource(root, NULL, new, size, constraint);
630}
631
632/**
633 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
634 *	The resource will be relocated if the new size cannot be reallocated in the
635 *	current location.
636 *
637 * @root: root resource descriptor
638 * @old:  resource descriptor desired by caller
639 * @newsize: new size of the resource descriptor
640 * @constraint: the size and alignment constraints to be met.
641 */
642static int reallocate_resource(struct resource *root, struct resource *old,
643			resource_size_t newsize,
644			struct resource_constraint  *constraint)
645{
646	int err=0;
647	struct resource new = *old;
648	struct resource *conflict;
649
650	write_lock(&resource_lock);
651
652	if ((err = __find_resource(root, old, &new, newsize, constraint)))
653		goto out;
654
655	if (resource_contains(&new, old)) {
656		old->start = new.start;
657		old->end = new.end;
658		goto out;
659	}
660
661	if (old->child) {
662		err = -EBUSY;
663		goto out;
664	}
665
666	if (resource_contains(old, &new)) {
667		old->start = new.start;
668		old->end = new.end;
669	} else {
670		__release_resource(old);
671		*old = new;
672		conflict = __request_resource(root, old);
673		BUG_ON(conflict);
674	}
675out:
676	write_unlock(&resource_lock);
677	return err;
678}
679
680
681/**
682 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
683 * 	The resource will be reallocated with a new size if it was already allocated
684 * @root: root resource descriptor
685 * @new: resource descriptor desired by caller
686 * @size: requested resource region size
687 * @min: minimum boundary to allocate
688 * @max: maximum boundary to allocate
689 * @align: alignment requested, in bytes
690 * @alignf: alignment function, optional, called if not NULL
691 * @alignf_data: arbitrary data to pass to the @alignf function
692 */
693int allocate_resource(struct resource *root, struct resource *new,
694		      resource_size_t size, resource_size_t min,
695		      resource_size_t max, resource_size_t align,
696		      resource_size_t (*alignf)(void *,
697						const struct resource *,
698						resource_size_t,
699						resource_size_t),
700		      void *alignf_data)
701{
702	int err;
703	struct resource_constraint constraint;
704
705	if (!alignf)
706		alignf = simple_align_resource;
707
708	constraint.min = min;
709	constraint.max = max;
710	constraint.align = align;
711	constraint.alignf = alignf;
712	constraint.alignf_data = alignf_data;
713
714	if ( new->parent ) {
715		/* resource is already allocated, try reallocating with
716		   the new constraints */
717		return reallocate_resource(root, new, size, &constraint);
718	}
719
720	write_lock(&resource_lock);
721	err = find_resource(root, new, size, &constraint);
722	if (err >= 0 && __request_resource(root, new))
723		err = -EBUSY;
724	write_unlock(&resource_lock);
725	return err;
726}
727
728EXPORT_SYMBOL(allocate_resource);
729
730/**
731 * lookup_resource - find an existing resource by a resource start address
732 * @root: root resource descriptor
733 * @start: resource start address
734 *
735 * Returns a pointer to the resource if found, NULL otherwise
736 */
737struct resource *lookup_resource(struct resource *root, resource_size_t start)
738{
739	struct resource *res;
740
741	read_lock(&resource_lock);
742	for (res = root->child; res; res = res->sibling) {
743		if (res->start == start)
744			break;
745	}
746	read_unlock(&resource_lock);
747
748	return res;
749}
750
751/*
752 * Insert a resource into the resource tree. If successful, return NULL,
753 * otherwise return the conflicting resource (compare to __request_resource())
754 */
755static struct resource * __insert_resource(struct resource *parent, struct resource *new)
756{
757	struct resource *first, *next;
758
759	for (;; parent = first) {
760		first = __request_resource(parent, new);
761		if (!first)
762			return first;
763
764		if (first == parent)
765			return first;
766		if (WARN_ON(first == new))	/* duplicated insertion */
767			return first;
768
769		if ((first->start > new->start) || (first->end < new->end))
770			break;
771		if ((first->start == new->start) && (first->end == new->end))
772			break;
773	}
774
775	for (next = first; ; next = next->sibling) {
776		/* Partial overlap? Bad, and unfixable */
777		if (next->start < new->start || next->end > new->end)
778			return next;
779		if (!next->sibling)
780			break;
781		if (next->sibling->start > new->end)
782			break;
783	}
784
785	new->parent = parent;
786	new->sibling = next->sibling;
787	new->child = first;
788
789	next->sibling = NULL;
790	for (next = first; next; next = next->sibling)
791		next->parent = new;
792
793	if (parent->child == first) {
794		parent->child = new;
795	} else {
796		next = parent->child;
797		while (next->sibling != first)
798			next = next->sibling;
799		next->sibling = new;
800	}
801	return NULL;
802}
803
804/**
805 * insert_resource_conflict - Inserts resource in the resource tree
806 * @parent: parent of the new resource
807 * @new: new resource to insert
808 *
809 * Returns 0 on success, conflict resource if the resource can't be inserted.
