1/*
2 * User-space Probes (UProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 *	Srikar Dronamraju
21 *	Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h>	/* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/export.h>
31#include <linux/rmap.h>		/* anon_vma_prepare */
32#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
33#include <linux/swap.h>		/* try_to_free_swap */
34#include <linux/ptrace.h>	/* user_enable_single_step */
35#include <linux/kdebug.h>	/* notifier mechanism */
36#include "../../mm/internal.h"	/* munlock_vma_page */
37#include <linux/percpu-rwsem.h>
38#include <linux/task_work.h>
39#include <linux/shmem_fs.h>
40
41#include <linux/uprobes.h>
42
43#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
45
46static struct rb_root uprobes_tree = RB_ROOT;
47/*
48 * allows us to skip the uprobe_mmap if there are no uprobe events active
49 * at this time.  Probably a fine grained per inode count is better?
50 */
51#define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
52
53static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
54
55#define UPROBES_HASH_SZ	13
56/* serialize uprobe->pending_list */
57static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59
60static struct percpu_rw_semaphore dup_mmap_sem;
61
62/* Have a copy of original instruction */
63#define UPROBE_COPY_INSN	0
64
65struct uprobe {
66	struct rb_node		rb_node;	/* node in the rb tree */
67	atomic_t		ref;
68	struct rw_semaphore	register_rwsem;
69	struct rw_semaphore	consumer_rwsem;
70	struct list_head	pending_list;
71	struct uprobe_consumer	*consumers;
72	struct inode		*inode;		/* Also hold a ref to inode */
73	loff_t			offset;
74	unsigned long		flags;
75
76	/*
77	 * The generic code assumes that it has two members of unknown type
78	 * owned by the arch-specific code:
79	 *
80	 * 	insn -	copy_insn() saves the original instruction here for
81	 *		arch_uprobe_analyze_insn().
82	 *
83	 *	ixol -	potentially modified instruction to execute out of
84	 *		line, copied to xol_area by xol_get_insn_slot().
85	 */
86	struct arch_uprobe	arch;
87};
88
89/*
90 * Execute out of line area: anonymous executable mapping installed
91 * by the probed task to execute the copy of the original instruction
92 * mangled by set_swbp().
93 *
94 * On a breakpoint hit, thread contests for a slot.  It frees the
95 * slot after singlestep. Currently a fixed number of slots are
96 * allocated.
97 */
98struct xol_area {
99	wait_queue_head_t 		wq;		/* if all slots are busy */
100	atomic_t 			slot_count;	/* number of in-use slots */
101	unsigned long 			*bitmap;	/* 0 = free slot */
102
103	struct vm_special_mapping	xol_mapping;
104	struct page 			*pages[2];
105	/*
106	 * We keep the vma's vm_start rather than a pointer to the vma
107	 * itself.  The probed process or a naughty kernel module could make
108	 * the vma go away, and we must handle that reasonably gracefully.
109	 */
110	unsigned long 			vaddr;		/* Page(s) of instruction slots */
111};
112
113/*
114 * valid_vma: Verify if the specified vma is an executable vma
115 * Relax restrictions while unregistering: vm_flags might have
116 * changed after breakpoint was inserted.
117 *	- is_register: indicates if we are in register context.
118 *	- Return 1 if the specified virtual address is in an
119 *	  executable vma.
120 */
121static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122{
123	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125	if (is_register)
126		flags |= VM_WRITE;
127
128	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129}
130
131static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132{
133	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134}
135
136static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137{
138	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139}
140
141/**
142 * __replace_page - replace page in vma by new page.
143 * based on replace_page in mm/ksm.c
144 *
145 * @vma:      vma that holds the pte pointing to page
146 * @addr:     address the old @page is mapped at
147 * @page:     the cowed page we are replacing by kpage
148 * @kpage:    the modified page we replace page by
149 *
150 * Returns 0 on success, -EFAULT on failure.
151 */
152static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
153				struct page *page, struct page *kpage)
154{
155	struct mm_struct *mm = vma->vm_mm;
156	spinlock_t *ptl;
157	pte_t *ptep;
158	int err;
159	/* For mmu_notifiers */
160	const unsigned long mmun_start = addr;
161	const unsigned long mmun_end   = addr + PAGE_SIZE;
162	struct mem_cgroup *memcg;
163
164	err = mem_cgroup_try_charge(kpage, vma->vm_mm, GFP_KERNEL, &memcg);
165	if (err)
166		return err;
167
168	/* For try_to_free_swap() and munlock_vma_page() below */
169	lock_page(page);
170
171	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
172	err = -EAGAIN;
173	ptep = page_check_address(page, mm, addr, &ptl, 0);
174	if (!ptep)
175		goto unlock;
176
177	get_page(kpage);
178	page_add_new_anon_rmap(kpage, vma, addr);
179	mem_cgroup_commit_charge(kpage, memcg, false);
180	lru_cache_add_active_or_unevictable(kpage, vma);
181
182	if (!PageAnon(page)) {
183		dec_mm_counter(mm, MM_FILEPAGES);
184		inc_mm_counter(mm, MM_ANONPAGES);
185	}
186
187	flush_cache_page(vma, addr, pte_pfn(*ptep));
188	ptep_clear_flush_notify(vma, addr, ptep);
189	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
190
191	page_remove_rmap(page);
192	if (!page_mapped(page))
193		try_to_free_swap(page);
194	pte_unmap_unlock(ptep, ptl);
195
196	if (vma->vm_flags & VM_LOCKED)
197		munlock_vma_page(page);
198	put_page(page);
199
200	err = 0;
201 unlock:
202	mem_cgroup_cancel_charge(kpage, memcg);
203	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
204	unlock_page(page);
205	return err;
206}
207
208/**
209 * is_swbp_insn - check if instruction is breakpoint instruction.
210 * @insn: instruction to be checked.
211 * Default implementation of is_swbp_insn
212 * Returns true if @insn is a breakpoint instruction.
213 */
214bool __weak is_swbp_insn(uprobe_opcode_t *insn)
215{
216	return *insn == UPROBE_SWBP_INSN;
217}
218
219/**
220 * is_trap_insn - check if instruction is breakpoint instruction.
221 * @insn: instruction to be checked.
222 * Default implementation of is_trap_insn
223 * Returns true if @insn is a breakpoint instruction.
224 *
225 * This function is needed for the case where an architecture has multiple
226 * trap instructions (like powerpc).
227 */
228bool __weak is_trap_insn(uprobe_opcode_t *insn)
229{
230	return is_swbp_insn(insn);
231}
232
233static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
234{
235	void *kaddr = kmap_atomic(page);
236	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
237	kunmap_atomic(kaddr);
238}
239
240static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
241{
242	void *kaddr = kmap_atomic(page);
243	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
244	kunmap_atomic(kaddr);
245}
246
247static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
248{
249	uprobe_opcode_t old_opcode;
250	bool is_swbp;
251
252	/*
253	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
254	 * We do not check if it is any other 'trap variant' which could
255	 * be conditional trap instruction such as the one powerpc supports.
