1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27#include <linux/delay.h>
28#include <linux/gfp.h>
29#include <linux/oom.h>
30#include <linux/smpboot.h>
31#include "../time/tick-internal.h"
32
33#ifdef CONFIG_RCU_BOOST
34
35#include "../locking/rtmutex_common.h"
36
37/*
38 * Control variables for per-CPU and per-rcu_node kthreads.  These
39 * handle all flavors of RCU.
40 */
41static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
46#else /* #ifdef CONFIG_RCU_BOOST */
47
48/*
49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50 * all uses are in dead code.  Provide a definition to keep the compiler
51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52 * This probably needs to be excluded from -rt builds.
53 */
54#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
55
56#endif /* #else #ifdef CONFIG_RCU_BOOST */
57
58#ifdef CONFIG_RCU_NOCB_CPU
59static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
61static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
62#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
63
64/*
65 * Check the RCU kernel configuration parameters and print informative
66 * messages about anything out of the ordinary.  If you like #ifdef, you
67 * will love this function.
68 */
69static void __init rcu_bootup_announce_oddness(void)
70{
71	if (IS_ENABLED(CONFIG_RCU_TRACE))
72		pr_info("\tRCU debugfs-based tracing is enabled.\n");
73	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
74	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
75		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
76		       RCU_FANOUT);
77	if (rcu_fanout_exact)
78		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
79	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
80		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
81	if (IS_ENABLED(CONFIG_PROVE_RCU))
82		pr_info("\tRCU lockdep checking is enabled.\n");
83	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
84		pr_info("\tRCU torture testing starts during boot.\n");
85	if (RCU_NUM_LVLS >= 4)
86		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87	if (RCU_FANOUT_LEAF != 16)
88		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89			RCU_FANOUT_LEAF);
90	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
91		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
92	if (nr_cpu_ids != NR_CPUS)
93		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
94	if (IS_ENABLED(CONFIG_RCU_BOOST))
95		pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
96}
97
98#ifdef CONFIG_PREEMPT_RCU
99
100RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
101static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
102static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
103
104static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
105			       bool wake);
106
107/*
108 * Tell them what RCU they are running.
109 */
110static void __init rcu_bootup_announce(void)
111{
112	pr_info("Preemptible hierarchical RCU implementation.\n");
113	rcu_bootup_announce_oddness();
114}
115
116/* Flags for rcu_preempt_ctxt_queue() decision table. */
117#define RCU_GP_TASKS	0x8
118#define RCU_EXP_TASKS	0x4
119#define RCU_GP_BLKD	0x2
120#define RCU_EXP_BLKD	0x1
121
122/*
123 * Queues a task preempted within an RCU-preempt read-side critical
124 * section into the appropriate location within the ->blkd_tasks list,
125 * depending on the states of any ongoing normal and expedited grace
126 * periods.  The ->gp_tasks pointer indicates which element the normal
127 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
128 * indicates which element the expedited grace period is waiting on (again,
129 * NULL if none).  If a grace period is waiting on a given element in the
130 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
131 * adding a task to the tail of the list blocks any grace period that is
132 * already waiting on one of the elements.  In contrast, adding a task
133 * to the head of the list won't block any grace period that is already
134 * waiting on one of the elements.
135 *
136 * This queuing is imprecise, and can sometimes make an ongoing grace
137 * period wait for a task that is not strictly speaking blocking it.
138 * Given the choice, we needlessly block a normal grace period rather than
139 * blocking an expedited grace period.
140 *
141 * Note that an endless sequence of expedited grace periods still cannot
142 * indefinitely postpone a normal grace period.  Eventually, all of the
143 * fixed number of preempted tasks blocking the normal grace period that are
144 * not also blocking the expedited grace period will resume and complete
145 * their RCU read-side critical sections.  At that point, the ->gp_tasks
146 * pointer will equal the ->exp_tasks pointer, at which point the end of
147 * the corresponding expedited grace period will also be the end of the
148 * normal grace period.
149 */
150static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp,
151				   unsigned long flags) __releases(rnp->lock)
152{
153	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
154			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
155			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
156			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
157	struct task_struct *t = current;
158
159	/*
160	 * Decide where to queue the newly blocked task.  In theory,
161	 * this could be an if-statement.  In practice, when I tried
162	 * that, it was quite messy.
163	 */
164	switch (blkd_state) {
165	case 0:
166	case                RCU_EXP_TASKS:
167	case                RCU_EXP_TASKS + RCU_GP_BLKD:
168	case RCU_GP_TASKS:
169	case RCU_GP_TASKS + RCU_EXP_TASKS:
170
171		/*
172		 * Blocking neither GP, or first task blocking the normal
173		 * GP but not blocking the already-waiting expedited GP.
174		 * Queue at the head of the list to avoid unnecessarily
175		 * blocking the already-waiting GPs.
176		 */
177		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
178		break;
179
180	case                                              RCU_EXP_BLKD:
181	case                                RCU_GP_BLKD:
182	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
183	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
184	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
185	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
186
187		/*
188		 * First task arriving that blocks either GP, or first task
189		 * arriving that blocks the expedited GP (with the normal
190		 * GP already waiting), or a task arriving that blocks
191		 * both GPs with both GPs already waiting.  Queue at the
192		 * tail of the list to avoid any GP waiting on any of the
193		 * already queued tasks that are not blocking it.
194		 */
195		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
196		break;
197
198	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
199	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
200	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
201
202		/*
203		 * Second or subsequent task blocking the expedited GP.
204		 * The task either does not block the normal GP, or is the
205		 * first task blocking the normal GP.  Queue just after
206		 * the first task blocking the expedited GP.
207		 */
208		list_add(&t->rcu_node_entry, rnp->exp_tasks);
209		break;
210
211	case RCU_GP_TASKS +                 RCU_GP_BLKD:
212	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
213
214		/*
215		 * Second or subsequent task blocking the normal GP.
216		 * The task does not block the expedited GP. Queue just
217		 * after the first task blocking the normal GP.
218		 */
219		list_add(&t->rcu_node_entry, rnp->gp_tasks);
220		break;
221
222	default:
223
224		/* Yet another exercise in excessive paranoia. */
225		WARN_ON_ONCE(1);
226		break;
227	}
228
229	/*
230	 * We have now queued the task.  If it was the first one to
231	 * block either grace period, update the ->gp_tasks and/or
232	 * ->exp_tasks pointers, respectively, to reference the newly
233	 * blocked tasks.
234	 */
235	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
236		rnp->gp_tasks = &t->rcu_node_entry;
237	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
238		rnp->exp_tasks = &t->rcu_node_entry;
239	raw_spin_unlock(&rnp->lock);
240
241	/*
242	 * Report the quiescent state for the expedited GP.  This expedited
243	 * GP should not be able to end until we report, so there should be
244	 * no need to check for a subsequent expedited GP.  (Though we are
245	 * still in a quiescent state in any case.)
246	 */
247	if (blkd_state & RCU_EXP_BLKD &&
248	    t->rcu_read_unlock_special.b.exp_need_qs) {
249		t->rcu_read_unlock_special.b.exp_need_qs = false;
250		rcu_report_exp_rdp(rdp->rsp, rdp, true);
251	} else {
252		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
253	}
254	local_irq_restore(flags);
255}
256
257/*
258 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
259 * that this just means that the task currently running on the CPU is
260 * not in a quiescent state.  There might be any number of tasks blocked
261 * while in an RCU read-side critical section.
262 *
263 * As with the other rcu_*_qs() functions, callers to this function
264 * must disable preemption.
265 */
266static void rcu_preempt_qs(void)
267{
268	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
269		trace_rcu_grace_period(TPS("rcu_preempt"),
270				       __this_cpu_read(rcu_data_p->gpnum),
271				       TPS("cpuqs"));
272		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
273		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
274		current->rcu_read_unlock_special.b.need_qs = false;
275	}
276}
277
278/*
279 * We have entered the scheduler, and the current task might soon be
280 * context-switched away from.  If this task is in an RCU read-side
281 * critical section, we will no longer be able to rely on the CPU to
282 * record that fact, so we enqueue the task on the blkd_tasks list.
283 * The task will dequeue itself when it exits the outermost enclosing
284 * RCU read-side critical section.  Therefore, the current grace period
285 * cannot be permitted to complete until the blkd_tasks list entries
286 * predating the current grace period drain, in other words, until
287 * rnp->gp_tasks becomes NULL.
288 *
289 * Caller must disable preemption.
290 */
291static void rcu_preempt_note_context_switch(void)
292{
293	struct task_struct *t = current;
294	unsigned long flags;
295	struct rcu_data *rdp;
296	struct rcu_node *rnp;
297
298	if (t->rcu_read_lock_nesting > 0 &&
299	    !t->rcu_read_unlock_special.b.blocked) {
300
301		/* Possibly blocking in an RCU read-side critical section. */
302		rdp = this_cpu_ptr(rcu_state_p->rda);
303		rnp = rdp->mynode;
304		raw_spin_lock_irqsave(&rnp->lock, flags);
305		smp_mb__after_unlock_lock();
306		t->rcu_read_unlock_special.b.blocked = true;
307		t->rcu_blocked_node = rnp;
308
309		/*
310		 * Verify the CPU's sanity, trace the preemption, and
311		 * then queue the task as required based on the states
312		 * of any ongoing and expedited grace periods.
313		 */
314		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
315		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
316		trace_rcu_preempt_task(rdp->rsp->name,
317				       t->pid,
318				       (rnp->qsmask & rdp->grpmask)
319				       ? rnp->gpnum
320				       : rnp->gpnum + 1);
321		rcu_preempt_ctxt_queue(rnp, rdp, flags);
322	} else if (t->rcu_read_lock_nesting < 0 &&
323		   t->rcu_read_unlock_special.s) {
324
325		/*
326		 * Complete exit from RCU read-side critical section on
327		 * behalf of preempted instance of __rcu_read_unlock().
328		 */
329		rcu_read_unlock_special(t);
330	}
331
332	/*
333	 * Either we were not in an RCU read-side critical section to
334	 * begin with, or we have now recorded that critical section
335	 * globally.  Either way, we can now note a quiescent state
336	 * for this CPU.  Again, if we were in an RCU read-side critical
337	 * section, and if that critical section was blocking the current
338	 * grace period, then the fact that the task has been enqueued
339	 * means that we continue to block the current grace period.
340	 */
341	rcu_preempt_qs();
342}
343
344/*
345 * Check for preempted RCU readers blocking the current grace period
346 * for the specified rcu_node structure.  If the caller needs a reliable
347 * answer, it must hold the rcu_node's ->lock.
348 */
349static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
350{
351	return rnp->gp_tasks != NULL;
352}
353
354/*
355 * Advance a ->blkd_tasks-list pointer to the next entry, instead
356 * returning NULL if at the end of the list.
357 */
358static struct list_head *rcu_next_node_entry(struct task_struct *t,
359					     struct rcu_node *rnp)
360{
361	struct list_head *np;
362
363	np = t->rcu_node_entry.next;
364	if (np == &rnp->blkd_tasks)
365		np = NULL;
366	return np;
367}
368
369/*
370 * Return true if the specified rcu_node structure has tasks that were
371 * preempted within an RCU read-side critical section.
372 */
373static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
374{
375	return !list_empty(&rnp->blkd_tasks);
376}
377
378/*
379 * Handle special cases during rcu_read_unlock(), such as needing to
380 * notify RCU core processing or task having blocked during the RCU
381 * read-side critical section.