810 *
811 * This function is equivalent to request_resource_conflict when no conflict
812 * happens. If a conflict happens, and the conflicting resources
813 * entirely fit within the range of the new resource, then the new
814 * resource is inserted and the conflicting resources become children of
815 * the new resource.
816 */
817struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
818{
819	struct resource *conflict;
820
821	write_lock(&resource_lock);
822	conflict = __insert_resource(parent, new);
823	write_unlock(&resource_lock);
824	return conflict;
825}
826
827/**
828 * insert_resource - Inserts a resource in the resource tree
829 * @parent: parent of the new resource
830 * @new: new resource to insert
831 *
832 * Returns 0 on success, -EBUSY if the resource can't be inserted.
833 */
834int insert_resource(struct resource *parent, struct resource *new)
835{
836	struct resource *conflict;
837
838	conflict = insert_resource_conflict(parent, new);
839	return conflict ? -EBUSY : 0;
840}
841
842/**
843 * insert_resource_expand_to_fit - Insert a resource into the resource tree
844 * @root: root resource descriptor
845 * @new: new resource to insert
846 *
847 * Insert a resource into the resource tree, possibly expanding it in order
848 * to make it encompass any conflicting resources.
849 */
850void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
851{
852	if (new->parent)
853		return;
854
855	write_lock(&resource_lock);
856	for (;;) {
857		struct resource *conflict;
858
859		conflict = __insert_resource(root, new);
860		if (!conflict)
861			break;
862		if (conflict == root)
863			break;
864
865		/* Ok, expand resource to cover the conflict, then try again .. */
866		if (conflict->start < new->start)
867			new->start = conflict->start;
868		if (conflict->end > new->end)
869			new->end = conflict->end;
870
871		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
872	}
873	write_unlock(&resource_lock);
874}
875
876static int __adjust_resource(struct resource *res, resource_size_t start,
877				resource_size_t size)
878{
879	struct resource *tmp, *parent = res->parent;
880	resource_size_t end = start + size - 1;
881	int result = -EBUSY;
882
883	if (!parent)
884		goto skip;
885
886	if ((start < parent->start) || (end > parent->end))
887		goto out;
888
889	if (res->sibling && (res->sibling->start <= end))
890		goto out;
891
892	tmp = parent->child;
893	if (tmp != res) {
894		while (tmp->sibling != res)
895			tmp = tmp->sibling;
896		if (start <= tmp->end)
897			goto out;
898	}
899
900skip:
901	for (tmp = res->child; tmp; tmp = tmp->sibling)
902		if ((tmp->start < start) || (tmp->end > end))
903			goto out;
904
905	res->start = start;
906	res->end = end;
907	result = 0;
908
909 out:
910	return result;
911}
912
913/**
914 * adjust_resource - modify a resource's start and size
915 * @res: resource to modify
916 * @start: new start value
917 * @size: new size
918 *
919 * Given an existing resource, change its start and size to match the
920 * arguments.  Returns 0 on success, -EBUSY if it can't fit.
921 * Existing children of the resource are assumed to be immutable.
