1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16 *
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19 *
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
23 *
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
26 *
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 *   protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 *   one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 *   SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 *   to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
40 *
41 * Internals:
42 * - scalability:
43 *   - all global variables are read-mostly.
44 *   - semop() calls and semctl(RMID) are synchronized by RCU.
45 *   - most operations do write operations (actually: spin_lock calls) to
46 *     the per-semaphore array structure.
47 *   Thus: Perfect SMP scaling between independent semaphore arrays.
48 *         If multiple semaphores in one array are used, then cache line
49 *         trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semcnt()
51 * - the task that performs a successful semop() scans the list of all
52 *   sleeping tasks and completes any pending operations that can be fulfilled.
53 *   Semaphores are actively given to waiting tasks (necessary for FIFO).
54 *   (see update_queue())
55 * - To improve the scalability, the actual wake-up calls are performed after
56 *   dropping all locks. (see wake_up_sem_queue_prepare(),
57 *   wake_up_sem_queue_do())
58 * - All work is done by the waker, the woken up task does not have to do
59 *   anything - not even acquiring a lock or dropping a refcount.
60 * - A woken up task may not even touch the semaphore array anymore, it may
61 *   have been destroyed already by a semctl(RMID).
62 * - The synchronizations between wake-ups due to a timeout/signal and a
63 *   wake-up due to a completed semaphore operation is achieved by using an
64 *   intermediate state (IN_WAKEUP).
65 * - UNDO values are stored in an array (one per process and per
66 *   semaphore array, lazily allocated). For backwards compatibility, multiple
67 *   modes for the UNDO variables are supported (per process, per thread)
68 *   (see copy_semundo, CLONE_SYSVSEM)
69 * - There are two lists of the pending operations: a per-array list
70 *   and per-semaphore list (stored in the array). This allows to achieve FIFO
71 *   ordering without always scanning all pending operations.
72 *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
73 */
74
75#include <linux/slab.h>
76#include <linux/spinlock.h>
77#include <linux/init.h>
78#include <linux/proc_fs.h>
79#include <linux/time.h>
80#include <linux/security.h>
81#include <linux/syscalls.h>
82#include <linux/audit.h>
83#include <linux/capability.h>
84#include <linux/seq_file.h>
85#include <linux/rwsem.h>
86#include <linux/nsproxy.h>
87#include <linux/ipc_namespace.h>
88
89#include <linux/uaccess.h>
90#include "util.h"
91
92/* One semaphore structure for each semaphore in the system. */
93struct sem {
94	int	semval;		/* current value */
95	int	sempid;		/* pid of last operation */
96	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
97	struct list_head pending_alter; /* pending single-sop operations */
98					/* that alter the semaphore */
99	struct list_head pending_const; /* pending single-sop operations */
100					/* that do not alter the semaphore*/
101	time_t	sem_otime;	/* candidate for sem_otime */
102} ____cacheline_aligned_in_smp;
103
104/* One queue for each sleeping process in the system. */
105struct sem_queue {
106	struct list_head	list;	 /* queue of pending operations */
107	struct task_struct	*sleeper; /* this process */
108	struct sem_undo		*undo;	 /* undo structure */
109	int			pid;	 /* process id of requesting process */
110	int			status;	 /* completion status of operation */
111	struct sembuf		*sops;	 /* array of pending operations */
112	struct sembuf		*blocking; /* the operation that blocked */
113	int			nsops;	 /* number of operations */
114	int			alter;	 /* does *sops alter the array? */
115};
116
117/* Each task has a list of undo requests. They are executed automatically
118 * when the process exits.
119 */
120struct sem_undo {
121	struct list_head	list_proc;	/* per-process list: *
122						 * all undos from one process
123						 * rcu protected */
124	struct rcu_head		rcu;		/* rcu struct for sem_undo */
125	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
126	struct list_head	list_id;	/* per semaphore array list:
127						 * all undos for one array */
128	int			semid;		/* semaphore set identifier */
129	short			*semadj;	/* array of adjustments */
130						/* one per semaphore */
131};
132
133/* sem_undo_list controls shared access to the list of sem_undo structures
134 * that may be shared among all a CLONE_SYSVSEM task group.
135 */
136struct sem_undo_list {
137	atomic_t		refcnt;
138	spinlock_t		lock;
139	struct list_head	list_proc;
140};
141
142
143#define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
144
145#define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)
146
147static int newary(struct ipc_namespace *, struct ipc_params *);
148static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
149#ifdef CONFIG_PROC_FS
150static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
151#endif
152
153#define SEMMSL_FAST	256 /* 512 bytes on stack */
154#define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
155
156/*
157 * Locking:
158 *	sem_undo.id_next,
159 *	sem_array.complex_count,
160 *	sem_array.pending{_alter,_cont},
161 *	sem_array.sem_undo: global sem_lock() for read/write
162 *	sem_undo.proc_next: only "current" is allowed to read/write that field.
163 *
164 *	sem_array.sem_base[i].pending_{const,alter}:
165 *		global or semaphore sem_lock() for read/write
166 */
167
168#define sc_semmsl	sem_ctls[0]
169#define sc_semmns	sem_ctls[1]
170#define sc_semopm	sem_ctls[2]
171#define sc_semmni	sem_ctls[3]
172
173void sem_init_ns(struct ipc_namespace *ns)
174{
175	ns->sc_semmsl = SEMMSL;
176	ns->sc_semmns = SEMMNS;
177	ns->sc_semopm = SEMOPM;
178	ns->sc_semmni = SEMMNI;
179	ns->used_sems = 0;
180	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
181}
182
183#ifdef CONFIG_IPC_NS
184void sem_exit_ns(struct ipc_namespace *ns)
185{
186	free_ipcs(ns, &sem_ids(ns), freeary);
187	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
188}
189#endif
190
191void __init sem_init(void)
192{
193	sem_init_ns(&init_ipc_ns);
194	ipc_init_proc_interface("sysvipc/sem",
195				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
196				IPC_SEM_IDS, sysvipc_sem_proc_show);
197}
198
199/**
200 * unmerge_queues - unmerge queues, if possible.
201 * @sma: semaphore array
202 *
203 * The function unmerges the wait queues if complex_count is 0.
204 * It must be called prior to dropping the global semaphore array lock.
205 */
206static void unmerge_queues(struct sem_array *sma)
207{
208	struct sem_queue *q, *tq;
209
210	/* complex operations still around? */
211	if (sma->complex_count)
212		return;
213	/*
214	 * We will switch back to simple mode.
215	 * Move all pending operation back into the per-semaphore
216	 * queues.
217	 */
218	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219		struct sem *curr;
220		curr = &sma->sem_base[q->sops[0].sem_num];
221
222		list_add_tail(&q->list, &curr->pending_alter);
223	}
224	INIT_LIST_HEAD(&sma->pending_alter);
225}
226
227/**
228 * merge_queues - merge single semop queues into global queue
229 * @sma: semaphore array
230 *
231 * This function merges all per-semaphore queues into the global queue.
232 * It is necessary to achieve FIFO ordering for the pending single-sop
233 * operations when a multi-semop operation must sleep.
234 * Only the alter operations must be moved, the const operations can stay.
235 */
236static void merge_queues(struct sem_array *sma)
237{
238	int i;
239	for (i = 0; i < sma->sem_nsems; i++) {
240		struct sem *sem = sma->sem_base + i;
241
242		list_splice_init(&sem->pending_alter, &sma->pending_alter);
243	}
244}
245
246static void sem_rcu_free(struct rcu_head *head)
247{
248	struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
249	struct sem_array *sma = ipc_rcu_to_struct(p);
250
251	security_sem_free(sma);
252	ipc_rcu_free(head);
253}
254
255/*
256 * spin_unlock_wait() and !spin_is_locked() are not memory barriers, they
257 * are only control barriers.
258 * The code must pair with spin_unlock(&sem->lock) or
259 * spin_unlock(&sem_perm.lock), thus just the control barrier is insufficient.
260 *
261 * smp_rmb() is sufficient, as writes cannot pass the control barrier.
262 */
263#define ipc_smp_acquire__after_spin_is_unlocked()	smp_rmb()
264
265/*
266 * Wait until all currently ongoing simple ops have completed.
267 * Caller must own sem_perm.lock.
268 * New simple ops cannot start, because simple ops first check
269 * that sem_perm.lock is free.
270 * that a) sem_perm.lock is free and b) complex_count is 0.
271 */
272static void sem_wait_array(struct sem_array *sma)
273{
274	int i;
275	struct sem *sem;
276
277	if (sma->complex_count)  {
278		/* The thread that increased sma->complex_count waited on
279		 * all sem->lock locks. Thus we don't need to wait again.
