1/*
2 *	Definitions for the 'struct sk_buff' memory handlers.
3 *
4 *	Authors:
5 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
6 *		Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 *	This program is free software; you can redistribute it and/or
9 *	modify it under the terms of the GNU General Public License
10 *	as published by the Free Software Foundation; either version
11 *	2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/kernel.h>
18#include <linux/kmemcheck.h>
19#include <linux/compiler.h>
20#include <linux/time.h>
21#include <linux/bug.h>
22#include <linux/cache.h>
23#include <linux/rbtree.h>
24#include <linux/socket.h>
25
26#include <linux/atomic.h>
27#include <asm/types.h>
28#include <linux/spinlock.h>
29#include <linux/net.h>
30#include <linux/textsearch.h>
31#include <net/checksum.h>
32#include <linux/rcupdate.h>
33#include <linux/hrtimer.h>
34#include <linux/dma-mapping.h>
35#include <linux/netdev_features.h>
36#include <linux/sched.h>
37#include <net/flow_dissector.h>
38#include <linux/splice.h>
39#include <linux/in6.h>
40#include <net/flow.h>
41
42/* A. Checksumming of received packets by device.
43 *
44 * CHECKSUM_NONE:
45 *
46 *   Device failed to checksum this packet e.g. due to lack of capabilities.
47 *   The packet contains full (though not verified) checksum in packet but
48 *   not in skb->csum. Thus, skb->csum is undefined in this case.
49 *
50 * CHECKSUM_UNNECESSARY:
51 *
52 *   The hardware you're dealing with doesn't calculate the full checksum
53 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
54 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
55 *   if their checksums are okay. skb->csum is still undefined in this case
56 *   though. It is a bad option, but, unfortunately, nowadays most vendors do
57 *   this. Apparently with the secret goal to sell you new devices, when you
58 *   will add new protocol to your host, f.e. IPv6 8)
59 *
60 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
61 *     TCP: IPv6 and IPv4.
62 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
63 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
64 *       may perform further validation in this case.
65 *     GRE: only if the checksum is present in the header.
66 *     SCTP: indicates the CRC in SCTP header has been validated.
67 *
68 *   skb->csum_level indicates the number of consecutive checksums found in
69 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
70 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
71 *   and a device is able to verify the checksums for UDP (possibly zero),
72 *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
73 *   two. If the device were only able to verify the UDP checksum and not
74 *   GRE, either because it doesn't support GRE checksum of because GRE
75 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
76 *   not considered in this case).
77 *
78 * CHECKSUM_COMPLETE:
79 *
80 *   This is the most generic way. The device supplied checksum of the _whole_
81 *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
82 *   hardware doesn't need to parse L3/L4 headers to implement this.
83 *
84 *   Note: Even if device supports only some protocols, but is able to produce
85 *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
86 *
87 * CHECKSUM_PARTIAL:
88 *
89 *   A checksum is set up to be offloaded to a device as described in the
90 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
91 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
92 *   on the same host, or it may be set in the input path in GRO or remote
93 *   checksum offload. For the purposes of checksum verification, the checksum
94 *   referred to by skb->csum_start + skb->csum_offset and any preceding
95 *   checksums in the packet are considered verified. Any checksums in the
96 *   packet that are after the checksum being offloaded are not considered to
97 *   be verified.
98 *
99 * B. Checksumming on output.
100 *
101 * CHECKSUM_NONE:
102 *
103 *   The skb was already checksummed by the protocol, or a checksum is not
104 *   required.
105 *
106 * CHECKSUM_PARTIAL:
107 *
108 *   The device is required to checksum the packet as seen by hard_start_xmit()
109 *   from skb->csum_start up to the end, and to record/write the checksum at
110 *   offset skb->csum_start + skb->csum_offset.
111 *
112 *   The device must show its capabilities in dev->features, set up at device
113 *   setup time, e.g. netdev_features.h:
114 *
115 *	NETIF_F_HW_CSUM	- It's a clever device, it's able to checksum everything.
116 *	NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
117 *			  IPv4. Sigh. Vendors like this way for an unknown reason.
118 *			  Though, see comment above about CHECKSUM_UNNECESSARY. 8)
119 *	NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
120 *	NETIF_F_...     - Well, you get the picture.
121 *
122 * CHECKSUM_UNNECESSARY:
123 *
124 *   Normally, the device will do per protocol specific checksumming. Protocol
125 *   implementations that do not want the NIC to perform the checksum
126 *   calculation should use this flag in their outgoing skbs.
127 *
128 *	NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
129 *			   offload. Correspondingly, the FCoE protocol driver
130 *			   stack should use CHECKSUM_UNNECESSARY.
131 *
132 * Any questions? No questions, good.		--ANK
133 */
134
135/* Don't change this without changing skb_csum_unnecessary! */
136#define CHECKSUM_NONE		0
137#define CHECKSUM_UNNECESSARY	1
138#define CHECKSUM_COMPLETE	2
139#define CHECKSUM_PARTIAL	3
140
141/* Maximum value in skb->csum_level */
142#define SKB_MAX_CSUM_LEVEL	3
143
144#define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
145#define SKB_WITH_OVERHEAD(X)	\
146	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
147#define SKB_MAX_ORDER(X, ORDER) \
148	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
149#define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
150#define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
151
152/* return minimum truesize of one skb containing X bytes of data */
153#define SKB_TRUESIZE(X) ((X) +						\
154			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
155			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
156
157struct net_device;
158struct scatterlist;
159struct pipe_inode_info;
160struct iov_iter;
161struct napi_struct;
162
163#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
164struct nf_conntrack {
165	atomic_t use;
166};
167#endif
168
169#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
170struct nf_bridge_info {
171	atomic_t		use;
172	enum {
173		BRNF_PROTO_UNCHANGED,
174		BRNF_PROTO_8021Q,
175		BRNF_PROTO_PPPOE
176	} orig_proto:8;
177	u8			pkt_otherhost:1;
178	u8			in_prerouting:1;
179	u8			bridged_dnat:1;
180	__u16			frag_max_size;
181	struct net_device	*physindev;
182
183	/* always valid & non-NULL from FORWARD on, for physdev match */
184	struct net_device	*physoutdev;
185	union {
186		/* prerouting: detect dnat in orig/reply direction */
187		__be32          ipv4_daddr;
188		struct in6_addr ipv6_daddr;
189
190		/* after prerouting + nat detected: store original source
191		 * mac since neigh resolution overwrites it, only used while
192		 * skb is out in neigh layer.
193		 */
194		char neigh_header[8];
195	};
196};
197#endif
198
199struct sk_buff_head {
200	/* These two members must be first. */
201	struct sk_buff	*next;
202	struct sk_buff	*prev;
203
204	__u32		qlen;
205	spinlock_t	lock;
206};
207
208struct sk_buff;
209
210/* To allow 64K frame to be packed as single skb without frag_list we
211 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
212 * buffers which do not start on a page boundary.
213 *
214 * Since GRO uses frags we allocate at least 16 regardless of page
215 * size.
216 */
217#if (65536/PAGE_SIZE + 1) < 16
218#define MAX_SKB_FRAGS 16UL
219#else
220#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
221#endif
222extern int sysctl_max_skb_frags;
223
224typedef struct skb_frag_struct skb_frag_t;
225
226struct skb_frag_struct {
227	struct {
228		struct page *p;
229	} page;
230#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
231	__u32 page_offset;
232	__u32 size;
233#else
234	__u16 page_offset;
235	__u16 size;
236#endif
237};
238
239static inline unsigned int skb_frag_size(const skb_frag_t *frag)
240{
241	return frag->size;
242}
243
244static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
245{
246	frag->size = size;
247}
248
249static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
250{
251	frag->size += delta;
252}
253
254static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
255{
256	frag->size -= delta;
257}
258
259#define HAVE_HW_TIME_STAMP
260
261/**
262 * struct skb_shared_hwtstamps - hardware time stamps
263 * @hwtstamp:	hardware time stamp transformed into duration
264 *		since arbitrary point in time
265 *
266 * Software time stamps generated by ktime_get_real() are stored in
267 * skb->tstamp.
268 *
269 * hwtstamps can only be compared against other hwtstamps from
270 * the same device.
271 *
272 * This structure is attached to packets as part of the
273 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
274 */
275struct skb_shared_hwtstamps {
276	ktime_t	hwtstamp;
277};
278
279/* Definitions for tx_flags in struct skb_shared_info */
280enum {
281	/* generate hardware time stamp */
282	SKBTX_HW_TSTAMP = 1 << 0,
283
284	/* generate software time stamp when queueing packet to NIC */
285	SKBTX_SW_TSTAMP = 1 << 1,
286
287	/* device driver is going to provide hardware time stamp */
288	SKBTX_IN_PROGRESS = 1 << 2,
289
290	/* device driver supports TX zero-copy buffers */
291	SKBTX_DEV_ZEROCOPY = 1 << 3,
292
293	/* generate wifi status information (where possible) */
294	SKBTX_WIFI_STATUS = 1 << 4,
295
296	/* This indicates at least one fragment might be overwritten
297	 * (as in vmsplice(), sendfile() ...)
298	 * If we need to compute a TX checksum, we'll need to copy
299	 * all frags to avoid possible bad checksum
300	 */
301	SKBTX_SHARED_FRAG = 1 << 5,
302
303	/* generate software time stamp when entering packet scheduling */
304	SKBTX_SCHED_TSTAMP = 1 << 6,
305
306	/* generate software timestamp on peer data acknowledgment */
307	SKBTX_ACK_TSTAMP = 1 << 7,
308};
309
310#define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
311				 SKBTX_SCHED_TSTAMP | \
312				 SKBTX_ACK_TSTAMP)
313#define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
314
315/*
316 * The callback notifies userspace to release buffers when skb DMA is done in
317 * lower device, the skb last reference should be 0 when calling this.
318 * The zerocopy_success argument is true if zero copy transmit occurred,
319 * false on data copy or out of memory error caused by data copy attempt.
320 * The ctx field is used to track device context.
321 * The desc field is used to track userspace buffer index.
322 */
323struct ubuf_info {
324	void (*callback)(struct ubuf_info *, bool zerocopy_success);
325	void *ctx;
326	unsigned long desc;
327};
328
329/* This data is invariant across clones and lives at
330 * the end of the header data, ie. at skb->end.
331 */
332struct skb_shared_info {
333	unsigned char	nr_frags;
334	__u8		tx_flags;
335	unsigned short	gso_size;
336	/* Warning: this field is not always filled in (UFO)! */
337	unsigned short	gso_segs;
338	unsigned short  gso_type;
339	struct sk_buff	*frag_list;
340	struct skb_shared_hwtstamps hwtstamps;
341	u32		tskey;
342	__be32          ip6_frag_id;
343
344	/*
345	 * Warning : all fields before dataref are cleared in __alloc_skb()
346	 */
347	atomic_t	dataref;
348
349	/* Intermediate layers must ensure that destructor_arg
350	 * remains valid until skb destructor */
351	void *		destructor_arg;
352
353	/* must be last field, see pskb_expand_head() */
354	skb_frag_t	frags[MAX_SKB_FRAGS];
355};
356
357/* We divide dataref into two halves.  The higher 16 bits hold references
358 * to the payload part of skb->data.  The lower 16 bits hold references to
359 * the entire skb->data.  A clone of a headerless skb holds the length of
360 * the header in skb->hdr_len.
361 *
362 * All users must obey the rule that the skb->data reference count must be
363 * greater than or equal to the payload reference count.
364 *
365 * Holding a reference to the payload part means that the user does not
366 * care about modifications to the header part of skb->data.
367 */
368#define SKB_DATAREF_SHIFT 16
369#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
370
371
372enum {
373	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
374	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
375	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
376};
377
378enum {
379	SKB_GSO_TCPV4 = 1 << 0,
380	SKB_GSO_UDP = 1 << 1,
381
382	/* This indicates the skb is from an untrusted source. */
383	SKB_GSO_DODGY = 1 << 2,
384
385	/* This indicates the tcp segment has CWR set. */
386	SKB_GSO_TCP_ECN = 1 << 3,
387
388	SKB_GSO_TCPV6 = 1 << 4,
389
390	SKB_GSO_FCOE = 1 << 5,
391
392	SKB_GSO_GRE = 1 << 6,
393
394	SKB_GSO_GRE_CSUM = 1 << 7,
395
396	SKB_GSO_IPIP = 1 << 8,
397
398	SKB_GSO_SIT = 1 << 9,
399
400	SKB_GSO_UDP_TUNNEL = 1 << 10,
401
402	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
403
404	SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
405};
406
407#if BITS_PER_LONG > 32
408#define NET_SKBUFF_DATA_USES_OFFSET 1
409#endif
410
411#ifdef NET_SKBUFF_DATA_USES_OFFSET
412typedef unsigned int sk_buff_data_t;
413#else
414typedef unsigned char *sk_buff_data_t;
415#endif
416
417/**
418 * struct skb_mstamp - multi resolution time stamps
419 * @stamp_us: timestamp in us resolution
420 * @stamp_jiffies: timestamp in jiffies
421 */
422struct skb_mstamp {
423	union {
424		u64		v64;
425		struct {
426			u32	stamp_us;
427			u32	stamp_jiffies;
428		};
429	};
430};
431
432/**
433 * skb_mstamp_get - get current timestamp
434 * @cl: place to store timestamps
435 */
436static inline void skb_mstamp_get(struct skb_mstamp *cl)
437{
438	u64 val = local_clock();
439
440	do_div(val, NSEC_PER_USEC);
441	cl->stamp_us = (u32)val;
442	cl->stamp_jiffies = (u32)jiffies;
443}
444
445/**
446 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
447 * @t1: pointer to newest sample
448 * @t0: pointer to oldest sample
449 */
450static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
451				      const struct skb_mstamp *t0)
452{
453	s32 delta_us = t1->stamp_us - t0->stamp_us;
454	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
455
456	/* If delta_us is negative, this might be because interval is too big,
457	 * or local_clock() drift is too big : fallback using jiffies.