256	 *
257	 * The logic is that we do not care if the underlying instruction
258	 * is a trap variant; uprobes always wins over any other (gdb)
259	 * breakpoint.
260	 */
261	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
262	is_swbp = is_swbp_insn(&old_opcode);
263
264	if (is_swbp_insn(new_opcode)) {
265		if (is_swbp)		/* register: already installed? */
266			return 0;
267	} else {
268		if (!is_swbp)		/* unregister: was it changed by us? */
269			return 0;
270	}
271
272	return 1;
273}
274
275/*
276 * NOTE:
277 * Expect the breakpoint instruction to be the smallest size instruction for
278 * the architecture. If an arch has variable length instruction and the
279 * breakpoint instruction is not of the smallest length instruction
280 * supported by that architecture then we need to modify is_trap_at_addr and
281 * uprobe_write_opcode accordingly. This would never be a problem for archs
282 * that have fixed length instructions.
283 *
284 * uprobe_write_opcode - write the opcode at a given virtual address.
285 * @mm: the probed process address space.
286 * @vaddr: the virtual address to store the opcode.
287 * @opcode: opcode to be written at @vaddr.
288 *
289 * Called with mm->mmap_sem held for write.
290 * Return 0 (success) or a negative errno.
291 */
292int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
293			uprobe_opcode_t opcode)
294{
295	struct page *old_page, *new_page;
296	struct vm_area_struct *vma;
297	int ret;
298
299retry:
300	/* Read the page with vaddr into memory */
301	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
302	if (ret <= 0)
303		return ret;
304
305	ret = verify_opcode(old_page, vaddr, &opcode);
306	if (ret <= 0)
307		goto put_old;
308
309	ret = anon_vma_prepare(vma);
310	if (ret)
311		goto put_old;
312
313	ret = -ENOMEM;
314	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
315	if (!new_page)
316		goto put_old;
317
318	__SetPageUptodate(new_page);
319	copy_highpage(new_page, old_page);
320	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
321
322	ret = __replace_page(vma, vaddr, old_page, new_page);
323	page_cache_release(new_page);
324put_old:
325	put_page(old_page);
326
327	if (unlikely(ret == -EAGAIN))
328		goto retry;
329	return ret;
330}
331
332/**
333 * set_swbp - store breakpoint at a given address.
334 * @auprobe: arch specific probepoint information.
335 * @mm: the probed process address space.
336 * @vaddr: the virtual address to insert the opcode.
337 *
338 * For mm @mm, store the breakpoint instruction at @vaddr.
339 * Return 0 (success) or a negative errno.
340 */
341int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
342{
343	return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
344}
345
346/**
347 * set_orig_insn - Restore the original instruction.
348 * @mm: the probed process address space.
349 * @auprobe: arch specific probepoint information.
350 * @vaddr: the virtual address to insert the opcode.
351 *
352 * For mm @mm, restore the original opcode (opcode) at @vaddr.
353 * Return 0 (success) or a negative errno.
354 */
355int __weak
356set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
357{
358	return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
359}
360
361static struct uprobe *get_uprobe(struct uprobe *uprobe)
362{
363	atomic_inc(&uprobe->ref);
364	return uprobe;
365}
366
367static void put_uprobe(struct uprobe *uprobe)
368{
369	if (atomic_dec_and_test(&uprobe->ref))
370		kfree(uprobe);
371}
372
373static int match_uprobe(struct uprobe *l, struct uprobe *r)
374{
375	if (l->inode < r->inode)
376		return -1;
377
378	if (l->inode > r->inode)
379		return 1;
380
381	if (l->offset < r->offset)
382		return -1;
383
384	if (l->offset > r->offset)
385		return 1;
386
387	return 0;
388}
389
390static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
391{
392	struct uprobe u = { .inode = inode, .offset = offset };
393	struct rb_node *n = uprobes_tree.rb_node;
394	struct uprobe *uprobe;
395	int match;
396
397	while (n) {
398		uprobe = rb_entry(n, struct uprobe, rb_node);
399		match = match_uprobe(&u, uprobe);
400		if (!match)
401			return get_uprobe(uprobe);
402
403		if (match < 0)
404			n = n->rb_left;
405		else
406			n = n->rb_right;
407	}
408	return NULL;
409}
410
411/*
412 * Find a uprobe corresponding to a given inode:offset
413 * Acquires uprobes_treelock
414 */
415static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
416{
417	struct uprobe *uprobe;
418
419	spin_lock(&uprobes_treelock);
420	uprobe = __find_uprobe(inode, offset);
421	spin_unlock(&uprobes_treelock);
422
423	return uprobe;
424}
425
426static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
427{
428	struct rb_node **p = &uprobes_tree.rb_node;
429	struct rb_node *parent = NULL;
430	struct uprobe *u;
431	int match;
432
433	while (*p) {
434		parent = *p;
435		u = rb_entry(parent, struct uprobe, rb_node);
436		match = match_uprobe(uprobe, u);
437		if (!match)
438			return get_uprobe(u);
439
440		if (match < 0)
441			p = &parent->rb_left;
442		else
443			p = &parent->rb_right;
444
445	}
446
447	u = NULL;
448	rb_link_node(&uprobe->rb_node, parent, p);
449	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
450	/* get access + creation ref */
451	atomic_set(&uprobe->ref, 2);
452
453	return u;
454}
455
456/*
457 * Acquire uprobes_treelock.
458 * Matching uprobe already exists in rbtree;
459 *	increment (access refcount) and return the matching uprobe.
460 *
461 * No matching uprobe; insert the uprobe in rb_tree;
462 *	get a double refcount (access + creation) and return NULL.
463 */
464static struct uprobe *insert_uprobe(struct uprobe *uprobe)
465{
466	struct uprobe *u;
467
468	spin_lock(&uprobes_treelock);
469	u = __insert_uprobe(uprobe);
470	spin_unlock(&uprobes_treelock);
471
472	return u;
473}
474
475static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
476{
477	struct uprobe *uprobe, *cur_uprobe;
478
479	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
480	if (!uprobe)
481		return NULL;
482
483	uprobe->inode = igrab(inode);
484	uprobe->offset = offset;
485	init_rwsem(&uprobe->register_rwsem);
486	init_rwsem(&uprobe->consumer_rwsem);
487
488	/* add to uprobes_tree, sorted on inode:offset */
489	cur_uprobe = insert_uprobe(uprobe);
490	/* a uprobe exists for this inode:offset combination */
491	if (cur_uprobe) {
492		kfree(uprobe);
493		uprobe = cur_uprobe;
494		iput(inode);
495	}
496
497	return uprobe;
498}
499
500static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
501{
502	down_write(&uprobe->consumer_rwsem);
503	uc->next = uprobe->consumers;
504	uprobe->consumers = uc;
505	up_write(&uprobe->consumer_rwsem);
506}
507
508/*
509 * For uprobe @uprobe, delete the consumer @uc.