280		 */
281		return;
282	}
283
284	for (i = 0; i < sma->sem_nsems; i++) {
285		sem = sma->sem_base + i;
286		spin_unlock_wait(&sem->lock);
287	}
288	ipc_smp_acquire__after_spin_is_unlocked();
289}
290
291/*
292 * If the request contains only one semaphore operation, and there are
293 * no complex transactions pending, lock only the semaphore involved.
294 * Otherwise, lock the entire semaphore array, since we either have
295 * multiple semaphores in our own semops, or we need to look at
296 * semaphores from other pending complex operations.
297 */
298static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
299			      int nsops)
300{
301	struct sem *sem;
302
303	if (nsops != 1) {
304		/* Complex operation - acquire a full lock */
305		ipc_lock_object(&sma->sem_perm);
306
307		/* And wait until all simple ops that are processed
308		 * right now have dropped their locks.
309		 */
310		sem_wait_array(sma);
311		return -1;
312	}
313
314	/*
315	 * Only one semaphore affected - try to optimize locking.
316	 * The rules are:
317	 * - optimized locking is possible if no complex operation
318	 *   is either enqueued or processed right now.
319	 * - The test for enqueued complex ops is simple:
320	 *      sma->complex_count != 0
321	 * - Testing for complex ops that are processed right now is
322	 *   a bit more difficult. Complex ops acquire the full lock
323	 *   and first wait that the running simple ops have completed.
324	 *   (see above)
325	 *   Thus: If we own a simple lock and the global lock is free
326	 *	and complex_count is now 0, then it will stay 0 and
327	 *	thus just locking sem->lock is sufficient.
328	 */
329	sem = sma->sem_base + sops->sem_num;
330
331	if (sma->complex_count == 0) {
332		/*
333		 * It appears that no complex operation is around.
334		 * Acquire the per-semaphore lock.
335		 */
336		spin_lock(&sem->lock);
337
338		/* Then check that the global lock is free */
339		if (!spin_is_locked(&sma->sem_perm.lock)) {
340			/*
341			 * We need a memory barrier with acquire semantics,
342			 * otherwise we can race with another thread that does:
343			 *	complex_count++;
344			 *	spin_unlock(sem_perm.lock);
345			 */
346			ipc_smp_acquire__after_spin_is_unlocked();
347
348			/*
349			 * Now repeat the test of complex_count:
350			 * It can't change anymore until we drop sem->lock.
351			 * Thus: if is now 0, then it will stay 0.
352			 */
353			if (sma->complex_count == 0) {
354				/* fast path successful! */
355				return sops->sem_num;
356			}
357		}
358		spin_unlock(&sem->lock);
359	}
360
361	/* slow path: acquire the full lock */
362	ipc_lock_object(&sma->sem_perm);
363
364	if (sma->complex_count == 0) {
365		/* False alarm:
366		 * There is no complex operation, thus we can switch
367		 * back to the fast path.
368		 */
369		spin_lock(&sem->lock);
370		ipc_unlock_object(&sma->sem_perm);
371		return sops->sem_num;
372	} else {
373		/* Not a false alarm, thus complete the sequence for a
374		 * full lock.
375		 */
376		sem_wait_array(sma);
377		return -1;
378	}
379}
380
381static inline void sem_unlock(struct sem_array *sma, int locknum)
382{
383	if (locknum == -1) {
384		unmerge_queues(sma);
385		ipc_unlock_object(&sma->sem_perm);
386	} else {
387		struct sem *sem = sma->sem_base + locknum;
388		spin_unlock(&sem->lock);
389	}
390}
391
392/*
393 * sem_lock_(check_) routines are called in the paths where the rwsem
394 * is not held.
395 *
396 * The caller holds the RCU read lock.
397 */
398static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
399			int id, struct sembuf *sops, int nsops, int *locknum)
400{
401	struct kern_ipc_perm *ipcp;
402	struct sem_array *sma;
403
404	ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
405	if (IS_ERR(ipcp))
406		return ERR_CAST(ipcp);
407
408	sma = container_of(ipcp, struct sem_array, sem_perm);
409	*locknum = sem_lock(sma, sops, nsops);
410
411	/* ipc_rmid() may have already freed the ID while sem_lock
412	 * was spinning: verify that the structure is still valid
413	 */
414	if (ipc_valid_object(ipcp))
415		return container_of(ipcp, struct sem_array, sem_perm);
416
417	sem_unlock(sma, *locknum);
418	return ERR_PTR(-EINVAL);
419}
420
421static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
422{
423	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
424
425	if (IS_ERR(ipcp))
426		return ERR_CAST(ipcp);
427
428	return container_of(ipcp, struct sem_array, sem_perm);
429}
430
431static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
432							int id)
433{
434	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
435
436	if (IS_ERR(ipcp))
437		return ERR_CAST(ipcp);
438
439	return container_of(ipcp, struct sem_array, sem_perm);
440}
441
442static inline void sem_lock_and_putref(struct sem_array *sma)
443{
444	sem_lock(sma, NULL, -1);
445	ipc_rcu_putref(sma, ipc_rcu_free);
446}
447
448static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
449{
450	ipc_rmid(&sem_ids(ns), &s->sem_perm);
451}
452
453/*
454 * Lockless wakeup algorithm:
455 * Without the check/retry algorithm a lockless wakeup is possible:
456 * - queue.status is initialized to -EINTR before blocking.
457 * - wakeup is performed by
458 *	* unlinking the queue entry from the pending list
459 *	* setting queue.status to IN_WAKEUP
460 *	  This is the notification for the blocked thread that a
461 *	  result value is imminent.
462 *	* call wake_up_process
463 *	* set queue.status to the final value.
464 * - the previously blocked thread checks queue.status:
465 *	* if it's IN_WAKEUP, then it must wait until the value changes
466 *	* if it's not -EINTR, then the operation was completed by
467 *	  update_queue. semtimedop can return queue.status without
468 *	  performing any operation on the sem array.
469 *	* otherwise it must acquire the spinlock and check what's up.
470 *
471 * The two-stage algorithm is necessary to protect against the following
472 * races:
473 * - if queue.status is set after wake_up_process, then the woken up idle
474 *   thread could race forward and try (and fail) to acquire sma->lock
475 *   before update_queue had a chance to set queue.status
476 * - if queue.status is written before wake_up_process and if the
477 *   blocked process is woken up by a signal between writing
478 *   queue.status and the wake_up_process, then the woken up
479 *   process could return from semtimedop and die by calling
480 *   sys_exit before wake_up_process is called. Then wake_up_process
481 *   will oops, because the task structure is already invalid.
482 *   (yes, this happened on s390 with sysv msg).
483 *
484 */
485#define IN_WAKEUP	1
486
487/**
488 * newary - Create a new semaphore set
489 * @ns: namespace
490 * @params: ptr to the structure that contains key, semflg and nsems
491 *
492 * Called with sem_ids.rwsem held (as a writer)
493 */
494static int newary(struct ipc_namespace *ns, struct ipc_params *params)
495{
496	int id;
497	int retval;
498	struct sem_array *sma;
499	int size;
500	key_t key = params->key;
501	int nsems = params->u.nsems;
502	int semflg = params->flg;
503	int i;
504
505	if (!nsems)
506		return -EINVAL;
507	if (ns->used_sems + nsems > ns->sc_semmns)
508		return -ENOSPC;
509
510	size = sizeof(*sma) + nsems * sizeof(struct sem);
511	sma = ipc_rcu_alloc(size);
512	if (!sma)
513		return -ENOMEM;
514
515	memset(sma, 0, size);
516
517	sma->sem_perm.mode = (semflg & S_IRWXUGO);
518	sma->sem_perm.key = key;
519
520	sma->sem_perm.security = NULL;
521	retval = security_sem_alloc(sma);
522	if (retval) {
523		ipc_rcu_putref(sma, ipc_rcu_free);
524		return retval;
525	}
526
527	sma->sem_base = (struct sem *) &sma[1];
528
529	for (i = 0; i < nsems; i++) {
530		INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
531		INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
532		spin_lock_init(&sma->sem_base[i].lock);
533	}
534
535	sma->complex_count = 0;
536	INIT_LIST_HEAD(&sma->pending_alter);
537	INIT_LIST_HEAD(&sma->pending_const);
538	INIT_LIST_HEAD(&sma->list_id);
539	sma->sem_nsems = nsems;
540	sma->sem_ctime = get_seconds();
541
542	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
543	if (id < 0) {
544		ipc_rcu_putref(sma, sem_rcu_free);
545		return id;
546	}
547	ns->used_sems += nsems;
548
549	sem_unlock(sma, -1);
550	rcu_read_unlock();
551
552	return sma->sem_perm.id;
553}
554
555
556/*
557 * Called with sem_ids.rwsem and ipcp locked.
