1/*
2 * Scatterlist Cryptographic API.
3 *
4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
6 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
7 *
8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
9 * and Nettle, by Niels M��ller.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 *
16 */
17#ifndef _LINUX_CRYPTO_H
18#define _LINUX_CRYPTO_H
19
20#include <linux/atomic.h>
21#include <linux/kernel.h>
22#include <linux/list.h>
23#include <linux/bug.h>
24#include <linux/slab.h>
25#include <linux/string.h>
26#include <linux/uaccess.h>
27
28/*
29 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
30 * arbitrary modules to be loaded. Loading from userspace may still need the
31 * unprefixed names, so retains those aliases as well.
32 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
33 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
34 * expands twice on the same line. Instead, use a separate base name for the
35 * alias.
36 */
37#define MODULE_ALIAS_CRYPTO(name)	\
38		__MODULE_INFO(alias, alias_userspace, name);	\
39		__MODULE_INFO(alias, alias_crypto, "crypto-" name)
40
41/*
42 * Algorithm masks and types.
43 */
44#define CRYPTO_ALG_TYPE_MASK		0x0000000f
45#define CRYPTO_ALG_TYPE_CIPHER		0x00000001
46#define CRYPTO_ALG_TYPE_COMPRESS	0x00000002
47#define CRYPTO_ALG_TYPE_AEAD		0x00000003
48#define CRYPTO_ALG_TYPE_BLKCIPHER	0x00000004
49#define CRYPTO_ALG_TYPE_ABLKCIPHER	0x00000005
50#define CRYPTO_ALG_TYPE_GIVCIPHER	0x00000006
51#define CRYPTO_ALG_TYPE_DIGEST		0x00000008
52#define CRYPTO_ALG_TYPE_HASH		0x00000008
53#define CRYPTO_ALG_TYPE_SHASH		0x00000009
54#define CRYPTO_ALG_TYPE_AHASH		0x0000000a
55#define CRYPTO_ALG_TYPE_RNG		0x0000000c
56#define CRYPTO_ALG_TYPE_AKCIPHER	0x0000000d
57#define CRYPTO_ALG_TYPE_PCOMPRESS	0x0000000f
58
59#define CRYPTO_ALG_TYPE_HASH_MASK	0x0000000e
60#define CRYPTO_ALG_TYPE_AHASH_MASK	0x0000000c
61#define CRYPTO_ALG_TYPE_BLKCIPHER_MASK	0x0000000c
62
63#define CRYPTO_ALG_LARVAL		0x00000010
64#define CRYPTO_ALG_DEAD			0x00000020
65#define CRYPTO_ALG_DYING		0x00000040
66#define CRYPTO_ALG_ASYNC		0x00000080
67
68/*
69 * Set this bit if and only if the algorithm requires another algorithm of
70 * the same type to handle corner cases.
71 */
72#define CRYPTO_ALG_NEED_FALLBACK	0x00000100
73
74/*
75 * This bit is set for symmetric key ciphers that have already been wrapped
76 * with a generic IV generator to prevent them from being wrapped again.
77 */
78#define CRYPTO_ALG_GENIV		0x00000200
79
80/*
81 * Set if the algorithm has passed automated run-time testing.  Note that
82 * if there is no run-time testing for a given algorithm it is considered
83 * to have passed.
84 */
85
86#define CRYPTO_ALG_TESTED		0x00000400
87
88/*
89 * Set if the algorithm is an instance that is build from templates.
90 */
91#define CRYPTO_ALG_INSTANCE		0x00000800
92
93/* Set this bit if the algorithm provided is hardware accelerated but
94 * not available to userspace via instruction set or so.
95 */
96#define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
97
98/*
99 * Mark a cipher as a service implementation only usable by another
100 * cipher and never by a normal user of the kernel crypto API
101 */
102#define CRYPTO_ALG_INTERNAL		0x00002000
103
104/*
105 * Transform masks and values (for crt_flags).
106 */
107#define CRYPTO_TFM_REQ_MASK		0x000fff00
108#define CRYPTO_TFM_RES_MASK		0xfff00000
109
110#define CRYPTO_TFM_REQ_WEAK_KEY		0x00000100
111#define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
112#define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
113#define CRYPTO_TFM_RES_WEAK_KEY		0x00100000
114#define CRYPTO_TFM_RES_BAD_KEY_LEN   	0x00200000
115#define CRYPTO_TFM_RES_BAD_KEY_SCHED 	0x00400000
116#define CRYPTO_TFM_RES_BAD_BLOCK_LEN 	0x00800000
117#define CRYPTO_TFM_RES_BAD_FLAGS 	0x01000000
118
119/*
120 * Miscellaneous stuff.
121 */
122#define CRYPTO_MAX_ALG_NAME		64
123
124/*
125 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
126 * declaration) is used to ensure that the crypto_tfm context structure is
127 * aligned correctly for the given architecture so that there are no alignment
128 * faults for C data types.  In particular, this is required on platforms such
129 * as arm where pointers are 32-bit aligned but there are data types such as
130 * u64 which require 64-bit alignment.
131 */
132#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
133
134#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
135
136struct scatterlist;
137struct crypto_ablkcipher;
138struct crypto_async_request;
139struct crypto_blkcipher;
140struct crypto_hash;
141struct crypto_tfm;
142struct crypto_type;
143struct skcipher_givcrypt_request;
144
145typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
146
147/**
148 * DOC: Block Cipher Context Data Structures
149 *
150 * These data structures define the operating context for each block cipher
151 * type.
152 */
153
154struct crypto_async_request {
155	struct list_head list;
156	crypto_completion_t complete;
157	void *data;
158	struct crypto_tfm *tfm;
159
160	u32 flags;
161};
162
163struct ablkcipher_request {
164	struct crypto_async_request base;
165
166	unsigned int nbytes;
167
168	void *info;
169
170	struct scatterlist *src;
171	struct scatterlist *dst;
172
173	void *__ctx[] CRYPTO_MINALIGN_ATTR;
174};
175
176struct blkcipher_desc {
177	struct crypto_blkcipher *tfm;
178	void *info;
179	u32 flags;
180};
181
182struct cipher_desc {
183	struct crypto_tfm *tfm;
184	void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
185	unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
186			     const u8 *src, unsigned int nbytes);
187	void *info;
188};
189
190struct hash_desc {
191	struct crypto_hash *tfm;
192	u32 flags;
193};
194
195/**
196 * DOC: Block Cipher Algorithm Definitions
197 *
198 * These data structures define modular crypto algorithm implementations,
199 * managed via crypto_register_alg() and crypto_unregister_alg().
200 */
201
202/**
203 * struct ablkcipher_alg - asynchronous block cipher definition
204 * @min_keysize: Minimum key size supported by the transformation. This is the
205 *		 smallest key length supported by this transformation algorithm.
206 *		 This must be set to one of the pre-defined values as this is
207 *		 not hardware specific. Possible values for this field can be
208 *		 found via git grep "_MIN_KEY_SIZE" include/crypto/
209 * @max_keysize: Maximum key size supported by the transformation. This is the
210 *		 largest key length supported by this transformation algorithm.
211 *		 This must be set to one of the pre-defined values as this is
212 *		 not hardware specific. Possible values for this field can be
213 *		 found via git grep "_MAX_KEY_SIZE" include/crypto/
214 * @setkey: Set key for the transformation. This function is used to either
215 *	    program a supplied key into the hardware or store the key in the
216 *	    transformation context for programming it later. Note that this
217 *	    function does modify the transformation context. This function can
218 *	    be called multiple times during the existence of the transformation
219 *	    object, so one must make sure the key is properly reprogrammed into
220 *	    the hardware. This function is also responsible for checking the key
221 *	    length for validity. In case a software fallback was put in place in
222 *	    the @cra_init call, this function might need to use the fallback if
223 *	    the algorithm doesn't support all of the key sizes.