458	 */
459	if (delta_us <= 0 ||
460	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
461
462		delta_us = jiffies_to_usecs(delta_jiffies);
463
464	return delta_us;
465}
466
467static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
468				    const struct skb_mstamp *t0)
469{
470	s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
471
472	if (!diff)
473		diff = t1->stamp_us - t0->stamp_us;
474	return diff > 0;
475}
476
477/**
478 *	struct sk_buff - socket buffer
479 *	@next: Next buffer in list
480 *	@prev: Previous buffer in list
481 *	@tstamp: Time we arrived/left
482 *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
483 *	@sk: Socket we are owned by
484 *	@dev: Device we arrived on/are leaving by
485 *	@cb: Control buffer. Free for use by every layer. Put private vars here
486 *	@_skb_refdst: destination entry (with norefcount bit)
487 *	@sp: the security path, used for xfrm
488 *	@len: Length of actual data
489 *	@data_len: Data length
490 *	@mac_len: Length of link layer header
491 *	@hdr_len: writable header length of cloned skb
492 *	@csum: Checksum (must include start/offset pair)
493 *	@csum_start: Offset from skb->head where checksumming should start
494 *	@csum_offset: Offset from csum_start where checksum should be stored
495 *	@priority: Packet queueing priority
496 *	@ignore_df: allow local fragmentation
497 *	@cloned: Head may be cloned (check refcnt to be sure)
498 *	@ip_summed: Driver fed us an IP checksum
499 *	@nohdr: Payload reference only, must not modify header
500 *	@nfctinfo: Relationship of this skb to the connection
501 *	@pkt_type: Packet class
502 *	@fclone: skbuff clone status
503 *	@ipvs_property: skbuff is owned by ipvs
504 *	@peeked: this packet has been seen already, so stats have been
505 *		done for it, don't do them again
506 *	@nf_trace: netfilter packet trace flag
507 *	@protocol: Packet protocol from driver
508 *	@destructor: Destruct function
509 *	@nfct: Associated connection, if any
510 *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
511 *	@skb_iif: ifindex of device we arrived on
512 *	@tc_index: Traffic control index
513 *	@tc_verd: traffic control verdict
514 *	@hash: the packet hash
515 *	@queue_mapping: Queue mapping for multiqueue devices
516 *	@xmit_more: More SKBs are pending for this queue
517 *	@ndisc_nodetype: router type (from link layer)
518 *	@ooo_okay: allow the mapping of a socket to a queue to be changed
519 *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
520 *		ports.
521 *	@sw_hash: indicates hash was computed in software stack
522 *	@wifi_acked_valid: wifi_acked was set
523 *	@wifi_acked: whether frame was acked on wifi or not
524 *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
525  *	@napi_id: id of the NAPI struct this skb came from
526 *	@secmark: security marking
527 *	@offload_fwd_mark: fwding offload mark
528 *	@mark: Generic packet mark
529 *	@vlan_proto: vlan encapsulation protocol
530 *	@vlan_tci: vlan tag control information
531 *	@inner_protocol: Protocol (encapsulation)
532 *	@inner_transport_header: Inner transport layer header (encapsulation)
533 *	@inner_network_header: Network layer header (encapsulation)
534 *	@inner_mac_header: Link layer header (encapsulation)
535 *	@transport_header: Transport layer header
536 *	@network_header: Network layer header
537 *	@mac_header: Link layer header
538 *	@tail: Tail pointer
539 *	@end: End pointer
540 *	@head: Head of buffer
541 *	@data: Data head pointer
542 *	@truesize: Buffer size
543 *	@users: User count - see {datagram,tcp}.c
544 */
545
546struct sk_buff {
547	union {
548		struct {
549			/* These two members must be first. */
550			struct sk_buff		*next;
551			struct sk_buff		*prev;
552
553			union {
554				ktime_t		tstamp;
555				struct skb_mstamp skb_mstamp;
556			};
557		};
558		struct rb_node	rbnode; /* used in netem & tcp stack */
559	};
560	struct sock		*sk;
561	struct net_device	*dev;
562
563	/*
564	 * This is the control buffer. It is free to use for every
565	 * layer. Please put your private variables there. If you
566	 * want to keep them across layers you have to do a skb_clone()
567	 * first. This is owned by whoever has the skb queued ATM.
568	 */
569	char			cb[48] __aligned(8);
570
571	unsigned long		_skb_refdst;
572	void			(*destructor)(struct sk_buff *skb);
573#ifdef CONFIG_XFRM
574	struct	sec_path	*sp;
575#endif
576#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
577	struct nf_conntrack	*nfct;
578#endif
579#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
580	struct nf_bridge_info	*nf_bridge;
581#endif
582	unsigned int		len,
583				data_len;
584	__u16			mac_len,
585				hdr_len;
586
587	/* Following fields are _not_ copied in __copy_skb_header()
588	 * Note that queue_mapping is here mostly to fill a hole.
589	 */
590	kmemcheck_bitfield_begin(flags1);
591	__u16			queue_mapping;
592	__u8			cloned:1,
593				nohdr:1,
594				fclone:2,
595				peeked:1,
596				head_frag:1,
597				xmit_more:1;
598	/* one bit hole */
599	kmemcheck_bitfield_end(flags1);
600
601	/* fields enclosed in headers_start/headers_end are copied
602	 * using a single memcpy() in __copy_skb_header()
603	 */
604	/* private: */
605	__u32			headers_start[0];
606	/* public: */
607
608/* if you move pkt_type around you also must adapt those constants */
609#ifdef __BIG_ENDIAN_BITFIELD
610#define PKT_TYPE_MAX	(7 << 5)
611#else
612#define PKT_TYPE_MAX	7
613#endif
614#define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
615
616	__u8			__pkt_type_offset[0];
617	__u8			pkt_type:3;
618	__u8			pfmemalloc:1;
619	__u8			ignore_df:1;
620	__u8			nfctinfo:3;
621
622	__u8			nf_trace:1;
623	__u8			ip_summed:2;
624	__u8			ooo_okay:1;
625	__u8			l4_hash:1;
626	__u8			sw_hash:1;
627	__u8			wifi_acked_valid:1;
628	__u8			wifi_acked:1;
629
630	__u8			no_fcs:1;
631	/* Indicates the inner headers are valid in the skbuff. */
632	__u8			encapsulation:1;
633	__u8			encap_hdr_csum:1;
634	__u8			csum_valid:1;
635	__u8			csum_complete_sw:1;
636	__u8			csum_level:2;
637	__u8			csum_bad:1;
638
639#ifdef CONFIG_IPV6_NDISC_NODETYPE
640	__u8			ndisc_nodetype:2;
641#endif
642	__u8			ipvs_property:1;
643	__u8			inner_protocol_type:1;
644	__u8			remcsum_offload:1;
645	/* 3 or 5 bit hole */
646
647#ifdef CONFIG_NET_SCHED
648	__u16			tc_index;	/* traffic control index */
649#ifdef CONFIG_NET_CLS_ACT
650	__u16			tc_verd;	/* traffic control verdict */
651#endif
652#endif
653
654	union {
655		__wsum		csum;
656		struct {
657			__u16	csum_start;
658			__u16	csum_offset;
659		};
660	};
661	__u32			priority;
662	int			skb_iif;
663	__u32			hash;
664	__be16			vlan_proto;
665	__u16			vlan_tci;
666#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
667	union {
668		unsigned int	napi_id;
669		unsigned int	sender_cpu;
670	};
671#endif
672	union {
673#ifdef CONFIG_NETWORK_SECMARK
674		__u32		secmark;
675#endif
676#ifdef CONFIG_NET_SWITCHDEV
677		__u32		offload_fwd_mark;
678#endif
679	};
680
681	union {
682		__u32		mark;
683		__u32		reserved_tailroom;
684	};
685
686	union {
687		__be16		inner_protocol;
688		__u8		inner_ipproto;
689	};
690
691	__u16			inner_transport_header;
692	__u16			inner_network_header;
693	__u16			inner_mac_header;
694
695	__be16			protocol;
696	__u16			transport_header;
697	__u16			network_header;
698	__u16			mac_header;
699
700	/* private: */
701	__u32			headers_end[0];
702	/* public: */
703
704	/* These elements must be at the end, see alloc_skb() for details.  */
705	sk_buff_data_t		tail;
706	sk_buff_data_t		end;
707	unsigned char		*head,
708				*data;
709	unsigned int		truesize;
710	atomic_t		users;
711};
712
713#ifdef __KERNEL__
714/*
715 *	Handling routines are only of interest to the kernel
716 */
717#include <linux/slab.h>
718
719
720#define SKB_ALLOC_FCLONE	0x01
721#define SKB_ALLOC_RX		0x02
722#define SKB_ALLOC_NAPI		0x04
723
724/* Returns true if the skb was allocated from PFMEMALLOC reserves */
725static inline bool skb_pfmemalloc(const struct sk_buff *skb)
726{
727	return unlikely(skb->pfmemalloc);
728}
729
730/*
731 * skb might have a dst pointer attached, refcounted or not.
732 * _skb_refdst low order bit is set if refcount was _not_ taken
733 */
734#define SKB_DST_NOREF	1UL
735#define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
736
737/**
738 * skb_dst - returns skb dst_entry
739 * @skb: buffer
740 *
741 * Returns skb dst_entry, regardless of reference taken or not.
742 */
743static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
744{
745	/* If refdst was not refcounted, check we still are in a
746	 * rcu_read_lock section
747	 */
748	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
749		!rcu_read_lock_held() &&
750		!rcu_read_lock_bh_held());
751	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
752}
753
754/**
755 * skb_dst_set - sets skb dst
756 * @skb: buffer
757 * @dst: dst entry
758 *
759 * Sets skb dst, assuming a reference was taken on dst and should
760 * be released by skb_dst_drop()
761 */
762static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
763{
764	skb->_skb_refdst = (unsigned long)dst;
765}
766
767/**
768 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
769 * @skb: buffer
770 * @dst: dst entry
771 *
772 * Sets skb dst, assuming a reference was not taken on dst.
773 * If dst entry is cached, we do not take reference and dst_release
774 * will be avoided by refdst_drop. If dst entry is not cached, we take
775 * reference, so that last dst_release can destroy the dst immediately.
776 */
777static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
778{
779	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
780	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
781}
782
783/**
784 * skb_dst_is_noref - Test if skb dst isn't refcounted
785 * @skb: buffer
786 */
787static inline bool skb_dst_is_noref(const struct sk_buff *skb)
788{
789	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
790}
791
792static inline struct rtable *skb_rtable(const struct sk_buff *skb)
793{
794	return (struct rtable *)skb_dst(skb);
795}
796
797void kfree_skb(struct sk_buff *skb);
798void kfree_skb_list(struct sk_buff *segs);
799void skb_tx_error(struct sk_buff *skb);
800void consume_skb(struct sk_buff *skb);
801void  __kfree_skb(struct sk_buff *skb);
802extern struct kmem_cache *skbuff_head_cache;
803
804void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
805bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
806		      bool *fragstolen, int *delta_truesize);
807
808struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
809			    int node);
810struct sk_buff *__build_skb(void *data, unsigned int frag_size);
811struct sk_buff *build_skb(void *data, unsigned int frag_size);
812static inline struct sk_buff *alloc_skb(unsigned int size,
813					gfp_t priority)
814{
815	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
816}
817
818struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
819				     unsigned long data_len,
820				     int max_page_order,
821				     int *errcode,
822				     gfp_t gfp_mask);
823
824/* Layout of fast clones : [skb1][skb2][fclone_ref] */
825struct sk_buff_fclones {
826	struct sk_buff	skb1;
827
828	struct sk_buff	skb2;
829
830	atomic_t	fclone_ref;
831};
832
833/**
834 *	skb_fclone_busy - check if fclone is busy
835 *	@skb: buffer
836 *
837 * Returns true is skb is a fast clone, and its clone is not freed.