558 */
559static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
560{
561	struct sem_array *sma;
562
563	sma = container_of(ipcp, struct sem_array, sem_perm);
564	return security_sem_associate(sma, semflg);
565}
566
567/*
568 * Called with sem_ids.rwsem and ipcp locked.
569 */
570static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
571				struct ipc_params *params)
572{
573	struct sem_array *sma;
574
575	sma = container_of(ipcp, struct sem_array, sem_perm);
576	if (params->u.nsems > sma->sem_nsems)
577		return -EINVAL;
578
579	return 0;
580}
581
582SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
583{
584	struct ipc_namespace *ns;
585	static const struct ipc_ops sem_ops = {
586		.getnew = newary,
587		.associate = sem_security,
588		.more_checks = sem_more_checks,
589	};
590	struct ipc_params sem_params;
591
592	ns = current->nsproxy->ipc_ns;
593
594	if (nsems < 0 || nsems > ns->sc_semmsl)
595		return -EINVAL;
596
597	sem_params.key = key;
598	sem_params.flg = semflg;
599	sem_params.u.nsems = nsems;
600
601	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
602}
603
604/**
605 * perform_atomic_semop - Perform (if possible) a semaphore operation
606 * @sma: semaphore array
607 * @q: struct sem_queue that describes the operation
608 *
609 * Returns 0 if the operation was possible.
610 * Returns 1 if the operation is impossible, the caller must sleep.
611 * Negative values are error codes.
612 */
613static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
614{
615	int result, sem_op, nsops, pid;
616	struct sembuf *sop;
617	struct sem *curr;
618	struct sembuf *sops;
619	struct sem_undo *un;
620
621	sops = q->sops;
622	nsops = q->nsops;
623	un = q->undo;
624
625	for (sop = sops; sop < sops + nsops; sop++) {
626		curr = sma->sem_base + sop->sem_num;
627		sem_op = sop->sem_op;
628		result = curr->semval;
629
630		if (!sem_op && result)
631			goto would_block;
632
633		result += sem_op;
634		if (result < 0)
635			goto would_block;
636		if (result > SEMVMX)
637			goto out_of_range;
638
639		if (sop->sem_flg & SEM_UNDO) {
640			int undo = un->semadj[sop->sem_num] - sem_op;
641			/* Exceeding the undo range is an error. */
642			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
643				goto out_of_range;
644			un->semadj[sop->sem_num] = undo;
645		}
646
647		curr->semval = result;
648	}
649
650	sop--;
651	pid = q->pid;
652	while (sop >= sops) {
653		sma->sem_base[sop->sem_num].sempid = pid;
654		sop--;
655	}
656
657	return 0;
658
659out_of_range:
660	result = -ERANGE;
661	goto undo;
662
663would_block:
664	q->blocking = sop;
665
666	if (sop->sem_flg & IPC_NOWAIT)
667		result = -EAGAIN;
668	else
669		result = 1;
670
671undo:
672	sop--;
673	while (sop >= sops) {
674		sem_op = sop->sem_op;
675		sma->sem_base[sop->sem_num].semval -= sem_op;
676		if (sop->sem_flg & SEM_UNDO)
677			un->semadj[sop->sem_num] += sem_op;
678		sop--;
679	}
680
681	return result;
682}
683
684/** wake_up_sem_queue_prepare(q, error): Prepare wake-up
685 * @q: queue entry that must be signaled
686 * @error: Error value for the signal
687 *
688 * Prepare the wake-up of the queue entry q.
689 */
690static void wake_up_sem_queue_prepare(struct list_head *pt,
691				struct sem_queue *q, int error)
692{
693	if (list_empty(pt)) {
694		/*
695		 * Hold preempt off so that we don't get preempted and have the
696		 * wakee busy-wait until we're scheduled back on.
697		 */
698		preempt_disable();
699	}
700	q->status = IN_WAKEUP;
701	q->pid = error;
702
703	list_add_tail(&q->list, pt);
704}
705
706/**
707 * wake_up_sem_queue_do - do the actual wake-up
708 * @pt: list of tasks to be woken up
709 *
710 * Do the actual wake-up.
711 * The function is called without any locks held, thus the semaphore array
712 * could be destroyed already and the tasks can disappear as soon as the
713 * status is set to the actual return code.
714 */
715static void wake_up_sem_queue_do(struct list_head *pt)
716{
717	struct sem_queue *q, *t;
718	int did_something;
719
720	did_something = !list_empty(pt);
721	list_for_each_entry_safe(q, t, pt, list) {
722		wake_up_process(q->sleeper);
723		/* q can disappear immediately after writing q->status. */
724		smp_wmb();
725		q->status = q->pid;
726	}
727	if (did_something)
728		preempt_enable();
729}
730
731static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
732{
733	list_del(&q->list);
734	if (q->nsops > 1)
735		sma->complex_count--;
736}
737
738/** check_restart(sma, q)
739 * @sma: semaphore array
740 * @q: the operation that just completed
741 *
742 * update_queue is O(N^2) when it restarts scanning the whole queue of
743 * waiting operations. Therefore this function checks if the restart is
744 * really necessary. It is called after a previously waiting operation
745 * modified the array.
746 * Note that wait-for-zero operations are handled without restart.
747 */
748static int check_restart(struct sem_array *sma, struct sem_queue *q)
749{
750	/* pending complex alter operations are too difficult to analyse */
751	if (!list_empty(&sma->pending_alter))
752		return 1;
753
754	/* we were a sleeping complex operation. Too difficult */
755	if (q->nsops > 1)
756		return 1;
757
758	/* It is impossible that someone waits for the new value:
759	 * - complex operations always restart.
760	 * - wait-for-zero are handled seperately.
761	 * - q is a previously sleeping simple operation that
762	 *   altered the array. It must be a decrement, because
763	 *   simple increments never sleep.
764	 * - If there are older (higher priority) decrements
765	 *   in the queue, then they have observed the original
766	 *   semval value and couldn't proceed. The operation
767	 *   decremented to value - thus they won't proceed either.
768	 */
769	return 0;
770}
771
772/**
773 * wake_const_ops - wake up non-alter tasks
774 * @sma: semaphore array.
775 * @semnum: semaphore that was modified.
776 * @pt: list head for the tasks that must be woken up.
777 *
778 * wake_const_ops must be called after a semaphore in a semaphore array
779 * was set to 0. If complex const operations are pending, wake_const_ops must
780 * be called with semnum = -1, as well as with the number of each modified
781 * semaphore.
782 * The tasks that must be woken up are added to @pt. The return code
783 * is stored in q->pid.
784 * The function returns 1 if at least one operation was completed successfully.
785 */
786static int wake_const_ops(struct sem_array *sma, int semnum,
787				struct list_head *pt)
788{
789	struct sem_queue *q;
790	struct list_head *walk;
791	struct list_head *pending_list;
792	int semop_completed = 0;
793
794	if (semnum == -1)
795		pending_list = &sma->pending_const;
796	else
797		pending_list = &sma->sem_base[semnum].pending_const;
798
799	walk = pending_list->next;
800	while (walk != pending_list) {
801		int error;
802
803		q = container_of(walk, struct sem_queue, list);
804		walk = walk->next;
805
806		error = perform_atomic_semop(sma, q);
807
808		if (error <= 0) {
809			/* operation completed, remove from queue & wakeup */
810
811			unlink_queue(sma, q);
812
813			wake_up_sem_queue_prepare(pt, q, error);
814			if (error == 0)
815				semop_completed = 1;
816		}
817	}
818	return semop_completed;
819}
820
821/**
822 * do_smart_wakeup_zero - wakeup all wait for zero tasks
823 * @sma: semaphore array
824 * @sops: operations that were performed
825 * @nsops: number of operations
826 * @pt: list head of the tasks that must be woken up.
827 *
828 * Checks all required queue for wait-for-zero operations, based
829 * on the actual changes that were performed on the semaphore array.
830 * The function returns 1 if at least one operation was completed successfully.