382 */
383void rcu_read_unlock_special(struct task_struct *t)
384{
385	bool empty_exp;
386	bool empty_norm;
387	bool empty_exp_now;
388	unsigned long flags;
389	struct list_head *np;
390	bool drop_boost_mutex = false;
391	struct rcu_data *rdp;
392	struct rcu_node *rnp;
393	union rcu_special special;
394
395	/* NMI handlers cannot block and cannot safely manipulate state. */
396	if (in_nmi())
397		return;
398
399	local_irq_save(flags);
400
401	/*
402	 * If RCU core is waiting for this CPU to exit its critical section,
403	 * report the fact that it has exited.  Because irqs are disabled,
404	 * t->rcu_read_unlock_special cannot change.
405	 */
406	special = t->rcu_read_unlock_special;
407	if (special.b.need_qs) {
408		rcu_preempt_qs();
409		t->rcu_read_unlock_special.b.need_qs = false;
410		if (!t->rcu_read_unlock_special.s) {
411			local_irq_restore(flags);
412			return;
413		}
414	}
415
416	/*
417	 * Respond to a request for an expedited grace period, but only if
418	 * we were not preempted, meaning that we were running on the same
419	 * CPU throughout.  If we were preempted, the exp_need_qs flag
420	 * would have been cleared at the time of the first preemption,
421	 * and the quiescent state would be reported when we were dequeued.
422	 */
423	if (special.b.exp_need_qs) {
424		WARN_ON_ONCE(special.b.blocked);
425		t->rcu_read_unlock_special.b.exp_need_qs = false;
426		rdp = this_cpu_ptr(rcu_state_p->rda);
427		rcu_report_exp_rdp(rcu_state_p, rdp, true);
428		if (!t->rcu_read_unlock_special.s) {
429			local_irq_restore(flags);
430			return;
431		}
432	}
433
434	/* Hardware IRQ handlers cannot block, complain if they get here. */
435	if (in_irq() || in_serving_softirq()) {
436		lockdep_rcu_suspicious(__FILE__, __LINE__,
437				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
438		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
439			 t->rcu_read_unlock_special.s,
440			 t->rcu_read_unlock_special.b.blocked,
441			 t->rcu_read_unlock_special.b.exp_need_qs,
442			 t->rcu_read_unlock_special.b.need_qs);
443		local_irq_restore(flags);
444		return;
445	}
446
447	/* Clean up if blocked during RCU read-side critical section. */
448	if (special.b.blocked) {
449		t->rcu_read_unlock_special.b.blocked = false;
450
451		/*
452		 * Remove this task from the list it blocked on.  The task
453		 * now remains queued on the rcu_node corresponding to
454		 * the CPU it first blocked on, so the first attempt to
455		 * acquire the task's rcu_node's ->lock will succeed.
456		 * Keep the loop and add a WARN_ON() out of sheer paranoia.
457		 */
458		for (;;) {
459			rnp = t->rcu_blocked_node;
460			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
461			smp_mb__after_unlock_lock();
462			if (rnp == t->rcu_blocked_node)
463				break;
464			WARN_ON_ONCE(1);
465			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
466		}
467		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
468		empty_exp = sync_rcu_preempt_exp_done(rnp);
469		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
470		np = rcu_next_node_entry(t, rnp);
471		list_del_init(&t->rcu_node_entry);
472		t->rcu_blocked_node = NULL;
473		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
474						rnp->gpnum, t->pid);
475		if (&t->rcu_node_entry == rnp->gp_tasks)
476			rnp->gp_tasks = np;
477		if (&t->rcu_node_entry == rnp->exp_tasks)
478			rnp->exp_tasks = np;
479		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
480			if (&t->rcu_node_entry == rnp->boost_tasks)
481				rnp->boost_tasks = np;
482			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
483			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
484		}
485
486		/*
487		 * If this was the last task on the current list, and if
488		 * we aren't waiting on any CPUs, report the quiescent state.
489		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
490		 * so we must take a snapshot of the expedited state.
491		 */
492		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
493		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
494			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
495							 rnp->gpnum,
496							 0, rnp->qsmask,
497							 rnp->level,
498							 rnp->grplo,
499							 rnp->grphi,
500							 !!rnp->gp_tasks);
501			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
502		} else {
503			raw_spin_unlock_irqrestore(&rnp->lock, flags);
504		}
505
506		/* Unboost if we were boosted. */
507		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
508			rt_mutex_unlock(&rnp->boost_mtx);
509
510		/*
511		 * If this was the last task on the expedited lists,
512		 * then we need to report up the rcu_node hierarchy.
513		 */
514		if (!empty_exp && empty_exp_now)
515			rcu_report_exp_rnp(rcu_state_p, rnp, true);
516	} else {
517		local_irq_restore(flags);
518	}
519}
520
521/*
522 * Dump detailed information for all tasks blocking the current RCU
523 * grace period on the specified rcu_node structure.
524 */
525static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
526{
527	unsigned long flags;
528	struct task_struct *t;
529
530	raw_spin_lock_irqsave(&rnp->lock, flags);
531	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
532		raw_spin_unlock_irqrestore(&rnp->lock, flags);
533		return;
534	}
535	t = list_entry(rnp->gp_tasks->prev,
536		       struct task_struct, rcu_node_entry);
537	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
538		sched_show_task(t);
539	raw_spin_unlock_irqrestore(&rnp->lock, flags);
540}
541
542/*
543 * Dump detailed information for all tasks blocking the current RCU
544 * grace period.
545 */
546static void rcu_print_detail_task_stall(struct rcu_state *rsp)
547{
548	struct rcu_node *rnp = rcu_get_root(rsp);
549
550	rcu_print_detail_task_stall_rnp(rnp);
551	rcu_for_each_leaf_node(rsp, rnp)
552		rcu_print_detail_task_stall_rnp(rnp);
553}
554
555static void rcu_print_task_stall_begin(struct rcu_node *rnp)
556{
557	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
558	       rnp->level, rnp->grplo, rnp->grphi);
559}
560
561static void rcu_print_task_stall_end(void)
562{
563	pr_cont("\n");
564}
565
566/*
567 * Scan the current list of tasks blocked within RCU read-side critical
568 * sections, printing out the tid of each.
569 */
570static int rcu_print_task_stall(struct rcu_node *rnp)
571{
572	struct task_struct *t;
573	int ndetected = 0;
574
575	if (!rcu_preempt_blocked_readers_cgp(rnp))
576		return 0;
577	rcu_print_task_stall_begin(rnp);
578	t = list_entry(rnp->gp_tasks->prev,
579		       struct task_struct, rcu_node_entry);
580	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
581		pr_cont(" P%d", t->pid);
582		ndetected++;
583	}
584	rcu_print_task_stall_end();
585	return ndetected;
586}
587
588/*
589 * Scan the current list of tasks blocked within RCU read-side critical
590 * sections, printing out the tid of each that is blocking the current
591 * expedited grace period.
592 */
593static int rcu_print_task_exp_stall(struct rcu_node *rnp)
594{
595	struct task_struct *t;
596	int ndetected = 0;
597
598	if (!rnp->exp_tasks)
599		return 0;
600	t = list_entry(rnp->exp_tasks->prev,
601		       struct task_struct, rcu_node_entry);
602	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
603		pr_cont(" P%d", t->pid);
604		ndetected++;
605	}
606	return ndetected;
607}
608
609/*
610 * Check that the list of blocked tasks for the newly completed grace
611 * period is in fact empty.  It is a serious bug to complete a grace
612 * period that still has RCU readers blocked!  This function must be
613 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
614 * must be held by the caller.
615 *
616 * Also, if there are blocked tasks on the list, they automatically
617 * block the newly created grace period, so set up ->gp_tasks accordingly.
618 */
619static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
620{
621	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
622	if (rcu_preempt_has_tasks(rnp))
623		rnp->gp_tasks = rnp->blkd_tasks.next;
624	WARN_ON_ONCE(rnp->qsmask);
625}
626
627/*
628 * Check for a quiescent state from the current CPU.  When a task blocks,
629 * the task is recorded in the corresponding CPU's rcu_node structure,
630 * which is checked elsewhere.
631 *
632 * Caller must disable hard irqs.
633 */
634static void rcu_preempt_check_callbacks(void)
635{
636	struct task_struct *t = current;
637
638	if (t->rcu_read_lock_nesting == 0) {
639		rcu_preempt_qs();
640		return;
641	}
642	if (t->rcu_read_lock_nesting > 0 &&
643	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
644	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
645		t->rcu_read_unlock_special.b.need_qs = true;
646}
647
648#ifdef CONFIG_RCU_BOOST
649
650static void rcu_preempt_do_callbacks(void)
651{
652	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
653}
654
655#endif /* #ifdef CONFIG_RCU_BOOST */
656
657/*
658 * Queue a preemptible-RCU callback for invocation after a grace period.
659 */
660void call_rcu(struct rcu_head *head, rcu_callback_t func)
661{
662	__call_rcu(head, func, rcu_state_p, -1, 0);
663}
664EXPORT_SYMBOL_GPL(call_rcu);
665
666/**
667 * synchronize_rcu - wait until a grace period has elapsed.
668 *
669 * Control will return to the caller some time after a full grace
670 * period has elapsed, in other words after all currently executing RCU
671 * read-side critical sections have completed.  Note, however, that
672 * upon return from synchronize_rcu(), the caller might well be executing
673 * concurrently with new RCU read-side critical sections that began while
674 * synchronize_rcu() was waiting.  RCU read-side critical sections are
675 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
676 *
677 * See the description of synchronize_sched() for more detailed information
678 * on memory ordering guarantees.
679 */
680void synchronize_rcu(void)
681{
682	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
683			 lock_is_held(&rcu_lock_map) ||
684			 lock_is_held(&rcu_sched_lock_map),
685			 "Illegal synchronize_rcu() in RCU read-side critical section");
686	if (!rcu_scheduler_active)
687		return;
688	if (rcu_gp_is_expedited())
689		synchronize_rcu_expedited();
690	else
691		wait_rcu_gp(call_rcu);
692}
693EXPORT_SYMBOL_GPL(synchronize_rcu);
694
695/*
696 * Remote handler for smp_call_function_single().  If there is an
697 * RCU read-side critical section in effect, request that the
698 * next rcu_read_unlock() record the quiescent state up the
699 * ->expmask fields in the rcu_node tree.  Otherwise, immediately
700 * report the quiescent state.
701 */
702static void sync_rcu_exp_handler(void *info)
703{
704	struct rcu_data *rdp;
705	struct rcu_state *rsp = info;
706	struct task_struct *t = current;
707
708	/*
709	 * Within an RCU read-side critical section, request that the next
710	 * rcu_read_unlock() report.  Unless this RCU read-side critical
711	 * section has already blocked, in which case it is already set
712	 * up for the expedited grace period to wait on it.
713	 */
714	if (t->rcu_read_lock_nesting > 0 &&
715	    !t->rcu_read_unlock_special.b.blocked) {
716		t->rcu_read_unlock_special.b.exp_need_qs = true;
717		return;
718	}
719
720	/*
721	 * We are either exiting an RCU read-side critical section (negative
722	 * values of t->rcu_read_lock_nesting) or are not in one at all
723	 * (zero value of t->rcu_read_lock_nesting).  Or we are in an RCU
724	 * read-side critical section that blocked before this expedited
725	 * grace period started.  Either way, we can immediately report
726	 * the quiescent state.
727	 */
728	rdp = this_cpu_ptr(rsp->rda);
729	rcu_report_exp_rdp(rsp, rdp, true);
730}
731
732/**
733 * synchronize_rcu_expedited - Brute-force RCU grace period
734 *
735 * Wait for an RCU-preempt grace period, but expedite it.  The basic
736 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
737 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
738 * significant time on all CPUs and is unfriendly to real-time workloads,
739 * so is thus not recommended for any sort of common-case code.