838 * Some drivers call skb_orphan() in their ndo_start_xmit(),
839 * so we also check that this didnt happen.
840 */
841static inline bool skb_fclone_busy(const struct sock *sk,
842				   const struct sk_buff *skb)
843{
844	const struct sk_buff_fclones *fclones;
845
846	fclones = container_of(skb, struct sk_buff_fclones, skb1);
847
848	return skb->fclone == SKB_FCLONE_ORIG &&
849	       atomic_read(&fclones->fclone_ref) > 1 &&
850	       fclones->skb2.sk == sk;
851}
852
853static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
854					       gfp_t priority)
855{
856	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
857}
858
859struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
860static inline struct sk_buff *alloc_skb_head(gfp_t priority)
861{
862	return __alloc_skb_head(priority, -1);
863}
864
865struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
866int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
867struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
868struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
869struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
870				   gfp_t gfp_mask, bool fclone);
871static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
872					  gfp_t gfp_mask)
873{
874	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
875}
876
877int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
878struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
879				     unsigned int headroom);
880struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
881				int newtailroom, gfp_t priority);
882int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
883			int offset, int len);
884int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
885		 int len);
886int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
887int skb_pad(struct sk_buff *skb, int pad);
888#define dev_kfree_skb(a)	consume_skb(a)
889
890int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
891			    int getfrag(void *from, char *to, int offset,
892					int len, int odd, struct sk_buff *skb),
893			    void *from, int length);
894
895int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
896			 int offset, size_t size);
897
898struct skb_seq_state {
899	__u32		lower_offset;
900	__u32		upper_offset;
901	__u32		frag_idx;
902	__u32		stepped_offset;
903	struct sk_buff	*root_skb;
904	struct sk_buff	*cur_skb;
905	__u8		*frag_data;
906};
907
908void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
909			  unsigned int to, struct skb_seq_state *st);
910unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
911			  struct skb_seq_state *st);
912void skb_abort_seq_read(struct skb_seq_state *st);
913
914unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
915			   unsigned int to, struct ts_config *config);
916
917/*
918 * Packet hash types specify the type of hash in skb_set_hash.
919 *
920 * Hash types refer to the protocol layer addresses which are used to
921 * construct a packet's hash. The hashes are used to differentiate or identify
922 * flows of the protocol layer for the hash type. Hash types are either
923 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
924 *
925 * Properties of hashes:
926 *
927 * 1) Two packets in different flows have different hash values
928 * 2) Two packets in the same flow should have the same hash value
929 *
930 * A hash at a higher layer is considered to be more specific. A driver should
931 * set the most specific hash possible.
932 *
933 * A driver cannot indicate a more specific hash than the layer at which a hash
934 * was computed. For instance an L3 hash cannot be set as an L4 hash.
935 *
936 * A driver may indicate a hash level which is less specific than the
937 * actual layer the hash was computed on. For instance, a hash computed
938 * at L4 may be considered an L3 hash. This should only be done if the
939 * driver can't unambiguously determine that the HW computed the hash at
940 * the higher layer. Note that the "should" in the second property above
941 * permits this.
942 */
943enum pkt_hash_types {
944	PKT_HASH_TYPE_NONE,	/* Undefined type */
945	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
946	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
947	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
948};
949
950static inline void skb_clear_hash(struct sk_buff *skb)
951{
952	skb->hash = 0;
953	skb->sw_hash = 0;
954	skb->l4_hash = 0;
955}
956
957static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
958{
959	if (!skb->l4_hash)
960		skb_clear_hash(skb);
961}
962
963static inline void
964__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
965{
966	skb->l4_hash = is_l4;
967	skb->sw_hash = is_sw;
968	skb->hash = hash;
969}
970
971static inline void
972skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
973{
974	/* Used by drivers to set hash from HW */
975	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
976}
977
978static inline void
979__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
980{
981	__skb_set_hash(skb, hash, true, is_l4);
982}
983
984void __skb_get_hash(struct sk_buff *skb);
985u32 skb_get_poff(const struct sk_buff *skb);
986u32 __skb_get_poff(const struct sk_buff *skb, void *data,
987		   const struct flow_keys *keys, int hlen);
988__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
989			    void *data, int hlen_proto);
990
991static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
992					int thoff, u8 ip_proto)
993{
994	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
995}
996
997void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
998			     const struct flow_dissector_key *key,
999			     unsigned int key_count);
1000
1001bool __skb_flow_dissect(const struct sk_buff *skb,
1002			struct flow_dissector *flow_dissector,
1003			void *target_container,
1004			void *data, __be16 proto, int nhoff, int hlen,
1005			unsigned int flags);
1006
1007static inline bool skb_flow_dissect(const struct sk_buff *skb,
1008				    struct flow_dissector *flow_dissector,
1009				    void *target_container, unsigned int flags)
1010{
1011	return __skb_flow_dissect(skb, flow_dissector, target_container,
1012				  NULL, 0, 0, 0, flags);
1013}
1014
1015static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1016					      struct flow_keys *flow,
1017					      unsigned int flags)
1018{
1019	memset(flow, 0, sizeof(*flow));
1020	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1021				  NULL, 0, 0, 0, flags);
1022}
1023
1024static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1025						  void *data, __be16 proto,
1026						  int nhoff, int hlen,
1027						  unsigned int flags)
1028{
1029	memset(flow, 0, sizeof(*flow));
1030	return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1031				  data, proto, nhoff, hlen, flags);
1032}
1033
1034static inline __u32 skb_get_hash(struct sk_buff *skb)
1035{
1036	if (!skb->l4_hash && !skb->sw_hash)
1037		__skb_get_hash(skb);
1038
1039	return skb->hash;
1040}
1041
1042__u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1043
1044static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1045{
1046	if (!skb->l4_hash && !skb->sw_hash) {
1047		struct flow_keys keys;
1048		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1049
1050		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1051	}
1052
1053	return skb->hash;
1054}
1055
1056__u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1057
1058static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1059{
1060	if (!skb->l4_hash && !skb->sw_hash) {
1061		struct flow_keys keys;
1062		__u32 hash = __get_hash_from_flowi4(fl4, &keys);
1063
1064		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1065	}
1066
1067	return skb->hash;
1068}
1069
1070__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1071
1072static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1073{
1074	return skb->hash;
1075}
1076
1077static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1078{
1079	to->hash = from->hash;
1080	to->sw_hash = from->sw_hash;
1081	to->l4_hash = from->l4_hash;
1082};
1083
1084static inline void skb_sender_cpu_clear(struct sk_buff *skb)
1085{
1086#ifdef CONFIG_XPS
1087	skb->sender_cpu = 0;
1088#endif
1089}
1090
1091#ifdef NET_SKBUFF_DATA_USES_OFFSET
1092static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1093{
1094	return skb->head + skb->end;
1095}
1096
1097static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1098{
1099	return skb->end;
1100}
1101#else
1102static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1103{
1104	return skb->end;
1105}
1106
1107static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1108{
1109	return skb->end - skb->head;
1110}
1111#endif
1112
1113/* Internal */
1114#define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1115
1116static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1117{
1118	return &skb_shinfo(skb)->hwtstamps;
1119}
1120
1121/**
1122 *	skb_queue_empty - check if a queue is empty
1123 *	@list: queue head
1124 *
1125 *	Returns true if the queue is empty, false otherwise.
1126 */
1127static inline int skb_queue_empty(const struct sk_buff_head *list)
1128{
1129	return list->next == (const struct sk_buff *) list;
1130}
1131
1132/**
1133 *	skb_queue_is_last - check if skb is the last entry in the queue
1134 *	@list: queue head
1135 *	@skb: buffer
1136 *
1137 *	Returns true if @skb is the last buffer on the list.
1138 */
1139static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1140				     const struct sk_buff *skb)
1141{
1142	return skb->next == (const struct sk_buff *) list;
1143}
1144
1145/**
1146 *	skb_queue_is_first - check if skb is the first entry in the queue
1147 *	@list: queue head
1148 *	@skb: buffer
1149 *
1150 *	Returns true if @skb is the first buffer on the list.
1151 */
1152static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1153				      const struct sk_buff *skb)
1154{
1155	return skb->prev == (const struct sk_buff *) list;
1156}
1157
1158/**
1159 *	skb_queue_next - return the next packet in the queue
1160 *	@list: queue head
1161 *	@skb: current buffer
1162 *
1163 *	Return the next packet in @list after @skb.  It is only valid to
1164 *	call this if skb_queue_is_last() evaluates to false.
1165 */
1166static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1167					     const struct sk_buff *skb)
1168{
1169	/* This BUG_ON may seem severe, but if we just return then we
1170	 * are going to dereference garbage.
1171	 */
1172	BUG_ON(skb_queue_is_last(list, skb));
1173	return skb->next;
1174}
1175
1176/**
1177 *	skb_queue_prev - return the prev packet in the queue
1178 *	@list: queue head
1179 *	@skb: current buffer
1180 *
1181 *	Return the prev packet in @list before @skb.  It is only valid to
1182 *	call this if skb_queue_is_first() evaluates to false.
1183 */
1184static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1185					     const struct sk_buff *skb)
1186{
1187	/* This BUG_ON may seem severe, but if we just return then we
1188	 * are going to dereference garbage.
1189	 */
1190	BUG_ON(skb_queue_is_first(list, skb));
1191	return skb->prev;
1192}
1193
1194/**
1195 *	skb_get - reference buffer
1196 *	@skb: buffer to reference
1197 *
1198 *	Makes another reference to a socket buffer and returns a pointer
1199 *	to the buffer.
1200 */
1201static inline struct sk_buff *skb_get(struct sk_buff *skb)
1202{
1203	atomic_inc(&skb->users);
1204	return skb;
1205}
1206
1207/*
1208 * If users == 1, we are the only owner and are can avoid redundant
1209 * atomic change.
1210 */
1211
1212/**
1213 *	skb_cloned - is the buffer a clone
1214 *	@skb: buffer to check
1215 *
1216 *	Returns true if the buffer was generated with skb_clone() and is
1217 *	one of multiple shared copies of the buffer. Cloned buffers are
1218 *	shared data so must not be written to under normal circumstances.
1219 */
1220static inline int skb_cloned(const struct sk_buff *skb)
1221{
1222	return skb->cloned &&
1223	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1224}
1225
1226static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1227{
1228	might_sleep_if(gfpflags_allow_blocking(pri));
1229
1230	if (skb_cloned(skb))
1231		return pskb_expand_head(skb, 0, 0, pri);
1232
1233	return 0;
1234}
1235
1236/**
1237 *	skb_header_cloned - is the header a clone
1238 *	@skb: buffer to check
1239 *
1240 *	Returns true if modifying the header part of the buffer requires
1241 *	the data to be copied.
1242 */
1243static inline int skb_header_cloned(const struct sk_buff *skb)
1244{
1245	int dataref;
1246
1247	if (!skb->cloned)
1248		return 0;
1249
1250	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1251	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1252	return dataref != 1;
1253}
1254
1255/**
1256 *	skb_header_release - release reference to header
1257 *	@skb: buffer to operate on
1258 *
1259 *	Drop a reference to the header part of the buffer.  This is done
1260 *	by acquiring a payload reference.  You must not read from the header
1261 *	part of skb->data after this.
1262 *	Note : Check if you can use __skb_header_release() instead.
1263 */
1264static inline void skb_header_release(struct sk_buff *skb)
1265{
1266	BUG_ON(skb->nohdr);
1267	skb->nohdr = 1;
1268	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1269}
1270
1271/**
1272 *	__skb_header_release - release reference to header
1273 *	@skb: buffer to operate on
1274 *
1275 *	Variant of skb_header_release() assuming skb is private to caller.
1276 *	We can avoid one atomic operation.
1277 */
1278static inline void __skb_header_release(struct sk_buff *skb)
1279{
1280	skb->nohdr = 1;
1281	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1282}
1283
1284
1285/**
1286 *	skb_shared - is the buffer shared
1287 *	@skb: buffer to check
1288 *
1289 *	Returns true if more than one person has a reference to this
1290 *	buffer.
1291 */
1292static inline int skb_shared(const struct sk_buff *skb)
1293{
1294	return atomic_read(&skb->users) != 1;
1295}
1296
1297/**
1298 *	skb_share_check - check if buffer is shared and if so clone it
1299 *	@skb: buffer to check
1300 *	@pri: priority for memory allocation
1301 *
1302 *	If the buffer is shared the buffer is cloned and the old copy
1303 *	drops a reference. A new clone with a single reference is returned.
1304 *	If the buffer is not shared the original buffer is returned. When
1305 *	being called from interrupt status or with spinlocks held pri must
1306 *	be GFP_ATOMIC.
1307 *
1308 *	NULL is returned on a memory allocation failure.