922 */
923int adjust_resource(struct resource *res, resource_size_t start,
924			resource_size_t size)
925{
926	int result;
927
928	write_lock(&resource_lock);
929	result = __adjust_resource(res, start, size);
930	write_unlock(&resource_lock);
931	return result;
932}
933EXPORT_SYMBOL(adjust_resource);
934
935static void __init __reserve_region_with_split(struct resource *root,
936		resource_size_t start, resource_size_t end,
937		const char *name)
938{
939	struct resource *parent = root;
940	struct resource *conflict;
941	struct resource *res = alloc_resource(GFP_ATOMIC);
942	struct resource *next_res = NULL;
943
944	if (!res)
945		return;
946
947	res->name = name;
948	res->start = start;
949	res->end = end;
950	res->flags = IORESOURCE_BUSY;
951
952	while (1) {
953
954		conflict = __request_resource(parent, res);
955		if (!conflict) {
956			if (!next_res)
957				break;
958			res = next_res;
959			next_res = NULL;
960			continue;
961		}
962
963		/* conflict covered whole area */
964		if (conflict->start <= res->start &&
965				conflict->end >= res->end) {
966			free_resource(res);
967			WARN_ON(next_res);
968			break;
969		}
970
971		/* failed, split and try again */
972		if (conflict->start > res->start) {
973			end = res->end;
974			res->end = conflict->start - 1;
975			if (conflict->end < end) {
976				next_res = alloc_resource(GFP_ATOMIC);
977				if (!next_res) {
978					free_resource(res);
979					break;
980				}
981				next_res->name = name;
982				next_res->start = conflict->end + 1;
983				next_res->end = end;
984				next_res->flags = IORESOURCE_BUSY;
985			}
986		} else {
987			res->start = conflict->end + 1;
988		}
989	}
990
991}
992
993void __init reserve_region_with_split(struct resource *root,
994		resource_size_t start, resource_size_t end,
995		const char *name)
996{
997	int abort = 0;
998
999	write_lock(&resource_lock);
1000	if (root->start > start || root->end < end) {
1001		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1002		       (unsigned long long)start, (unsigned long long)end,
1003		       root);
1004		if (start > root->end || end < root->start)
1005			abort = 1;
1006		else {
1007			if (end > root->end)
1008				end = root->end;
1009			if (start < root->start)
1010				start = root->start;
1011			pr_err("fixing request to [0x%llx-0x%llx]\n",
1012			       (unsigned long long)start,
1013			       (unsigned long long)end);
1014		}
1015		dump_stack();
1016	}
1017	if (!abort)
1018		__reserve_region_with_split(root, start, end, name);
1019	write_unlock(&resource_lock);
1020}
1021
1022/**
1023 * resource_alignment - calculate resource's alignment
1024 * @res: resource pointer
1025 *
1026 * Returns alignment on success, 0 (invalid alignment) on failure.
1027 */
1028resource_size_t resource_alignment(struct resource *res)
1029{
1030	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1031	case IORESOURCE_SIZEALIGN:
1032		return resource_size(res);
1033	case IORESOURCE_STARTALIGN:
1034		return res->start;
1035	default:
1036		return 0;
1037	}
1038}
1039
1040/*
1041 * This is compatibility stuff for IO resources.
1042 *
1043 * Note how this, unlike the above, knows about
1044 * the IO flag meanings (busy etc).
1045 *
1046 * request_region creates a new busy region.
1047 *
1048 * release_region releases a matching busy region.
1049 */
1050
1051static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1052
1053/**
1054 * __request_region - create a new busy resource region
1055 * @parent: parent resource descriptor
1056 * @start: resource start address
1057 * @n: resource region size
1058 * @name: reserving caller's ID string
1059 * @flags: IO resource flags
1060 */
1061struct resource * __request_region(struct resource *parent,
1062				   resource_size_t start, resource_size_t n,
1063				   const char *name, int flags)
1064{
1065	DECLARE_WAITQUEUE(wait, current);
1066	struct resource *res = alloc_resource(GFP_KERNEL);
1067
1068	if (!res)
1069		return NULL;
1070
1071	res->name = name;
1072	res->start = start;
1073	res->end = start + n - 1;
1074	res->flags = resource_type(parent);
1075	res->flags |= IORESOURCE_BUSY | flags;
1076
1077	write_lock(&resource_lock);
1078
1079	for (;;) {
1080		struct resource *conflict;
1081
1082		conflict = __request_resource(parent, res);
1083		if (!conflict)
1084			break;
1085		if (conflict != parent) {
1086			if (!(conflict->flags & IORESOURCE_BUSY)) {
1087				parent = conflict;
1088				continue;
1089			}
1090		}
1091		if (conflict->flags & flags & IORESOURCE_MUXED) {
1092			add_wait_queue(&muxed_resource_wait, &wait);
1093			write_unlock(&resource_lock);
1094			set_current_state(TASK_UNINTERRUPTIBLE);
1095			schedule();
1096			remove_wait_queue(&muxed_resource_wait, &wait);
1097			write_lock(&resource_lock);
1098			continue;
1099		}
1100		/* Uhhuh, that didn't work out.. */
1101		free_resource(res);
1102		res = NULL;
1103		break;
1104	}
1105	write_unlock(&resource_lock);
1106	return res;
1107}
1108EXPORT_SYMBOL(__request_region);
1109
1110/**
1111 * __release_region - release a previously reserved resource region
1112 * @parent: parent resource descriptor
1113 * @start: resource start address
1114 * @n: resource region size
1115 *
1116 * The described resource region must match a currently busy region.