740 * In fact, if you are using synchronize_rcu_expedited() in a loop,
741 * please restructure your code to batch your updates, and then Use a
742 * single synchronize_rcu() instead.
743 */
744void synchronize_rcu_expedited(void)
745{
746	struct rcu_node *rnp;
747	struct rcu_node *rnp_unlock;
748	struct rcu_state *rsp = rcu_state_p;
749	unsigned long s;
750
751	s = rcu_exp_gp_seq_snap(rsp);
752
753	rnp_unlock = exp_funnel_lock(rsp, s);
754	if (rnp_unlock == NULL)
755		return;  /* Someone else did our work for us. */
756
757	rcu_exp_gp_seq_start(rsp);
758
759	/* Initialize the rcu_node tree in preparation for the wait. */
760	sync_rcu_exp_select_cpus(rsp, sync_rcu_exp_handler);
761
762	/* Wait for snapshotted ->blkd_tasks lists to drain. */
763	rnp = rcu_get_root(rsp);
764	synchronize_sched_expedited_wait(rsp);
765
766	/* Clean up and exit. */
767	rcu_exp_gp_seq_end(rsp);
768	mutex_unlock(&rnp_unlock->exp_funnel_mutex);
769}
770EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
771
772/**
773 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
774 *
775 * Note that this primitive does not necessarily wait for an RCU grace period
776 * to complete.  For example, if there are no RCU callbacks queued anywhere
777 * in the system, then rcu_barrier() is within its rights to return
778 * immediately, without waiting for anything, much less an RCU grace period.
779 */
780void rcu_barrier(void)
781{
782	_rcu_barrier(rcu_state_p);
783}
784EXPORT_SYMBOL_GPL(rcu_barrier);
785
786/*
787 * Initialize preemptible RCU's state structures.
788 */
789static void __init __rcu_init_preempt(void)
790{
791	rcu_init_one(rcu_state_p, rcu_data_p);
792}
793
794/*
795 * Check for a task exiting while in a preemptible-RCU read-side
796 * critical section, clean up if so.  No need to issue warnings,
797 * as debug_check_no_locks_held() already does this if lockdep
798 * is enabled.
799 */
800void exit_rcu(void)
801{
802	struct task_struct *t = current;
803
804	if (likely(list_empty(&current->rcu_node_entry)))
805		return;
806	t->rcu_read_lock_nesting = 1;
807	barrier();
808	t->rcu_read_unlock_special.b.blocked = true;
809	__rcu_read_unlock();
810}
811
812#else /* #ifdef CONFIG_PREEMPT_RCU */
813
814static struct rcu_state *const rcu_state_p = &rcu_sched_state;
815static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
816
817/*
818 * Tell them what RCU they are running.
819 */
820static void __init rcu_bootup_announce(void)
821{
822	pr_info("Hierarchical RCU implementation.\n");
823	rcu_bootup_announce_oddness();
824}
825
826/*
827 * Because preemptible RCU does not exist, we never have to check for
828 * CPUs being in quiescent states.
829 */
830static void rcu_preempt_note_context_switch(void)
831{
832}
833
834/*
835 * Because preemptible RCU does not exist, there are never any preempted
836 * RCU readers.
837 */
838static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
839{
840	return 0;
841}
842
843/*
844 * Because there is no preemptible RCU, there can be no readers blocked.
845 */
846static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
847{
848	return false;
849}
850
851/*
852 * Because preemptible RCU does not exist, we never have to check for
853 * tasks blocked within RCU read-side critical sections.
854 */
855static void rcu_print_detail_task_stall(struct rcu_state *rsp)
856{
857}
858
859/*
860 * Because preemptible RCU does not exist, we never have to check for
861 * tasks blocked within RCU read-side critical sections.
862 */
863static int rcu_print_task_stall(struct rcu_node *rnp)
864{
865	return 0;
866}
867
868/*
869 * Because preemptible RCU does not exist, we never have to check for
870 * tasks blocked within RCU read-side critical sections that are
871 * blocking the current expedited grace period.
872 */
873static int rcu_print_task_exp_stall(struct rcu_node *rnp)
874{
875	return 0;
876}
877
878/*
879 * Because there is no preemptible RCU, there can be no readers blocked,
880 * so there is no need to check for blocked tasks.  So check only for
881 * bogus qsmask values.
882 */
883static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
884{
885	WARN_ON_ONCE(rnp->qsmask);
886}
887
888/*
889 * Because preemptible RCU does not exist, it never has any callbacks
890 * to check.
891 */
892static void rcu_preempt_check_callbacks(void)
893{
894}
895
896/*
897 * Wait for an rcu-preempt grace period, but make it happen quickly.
898 * But because preemptible RCU does not exist, map to rcu-sched.
899 */
900void synchronize_rcu_expedited(void)
901{
902	synchronize_sched_expedited();
903}
904EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
905
906/*
907 * Because preemptible RCU does not exist, rcu_barrier() is just
908 * another name for rcu_barrier_sched().
909 */
910void rcu_barrier(void)
911{
912	rcu_barrier_sched();
913}
914EXPORT_SYMBOL_GPL(rcu_barrier);
915
916/*
917 * Because preemptible RCU does not exist, it need not be initialized.
918 */
919static void __init __rcu_init_preempt(void)
920{
921}
922
923/*
924 * Because preemptible RCU does not exist, tasks cannot possibly exit
925 * while in preemptible RCU read-side critical sections.
926 */
927void exit_rcu(void)
928{
929}
930
931#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
932
933#ifdef CONFIG_RCU_BOOST
934
935#include "../locking/rtmutex_common.h"
936
937#ifdef CONFIG_RCU_TRACE
938
939static void rcu_initiate_boost_trace(struct rcu_node *rnp)
940{
941	if (!rcu_preempt_has_tasks(rnp))
942		rnp->n_balk_blkd_tasks++;
943	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
944		rnp->n_balk_exp_gp_tasks++;
945	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
946		rnp->n_balk_boost_tasks++;
947	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
948		rnp->n_balk_notblocked++;
949	else if (rnp->gp_tasks != NULL &&
950		 ULONG_CMP_LT(jiffies, rnp->boost_time))
951		rnp->n_balk_notyet++;
952	else
953		rnp->n_balk_nos++;
954}
955
956#else /* #ifdef CONFIG_RCU_TRACE */
957
958static void rcu_initiate_boost_trace(struct rcu_node *rnp)
959{
960}
961
962#endif /* #else #ifdef CONFIG_RCU_TRACE */
963
964static void rcu_wake_cond(struct task_struct *t, int status)
965{
966	/*
967	 * If the thread is yielding, only wake it when this
968	 * is invoked from idle
969	 */
970	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
971		wake_up_process(t);
972}
973
974/*
975 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
976 * or ->boost_tasks, advancing the pointer to the next task in the
977 * ->blkd_tasks list.
978 *
979 * Note that irqs must be enabled: boosting the task can block.
980 * Returns 1 if there are more tasks needing to be boosted.
981 */
982static int rcu_boost(struct rcu_node *rnp)
983{
984	unsigned long flags;
985	struct task_struct *t;
986	struct list_head *tb;
987
988	if (READ_ONCE(rnp->exp_tasks) == NULL &&
989	    READ_ONCE(rnp->boost_tasks) == NULL)
990		return 0;  /* Nothing left to boost. */
991
992	raw_spin_lock_irqsave(&rnp->lock, flags);
993	smp_mb__after_unlock_lock();
994
995	/*
996	 * Recheck under the lock: all tasks in need of boosting
997	 * might exit their RCU read-side critical sections on their own.
998	 */
999	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1000		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1001		return 0;
1002	}
1003
1004	/*
1005	 * Preferentially boost tasks blocking expedited grace periods.
1006	 * This cannot starve the normal grace periods because a second
1007	 * expedited grace period must boost all blocked tasks, including
1008	 * those blocking the pre-existing normal grace period.
1009	 */
1010	if (rnp->exp_tasks != NULL) {
1011		tb = rnp->exp_tasks;
1012		rnp->n_exp_boosts++;
1013	} else {
1014		tb = rnp->boost_tasks;
1015		rnp->n_normal_boosts++;
1016	}
1017	rnp->n_tasks_boosted++;
1018
1019	/*
1020	 * We boost task t by manufacturing an rt_mutex that appears to
1021	 * be held by task t.  We leave a pointer to that rt_mutex where
1022	 * task t can find it, and task t will release the mutex when it
1023	 * exits its outermost RCU read-side critical section.  Then
1024	 * simply acquiring this artificial rt_mutex will boost task
1025	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1026	 *
1027	 * Note that task t must acquire rnp->lock to remove itself from
1028	 * the ->blkd_tasks list, which it will do from exit() if from
1029	 * nowhere else.  We therefore are guaranteed that task t will
1030	 * stay around at least until we drop rnp->lock.  Note that
1031	 * rnp->lock also resolves races between our priority boosting
1032	 * and task t's exiting its outermost RCU read-side critical
1033	 * section.
1034	 */
1035	t = container_of(tb, struct task_struct, rcu_node_entry);
1036	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1037	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1038	/* Lock only for side effect: boosts task t's priority. */
1039	rt_mutex_lock(&rnp->boost_mtx);
1040	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1041
1042	return READ_ONCE(rnp->exp_tasks) != NULL ||
1043	       READ_ONCE(rnp->boost_tasks) != NULL;
1044}
1045
1046/*
1047 * Priority-boosting kthread, one per leaf rcu_node.
1048 */
1049static int rcu_boost_kthread(void *arg)
1050{
1051	struct rcu_node *rnp = (struct rcu_node *)arg;
1052	int spincnt = 0;
1053	int more2boost;
1054
1055	trace_rcu_utilization(TPS("Start boost kthread@init"));
1056	for (;;) {
1057		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1058		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1059		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1060		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1061		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1062		more2boost = rcu_boost(rnp);
1063		if (more2boost)
1064			spincnt++;
1065		else
1066			spincnt = 0;
1067		if (spincnt > 10) {
1068			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1069			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1070			schedule_timeout_interruptible(2);
1071			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1072			spincnt = 0;
1073		}
1074	}
1075	/* NOTREACHED */
1076	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1077	return 0;
1078}
1079
1080/*
1081 * Check to see if it is time to start boosting RCU readers that are
1082 * blocking the current grace period, and, if so, tell the per-rcu_node
1083 * kthread to start boosting them.  If there is an expedited grace
1084 * period in progress, it is always time to boost.
1085 *
1086 * The caller must hold rnp->lock, which this function releases.
1087 * The ->boost_kthread_task is immortal, so we don't need to worry
1088 * about it going away.
1089 */
1090static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1091	__releases(rnp->lock)
1092{
1093	struct task_struct *t;
1094
1095	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1096		rnp->n_balk_exp_gp_tasks++;
1097		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1098		return;
1099	}
1100	if (rnp->exp_tasks != NULL ||
1101	    (rnp->gp_tasks != NULL &&
1102	     rnp->boost_tasks == NULL &&
1103	     rnp->qsmask == 0 &&
1104	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1105		if (rnp->exp_tasks == NULL)
1106			rnp->boost_tasks = rnp->gp_tasks;
1107		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1108		t = rnp->boost_kthread_task;
1109		if (t)
1110			rcu_wake_cond(t, rnp->boost_kthread_status);
1111	} else {
1112		rcu_initiate_boost_trace(rnp);
1113		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1114	}
1115}
1116
1117/*
1118 * Wake up the per-CPU kthread to invoke RCU callbacks.