510 * Return true if the @uc is deleted successfully
511 * or return false.
512 */
513static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
514{
515	struct uprobe_consumer **con;
516	bool ret = false;
517
518	down_write(&uprobe->consumer_rwsem);
519	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
520		if (*con == uc) {
521			*con = uc->next;
522			ret = true;
523			break;
524		}
525	}
526	up_write(&uprobe->consumer_rwsem);
527
528	return ret;
529}
530
531static int __copy_insn(struct address_space *mapping, struct file *filp,
532			void *insn, int nbytes, loff_t offset)
533{
534	struct page *page;
535	/*
536	 * Ensure that the page that has the original instruction is populated
537	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
538	 * see uprobe_register().
539	 */
540	if (mapping->a_ops->readpage)
541		page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
542	else
543		page = shmem_read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT);
544	if (IS_ERR(page))
545		return PTR_ERR(page);
546
547	copy_from_page(page, offset, insn, nbytes);
548	page_cache_release(page);
549
550	return 0;
551}
552
553static int copy_insn(struct uprobe *uprobe, struct file *filp)
554{
555	struct address_space *mapping = uprobe->inode->i_mapping;
556	loff_t offs = uprobe->offset;
557	void *insn = &uprobe->arch.insn;
558	int size = sizeof(uprobe->arch.insn);
559	int len, err = -EIO;
560
561	/* Copy only available bytes, -EIO if nothing was read */
562	do {
563		if (offs >= i_size_read(uprobe->inode))
564			break;
565
566		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
567		err = __copy_insn(mapping, filp, insn, len, offs);
568		if (err)
569			break;
570
571		insn += len;
572		offs += len;
573		size -= len;
574	} while (size);
575
576	return err;
577}
578
579static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
580				struct mm_struct *mm, unsigned long vaddr)
581{
582	int ret = 0;
583
584	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
585		return ret;
586
587	/* TODO: move this into _register, until then we abuse this sem. */
588	down_write(&uprobe->consumer_rwsem);
589	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
590		goto out;
591
592	ret = copy_insn(uprobe, file);
593	if (ret)
594		goto out;
595
596	ret = -ENOTSUPP;
597	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
598		goto out;
599
600	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
601	if (ret)
602		goto out;
603
604	/* uprobe_write_opcode() assumes we don't cross page boundary */
605	BUG_ON((uprobe->offset & ~PAGE_MASK) +
606			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
607
608	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
609	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
610
611 out:
612	up_write(&uprobe->consumer_rwsem);
613
614	return ret;
615}
616
617static inline bool consumer_filter(struct uprobe_consumer *uc,
618				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
619{
620	return !uc->filter || uc->filter(uc, ctx, mm);
621}
622
623static bool filter_chain(struct uprobe *uprobe,
624			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
625{
626	struct uprobe_consumer *uc;
627	bool ret = false;
628
629	down_read(&uprobe->consumer_rwsem);
630	for (uc = uprobe->consumers; uc; uc = uc->next) {
631		ret = consumer_filter(uc, ctx, mm);
632		if (ret)
633			break;
634	}
635	up_read(&uprobe->consumer_rwsem);
636
637	return ret;
638}
639
640static int
641install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
642			struct vm_area_struct *vma, unsigned long vaddr)
643{
644	bool first_uprobe;
645	int ret;
646
647	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
648	if (ret)
649		return ret;
650
651	/*
652	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
653	 * the task can hit this breakpoint right after __replace_page().
654	 */
655	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
656	if (first_uprobe)
657		set_bit(MMF_HAS_UPROBES, &mm->flags);
658
659	ret = set_swbp(&uprobe->arch, mm, vaddr);
660	if (!ret)
661		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
662	else if (first_uprobe)
663		clear_bit(MMF_HAS_UPROBES, &mm->flags);
664
665	return ret;
666}
667
668static int
669remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
670{
671	set_bit(MMF_RECALC_UPROBES, &mm->flags);
672	return set_orig_insn(&uprobe->arch, mm, vaddr);
673}
674
675static inline bool uprobe_is_active(struct uprobe *uprobe)
676{
677	return !RB_EMPTY_NODE(&uprobe->rb_node);
678}
679/*
680 * There could be threads that have already hit the breakpoint. They
681 * will recheck the current insn and restart if find_uprobe() fails.
682 * See find_active_uprobe().
683 */
684static void delete_uprobe(struct uprobe *uprobe)
685{
686	if (WARN_ON(!uprobe_is_active(uprobe)))
687		return;
688
689	spin_lock(&uprobes_treelock);
690	rb_erase(&uprobe->rb_node, &uprobes_tree);
691	spin_unlock(&uprobes_treelock);
692	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
693	iput(uprobe->inode);
694	put_uprobe(uprobe);
695}
696
697struct map_info {
698	struct map_info *next;
699	struct mm_struct *mm;
700	unsigned long vaddr;
701};
702
703static inline struct map_info *free_map_info(struct map_info *info)
704{
705	struct map_info *next = info->next;
706	kfree(info);
707	return next;
708}
709
710static struct map_info *
711build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
712{
713	unsigned long pgoff = offset >> PAGE_SHIFT;
714	struct vm_area_struct *vma;
715	struct map_info *curr = NULL;
716	struct map_info *prev = NULL;
717	struct map_info *info;
718	int more = 0;
719
720 again:
721	i_mmap_lock_read(mapping);
722	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
723		if (!valid_vma(vma, is_register))
724			continue;
725
726		if (!prev && !more) {
727			/*
728			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
729			 * reclaim. This is optimistic, no harm done if it fails.