1117 */
1118void __release_region(struct resource *parent, resource_size_t start,
1119			resource_size_t n)
1120{
1121	struct resource **p;
1122	resource_size_t end;
1123
1124	p = &parent->child;
1125	end = start + n - 1;
1126
1127	write_lock(&resource_lock);
1128
1129	for (;;) {
1130		struct resource *res = *p;
1131
1132		if (!res)
1133			break;
1134		if (res->start <= start && res->end >= end) {
1135			if (!(res->flags & IORESOURCE_BUSY)) {
1136				p = &res->child;
1137				continue;
1138			}
1139			if (res->start != start || res->end != end)
1140				break;
1141			*p = res->sibling;
1142			write_unlock(&resource_lock);
1143			if (res->flags & IORESOURCE_MUXED)
1144				wake_up(&muxed_resource_wait);
1145			free_resource(res);
1146			return;
1147		}
1148		p = &res->sibling;
1149	}
1150
1151	write_unlock(&resource_lock);
1152
1153	printk(KERN_WARNING "Trying to free nonexistent resource "
1154		"<%016llx-%016llx>\n", (unsigned long long)start,
1155		(unsigned long long)end);
1156}
1157EXPORT_SYMBOL(__release_region);
1158
1159#ifdef CONFIG_MEMORY_HOTREMOVE
1160/**
1161 * release_mem_region_adjustable - release a previously reserved memory region
1162 * @parent: parent resource descriptor
1163 * @start: resource start address
1164 * @size: resource region size
1165 *
1166 * This interface is intended for memory hot-delete.  The requested region
1167 * is released from a currently busy memory resource.  The requested region
1168 * must either match exactly or fit into a single busy resource entry.  In
1169 * the latter case, the remaining resource is adjusted accordingly.
1170 * Existing children of the busy memory resource must be immutable in the
1171 * request.
1172 *
1173 * Note:
1174 * - Additional release conditions, such as overlapping region, can be
1175 *   supported after they are confirmed as valid cases.
1176 * - When a busy memory resource gets split into two entries, the code
1177 *   assumes that all children remain in the lower address entry for
1178 *   simplicity.  Enhance this logic when necessary.
1179 */
1180int release_mem_region_adjustable(struct resource *parent,
1181			resource_size_t start, resource_size_t size)
1182{
1183	struct resource **p;
1184	struct resource *res;
1185	struct resource *new_res;
1186	resource_size_t end;
1187	int ret = -EINVAL;
1188
1189	end = start + size - 1;
1190	if ((start < parent->start) || (end > parent->end))
1191		return ret;
1192
1193	/* The alloc_resource() result gets checked later */
1194	new_res = alloc_resource(GFP_KERNEL);
1195
1196	p = &parent->child;
1197	write_lock(&resource_lock);
1198
1199	while ((res = *p)) {
1200		if (res->start >= end)
1201			break;
1202
1203		/* look for the next resource if it does not fit into */
1204		if (res->start > start || res->end < end) {
1205			p = &res->sibling;
1206			continue;
1207		}
1208
1209		if (!(res->flags & IORESOURCE_MEM))
1210			break;
1211
1212		if (!(res->flags & IORESOURCE_BUSY)) {
1213			p = &res->child;
1214			continue;
1215		}
1216
1217		/* found the target resource; let's adjust accordingly */
1218		if (res->start == start && res->end == end) {
1219			/* free the whole entry */
1220			*p = res->sibling;
1221			free_resource(res);
1222			ret = 0;
1223		} else if (res->start == start && res->end != end) {
1224			/* adjust the start */
1225			ret = __adjust_resource(res, end + 1,
1226						res->end - end);
1227		} else if (res->start != start && res->end == end) {
1228			/* adjust the end */
1229			ret = __adjust_resource(res, res->start,
1230						start - res->start);
1231		} else {
1232			/* split into two entries */
1233			if (!new_res) {
1234				ret = -ENOMEM;
1235				break;
1236			}
1237			new_res->name = res->name;
1238			new_res->start = end + 1;
1239			new_res->end = res->end;
1240			new_res->flags = res->flags;
1241			new_res->parent = res->parent;
1242			new_res->sibling = res->sibling;
1243			new_res->child = NULL;
1244
1245			ret = __adjust_resource(res, res->start,
1246						start - res->start);
1247			if (ret)
1248				break;
1249			res->sibling = new_res;
1250			new_res = NULL;
1251		}
1252
1253		break;
1254	}
1255
1256	write_unlock(&resource_lock);
1257	free_resource(new_res);
1258	return ret;
1259}
1260#endif	/* CONFIG_MEMORY_HOTREMOVE */
1261
1262/*
1263 * Managed region resource
1264 */
1265static void devm_resource_release(struct device *dev, void *ptr)
1266{
1267	struct resource **r = ptr;
1268
1269	release_resource(*r);
1270}
1271
1272/**
1273 * devm_request_resource() - request and reserve an I/O or memory resource
1274 * @dev: device for which to request the resource
1275 * @root: root of the resource tree from which to request the resource
1276 * @new: descriptor of the resource to request
1277 *
1278 * This is a device-managed version of request_resource(). There is usually
1279 * no need to release resources requested by this function explicitly since
1280 * that will be taken care of when the device is unbound from its driver.