1309 */
1310static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1311{
1312	might_sleep_if(gfpflags_allow_blocking(pri));
1313	if (skb_shared(skb)) {
1314		struct sk_buff *nskb = skb_clone(skb, pri);
1315
1316		if (likely(nskb))
1317			consume_skb(skb);
1318		else
1319			kfree_skb(skb);
1320		skb = nskb;
1321	}
1322	return skb;
1323}
1324
1325/*
1326 *	Copy shared buffers into a new sk_buff. We effectively do COW on
1327 *	packets to handle cases where we have a local reader and forward
1328 *	and a couple of other messy ones. The normal one is tcpdumping
1329 *	a packet thats being forwarded.
1330 */
1331
1332/**
1333 *	skb_unshare - make a copy of a shared buffer
1334 *	@skb: buffer to check
1335 *	@pri: priority for memory allocation
1336 *
1337 *	If the socket buffer is a clone then this function creates a new
1338 *	copy of the data, drops a reference count on the old copy and returns
1339 *	the new copy with the reference count at 1. If the buffer is not a clone
1340 *	the original buffer is returned. When called with a spinlock held or
1341 *	from interrupt state @pri must be %GFP_ATOMIC
1342 *
1343 *	%NULL is returned on a memory allocation failure.
1344 */
1345static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1346					  gfp_t pri)
1347{
1348	might_sleep_if(gfpflags_allow_blocking(pri));
1349	if (skb_cloned(skb)) {
1350		struct sk_buff *nskb = skb_copy(skb, pri);
1351
1352		/* Free our shared copy */
1353		if (likely(nskb))
1354			consume_skb(skb);
1355		else
1356			kfree_skb(skb);
1357		skb = nskb;
1358	}
1359	return skb;
1360}
1361
1362/**
1363 *	skb_peek - peek at the head of an &sk_buff_head
1364 *	@list_: list to peek at
1365 *
1366 *	Peek an &sk_buff. Unlike most other operations you _MUST_
1367 *	be careful with this one. A peek leaves the buffer on the
1368 *	list and someone else may run off with it. You must hold
1369 *	the appropriate locks or have a private queue to do this.
1370 *
1371 *	Returns %NULL for an empty list or a pointer to the head element.
1372 *	The reference count is not incremented and the reference is therefore
1373 *	volatile. Use with caution.
1374 */
1375static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1376{
1377	struct sk_buff *skb = list_->next;
1378
1379	if (skb == (struct sk_buff *)list_)
1380		skb = NULL;
1381	return skb;
1382}
1383
1384/**
1385 *	skb_peek_next - peek skb following the given one from a queue
1386 *	@skb: skb to start from
1387 *	@list_: list to peek at
1388 *
1389 *	Returns %NULL when the end of the list is met or a pointer to the
1390 *	next element. The reference count is not incremented and the
1391 *	reference is therefore volatile. Use with caution.
1392 */
1393static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1394		const struct sk_buff_head *list_)
1395{
1396	struct sk_buff *next = skb->next;
1397
1398	if (next == (struct sk_buff *)list_)
1399		next = NULL;
1400	return next;
1401}
1402
1403/**
1404 *	skb_peek_tail - peek at the tail of an &sk_buff_head
1405 *	@list_: list to peek at
1406 *
1407 *	Peek an &sk_buff. Unlike most other operations you _MUST_
1408 *	be careful with this one. A peek leaves the buffer on the
1409 *	list and someone else may run off with it. You must hold
1410 *	the appropriate locks or have a private queue to do this.
1411 *
1412 *	Returns %NULL for an empty list or a pointer to the tail element.
1413 *	The reference count is not incremented and the reference is therefore
1414 *	volatile. Use with caution.
1415 */
1416static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1417{
1418	struct sk_buff *skb = list_->prev;
1419
1420	if (skb == (struct sk_buff *)list_)
1421		skb = NULL;
1422	return skb;
1423
1424}
1425
1426/**
1427 *	skb_queue_len	- get queue length
1428 *	@list_: list to measure
1429 *
1430 *	Return the length of an &sk_buff queue.
1431 */
1432static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1433{
1434	return list_->qlen;
1435}
1436
1437/**
1438 *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1439 *	@list: queue to initialize
1440 *
1441 *	This initializes only the list and queue length aspects of
1442 *	an sk_buff_head object.  This allows to initialize the list
1443 *	aspects of an sk_buff_head without reinitializing things like
1444 *	the spinlock.  It can also be used for on-stack sk_buff_head
1445 *	objects where the spinlock is known to not be used.
1446 */
1447static inline void __skb_queue_head_init(struct sk_buff_head *list)
1448{
1449	list->prev = list->next = (struct sk_buff *)list;
1450	list->qlen = 0;
1451}
1452
1453/*
1454 * This function creates a split out lock class for each invocation;
1455 * this is needed for now since a whole lot of users of the skb-queue
1456 * infrastructure in drivers have different locking usage (in hardirq)
1457 * than the networking core (in softirq only). In the long run either the
1458 * network layer or drivers should need annotation to consolidate the
1459 * main types of usage into 3 classes.
1460 */
1461static inline void skb_queue_head_init(struct sk_buff_head *list)
1462{
1463	spin_lock_init(&list->lock);
1464	__skb_queue_head_init(list);
1465}
1466
1467static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1468		struct lock_class_key *class)
1469{
1470	skb_queue_head_init(list);
1471	lockdep_set_class(&list->lock, class);
1472}
1473
1474/*
1475 *	Insert an sk_buff on a list.
1476 *
1477 *	The "__skb_xxxx()" functions are the non-atomic ones that
1478 *	can only be called with interrupts disabled.
1479 */
1480void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1481		struct sk_buff_head *list);
1482static inline void __skb_insert(struct sk_buff *newsk,
1483				struct sk_buff *prev, struct sk_buff *next,
1484				struct sk_buff_head *list)
1485{
1486	newsk->next = next;
1487	newsk->prev = prev;
1488	next->prev  = prev->next = newsk;
1489	list->qlen++;
1490}
1491
1492static inline void __skb_queue_splice(const struct sk_buff_head *list,
1493				      struct sk_buff *prev,
1494				      struct sk_buff *next)
1495{
1496	struct sk_buff *first = list->next;
1497	struct sk_buff *last = list->prev;
1498
1499	first->prev = prev;
1500	prev->next = first;
1501
1502	last->next = next;
1503	next->prev = last;
1504}
1505
1506/**
1507 *	skb_queue_splice - join two skb lists, this is designed for stacks
1508 *	@list: the new list to add
1509 *	@head: the place to add it in the first list
1510 */
1511static inline void skb_queue_splice(const struct sk_buff_head *list,
1512				    struct sk_buff_head *head)
1513{
1514	if (!skb_queue_empty(list)) {
1515		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1516		head->qlen += list->qlen;
1517	}
1518}
1519
1520/**
1521 *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1522 *	@list: the new list to add
1523 *	@head: the place to add it in the first list
1524 *
1525 *	The list at @list is reinitialised
1526 */
1527static inline void skb_queue_splice_init(struct sk_buff_head *list,
1528					 struct sk_buff_head *head)
1529{
1530	if (!skb_queue_empty(list)) {
1531		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1532		head->qlen += list->qlen;
1533		__skb_queue_head_init(list);
1534	}
1535}
1536
1537/**
1538 *	skb_queue_splice_tail - join two skb lists, each list being a queue
1539 *	@list: the new list to add
1540 *	@head: the place to add it in the first list
1541 */
1542static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1543					 struct sk_buff_head *head)
1544{
1545	if (!skb_queue_empty(list)) {
1546		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1547		head->qlen += list->qlen;
1548	}
1549}
1550
1551/**
1552 *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1553 *	@list: the new list to add
1554 *	@head: the place to add it in the first list
1555 *
1556 *	Each of the lists is a queue.
1557 *	The list at @list is reinitialised
1558 */
1559static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1560					      struct sk_buff_head *head)
1561{
1562	if (!skb_queue_empty(list)) {
1563		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1564		head->qlen += list->qlen;
1565		__skb_queue_head_init(list);
1566	}
1567}
1568
1569/**
1570 *	__skb_queue_after - queue a buffer at the list head
1571 *	@list: list to use
1572 *	@prev: place after this buffer
1573 *	@newsk: buffer to queue
1574 *
1575 *	Queue a buffer int the middle of a list. This function takes no locks
1576 *	and you must therefore hold required locks before calling it.
1577 *
1578 *	A buffer cannot be placed on two lists at the same time.
1579 */
1580static inline void __skb_queue_after(struct sk_buff_head *list,
1581				     struct sk_buff *prev,
1582				     struct sk_buff *newsk)
1583{
1584	__skb_insert(newsk, prev, prev->next, list);
1585}
1586
1587void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1588		struct sk_buff_head *list);
1589
1590static inline void __skb_queue_before(struct sk_buff_head *list,
1591				      struct sk_buff *next,
1592				      struct sk_buff *newsk)
1593{
1594	__skb_insert(newsk, next->prev, next, list);
1595}
1596
1597/**
1598 *	__skb_queue_head - queue a buffer at the list head
1599 *	@list: list to use
1600 *	@newsk: buffer to queue
1601 *
1602 *	Queue a buffer at the start of a list. This function takes no locks
1603 *	and you must therefore hold required locks before calling it.
1604 *
1605 *	A buffer cannot be placed on two lists at the same time.
1606 */
1607void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1608static inline void __skb_queue_head(struct sk_buff_head *list,
1609				    struct sk_buff *newsk)
1610{
1611	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1612}
1613
1614/**
1615 *	__skb_queue_tail - queue a buffer at the list tail
1616 *	@list: list to use
1617 *	@newsk: buffer to queue
1618 *
1619 *	Queue a buffer at the end of a list. This function takes no locks
1620 *	and you must therefore hold required locks before calling it.
1621 *
1622 *	A buffer cannot be placed on two lists at the same time.
1623 */
1624void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1625static inline void __skb_queue_tail(struct sk_buff_head *list,
1626				   struct sk_buff *newsk)
1627{
1628	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1629}
1630
1631/*
1632 * remove sk_buff from list. _Must_ be called atomically, and with
1633 * the list known..
1634 */
1635void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1636static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1637{
1638	struct sk_buff *next, *prev;
1639
1640	list->qlen--;
1641	next	   = skb->next;
1642	prev	   = skb->prev;
1643	skb->next  = skb->prev = NULL;
1644	next->prev = prev;
1645	prev->next = next;
1646}
1647
1648/**
1649 *	__skb_dequeue - remove from the head of the queue
1650 *	@list: list to dequeue from
1651 *
1652 *	Remove the head of the list. This function does not take any locks
1653 *	so must be used with appropriate locks held only. The head item is
1654 *	returned or %NULL if the list is empty.
1655 */
1656struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1657static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1658{
1659	struct sk_buff *skb = skb_peek(list);
1660	if (skb)
1661		__skb_unlink(skb, list);
1662	return skb;
1663}
1664
1665/**
1666 *	__skb_dequeue_tail - remove from the tail of the queue
1667 *	@list: list to dequeue from
1668 *
1669 *	Remove the tail of the list. This function does not take any locks
1670 *	so must be used with appropriate locks held only. The tail item is
1671 *	returned or %NULL if the list is empty.
1672 */
1673struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1674static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1675{
1676	struct sk_buff *skb = skb_peek_tail(list);
1677	if (skb)
1678		__skb_unlink(skb, list);
1679	return skb;
1680}
1681
1682
1683static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1684{
1685	return skb->data_len;
1686}
1687
1688static inline unsigned int skb_headlen(const struct sk_buff *skb)
1689{
1690	return skb->len - skb->data_len;
1691}
1692
1693static inline int skb_pagelen(const struct sk_buff *skb)
1694{
1695	int i, len = 0;
1696
1697	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1698		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1699	return len + skb_headlen(skb);
1700}
1701
1702/**
1703 * __skb_fill_page_desc - initialise a paged fragment in an skb
1704 * @skb: buffer containing fragment to be initialised
1705 * @i: paged fragment index to initialise
1706 * @page: the page to use for this fragment
1707 * @off: the offset to the data with @page
1708 * @size: the length of the data
1709 *
1710 * Initialises the @i'th fragment of @skb to point to &size bytes at
1711 * offset @off within @page.
1712 *
1713 * Does not take any additional reference on the fragment.
1714 */
1715static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1716					struct page *page, int off, int size)
1717{
1718	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1719
1720	/*
1721	 * Propagate page pfmemalloc to the skb if we can. The problem is
1722	 * that not all callers have unique ownership of the page but rely
1723	 * on page_is_pfmemalloc doing the right thing(tm).
1724	 */
1725	frag->page.p		  = page;
1726	frag->page_offset	  = off;
1727	skb_frag_size_set(frag, size);
1728
1729	page = compound_head(page);
1730	if (page_is_pfmemalloc(page))
1731		skb->pfmemalloc	= true;
1732}
1733
1734/**
1735 * skb_fill_page_desc - initialise a paged fragment in an skb
1736 * @skb: buffer containing fragment to be initialised
1737 * @i: paged fragment index to initialise
1738 * @page: the page to use for this fragment
1739 * @off: the offset to the data with @page
1740 * @size: the length of the data
1741 *
1742 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1743 * @skb to point to @size bytes at offset @off within @page. In
1744 * addition updates @skb such that @i is the last fragment.