224 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
225 *	     the supplied scatterlist containing the blocks of data. The crypto
226 *	     API consumer is responsible for aligning the entries of the
227 *	     scatterlist properly and making sure the chunks are correctly
228 *	     sized. In case a software fallback was put in place in the
229 *	     @cra_init call, this function might need to use the fallback if
230 *	     the algorithm doesn't support all of the key sizes. In case the
231 *	     key was stored in transformation context, the key might need to be
232 *	     re-programmed into the hardware in this function. This function
233 *	     shall not modify the transformation context, as this function may
234 *	     be called in parallel with the same transformation object.
235 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
236 *	     and the conditions are exactly the same.
237 * @givencrypt: Update the IV for encryption. With this function, a cipher
238 *	        implementation may provide the function on how to update the IV
239 *	        for encryption.
240 * @givdecrypt: Update the IV for decryption. This is the reverse of
241 *	        @givencrypt .
242 * @geniv: The transformation implementation may use an "IV generator" provided
243 *	   by the kernel crypto API. Several use cases have a predefined
244 *	   approach how IVs are to be updated. For such use cases, the kernel
245 *	   crypto API provides ready-to-use implementations that can be
246 *	   referenced with this variable.
247 * @ivsize: IV size applicable for transformation. The consumer must provide an
248 *	    IV of exactly that size to perform the encrypt or decrypt operation.
249 *
250 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
251 * mandatory and must be filled.
252 */
253struct ablkcipher_alg {
254	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
255	              unsigned int keylen);
256	int (*encrypt)(struct ablkcipher_request *req);
257	int (*decrypt)(struct ablkcipher_request *req);
258	int (*givencrypt)(struct skcipher_givcrypt_request *req);
259	int (*givdecrypt)(struct skcipher_givcrypt_request *req);
260
261	const char *geniv;
262
263	unsigned int min_keysize;
264	unsigned int max_keysize;
265	unsigned int ivsize;
266};
267
268/**
269 * struct blkcipher_alg - synchronous block cipher definition
270 * @min_keysize: see struct ablkcipher_alg
271 * @max_keysize: see struct ablkcipher_alg
272 * @setkey: see struct ablkcipher_alg
273 * @encrypt: see struct ablkcipher_alg
274 * @decrypt: see struct ablkcipher_alg
275 * @geniv: see struct ablkcipher_alg
276 * @ivsize: see struct ablkcipher_alg
277 *
278 * All fields except @geniv and @ivsize are mandatory and must be filled.
279 */
280struct blkcipher_alg {
281	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
282	              unsigned int keylen);
283	int (*encrypt)(struct blkcipher_desc *desc,
284		       struct scatterlist *dst, struct scatterlist *src,
285		       unsigned int nbytes);
286	int (*decrypt)(struct blkcipher_desc *desc,
287		       struct scatterlist *dst, struct scatterlist *src,
288		       unsigned int nbytes);
289
290	const char *geniv;
291
292	unsigned int min_keysize;
293	unsigned int max_keysize;
294	unsigned int ivsize;
295};
296
297/**
298 * struct cipher_alg - single-block symmetric ciphers definition
299 * @cia_min_keysize: Minimum key size supported by the transformation. This is
300 *		     the smallest key length supported by this transformation
301 *		     algorithm. This must be set to one of the pre-defined
302 *		     values as this is not hardware specific. Possible values
303 *		     for this field can be found via git grep "_MIN_KEY_SIZE"
304 *		     include/crypto/
305 * @cia_max_keysize: Maximum key size supported by the transformation. This is
306 *		    the largest key length supported by this transformation
307 *		    algorithm. This must be set to one of the pre-defined values
308 *		    as this is not hardware specific. Possible values for this
309 *		    field can be found via git grep "_MAX_KEY_SIZE"
310 *		    include/crypto/
311 * @cia_setkey: Set key for the transformation. This function is used to either
312 *	        program a supplied key into the hardware or store the key in the
313 *	        transformation context for programming it later. Note that this
314 *	        function does modify the transformation context. This function
315 *	        can be called multiple times during the existence of the
316 *	        transformation object, so one must make sure the key is properly
317 *	        reprogrammed into the hardware. This function is also
318 *	        responsible for checking the key length for validity.
319 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
320 *		 single block of data, which must be @cra_blocksize big. This
321 *		 always operates on a full @cra_blocksize and it is not possible
322 *		 to encrypt a block of smaller size. The supplied buffers must
323 *		 therefore also be at least of @cra_blocksize size. Both the
324 *		 input and output buffers are always aligned to @cra_alignmask.
325 *		 In case either of the input or output buffer supplied by user
326 *		 of the crypto API is not aligned to @cra_alignmask, the crypto
327 *		 API will re-align the buffers. The re-alignment means that a
328 *		 new buffer will be allocated, the data will be copied into the
329 *		 new buffer, then the processing will happen on the new buffer,
330 *		 then the data will be copied back into the original buffer and
331 *		 finally the new buffer will be freed. In case a software
332 *		 fallback was put in place in the @cra_init call, this function
333 *		 might need to use the fallback if the algorithm doesn't support
334 *		 all of the key sizes. In case the key was stored in
335 *		 transformation context, the key might need to be re-programmed
336 *		 into the hardware in this function. This function shall not
337 *		 modify the transformation context, as this function may be
338 *		 called in parallel with the same transformation object.
339 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
340 *		 @cia_encrypt, and the conditions are exactly the same.
341 *
342 * All fields are mandatory and must be filled.
343 */
344struct cipher_alg {
345	unsigned int cia_min_keysize;
346	unsigned int cia_max_keysize;
347	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
348	                  unsigned int keylen);
349	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
350	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
351};
352
353struct compress_alg {
354	int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
355			    unsigned int slen, u8 *dst, unsigned int *dlen);
356	int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
357			      unsigned int slen, u8 *dst, unsigned int *dlen);
358};
359
360
361#define cra_ablkcipher	cra_u.ablkcipher
362#define cra_blkcipher	cra_u.blkcipher
363#define cra_cipher	cra_u.cipher
364#define cra_compress	cra_u.compress
365
366/**
367 * struct crypto_alg - definition of a cryptograpic cipher algorithm
368 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
369 *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
370 *	       used for fine-tuning the description of the transformation
371 *	       algorithm.
372 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
373 *		   of the smallest possible unit which can be transformed with
374 *		   this algorithm. The users must respect this value.
375 *		   In case of HASH transformation, it is possible for a smaller
376 *		   block than @cra_blocksize to be passed to the crypto API for
377 *		   transformation, in case of any other transformation type, an
378 * 		   error will be returned upon any attempt to transform smaller
379 *		   than @cra_blocksize chunks.
380 * @cra_ctxsize: Size of the operational context of the transformation. This
381 *		 value informs the kernel crypto API about the memory size
382 *		 needed to be allocated for the transformation context.
383 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
384 *		   buffer containing the input data for the algorithm must be
385 *		   aligned to this alignment mask. The data buffer for the
386 *		   output data must be aligned to this alignment mask. Note that
387 *		   the Crypto API will do the re-alignment in software, but
388 *		   only under special conditions and there is a performance hit.
389 *		   The re-alignment happens at these occasions for different
390 *		   @cra_u types: cipher -- For both input data and output data
391 *		   buffer; ahash -- For output hash destination buf; shash --
392 *		   For output hash destination buf.
393 *		   This is needed on hardware which is flawed by design and
394 *		   cannot pick data from arbitrary addresses.