1119 */
1120static void invoke_rcu_callbacks_kthread(void)
1121{
1122	unsigned long flags;
1123
1124	local_irq_save(flags);
1125	__this_cpu_write(rcu_cpu_has_work, 1);
1126	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1127	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1128		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1129			      __this_cpu_read(rcu_cpu_kthread_status));
1130	}
1131	local_irq_restore(flags);
1132}
1133
1134/*
1135 * Is the current CPU running the RCU-callbacks kthread?
1136 * Caller must have preemption disabled.
1137 */
1138static bool rcu_is_callbacks_kthread(void)
1139{
1140	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1141}
1142
1143#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1144
1145/*
1146 * Do priority-boost accounting for the start of a new grace period.
1147 */
1148static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1149{
1150	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1151}
1152
1153/*
1154 * Create an RCU-boost kthread for the specified node if one does not
1155 * already exist.  We only create this kthread for preemptible RCU.
1156 * Returns zero if all is well, a negated errno otherwise.
1157 */
1158static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1159				       struct rcu_node *rnp)
1160{
1161	int rnp_index = rnp - &rsp->node[0];
1162	unsigned long flags;
1163	struct sched_param sp;
1164	struct task_struct *t;
1165
1166	if (rcu_state_p != rsp)
1167		return 0;
1168
1169	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1170		return 0;
1171
1172	rsp->boost = 1;
1173	if (rnp->boost_kthread_task != NULL)
1174		return 0;
1175	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1176			   "rcub/%d", rnp_index);
1177	if (IS_ERR(t))
1178		return PTR_ERR(t);
1179	raw_spin_lock_irqsave(&rnp->lock, flags);
1180	smp_mb__after_unlock_lock();
1181	rnp->boost_kthread_task = t;
1182	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1183	sp.sched_priority = kthread_prio;
1184	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1185	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1186	return 0;
1187}
1188
1189static void rcu_kthread_do_work(void)
1190{
1191	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1192	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1193	rcu_preempt_do_callbacks();
1194}
1195
1196static void rcu_cpu_kthread_setup(unsigned int cpu)
1197{
1198	struct sched_param sp;
1199
1200	sp.sched_priority = kthread_prio;
1201	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1202}
1203
1204static void rcu_cpu_kthread_park(unsigned int cpu)
1205{
1206	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1207}
1208
1209static int rcu_cpu_kthread_should_run(unsigned int cpu)
1210{
1211	return __this_cpu_read(rcu_cpu_has_work);
1212}
1213
1214/*
1215 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1216 * RCU softirq used in flavors and configurations of RCU that do not
1217 * support RCU priority boosting.
1218 */
1219static void rcu_cpu_kthread(unsigned int cpu)
1220{
1221	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1222	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1223	int spincnt;
1224
1225	for (spincnt = 0; spincnt < 10; spincnt++) {
1226		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1227		local_bh_disable();
1228		*statusp = RCU_KTHREAD_RUNNING;
1229		this_cpu_inc(rcu_cpu_kthread_loops);
1230		local_irq_disable();
1231		work = *workp;
1232		*workp = 0;
1233		local_irq_enable();
1234		if (work)
1235			rcu_kthread_do_work();
1236		local_bh_enable();
1237		if (*workp == 0) {
1238			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1239			*statusp = RCU_KTHREAD_WAITING;
1240			return;
1241		}
1242	}
1243	*statusp = RCU_KTHREAD_YIELDING;
1244	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1245	schedule_timeout_interruptible(2);
1246	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1247	*statusp = RCU_KTHREAD_WAITING;
1248}
1249
1250/*
1251 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1252 * served by the rcu_node in question.  The CPU hotplug lock is still
1253 * held, so the value of rnp->qsmaskinit will be stable.
1254 *
1255 * We don't include outgoingcpu in the affinity set, use -1 if there is
1256 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1257 * this function allows the kthread to execute on any CPU.
1258 */
1259static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1260{
1261	struct task_struct *t = rnp->boost_kthread_task;
1262	unsigned long mask = rcu_rnp_online_cpus(rnp);
1263	cpumask_var_t cm;
1264	int cpu;
1265
1266	if (!t)
1267		return;
1268	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1269		return;
1270	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1271		if ((mask & 0x1) && cpu != outgoingcpu)
1272			cpumask_set_cpu(cpu, cm);
1273	if (cpumask_weight(cm) == 0)
1274		cpumask_setall(cm);
1275	set_cpus_allowed_ptr(t, cm);
1276	free_cpumask_var(cm);
1277}
1278
1279static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1280	.store			= &rcu_cpu_kthread_task,
1281	.thread_should_run	= rcu_cpu_kthread_should_run,
1282	.thread_fn		= rcu_cpu_kthread,
1283	.thread_comm		= "rcuc/%u",
1284	.setup			= rcu_cpu_kthread_setup,
1285	.park			= rcu_cpu_kthread_park,
1286};
1287
1288/*
1289 * Spawn boost kthreads -- called as soon as the scheduler is running.
1290 */
1291static void __init rcu_spawn_boost_kthreads(void)
1292{
1293	struct rcu_node *rnp;
1294	int cpu;
1295
1296	for_each_possible_cpu(cpu)
1297		per_cpu(rcu_cpu_has_work, cpu) = 0;
1298	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1299	rcu_for_each_leaf_node(rcu_state_p, rnp)
1300		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1301}
1302
1303static void rcu_prepare_kthreads(int cpu)
1304{
1305	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1306	struct rcu_node *rnp = rdp->mynode;
1307
1308	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1309	if (rcu_scheduler_fully_active)
1310		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1311}
1312
1313#else /* #ifdef CONFIG_RCU_BOOST */
1314
1315static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1316	__releases(rnp->lock)
1317{
1318	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1319}
1320
1321static void invoke_rcu_callbacks_kthread(void)
1322{
1323	WARN_ON_ONCE(1);
1324}
1325
1326static bool rcu_is_callbacks_kthread(void)
1327{
1328	return false;
1329}
1330
1331static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1332{
1333}
1334
1335static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1336{
1337}
1338
1339static void __init rcu_spawn_boost_kthreads(void)
1340{
1341}
1342
1343static void rcu_prepare_kthreads(int cpu)
1344{
1345}
1346
1347#endif /* #else #ifdef CONFIG_RCU_BOOST */
1348
1349#if !defined(CONFIG_RCU_FAST_NO_HZ)
1350
1351/*
1352 * Check to see if any future RCU-related work will need to be done
1353 * by the current CPU, even if none need be done immediately, returning
1354 * 1 if so.  This function is part of the RCU implementation; it is -not-
1355 * an exported member of the RCU API.
1356 *
1357 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1358 * any flavor of RCU.
1359 */
1360int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1361{
1362	*nextevt = KTIME_MAX;
1363	return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1364	       ? 0 : rcu_cpu_has_callbacks(NULL);
1365}
1366
1367/*
1368 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1369 * after it.
1370 */
1371static void rcu_cleanup_after_idle(void)
1372{
1373}
1374
1375/*
1376 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1377 * is nothing.
1378 */
1379static void rcu_prepare_for_idle(void)
1380{
1381}
1382
1383/*
1384 * Don't bother keeping a running count of the number of RCU callbacks
1385 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1386 */
1387static void rcu_idle_count_callbacks_posted(void)
1388{
1389}
1390
1391#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1392
1393/*
1394 * This code is invoked when a CPU goes idle, at which point we want
1395 * to have the CPU do everything required for RCU so that it can enter
1396 * the energy-efficient dyntick-idle mode.  This is handled by a
1397 * state machine implemented by rcu_prepare_for_idle() below.
1398 *
1399 * The following three proprocessor symbols control this state machine:
1400 *
1401 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1402 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1403 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1404 *	benchmarkers who might otherwise be tempted to set this to a large
1405 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1406 *	system.  And if you are -that- concerned about energy efficiency,
1407 *	just power the system down and be done with it!
1408 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1409 *	permitted to sleep in dyntick-idle mode with only lazy RCU
1410 *	callbacks pending.  Setting this too high can OOM your system.
1411 *
1412 * The values below work well in practice.  If future workloads require
1413 * adjustment, they can be converted into kernel config parameters, though
1414 * making the state machine smarter might be a better option.
1415 */
1416#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1417#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1418
1419static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1420module_param(rcu_idle_gp_delay, int, 0644);
1421static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1422module_param(rcu_idle_lazy_gp_delay, int, 0644);
1423
1424/*
1425 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1426 * only if it has been awhile since the last time we did so.  Afterwards,
1427 * if there are any callbacks ready for immediate invocation, return true.
1428 */
1429static bool __maybe_unused rcu_try_advance_all_cbs(void)
1430{
1431	bool cbs_ready = false;
1432	struct rcu_data *rdp;
1433	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1434	struct rcu_node *rnp;
1435	struct rcu_state *rsp;
1436
1437	/* Exit early if we advanced recently. */
1438	if (jiffies == rdtp->last_advance_all)
1439		return false;
1440	rdtp->last_advance_all = jiffies;
1441
1442	for_each_rcu_flavor(rsp) {
1443		rdp = this_cpu_ptr(rsp->rda);
1444		rnp = rdp->mynode;
1445
1446		/*
1447		 * Don't bother checking unless a grace period has
1448		 * completed since we last checked and there are
1449		 * callbacks not yet ready to invoke.
1450		 */
1451		if ((rdp->completed != rnp->completed ||
1452		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1453		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1454			note_gp_changes(rsp, rdp);
1455
1456		if (cpu_has_callbacks_ready_to_invoke(rdp))
1457			cbs_ready = true;
1458	}
1459	return cbs_ready;
1460}
1461
1462/*
1463 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1464 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1465 * caller to set the timeout based on whether or not there are non-lazy
1466 * callbacks.
1467 *
1468 * The caller must have disabled interrupts.
1469 */
1470int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1471{
1472	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1473	unsigned long dj;
1474
1475	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1476		*nextevt = KTIME_MAX;
1477		return 0;
1478	}
1479
1480	/* Snapshot to detect later posting of non-lazy callback. */
1481	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1482
1483	/* If no callbacks, RCU doesn't need the CPU. */
1484	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1485		*nextevt = KTIME_MAX;
1486		return 0;
1487	}
1488
1489	/* Attempt to advance callbacks. */
1490	if (rcu_try_advance_all_cbs()) {
1491		/* Some ready to invoke, so initiate later invocation. */
1492		invoke_rcu_core();
1493		return 1;
1494	}
1495	rdtp->last_accelerate = jiffies;
1496
1497	/* Request timer delay depending on laziness, and round. */
1498	if (!rdtp->all_lazy) {
1499		dj = round_up(rcu_idle_gp_delay + jiffies,
1500			       rcu_idle_gp_delay) - jiffies;
1501	} else {
1502		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1503	}
1504	*nextevt = basemono + dj * TICK_NSEC;
1505	return 0;
1506}
1507
1508/*
1509 * Prepare a CPU for idle from an RCU perspective.  The first major task
1510 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1511 * The second major task is to check to see if a non-lazy callback has
1512 * arrived at a CPU that previously had only lazy callbacks.  The third
1513 * major task is to accelerate (that is, assign grace-period numbers to)
1514 * any recently arrived callbacks.
1515 *
1516 * The caller must have disabled interrupts.