1745 *
1746 * Does not take any additional reference on the fragment.
1747 */
1748static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1749				      struct page *page, int off, int size)
1750{
1751	__skb_fill_page_desc(skb, i, page, off, size);
1752	skb_shinfo(skb)->nr_frags = i + 1;
1753}
1754
1755void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1756		     int size, unsigned int truesize);
1757
1758void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1759			  unsigned int truesize);
1760
1761#define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1762#define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1763#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1764
1765#ifdef NET_SKBUFF_DATA_USES_OFFSET
1766static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1767{
1768	return skb->head + skb->tail;
1769}
1770
1771static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1772{
1773	skb->tail = skb->data - skb->head;
1774}
1775
1776static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1777{
1778	skb_reset_tail_pointer(skb);
1779	skb->tail += offset;
1780}
1781
1782#else /* NET_SKBUFF_DATA_USES_OFFSET */
1783static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1784{
1785	return skb->tail;
1786}
1787
1788static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1789{
1790	skb->tail = skb->data;
1791}
1792
1793static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1794{
1795	skb->tail = skb->data + offset;
1796}
1797
1798#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1799
1800/*
1801 *	Add data to an sk_buff
1802 */
1803unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1804unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1805static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1806{
1807	unsigned char *tmp = skb_tail_pointer(skb);
1808	SKB_LINEAR_ASSERT(skb);
1809	skb->tail += len;
1810	skb->len  += len;
1811	return tmp;
1812}
1813
1814unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1815static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1816{
1817	skb->data -= len;
1818	skb->len  += len;
1819	return skb->data;
1820}
1821
1822unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1823static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1824{
1825	skb->len -= len;
1826	BUG_ON(skb->len < skb->data_len);
1827	return skb->data += len;
1828}
1829
1830static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1831{
1832	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1833}
1834
1835unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1836
1837static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1838{
1839	if (len > skb_headlen(skb) &&
1840	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1841		return NULL;
1842	skb->len -= len;
1843	return skb->data += len;
1844}
1845
1846static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1847{
1848	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1849}
1850
1851static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1852{
1853	if (likely(len <= skb_headlen(skb)))
1854		return 1;
1855	if (unlikely(len > skb->len))
1856		return 0;
1857	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1858}
1859
1860/**
1861 *	skb_headroom - bytes at buffer head
1862 *	@skb: buffer to check
1863 *
1864 *	Return the number of bytes of free space at the head of an &sk_buff.
1865 */
1866static inline unsigned int skb_headroom(const struct sk_buff *skb)
1867{
1868	return skb->data - skb->head;
1869}
1870
1871/**
1872 *	skb_tailroom - bytes at buffer end
1873 *	@skb: buffer to check
1874 *
1875 *	Return the number of bytes of free space at the tail of an sk_buff
1876 */
1877static inline int skb_tailroom(const struct sk_buff *skb)
1878{
1879	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1880}
1881
1882/**
1883 *	skb_availroom - bytes at buffer end
1884 *	@skb: buffer to check
1885 *
1886 *	Return the number of bytes of free space at the tail of an sk_buff
1887 *	allocated by sk_stream_alloc()
1888 */
1889static inline int skb_availroom(const struct sk_buff *skb)
1890{
1891	if (skb_is_nonlinear(skb))
1892		return 0;
1893
1894	return skb->end - skb->tail - skb->reserved_tailroom;
1895}
1896
1897/**
1898 *	skb_reserve - adjust headroom
1899 *	@skb: buffer to alter
1900 *	@len: bytes to move
1901 *
1902 *	Increase the headroom of an empty &sk_buff by reducing the tail
1903 *	room. This is only allowed for an empty buffer.
1904 */
1905static inline void skb_reserve(struct sk_buff *skb, int len)
1906{
1907	skb->data += len;
1908	skb->tail += len;
1909}
1910
1911/**
1912 *	skb_tailroom_reserve - adjust reserved_tailroom
1913 *	@skb: buffer to alter
1914 *	@mtu: maximum amount of headlen permitted
1915 *	@needed_tailroom: minimum amount of reserved_tailroom
1916 *
1917 *	Set reserved_tailroom so that headlen can be as large as possible but
1918 *	not larger than mtu and tailroom cannot be smaller than
1919 *	needed_tailroom.
1920 *	The required headroom should already have been reserved before using
1921 *	this function.
1922 */
1923static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
1924					unsigned int needed_tailroom)
1925{
1926	SKB_LINEAR_ASSERT(skb);
1927	if (mtu < skb_tailroom(skb) - needed_tailroom)
1928		/* use at most mtu */
1929		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
1930	else
1931		/* use up to all available space */
1932		skb->reserved_tailroom = needed_tailroom;
1933}
1934
1935#define ENCAP_TYPE_ETHER	0
1936#define ENCAP_TYPE_IPPROTO	1
1937
1938static inline void skb_set_inner_protocol(struct sk_buff *skb,
1939					  __be16 protocol)
1940{
1941	skb->inner_protocol = protocol;
1942	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1943}
1944
1945static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1946					 __u8 ipproto)
1947{
1948	skb->inner_ipproto = ipproto;
1949	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1950}
1951
1952static inline void skb_reset_inner_headers(struct sk_buff *skb)
1953{
1954	skb->inner_mac_header = skb->mac_header;
1955	skb->inner_network_header = skb->network_header;
1956	skb->inner_transport_header = skb->transport_header;
1957}
1958
1959static inline void skb_reset_mac_len(struct sk_buff *skb)
1960{
1961	skb->mac_len = skb->network_header - skb->mac_header;
1962}
1963
1964static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1965							*skb)
1966{
1967	return skb->head + skb->inner_transport_header;
1968}
1969
1970static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1971{
1972	skb->inner_transport_header = skb->data - skb->head;
1973}
1974
1975static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1976						   const int offset)
1977{
1978	skb_reset_inner_transport_header(skb);
1979	skb->inner_transport_header += offset;
1980}
1981
1982static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1983{
1984	return skb->head + skb->inner_network_header;
1985}
1986
1987static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1988{
1989	skb->inner_network_header = skb->data - skb->head;
1990}
1991
1992static inline void skb_set_inner_network_header(struct sk_buff *skb,
1993						const int offset)
1994{
1995	skb_reset_inner_network_header(skb);
1996	skb->inner_network_header += offset;
1997}
1998
1999static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2000{
2001	return skb->head + skb->inner_mac_header;
2002}
2003
2004static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2005{
2006	skb->inner_mac_header = skb->data - skb->head;
2007}
2008
2009static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2010					    const int offset)
2011{
2012	skb_reset_inner_mac_header(skb);
2013	skb->inner_mac_header += offset;
2014}
2015static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2016{
2017	return skb->transport_header != (typeof(skb->transport_header))~0U;
2018}
2019
2020static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2021{
2022	return skb->head + skb->transport_header;
2023}
2024
2025static inline void skb_reset_transport_header(struct sk_buff *skb)
2026{
2027	skb->transport_header = skb->data - skb->head;
2028}
2029
2030static inline void skb_set_transport_header(struct sk_buff *skb,
2031					    const int offset)
2032{
2033	skb_reset_transport_header(skb);
2034	skb->transport_header += offset;
2035}
2036
2037static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2038{
2039	return skb->head + skb->network_header;
2040}
2041
2042static inline void skb_reset_network_header(struct sk_buff *skb)
2043{
2044	skb->network_header = skb->data - skb->head;
2045}
2046
2047static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2048{
2049	skb_reset_network_header(skb);
2050	skb->network_header += offset;
2051}
2052
2053static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2054{
2055	return skb->head + skb->mac_header;
2056}
2057
2058static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2059{
2060	return skb->mac_header != (typeof(skb->mac_header))~0U;
2061}
2062
2063static inline void skb_reset_mac_header(struct sk_buff *skb)
2064{
2065	skb->mac_header = skb->data - skb->head;
2066}
2067
2068static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2069{
2070	skb_reset_mac_header(skb);
2071	skb->mac_header += offset;
2072}
2073
2074static inline void skb_pop_mac_header(struct sk_buff *skb)
2075{
2076	skb->mac_header = skb->network_header;
2077}
2078
2079static inline void skb_probe_transport_header(struct sk_buff *skb,
2080					      const int offset_hint)
2081{
2082	struct flow_keys keys;
2083
2084	if (skb_transport_header_was_set(skb))
2085		return;
2086	else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2087		skb_set_transport_header(skb, keys.control.thoff);
2088	else
2089		skb_set_transport_header(skb, offset_hint);
2090}
2091
2092static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2093{
2094	if (skb_mac_header_was_set(skb)) {
2095		const unsigned char *old_mac = skb_mac_header(skb);
2096
2097		skb_set_mac_header(skb, -skb->mac_len);
2098		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2099	}
2100}
2101
2102static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2103{
2104	return skb->csum_start - skb_headroom(skb);
2105}
2106
2107static inline int skb_transport_offset(const struct sk_buff *skb)
2108{
2109	return skb_transport_header(skb) - skb->data;
2110}
2111
2112static inline u32 skb_network_header_len(const struct sk_buff *skb)
2113{
2114	return skb->transport_header - skb->network_header;
2115}
2116
2117static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2118{
2119	return skb->inner_transport_header - skb->inner_network_header;
2120}
2121
2122static inline int skb_network_offset(const struct sk_buff *skb)
2123{
2124	return skb_network_header(skb) - skb->data;
2125}
2126
2127static inline int skb_inner_network_offset(const struct sk_buff *skb)
2128{
2129	return skb_inner_network_header(skb) - skb->data;
2130}
2131
2132static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2133{
2134	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2135}
2136
2137/*
2138 * CPUs often take a performance hit when accessing unaligned memory
2139 * locations. The actual performance hit varies, it can be small if the
2140 * hardware handles it or large if we have to take an exception and fix it
2141 * in software.
2142 *
2143 * Since an ethernet header is 14 bytes network drivers often end up with
2144 * the IP header at an unaligned offset. The IP header can be aligned by
2145 * shifting the start of the packet by 2 bytes. Drivers should do this
2146 * with:
2147 *
2148 * skb_reserve(skb, NET_IP_ALIGN);
2149 *
2150 * The downside to this alignment of the IP header is that the DMA is now
2151 * unaligned. On some architectures the cost of an unaligned DMA is high
2152 * and this cost outweighs the gains made by aligning the IP header.
2153 *
2154 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2155 * to be overridden.
2156 */
2157#ifndef NET_IP_ALIGN
2158#define NET_IP_ALIGN	2
2159#endif
2160
2161/*
2162 * The networking layer reserves some headroom in skb data (via
2163 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2164 * the header has to grow. In the default case, if the header has to grow
2165 * 32 bytes or less we avoid the reallocation.
2166 *
2167 * Unfortunately this headroom changes the DMA alignment of the resulting
2168 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2169 * on some architectures. An architecture can override this value,
2170 * perhaps setting it to a cacheline in size (since that will maintain
2171 * cacheline alignment of the DMA). It must be a power of 2.
2172 *
2173 * Various parts of the networking layer expect at least 32 bytes of
2174 * headroom, you should not reduce this.
2175 *
2176 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2177 * to reduce average number of cache lines per packet.
2178 * get_rps_cpus() for example only access one 64 bytes aligned block :
2179 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2180 */
2181#ifndef NET_SKB_PAD
2182#define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2183#endif
2184
2185int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2186
2187static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2188{
2189	if (unlikely(skb_is_nonlinear(skb))) {
2190		WARN_ON(1);
2191		return;
2192	}
2193	skb->len = len;
2194	skb_set_tail_pointer(skb, len);
2195}
2196
2197void skb_trim(struct sk_buff *skb, unsigned int len);
2198
2199static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2200{
2201	if (skb->data_len)
2202		return ___pskb_trim(skb, len);
2203	__skb_trim(skb, len);
2204	return 0;
2205}
2206
2207static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2208{
2209	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2210}
2211
2212/**
2213 *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2214 *	@skb: buffer to alter
2215 *	@len: new length
2216 *
2217 *	This is identical to pskb_trim except that the caller knows that
2218 *	the skb is not cloned so we should never get an error due to out-
2219 *	of-memory.
2220 */
2221static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2222{
2223	int err = pskb_trim(skb, len);
2224	BUG_ON(err);
2225}
2226
2227/**
2228 *	skb_orphan - orphan a buffer
2229 *	@skb: buffer to orphan
2230 *
2231 *	If a buffer currently has an owner then we call the owner's
2232 *	destructor function and make the @skb unowned. The buffer continues
2233 *	to exist but is no longer charged to its former owner.