831 */
832static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
833					int nsops, struct list_head *pt)
834{
835	int i;
836	int semop_completed = 0;
837	int got_zero = 0;
838
839	/* first: the per-semaphore queues, if known */
840	if (sops) {
841		for (i = 0; i < nsops; i++) {
842			int num = sops[i].sem_num;
843
844			if (sma->sem_base[num].semval == 0) {
845				got_zero = 1;
846				semop_completed |= wake_const_ops(sma, num, pt);
847			}
848		}
849	} else {
850		/*
851		 * No sops means modified semaphores not known.
852		 * Assume all were changed.
853		 */
854		for (i = 0; i < sma->sem_nsems; i++) {
855			if (sma->sem_base[i].semval == 0) {
856				got_zero = 1;
857				semop_completed |= wake_const_ops(sma, i, pt);
858			}
859		}
860	}
861	/*
862	 * If one of the modified semaphores got 0,
863	 * then check the global queue, too.
864	 */
865	if (got_zero)
866		semop_completed |= wake_const_ops(sma, -1, pt);
867
868	return semop_completed;
869}
870
871
872/**
873 * update_queue - look for tasks that can be completed.
874 * @sma: semaphore array.
875 * @semnum: semaphore that was modified.
876 * @pt: list head for the tasks that must be woken up.
877 *
878 * update_queue must be called after a semaphore in a semaphore array
879 * was modified. If multiple semaphores were modified, update_queue must
880 * be called with semnum = -1, as well as with the number of each modified
881 * semaphore.
882 * The tasks that must be woken up are added to @pt. The return code
883 * is stored in q->pid.
884 * The function internally checks if const operations can now succeed.
885 *
886 * The function return 1 if at least one semop was completed successfully.
887 */
888static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
889{
890	struct sem_queue *q;
891	struct list_head *walk;
892	struct list_head *pending_list;
893	int semop_completed = 0;
894
895	if (semnum == -1)
896		pending_list = &sma->pending_alter;
897	else
898		pending_list = &sma->sem_base[semnum].pending_alter;
899
900again:
901	walk = pending_list->next;
902	while (walk != pending_list) {
903		int error, restart;
904
905		q = container_of(walk, struct sem_queue, list);
906		walk = walk->next;
907
908		/* If we are scanning the single sop, per-semaphore list of
909		 * one semaphore and that semaphore is 0, then it is not
910		 * necessary to scan further: simple increments
911		 * that affect only one entry succeed immediately and cannot
912		 * be in the  per semaphore pending queue, and decrements
913		 * cannot be successful if the value is already 0.
914		 */
915		if (semnum != -1 && sma->sem_base[semnum].semval == 0)
916			break;
917
918		error = perform_atomic_semop(sma, q);
919
920		/* Does q->sleeper still need to sleep? */
921		if (error > 0)
922			continue;
923
924		unlink_queue(sma, q);
925
926		if (error) {
927			restart = 0;
928		} else {
929			semop_completed = 1;
930			do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
931			restart = check_restart(sma, q);
932		}
933
934		wake_up_sem_queue_prepare(pt, q, error);
935		if (restart)
936			goto again;
937	}
938	return semop_completed;
939}
940
941/**
942 * set_semotime - set sem_otime
943 * @sma: semaphore array
944 * @sops: operations that modified the array, may be NULL
945 *
946 * sem_otime is replicated to avoid cache line trashing.
947 * This function sets one instance to the current time.
948 */
949static void set_semotime(struct sem_array *sma, struct sembuf *sops)
950{
951	if (sops == NULL) {
952		sma->sem_base[0].sem_otime = get_seconds();
953	} else {
954		sma->sem_base[sops[0].sem_num].sem_otime =
955							get_seconds();
956	}
957}
958
959/**
960 * do_smart_update - optimized update_queue
961 * @sma: semaphore array
962 * @sops: operations that were performed
963 * @nsops: number of operations
964 * @otime: force setting otime
965 * @pt: list head of the tasks that must be woken up.
966 *
967 * do_smart_update() does the required calls to update_queue and wakeup_zero,
968 * based on the actual changes that were performed on the semaphore array.
969 * Note that the function does not do the actual wake-up: the caller is
970 * responsible for calling wake_up_sem_queue_do(@pt).
971 * It is safe to perform this call after dropping all locks.
972 */
973static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
974			int otime, struct list_head *pt)
975{
976	int i;
977
978	otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
979
980	if (!list_empty(&sma->pending_alter)) {
981		/* semaphore array uses the global queue - just process it. */
982		otime |= update_queue(sma, -1, pt);
983	} else {
984		if (!sops) {
985			/*
986			 * No sops, thus the modified semaphores are not
987			 * known. Check all.
988			 */
989			for (i = 0; i < sma->sem_nsems; i++)
990				otime |= update_queue(sma, i, pt);
991		} else {
992			/*
993			 * Check the semaphores that were increased:
994			 * - No complex ops, thus all sleeping ops are
995			 *   decrease.
996			 * - if we decreased the value, then any sleeping
997			 *   semaphore ops wont be able to run: If the
998			 *   previous value was too small, then the new
999			 *   value will be too small, too.
1000			 */
1001			for (i = 0; i < nsops; i++) {
1002				if (sops[i].sem_op > 0) {
1003					otime |= update_queue(sma,
1004							sops[i].sem_num, pt);
1005				}
1006			}
1007		}
1008	}
1009	if (otime)
1010		set_semotime(sma, sops);
1011}
1012
1013/*
1014 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1015 */
1016static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1017			bool count_zero)
1018{
1019	struct sembuf *sop = q->blocking;
1020
1021	/*
1022	 * Linux always (since 0.99.10) reported a task as sleeping on all
1023	 * semaphores. This violates SUS, therefore it was changed to the
1024	 * standard compliant behavior.
1025	 * Give the administrators a chance to notice that an application
1026	 * might misbehave because it relies on the Linux behavior.
1027	 */
1028	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1029			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1030			current->comm, task_pid_nr(current));
1031
1032	if (sop->sem_num != semnum)
1033		return 0;
1034
1035	if (count_zero && sop->sem_op == 0)
1036		return 1;
1037	if (!count_zero && sop->sem_op < 0)
1038		return 1;
1039
1040	return 0;
1041}
1042
1043/* The following counts are associated to each semaphore:
1044 *   semncnt        number of tasks waiting on semval being nonzero
1045 *   semzcnt        number of tasks waiting on semval being zero
1046 *
1047 * Per definition, a task waits only on the semaphore of the first semop
1048 * that cannot proceed, even if additional operation would block, too.
1049 */
1050static int count_semcnt(struct sem_array *sma, ushort semnum,
1051			bool count_zero)
1052{
1053	struct list_head *l;
1054	struct sem_queue *q;
1055	int semcnt;
1056
1057	semcnt = 0;
1058	/* First: check the simple operations. They are easy to evaluate */
1059	if (count_zero)
1060		l = &sma->sem_base[semnum].pending_const;
1061	else
1062		l = &sma->sem_base[semnum].pending_alter;
1063
1064	list_for_each_entry(q, l, list) {
1065		/* all task on a per-semaphore list sleep on exactly
1066		 * that semaphore
1067		 */
1068		semcnt++;
1069	}
1070
1071	/* Then: check the complex operations. */
1072	list_for_each_entry(q, &sma->pending_alter, list) {
1073		semcnt += check_qop(sma, semnum, q, count_zero);
1074	}
1075	if (count_zero) {
1076		list_for_each_entry(q, &sma->pending_const, list) {
1077			semcnt += check_qop(sma, semnum, q, count_zero);
1078		}
1079	}
1080	return semcnt;
1081}
1082
1083/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1084 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1085 * remains locked on exit.