395 * @cra_priority: Priority of this transformation implementation. In case
396 *		  multiple transformations with same @cra_name are available to
397 *		  the Crypto API, the kernel will use the one with highest
398 *		  @cra_priority.
399 * @cra_name: Generic name (usable by multiple implementations) of the
400 *	      transformation algorithm. This is the name of the transformation
401 *	      itself. This field is used by the kernel when looking up the
402 *	      providers of particular transformation.
403 * @cra_driver_name: Unique name of the transformation provider. This is the
404 *		     name of the provider of the transformation. This can be any
405 *		     arbitrary value, but in the usual case, this contains the
406 *		     name of the chip or provider and the name of the
407 *		     transformation algorithm.
408 * @cra_type: Type of the cryptographic transformation. This is a pointer to
409 *	      struct crypto_type, which implements callbacks common for all
410 *	      transformation types. There are multiple options:
411 *	      &crypto_blkcipher_type, &crypto_ablkcipher_type,
412 *	      &crypto_ahash_type, &crypto_rng_type.
413 *	      This field might be empty. In that case, there are no common
414 *	      callbacks. This is the case for: cipher, compress, shash.
415 * @cra_u: Callbacks implementing the transformation. This is a union of
416 *	   multiple structures. Depending on the type of transformation selected
417 *	   by @cra_type and @cra_flags above, the associated structure must be
418 *	   filled with callbacks. This field might be empty. This is the case
419 *	   for ahash, shash.
420 * @cra_init: Initialize the cryptographic transformation object. This function
421 *	      is used to initialize the cryptographic transformation object.
422 *	      This function is called only once at the instantiation time, right
423 *	      after the transformation context was allocated. In case the
424 *	      cryptographic hardware has some special requirements which need to
425 *	      be handled by software, this function shall check for the precise
426 *	      requirement of the transformation and put any software fallbacks
427 *	      in place.
428 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
429 *	      counterpart to @cra_init, used to remove various changes set in
430 *	      @cra_init.
431 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
432 * @cra_list: internally used
433 * @cra_users: internally used
434 * @cra_refcnt: internally used
435 * @cra_destroy: internally used
436 *
437 * The struct crypto_alg describes a generic Crypto API algorithm and is common
438 * for all of the transformations. Any variable not documented here shall not
439 * be used by a cipher implementation as it is internal to the Crypto API.
440 */
441struct crypto_alg {
442	struct list_head cra_list;
443	struct list_head cra_users;
444
445	u32 cra_flags;
446	unsigned int cra_blocksize;
447	unsigned int cra_ctxsize;
448	unsigned int cra_alignmask;
449
450	int cra_priority;
451	atomic_t cra_refcnt;
452
453	char cra_name[CRYPTO_MAX_ALG_NAME];
454	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
455
456	const struct crypto_type *cra_type;
457
458	union {
459		struct ablkcipher_alg ablkcipher;
460		struct blkcipher_alg blkcipher;
461		struct cipher_alg cipher;
462		struct compress_alg compress;
463	} cra_u;
464
465	int (*cra_init)(struct crypto_tfm *tfm);
466	void (*cra_exit)(struct crypto_tfm *tfm);
467	void (*cra_destroy)(struct crypto_alg *alg);
468
469	struct module *cra_module;
470} CRYPTO_MINALIGN_ATTR;
471
472/*
473 * Algorithm registration interface.
474 */
475int crypto_register_alg(struct crypto_alg *alg);
476int crypto_unregister_alg(struct crypto_alg *alg);
477int crypto_register_algs(struct crypto_alg *algs, int count);
478int crypto_unregister_algs(struct crypto_alg *algs, int count);
479
480/*
481 * Algorithm query interface.
482 */
483int crypto_has_alg(const char *name, u32 type, u32 mask);
484
485/*
486 * Transforms: user-instantiated objects which encapsulate algorithms
487 * and core processing logic.  Managed via crypto_alloc_*() and
488 * crypto_free_*(), as well as the various helpers below.
489 */
490
491struct ablkcipher_tfm {
492	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
493	              unsigned int keylen);
494	int (*encrypt)(struct ablkcipher_request *req);
495	int (*decrypt)(struct ablkcipher_request *req);
496	int (*givencrypt)(struct skcipher_givcrypt_request *req);
497	int (*givdecrypt)(struct skcipher_givcrypt_request *req);
498
499	struct crypto_ablkcipher *base;
500
501	unsigned int ivsize;
502	unsigned int reqsize;
503};
504
505struct blkcipher_tfm {
506	void *iv;
507	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
508		      unsigned int keylen);
509	int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
510		       struct scatterlist *src, unsigned int nbytes);
511	int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
512		       struct scatterlist *src, unsigned int nbytes);
513};
514
515struct cipher_tfm {
516	int (*cit_setkey)(struct crypto_tfm *tfm,
517	                  const u8 *key, unsigned int keylen);
518	void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
519	void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
520};
521
522struct hash_tfm {
523	int (*init)(struct hash_desc *desc);
524	int (*update)(struct hash_desc *desc,
525		      struct scatterlist *sg, unsigned int nsg);
526	int (*final)(struct hash_desc *desc, u8 *out);
527	int (*digest)(struct hash_desc *desc, struct scatterlist *sg,
528		      unsigned int nsg, u8 *out);
529	int (*setkey)(struct crypto_hash *tfm, const u8 *key,
530		      unsigned int keylen);
531	unsigned int digestsize;
532};
533
534struct compress_tfm {
535	int (*cot_compress)(struct crypto_tfm *tfm,
536	                    const u8 *src, unsigned int slen,
537	                    u8 *dst, unsigned int *dlen);
538	int (*cot_decompress)(struct crypto_tfm *tfm,
539	                      const u8 *src, unsigned int slen,
540	                      u8 *dst, unsigned int *dlen);
541};
542
543#define crt_ablkcipher	crt_u.ablkcipher
544#define crt_blkcipher	crt_u.blkcipher
545#define crt_cipher	crt_u.cipher
546#define crt_hash	crt_u.hash
547#define crt_compress	crt_u.compress
548
549struct crypto_tfm {
550
551	u32 crt_flags;
552
553	union {
554		struct ablkcipher_tfm ablkcipher;
555		struct blkcipher_tfm blkcipher;
556		struct cipher_tfm cipher;
557		struct hash_tfm hash;
558		struct compress_tfm compress;
559	} crt_u;
560
561	void (*exit)(struct crypto_tfm *tfm);
562
563	struct crypto_alg *__crt_alg;
564
565	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
566};
567
568struct crypto_ablkcipher {
569	struct crypto_tfm base;
570};
571
572struct crypto_blkcipher {
573	struct crypto_tfm base;
574};
575
576struct crypto_cipher {
577	struct crypto_tfm base;
578};
579
580struct crypto_comp {
581	struct crypto_tfm base;
582};
583
584struct crypto_hash {
585	struct crypto_tfm base;
586};
587
588enum {
589	CRYPTOA_UNSPEC,
590	CRYPTOA_ALG,
591	CRYPTOA_TYPE,
592	CRYPTOA_U32,
593	__CRYPTOA_MAX,
594};
595
596#define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
597
598/* Maximum number of (rtattr) parameters for each template. */
599#define CRYPTO_MAX_ATTRS 32
600
601struct crypto_attr_alg {
602	char name[CRYPTO_MAX_ALG_NAME];
603};
604
605struct crypto_attr_type {
606	u32 type;
607	u32 mask;
608};
609
610struct crypto_attr_u32 {
611	u32 num;
612};
613
614/*
615 * Transform user interface.