730			 */
731			prev = kmalloc(sizeof(struct map_info),
732					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
733			if (prev)
734				prev->next = NULL;
735		}
736		if (!prev) {
737			more++;
738			continue;
739		}
740
741		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
742			continue;
743
744		info = prev;
745		prev = prev->next;
746		info->next = curr;
747		curr = info;
748
749		info->mm = vma->vm_mm;
750		info->vaddr = offset_to_vaddr(vma, offset);
751	}
752	i_mmap_unlock_read(mapping);
753
754	if (!more)
755		goto out;
756
757	prev = curr;
758	while (curr) {
759		mmput(curr->mm);
760		curr = curr->next;
761	}
762
763	do {
764		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
765		if (!info) {
766			curr = ERR_PTR(-ENOMEM);
767			goto out;
768		}
769		info->next = prev;
770		prev = info;
771	} while (--more);
772
773	goto again;
774 out:
775	while (prev)
776		prev = free_map_info(prev);
777	return curr;
778}
779
780static int
781register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
782{
783	bool is_register = !!new;
784	struct map_info *info;
785	int err = 0;
786
787	percpu_down_write(&dup_mmap_sem);
788	info = build_map_info(uprobe->inode->i_mapping,
789					uprobe->offset, is_register);
790	if (IS_ERR(info)) {
791		err = PTR_ERR(info);
792		goto out;
793	}
794
795	while (info) {
796		struct mm_struct *mm = info->mm;
797		struct vm_area_struct *vma;
798
799		if (err && is_register)
800			goto free;
801
802		down_write(&mm->mmap_sem);
803		vma = find_vma(mm, info->vaddr);
804		if (!vma || !valid_vma(vma, is_register) ||
805		    file_inode(vma->vm_file) != uprobe->inode)
806			goto unlock;
807
808		if (vma->vm_start > info->vaddr ||
809		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
810			goto unlock;
811
812		if (is_register) {
813			/* consult only the "caller", new consumer. */
814			if (consumer_filter(new,
815					UPROBE_FILTER_REGISTER, mm))
816				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
817		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
818			if (!filter_chain(uprobe,
819					UPROBE_FILTER_UNREGISTER, mm))
820				err |= remove_breakpoint(uprobe, mm, info->vaddr);
821		}
822
823 unlock:
824		up_write(&mm->mmap_sem);
825 free:
826		mmput(mm);
827		info = free_map_info(info);
828	}
829 out:
830	percpu_up_write(&dup_mmap_sem);
831	return err;
832}
833
834static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
835{
836	consumer_add(uprobe, uc);
837	return register_for_each_vma(uprobe, uc);
838}
839
840static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
841{
842	int err;
843
844	if (WARN_ON(!consumer_del(uprobe, uc)))
845		return;
846
847	err = register_for_each_vma(uprobe, NULL);
848	/* TODO : cant unregister? schedule a worker thread */
849	if (!uprobe->consumers && !err)
850		delete_uprobe(uprobe);
851}
852
853/*
854 * uprobe_register - register a probe
855 * @inode: the file in which the probe has to be placed.
856 * @offset: offset from the start of the file.
857 * @uc: information on howto handle the probe..
858 *
859 * Apart from the access refcount, uprobe_register() takes a creation
860 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
861 * inserted into the rbtree (i.e first consumer for a @inode:@offset
862 * tuple).  Creation refcount stops uprobe_unregister from freeing the
863 * @uprobe even before the register operation is complete. Creation
864 * refcount is released when the last @uc for the @uprobe
865 * unregisters.
866 *
867 * Return errno if it cannot successully install probes
868 * else return 0 (success)
869 */
870int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
871{
872	struct uprobe *uprobe;
873	int ret;
874
875	/* Uprobe must have at least one set consumer */
876	if (!uc->handler && !uc->ret_handler)
877		return -EINVAL;
878
879	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
880	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
881		return -EIO;
882	/* Racy, just to catch the obvious mistakes */
883	if (offset > i_size_read(inode))
884		return -EINVAL;
885
886 retry:
887	uprobe = alloc_uprobe(inode, offset);
888	if (!uprobe)
889		return -ENOMEM;
890	/*
891	 * We can race with uprobe_unregister()->delete_uprobe().
892	 * Check uprobe_is_active() and retry if it is false.
893	 */
894	down_write(&uprobe->register_rwsem);
895	ret = -EAGAIN;
896	if (likely(uprobe_is_active(uprobe))) {
897		ret = __uprobe_register(uprobe, uc);
898		if (ret)
899			__uprobe_unregister(uprobe, uc);
900	}
901	up_write(&uprobe->register_rwsem);
902	put_uprobe(uprobe);
903
904	if (unlikely(ret == -EAGAIN))
905		goto retry;
906	return ret;
907}
908EXPORT_SYMBOL_GPL(uprobe_register);
909
910/*
911 * uprobe_apply - unregister a already registered probe.
912 * @inode: the file in which the probe has to be removed.
913 * @offset: offset from the start of the file.
914 * @uc: consumer which wants to add more or remove some breakpoints
915 * @add: add or remove the breakpoints
916 */
917int uprobe_apply(struct inode *inode, loff_t offset,
918			struct uprobe_consumer *uc, bool add)
919{
920	struct uprobe *uprobe;
921	struct uprobe_consumer *con;
922	int ret = -ENOENT;
923
924	uprobe = find_uprobe(inode, offset);
925	if (WARN_ON(!uprobe))
926		return ret;
927
928	down_write(&uprobe->register_rwsem);
929	for (con = uprobe->consumers; con && con != uc ; con = con->next)
930		;
931	if (con)
932		ret = register_for_each_vma(uprobe, add ? uc : NULL);
933	up_write(&uprobe->register_rwsem);
934	put_uprobe(uprobe);
935
936	return ret;
937}
938
939/*
940 * uprobe_unregister - unregister a already registered probe.
941 * @inode: the file in which the probe has to be removed.
942 * @offset: offset from the start of the file.
943 * @uc: identify which probe if multiple probes are colocated.
944 */
945void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
946{
947	struct uprobe *uprobe;
948
949	uprobe = find_uprobe(inode, offset);
950	if (WARN_ON(!uprobe))
951		return;
952
953	down_write(&uprobe->register_rwsem);
954	__uprobe_unregister(uprobe, uc);
955	up_write(&uprobe->register_rwsem);
956	put_uprobe(uprobe);
957}
958EXPORT_SYMBOL_GPL(uprobe_unregister);
959
960static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
961{
962	struct vm_area_struct *vma;
963	int err = 0;
964
965	down_read(&mm->mmap_sem);
966	for (vma = mm->mmap; vma; vma = vma->vm_next) {
967		unsigned long vaddr;
968		loff_t offset;
969
970		if (!valid_vma(vma, false) ||
971		    file_inode(vma->vm_file) != uprobe->inode)
972			continue;
973
974		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
975		if (uprobe->offset <  offset ||
976		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
977			continue;
978
979		vaddr = offset_to_vaddr(vma, uprobe->offset);
980		err |= remove_breakpoint(uprobe, mm, vaddr);
981	}
982	up_read(&mm->mmap_sem);
983
984	return err;
985}
986
987static struct rb_node *
988find_node_in_range(struct inode *inode, loff_t min, loff_t max)
989{
990	struct rb_node *n = uprobes_tree.rb_node;
991
992	while (n) {
993		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
994
995		if (inode < u->inode) {
996			n = n->rb_left;
997		} else if (inode > u->inode) {
998			n = n->rb_right;
999		} else {
1000			if (max < u->offset)
1001				n = n->rb_left;
1002			else if (min > u->offset)
1003				n = n->rb_right;
1004			else
1005				break;
1006		}
1007	}
1008
1009	return n;
1010}
1011
1012/*
1013 * For a given range in vma, build a list of probes that need to be inserted.