1086 */
1087static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1088{
1089	struct sem_undo *un, *tu;
1090	struct sem_queue *q, *tq;
1091	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1092	struct list_head tasks;
1093	int i;
1094
1095	/* Free the existing undo structures for this semaphore set.  */
1096	ipc_assert_locked_object(&sma->sem_perm);
1097	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1098		list_del(&un->list_id);
1099		spin_lock(&un->ulp->lock);
1100		un->semid = -1;
1101		list_del_rcu(&un->list_proc);
1102		spin_unlock(&un->ulp->lock);
1103		kfree_rcu(un, rcu);
1104	}
1105
1106	/* Wake up all pending processes and let them fail with EIDRM. */
1107	INIT_LIST_HEAD(&tasks);
1108	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1109		unlink_queue(sma, q);
1110		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1111	}
1112
1113	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1114		unlink_queue(sma, q);
1115		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1116	}
1117	for (i = 0; i < sma->sem_nsems; i++) {
1118		struct sem *sem = sma->sem_base + i;
1119		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1120			unlink_queue(sma, q);
1121			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1122		}
1123		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1124			unlink_queue(sma, q);
1125			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1126		}
1127	}
1128
1129	/* Remove the semaphore set from the IDR */
1130	sem_rmid(ns, sma);
1131	sem_unlock(sma, -1);
1132	rcu_read_unlock();
1133
1134	wake_up_sem_queue_do(&tasks);
1135	ns->used_sems -= sma->sem_nsems;
1136	ipc_rcu_putref(sma, sem_rcu_free);
1137}
1138
1139static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1140{
1141	switch (version) {
1142	case IPC_64:
1143		return copy_to_user(buf, in, sizeof(*in));
1144	case IPC_OLD:
1145	    {
1146		struct semid_ds out;
1147
1148		memset(&out, 0, sizeof(out));
1149
1150		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1151
1152		out.sem_otime	= in->sem_otime;
1153		out.sem_ctime	= in->sem_ctime;
1154		out.sem_nsems	= in->sem_nsems;
1155
1156		return copy_to_user(buf, &out, sizeof(out));
1157	    }
1158	default:
1159		return -EINVAL;
1160	}
1161}
1162
1163static time_t get_semotime(struct sem_array *sma)
1164{
1165	int i;
1166	time_t res;
1167
1168	res = sma->sem_base[0].sem_otime;
1169	for (i = 1; i < sma->sem_nsems; i++) {
1170		time_t to = sma->sem_base[i].sem_otime;
1171
1172		if (to > res)
1173			res = to;
1174	}
1175	return res;
1176}
1177
1178static int semctl_nolock(struct ipc_namespace *ns, int semid,
1179			 int cmd, int version, void __user *p)
1180{
1181	int err;
1182	struct sem_array *sma;
1183
1184	switch (cmd) {
1185	case IPC_INFO:
1186	case SEM_INFO:
1187	{
1188		struct seminfo seminfo;
1189		int max_id;
1190
1191		err = security_sem_semctl(NULL, cmd);
1192		if (err)
1193			return err;
1194
1195		memset(&seminfo, 0, sizeof(seminfo));
1196		seminfo.semmni = ns->sc_semmni;
1197		seminfo.semmns = ns->sc_semmns;
1198		seminfo.semmsl = ns->sc_semmsl;
1199		seminfo.semopm = ns->sc_semopm;
1200		seminfo.semvmx = SEMVMX;
1201		seminfo.semmnu = SEMMNU;
1202		seminfo.semmap = SEMMAP;
1203		seminfo.semume = SEMUME;
1204		down_read(&sem_ids(ns).rwsem);
1205		if (cmd == SEM_INFO) {
1206			seminfo.semusz = sem_ids(ns).in_use;
1207			seminfo.semaem = ns->used_sems;
1208		} else {
1209			seminfo.semusz = SEMUSZ;
1210			seminfo.semaem = SEMAEM;
1211		}
1212		max_id = ipc_get_maxid(&sem_ids(ns));
1213		up_read(&sem_ids(ns).rwsem);
1214		if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1215			return -EFAULT;
1216		return (max_id < 0) ? 0 : max_id;
1217	}
1218	case IPC_STAT:
1219	case SEM_STAT:
1220	{
1221		struct semid64_ds tbuf;
1222		int id = 0;
1223
1224		memset(&tbuf, 0, sizeof(tbuf));
1225
1226		rcu_read_lock();
1227		if (cmd == SEM_STAT) {
1228			sma = sem_obtain_object(ns, semid);
1229			if (IS_ERR(sma)) {
1230				err = PTR_ERR(sma);
1231				goto out_unlock;
1232			}
1233			id = sma->sem_perm.id;
1234		} else {
1235			sma = sem_obtain_object_check(ns, semid);
1236			if (IS_ERR(sma)) {
1237				err = PTR_ERR(sma);
1238				goto out_unlock;
1239			}
1240		}
1241
1242		err = -EACCES;
1243		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1244			goto out_unlock;
1245
1246		err = security_sem_semctl(sma, cmd);
1247		if (err)
1248			goto out_unlock;
1249
1250		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1251		tbuf.sem_otime = get_semotime(sma);
1252		tbuf.sem_ctime = sma->sem_ctime;
1253		tbuf.sem_nsems = sma->sem_nsems;
1254		rcu_read_unlock();
1255		if (copy_semid_to_user(p, &tbuf, version))
1256			return -EFAULT;
1257		return id;
1258	}
1259	default:
1260		return -EINVAL;
1261	}
1262out_unlock:
1263	rcu_read_unlock();
1264	return err;
1265}
1266
1267static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1268		unsigned long arg)
1269{
1270	struct sem_undo *un;
1271	struct sem_array *sma;
1272	struct sem *curr;
1273	int err;
1274	struct list_head tasks;
1275	int val;
1276#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1277	/* big-endian 64bit */
1278	val = arg >> 32;
1279#else
1280	/* 32bit or little-endian 64bit */
1281	val = arg;
1282#endif
1283
1284	if (val > SEMVMX || val < 0)
1285		return -ERANGE;
1286
1287	INIT_LIST_HEAD(&tasks);
1288
1289	rcu_read_lock();
1290	sma = sem_obtain_object_check(ns, semid);
1291	if (IS_ERR(sma)) {
1292		rcu_read_unlock();
1293		return PTR_ERR(sma);
1294	}
1295
1296	if (semnum < 0 || semnum >= sma->sem_nsems) {
1297		rcu_read_unlock();
1298		return -EINVAL;
1299	}
1300
1301
1302	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1303		rcu_read_unlock();
1304		return -EACCES;
1305	}
1306
1307	err = security_sem_semctl(sma, SETVAL);
1308	if (err) {
1309		rcu_read_unlock();
1310		return -EACCES;
1311	}
1312
1313	sem_lock(sma, NULL, -1);
1314
1315	if (!ipc_valid_object(&sma->sem_perm)) {
1316		sem_unlock(sma, -1);
1317		rcu_read_unlock();
1318		return -EIDRM;
1319	}
1320
1321	curr = &sma->sem_base[semnum];
1322
1323	ipc_assert_locked_object(&sma->sem_perm);
1324	list_for_each_entry(un, &sma->list_id, list_id)
1325		un->semadj[semnum] = 0;
1326
1327	curr->semval = val;
1328	curr->sempid = task_tgid_vnr(current);
1329	sma->sem_ctime = get_seconds();
1330	/* maybe some queued-up processes were waiting for this */
1331	do_smart_update(sma, NULL, 0, 0, &tasks);
1332	sem_unlock(sma, -1);
1333	rcu_read_unlock();
1334	wake_up_sem_queue_do(&tasks);
1335	return 0;
1336}
1337
1338static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1339		int cmd, void __user *p)
1340{
1341	struct sem_array *sma;
1342	struct sem *curr;
1343	int err, nsems;
1344	ushort fast_sem_io[SEMMSL_FAST];
1345	ushort *sem_io = fast_sem_io;
1346	struct list_head tasks;
1347
1348	INIT_LIST_HEAD(&tasks);
1349
1350	rcu_read_lock();
1351	sma = sem_obtain_object_check(ns, semid);
1352	if (IS_ERR(sma)) {
1353		rcu_read_unlock();
1354		return PTR_ERR(sma);
1355	}
1356
1357	nsems = sma->sem_nsems;
1358
1359	err = -EACCES;
1360	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1361		goto out_rcu_wakeup;
1362
1363	err = security_sem_semctl(sma, cmd);
1364	if (err)
1365		goto out_rcu_wakeup;
1366
1367	err = -EACCES;
1368	switch (cmd) {
1369	case GETALL:
1370	{
1371		ushort __user *array = p;
1372		int i;
1373
1374		sem_lock(sma, NULL, -1);
1375		if (!ipc_valid_object(&sma->sem_perm)) {
1376			err = -EIDRM;
1377			goto out_unlock;
1378		}
1379		if (nsems > SEMMSL_FAST) {
1380			if (!ipc_rcu_getref(sma)) {
1381				err = -EIDRM;
1382				goto out_unlock;
1383			}
1384			sem_unlock(sma, -1);
1385			rcu_read_unlock();