616 */
617
618struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
619void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
620
621static inline void crypto_free_tfm(struct crypto_tfm *tfm)
622{
623	return crypto_destroy_tfm(tfm, tfm);
624}
625
626int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
627
628/*
629 * Transform helpers which query the underlying algorithm.
630 */
631static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
632{
633	return tfm->__crt_alg->cra_name;
634}
635
636static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
637{
638	return tfm->__crt_alg->cra_driver_name;
639}
640
641static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
642{
643	return tfm->__crt_alg->cra_priority;
644}
645
646static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
647{
648	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
649}
650
651static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
652{
653	return tfm->__crt_alg->cra_blocksize;
654}
655
656static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
657{
658	return tfm->__crt_alg->cra_alignmask;
659}
660
661static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
662{
663	return tfm->crt_flags;
664}
665
666static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
667{
668	tfm->crt_flags |= flags;
669}
670
671static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
672{
673	tfm->crt_flags &= ~flags;
674}
675
676static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
677{
678	return tfm->__crt_ctx;
679}
680
681static inline unsigned int crypto_tfm_ctx_alignment(void)
682{
683	struct crypto_tfm *tfm;
684	return __alignof__(tfm->__crt_ctx);
685}
686
687/*
688 * API wrappers.
689 */
690static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
691	struct crypto_tfm *tfm)
692{
693	return (struct crypto_ablkcipher *)tfm;
694}
695
696static inline u32 crypto_skcipher_type(u32 type)
697{
698	type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
699	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
700	return type;
701}
702
703static inline u32 crypto_skcipher_mask(u32 mask)
704{
705	mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
706	mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
707	return mask;
708}
709
710/**
711 * DOC: Asynchronous Block Cipher API
712 *
713 * Asynchronous block cipher API is used with the ciphers of type
714 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
715 *
716 * Asynchronous cipher operations imply that the function invocation for a
717 * cipher request returns immediately before the completion of the operation.
718 * The cipher request is scheduled as a separate kernel thread and therefore
719 * load-balanced on the different CPUs via the process scheduler. To allow
720 * the kernel crypto API to inform the caller about the completion of a cipher
721 * request, the caller must provide a callback function. That function is
722 * invoked with the cipher handle when the request completes.
723 *
724 * To support the asynchronous operation, additional information than just the
725 * cipher handle must be supplied to the kernel crypto API. That additional
726 * information is given by filling in the ablkcipher_request data structure.
727 *
728 * For the asynchronous block cipher API, the state is maintained with the tfm
729 * cipher handle. A single tfm can be used across multiple calls and in
730 * parallel. For asynchronous block cipher calls, context data supplied and
731 * only used by the caller can be referenced the request data structure in
732 * addition to the IV used for the cipher request. The maintenance of such
733 * state information would be important for a crypto driver implementer to
734 * have, because when calling the callback function upon completion of the
735 * cipher operation, that callback function may need some information about
736 * which operation just finished if it invoked multiple in parallel. This
737 * state information is unused by the kernel crypto API.
738 */
739
740/**
741 * crypto_alloc_ablkcipher() - allocate asynchronous block cipher handle
742 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
743 *	      ablkcipher cipher
744 * @type: specifies the type of the cipher
745 * @mask: specifies the mask for the cipher
746 *
747 * Allocate a cipher handle for an ablkcipher. The returned struct
748 * crypto_ablkcipher is the cipher handle that is required for any subsequent
749 * API invocation for that ablkcipher.
750 *
751 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
752 *	   of an error, PTR_ERR() returns the error code.
753 */
754struct crypto_ablkcipher *crypto_alloc_ablkcipher(const char *alg_name,
755						  u32 type, u32 mask);
756
757static inline struct crypto_tfm *crypto_ablkcipher_tfm(
758	struct crypto_ablkcipher *tfm)
759{
760	return &tfm->base;
761}
762
763/**
764 * crypto_free_ablkcipher() - zeroize and free cipher handle
765 * @tfm: cipher handle to be freed
766 */
767static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
768{
769	crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
770}
771
772/**
773 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
774 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
775 *	      ablkcipher
776 * @type: specifies the type of the cipher
777 * @mask: specifies the mask for the cipher
778 *
779 * Return: true when the ablkcipher is known to the kernel crypto API; false
780 *	   otherwise
781 */
782static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
783					u32 mask)
784{
785	return crypto_has_alg(alg_name, crypto_skcipher_type(type),
786			      crypto_skcipher_mask(mask));
787}
788
789static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
790	struct crypto_ablkcipher *tfm)
791{
792	return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
793}
794
795/**
796 * crypto_ablkcipher_ivsize() - obtain IV size
797 * @tfm: cipher handle
798 *
799 * The size of the IV for the ablkcipher referenced by the cipher handle is
800 * returned. This IV size may be zero if the cipher does not need an IV.
801 *
802 * Return: IV size in bytes
803 */
804static inline unsigned int crypto_ablkcipher_ivsize(
805	struct crypto_ablkcipher *tfm)
806{
807	return crypto_ablkcipher_crt(tfm)->ivsize;
808}
809
810/**
811 * crypto_ablkcipher_blocksize() - obtain block size of cipher
812 * @tfm: cipher handle
813 *
814 * The block size for the ablkcipher referenced with the cipher handle is
815 * returned. The caller may use that information to allocate appropriate
816 * memory for the data returned by the encryption or decryption operation
817 *
818 * Return: block size of cipher
819 */
820static inline unsigned int crypto_ablkcipher_blocksize(
821	struct crypto_ablkcipher *tfm)
822{
823	return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
824}
825
826static inline unsigned int crypto_ablkcipher_alignmask(
827	struct crypto_ablkcipher *tfm)
828{
829	return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
830}
831
832static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
833{
834	return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
835}
836
837static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
838					       u32 flags)
839{
840	crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
841}
842
843static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
844						 u32 flags)
845{
846	crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
847}
848
849/**
850 * crypto_ablkcipher_setkey() - set key for cipher
851 * @tfm: cipher handle
852 * @key: buffer holding the key
853 * @keylen: length of the key in bytes
854 *
855 * The caller provided key is set for the ablkcipher referenced by the cipher
856 * handle.
857 *
858 * Note, the key length determines the cipher type. Many block ciphers implement
859 * different cipher modes depending on the key size, such as AES-128 vs AES-192
860 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
861 * is performed.
862 *
863 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
864 */
865static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
866					   const u8 *key, unsigned int keylen)
867{
868	struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
869
870	return crt->setkey(crt->base, key, keylen);
871}
872
873/**
874 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
875 * @req: ablkcipher_request out of which the cipher handle is to be obtained
876 *
877 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
878 * data structure.
879 *
880 * Return: crypto_ablkcipher handle
881 */
882static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
883	struct ablkcipher_request *req)
884{
885	return __crypto_ablkcipher_cast(req->base.tfm);
886}
887
888/**
889 * crypto_ablkcipher_encrypt() - encrypt plaintext
890 * @req: reference to the ablkcipher_request handle that holds all information
891 *	 needed to perform the cipher operation
892 *
893 * Encrypt plaintext data using the ablkcipher_request handle. That data
894 * structure and how it is filled with data is discussed with the
895 * ablkcipher_request_* functions.
896 *
897 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
898 */
899static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
900{
901	struct ablkcipher_tfm *crt =
902		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
903	return crt->encrypt(req);
904}
905
906/**
907 * crypto_ablkcipher_decrypt() - decrypt ciphertext
908 * @req: reference to the ablkcipher_request handle that holds all information
909 *	 needed to perform the cipher operation
910 *
911 * Decrypt ciphertext data using the ablkcipher_request handle. That data
912 * structure and how it is filled with data is discussed with the
913 * ablkcipher_request_* functions.