2234 */
2235static inline void skb_orphan(struct sk_buff *skb)
2236{
2237	if (skb->destructor) {
2238		skb->destructor(skb);
2239		skb->destructor = NULL;
2240		skb->sk		= NULL;
2241	} else {
2242		BUG_ON(skb->sk);
2243	}
2244}
2245
2246/**
2247 *	skb_orphan_frags - orphan the frags contained in a buffer
2248 *	@skb: buffer to orphan frags from
2249 *	@gfp_mask: allocation mask for replacement pages
2250 *
2251 *	For each frag in the SKB which needs a destructor (i.e. has an
2252 *	owner) create a copy of that frag and release the original
2253 *	page by calling the destructor.
2254 */
2255static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2256{
2257	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2258		return 0;
2259	return skb_copy_ubufs(skb, gfp_mask);
2260}
2261
2262/**
2263 *	__skb_queue_purge - empty a list
2264 *	@list: list to empty
2265 *
2266 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2267 *	the list and one reference dropped. This function does not take the
2268 *	list lock and the caller must hold the relevant locks to use it.
2269 */
2270void skb_queue_purge(struct sk_buff_head *list);
2271static inline void __skb_queue_purge(struct sk_buff_head *list)
2272{
2273	struct sk_buff *skb;
2274	while ((skb = __skb_dequeue(list)) != NULL)
2275		kfree_skb(skb);
2276}
2277
2278void *netdev_alloc_frag(unsigned int fragsz);
2279
2280struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2281				   gfp_t gfp_mask);
2282
2283/**
2284 *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2285 *	@dev: network device to receive on
2286 *	@length: length to allocate
2287 *
2288 *	Allocate a new &sk_buff and assign it a usage count of one. The
2289 *	buffer has unspecified headroom built in. Users should allocate
2290 *	the headroom they think they need without accounting for the
2291 *	built in space. The built in space is used for optimisations.
2292 *
2293 *	%NULL is returned if there is no free memory. Although this function
2294 *	allocates memory it can be called from an interrupt.
2295 */
2296static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2297					       unsigned int length)
2298{
2299	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2300}
2301
2302/* legacy helper around __netdev_alloc_skb() */
2303static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2304					      gfp_t gfp_mask)
2305{
2306	return __netdev_alloc_skb(NULL, length, gfp_mask);
2307}
2308
2309/* legacy helper around netdev_alloc_skb() */
2310static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2311{
2312	return netdev_alloc_skb(NULL, length);
2313}
2314
2315
2316static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2317		unsigned int length, gfp_t gfp)
2318{
2319	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2320
2321	if (NET_IP_ALIGN && skb)
2322		skb_reserve(skb, NET_IP_ALIGN);
2323	return skb;
2324}
2325
2326static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2327		unsigned int length)
2328{
2329	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2330}
2331
2332static inline void skb_free_frag(void *addr)
2333{
2334	__free_page_frag(addr);
2335}
2336
2337void *napi_alloc_frag(unsigned int fragsz);
2338struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2339				 unsigned int length, gfp_t gfp_mask);
2340static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2341					     unsigned int length)
2342{
2343	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2344}
2345
2346/**
2347 * __dev_alloc_pages - allocate page for network Rx
2348 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2349 * @order: size of the allocation
2350 *
2351 * Allocate a new page.
2352 *
2353 * %NULL is returned if there is no free memory.
2354*/
2355static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2356					     unsigned int order)
2357{
2358	/* This piece of code contains several assumptions.
2359	 * 1.  This is for device Rx, therefor a cold page is preferred.
2360	 * 2.  The expectation is the user wants a compound page.
2361	 * 3.  If requesting a order 0 page it will not be compound
2362	 *     due to the check to see if order has a value in prep_new_page
2363	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2364	 *     code in gfp_to_alloc_flags that should be enforcing this.
2365	 */
2366	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2367
2368	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2369}
2370
2371static inline struct page *dev_alloc_pages(unsigned int order)
2372{
2373	return __dev_alloc_pages(GFP_ATOMIC, order);
2374}
2375
2376/**
2377 * __dev_alloc_page - allocate a page for network Rx
2378 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2379 *
2380 * Allocate a new page.
2381 *
2382 * %NULL is returned if there is no free memory.
2383 */
2384static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2385{
2386	return __dev_alloc_pages(gfp_mask, 0);
2387}
2388
2389static inline struct page *dev_alloc_page(void)
2390{
2391	return __dev_alloc_page(GFP_ATOMIC);
2392}
2393
2394/**
2395 *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2396 *	@page: The page that was allocated from skb_alloc_page
2397 *	@skb: The skb that may need pfmemalloc set
2398 */
2399static inline void skb_propagate_pfmemalloc(struct page *page,
2400					     struct sk_buff *skb)
2401{
2402	if (page_is_pfmemalloc(page))
2403		skb->pfmemalloc = true;
2404}
2405
2406/**
2407 * skb_frag_page - retrieve the page referred to by a paged fragment
2408 * @frag: the paged fragment
2409 *
2410 * Returns the &struct page associated with @frag.
2411 */
2412static inline struct page *skb_frag_page(const skb_frag_t *frag)
2413{
2414	return frag->page.p;
2415}
2416
2417/**
2418 * __skb_frag_ref - take an addition reference on a paged fragment.
2419 * @frag: the paged fragment
2420 *
2421 * Takes an additional reference on the paged fragment @frag.
2422 */
2423static inline void __skb_frag_ref(skb_frag_t *frag)
2424{
2425	get_page(skb_frag_page(frag));
2426}
2427
2428/**
2429 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2430 * @skb: the buffer
2431 * @f: the fragment offset.
2432 *
2433 * Takes an additional reference on the @f'th paged fragment of @skb.
2434 */
2435static inline void skb_frag_ref(struct sk_buff *skb, int f)
2436{
2437	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2438}
2439
2440/**
2441 * __skb_frag_unref - release a reference on a paged fragment.
2442 * @frag: the paged fragment
2443 *
2444 * Releases a reference on the paged fragment @frag.
2445 */
2446static inline void __skb_frag_unref(skb_frag_t *frag)
2447{
2448	put_page(skb_frag_page(frag));
2449}
2450
2451/**
2452 * skb_frag_unref - release a reference on a paged fragment of an skb.
2453 * @skb: the buffer
2454 * @f: the fragment offset
2455 *
2456 * Releases a reference on the @f'th paged fragment of @skb.
2457 */
2458static inline void skb_frag_unref(struct sk_buff *skb, int f)
2459{
2460	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2461}
2462
2463/**
2464 * skb_frag_address - gets the address of the data contained in a paged fragment
2465 * @frag: the paged fragment buffer
2466 *
2467 * Returns the address of the data within @frag. The page must already
2468 * be mapped.
2469 */
2470static inline void *skb_frag_address(const skb_frag_t *frag)
2471{
2472	return page_address(skb_frag_page(frag)) + frag->page_offset;
2473}
2474
2475/**
2476 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2477 * @frag: the paged fragment buffer
2478 *
2479 * Returns the address of the data within @frag. Checks that the page
2480 * is mapped and returns %NULL otherwise.
2481 */
2482static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2483{
2484	void *ptr = page_address(skb_frag_page(frag));
2485	if (unlikely(!ptr))
2486		return NULL;
2487
2488	return ptr + frag->page_offset;
2489}
2490
2491/**
2492 * __skb_frag_set_page - sets the page contained in a paged fragment
2493 * @frag: the paged fragment
2494 * @page: the page to set
2495 *
2496 * Sets the fragment @frag to contain @page.
2497 */
2498static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2499{
2500	frag->page.p = page;
2501}
2502
2503/**
2504 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2505 * @skb: the buffer
2506 * @f: the fragment offset
2507 * @page: the page to set
2508 *
2509 * Sets the @f'th fragment of @skb to contain @page.
2510 */
2511static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2512				     struct page *page)
2513{
2514	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2515}
2516
2517bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2518
2519/**
2520 * skb_frag_dma_map - maps a paged fragment via the DMA API
2521 * @dev: the device to map the fragment to
2522 * @frag: the paged fragment to map
2523 * @offset: the offset within the fragment (starting at the
2524 *          fragment's own offset)
2525 * @size: the number of bytes to map
2526 * @dir: the direction of the mapping (%PCI_DMA_*)
2527 *
2528 * Maps the page associated with @frag to @device.
2529 */
2530static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2531					  const skb_frag_t *frag,
2532					  size_t offset, size_t size,
2533					  enum dma_data_direction dir)
2534{
2535	return dma_map_page(dev, skb_frag_page(frag),
2536			    frag->page_offset + offset, size, dir);
2537}
2538
2539static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2540					gfp_t gfp_mask)
2541{
2542	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2543}
2544
2545
2546static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2547						  gfp_t gfp_mask)
2548{
2549	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2550}
2551
2552
2553/**
2554 *	skb_clone_writable - is the header of a clone writable
2555 *	@skb: buffer to check
2556 *	@len: length up to which to write
2557 *
2558 *	Returns true if modifying the header part of the cloned buffer
2559 *	does not requires the data to be copied.
2560 */
2561static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2562{
2563	return !skb_header_cloned(skb) &&
2564	       skb_headroom(skb) + len <= skb->hdr_len;
2565}
2566
2567static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2568			    int cloned)
2569{
2570	int delta = 0;
2571
2572	if (headroom > skb_headroom(skb))
2573		delta = headroom - skb_headroom(skb);
2574
2575	if (delta || cloned)
2576		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2577					GFP_ATOMIC);
2578	return 0;
2579}
2580
2581/**
2582 *	skb_cow - copy header of skb when it is required
2583 *	@skb: buffer to cow
2584 *	@headroom: needed headroom
2585 *
2586 *	If the skb passed lacks sufficient headroom or its data part
2587 *	is shared, data is reallocated. If reallocation fails, an error
2588 *	is returned and original skb is not changed.
2589 *
2590 *	The result is skb with writable area skb->head...skb->tail
2591 *	and at least @headroom of space at head.
2592 */
2593static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2594{
2595	return __skb_cow(skb, headroom, skb_cloned(skb));
2596}
2597
2598/**
2599 *	skb_cow_head - skb_cow but only making the head writable
2600 *	@skb: buffer to cow
2601 *	@headroom: needed headroom
2602 *
2603 *	This function is identical to skb_cow except that we replace the
2604 *	skb_cloned check by skb_header_cloned.  It should be used when
2605 *	you only need to push on some header and do not need to modify
2606 *	the data.
2607 */
2608static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2609{
2610	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2611}
2612
2613/**
2614 *	skb_padto	- pad an skbuff up to a minimal size
2615 *	@skb: buffer to pad
2616 *	@len: minimal length
2617 *
2618 *	Pads up a buffer to ensure the trailing bytes exist and are
2619 *	blanked. If the buffer already contains sufficient data it
2620 *	is untouched. Otherwise it is extended. Returns zero on
2621 *	success. The skb is freed on error.
2622 */
2623static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2624{
2625	unsigned int size = skb->len;
2626	if (likely(size >= len))
2627		return 0;
2628	return skb_pad(skb, len - size);
2629}
2630
2631/**
2632 *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2633 *	@skb: buffer to pad
2634 *	@len: minimal length
2635 *
2636 *	Pads up a buffer to ensure the trailing bytes exist and are
2637 *	blanked. If the buffer already contains sufficient data it
2638 *	is untouched. Otherwise it is extended. Returns zero on
2639 *	success. The skb is freed on error.
2640 */
2641static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2642{
2643	unsigned int size = skb->len;
2644
2645	if (unlikely(size < len)) {
2646		len -= size;
2647		if (skb_pad(skb, len))
2648			return -ENOMEM;
2649		__skb_put(skb, len);
2650	}
2651	return 0;
2652}
2653
2654static inline int skb_add_data(struct sk_buff *skb,
2655			       struct iov_iter *from, int copy)
2656{
2657	const int off = skb->len;
2658
2659	if (skb->ip_summed == CHECKSUM_NONE) {
2660		__wsum csum = 0;
2661		if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2662					    &csum, from) == copy) {
2663			skb->csum = csum_block_add(skb->csum, csum, off);
2664			return 0;
2665		}
2666	} else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2667		return 0;
2668
2669	__skb_trim(skb, off);
2670	return -EFAULT;
2671}
2672
2673static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2674				    const struct page *page, int off)
2675{
2676	if (i) {
2677		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2678
2679		return page == skb_frag_page(frag) &&
2680		       off == frag->page_offset + skb_frag_size(frag);
2681	}
2682	return false;
2683}
2684
2685static inline int __skb_linearize(struct sk_buff *skb)
2686{
2687	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2688}
2689
2690/**
2691 *	skb_linearize - convert paged skb to linear one
2692 *	@skb: buffer to linarize
2693 *
2694 *	If there is no free memory -ENOMEM is returned, otherwise zero
2695 *	is returned and the old skb data released.