1517 */
1518static void rcu_prepare_for_idle(void)
1519{
1520	bool needwake;
1521	struct rcu_data *rdp;
1522	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1523	struct rcu_node *rnp;
1524	struct rcu_state *rsp;
1525	int tne;
1526
1527	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL))
1528		return;
1529
1530	/* Handle nohz enablement switches conservatively. */
1531	tne = READ_ONCE(tick_nohz_active);
1532	if (tne != rdtp->tick_nohz_enabled_snap) {
1533		if (rcu_cpu_has_callbacks(NULL))
1534			invoke_rcu_core(); /* force nohz to see update. */
1535		rdtp->tick_nohz_enabled_snap = tne;
1536		return;
1537	}
1538	if (!tne)
1539		return;
1540
1541	/* If this is a no-CBs CPU, no callbacks, just return. */
1542	if (rcu_is_nocb_cpu(smp_processor_id()))
1543		return;
1544
1545	/*
1546	 * If a non-lazy callback arrived at a CPU having only lazy
1547	 * callbacks, invoke RCU core for the side-effect of recalculating
1548	 * idle duration on re-entry to idle.
1549	 */
1550	if (rdtp->all_lazy &&
1551	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1552		rdtp->all_lazy = false;
1553		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1554		invoke_rcu_core();
1555		return;
1556	}
1557
1558	/*
1559	 * If we have not yet accelerated this jiffy, accelerate all
1560	 * callbacks on this CPU.
1561	 */
1562	if (rdtp->last_accelerate == jiffies)
1563		return;
1564	rdtp->last_accelerate = jiffies;
1565	for_each_rcu_flavor(rsp) {
1566		rdp = this_cpu_ptr(rsp->rda);
1567		if (!*rdp->nxttail[RCU_DONE_TAIL])
1568			continue;
1569		rnp = rdp->mynode;
1570		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1571		smp_mb__after_unlock_lock();
1572		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1573		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1574		if (needwake)
1575			rcu_gp_kthread_wake(rsp);
1576	}
1577}
1578
1579/*
1580 * Clean up for exit from idle.  Attempt to advance callbacks based on
1581 * any grace periods that elapsed while the CPU was idle, and if any
1582 * callbacks are now ready to invoke, initiate invocation.
1583 */
1584static void rcu_cleanup_after_idle(void)
1585{
1586	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1587	    rcu_is_nocb_cpu(smp_processor_id()))
1588		return;
1589	if (rcu_try_advance_all_cbs())
1590		invoke_rcu_core();
1591}
1592
1593/*
1594 * Keep a running count of the number of non-lazy callbacks posted
1595 * on this CPU.  This running counter (which is never decremented) allows
1596 * rcu_prepare_for_idle() to detect when something out of the idle loop
1597 * posts a callback, even if an equal number of callbacks are invoked.
1598 * Of course, callbacks should only be posted from within a trace event
1599 * designed to be called from idle or from within RCU_NONIDLE().
1600 */
1601static void rcu_idle_count_callbacks_posted(void)
1602{
1603	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1604}
1605
1606/*
1607 * Data for flushing lazy RCU callbacks at OOM time.
1608 */
1609static atomic_t oom_callback_count;
1610static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1611
1612/*
1613 * RCU OOM callback -- decrement the outstanding count and deliver the
1614 * wake-up if we are the last one.
1615 */
1616static void rcu_oom_callback(struct rcu_head *rhp)
1617{
1618	if (atomic_dec_and_test(&oom_callback_count))
1619		wake_up(&oom_callback_wq);
1620}
1621
1622/*
1623 * Post an rcu_oom_notify callback on the current CPU if it has at
1624 * least one lazy callback.  This will unnecessarily post callbacks
1625 * to CPUs that already have a non-lazy callback at the end of their
1626 * callback list, but this is an infrequent operation, so accept some
1627 * extra overhead to keep things simple.
1628 */
1629static void rcu_oom_notify_cpu(void *unused)
1630{
1631	struct rcu_state *rsp;
1632	struct rcu_data *rdp;
1633
1634	for_each_rcu_flavor(rsp) {
1635		rdp = raw_cpu_ptr(rsp->rda);
1636		if (rdp->qlen_lazy != 0) {
1637			atomic_inc(&oom_callback_count);
1638			rsp->call(&rdp->oom_head, rcu_oom_callback);
1639		}
1640	}
1641}
1642
1643/*
1644 * If low on memory, ensure that each CPU has a non-lazy callback.
1645 * This will wake up CPUs that have only lazy callbacks, in turn
1646 * ensuring that they free up the corresponding memory in a timely manner.
1647 * Because an uncertain amount of memory will be freed in some uncertain
1648 * timeframe, we do not claim to have freed anything.
1649 */
1650static int rcu_oom_notify(struct notifier_block *self,
1651			  unsigned long notused, void *nfreed)
1652{
1653	int cpu;
1654
1655	/* Wait for callbacks from earlier instance to complete. */
1656	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1657	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1658
1659	/*
1660	 * Prevent premature wakeup: ensure that all increments happen
1661	 * before there is a chance of the counter reaching zero.
1662	 */
1663	atomic_set(&oom_callback_count, 1);
1664
1665	for_each_online_cpu(cpu) {
1666		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1667		cond_resched_rcu_qs();
1668	}
1669
1670	/* Unconditionally decrement: no need to wake ourselves up. */
1671	atomic_dec(&oom_callback_count);
1672
1673	return NOTIFY_OK;
1674}
1675
1676static struct notifier_block rcu_oom_nb = {
1677	.notifier_call = rcu_oom_notify
1678};
1679
1680static int __init rcu_register_oom_notifier(void)
1681{
1682	register_oom_notifier(&rcu_oom_nb);
1683	return 0;
1684}
1685early_initcall(rcu_register_oom_notifier);
1686
1687#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1688
1689#ifdef CONFIG_RCU_FAST_NO_HZ
1690
1691static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1692{
1693	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1694	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1695
1696	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1697		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1698		ulong2long(nlpd),
1699		rdtp->all_lazy ? 'L' : '.',
1700		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1701}
1702
1703#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1704
1705static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1706{
1707	*cp = '\0';
1708}
1709
1710#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1711
1712/* Initiate the stall-info list. */
1713static void print_cpu_stall_info_begin(void)
1714{
1715	pr_cont("\n");
1716}
1717
1718/*
1719 * Print out diagnostic information for the specified stalled CPU.
1720 *
1721 * If the specified CPU is aware of the current RCU grace period
1722 * (flavor specified by rsp), then print the number of scheduling
1723 * clock interrupts the CPU has taken during the time that it has
1724 * been aware.  Otherwise, print the number of RCU grace periods
1725 * that this CPU is ignorant of, for example, "1" if the CPU was
1726 * aware of the previous grace period.
1727 *
1728 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1729 */
1730static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1731{
1732	char fast_no_hz[72];
1733	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1734	struct rcu_dynticks *rdtp = rdp->dynticks;
1735	char *ticks_title;
1736	unsigned long ticks_value;
1737
1738	if (rsp->gpnum == rdp->gpnum) {
1739		ticks_title = "ticks this GP";
1740		ticks_value = rdp->ticks_this_gp;
1741	} else {
1742		ticks_title = "GPs behind";
1743		ticks_value = rsp->gpnum - rdp->gpnum;
1744	}
1745	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1746	pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1747	       cpu,
1748	       "O."[!!cpu_online(cpu)],
1749	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1750	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1751	       ticks_value, ticks_title,
1752	       atomic_read(&rdtp->dynticks) & 0xfff,
1753	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1754	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1755	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1756	       fast_no_hz);
1757}
1758
1759/* Terminate the stall-info list. */
1760static void print_cpu_stall_info_end(void)
1761{
1762	pr_err("\t");
1763}
1764
1765/* Zero ->ticks_this_gp for all flavors of RCU. */
1766static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1767{
1768	rdp->ticks_this_gp = 0;
1769	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1770}
1771
1772/* Increment ->ticks_this_gp for all flavors of RCU. */
1773static void increment_cpu_stall_ticks(void)
1774{
1775	struct rcu_state *rsp;
1776
1777	for_each_rcu_flavor(rsp)
1778		raw_cpu_inc(rsp->rda->ticks_this_gp);
1779}
1780
1781#ifdef CONFIG_RCU_NOCB_CPU
1782
1783/*
1784 * Offload callback processing from the boot-time-specified set of CPUs
1785 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1786 * kthread created that pulls the callbacks from the corresponding CPU,
1787 * waits for a grace period to elapse, and invokes the callbacks.
1788 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1789 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1790 * has been specified, in which case each kthread actively polls its
1791 * CPU.  (Which isn't so great for energy efficiency, but which does
1792 * reduce RCU's overhead on that CPU.)
1793 *
1794 * This is intended to be used in conjunction with Frederic Weisbecker's
1795 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1796 * running CPU-bound user-mode computations.
1797 *
1798 * Offloading of callback processing could also in theory be used as
1799 * an energy-efficiency measure because CPUs with no RCU callbacks
1800 * queued are more aggressive about entering dyntick-idle mode.
1801 */
1802
1803
1804/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1805static int __init rcu_nocb_setup(char *str)
1806{
1807	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1808	have_rcu_nocb_mask = true;
1809	cpulist_parse(str, rcu_nocb_mask);
1810	return 1;
1811}
1812__setup("rcu_nocbs=", rcu_nocb_setup);
1813
1814static int __init parse_rcu_nocb_poll(char *arg)
1815{
1816	rcu_nocb_poll = 1;
1817	return 0;
1818}
1819early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1820
1821/*
1822 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1823 * grace period.
1824 */
1825static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1826{
1827	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1828}
1829
1830/*
1831 * Set the root rcu_node structure's ->need_future_gp field
1832 * based on the sum of those of all rcu_node structures.  This does
1833 * double-count the root rcu_node structure's requests, but this
1834 * is necessary to handle the possibility of a rcu_nocb_kthread()
1835 * having awakened during the time that the rcu_node structures
1836 * were being updated for the end of the previous grace period.
1837 */
1838static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1839{
1840	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1841}
1842
1843static void rcu_init_one_nocb(struct rcu_node *rnp)
1844{
1845	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1846	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1847}
1848
1849#ifndef CONFIG_RCU_NOCB_CPU_ALL
1850/* Is the specified CPU a no-CBs CPU? */
1851bool rcu_is_nocb_cpu(int cpu)
1852{
1853	if (have_rcu_nocb_mask)
1854		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1855	return false;
1856}
1857#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1858
1859/*
1860 * Kick the leader kthread for this NOCB group.
1861 */
1862static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1863{
1864	struct rcu_data *rdp_leader = rdp->nocb_leader;
1865
1866	if (!READ_ONCE(rdp_leader->nocb_kthread))
1867		return;
1868	if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1869		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1870		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1871		wake_up(&rdp_leader->nocb_wq);
1872	}
1873}
1874
1875/*
1876 * Does the specified CPU need an RCU callback for the specified flavor
1877 * of rcu_barrier()?
1878 */
1879static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1880{
1881	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1882	unsigned long ret;
1883#ifdef CONFIG_PROVE_RCU
1884	struct rcu_head *rhp;
1885#endif /* #ifdef CONFIG_PROVE_RCU */
1886
1887	/*
1888	 * Check count of all no-CBs callbacks awaiting invocation.
1889	 * There needs to be a barrier before this function is called,
1890	 * but associated with a prior determination that no more
1891	 * callbacks would be posted.  In the worst case, the first
1892	 * barrier in _rcu_barrier() suffices (but the caller cannot
1893	 * necessarily rely on this, not a substitute for the caller
1894	 * getting the concurrency design right!).  There must also be
1895	 * a barrier between the following load an posting of a callback
1896	 * (if a callback is in fact needed).  This is associated with an
1897	 * atomic_inc() in the caller.