914 *
915 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
916 */
917static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
918{
919	struct ablkcipher_tfm *crt =
920		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
921	return crt->decrypt(req);
922}
923
924/**
925 * DOC: Asynchronous Cipher Request Handle
926 *
927 * The ablkcipher_request data structure contains all pointers to data
928 * required for the asynchronous cipher operation. This includes the cipher
929 * handle (which can be used by multiple ablkcipher_request instances), pointer
930 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
931 * as a handle to the ablkcipher_request_* API calls in a similar way as
932 * ablkcipher handle to the crypto_ablkcipher_* API calls.
933 */
934
935/**
936 * crypto_ablkcipher_reqsize() - obtain size of the request data structure
937 * @tfm: cipher handle
938 *
939 * Return: number of bytes
940 */
941static inline unsigned int crypto_ablkcipher_reqsize(
942	struct crypto_ablkcipher *tfm)
943{
944	return crypto_ablkcipher_crt(tfm)->reqsize;
945}
946
947/**
948 * ablkcipher_request_set_tfm() - update cipher handle reference in request
949 * @req: request handle to be modified
950 * @tfm: cipher handle that shall be added to the request handle
951 *
952 * Allow the caller to replace the existing ablkcipher handle in the request
953 * data structure with a different one.
954 */
955static inline void ablkcipher_request_set_tfm(
956	struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
957{
958	req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
959}
960
961static inline struct ablkcipher_request *ablkcipher_request_cast(
962	struct crypto_async_request *req)
963{
964	return container_of(req, struct ablkcipher_request, base);
965}
966
967/**
968 * ablkcipher_request_alloc() - allocate request data structure
969 * @tfm: cipher handle to be registered with the request
970 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
971 *
972 * Allocate the request data structure that must be used with the ablkcipher
973 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
974 * handle is registered in the request data structure.
975 *
976 * Return: allocated request handle in case of success; IS_ERR() is true in case
977 *	   of an error, PTR_ERR() returns the error code.
978 */
979static inline struct ablkcipher_request *ablkcipher_request_alloc(
980	struct crypto_ablkcipher *tfm, gfp_t gfp)
981{
982	struct ablkcipher_request *req;
983
984	req = kmalloc(sizeof(struct ablkcipher_request) +
985		      crypto_ablkcipher_reqsize(tfm), gfp);
986
987	if (likely(req))
988		ablkcipher_request_set_tfm(req, tfm);
989
990	return req;
991}
992
993/**
994 * ablkcipher_request_free() - zeroize and free request data structure
995 * @req: request data structure cipher handle to be freed
996 */
997static inline void ablkcipher_request_free(struct ablkcipher_request *req)
998{
999	kzfree(req);
1000}
1001
1002/**
1003 * ablkcipher_request_set_callback() - set asynchronous callback function
1004 * @req: request handle
1005 * @flags: specify zero or an ORing of the flags
1006 *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1007 *	   increase the wait queue beyond the initial maximum size;
1008 *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1009 * @compl: callback function pointer to be registered with the request handle
1010 * @data: The data pointer refers to memory that is not used by the kernel
1011 *	  crypto API, but provided to the callback function for it to use. Here,
1012 *	  the caller can provide a reference to memory the callback function can
1013 *	  operate on. As the callback function is invoked asynchronously to the
1014 *	  related functionality, it may need to access data structures of the
1015 *	  related functionality which can be referenced using this pointer. The
1016 *	  callback function can access the memory via the "data" field in the
1017 *	  crypto_async_request data structure provided to the callback function.
1018 *
1019 * This function allows setting the callback function that is triggered once the
1020 * cipher operation completes.
1021 *
1022 * The callback function is registered with the ablkcipher_request handle and
1023 * must comply with the following template
1024 *
1025 *	void callback_function(struct crypto_async_request *req, int error)
1026 */
1027static inline void ablkcipher_request_set_callback(
1028	struct ablkcipher_request *req,
1029	u32 flags, crypto_completion_t compl, void *data)
1030{
1031	req->base.complete = compl;
1032	req->base.data = data;
1033	req->base.flags = flags;
1034}
1035
1036/**
1037 * ablkcipher_request_set_crypt() - set data buffers
1038 * @req: request handle
1039 * @src: source scatter / gather list
1040 * @dst: destination scatter / gather list
1041 * @nbytes: number of bytes to process from @src
1042 * @iv: IV for the cipher operation which must comply with the IV size defined
1043 *      by crypto_ablkcipher_ivsize
1044 *
1045 * This function allows setting of the source data and destination data
1046 * scatter / gather lists.
1047 *
1048 * For encryption, the source is treated as the plaintext and the
1049 * destination is the ciphertext. For a decryption operation, the use is
1050 * reversed - the source is the ciphertext and the destination is the plaintext.
1051 */
1052static inline void ablkcipher_request_set_crypt(
1053	struct ablkcipher_request *req,
1054	struct scatterlist *src, struct scatterlist *dst,
1055	unsigned int nbytes, void *iv)
1056{
1057	req->src = src;
1058	req->dst = dst;
1059	req->nbytes = nbytes;
1060	req->info = iv;
1061}
1062
1063/**
1064 * DOC: Synchronous Block Cipher API
1065 *
1066 * The synchronous block cipher API is used with the ciphers of type
1067 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1068 *
1069 * Synchronous calls, have a context in the tfm. But since a single tfm can be
1070 * used in multiple calls and in parallel, this info should not be changeable
1071 * (unless a lock is used). This applies, for example, to the symmetric key.
1072 * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1073 * structure for synchronous blkcipher api. So, its the only state info that can
1074 * be kept for synchronous calls without using a big lock across a tfm.
1075 *
1076 * The block cipher API allows the use of a complete cipher, i.e. a cipher
1077 * consisting of a template (a block chaining mode) and a single block cipher
1078 * primitive (e.g. AES).
1079 *
1080 * The plaintext data buffer and the ciphertext data buffer are pointed to
1081 * by using scatter/gather lists. The cipher operation is performed
1082 * on all segments of the provided scatter/gather lists.
1083 *
1084 * The kernel crypto API supports a cipher operation "in-place" which means that
1085 * the caller may provide the same scatter/gather list for the plaintext and
1086 * cipher text. After the completion of the cipher operation, the plaintext
1087 * data is replaced with the ciphertext data in case of an encryption and vice
1088 * versa for a decryption. The caller must ensure that the scatter/gather lists
1089 * for the output data point to sufficiently large buffers, i.e. multiples of
1090 * the block size of the cipher.
1091 */
1092
1093static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1094	struct crypto_tfm *tfm)
1095{
1096	return (struct crypto_blkcipher *)tfm;
1097}
1098
1099static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1100	struct crypto_tfm *tfm)
1101{
1102	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1103	return __crypto_blkcipher_cast(tfm);
1104}
1105
1106/**
1107 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1108 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1109 *	      blkcipher cipher
1110 * @type: specifies the type of the cipher
1111 * @mask: specifies the mask for the cipher
1112 *
1113 * Allocate a cipher handle for a block cipher. The returned struct
1114 * crypto_blkcipher is the cipher handle that is required for any subsequent
1115 * API invocation for that block cipher.
1116 *
1117 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1118 *	   of an error, PTR_ERR() returns the error code.