1386			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1387			if (sem_io == NULL) {
1388				ipc_rcu_putref(sma, ipc_rcu_free);
1389				return -ENOMEM;
1390			}
1391
1392			rcu_read_lock();
1393			sem_lock_and_putref(sma);
1394			if (!ipc_valid_object(&sma->sem_perm)) {
1395				err = -EIDRM;
1396				goto out_unlock;
1397			}
1398		}
1399		for (i = 0; i < sma->sem_nsems; i++)
1400			sem_io[i] = sma->sem_base[i].semval;
1401		sem_unlock(sma, -1);
1402		rcu_read_unlock();
1403		err = 0;
1404		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1405			err = -EFAULT;
1406		goto out_free;
1407	}
1408	case SETALL:
1409	{
1410		int i;
1411		struct sem_undo *un;
1412
1413		if (!ipc_rcu_getref(sma)) {
1414			err = -EIDRM;
1415			goto out_rcu_wakeup;
1416		}
1417		rcu_read_unlock();
1418
1419		if (nsems > SEMMSL_FAST) {
1420			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1421			if (sem_io == NULL) {
1422				ipc_rcu_putref(sma, ipc_rcu_free);
1423				return -ENOMEM;
1424			}
1425		}
1426
1427		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1428			ipc_rcu_putref(sma, ipc_rcu_free);
1429			err = -EFAULT;
1430			goto out_free;
1431		}
1432
1433		for (i = 0; i < nsems; i++) {
1434			if (sem_io[i] > SEMVMX) {
1435				ipc_rcu_putref(sma, ipc_rcu_free);
1436				err = -ERANGE;
1437				goto out_free;
1438			}
1439		}
1440		rcu_read_lock();
1441		sem_lock_and_putref(sma);
1442		if (!ipc_valid_object(&sma->sem_perm)) {
1443			err = -EIDRM;
1444			goto out_unlock;
1445		}
1446
1447		for (i = 0; i < nsems; i++)
1448			sma->sem_base[i].semval = sem_io[i];
1449
1450		ipc_assert_locked_object(&sma->sem_perm);
1451		list_for_each_entry(un, &sma->list_id, list_id) {
1452			for (i = 0; i < nsems; i++)
1453				un->semadj[i] = 0;
1454		}
1455		sma->sem_ctime = get_seconds();
1456		/* maybe some queued-up processes were waiting for this */
1457		do_smart_update(sma, NULL, 0, 0, &tasks);
1458		err = 0;
1459		goto out_unlock;
1460	}
1461	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1462	}
1463	err = -EINVAL;
1464	if (semnum < 0 || semnum >= nsems)
1465		goto out_rcu_wakeup;
1466
1467	sem_lock(sma, NULL, -1);
1468	if (!ipc_valid_object(&sma->sem_perm)) {
1469		err = -EIDRM;
1470		goto out_unlock;
1471	}
1472	curr = &sma->sem_base[semnum];
1473
1474	switch (cmd) {
1475	case GETVAL:
1476		err = curr->semval;
1477		goto out_unlock;
1478	case GETPID:
1479		err = curr->sempid;
1480		goto out_unlock;
1481	case GETNCNT:
1482		err = count_semcnt(sma, semnum, 0);
1483		goto out_unlock;
1484	case GETZCNT:
1485		err = count_semcnt(sma, semnum, 1);
1486		goto out_unlock;
1487	}
1488
1489out_unlock:
1490	sem_unlock(sma, -1);
1491out_rcu_wakeup:
1492	rcu_read_unlock();
1493	wake_up_sem_queue_do(&tasks);
1494out_free:
1495	if (sem_io != fast_sem_io)
1496		ipc_free(sem_io, sizeof(ushort)*nsems);
1497	return err;
1498}
1499
1500static inline unsigned long
1501copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1502{
1503	switch (version) {
1504	case IPC_64:
1505		if (copy_from_user(out, buf, sizeof(*out)))
1506			return -EFAULT;
1507		return 0;
1508	case IPC_OLD:
1509	    {
1510		struct semid_ds tbuf_old;
1511
1512		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1513			return -EFAULT;
1514
1515		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1516		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1517		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1518
1519		return 0;
1520	    }
1521	default:
1522		return -EINVAL;
1523	}
1524}
1525
1526/*
1527 * This function handles some semctl commands which require the rwsem
1528 * to be held in write mode.
1529 * NOTE: no locks must be held, the rwsem is taken inside this function.
1530 */
1531static int semctl_down(struct ipc_namespace *ns, int semid,
1532		       int cmd, int version, void __user *p)
1533{
1534	struct sem_array *sma;
1535	int err;
1536	struct semid64_ds semid64;
1537	struct kern_ipc_perm *ipcp;
1538
1539	if (cmd == IPC_SET) {
1540		if (copy_semid_from_user(&semid64, p, version))
1541			return -EFAULT;
1542	}
1543
1544	down_write(&sem_ids(ns).rwsem);
1545	rcu_read_lock();
1546
1547	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1548				      &semid64.sem_perm, 0);
1549	if (IS_ERR(ipcp)) {
1550		err = PTR_ERR(ipcp);
1551		goto out_unlock1;
1552	}
1553
1554	sma = container_of(ipcp, struct sem_array, sem_perm);
1555
1556	err = security_sem_semctl(sma, cmd);
1557	if (err)
1558		goto out_unlock1;
1559
1560	switch (cmd) {
1561	case IPC_RMID:
1562		sem_lock(sma, NULL, -1);
1563		/* freeary unlocks the ipc object and rcu */
1564		freeary(ns, ipcp);
1565		goto out_up;
1566	case IPC_SET:
1567		sem_lock(sma, NULL, -1);
1568		err = ipc_update_perm(&semid64.sem_perm, ipcp);
1569		if (err)
1570			goto out_unlock0;
1571		sma->sem_ctime = get_seconds();
1572		break;
1573	default:
1574		err = -EINVAL;
1575		goto out_unlock1;
1576	}
1577
1578out_unlock0:
1579	sem_unlock(sma, -1);
1580out_unlock1:
1581	rcu_read_unlock();
1582out_up:
1583	up_write(&sem_ids(ns).rwsem);
1584	return err;
1585}
1586
1587SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1588{
1589	int version;
1590	struct ipc_namespace *ns;
1591	void __user *p = (void __user *)arg;
1592
1593	if (semid < 0)
1594		return -EINVAL;
1595
1596	version = ipc_parse_version(&cmd);
1597	ns = current->nsproxy->ipc_ns;
1598
1599	switch (cmd) {
1600	case IPC_INFO:
1601	case SEM_INFO:
1602	case IPC_STAT:
1603	case SEM_STAT:
1604		return semctl_nolock(ns, semid, cmd, version, p);
1605	case GETALL:
1606	case GETVAL:
1607	case GETPID:
1608	case GETNCNT:
1609	case GETZCNT:
1610	case SETALL:
1611		return semctl_main(ns, semid, semnum, cmd, p);
1612	case SETVAL:
1613		return semctl_setval(ns, semid, semnum, arg);
1614	case IPC_RMID:
1615	case IPC_SET:
1616		return semctl_down(ns, semid, cmd, version, p);
1617	default:
1618		return -EINVAL;
1619	}
1620}
1621
1622/* If the task doesn't already have a undo_list, then allocate one
1623 * here.  We guarantee there is only one thread using this undo list,
1624 * and current is THE ONE
1625 *
1626 * If this allocation and assignment succeeds, but later
1627 * portions of this code fail, there is no need to free the sem_undo_list.
1628 * Just let it stay associated with the task, and it'll be freed later
1629 * at exit time.
1630 *
1631 * This can block, so callers must hold no locks.
1632 */
1633static inline int get_undo_list(struct sem_undo_list **undo_listp)
1634{
1635	struct sem_undo_list *undo_list;
1636
1637	undo_list = current->sysvsem.undo_list;
1638	if (!undo_list) {
1639		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1640		if (undo_list == NULL)
1641			return -ENOMEM;
1642		spin_lock_init(&undo_list->lock);
1643		atomic_set(&undo_list->refcnt, 1);
1644		INIT_LIST_HEAD(&undo_list->list_proc);
1645
1646		current->sysvsem.undo_list = undo_list;
1647	}
1648	*undo_listp = undo_list;
1649	return 0;
1650}
1651
1652static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1653{
1654	struct sem_undo *un;
1655
1656	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1657		if (un->semid == semid)
1658			return un;
1659	}
1660	return NULL;
1661}
1662
1663static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1664{
1665	struct sem_undo *un;
1666
1667	assert_spin_locked(&ulp->lock);
1668
1669	un = __lookup_undo(ulp, semid);
1670	if (un) {
1671		list_del_rcu(&un->list_proc);
1672		list_add_rcu(&un->list_proc, &ulp->list_proc);
1673	}
1674	return un;
1675}
1676
1677/**
1678 * find_alloc_undo - lookup (and if not present create) undo array
1679 * @ns: namespace
1680 * @semid: semaphore array id
1681 *
1682 * The function looks up (and if not present creates) the undo structure.