1898	 */
1899	ret = atomic_long_read(&rdp->nocb_q_count);
1900
1901#ifdef CONFIG_PROVE_RCU
1902	rhp = READ_ONCE(rdp->nocb_head);
1903	if (!rhp)
1904		rhp = READ_ONCE(rdp->nocb_gp_head);
1905	if (!rhp)
1906		rhp = READ_ONCE(rdp->nocb_follower_head);
1907
1908	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1909	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1910	    rcu_scheduler_fully_active) {
1911		/* RCU callback enqueued before CPU first came online??? */
1912		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1913		       cpu, rhp->func);
1914		WARN_ON_ONCE(1);
1915	}
1916#endif /* #ifdef CONFIG_PROVE_RCU */
1917
1918	return !!ret;
1919}
1920
1921/*
1922 * Enqueue the specified string of rcu_head structures onto the specified
1923 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1924 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1925 * counts are supplied by rhcount and rhcount_lazy.
1926 *
1927 * If warranted, also wake up the kthread servicing this CPUs queues.
1928 */
1929static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1930				    struct rcu_head *rhp,
1931				    struct rcu_head **rhtp,
1932				    int rhcount, int rhcount_lazy,
1933				    unsigned long flags)
1934{
1935	int len;
1936	struct rcu_head **old_rhpp;
1937	struct task_struct *t;
1938
1939	/* Enqueue the callback on the nocb list and update counts. */
1940	atomic_long_add(rhcount, &rdp->nocb_q_count);
1941	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1942	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1943	WRITE_ONCE(*old_rhpp, rhp);
1944	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1945	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1946
1947	/* If we are not being polled and there is a kthread, awaken it ... */
1948	t = READ_ONCE(rdp->nocb_kthread);
1949	if (rcu_nocb_poll || !t) {
1950		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1951				    TPS("WakeNotPoll"));
1952		return;
1953	}
1954	len = atomic_long_read(&rdp->nocb_q_count);
1955	if (old_rhpp == &rdp->nocb_head) {
1956		if (!irqs_disabled_flags(flags)) {
1957			/* ... if queue was empty ... */
1958			wake_nocb_leader(rdp, false);
1959			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1960					    TPS("WakeEmpty"));
1961		} else {
1962			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1963			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1964					    TPS("WakeEmptyIsDeferred"));
1965		}
1966		rdp->qlen_last_fqs_check = 0;
1967	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1968		/* ... or if many callbacks queued. */
1969		if (!irqs_disabled_flags(flags)) {
1970			wake_nocb_leader(rdp, true);
1971			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1972					    TPS("WakeOvf"));
1973		} else {
1974			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1975			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1976					    TPS("WakeOvfIsDeferred"));
1977		}
1978		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1979	} else {
1980		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1981	}
1982	return;
1983}
1984
1985/*
1986 * This is a helper for __call_rcu(), which invokes this when the normal
1987 * callback queue is inoperable.  If this is not a no-CBs CPU, this
1988 * function returns failure back to __call_rcu(), which can complain
1989 * appropriately.
1990 *
1991 * Otherwise, this function queues the callback where the corresponding
1992 * "rcuo" kthread can find it.
1993 */
1994static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1995			    bool lazy, unsigned long flags)
1996{
1997
1998	if (!rcu_is_nocb_cpu(rdp->cpu))
1999		return false;
2000	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2001	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2002		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2003					 (unsigned long)rhp->func,
2004					 -atomic_long_read(&rdp->nocb_q_count_lazy),
2005					 -atomic_long_read(&rdp->nocb_q_count));
2006	else
2007		trace_rcu_callback(rdp->rsp->name, rhp,
2008				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2009				   -atomic_long_read(&rdp->nocb_q_count));
2010
2011	/*
2012	 * If called from an extended quiescent state with interrupts
2013	 * disabled, invoke the RCU core in order to allow the idle-entry
2014	 * deferred-wakeup check to function.
2015	 */
2016	if (irqs_disabled_flags(flags) &&
2017	    !rcu_is_watching() &&
2018	    cpu_online(smp_processor_id()))
2019		invoke_rcu_core();
2020
2021	return true;
2022}
2023
2024/*
2025 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2026 * not a no-CBs CPU.
2027 */
2028static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2029						     struct rcu_data *rdp,
2030						     unsigned long flags)
2031{
2032	long ql = rsp->qlen;
2033	long qll = rsp->qlen_lazy;
2034
2035	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2036	if (!rcu_is_nocb_cpu(smp_processor_id()))
2037		return false;
2038	rsp->qlen = 0;
2039	rsp->qlen_lazy = 0;
2040
2041	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2042	if (rsp->orphan_donelist != NULL) {
2043		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2044					rsp->orphan_donetail, ql, qll, flags);
2045		ql = qll = 0;
2046		rsp->orphan_donelist = NULL;
2047		rsp->orphan_donetail = &rsp->orphan_donelist;
2048	}
2049	if (rsp->orphan_nxtlist != NULL) {
2050		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2051					rsp->orphan_nxttail, ql, qll, flags);
2052		ql = qll = 0;
2053		rsp->orphan_nxtlist = NULL;
2054		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2055	}
2056	return true;
2057}
2058
2059/*
2060 * If necessary, kick off a new grace period, and either way wait
2061 * for a subsequent grace period to complete.
2062 */
2063static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2064{
2065	unsigned long c;
2066	bool d;
2067	unsigned long flags;
2068	bool needwake;
2069	struct rcu_node *rnp = rdp->mynode;
2070
2071	raw_spin_lock_irqsave(&rnp->lock, flags);
2072	smp_mb__after_unlock_lock();
2073	needwake = rcu_start_future_gp(rnp, rdp, &c);
2074	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2075	if (needwake)
2076		rcu_gp_kthread_wake(rdp->rsp);
2077
2078	/*
2079	 * Wait for the grace period.  Do so interruptibly to avoid messing
2080	 * up the load average.
2081	 */
2082	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2083	for (;;) {
2084		wait_event_interruptible(
2085			rnp->nocb_gp_wq[c & 0x1],
2086			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2087		if (likely(d))
2088			break;
2089		WARN_ON(signal_pending(current));
2090		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2091	}
2092	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2093	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2094}
2095
2096/*
2097 * Leaders come here to wait for additional callbacks to show up.
2098 * This function does not return until callbacks appear.
2099 */
2100static void nocb_leader_wait(struct rcu_data *my_rdp)
2101{
2102	bool firsttime = true;
2103	bool gotcbs;
2104	struct rcu_data *rdp;
2105	struct rcu_head **tail;
2106
2107wait_again:
2108
2109	/* Wait for callbacks to appear. */
2110	if (!rcu_nocb_poll) {
2111		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2112		wait_event_interruptible(my_rdp->nocb_wq,
2113				!READ_ONCE(my_rdp->nocb_leader_sleep));
2114		/* Memory barrier handled by smp_mb() calls below and repoll. */
2115	} else if (firsttime) {
2116		firsttime = false; /* Don't drown trace log with "Poll"! */
2117		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2118	}
2119
2120	/*
2121	 * Each pass through the following loop checks a follower for CBs.
2122	 * We are our own first follower.  Any CBs found are moved to
2123	 * nocb_gp_head, where they await a grace period.
2124	 */
2125	gotcbs = false;
2126	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2127		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2128		if (!rdp->nocb_gp_head)
2129			continue;  /* No CBs here, try next follower. */
2130
2131		/* Move callbacks to wait-for-GP list, which is empty. */
2132		WRITE_ONCE(rdp->nocb_head, NULL);
2133		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2134		gotcbs = true;
2135	}
2136
2137	/*
2138	 * If there were no callbacks, sleep a bit, rescan after a
2139	 * memory barrier, and go retry.
2140	 */
2141	if (unlikely(!gotcbs)) {
2142		if (!rcu_nocb_poll)
2143			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2144					    "WokeEmpty");
2145		WARN_ON(signal_pending(current));
2146		schedule_timeout_interruptible(1);
2147
2148		/* Rescan in case we were a victim of memory ordering. */
2149		my_rdp->nocb_leader_sleep = true;
2150		smp_mb();  /* Ensure _sleep true before scan. */
2151		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2152			if (READ_ONCE(rdp->nocb_head)) {
2153				/* Found CB, so short-circuit next wait. */
2154				my_rdp->nocb_leader_sleep = false;
2155				break;
2156			}
2157		goto wait_again;
2158	}
2159
2160	/* Wait for one grace period. */
2161	rcu_nocb_wait_gp(my_rdp);
2162
2163	/*
2164	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2165	 * We set it now, but recheck for new callbacks while
2166	 * traversing our follower list.
2167	 */
2168	my_rdp->nocb_leader_sleep = true;
2169	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2170
2171	/* Each pass through the following loop wakes a follower, if needed. */
2172	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2173		if (READ_ONCE(rdp->nocb_head))
2174			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2175		if (!rdp->nocb_gp_head)
2176			continue; /* No CBs, so no need to wake follower. */
2177
2178		/* Append callbacks to follower's "done" list. */
2179		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2180		*tail = rdp->nocb_gp_head;
2181		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2182		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2183			/*
2184			 * List was empty, wake up the follower.
2185			 * Memory barriers supplied by atomic_long_add().
2186			 */
2187			wake_up(&rdp->nocb_wq);
2188		}
2189	}
2190
2191	/* If we (the leader) don't have CBs, go wait some more. */
2192	if (!my_rdp->nocb_follower_head)
2193		goto wait_again;
2194}
2195
2196/*
2197 * Followers come here to wait for additional callbacks to show up.
2198 * This function does not return until callbacks appear.
2199 */
2200static void nocb_follower_wait(struct rcu_data *rdp)
2201{
2202	bool firsttime = true;
2203
2204	for (;;) {
2205		if (!rcu_nocb_poll) {
2206			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2207					    "FollowerSleep");
2208			wait_event_interruptible(rdp->nocb_wq,
2209						 READ_ONCE(rdp->nocb_follower_head));
2210		} else if (firsttime) {
2211			/* Don't drown trace log with "Poll"! */
2212			firsttime = false;
2213			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2214		}
2215		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2216			/* ^^^ Ensure CB invocation follows _head test. */
2217			return;
2218		}
2219		if (!rcu_nocb_poll)
2220			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2221					    "WokeEmpty");
2222		WARN_ON(signal_pending(current));
2223		schedule_timeout_interruptible(1);
2224	}
2225}
2226
2227/*
2228 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2229 * callbacks queued by the corresponding no-CBs CPU, however, there is
2230 * an optional leader-follower relationship so that the grace-period
2231 * kthreads don't have to do quite so many wakeups.