1119 */
1120static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1121	const char *alg_name, u32 type, u32 mask)
1122{
1123	type &= ~CRYPTO_ALG_TYPE_MASK;
1124	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1125	mask |= CRYPTO_ALG_TYPE_MASK;
1126
1127	return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1128}
1129
1130static inline struct crypto_tfm *crypto_blkcipher_tfm(
1131	struct crypto_blkcipher *tfm)
1132{
1133	return &tfm->base;
1134}
1135
1136/**
1137 * crypto_free_blkcipher() - zeroize and free the block cipher handle
1138 * @tfm: cipher handle to be freed
1139 */
1140static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1141{
1142	crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1143}
1144
1145/**
1146 * crypto_has_blkcipher() - Search for the availability of a block cipher
1147 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1148 *	      block cipher
1149 * @type: specifies the type of the cipher
1150 * @mask: specifies the mask for the cipher
1151 *
1152 * Return: true when the block cipher is known to the kernel crypto API; false
1153 *	   otherwise
1154 */
1155static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1156{
1157	type &= ~CRYPTO_ALG_TYPE_MASK;
1158	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1159	mask |= CRYPTO_ALG_TYPE_MASK;
1160
1161	return crypto_has_alg(alg_name, type, mask);
1162}
1163
1164/**
1165 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1166 * @tfm: cipher handle
1167 *
1168 * Return: The character string holding the name of the cipher
1169 */
1170static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1171{
1172	return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1173}
1174
1175static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1176	struct crypto_blkcipher *tfm)
1177{
1178	return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1179}
1180
1181static inline struct blkcipher_alg *crypto_blkcipher_alg(
1182	struct crypto_blkcipher *tfm)
1183{
1184	return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1185}
1186
1187/**
1188 * crypto_blkcipher_ivsize() - obtain IV size
1189 * @tfm: cipher handle
1190 *
1191 * The size of the IV for the block cipher referenced by the cipher handle is
1192 * returned. This IV size may be zero if the cipher does not need an IV.
1193 *
1194 * Return: IV size in bytes
1195 */
1196static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1197{
1198	return crypto_blkcipher_alg(tfm)->ivsize;
1199}
1200
1201/**
1202 * crypto_blkcipher_blocksize() - obtain block size of cipher
1203 * @tfm: cipher handle
1204 *
1205 * The block size for the block cipher referenced with the cipher handle is
1206 * returned. The caller may use that information to allocate appropriate
1207 * memory for the data returned by the encryption or decryption operation.
1208 *
1209 * Return: block size of cipher
1210 */
1211static inline unsigned int crypto_blkcipher_blocksize(
1212	struct crypto_blkcipher *tfm)
1213{
1214	return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1215}
1216
1217static inline unsigned int crypto_blkcipher_alignmask(
1218	struct crypto_blkcipher *tfm)
1219{
1220	return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1221}
1222
1223static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1224{
1225	return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1226}
1227
1228static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1229					      u32 flags)
1230{
1231	crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1232}
1233
1234static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1235						u32 flags)
1236{
1237	crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1238}
1239
1240/**
1241 * crypto_blkcipher_setkey() - set key for cipher
1242 * @tfm: cipher handle
1243 * @key: buffer holding the key
1244 * @keylen: length of the key in bytes
1245 *
1246 * The caller provided key is set for the block cipher referenced by the cipher
1247 * handle.
1248 *
1249 * Note, the key length determines the cipher type. Many block ciphers implement
1250 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1251 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1252 * is performed.
1253 *
1254 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1255 */
1256static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1257					  const u8 *key, unsigned int keylen)
1258{
1259	return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1260						 key, keylen);
1261}
1262
1263/**
1264 * crypto_blkcipher_encrypt() - encrypt plaintext
1265 * @desc: reference to the block cipher handle with meta data
1266 * @dst: scatter/gather list that is filled by the cipher operation with the
1267 *	ciphertext
1268 * @src: scatter/gather list that holds the plaintext
1269 * @nbytes: number of bytes of the plaintext to encrypt.
1270 *
1271 * Encrypt plaintext data using the IV set by the caller with a preceding
1272 * call of crypto_blkcipher_set_iv.
1273 *
1274 * The blkcipher_desc data structure must be filled by the caller and can
1275 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1276 * with the block cipher handle; desc.flags is filled with either
1277 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1278 *
1279 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1280 */
1281static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1282					   struct scatterlist *dst,
1283					   struct scatterlist *src,
1284					   unsigned int nbytes)
1285{
1286	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1287	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1288}
1289
1290/**
1291 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1292 * @desc: reference to the block cipher handle with meta data
1293 * @dst: scatter/gather list that is filled by the cipher operation with the
1294 *	ciphertext
1295 * @src: scatter/gather list that holds the plaintext
1296 * @nbytes: number of bytes of the plaintext to encrypt.
1297 *
1298 * Encrypt plaintext data with the use of an IV that is solely used for this
1299 * cipher operation. Any previously set IV is not used.
1300 *
1301 * The blkcipher_desc data structure must be filled by the caller and can
1302 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1303 * with the block cipher handle; desc.info is filled with the IV to be used for
1304 * the current operation; desc.flags is filled with either
1305 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1306 *
1307 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1308 */
1309static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1310					      struct scatterlist *dst,
1311					      struct scatterlist *src,
1312					      unsigned int nbytes)
1313{
1314	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1315}
1316
1317/**
1318 * crypto_blkcipher_decrypt() - decrypt ciphertext
1319 * @desc: reference to the block cipher handle with meta data
1320 * @dst: scatter/gather list that is filled by the cipher operation with the
1321 *	plaintext
1322 * @src: scatter/gather list that holds the ciphertext
1323 * @nbytes: number of bytes of the ciphertext to decrypt.
1324 *
1325 * Decrypt ciphertext data using the IV set by the caller with a preceding
1326 * call of crypto_blkcipher_set_iv.
1327 *
1328 * The blkcipher_desc data structure must be filled by the caller as documented
1329 * for the crypto_blkcipher_encrypt call above.
1330 *
1331 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1332 *
1333 */
1334static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1335					   struct scatterlist *dst,
1336					   struct scatterlist *src,
1337					   unsigned int nbytes)
1338{
1339	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1340	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1341}
1342
1343/**
1344 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1345 * @desc: reference to the block cipher handle with meta data
1346 * @dst: scatter/gather list that is filled by the cipher operation with the
1347 *	plaintext
1348 * @src: scatter/gather list that holds the ciphertext
1349 * @nbytes: number of bytes of the ciphertext to decrypt.
1350 *
1351 * Decrypt ciphertext data with the use of an IV that is solely used for this
1352 * cipher operation. Any previously set IV is not used.
1353 *
1354 * The blkcipher_desc data structure must be filled by the caller as documented
1355 * for the crypto_blkcipher_encrypt_iv call above.
1356 *
1357 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1358 */
1359static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1360					      struct scatterlist *dst,
1361					      struct scatterlist *src,
1362					      unsigned int nbytes)
1363{
1364	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1365}
1366
1367/**
1368 * crypto_blkcipher_set_iv() - set IV for cipher
1369 * @tfm: cipher handle
1370 * @src: buffer holding the IV
1371 * @len: length of the IV in bytes
1372 *
1373 * The caller provided IV is set for the block cipher referenced by the cipher
1374 * handle.
1375 */
1376static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1377					   const u8 *src, unsigned int len)
1378{
1379	memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1380}
1381
1382/**
1383 * crypto_blkcipher_get_iv() - obtain IV from cipher
1384 * @tfm: cipher handle
1385 * @dst: buffer filled with the IV
1386 * @len: length of the buffer dst
1387 *
1388 * The caller can obtain the IV set for the block cipher referenced by the
1389 * cipher handle and store it into the user-provided buffer. If the buffer
1390 * has an insufficient space, the IV is truncated to fit the buffer.
1391 */
1392static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1393					   u8 *dst, unsigned int len)
1394{
1395	memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1396}
1397
1398/**
1399 * DOC: Single Block Cipher API
1400 *
1401 * The single block cipher API is used with the ciphers of type
1402 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1403 *
1404 * Using the single block cipher API calls, operations with the basic cipher
1405 * primitive can be implemented. These cipher primitives exclude any block
1406 * chaining operations including IV handling.