1683 * The size of the undo structure depends on the size of the semaphore
1684 * array, thus the alloc path is not that straightforward.
1685 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1686 * performs a rcu_read_lock().
1687 */
1688static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1689{
1690	struct sem_array *sma;
1691	struct sem_undo_list *ulp;
1692	struct sem_undo *un, *new;
1693	int nsems, error;
1694
1695	error = get_undo_list(&ulp);
1696	if (error)
1697		return ERR_PTR(error);
1698
1699	rcu_read_lock();
1700	spin_lock(&ulp->lock);
1701	un = lookup_undo(ulp, semid);
1702	spin_unlock(&ulp->lock);
1703	if (likely(un != NULL))
1704		goto out;
1705
1706	/* no undo structure around - allocate one. */
1707	/* step 1: figure out the size of the semaphore array */
1708	sma = sem_obtain_object_check(ns, semid);
1709	if (IS_ERR(sma)) {
1710		rcu_read_unlock();
1711		return ERR_CAST(sma);
1712	}
1713
1714	nsems = sma->sem_nsems;
1715	if (!ipc_rcu_getref(sma)) {
1716		rcu_read_unlock();
1717		un = ERR_PTR(-EIDRM);
1718		goto out;
1719	}
1720	rcu_read_unlock();
1721
1722	/* step 2: allocate new undo structure */
1723	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1724	if (!new) {
1725		ipc_rcu_putref(sma, ipc_rcu_free);
1726		return ERR_PTR(-ENOMEM);
1727	}
1728
1729	/* step 3: Acquire the lock on semaphore array */
1730	rcu_read_lock();
1731	sem_lock_and_putref(sma);
1732	if (!ipc_valid_object(&sma->sem_perm)) {
1733		sem_unlock(sma, -1);
1734		rcu_read_unlock();
1735		kfree(new);
1736		un = ERR_PTR(-EIDRM);
1737		goto out;
1738	}
1739	spin_lock(&ulp->lock);
1740
1741	/*
1742	 * step 4: check for races: did someone else allocate the undo struct?
1743	 */
1744	un = lookup_undo(ulp, semid);
1745	if (un) {
1746		kfree(new);
1747		goto success;
1748	}
1749	/* step 5: initialize & link new undo structure */
1750	new->semadj = (short *) &new[1];
1751	new->ulp = ulp;
1752	new->semid = semid;
1753	assert_spin_locked(&ulp->lock);
1754	list_add_rcu(&new->list_proc, &ulp->list_proc);
1755	ipc_assert_locked_object(&sma->sem_perm);
1756	list_add(&new->list_id, &sma->list_id);
1757	un = new;
1758
1759success:
1760	spin_unlock(&ulp->lock);
1761	sem_unlock(sma, -1);
1762out:
1763	return un;
1764}
1765
1766
1767/**
1768 * get_queue_result - retrieve the result code from sem_queue
1769 * @q: Pointer to queue structure
1770 *
1771 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1772 * q->status, then we must loop until the value is replaced with the final
1773 * value: This may happen if a task is woken up by an unrelated event (e.g.
1774 * signal) and in parallel the task is woken up by another task because it got
1775 * the requested semaphores.
1776 *
1777 * The function can be called with or without holding the semaphore spinlock.
1778 */
1779static int get_queue_result(struct sem_queue *q)
1780{
1781	int error;
1782
1783	error = q->status;
1784	while (unlikely(error == IN_WAKEUP)) {
1785		cpu_relax();
1786		error = q->status;
1787	}
1788
1789	return error;
1790}
1791
1792SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1793		unsigned, nsops, const struct timespec __user *, timeout)
1794{
1795	int error = -EINVAL;
1796	struct sem_array *sma;
1797	struct sembuf fast_sops[SEMOPM_FAST];
1798	struct sembuf *sops = fast_sops, *sop;
1799	struct sem_undo *un;
1800	int undos = 0, alter = 0, max, locknum;
1801	struct sem_queue queue;
1802	unsigned long jiffies_left = 0;
1803	struct ipc_namespace *ns;
1804	struct list_head tasks;
1805
1806	ns = current->nsproxy->ipc_ns;
1807
1808	if (nsops < 1 || semid < 0)
1809		return -EINVAL;
1810	if (nsops > ns->sc_semopm)
1811		return -E2BIG;
1812	if (nsops > SEMOPM_FAST) {
1813		sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1814		if (sops == NULL)
1815			return -ENOMEM;
1816	}
1817	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1818		error =  -EFAULT;
1819		goto out_free;
1820	}
1821	if (timeout) {
1822		struct timespec _timeout;
1823		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1824			error = -EFAULT;
1825			goto out_free;
1826		}
1827		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1828			_timeout.tv_nsec >= 1000000000L) {
1829			error = -EINVAL;
1830			goto out_free;
1831		}
1832		jiffies_left = timespec_to_jiffies(&_timeout);
1833	}
1834	max = 0;
1835	for (sop = sops; sop < sops + nsops; sop++) {
1836		if (sop->sem_num >= max)
1837			max = sop->sem_num;
1838		if (sop->sem_flg & SEM_UNDO)
1839			undos = 1;
1840		if (sop->sem_op != 0)
1841			alter = 1;
1842	}
1843
1844	INIT_LIST_HEAD(&tasks);
1845
1846	if (undos) {
1847		/* On success, find_alloc_undo takes the rcu_read_lock */
1848		un = find_alloc_undo(ns, semid);
1849		if (IS_ERR(un)) {
1850			error = PTR_ERR(un);
1851			goto out_free;
1852		}
1853	} else {
1854		un = NULL;
1855		rcu_read_lock();
1856	}
1857
1858	sma = sem_obtain_object_check(ns, semid);
1859	if (IS_ERR(sma)) {
1860		rcu_read_unlock();
1861		error = PTR_ERR(sma);
1862		goto out_free;
1863	}
1864
1865	error = -EFBIG;
1866	if (max >= sma->sem_nsems)
1867		goto out_rcu_wakeup;
1868
1869	error = -EACCES;
1870	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1871		goto out_rcu_wakeup;
1872
1873	error = security_sem_semop(sma, sops, nsops, alter);
1874	if (error)
1875		goto out_rcu_wakeup;
1876
1877	error = -EIDRM;
1878	locknum = sem_lock(sma, sops, nsops);
1879	/*
1880	 * We eventually might perform the following check in a lockless
1881	 * fashion, considering ipc_valid_object() locking constraints.
1882	 * If nsops == 1 and there is no contention for sem_perm.lock, then
1883	 * only a per-semaphore lock is held and it's OK to proceed with the
1884	 * check below. More details on the fine grained locking scheme
1885	 * entangled here and why it's RMID race safe on comments at sem_lock()
1886	 */
1887	if (!ipc_valid_object(&sma->sem_perm))
1888		goto out_unlock_free;
1889	/*
1890	 * semid identifiers are not unique - find_alloc_undo may have
1891	 * allocated an undo structure, it was invalidated by an RMID
1892	 * and now a new array with received the same id. Check and fail.
1893	 * This case can be detected checking un->semid. The existence of
1894	 * "un" itself is guaranteed by rcu.
1895	 */
1896	if (un && un->semid == -1)
1897		goto out_unlock_free;
1898
1899	queue.sops = sops;
1900	queue.nsops = nsops;
1901	queue.undo = un;
1902	queue.pid = task_tgid_vnr(current);
1903	queue.alter = alter;
1904
1905	error = perform_atomic_semop(sma, &queue);
1906	if (error == 0) {
1907		/* If the operation was successful, then do
1908		 * the required updates.
1909		 */
1910		if (alter)
1911			do_smart_update(sma, sops, nsops, 1, &tasks);
1912		else
1913			set_semotime(sma, sops);
1914	}
1915	if (error <= 0)
1916		goto out_unlock_free;
1917
1918	/* We need to sleep on this operation, so we put the current
1919	 * task into the pending queue and go to sleep.
1920	 */
1921
1922	if (nsops == 1) {
1923		struct sem *curr;
1924		curr = &sma->sem_base[sops->sem_num];
1925
1926		if (alter) {
1927			if (sma->complex_count) {
1928				list_add_tail(&queue.list,
1929						&sma->pending_alter);
1930			} else {
1931
1932				list_add_tail(&queue.list,
1933						&curr->pending_alter);
1934			}
1935		} else {
1936			list_add_tail(&queue.list, &curr->pending_const);
1937		}
1938	} else {
1939		if (!sma->complex_count)
1940			merge_queues(sma);
1941
1942		if (alter)
1943			list_add_tail(&queue.list, &sma->pending_alter);
1944		else
1945			list_add_tail(&queue.list, &sma->pending_const);
1946
1947		sma->complex_count++;
1948	}
1949
1950	queue.status = -EINTR;
1951	queue.sleeper = current;
1952
1953sleep_again:
1954	__set_current_state(TASK_INTERRUPTIBLE);
1955	sem_unlock(sma, locknum);
1956	rcu_read_unlock();
1957
1958	if (timeout)
1959		jiffies_left = schedule_timeout(jiffies_left);
1960	else
1961		schedule();
1962
1963	error = get_queue_result(&queue);
1964
1965	if (error != -EINTR) {
1966		/* fast path: update_queue already obtained all requested
1967		 * resources.