2696 */
2697static inline int skb_linearize(struct sk_buff *skb)
2698{
2699	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2700}
2701
2702/**
2703 * skb_has_shared_frag - can any frag be overwritten
2704 * @skb: buffer to test
2705 *
2706 * Return true if the skb has at least one frag that might be modified
2707 * by an external entity (as in vmsplice()/sendfile())
2708 */
2709static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2710{
2711	return skb_is_nonlinear(skb) &&
2712	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2713}
2714
2715/**
2716 *	skb_linearize_cow - make sure skb is linear and writable
2717 *	@skb: buffer to process
2718 *
2719 *	If there is no free memory -ENOMEM is returned, otherwise zero
2720 *	is returned and the old skb data released.
2721 */
2722static inline int skb_linearize_cow(struct sk_buff *skb)
2723{
2724	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2725	       __skb_linearize(skb) : 0;
2726}
2727
2728/**
2729 *	skb_postpull_rcsum - update checksum for received skb after pull
2730 *	@skb: buffer to update
2731 *	@start: start of data before pull
2732 *	@len: length of data pulled
2733 *
2734 *	After doing a pull on a received packet, you need to call this to
2735 *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2736 *	CHECKSUM_NONE so that it can be recomputed from scratch.
2737 */
2738
2739static inline void skb_postpull_rcsum(struct sk_buff *skb,
2740				      const void *start, unsigned int len)
2741{
2742	if (skb->ip_summed == CHECKSUM_COMPLETE)
2743		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2744	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2745		 skb_checksum_start_offset(skb) < 0)
2746		skb->ip_summed = CHECKSUM_NONE;
2747}
2748
2749unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2750
2751static inline void skb_postpush_rcsum(struct sk_buff *skb,
2752				      const void *start, unsigned int len)
2753{
2754	/* For performing the reverse operation to skb_postpull_rcsum(),
2755	 * we can instead of ...
2756	 *
2757	 *   skb->csum = csum_add(skb->csum, csum_partial(start, len, 0));
2758	 *
2759	 * ... just use this equivalent version here to save a few
2760	 * instructions. Feeding csum of 0 in csum_partial() and later
2761	 * on adding skb->csum is equivalent to feed skb->csum in the
2762	 * first place.
2763	 */
2764	if (skb->ip_summed == CHECKSUM_COMPLETE)
2765		skb->csum = csum_partial(start, len, skb->csum);
2766}
2767
2768/**
2769 *	pskb_trim_rcsum - trim received skb and update checksum
2770 *	@skb: buffer to trim
2771 *	@len: new length
2772 *
2773 *	This is exactly the same as pskb_trim except that it ensures the
2774 *	checksum of received packets are still valid after the operation.
2775 */
2776
2777static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2778{
2779	if (likely(len >= skb->len))
2780		return 0;
2781	if (skb->ip_summed == CHECKSUM_COMPLETE)
2782		skb->ip_summed = CHECKSUM_NONE;
2783	return __pskb_trim(skb, len);
2784}
2785
2786#define skb_queue_walk(queue, skb) \
2787		for (skb = (queue)->next;					\
2788		     skb != (struct sk_buff *)(queue);				\
2789		     skb = skb->next)
2790
2791#define skb_queue_walk_safe(queue, skb, tmp)					\
2792		for (skb = (queue)->next, tmp = skb->next;			\
2793		     skb != (struct sk_buff *)(queue);				\
2794		     skb = tmp, tmp = skb->next)
2795
2796#define skb_queue_walk_from(queue, skb)						\
2797		for (; skb != (struct sk_buff *)(queue);			\
2798		     skb = skb->next)
2799
2800#define skb_queue_walk_from_safe(queue, skb, tmp)				\
2801		for (tmp = skb->next;						\
2802		     skb != (struct sk_buff *)(queue);				\
2803		     skb = tmp, tmp = skb->next)
2804
2805#define skb_queue_reverse_walk(queue, skb) \
2806		for (skb = (queue)->prev;					\
2807		     skb != (struct sk_buff *)(queue);				\
2808		     skb = skb->prev)
2809
2810#define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2811		for (skb = (queue)->prev, tmp = skb->prev;			\
2812		     skb != (struct sk_buff *)(queue);				\
2813		     skb = tmp, tmp = skb->prev)
2814
2815#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2816		for (tmp = skb->prev;						\
2817		     skb != (struct sk_buff *)(queue);				\
2818		     skb = tmp, tmp = skb->prev)
2819
2820static inline bool skb_has_frag_list(const struct sk_buff *skb)
2821{
2822	return skb_shinfo(skb)->frag_list != NULL;
2823}
2824
2825static inline void skb_frag_list_init(struct sk_buff *skb)
2826{
2827	skb_shinfo(skb)->frag_list = NULL;
2828}
2829
2830#define skb_walk_frags(skb, iter)	\
2831	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2832
2833struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2834				    int *peeked, int *off, int *err);
2835struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2836				  int *err);
2837unsigned int datagram_poll(struct file *file, struct socket *sock,
2838			   struct poll_table_struct *wait);
2839int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2840			   struct iov_iter *to, int size);
2841static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2842					struct msghdr *msg, int size)
2843{
2844	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2845}
2846int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2847				   struct msghdr *msg);
2848int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2849				 struct iov_iter *from, int len);
2850int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2851void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2852void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2853int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2854int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2855int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2856__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2857			      int len, __wsum csum);
2858ssize_t skb_socket_splice(struct sock *sk,
2859			  struct pipe_inode_info *pipe,
2860			  struct splice_pipe_desc *spd);
2861int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2862		    struct pipe_inode_info *pipe, unsigned int len,
2863		    unsigned int flags,
2864		    ssize_t (*splice_cb)(struct sock *,
2865					 struct pipe_inode_info *,
2866					 struct splice_pipe_desc *));
2867void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2868unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2869int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2870		 int len, int hlen);
2871void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2872int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2873void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2874unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2875struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2876struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2877int skb_ensure_writable(struct sk_buff *skb, int write_len);
2878int skb_vlan_pop(struct sk_buff *skb);
2879int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2880
2881static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2882{
2883	return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2884}
2885
2886static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2887{
2888	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2889}
2890
2891struct skb_checksum_ops {
2892	__wsum (*update)(const void *mem, int len, __wsum wsum);
2893	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2894};
2895
2896__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2897		      __wsum csum, const struct skb_checksum_ops *ops);
2898__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2899		    __wsum csum);
2900
2901static inline void * __must_check
2902__skb_header_pointer(const struct sk_buff *skb, int offset,
2903		     int len, void *data, int hlen, void *buffer)
2904{
2905	if (hlen - offset >= len)
2906		return data + offset;
2907
2908	if (!skb ||
2909	    skb_copy_bits(skb, offset, buffer, len) < 0)
2910		return NULL;
2911
2912	return buffer;
2913}
2914
2915static inline void * __must_check
2916skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
2917{
2918	return __skb_header_pointer(skb, offset, len, skb->data,
2919				    skb_headlen(skb), buffer);
2920}
2921
2922/**
2923 *	skb_needs_linearize - check if we need to linearize a given skb
2924 *			      depending on the given device features.
2925 *	@skb: socket buffer to check
2926 *	@features: net device features
2927 *
2928 *	Returns true if either:
2929 *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2930 *	2. skb is fragmented and the device does not support SG.
2931 */
2932static inline bool skb_needs_linearize(struct sk_buff *skb,
2933				       netdev_features_t features)
2934{
2935	return skb_is_nonlinear(skb) &&
2936	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2937		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2938}
2939
2940static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2941					     void *to,
2942					     const unsigned int len)
2943{
2944	memcpy(to, skb->data, len);
2945}
2946
2947static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2948						    const int offset, void *to,
2949						    const unsigned int len)
2950{
2951	memcpy(to, skb->data + offset, len);
2952}
2953
2954static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2955					   const void *from,
2956					   const unsigned int len)
2957{
2958	memcpy(skb->data, from, len);
2959}
2960
2961static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2962						  const int offset,
2963						  const void *from,
2964						  const unsigned int len)
2965{
2966	memcpy(skb->data + offset, from, len);
2967}
2968
2969void skb_init(void);
2970
2971static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2972{
2973	return skb->tstamp;
2974}
2975
2976/**
2977 *	skb_get_timestamp - get timestamp from a skb
2978 *	@skb: skb to get stamp from
2979 *	@stamp: pointer to struct timeval to store stamp in
2980 *
2981 *	Timestamps are stored in the skb as offsets to a base timestamp.
2982 *	This function converts the offset back to a struct timeval and stores
2983 *	it in stamp.
2984 */
2985static inline void skb_get_timestamp(const struct sk_buff *skb,
2986				     struct timeval *stamp)
2987{
2988	*stamp = ktime_to_timeval(skb->tstamp);
2989}
2990
2991static inline void skb_get_timestampns(const struct sk_buff *skb,
2992				       struct timespec *stamp)
2993{
2994	*stamp = ktime_to_timespec(skb->tstamp);
2995}
2996
2997static inline void __net_timestamp(struct sk_buff *skb)
2998{
2999	skb->tstamp = ktime_get_real();
3000}
3001
3002static inline ktime_t net_timedelta(ktime_t t)
3003{
3004	return ktime_sub(ktime_get_real(), t);
3005}
3006
3007static inline ktime_t net_invalid_timestamp(void)
3008{
3009	return ktime_set(0, 0);
3010}
3011
3012struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3013
3014#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3015
3016void skb_clone_tx_timestamp(struct sk_buff *skb);
3017bool skb_defer_rx_timestamp(struct sk_buff *skb);
3018
3019#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3020
3021static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3022{
3023}
3024
3025static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3026{
3027	return false;
3028}
3029
3030#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3031
3032/**
3033 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3034 *
3035 * PHY drivers may accept clones of transmitted packets for
3036 * timestamping via their phy_driver.txtstamp method. These drivers
3037 * must call this function to return the skb back to the stack with a
3038 * timestamp.
3039 *
3040 * @skb: clone of the the original outgoing packet
3041 * @hwtstamps: hardware time stamps
3042 *
3043 */
3044void skb_complete_tx_timestamp(struct sk_buff *skb,
3045			       struct skb_shared_hwtstamps *hwtstamps);
3046
3047void __skb_tstamp_tx(struct sk_buff *orig_skb,
3048		     struct skb_shared_hwtstamps *hwtstamps,
3049		     struct sock *sk, int tstype);
3050
3051/**
3052 * skb_tstamp_tx - queue clone of skb with send time stamps
3053 * @orig_skb:	the original outgoing packet
3054 * @hwtstamps:	hardware time stamps, may be NULL if not available
3055 *
3056 * If the skb has a socket associated, then this function clones the
3057 * skb (thus sharing the actual data and optional structures), stores
3058 * the optional hardware time stamping information (if non NULL) or
3059 * generates a software time stamp (otherwise), then queues the clone
3060 * to the error queue of the socket.  Errors are silently ignored.
3061 */
3062void skb_tstamp_tx(struct sk_buff *orig_skb,
3063		   struct skb_shared_hwtstamps *hwtstamps);
3064
3065static inline void sw_tx_timestamp(struct sk_buff *skb)
3066{
3067	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3068	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3069		skb_tstamp_tx(skb, NULL);
3070}
3071
3072/**
3073 * skb_tx_timestamp() - Driver hook for transmit timestamping
3074 *
3075 * Ethernet MAC Drivers should call this function in their hard_xmit()
3076 * function immediately before giving the sk_buff to the MAC hardware.
3077 *
3078 * Specifically, one should make absolutely sure that this function is
3079 * called before TX completion of this packet can trigger.  Otherwise
3080 * the packet could potentially already be freed.
3081 *
3082 * @skb: A socket buffer.
3083 */
3084static inline void skb_tx_timestamp(struct sk_buff *skb)
3085{
3086	skb_clone_tx_timestamp(skb);
3087	sw_tx_timestamp(skb);
3088}
3089
3090/**
3091 * skb_complete_wifi_ack - deliver skb with wifi status
3092 *
3093 * @skb: the original outgoing packet
3094 * @acked: ack status
3095 *
3096 */
3097void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3098
3099__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3100__sum16 __skb_checksum_complete(struct sk_buff *skb);
3101
3102static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3103{
3104	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3105		skb->csum_valid ||
3106		(skb->ip_summed == CHECKSUM_PARTIAL &&
3107		 skb_checksum_start_offset(skb) >= 0));
3108}
3109
3110/**
3111 *	skb_checksum_complete - Calculate checksum of an entire packet
3112 *	@skb: packet to process
3113 *
3114 *	This function calculates the checksum over the entire packet plus
3115 *	the value of skb->csum.  The latter can be used to supply the
3116 *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3117 *	checksum.
3118 *
3119 *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3120 *	this function can be used to verify that checksum on received
3121 *	packets.  In that case the function should return zero if the
3122 *	checksum is correct.  In particular, this function will return zero
3123 *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3124 *	hardware has already verified the correctness of the checksum.
3125 */
3126static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3127{
3128	return skb_csum_unnecessary(skb) ?