1407 *
1408 * The purpose of this single block cipher API is to support the implementation
1409 * of templates or other concepts that only need to perform the cipher operation
1410 * on one block at a time. Templates invoke the underlying cipher primitive
1411 * block-wise and process either the input or the output data of these cipher
1412 * operations.
1413 */
1414
1415static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1416{
1417	return (struct crypto_cipher *)tfm;
1418}
1419
1420static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1421{
1422	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1423	return __crypto_cipher_cast(tfm);
1424}
1425
1426/**
1427 * crypto_alloc_cipher() - allocate single block cipher handle
1428 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1429 *	     single block cipher
1430 * @type: specifies the type of the cipher
1431 * @mask: specifies the mask for the cipher
1432 *
1433 * Allocate a cipher handle for a single block cipher. The returned struct
1434 * crypto_cipher is the cipher handle that is required for any subsequent API
1435 * invocation for that single block cipher.
1436 *
1437 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1438 *	   of an error, PTR_ERR() returns the error code.
1439 */
1440static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1441							u32 type, u32 mask)
1442{
1443	type &= ~CRYPTO_ALG_TYPE_MASK;
1444	type |= CRYPTO_ALG_TYPE_CIPHER;
1445	mask |= CRYPTO_ALG_TYPE_MASK;
1446
1447	return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1448}
1449
1450static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1451{
1452	return &tfm->base;
1453}
1454
1455/**
1456 * crypto_free_cipher() - zeroize and free the single block cipher handle
1457 * @tfm: cipher handle to be freed
1458 */
1459static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1460{
1461	crypto_free_tfm(crypto_cipher_tfm(tfm));
1462}
1463
1464/**
1465 * crypto_has_cipher() - Search for the availability of a single block cipher
1466 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1467 *	     single block cipher
1468 * @type: specifies the type of the cipher
1469 * @mask: specifies the mask for the cipher
1470 *
1471 * Return: true when the single block cipher is known to the kernel crypto API;
1472 *	   false otherwise
1473 */
1474static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1475{
1476	type &= ~CRYPTO_ALG_TYPE_MASK;
1477	type |= CRYPTO_ALG_TYPE_CIPHER;
1478	mask |= CRYPTO_ALG_TYPE_MASK;
1479
1480	return crypto_has_alg(alg_name, type, mask);
1481}
1482
1483static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1484{
1485	return &crypto_cipher_tfm(tfm)->crt_cipher;
1486}
1487
1488/**
1489 * crypto_cipher_blocksize() - obtain block size for cipher
1490 * @tfm: cipher handle
1491 *
1492 * The block size for the single block cipher referenced with the cipher handle
1493 * tfm is returned. The caller may use that information to allocate appropriate
1494 * memory for the data returned by the encryption or decryption operation
1495 *
1496 * Return: block size of cipher
1497 */
1498static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1499{
1500	return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1501}
1502
1503static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1504{
1505	return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1506}
1507
1508static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1509{
1510	return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1511}
1512
1513static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1514					   u32 flags)
1515{
1516	crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1517}
1518
1519static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1520					     u32 flags)
1521{
1522	crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1523}
1524
1525/**
1526 * crypto_cipher_setkey() - set key for cipher
1527 * @tfm: cipher handle
1528 * @key: buffer holding the key
1529 * @keylen: length of the key in bytes
1530 *
1531 * The caller provided key is set for the single block cipher referenced by the
1532 * cipher handle.
1533 *
1534 * Note, the key length determines the cipher type. Many block ciphers implement
1535 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1536 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1537 * is performed.
1538 *
1539 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1540 */
1541static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1542                                       const u8 *key, unsigned int keylen)
1543{
1544	return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1545						  key, keylen);
1546}
1547
1548/**
1549 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1550 * @tfm: cipher handle
1551 * @dst: points to the buffer that will be filled with the ciphertext
1552 * @src: buffer holding the plaintext to be encrypted
1553 *
1554 * Invoke the encryption operation of one block. The caller must ensure that
1555 * the plaintext and ciphertext buffers are at least one block in size.
1556 */
1557static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1558					     u8 *dst, const u8 *src)
1559{
1560	crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1561						dst, src);
1562}
1563
1564/**
1565 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1566 * @tfm: cipher handle
1567 * @dst: points to the buffer that will be filled with the plaintext
1568 * @src: buffer holding the ciphertext to be decrypted
1569 *
1570 * Invoke the decryption operation of one block. The caller must ensure that
1571 * the plaintext and ciphertext buffers are at least one block in size.
1572 */
1573static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1574					     u8 *dst, const u8 *src)
1575{
1576	crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1577						dst, src);
1578}
1579
1580/**
1581 * DOC: Synchronous Message Digest API
1582 *
1583 * The synchronous message digest API is used with the ciphers of type
1584 * CRYPTO_ALG_TYPE_HASH (listed as type "hash" in /proc/crypto)
1585 */
1586
1587static inline struct crypto_hash *__crypto_hash_cast(struct crypto_tfm *tfm)
1588{
1589	return (struct crypto_hash *)tfm;
1590}
1591
1592static inline struct crypto_hash *crypto_hash_cast(struct crypto_tfm *tfm)
1593{
1594	BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_HASH) &
1595	       CRYPTO_ALG_TYPE_HASH_MASK);
1596	return __crypto_hash_cast(tfm);
1597}
1598
1599/**
1600 * crypto_alloc_hash() - allocate synchronous message digest handle
1601 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1602 *	      message digest cipher
1603 * @type: specifies the type of the cipher
1604 * @mask: specifies the mask for the cipher
1605 *
1606 * Allocate a cipher handle for a message digest. The returned struct
1607 * crypto_hash is the cipher handle that is required for any subsequent
1608 * API invocation for that message digest.
1609 *
1610 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1611 * of an error, PTR_ERR() returns the error code.
1612 */
1613static inline struct crypto_hash *crypto_alloc_hash(const char *alg_name,
1614						    u32 type, u32 mask)
1615{
1616	type &= ~CRYPTO_ALG_TYPE_MASK;
1617	mask &= ~CRYPTO_ALG_TYPE_MASK;
1618	type |= CRYPTO_ALG_TYPE_HASH;
1619	mask |= CRYPTO_ALG_TYPE_HASH_MASK;
1620
1621	return __crypto_hash_cast(crypto_alloc_base(alg_name, type, mask));
1622}
1623
1624static inline struct crypto_tfm *crypto_hash_tfm(struct crypto_hash *tfm)
1625{
1626	return &tfm->base;
1627}
1628
1629/**
1630 * crypto_free_hash() - zeroize and free message digest handle
1631 * @tfm: cipher handle to be freed
1632 */
1633static inline void crypto_free_hash(struct crypto_hash *tfm)
1634{
1635	crypto_free_tfm(crypto_hash_tfm(tfm));
1636}
1637
1638/**
1639 * crypto_has_hash() - Search for the availability of a message digest
1640 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1641 *	      message digest cipher
1642 * @type: specifies the type of the cipher
1643 * @mask: specifies the mask for the cipher
1644 *
1645 * Return: true when the message digest cipher is known to the kernel crypto
1646 *	   API; false otherwise
1647 */
1648static inline int crypto_has_hash(const char *alg_name, u32 type, u32 mask)
1649{
1650	type &= ~CRYPTO_ALG_TYPE_MASK;
1651	mask &= ~CRYPTO_ALG_TYPE_MASK;
1652	type |= CRYPTO_ALG_TYPE_HASH;
1653	mask |= CRYPTO_ALG_TYPE_HASH_MASK;
1654
1655	return crypto_has_alg(alg_name, type, mask);
1656}
1657
1658static inline struct hash_tfm *crypto_hash_crt(struct crypto_hash *tfm)
1659{
1660	return &crypto_hash_tfm(tfm)->crt_hash;
1661}
1662
1663/**
1664 * crypto_hash_blocksize() - obtain block size for message digest
1665 * @tfm: cipher handle
1666 *
1667 * The block size for the message digest cipher referenced with the cipher
1668 * handle is returned.