1014 */
1015static void build_probe_list(struct inode *inode,
1016				struct vm_area_struct *vma,
1017				unsigned long start, unsigned long end,
1018				struct list_head *head)
1019{
1020	loff_t min, max;
1021	struct rb_node *n, *t;
1022	struct uprobe *u;
1023
1024	INIT_LIST_HEAD(head);
1025	min = vaddr_to_offset(vma, start);
1026	max = min + (end - start) - 1;
1027
1028	spin_lock(&uprobes_treelock);
1029	n = find_node_in_range(inode, min, max);
1030	if (n) {
1031		for (t = n; t; t = rb_prev(t)) {
1032			u = rb_entry(t, struct uprobe, rb_node);
1033			if (u->inode != inode || u->offset < min)
1034				break;
1035			list_add(&u->pending_list, head);
1036			get_uprobe(u);
1037		}
1038		for (t = n; (t = rb_next(t)); ) {
1039			u = rb_entry(t, struct uprobe, rb_node);
1040			if (u->inode != inode || u->offset > max)
1041				break;
1042			list_add(&u->pending_list, head);
1043			get_uprobe(u);
1044		}
1045	}
1046	spin_unlock(&uprobes_treelock);
1047}
1048
1049/*
1050 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1051 *
1052 * Currently we ignore all errors and always return 0, the callers
1053 * can't handle the failure anyway.
1054 */
1055int uprobe_mmap(struct vm_area_struct *vma)
1056{
1057	struct list_head tmp_list;
1058	struct uprobe *uprobe, *u;
1059	struct inode *inode;
1060
1061	if (no_uprobe_events() || !valid_vma(vma, true))
1062		return 0;
1063
1064	inode = file_inode(vma->vm_file);
1065	if (!inode)
1066		return 0;
1067
1068	mutex_lock(uprobes_mmap_hash(inode));
1069	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1070	/*
1071	 * We can race with uprobe_unregister(), this uprobe can be already
1072	 * removed. But in this case filter_chain() must return false, all
1073	 * consumers have gone away.
1074	 */
1075	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1076		if (!fatal_signal_pending(current) &&
1077		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1078			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1079			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1080		}
1081		put_uprobe(uprobe);
1082	}
1083	mutex_unlock(uprobes_mmap_hash(inode));
1084
1085	return 0;
1086}
1087
1088static bool
1089vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1090{
1091	loff_t min, max;
1092	struct inode *inode;
1093	struct rb_node *n;
1094
1095	inode = file_inode(vma->vm_file);
1096
1097	min = vaddr_to_offset(vma, start);
1098	max = min + (end - start) - 1;
1099
1100	spin_lock(&uprobes_treelock);
1101	n = find_node_in_range(inode, min, max);
1102	spin_unlock(&uprobes_treelock);
1103
1104	return !!n;
1105}
1106
1107/*
1108 * Called in context of a munmap of a vma.
1109 */
1110void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1111{
1112	if (no_uprobe_events() || !valid_vma(vma, false))
1113		return;
1114
1115	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1116		return;
1117
1118	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1119	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1120		return;
1121
1122	if (vma_has_uprobes(vma, start, end))
1123		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1124}
1125
1126/* Slot allocation for XOL */
1127static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1128{
1129	struct vm_area_struct *vma;
1130	int ret;
1131
1132	down_write(&mm->mmap_sem);
1133	if (mm->uprobes_state.xol_area) {
1134		ret = -EALREADY;
1135		goto fail;
1136	}
1137
1138	if (!area->vaddr) {
1139		/* Try to map as high as possible, this is only a hint. */
1140		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1141						PAGE_SIZE, 0, 0);
1142		if (area->vaddr & ~PAGE_MASK) {
1143			ret = area->vaddr;
1144			goto fail;
1145		}
1146	}
1147
1148	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1149				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1150				&area->xol_mapping);
1151	if (IS_ERR(vma)) {
1152		ret = PTR_ERR(vma);
1153		goto fail;
1154	}
1155
1156	ret = 0;
1157	smp_wmb();	/* pairs with get_xol_area() */
1158	mm->uprobes_state.xol_area = area;
1159 fail:
1160	up_write(&mm->mmap_sem);
1161
1162	return ret;
1163}
1164
1165static struct xol_area *__create_xol_area(unsigned long vaddr)
1166{
1167	struct mm_struct *mm = current->mm;
1168	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1169	struct xol_area *area;
1170
1171	area = kmalloc(sizeof(*area), GFP_KERNEL);
1172	if (unlikely(!area))
1173		goto out;
1174
1175	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1176	if (!area->bitmap)
1177		goto free_area;
1178
1179	area->xol_mapping.name = "[uprobes]";
1180	area->xol_mapping.pages = area->pages;
1181	area->pages[0] = alloc_page(GFP_HIGHUSER);
1182	if (!area->pages[0])
1183		goto free_bitmap;
1184	area->pages[1] = NULL;
1185
1186	area->vaddr = vaddr;
1187	init_waitqueue_head(&area->wq);
1188	/* Reserve the 1st slot for get_trampoline_vaddr() */
1189	set_bit(0, area->bitmap);
1190	atomic_set(&area->slot_count, 1);
1191	copy_to_page(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1192
1193	if (!xol_add_vma(mm, area))
1194		return area;
1195
1196	__free_page(area->pages[0]);
1197 free_bitmap:
1198	kfree(area->bitmap);
1199 free_area:
1200	kfree(area);
1201 out:
1202	return NULL;
1203}
1204
1205/*
1206 * get_xol_area - Allocate process's xol_area if necessary.
1207 * This area will be used for storing instructions for execution out of line.
1208 *
1209 * Returns the allocated area or NULL.
1210 */
1211static struct xol_area *get_xol_area(void)
1212{
1213	struct mm_struct *mm = current->mm;
1214	struct xol_area *area;
1215
1216	if (!mm->uprobes_state.xol_area)
1217		__create_xol_area(0);
1218
1219	area = mm->uprobes_state.xol_area;
1220	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */
1221	return area;
1222}
1223
1224/*
1225 * uprobe_clear_state - Free the area allocated for slots.
1226 */
1227void uprobe_clear_state(struct mm_struct *mm)
1228{
1229	struct xol_area *area = mm->uprobes_state.xol_area;
1230
1231	if (!area)
1232		return;
1233
1234	put_page(area->pages[0]);
1235	kfree(area->bitmap);
1236	kfree(area);
1237}
1238
1239void uprobe_start_dup_mmap(void)
1240{
1241	percpu_down_read(&dup_mmap_sem);
1242}
1243
1244void uprobe_end_dup_mmap(void)
1245{
1246	percpu_up_read(&dup_mmap_sem);
1247}
1248
1249void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1250{
1251	newmm->uprobes_state.xol_area = NULL;
1252
1253	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1254		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1255		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1256		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1257	}
1258}
1259
1260/*
1261 *  - search for a free slot.
1262 */
1263static unsigned long xol_take_insn_slot(struct xol_area *area)
1264{
1265	unsigned long slot_addr;
1266	int slot_nr;
1267
1268	do {
1269		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1270		if (slot_nr < UINSNS_PER_PAGE) {
1271			if (!test_and_set_bit(slot_nr, area->bitmap))
1272				break;
1273
1274			slot_nr = UINSNS_PER_PAGE;
1275			continue;
1276		}
1277		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1278	} while (slot_nr >= UINSNS_PER_PAGE);
1279
1280	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1281	atomic_inc(&area->slot_count);
1282
1283	return slot_addr;
1284}
1285
1286/*
1287 * xol_get_insn_slot - allocate a slot for xol.