2232 */
2233static int rcu_nocb_kthread(void *arg)
2234{
2235	int c, cl;
2236	struct rcu_head *list;
2237	struct rcu_head *next;
2238	struct rcu_head **tail;
2239	struct rcu_data *rdp = arg;
2240
2241	/* Each pass through this loop invokes one batch of callbacks */
2242	for (;;) {
2243		/* Wait for callbacks. */
2244		if (rdp->nocb_leader == rdp)
2245			nocb_leader_wait(rdp);
2246		else
2247			nocb_follower_wait(rdp);
2248
2249		/* Pull the ready-to-invoke callbacks onto local list. */
2250		list = READ_ONCE(rdp->nocb_follower_head);
2251		BUG_ON(!list);
2252		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2253		WRITE_ONCE(rdp->nocb_follower_head, NULL);
2254		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2255
2256		/* Each pass through the following loop invokes a callback. */
2257		trace_rcu_batch_start(rdp->rsp->name,
2258				      atomic_long_read(&rdp->nocb_q_count_lazy),
2259				      atomic_long_read(&rdp->nocb_q_count), -1);
2260		c = cl = 0;
2261		while (list) {
2262			next = list->next;
2263			/* Wait for enqueuing to complete, if needed. */
2264			while (next == NULL && &list->next != tail) {
2265				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2266						    TPS("WaitQueue"));
2267				schedule_timeout_interruptible(1);
2268				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2269						    TPS("WokeQueue"));
2270				next = list->next;
2271			}
2272			debug_rcu_head_unqueue(list);
2273			local_bh_disable();
2274			if (__rcu_reclaim(rdp->rsp->name, list))
2275				cl++;
2276			c++;
2277			local_bh_enable();
2278			list = next;
2279		}
2280		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2281		smp_mb__before_atomic();  /* _add after CB invocation. */
2282		atomic_long_add(-c, &rdp->nocb_q_count);
2283		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2284		rdp->n_nocbs_invoked += c;
2285	}
2286	return 0;
2287}
2288
2289/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2290static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2291{
2292	return READ_ONCE(rdp->nocb_defer_wakeup);
2293}
2294
2295/* Do a deferred wakeup of rcu_nocb_kthread(). */
2296static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2297{
2298	int ndw;
2299
2300	if (!rcu_nocb_need_deferred_wakeup(rdp))
2301		return;
2302	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2303	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2304	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2305	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2306}
2307
2308void __init rcu_init_nohz(void)
2309{
2310	int cpu;
2311	bool need_rcu_nocb_mask = true;
2312	struct rcu_state *rsp;
2313
2314#ifdef CONFIG_RCU_NOCB_CPU_NONE
2315	need_rcu_nocb_mask = false;
2316#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2317
2318#if defined(CONFIG_NO_HZ_FULL)
2319	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2320		need_rcu_nocb_mask = true;
2321#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2322
2323	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2324		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2325			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2326			return;
2327		}
2328		have_rcu_nocb_mask = true;
2329	}
2330	if (!have_rcu_nocb_mask)
2331		return;
2332
2333#ifdef CONFIG_RCU_NOCB_CPU_ZERO
2334	pr_info("\tOffload RCU callbacks from CPU 0\n");
2335	cpumask_set_cpu(0, rcu_nocb_mask);
2336#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2337#ifdef CONFIG_RCU_NOCB_CPU_ALL
2338	pr_info("\tOffload RCU callbacks from all CPUs\n");
2339	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2340#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2341#if defined(CONFIG_NO_HZ_FULL)
2342	if (tick_nohz_full_running)
2343		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2344#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2345
2346	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2347		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2348		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2349			    rcu_nocb_mask);
2350	}
2351	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2352		cpumask_pr_args(rcu_nocb_mask));
2353	if (rcu_nocb_poll)
2354		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2355
2356	for_each_rcu_flavor(rsp) {
2357		for_each_cpu(cpu, rcu_nocb_mask)
2358			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2359		rcu_organize_nocb_kthreads(rsp);
2360	}
2361}
2362
2363/* Initialize per-rcu_data variables for no-CBs CPUs. */
2364static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2365{
2366	rdp->nocb_tail = &rdp->nocb_head;
2367	init_waitqueue_head(&rdp->nocb_wq);
2368	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2369}
2370
2371/*
2372 * If the specified CPU is a no-CBs CPU that does not already have its
2373 * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2374 * brought online out of order, this can require re-organizing the
2375 * leader-follower relationships.
2376 */
2377static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2378{
2379	struct rcu_data *rdp;
2380	struct rcu_data *rdp_last;
2381	struct rcu_data *rdp_old_leader;
2382	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2383	struct task_struct *t;
2384
2385	/*
2386	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2387	 * then nothing to do.
2388	 */
2389	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2390		return;
2391
2392	/* If we didn't spawn the leader first, reorganize! */
2393	rdp_old_leader = rdp_spawn->nocb_leader;
2394	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2395		rdp_last = NULL;
2396		rdp = rdp_old_leader;
2397		do {
2398			rdp->nocb_leader = rdp_spawn;
2399			if (rdp_last && rdp != rdp_spawn)
2400				rdp_last->nocb_next_follower = rdp;
2401			if (rdp == rdp_spawn) {
2402				rdp = rdp->nocb_next_follower;
2403			} else {
2404				rdp_last = rdp;
2405				rdp = rdp->nocb_next_follower;
2406				rdp_last->nocb_next_follower = NULL;
2407			}
2408		} while (rdp);
2409		rdp_spawn->nocb_next_follower = rdp_old_leader;
2410	}
2411
2412	/* Spawn the kthread for this CPU and RCU flavor. */
2413	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2414			"rcuo%c/%d", rsp->abbr, cpu);
2415	BUG_ON(IS_ERR(t));
2416	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2417}
2418
2419/*
2420 * If the specified CPU is a no-CBs CPU that does not already have its
2421 * rcuo kthreads, spawn them.
2422 */
2423static void rcu_spawn_all_nocb_kthreads(int cpu)
2424{
2425	struct rcu_state *rsp;
2426
2427	if (rcu_scheduler_fully_active)
2428		for_each_rcu_flavor(rsp)
2429			rcu_spawn_one_nocb_kthread(rsp, cpu);
2430}
2431
2432/*
2433 * Once the scheduler is running, spawn rcuo kthreads for all online
2434 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2435 * non-boot CPUs come online -- if this changes, we will need to add
2436 * some mutual exclusion.
2437 */
2438static void __init rcu_spawn_nocb_kthreads(void)
2439{
2440	int cpu;
2441
2442	for_each_online_cpu(cpu)
2443		rcu_spawn_all_nocb_kthreads(cpu);
2444}
2445
2446/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2447static int rcu_nocb_leader_stride = -1;
2448module_param(rcu_nocb_leader_stride, int, 0444);
2449
2450/*
2451 * Initialize leader-follower relationships for all no-CBs CPU.
2452 */
2453static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2454{
2455	int cpu;
2456	int ls = rcu_nocb_leader_stride;
2457	int nl = 0;  /* Next leader. */
2458	struct rcu_data *rdp;
2459	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2460	struct rcu_data *rdp_prev = NULL;
2461
2462	if (!have_rcu_nocb_mask)
2463		return;
2464	if (ls == -1) {
2465		ls = int_sqrt(nr_cpu_ids);
2466		rcu_nocb_leader_stride = ls;
2467	}
2468
2469	/*
2470	 * Each pass through this loop sets up one rcu_data structure and
2471	 * spawns one rcu_nocb_kthread().
2472	 */
2473	for_each_cpu(cpu, rcu_nocb_mask) {
2474		rdp = per_cpu_ptr(rsp->rda, cpu);
2475		if (rdp->cpu >= nl) {
2476			/* New leader, set up for followers & next leader. */
2477			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2478			rdp->nocb_leader = rdp;
2479			rdp_leader = rdp;
2480		} else {
2481			/* Another follower, link to previous leader. */
2482			rdp->nocb_leader = rdp_leader;
2483			rdp_prev->nocb_next_follower = rdp;
2484		}
2485		rdp_prev = rdp;
2486	}
2487}
2488
2489/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2490static bool init_nocb_callback_list(struct rcu_data *rdp)
2491{
2492	if (!rcu_is_nocb_cpu(rdp->cpu))
2493		return false;
2494
2495	/* If there are early-boot callbacks, move them to nocb lists. */
2496	if (rdp->nxtlist) {
2497		rdp->nocb_head = rdp->nxtlist;
2498		rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2499		atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2500		atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2501		rdp->nxtlist = NULL;
2502		rdp->qlen = 0;
2503		rdp->qlen_lazy = 0;
2504	}
2505	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2506	return true;
2507}
2508
2509#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2510
2511static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2512{
2513	WARN_ON_ONCE(1); /* Should be dead code. */
2514	return false;
2515}
2516
2517static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2518{
2519}
2520
2521static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2522{
2523}
2524
2525static void rcu_init_one_nocb(struct rcu_node *rnp)
2526{
2527}
2528
2529static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2530			    bool lazy, unsigned long flags)
2531{
2532	return false;
2533}
2534
2535static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2536						     struct rcu_data *rdp,
2537						     unsigned long flags)
2538{
2539	return false;
2540}
2541
2542static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2543{
2544}
2545
2546static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2547{
2548	return false;
2549}
2550
2551static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2552{
2553}
2554
2555static void rcu_spawn_all_nocb_kthreads(int cpu)
2556{
2557}
2558
2559static void __init rcu_spawn_nocb_kthreads(void)
2560{
2561}
2562
2563static bool init_nocb_callback_list(struct rcu_data *rdp)
2564{
2565	return false;
2566}
2567
2568#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2569
2570/*
2571 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2572 * arbitrarily long period of time with the scheduling-clock tick turned
2573 * off.  RCU will be paying attention to this CPU because it is in the
2574 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2575 * machine because the scheduling-clock tick has been disabled.  Therefore,
2576 * if an adaptive-ticks CPU is failing to respond to the current grace
2577 * period and has not be idle from an RCU perspective, kick it.
2578 */
2579static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2580{
2581#ifdef CONFIG_NO_HZ_FULL
2582	if (tick_nohz_full_cpu(cpu))
2583		smp_send_reschedule(cpu);
2584#endif /* #ifdef CONFIG_NO_HZ_FULL */
2585}
2586
2587
2588#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2589
2590static int full_sysidle_state;		/* Current system-idle state. */
2591#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2592#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2593#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2594#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2595#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2596
2597/*
2598 * Invoked to note exit from irq or task transition to idle.  Note that
2599 * usermode execution does -not- count as idle here!  After all, we want
2600 * to detect full-system idle states, not RCU quiescent states and grace
2601 * periods.  The caller must have disabled interrupts.
2602 */
2603static void rcu_sysidle_enter(int irq)
2604{
2605	unsigned long j;
2606	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2607
2608	/* If there are no nohz_full= CPUs, no need to track this. */
2609	if (!tick_nohz_full_enabled())
2610		return;
2611
2612	/* Adjust nesting, check for fully idle. */
2613	if (irq) {
2614		rdtp->dynticks_idle_nesting--;
2615		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2616		if (rdtp->dynticks_idle_nesting != 0)
2617			return;  /* Still not fully idle. */
2618	} else {
2619		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2620		    DYNTICK_TASK_NEST_VALUE) {
2621			rdtp->dynticks_idle_nesting = 0;
2622		} else {
2623			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2624			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2625			return;  /* Still not fully idle. */
2626		}
2627	}
2628
2629	/* Record start of fully idle period. */
2630	j = jiffies;
2631	WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2632	smp_mb__before_atomic();
2633	atomic_inc(&rdtp->dynticks_idle);
2634	smp_mb__after_atomic();
2635	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2636}
2637
2638/*
2639 * Unconditionally force exit from full system-idle state.  This is
2640 * invoked when a normal CPU exits idle, but must be called separately
2641 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2642 * is that the timekeeping CPU is permitted to take scheduling-clock
2643 * interrupts while the system is in system-idle state, and of course
2644 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2645 * interrupt from any other type of interrupt.
2646 */
2647void rcu_sysidle_force_exit(void)
2648{
2649	int oldstate = READ_ONCE(full_sysidle_state);
2650	int newoldstate;
2651
2652	/*
2653	 * Each pass through the following loop attempts to exit full
2654	 * system-idle state.  If contention proves to be a problem,
2655	 * a trylock-based contention tree could be used here.