1669 *
1670 * Return: block size of cipher
1671 */
1672static inline unsigned int crypto_hash_blocksize(struct crypto_hash *tfm)
1673{
1674	return crypto_tfm_alg_blocksize(crypto_hash_tfm(tfm));
1675}
1676
1677static inline unsigned int crypto_hash_alignmask(struct crypto_hash *tfm)
1678{
1679	return crypto_tfm_alg_alignmask(crypto_hash_tfm(tfm));
1680}
1681
1682/**
1683 * crypto_hash_digestsize() - obtain message digest size
1684 * @tfm: cipher handle
1685 *
1686 * The size for the message digest created by the message digest cipher
1687 * referenced with the cipher handle is returned.
1688 *
1689 * Return: message digest size
1690 */
1691static inline unsigned int crypto_hash_digestsize(struct crypto_hash *tfm)
1692{
1693	return crypto_hash_crt(tfm)->digestsize;
1694}
1695
1696static inline u32 crypto_hash_get_flags(struct crypto_hash *tfm)
1697{
1698	return crypto_tfm_get_flags(crypto_hash_tfm(tfm));
1699}
1700
1701static inline void crypto_hash_set_flags(struct crypto_hash *tfm, u32 flags)
1702{
1703	crypto_tfm_set_flags(crypto_hash_tfm(tfm), flags);
1704}
1705
1706static inline void crypto_hash_clear_flags(struct crypto_hash *tfm, u32 flags)
1707{
1708	crypto_tfm_clear_flags(crypto_hash_tfm(tfm), flags);
1709}
1710
1711/**
1712 * crypto_hash_init() - (re)initialize message digest handle
1713 * @desc: cipher request handle that to be filled by caller --
1714 *	  desc.tfm is filled with the hash cipher handle;
1715 *	  desc.flags is filled with either CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1716 *
1717 * The call (re-)initializes the message digest referenced by the hash cipher
1718 * request handle. Any potentially existing state created by previous
1719 * operations is discarded.
1720 *
1721 * Return: 0 if the message digest initialization was successful; < 0 if an
1722 *	   error occurred
1723 */
1724static inline int crypto_hash_init(struct hash_desc *desc)
1725{
1726	return crypto_hash_crt(desc->tfm)->init(desc);
1727}
1728
1729/**
1730 * crypto_hash_update() - add data to message digest for processing
1731 * @desc: cipher request handle
1732 * @sg: scatter / gather list pointing to the data to be added to the message
1733 *      digest
1734 * @nbytes: number of bytes to be processed from @sg
1735 *
1736 * Updates the message digest state of the cipher handle pointed to by the
1737 * hash cipher request handle with the input data pointed to by the
1738 * scatter/gather list.
1739 *
1740 * Return: 0 if the message digest update was successful; < 0 if an error
1741 *	   occurred
1742 */
1743static inline int crypto_hash_update(struct hash_desc *desc,
1744				     struct scatterlist *sg,
1745				     unsigned int nbytes)
1746{
1747	return crypto_hash_crt(desc->tfm)->update(desc, sg, nbytes);
1748}
1749
1750/**
1751 * crypto_hash_final() - calculate message digest
1752 * @desc: cipher request handle
1753 * @out: message digest output buffer -- The caller must ensure that the out
1754 *	 buffer has a sufficient size (e.g. by using the crypto_hash_digestsize
1755 *	 function).
1756 *
1757 * Finalize the message digest operation and create the message digest
1758 * based on all data added to the cipher handle. The message digest is placed
1759 * into the output buffer.
1760 *
1761 * Return: 0 if the message digest creation was successful; < 0 if an error
1762 *	   occurred
1763 */
1764static inline int crypto_hash_final(struct hash_desc *desc, u8 *out)
1765{
1766	return crypto_hash_crt(desc->tfm)->final(desc, out);
1767}
1768
1769/**
1770 * crypto_hash_digest() - calculate message digest for a buffer
1771 * @desc: see crypto_hash_final()
1772 * @sg: see crypto_hash_update()
1773 * @nbytes:  see crypto_hash_update()
1774 * @out: see crypto_hash_final()
1775 *
1776 * This function is a "short-hand" for the function calls of crypto_hash_init,
1777 * crypto_hash_update and crypto_hash_final. The parameters have the same
1778 * meaning as discussed for those separate three functions.
1779 *
1780 * Return: 0 if the message digest creation was successful; < 0 if an error
1781 *	   occurred
1782 */
1783static inline int crypto_hash_digest(struct hash_desc *desc,
1784				     struct scatterlist *sg,
1785				     unsigned int nbytes, u8 *out)
1786{
1787	return crypto_hash_crt(desc->tfm)->digest(desc, sg, nbytes, out);
1788}
1789
1790/**
1791 * crypto_hash_setkey() - set key for message digest
1792 * @hash: cipher handle
1793 * @key: buffer holding the key
1794 * @keylen: length of the key in bytes
1795 *
1796 * The caller provided key is set for the message digest cipher. The cipher
1797 * handle must point to a keyed hash in order for this function to succeed.
1798 *
1799 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1800 */
1801static inline int crypto_hash_setkey(struct crypto_hash *hash,
1802				     const u8 *key, unsigned int keylen)
1803{
1804	return crypto_hash_crt(hash)->setkey(hash, key, keylen);
1805}
1806
1807static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1808{
1809	return (struct crypto_comp *)tfm;
1810}
1811
1812static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1813{
1814	BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1815	       CRYPTO_ALG_TYPE_MASK);
1816	return __crypto_comp_cast(tfm);
1817}
1818
1819static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1820						    u32 type, u32 mask)
1821{
1822	type &= ~CRYPTO_ALG_TYPE_MASK;
1823	type |= CRYPTO_ALG_TYPE_COMPRESS;
1824	mask |= CRYPTO_ALG_TYPE_MASK;
1825
1826	return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1827}
1828
1829static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1830{
1831	return &tfm->base;
1832}
1833
1834static inline void crypto_free_comp(struct crypto_comp *tfm)
1835{
1836	crypto_free_tfm(crypto_comp_tfm(tfm));
1837}
1838
1839static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1840{
1841	type &= ~CRYPTO_ALG_TYPE_MASK;
1842	type |= CRYPTO_ALG_TYPE_COMPRESS;
1843	mask |= CRYPTO_ALG_TYPE_MASK;
1844
1845	return crypto_has_alg(alg_name, type, mask);
1846}
1847
1848static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1849{
1850	return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1851}
1852
1853static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1854{
1855	return &crypto_comp_tfm(tfm)->crt_compress;
1856}
1857
1858static inline int crypto_comp_compress(struct crypto_comp *tfm,
1859                                       const u8 *src, unsigned int slen,
1860                                       u8 *dst, unsigned int *dlen)
1861{
1862	return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1863						  src, slen, dst, dlen);
1864}
1865
1866static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1867                                         const u8 *src, unsigned int slen,
1868                                         u8 *dst, unsigned int *dlen)
1869{
1870	return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1871						    src, slen, dst, dlen);
1872}
1873
1874#endif	/* _LINUX_CRYPTO_H */
1875
1876