1281 * If for some reason the resource needs to be released explicitly, because
1282 * of ordering issues for example, drivers must call devm_release_resource()
1283 * rather than the regular release_resource().
1284 *
1285 * When a conflict is detected between any existing resources and the newly
1286 * requested resource, an error message will be printed.
1287 *
1288 * Returns 0 on success or a negative error code on failure.
1289 */
1290int devm_request_resource(struct device *dev, struct resource *root,
1291			  struct resource *new)
1292{
1293	struct resource *conflict, **ptr;
1294
1295	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1296	if (!ptr)
1297		return -ENOMEM;
1298
1299	*ptr = new;
1300
1301	conflict = request_resource_conflict(root, new);
1302	if (conflict) {
1303		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1304			new, conflict->name, conflict);
1305		devres_free(ptr);
1306		return -EBUSY;
1307	}
1308
1309	devres_add(dev, ptr);
1310	return 0;
1311}
1312EXPORT_SYMBOL(devm_request_resource);
1313
1314static int devm_resource_match(struct device *dev, void *res, void *data)
1315{
1316	struct resource **ptr = res;
1317
1318	return *ptr == data;
1319}
1320
1321/**
1322 * devm_release_resource() - release a previously requested resource
1323 * @dev: device for which to release the resource
1324 * @new: descriptor of the resource to release
1325 *
1326 * Releases a resource previously requested using devm_request_resource().
1327 */
1328void devm_release_resource(struct device *dev, struct resource *new)
1329{
1330	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1331			       new));
1332}
1333EXPORT_SYMBOL(devm_release_resource);
1334
1335struct region_devres {
1336	struct resource *parent;
1337	resource_size_t start;
1338	resource_size_t n;
1339};
1340
1341static void devm_region_release(struct device *dev, void *res)
1342{
1343	struct region_devres *this = res;
1344
1345	__release_region(this->parent, this->start, this->n);
1346}
1347
1348static int devm_region_match(struct device *dev, void *res, void *match_data)
1349{
1350	struct region_devres *this = res, *match = match_data;
1351
1352	return this->parent == match->parent &&
1353		this->start == match->start && this->n == match->n;
1354}
1355
1356struct resource * __devm_request_region(struct device *dev,
1357				struct resource *parent, resource_size_t start,
1358				resource_size_t n, const char *name)
1359{
1360	struct region_devres *dr = NULL;
1361	struct resource *res;
1362
1363	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1364			  GFP_KERNEL);
1365	if (!dr)
1366		return NULL;
1367
1368	dr->parent = parent;
1369	dr->start = start;
1370	dr->n = n;
1371
1372	res = __request_region(parent, start, n, name, 0);
1373	if (res)
1374		devres_add(dev, dr);
1375	else
1376		devres_free(dr);
1377
1378	return res;
1379}
1380EXPORT_SYMBOL(__devm_request_region);
1381
1382void __devm_release_region(struct device *dev, struct resource *parent,
1383			   resource_size_t start, resource_size_t n)
1384{
1385	struct region_devres match_data = { parent, start, n };
1386
1387	__release_region(parent, start, n);
1388	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1389			       &match_data));
1390}
1391EXPORT_SYMBOL(__devm_release_region);
1392
1393/*
1394 * Called from init/main.c to reserve IO ports.