1288 * Returns the allocated slot address or 0.
1289 */
1290static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1291{
1292	struct xol_area *area;
1293	unsigned long xol_vaddr;
1294
1295	area = get_xol_area();
1296	if (!area)
1297		return 0;
1298
1299	xol_vaddr = xol_take_insn_slot(area);
1300	if (unlikely(!xol_vaddr))
1301		return 0;
1302
1303	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1304			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1305
1306	return xol_vaddr;
1307}
1308
1309/*
1310 * xol_free_insn_slot - If slot was earlier allocated by
1311 * @xol_get_insn_slot(), make the slot available for
1312 * subsequent requests.
1313 */
1314static void xol_free_insn_slot(struct task_struct *tsk)
1315{
1316	struct xol_area *area;
1317	unsigned long vma_end;
1318	unsigned long slot_addr;
1319
1320	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1321		return;
1322
1323	slot_addr = tsk->utask->xol_vaddr;
1324	if (unlikely(!slot_addr))
1325		return;
1326
1327	area = tsk->mm->uprobes_state.xol_area;
1328	vma_end = area->vaddr + PAGE_SIZE;
1329	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1330		unsigned long offset;
1331		int slot_nr;
1332
1333		offset = slot_addr - area->vaddr;
1334		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1335		if (slot_nr >= UINSNS_PER_PAGE)
1336			return;
1337
1338		clear_bit(slot_nr, area->bitmap);
1339		atomic_dec(&area->slot_count);
1340		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1341		if (waitqueue_active(&area->wq))
1342			wake_up(&area->wq);
1343
1344		tsk->utask->xol_vaddr = 0;
1345	}
1346}
1347
1348void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1349				  void *src, unsigned long len)
1350{
1351	/* Initialize the slot */
1352	copy_to_page(page, vaddr, src, len);
1353
1354	/*
1355	 * We probably need flush_icache_user_range() but it needs vma.
1356	 * This should work on most of architectures by default. If
1357	 * architecture needs to do something different it can define
1358	 * its own version of the function.
1359	 */
1360	flush_dcache_page(page);
1361}
1362
1363/**
1364 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1365 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1366 * instruction.
1367 * Return the address of the breakpoint instruction.
1368 */
1369unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1370{
1371	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1372}
1373
1374unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1375{
1376	struct uprobe_task *utask = current->utask;
1377
1378	if (unlikely(utask && utask->active_uprobe))
1379		return utask->vaddr;
1380
1381	return instruction_pointer(regs);
1382}
1383
1384static struct return_instance *free_ret_instance(struct return_instance *ri)
1385{
1386	struct return_instance *next = ri->next;
1387	put_uprobe(ri->uprobe);
1388	kfree(ri);
1389	return next;
1390}
1391
1392/*
1393 * Called with no locks held.
1394 * Called in context of a exiting or a exec-ing thread.
1395 */
1396void uprobe_free_utask(struct task_struct *t)
1397{
1398	struct uprobe_task *utask = t->utask;
1399	struct return_instance *ri;
1400
1401	if (!utask)
1402		return;
1403
1404	if (utask->active_uprobe)
1405		put_uprobe(utask->active_uprobe);
1406
1407	ri = utask->return_instances;
1408	while (ri)
1409		ri = free_ret_instance(ri);
1410
1411	xol_free_insn_slot(t);
1412	kfree(utask);
1413	t->utask = NULL;
1414}
1415
1416/*
1417 * Allocate a uprobe_task object for the task if if necessary.
1418 * Called when the thread hits a breakpoint.
1419 *
1420 * Returns:
1421 * - pointer to new uprobe_task on success
1422 * - NULL otherwise
1423 */
1424static struct uprobe_task *get_utask(void)
1425{
1426	if (!current->utask)
1427		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1428	return current->utask;
1429}
1430
1431static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1432{
1433	struct uprobe_task *n_utask;
1434	struct return_instance **p, *o, *n;
1435
1436	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1437	if (!n_utask)
1438		return -ENOMEM;
1439	t->utask = n_utask;
1440
1441	p = &n_utask->return_instances;
1442	for (o = o_utask->return_instances; o; o = o->next) {
1443		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1444		if (!n)
1445			return -ENOMEM;
1446
1447		*n = *o;
1448		get_uprobe(n->uprobe);
1449		n->next = NULL;
1450
1451		*p = n;
1452		p = &n->next;
1453		n_utask->depth++;
1454	}
1455
1456	return 0;
1457}
1458
1459static void uprobe_warn(struct task_struct *t, const char *msg)
1460{
1461	pr_warn("uprobe: %s:%d failed to %s\n",
1462			current->comm, current->pid, msg);
1463}
1464
1465static void dup_xol_work(struct callback_head *work)
1466{
1467	if (current->flags & PF_EXITING)
1468		return;
1469
1470	if (!__create_xol_area(current->utask->dup_xol_addr))
1471		uprobe_warn(current, "dup xol area");
1472}
1473
1474/*
1475 * Called in context of a new clone/fork from copy_process.
1476 */
1477void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1478{
1479	struct uprobe_task *utask = current->utask;
1480	struct mm_struct *mm = current->mm;
1481	struct xol_area *area;
1482
1483	t->utask = NULL;
1484
1485	if (!utask || !utask->return_instances)
1486		return;
1487
1488	if (mm == t->mm && !(flags & CLONE_VFORK))
1489		return;
1490
1491	if (dup_utask(t, utask))
1492		return uprobe_warn(t, "dup ret instances");
1493
1494	/* The task can fork() after dup_xol_work() fails */
1495	area = mm->uprobes_state.xol_area;
1496	if (!area)
1497		return uprobe_warn(t, "dup xol area");
1498
1499	if (mm == t->mm)
1500		return;
1501
1502	t->utask->dup_xol_addr = area->vaddr;
1503	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1504	task_work_add(t, &t->utask->dup_xol_work, true);
1505}
1506
1507/*
1508 * Current area->vaddr notion assume the trampoline address is always
1509 * equal area->vaddr.
1510 *
1511 * Returns -1 in case the xol_area is not allocated.