2656	 */
2657	while (oldstate > RCU_SYSIDLE_SHORT) {
2658		newoldstate = cmpxchg(&full_sysidle_state,
2659				      oldstate, RCU_SYSIDLE_NOT);
2660		if (oldstate == newoldstate &&
2661		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2662			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2663			return; /* We cleared it, done! */
2664		}
2665		oldstate = newoldstate;
2666	}
2667	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2668}
2669
2670/*
2671 * Invoked to note entry to irq or task transition from idle.  Note that
2672 * usermode execution does -not- count as idle here!  The caller must
2673 * have disabled interrupts.
2674 */
2675static void rcu_sysidle_exit(int irq)
2676{
2677	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2678
2679	/* If there are no nohz_full= CPUs, no need to track this. */
2680	if (!tick_nohz_full_enabled())
2681		return;
2682
2683	/* Adjust nesting, check for already non-idle. */
2684	if (irq) {
2685		rdtp->dynticks_idle_nesting++;
2686		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2687		if (rdtp->dynticks_idle_nesting != 1)
2688			return; /* Already non-idle. */
2689	} else {
2690		/*
2691		 * Allow for irq misnesting.  Yes, it really is possible
2692		 * to enter an irq handler then never leave it, and maybe
2693		 * also vice versa.  Handle both possibilities.
2694		 */
2695		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2696			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2697			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2698			return; /* Already non-idle. */
2699		} else {
2700			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2701		}
2702	}
2703
2704	/* Record end of idle period. */
2705	smp_mb__before_atomic();
2706	atomic_inc(&rdtp->dynticks_idle);
2707	smp_mb__after_atomic();
2708	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2709
2710	/*
2711	 * If we are the timekeeping CPU, we are permitted to be non-idle
2712	 * during a system-idle state.  This must be the case, because
2713	 * the timekeeping CPU has to take scheduling-clock interrupts
2714	 * during the time that the system is transitioning to full
2715	 * system-idle state.  This means that the timekeeping CPU must
2716	 * invoke rcu_sysidle_force_exit() directly if it does anything
2717	 * more than take a scheduling-clock interrupt.
2718	 */
2719	if (smp_processor_id() == tick_do_timer_cpu)
2720		return;
2721
2722	/* Update system-idle state: We are clearly no longer fully idle! */
2723	rcu_sysidle_force_exit();
2724}
2725
2726/*
2727 * Check to see if the current CPU is idle.  Note that usermode execution
2728 * does not count as idle.  The caller must have disabled interrupts,
2729 * and must be running on tick_do_timer_cpu.
2730 */
2731static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2732				  unsigned long *maxj)
2733{
2734	int cur;
2735	unsigned long j;
2736	struct rcu_dynticks *rdtp = rdp->dynticks;
2737
2738	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2739	if (!tick_nohz_full_enabled())
2740		return;
2741
2742	/*
2743	 * If some other CPU has already reported non-idle, if this is
2744	 * not the flavor of RCU that tracks sysidle state, or if this
2745	 * is an offline or the timekeeping CPU, nothing to do.
2746	 */
2747	if (!*isidle || rdp->rsp != rcu_state_p ||
2748	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2749		return;
2750	/* Verify affinity of current kthread. */
2751	WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2752
2753	/* Pick up current idle and NMI-nesting counter and check. */
2754	cur = atomic_read(&rdtp->dynticks_idle);
2755	if (cur & 0x1) {
2756		*isidle = false; /* We are not idle! */
2757		return;
2758	}
2759	smp_mb(); /* Read counters before timestamps. */
2760
2761	/* Pick up timestamps. */
2762	j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2763	/* If this CPU entered idle more recently, update maxj timestamp. */
2764	if (ULONG_CMP_LT(*maxj, j))
2765		*maxj = j;
2766}
2767
2768/*
2769 * Is this the flavor of RCU that is handling full-system idle?
2770 */
2771static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2772{
2773	return rsp == rcu_state_p;
2774}
2775
2776/*
2777 * Return a delay in jiffies based on the number of CPUs, rcu_node
2778 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2779 * systems more time to transition to full-idle state in order to
2780 * avoid the cache thrashing that otherwise occur on the state variable.
2781 * Really small systems (less than a couple of tens of CPUs) should
2782 * instead use a single global atomically incremented counter, and later
2783 * versions of this will automatically reconfigure themselves accordingly.
2784 */
2785static unsigned long rcu_sysidle_delay(void)
2786{
2787	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2788		return 0;
2789	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2790}
2791
2792/*
2793 * Advance the full-system-idle state.  This is invoked when all of
2794 * the non-timekeeping CPUs are idle.
2795 */
2796static void rcu_sysidle(unsigned long j)
2797{
2798	/* Check the current state. */
2799	switch (READ_ONCE(full_sysidle_state)) {
2800	case RCU_SYSIDLE_NOT:
2801
2802		/* First time all are idle, so note a short idle period. */
2803		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2804		break;
2805
2806	case RCU_SYSIDLE_SHORT:
2807
2808		/*
2809		 * Idle for a bit, time to advance to next state?
2810		 * cmpxchg failure means race with non-idle, let them win.
2811		 */
2812		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2813			(void)cmpxchg(&full_sysidle_state,
2814				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2815		break;
2816
2817	case RCU_SYSIDLE_LONG:
2818
2819		/*
2820		 * Do an additional check pass before advancing to full.
2821		 * cmpxchg failure means race with non-idle, let them win.
2822		 */
2823		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2824			(void)cmpxchg(&full_sysidle_state,
2825				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2826		break;
2827
2828	default:
2829		break;
2830	}
2831}
2832
2833/*
2834 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2835 * back to the beginning.
2836 */
2837static void rcu_sysidle_cancel(void)
2838{
2839	smp_mb();
2840	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2841		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2842}
2843
2844/*
2845 * Update the sysidle state based on the results of a force-quiescent-state
2846 * scan of the CPUs' dyntick-idle state.
2847 */
2848static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2849			       unsigned long maxj, bool gpkt)
2850{
2851	if (rsp != rcu_state_p)
2852		return;  /* Wrong flavor, ignore. */
2853	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2854		return;  /* Running state machine from timekeeping CPU. */
2855	if (isidle)
2856		rcu_sysidle(maxj);    /* More idle! */
2857	else
2858		rcu_sysidle_cancel(); /* Idle is over. */
2859}
2860
2861/*
2862 * Wrapper for rcu_sysidle_report() when called from the grace-period
2863 * kthread's context.
2864 */
2865static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2866				  unsigned long maxj)
2867{
2868	/* If there are no nohz_full= CPUs, no need to track this. */
2869	if (!tick_nohz_full_enabled())
2870		return;
2871
2872	rcu_sysidle_report(rsp, isidle, maxj, true);
2873}
2874
2875/* Callback and function for forcing an RCU grace period. */
2876struct rcu_sysidle_head {
2877	struct rcu_head rh;
2878	int inuse;
2879};
2880
2881static void rcu_sysidle_cb(struct rcu_head *rhp)
2882{
2883	struct rcu_sysidle_head *rshp;
2884
2885	/*
2886	 * The following memory barrier is needed to replace the
2887	 * memory barriers that would normally be in the memory
2888	 * allocator.
2889	 */
2890	smp_mb();  /* grace period precedes setting inuse. */
2891
2892	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2893	WRITE_ONCE(rshp->inuse, 0);
2894}
2895
2896/*
2897 * Check to see if the system is fully idle, other than the timekeeping CPU.
2898 * The caller must have disabled interrupts.  This is not intended to be
2899 * called unless tick_nohz_full_enabled().
2900 */
2901bool rcu_sys_is_idle(void)
2902{
2903	static struct rcu_sysidle_head rsh;
2904	int rss = READ_ONCE(full_sysidle_state);
2905
2906	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2907		return false;
2908
2909	/* Handle small-system case by doing a full scan of CPUs. */
2910	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2911		int oldrss = rss - 1;
2912
2913		/*
2914		 * One pass to advance to each state up to _FULL.
2915		 * Give up if any pass fails to advance the state.
2916		 */
2917		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2918			int cpu;
2919			bool isidle = true;
2920			unsigned long maxj = jiffies - ULONG_MAX / 4;
2921			struct rcu_data *rdp;
2922
2923			/* Scan all the CPUs looking for nonidle CPUs. */
2924			for_each_possible_cpu(cpu) {
2925				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2926				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2927				if (!isidle)
2928					break;
2929			}
2930			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2931			oldrss = rss;
2932			rss = READ_ONCE(full_sysidle_state);
2933		}
2934	}
2935
2936	/* If this is the first observation of an idle period, record it. */
2937	if (rss == RCU_SYSIDLE_FULL) {
2938		rss = cmpxchg(&full_sysidle_state,
2939			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2940		return rss == RCU_SYSIDLE_FULL;
2941	}
2942
2943	smp_mb(); /* ensure rss load happens before later caller actions. */
2944
2945	/* If already fully idle, tell the caller (in case of races). */
2946	if (rss == RCU_SYSIDLE_FULL_NOTED)
2947		return true;
2948
2949	/*
2950	 * If we aren't there yet, and a grace period is not in flight,
2951	 * initiate a grace period.  Either way, tell the caller that
2952	 * we are not there yet.  We use an xchg() rather than an assignment
2953	 * to make up for the memory barriers that would otherwise be
2954	 * provided by the memory allocator.
2955	 */
2956	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2957	    !rcu_gp_in_progress(rcu_state_p) &&
2958	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2959		call_rcu(&rsh.rh, rcu_sysidle_cb);
2960	return false;
2961}
2962
2963/*
2964 * Initialize dynticks sysidle state for CPUs coming online.
2965 */
2966static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2967{
2968	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2969}
2970
2971#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2972
2973static void rcu_sysidle_enter(int irq)
2974{
2975}
2976
2977static void rcu_sysidle_exit(int irq)
2978{
2979}
2980
2981static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2982				  unsigned long *maxj)
2983{
2984}
2985
2986static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2987{
2988	return false;
2989}
2990
2991static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2992				  unsigned long maxj)
2993{
2994}
2995
2996static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2997{
2998}
2999
3000#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3001
3002/*
3003 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3004 * grace-period kthread will do force_quiescent_state() processing?
3005 * The idea is to avoid waking up RCU core processing on such a
3006 * CPU unless the grace period has extended for too long.
3007 *
3008 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3009 * CONFIG_RCU_NOCB_CPU CPUs.
3010 */
3011static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3012{
3013#ifdef CONFIG_NO_HZ_FULL
3014	if (tick_nohz_full_cpu(smp_processor_id()) &&
3015	    (!rcu_gp_in_progress(rsp) ||
3016	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
3017		return true;
3018#endif /* #ifdef CONFIG_NO_HZ_FULL */
3019	return false;
3020}
3021
3022/*
3023 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3024 * timekeeping CPU.
3025 */
3026static void rcu_bind_gp_kthread(void)
3027{
3028	int __maybe_unused cpu;
3029
3030	if (!tick_nohz_full_enabled())
3031		return;
3032#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3033	cpu = tick_do_timer_cpu;
3034	if (cpu >= 0 && cpu < nr_cpu_ids)
3035		set_cpus_allowed_ptr(current, cpumask_of(cpu));
3036#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3037	housekeeping_affine(current);
3038#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3039}
3040
3041/* Record the current task on dyntick-idle entry. */
3042static void rcu_dynticks_task_enter(void)
3043{
3044#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3045	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3046#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3047}
3048
3049/* Record no current task on dyntick-idle exit. */
3050static void rcu_dynticks_task_exit(void)
3051{
3052#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3053	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3054#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3055}
3056