3129	       0 : __skb_checksum_complete(skb);
3130}
3131
3132static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3133{
3134	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3135		if (skb->csum_level == 0)
3136			skb->ip_summed = CHECKSUM_NONE;
3137		else
3138			skb->csum_level--;
3139	}
3140}
3141
3142static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3143{
3144	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3145		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3146			skb->csum_level++;
3147	} else if (skb->ip_summed == CHECKSUM_NONE) {
3148		skb->ip_summed = CHECKSUM_UNNECESSARY;
3149		skb->csum_level = 0;
3150	}
3151}
3152
3153static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3154{
3155	/* Mark current checksum as bad (typically called from GRO
3156	 * path). In the case that ip_summed is CHECKSUM_NONE
3157	 * this must be the first checksum encountered in the packet.
3158	 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3159	 * checksum after the last one validated. For UDP, a zero
3160	 * checksum can not be marked as bad.
3161	 */
3162
3163	if (skb->ip_summed == CHECKSUM_NONE ||
3164	    skb->ip_summed == CHECKSUM_UNNECESSARY)
3165		skb->csum_bad = 1;
3166}
3167
3168/* Check if we need to perform checksum complete validation.
3169 *
3170 * Returns true if checksum complete is needed, false otherwise
3171 * (either checksum is unnecessary or zero checksum is allowed).
3172 */
3173static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3174						  bool zero_okay,
3175						  __sum16 check)
3176{
3177	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3178		skb->csum_valid = 1;
3179		__skb_decr_checksum_unnecessary(skb);
3180		return false;
3181	}
3182
3183	return true;
3184}
3185
3186/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3187 * in checksum_init.
3188 */
3189#define CHECKSUM_BREAK 76
3190
3191/* Unset checksum-complete
3192 *
3193 * Unset checksum complete can be done when packet is being modified
3194 * (uncompressed for instance) and checksum-complete value is
3195 * invalidated.
3196 */
3197static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3198{
3199	if (skb->ip_summed == CHECKSUM_COMPLETE)
3200		skb->ip_summed = CHECKSUM_NONE;
3201}
3202
3203/* Validate (init) checksum based on checksum complete.
3204 *
3205 * Return values:
3206 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3207 *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3208 *	checksum is stored in skb->csum for use in __skb_checksum_complete
3209 *   non-zero: value of invalid checksum
3210 *
3211 */
3212static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3213						       bool complete,
3214						       __wsum psum)
3215{
3216	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3217		if (!csum_fold(csum_add(psum, skb->csum))) {
3218			skb->csum_valid = 1;
3219			return 0;
3220		}
3221	} else if (skb->csum_bad) {
3222		/* ip_summed == CHECKSUM_NONE in this case */
3223		return (__force __sum16)1;
3224	}
3225
3226	skb->csum = psum;
3227
3228	if (complete || skb->len <= CHECKSUM_BREAK) {
3229		__sum16 csum;
3230
3231		csum = __skb_checksum_complete(skb);
3232		skb->csum_valid = !csum;
3233		return csum;
3234	}
3235
3236	return 0;
3237}
3238
3239static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3240{
3241	return 0;
3242}
3243
3244/* Perform checksum validate (init). Note that this is a macro since we only
3245 * want to calculate the pseudo header which is an input function if necessary.
3246 * First we try to validate without any computation (checksum unnecessary) and
3247 * then calculate based on checksum complete calling the function to compute
3248 * pseudo header.
3249 *
3250 * Return values:
3251 *   0: checksum is validated or try to in skb_checksum_complete
3252 *   non-zero: value of invalid checksum
3253 */
3254#define __skb_checksum_validate(skb, proto, complete,			\
3255				zero_okay, check, compute_pseudo)	\
3256({									\
3257	__sum16 __ret = 0;						\
3258	skb->csum_valid = 0;						\
3259	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3260		__ret = __skb_checksum_validate_complete(skb,		\
3261				complete, compute_pseudo(skb, proto));	\
3262	__ret;								\
3263})
3264
3265#define skb_checksum_init(skb, proto, compute_pseudo)			\
3266	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3267
3268#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3269	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3270
3271#define skb_checksum_validate(skb, proto, compute_pseudo)		\
3272	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3273
3274#define skb_checksum_validate_zero_check(skb, proto, check,		\
3275					 compute_pseudo)		\
3276	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3277
3278#define skb_checksum_simple_validate(skb)				\
3279	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3280
3281static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3282{
3283	return (skb->ip_summed == CHECKSUM_NONE &&
3284		skb->csum_valid && !skb->csum_bad);
3285}
3286
3287static inline void __skb_checksum_convert(struct sk_buff *skb,
3288					  __sum16 check, __wsum pseudo)
3289{
3290	skb->csum = ~pseudo;
3291	skb->ip_summed = CHECKSUM_COMPLETE;
3292}
3293
3294#define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3295do {									\
3296	if (__skb_checksum_convert_check(skb))				\
3297		__skb_checksum_convert(skb, check,			\
3298				       compute_pseudo(skb, proto));	\
3299} while (0)
3300
3301static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3302					      u16 start, u16 offset)
3303{
3304	skb->ip_summed = CHECKSUM_PARTIAL;
3305	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3306	skb->csum_offset = offset - start;
3307}
3308
3309/* Update skbuf and packet to reflect the remote checksum offload operation.
3310 * When called, ptr indicates the starting point for skb->csum when
3311 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3312 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3313 */
3314static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3315				       int start, int offset, bool nopartial)
3316{
3317	__wsum delta;
3318
3319	if (!nopartial) {
3320		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3321		return;
3322	}
3323
3324	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3325		__skb_checksum_complete(skb);
3326		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3327	}
3328
3329	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3330
3331	/* Adjust skb->csum since we changed the packet */
3332	skb->csum = csum_add(skb->csum, delta);
3333}
3334
3335#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3336void nf_conntrack_destroy(struct nf_conntrack *nfct);
3337static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3338{
3339	if (nfct && atomic_dec_and_test(&nfct->use))
3340		nf_conntrack_destroy(nfct);
3341}
3342static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3343{
3344	if (nfct)
3345		atomic_inc(&nfct->use);
3346}
3347#endif
3348#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3349static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3350{
3351	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3352		kfree(nf_bridge);
3353}
3354static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3355{
3356	if (nf_bridge)
3357		atomic_inc(&nf_bridge->use);
3358}
3359#endif /* CONFIG_BRIDGE_NETFILTER */
3360static inline void nf_reset(struct sk_buff *skb)
3361{
3362#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3363	nf_conntrack_put(skb->nfct);
3364	skb->nfct = NULL;
3365#endif
3366#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3367	nf_bridge_put(skb->nf_bridge);
3368	skb->nf_bridge = NULL;
3369#endif
3370}
3371
3372static inline void nf_reset_trace(struct sk_buff *skb)
3373{
3374#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3375	skb->nf_trace = 0;
3376#endif
3377}
3378
3379/* Note: This doesn't put any conntrack and bridge info in dst. */
3380static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3381			     bool copy)
3382{
3383#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3384	dst->nfct = src->nfct;
3385	nf_conntrack_get(src->nfct);
3386	if (copy)
3387		dst->nfctinfo = src->nfctinfo;
3388#endif
3389#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3390	dst->nf_bridge  = src->nf_bridge;
3391	nf_bridge_get(src->nf_bridge);
3392#endif
3393#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3394	if (copy)
3395		dst->nf_trace = src->nf_trace;
3396#endif
3397}
3398
3399static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3400{
3401#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3402	nf_conntrack_put(dst->nfct);
3403#endif
3404#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3405	nf_bridge_put(dst->nf_bridge);
3406#endif
3407	__nf_copy(dst, src, true);
3408}
3409
3410#ifdef CONFIG_NETWORK_SECMARK
3411static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3412{
3413	to->secmark = from->secmark;
3414}
3415
3416static inline void skb_init_secmark(struct sk_buff *skb)
3417{
3418	skb->secmark = 0;
3419}
3420#else
3421static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3422{ }
3423
3424static inline void skb_init_secmark(struct sk_buff *skb)
3425{ }
3426#endif
3427
3428static inline bool skb_irq_freeable(const struct sk_buff *skb)
3429{
3430	return !skb->destructor &&
3431#if IS_ENABLED(CONFIG_XFRM)
3432		!skb->sp &&
3433#endif
3434#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3435		!skb->nfct &&
3436#endif
3437		!skb->_skb_refdst &&
3438		!skb_has_frag_list(skb);
3439}
3440
3441static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3442{
3443	skb->queue_mapping = queue_mapping;
3444}
3445
3446static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3447{
3448	return skb->queue_mapping;
3449}
3450
3451static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3452{
3453	to->queue_mapping = from->queue_mapping;
3454}
3455
3456static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3457{
3458	skb->queue_mapping = rx_queue + 1;
3459}
3460
3461static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3462{
3463	return skb->queue_mapping - 1;
3464}
3465
3466static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3467{
3468	return skb->queue_mapping != 0;
3469}
3470
3471static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3472{
3473#ifdef CONFIG_XFRM
3474	return skb->sp;
3475#else
3476	return NULL;
3477#endif
3478}
3479
3480/* Keeps track of mac header offset relative to skb->head.
3481 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3482 * For non-tunnel skb it points to skb_mac_header() and for
3483 * tunnel skb it points to outer mac header.
3484 * Keeps track of level of encapsulation of network headers.
3485 */
3486struct skb_gso_cb {
3487	int	mac_offset;
3488	int	encap_level;
3489	__u16	csum_start;
3490};
3491#define SKB_SGO_CB_OFFSET	32
3492#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3493
3494static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3495{
3496	return (skb_mac_header(inner_skb) - inner_skb->head) -
3497		SKB_GSO_CB(inner_skb)->mac_offset;
3498}
3499
3500static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3501{
3502	int new_headroom, headroom;
3503	int ret;
3504
3505	headroom = skb_headroom(skb);
3506	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3507	if (ret)
3508		return ret;
3509
3510	new_headroom = skb_headroom(skb);
3511	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3512	return 0;
3513}
3514
3515/* Compute the checksum for a gso segment. First compute the checksum value
3516 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3517 * then add in skb->csum (checksum from csum_start to end of packet).
3518 * skb->csum and csum_start are then updated to reflect the checksum of the
3519 * resultant packet starting from the transport header-- the resultant checksum
3520 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3521 * header.
3522 */
3523static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3524{
3525	int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3526		   skb_transport_offset(skb);
3527	__wsum partial;
3528
3529	partial = csum_partial(skb_transport_header(skb), plen, skb->csum);
3530	skb->csum = res;
3531	SKB_GSO_CB(skb)->csum_start -= plen;
3532
3533	return csum_fold(partial);
3534}
3535
3536static inline bool skb_is_gso(const struct sk_buff *skb)
3537{
3538	return skb_shinfo(skb)->gso_size;
3539}
3540
3541/* Note: Should be called only if skb_is_gso(skb) is true */
3542static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3543{
3544	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3545}
3546
3547void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3548
3549static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3550{
3551	/* LRO sets gso_size but not gso_type, whereas if GSO is really
3552	 * wanted then gso_type will be set. */
3553	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3554
3555	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3556	    unlikely(shinfo->gso_type == 0)) {
3557		__skb_warn_lro_forwarding(skb);
3558		return true;
3559	}
3560	return false;
3561}
3562
3563static inline void skb_forward_csum(struct sk_buff *skb)
3564{
3565	/* Unfortunately we don't support this one.  Any brave souls? */
3566	if (skb->ip_summed == CHECKSUM_COMPLETE)
3567		skb->ip_summed = CHECKSUM_NONE;
3568}
3569
3570/**
3571 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3572 * @skb: skb to check
3573 *
3574 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3575 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3576 * use this helper, to document places where we make this assertion.
3577 */
3578static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3579{
3580#ifdef DEBUG
3581	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3582#endif
3583}
3584
3585bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3586
3587int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3588struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3589				     unsigned int transport_len,
3590				     __sum16(*skb_chkf)(struct sk_buff *skb));
3591
3592/**
3593 * skb_head_is_locked - Determine if the skb->head is locked down
3594 * @skb: skb to check
3595 *
3596 * The head on skbs build around a head frag can be removed if they are
3597 * not cloned.  This function returns true if the skb head is locked down
3598 * due to either being allocated via kmalloc, or by being a clone with
3599 * multiple references to the head.
3600 */
3601static inline bool skb_head_is_locked(const struct sk_buff *skb)
3602{
3603	return !skb->head_frag || skb_cloned(skb);
3604}
3605
3606/**
3607 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3608 *
3609 * @skb: GSO skb
3610 *
3611 * skb_gso_network_seglen is used to determine the real size of the
3612 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3613 *
3614 * The MAC/L2 header is not accounted for.
3615 */
3616static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3617{
3618	unsigned int hdr_len = skb_transport_header(skb) -
3619			       skb_network_header(skb);
3620	return hdr_len + skb_gso_transport_seglen(skb);
3621}
3622
3623#endif	/* __KERNEL__ */
3624#endif	/* _LINUX_SKBUFF_H */
3625