1512 */
1513static unsigned long get_trampoline_vaddr(void)
1514{
1515	struct xol_area *area;
1516	unsigned long trampoline_vaddr = -1;
1517
1518	area = current->mm->uprobes_state.xol_area;
1519	smp_read_barrier_depends();
1520	if (area)
1521		trampoline_vaddr = area->vaddr;
1522
1523	return trampoline_vaddr;
1524}
1525
1526static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1527					struct pt_regs *regs)
1528{
1529	struct return_instance *ri = utask->return_instances;
1530	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1531
1532	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1533		ri = free_ret_instance(ri);
1534		utask->depth--;
1535	}
1536	utask->return_instances = ri;
1537}
1538
1539static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1540{
1541	struct return_instance *ri;
1542	struct uprobe_task *utask;
1543	unsigned long orig_ret_vaddr, trampoline_vaddr;
1544	bool chained;
1545
1546	if (!get_xol_area())
1547		return;
1548
1549	utask = get_utask();
1550	if (!utask)
1551		return;
1552
1553	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1554		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1555				" nestedness limit pid/tgid=%d/%d\n",
1556				current->pid, current->tgid);
1557		return;
1558	}
1559
1560	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1561	if (!ri)
1562		return;
1563
1564	trampoline_vaddr = get_trampoline_vaddr();
1565	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1566	if (orig_ret_vaddr == -1)
1567		goto fail;
1568
1569	/* drop the entries invalidated by longjmp() */
1570	chained = (orig_ret_vaddr == trampoline_vaddr);
1571	cleanup_return_instances(utask, chained, regs);
1572
1573	/*
1574	 * We don't want to keep trampoline address in stack, rather keep the
1575	 * original return address of first caller thru all the consequent
1576	 * instances. This also makes breakpoint unwrapping easier.
1577	 */
1578	if (chained) {
1579		if (!utask->return_instances) {
1580			/*
1581			 * This situation is not possible. Likely we have an
1582			 * attack from user-space.
1583			 */
1584			uprobe_warn(current, "handle tail call");
1585			goto fail;
1586		}
1587		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1588	}
1589
1590	ri->uprobe = get_uprobe(uprobe);
1591	ri->func = instruction_pointer(regs);
1592	ri->stack = user_stack_pointer(regs);
1593	ri->orig_ret_vaddr = orig_ret_vaddr;
1594	ri->chained = chained;
1595
1596	utask->depth++;
1597	ri->next = utask->return_instances;
1598	utask->return_instances = ri;
1599
1600	return;
1601 fail:
1602	kfree(ri);
1603}
1604
1605/* Prepare to single-step probed instruction out of line. */
1606static int
1607pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1608{
1609	struct uprobe_task *utask;
1610	unsigned long xol_vaddr;
1611	int err;
1612
1613	utask = get_utask();
1614	if (!utask)
1615		return -ENOMEM;
1616
1617	xol_vaddr = xol_get_insn_slot(uprobe);
1618	if (!xol_vaddr)
1619		return -ENOMEM;
1620
1621	utask->xol_vaddr = xol_vaddr;
1622	utask->vaddr = bp_vaddr;
1623
1624	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1625	if (unlikely(err)) {
1626		xol_free_insn_slot(current);
1627		return err;
1628	}
1629
1630	utask->active_uprobe = uprobe;
1631	utask->state = UTASK_SSTEP;
1632	return 0;
1633}
1634
1635/*
1636 * If we are singlestepping, then ensure this thread is not connected to
1637 * non-fatal signals until completion of singlestep.  When xol insn itself
1638 * triggers the signal,  restart the original insn even if the task is
1639 * already SIGKILL'ed (since coredump should report the correct ip).  This
1640 * is even more important if the task has a handler for SIGSEGV/etc, The
1641 * _same_ instruction should be repeated again after return from the signal
1642 * handler, and SSTEP can never finish in this case.
1643 */
1644bool uprobe_deny_signal(void)
1645{
1646	struct task_struct *t = current;
1647	struct uprobe_task *utask = t->utask;
1648
1649	if (likely(!utask || !utask->active_uprobe))
1650		return false;
1651
1652	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1653
1654	if (signal_pending(t)) {
1655		spin_lock_irq(&t->sighand->siglock);
1656		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1657		spin_unlock_irq(&t->sighand->siglock);
1658
1659		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1660			utask->state = UTASK_SSTEP_TRAPPED;
1661			set_tsk_thread_flag(t, TIF_UPROBE);
1662		}
1663	}
1664
1665	return true;
1666}
1667
1668static void mmf_recalc_uprobes(struct mm_struct *mm)
1669{
1670	struct vm_area_struct *vma;
1671
1672	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1673		if (!valid_vma(vma, false))
1674			continue;
1675		/*
1676		 * This is not strictly accurate, we can race with
1677		 * uprobe_unregister() and see the already removed
1678		 * uprobe if delete_uprobe() was not yet called.
1679		 * Or this uprobe can be filtered out.
1680		 */
1681		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1682			return;
1683	}
1684
1685	clear_bit(MMF_HAS_UPROBES, &mm->flags);
1686}
1687
1688static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1689{
1690	struct page *page;
1691	uprobe_opcode_t opcode;
1692	int result;
1693
1694	pagefault_disable();
1695	result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1696							sizeof(opcode));
1697	pagefault_enable();
1698
1699	if (likely(result == 0))
1700		goto out;
1701
1702	result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1703	if (result < 0)
1704		return result;
1705
1706	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1707	put_page(page);
1708 out:
1709	/* This needs to return true for any variant of the trap insn */
1710	return is_trap_insn(&opcode);
1711}
1712
1713static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1714{
1715	struct mm_struct *mm = current->mm;
1716	struct uprobe *uprobe = NULL;
1717	struct vm_area_struct *vma;
1718
1719	down_read(&mm->mmap_sem);
1720	vma = find_vma(mm, bp_vaddr);
1721	if (vma && vma->vm_start <= bp_vaddr) {
1722		if (valid_vma(vma, false)) {
1723			struct inode *inode = file_inode(vma->vm_file);
1724			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1725
1726			uprobe = find_uprobe(inode, offset);
1727		}
1728
1729		if (!uprobe)
1730			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
1731	} else {
1732		*is_swbp = -EFAULT;
1733	}
1734
1735	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1736		mmf_recalc_uprobes(mm);
1737	up_read(&mm->mmap_sem);
1738
1739	return uprobe;
1740}
1741
1742static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1743{
1744	struct uprobe_consumer *uc;
1745	int remove = UPROBE_HANDLER_REMOVE;
1746	bool need_prep = false; /* prepare return uprobe, when needed */
1747
1748	down_read(&uprobe->register_rwsem);
1749	for (uc = uprobe->consumers; uc; uc = uc->next) {
1750		int rc = 0;
1751
1752		if (uc->handler) {
1753			rc = uc->handler(uc, regs);
1754			WARN(rc & ~UPROBE_HANDLER_MASK,
1755				"bad rc=0x%x from %pf()\n", rc, uc->handler);
1756		}
1757
1758		if (uc->ret_handler)
1759			need_prep = true;
1760
1761		remove &= rc;
1762	}
1763
1764	if (need_prep && !remove)
1765		prepare_uretprobe(uprobe, regs); /* put bp at return */
1766
1767	if (remove && uprobe->consumers) {
1768		WARN_ON(!uprobe_is_active(uprobe));
1769		unapply_uprobe(uprobe, current->mm);
1770	}
1771	up_read(&uprobe->register_rwsem);
1772}
1773
1774static void
1775handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1776{
1777	struct uprobe *uprobe = ri->uprobe;
1778	struct uprobe_consumer *uc;
1779
1780	down_read(&uprobe->register_rwsem);
1781	for (uc = uprobe->consumers; uc; uc = uc->next) {
1782		if (uc->ret_handler)
1783			uc->ret_handler(uc, ri->func, regs);
1784	}
1785	up_read(&uprobe->register_rwsem);
1786}
1787
1788static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1789{
1790	bool chained;
1791
1792	do {
1793		chained = ri->chained;
1794		ri = ri->next;	/* can't be NULL if chained */
1795	} while (chained);
1796
1797	return ri;
1798}
1799
1800static void handle_trampoline(struct pt_regs *regs)
1801{
1802	struct uprobe_task *utask;
1803	struct return_instance *ri, *next;
1804	bool valid;
1805
1806	utask = current->utask;
1807	if (!utask)
1808		goto sigill;
1809
1810	ri = utask->return_instances;
1811	if (!ri)
1812		goto sigill;
1813
1814	do {
1815		/*
1816		 * We should throw out the frames invalidated by longjmp().