1968		 * Perform a smp_mb(): User space could assume that semop()
1969		 * is a memory barrier: Without the mb(), the cpu could
1970		 * speculatively read in user space stale data that was
1971		 * overwritten by the previous owner of the semaphore.
1972		 */
1973		smp_mb();
1974
1975		goto out_free;
1976	}
1977
1978	rcu_read_lock();
1979	sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1980
1981	/*
1982	 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1983	 */
1984	error = get_queue_result(&queue);
1985
1986	/*
1987	 * Array removed? If yes, leave without sem_unlock().
1988	 */
1989	if (IS_ERR(sma)) {
1990		rcu_read_unlock();
1991		goto out_free;
1992	}
1993
1994
1995	/*
1996	 * If queue.status != -EINTR we are woken up by another process.
1997	 * Leave without unlink_queue(), but with sem_unlock().
1998	 */
1999	if (error != -EINTR)
2000		goto out_unlock_free;
2001
2002	/*
2003	 * If an interrupt occurred we have to clean up the queue
2004	 */
2005	if (timeout && jiffies_left == 0)
2006		error = -EAGAIN;
2007
2008	/*
2009	 * If the wakeup was spurious, just retry
2010	 */
2011	if (error == -EINTR && !signal_pending(current))
2012		goto sleep_again;
2013
2014	unlink_queue(sma, &queue);
2015
2016out_unlock_free:
2017	sem_unlock(sma, locknum);
2018out_rcu_wakeup:
2019	rcu_read_unlock();
2020	wake_up_sem_queue_do(&tasks);
2021out_free:
2022	if (sops != fast_sops)
2023		kfree(sops);
2024	return error;
2025}
2026
2027SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2028		unsigned, nsops)
2029{
2030	return sys_semtimedop(semid, tsops, nsops, NULL);
2031}
2032
2033/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2034 * parent and child tasks.
2035 */
2036
2037int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2038{
2039	struct sem_undo_list *undo_list;
2040	int error;
2041
2042	if (clone_flags & CLONE_SYSVSEM) {
2043		error = get_undo_list(&undo_list);
2044		if (error)
2045			return error;
2046		atomic_inc(&undo_list->refcnt);
2047		tsk->sysvsem.undo_list = undo_list;
2048	} else
2049		tsk->sysvsem.undo_list = NULL;
2050
2051	return 0;
2052}
2053
2054/*
2055 * add semadj values to semaphores, free undo structures.
2056 * undo structures are not freed when semaphore arrays are destroyed
2057 * so some of them may be out of date.
2058 * IMPLEMENTATION NOTE: There is some confusion over whether the
2059 * set of adjustments that needs to be done should be done in an atomic
2060 * manner or not. That is, if we are attempting to decrement the semval
2061 * should we queue up and wait until we can do so legally?
2062 * The original implementation attempted to do this (queue and wait).
2063 * The current implementation does not do so. The POSIX standard
2064 * and SVID should be consulted to determine what behavior is mandated.
2065 */
2066void exit_sem(struct task_struct *tsk)
2067{
2068	struct sem_undo_list *ulp;
2069
2070	ulp = tsk->sysvsem.undo_list;
2071	if (!ulp)
2072		return;
2073	tsk->sysvsem.undo_list = NULL;
2074
2075	if (!atomic_dec_and_test(&ulp->refcnt))
2076		return;
2077
2078	for (;;) {
2079		struct sem_array *sma;
2080		struct sem_undo *un;
2081		struct list_head tasks;
2082		int semid, i;
2083
2084		rcu_read_lock();
2085		un = list_entry_rcu(ulp->list_proc.next,
2086				    struct sem_undo, list_proc);
2087		if (&un->list_proc == &ulp->list_proc) {
2088			/*
2089			 * We must wait for freeary() before freeing this ulp,
2090			 * in case we raced with last sem_undo. There is a small
2091			 * possibility where we exit while freeary() didn't
2092			 * finish unlocking sem_undo_list.
2093			 */
2094			spin_unlock_wait(&ulp->lock);
2095			rcu_read_unlock();
2096			break;
2097		}
2098		spin_lock(&ulp->lock);
2099		semid = un->semid;
2100		spin_unlock(&ulp->lock);
2101
2102		/* exit_sem raced with IPC_RMID, nothing to do */
2103		if (semid == -1) {
2104			rcu_read_unlock();
2105			continue;
2106		}
2107
2108		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2109		/* exit_sem raced with IPC_RMID, nothing to do */
2110		if (IS_ERR(sma)) {
2111			rcu_read_unlock();
2112			continue;
2113		}
2114
2115		sem_lock(sma, NULL, -1);
2116		/* exit_sem raced with IPC_RMID, nothing to do */
2117		if (!ipc_valid_object(&sma->sem_perm)) {
2118			sem_unlock(sma, -1);
2119			rcu_read_unlock();
2120			continue;
2121		}
2122		un = __lookup_undo(ulp, semid);
2123		if (un == NULL) {
2124			/* exit_sem raced with IPC_RMID+semget() that created
2125			 * exactly the same semid. Nothing to do.
2126			 */
2127			sem_unlock(sma, -1);
2128			rcu_read_unlock();
2129			continue;
2130		}
2131
2132		/* remove un from the linked lists */
2133		ipc_assert_locked_object(&sma->sem_perm);
2134		list_del(&un->list_id);
2135
2136		/* we are the last process using this ulp, acquiring ulp->lock
2137		 * isn't required. Besides that, we are also protected against
2138		 * IPC_RMID as we hold sma->sem_perm lock now
2139		 */
2140		list_del_rcu(&un->list_proc);
2141
2142		/* perform adjustments registered in un */
2143		for (i = 0; i < sma->sem_nsems; i++) {
2144			struct sem *semaphore = &sma->sem_base[i];
2145			if (un->semadj[i]) {
2146				semaphore->semval += un->semadj[i];
2147				/*
2148				 * Range checks of the new semaphore value,
2149				 * not defined by sus:
2150				 * - Some unices ignore the undo entirely
2151				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2152				 * - some cap the value (e.g. FreeBSD caps
2153				 *   at 0, but doesn't enforce SEMVMX)
2154				 *
2155				 * Linux caps the semaphore value, both at 0
2156				 * and at SEMVMX.
2157				 *
2158				 *	Manfred <manfred@colorfullife.com>
2159				 */
2160				if (semaphore->semval < 0)
2161					semaphore->semval = 0;
2162				if (semaphore->semval > SEMVMX)
2163					semaphore->semval = SEMVMX;
2164				semaphore->sempid = task_tgid_vnr(current);
2165			}
2166		}
2167		/* maybe some queued-up processes were waiting for this */
2168		INIT_LIST_HEAD(&tasks);
2169		do_smart_update(sma, NULL, 0, 1, &tasks);
2170		sem_unlock(sma, -1);
2171		rcu_read_unlock();
2172		wake_up_sem_queue_do(&tasks);
2173
2174		kfree_rcu(un, rcu);
2175	}
2176	kfree(ulp);
2177}
2178
2179#ifdef CONFIG_PROC_FS
2180static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2181{
2182	struct user_namespace *user_ns = seq_user_ns(s);
2183	struct sem_array *sma = it;
2184	time_t sem_otime;
2185
2186	/*
2187	 * The proc interface isn't aware of sem_lock(), it calls
2188	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2189	 * In order to stay compatible with sem_lock(), we must wait until
2190	 * all simple semop() calls have left their critical regions.
2191	 */
2192	sem_wait_array(sma);
2193
2194	sem_otime = get_semotime(sma);
2195
2196	seq_printf(s,
2197		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2198		   sma->sem_perm.key,
2199		   sma->sem_perm.id,
2200		   sma->sem_perm.mode,
2201		   sma->sem_nsems,
2202		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2203		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2204		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2205		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2206		   sem_otime,
2207		   sma->sem_ctime);
2208
2209	return 0;
2210}
2211#endif
2212