1395 */
1396#define MAXRESERVE 4
1397static int __init reserve_setup(char *str)
1398{
1399	static int reserved;
1400	static struct resource reserve[MAXRESERVE];
1401
1402	for (;;) {
1403		unsigned int io_start, io_num;
1404		int x = reserved;
1405
1406		if (get_option (&str, &io_start) != 2)
1407			break;
1408		if (get_option (&str, &io_num)   == 0)
1409			break;
1410		if (x < MAXRESERVE) {
1411			struct resource *res = reserve + x;
1412			res->name = "reserved";
1413			res->start = io_start;
1414			res->end = io_start + io_num - 1;
1415			res->flags = IORESOURCE_BUSY;
1416			res->child = NULL;
1417			if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1418				reserved = x+1;
1419		}
1420	}
1421	return 1;
1422}
1423
1424__setup("reserve=", reserve_setup);
1425
1426/*
1427 * Check if the requested addr and size spans more than any slot in the
1428 * iomem resource tree.
1429 */
1430int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1431{
1432	struct resource *p = &iomem_resource;
1433	int err = 0;
1434	loff_t l;
1435
1436	read_lock(&resource_lock);
1437	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1438		/*
1439		 * We can probably skip the resources without
1440		 * IORESOURCE_IO attribute?
1441		 */
1442		if (p->start >= addr + size)
1443			continue;
1444		if (p->end < addr)
1445			continue;
1446		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1447		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1448			continue;
1449		/*
1450		 * if a resource is "BUSY", it's not a hardware resource
1451		 * but a driver mapping of such a resource; we don't want
1452		 * to warn for those; some drivers legitimately map only
1453		 * partial hardware resources. (example: vesafb)
1454		 */
1455		if (p->flags & IORESOURCE_BUSY)
1456			continue;
1457
1458		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1459		       (unsigned long long)addr,
1460		       (unsigned long long)(addr + size - 1),
1461		       p->name, p);
1462		err = -1;
1463		break;
1464	}
1465	read_unlock(&resource_lock);
1466
1467	return err;
1468}
1469
1470#ifdef CONFIG_STRICT_DEVMEM
1471static int strict_iomem_checks = 1;
1472#else
1473static int strict_iomem_checks;
1474#endif
1475
1476/*
1477 * check if an address is reserved in the iomem resource tree
1478 * returns 1 if reserved, 0 if not reserved.
1479 */
1480int iomem_is_exclusive(u64 addr)
1481{
1482	struct resource *p = &iomem_resource;
1483	int err = 0;
1484	loff_t l;
1485	int size = PAGE_SIZE;
1486
1487	if (!strict_iomem_checks)
1488		return 0;
1489
1490	addr = addr & PAGE_MASK;
1491
1492	read_lock(&resource_lock);
1493	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1494		/*
1495		 * We can probably skip the resources without
1496		 * IORESOURCE_IO attribute?
1497		 */
1498		if (p->start >= addr + size)
1499			break;
1500		if (p->end < addr)
1501			continue;
1502		if (p->flags & IORESOURCE_BUSY &&
1503		     p->flags & IORESOURCE_EXCLUSIVE) {
1504			err = 1;
1505			break;
1506		}
1507	}
1508	read_unlock(&resource_lock);
1509
1510	return err;
1511}
1512
1513struct resource_entry *resource_list_create_entry(struct resource *res,
1514						  size_t extra_size)
1515{
1516	struct resource_entry *entry;
1517
1518	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1519	if (entry) {
1520		INIT_LIST_HEAD(&entry->node);
1521		entry->res = res ? res : &entry->__res;
1522	}
1523
1524	return entry;
1525}
1526EXPORT_SYMBOL(resource_list_create_entry);
1527
1528void resource_list_free(struct list_head *head)
1529{
1530	struct resource_entry *entry, *tmp;
1531
1532	list_for_each_entry_safe(entry, tmp, head, node)
1533		resource_list_destroy_entry(entry);
1534}
1535EXPORT_SYMBOL(resource_list_free);
1536
1537static int __init strict_iomem(char *str)
1538{
1539	if (strstr(str, "relaxed"))
1540		strict_iomem_checks = 0;
1541	if (strstr(str, "strict"))
1542		strict_iomem_checks = 1;
1543	return 1;
1544}
1545
1546__setup("iomem=", strict_iomem);
1547