1817		 * If this chain is valid, then the next one should be alive
1818		 * or NULL; the latter case means that nobody but ri->func
1819		 * could hit this trampoline on return. TODO: sigaltstack().
1820		 */
1821		next = find_next_ret_chain(ri);
1822		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1823
1824		instruction_pointer_set(regs, ri->orig_ret_vaddr);
1825		do {
1826			if (valid)
1827				handle_uretprobe_chain(ri, regs);
1828			ri = free_ret_instance(ri);
1829			utask->depth--;
1830		} while (ri != next);
1831	} while (!valid);
1832
1833	utask->return_instances = ri;
1834	return;
1835
1836 sigill:
1837	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1838	force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1839
1840}
1841
1842bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1843{
1844	return false;
1845}
1846
1847bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1848					struct pt_regs *regs)
1849{
1850	return true;
1851}
1852
1853/*
1854 * Run handler and ask thread to singlestep.
1855 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1856 */
1857static void handle_swbp(struct pt_regs *regs)
1858{
1859	struct uprobe *uprobe;
1860	unsigned long bp_vaddr;
1861	int uninitialized_var(is_swbp);
1862
1863	bp_vaddr = uprobe_get_swbp_addr(regs);
1864	if (bp_vaddr == get_trampoline_vaddr())
1865		return handle_trampoline(regs);
1866
1867	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1868	if (!uprobe) {
1869		if (is_swbp > 0) {
1870			/* No matching uprobe; signal SIGTRAP. */
1871			send_sig(SIGTRAP, current, 0);
1872		} else {
1873			/*
1874			 * Either we raced with uprobe_unregister() or we can't
1875			 * access this memory. The latter is only possible if
1876			 * another thread plays with our ->mm. In both cases
1877			 * we can simply restart. If this vma was unmapped we
1878			 * can pretend this insn was not executed yet and get
1879			 * the (correct) SIGSEGV after restart.
1880			 */
1881			instruction_pointer_set(regs, bp_vaddr);
1882		}
1883		return;
1884	}
1885
1886	/* change it in advance for ->handler() and restart */
1887	instruction_pointer_set(regs, bp_vaddr);
1888
1889	/*
1890	 * TODO: move copy_insn/etc into _register and remove this hack.
1891	 * After we hit the bp, _unregister + _register can install the
1892	 * new and not-yet-analyzed uprobe at the same address, restart.
1893	 */
1894	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1895	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1896		goto out;
1897
1898	/* Tracing handlers use ->utask to communicate with fetch methods */
1899	if (!get_utask())
1900		goto out;
1901
1902	if (arch_uprobe_ignore(&uprobe->arch, regs))
1903		goto out;
1904
1905	handler_chain(uprobe, regs);
1906
1907	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1908		goto out;
1909
1910	if (!pre_ssout(uprobe, regs, bp_vaddr))
1911		return;
1912
1913	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1914out:
1915	put_uprobe(uprobe);
1916}
1917
1918/*
1919 * Perform required fix-ups and disable singlestep.
1920 * Allow pending signals to take effect.
1921 */
1922static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1923{
1924	struct uprobe *uprobe;
1925	int err = 0;
1926
1927	uprobe = utask->active_uprobe;
1928	if (utask->state == UTASK_SSTEP_ACK)
1929		err = arch_uprobe_post_xol(&uprobe->arch, regs);
1930	else if (utask->state == UTASK_SSTEP_TRAPPED)
1931		arch_uprobe_abort_xol(&uprobe->arch, regs);
1932	else
1933		WARN_ON_ONCE(1);
1934
1935	put_uprobe(uprobe);
1936	utask->active_uprobe = NULL;
1937	utask->state = UTASK_RUNNING;
1938	xol_free_insn_slot(current);
1939
1940	spin_lock_irq(&current->sighand->siglock);
1941	recalc_sigpending(); /* see uprobe_deny_signal() */
1942	spin_unlock_irq(&current->sighand->siglock);
1943
1944	if (unlikely(err)) {
1945		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1946		force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1947	}
1948}
1949
1950/*
1951 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1952 * allows the thread to return from interrupt. After that handle_swbp()
1953 * sets utask->active_uprobe.
1954 *
1955 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1956 * and allows the thread to return from interrupt.
1957 *
1958 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1959 * uprobe_notify_resume().
1960 */
1961void uprobe_notify_resume(struct pt_regs *regs)
1962{
1963	struct uprobe_task *utask;
1964
1965	clear_thread_flag(TIF_UPROBE);
1966
1967	utask = current->utask;
1968	if (utask && utask->active_uprobe)
1969		handle_singlestep(utask, regs);
1970	else
1971		handle_swbp(regs);
1972}
1973
1974/*
1975 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1976 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1977 */
1978int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1979{
1980	if (!current->mm)
1981		return 0;
1982
1983	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1984	    (!current->utask || !current->utask->return_instances))
1985		return 0;
1986
1987	set_thread_flag(TIF_UPROBE);
1988	return 1;
1989}
1990
1991/*
1992 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1993 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1994 */
1995int uprobe_post_sstep_notifier(struct pt_regs *regs)
1996{
1997	struct uprobe_task *utask = current->utask;
1998
1999	if (!current->mm || !utask || !utask->active_uprobe)
2000		/* task is currently not uprobed */
2001		return 0;
2002
2003	utask->state = UTASK_SSTEP_ACK;
2004	set_thread_flag(TIF_UPROBE);
2005	return 1;
2006}
2007
2008static struct notifier_block uprobe_exception_nb = {
2009	.notifier_call		= arch_uprobe_exception_notify,
2010	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2011};
2012
2013static int __init init_uprobes(void)
2014{
2015	int i;
2016
2017	for (i = 0; i < UPROBES_HASH_SZ; i++)
2018		mutex_init(&uprobes_mmap_mutex[i]);
2019
2020	if (percpu_init_rwsem(&dup_mmap_sem))
2021		return -ENOMEM;
2022
2023	return register_die_notifier(&uprobe_exception_nb);
2024}
2025__initcall(init_uprobes);
2026