1/*
2 * Hash: Hash algorithms under the crypto API
3 *
4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12
13#ifndef _CRYPTO_HASH_H
14#define _CRYPTO_HASH_H
15
16#include <linux/crypto.h>
17
18struct crypto_ahash;
19
20/**
21 * DOC: Message Digest Algorithm Definitions
22 *
23 * These data structures define modular message digest algorithm
24 * implementations, managed via crypto_register_ahash(),
25 * crypto_register_shash(), crypto_unregister_ahash() and
26 * crypto_unregister_shash().
27 */
28
29/**
30 * struct hash_alg_common - define properties of message digest
31 * @digestsize: Size of the result of the transformation. A buffer of this size
32 *	        must be available to the @final and @finup calls, so they can
33 *	        store the resulting hash into it. For various predefined sizes,
34 *	        search include/crypto/ using
35 *	        git grep _DIGEST_SIZE include/crypto.
36 * @statesize: Size of the block for partial state of the transformation. A
37 *	       buffer of this size must be passed to the @export function as it
38 *	       will save the partial state of the transformation into it. On the
39 *	       other side, the @import function will load the state from a
40 *	       buffer of this size as well.
41 * @base: Start of data structure of cipher algorithm. The common data
42 *	  structure of crypto_alg contains information common to all ciphers.
43 *	  The hash_alg_common data structure now adds the hash-specific
44 *	  information.
45 */
46struct hash_alg_common {
47	unsigned int digestsize;
48	unsigned int statesize;
49
50	struct crypto_alg base;
51};
52
53struct ahash_request {
54	struct crypto_async_request base;
55
56	unsigned int nbytes;
57	struct scatterlist *src;
58	u8 *result;
59
60	/* This field may only be used by the ahash API code. */
61	void *priv;
62
63	void *__ctx[] CRYPTO_MINALIGN_ATTR;
64};
65
66#define AHASH_REQUEST_ON_STACK(name, ahash) \
67	char __##name##_desc[sizeof(struct ahash_request) + \
68		crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
69	struct ahash_request *name = (void *)__##name##_desc
70
71/**
72 * struct ahash_alg - asynchronous message digest definition
73 * @init: Initialize the transformation context. Intended only to initialize the
74 *	  state of the HASH transformation at the beginning. This shall fill in
75 *	  the internal structures used during the entire duration of the whole
76 *	  transformation. No data processing happens at this point.
77 * @update: Push a chunk of data into the driver for transformation. This
78 *	   function actually pushes blocks of data from upper layers into the
79 *	   driver, which then passes those to the hardware as seen fit. This
80 *	   function must not finalize the HASH transformation by calculating the
81 *	   final message digest as this only adds more data into the
82 *	   transformation. This function shall not modify the transformation
83 *	   context, as this function may be called in parallel with the same
84 *	   transformation object. Data processing can happen synchronously
85 *	   [SHASH] or asynchronously [AHASH] at this point.
86 * @final: Retrieve result from the driver. This function finalizes the
87 *	   transformation and retrieves the resulting hash from the driver and
88 *	   pushes it back to upper layers. No data processing happens at this
89 *	   point.
90 * @finup: Combination of @update and @final. This function is effectively a
91 *	   combination of @update and @final calls issued in sequence. As some
92 *	   hardware cannot do @update and @final separately, this callback was
93 *	   added to allow such hardware to be used at least by IPsec. Data
94 *	   processing can happen synchronously [SHASH] or asynchronously [AHASH]
95 *	   at this point.
96 * @digest: Combination of @init and @update and @final. This function
97 *	    effectively behaves as the entire chain of operations, @init,
98 *	    @update and @final issued in sequence. Just like @finup, this was
99 *	    added for hardware which cannot do even the @finup, but can only do
100 *	    the whole transformation in one run. Data processing can happen
101 *	    synchronously [SHASH] or asynchronously [AHASH] at this point.
102 * @setkey: Set optional key used by the hashing algorithm. Intended to push
103 *	    optional key used by the hashing algorithm from upper layers into
104 *	    the driver. This function can store the key in the transformation
105 *	    context or can outright program it into the hardware. In the former
106 *	    case, one must be careful to program the key into the hardware at
107 *	    appropriate time and one must be careful that .setkey() can be
108 *	    called multiple times during the existence of the transformation
109 *	    object. Not  all hashing algorithms do implement this function as it
110 *	    is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
111 *	    implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
112 *	    this function. This function must be called before any other of the
113 *	    @init, @update, @final, @finup, @digest is called. No data
114 *	    processing happens at this point.
115 * @export: Export partial state of the transformation. This function dumps the
116 *	    entire state of the ongoing transformation into a provided block of
117 *	    data so it can be @import 'ed back later on. This is useful in case
118 *	    you want to save partial result of the transformation after
119 *	    processing certain amount of data and reload this partial result
120 *	    multiple times later on for multiple re-use. No data processing
121 *	    happens at this point.
122 * @import: Import partial state of the transformation. This function loads the
123 *	    entire state of the ongoing transformation from a provided block of
124 *	    data so the transformation can continue from this point onward. No
125 *	    data processing happens at this point.
126 * @halg: see struct hash_alg_common
127 */
128struct ahash_alg {
129	int (*init)(struct ahash_request *req);
130	int (*update)(struct ahash_request *req);
131	int (*final)(struct ahash_request *req);
132	int (*finup)(struct ahash_request *req);
133	int (*digest)(struct ahash_request *req);
134	int (*export)(struct ahash_request *req, void *out);
135	int (*import)(struct ahash_request *req, const void *in);
136	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
137		      unsigned int keylen);
138
139	struct hash_alg_common halg;
140};
141
142struct shash_desc {
143	struct crypto_shash *tfm;
144	u32 flags;
145
146	void *__ctx[] CRYPTO_MINALIGN_ATTR;
147};
148
149#define SHASH_DESC_ON_STACK(shash, ctx)				  \
150	char __##shash##_desc[sizeof(struct shash_desc) +	  \
151		crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \
152	struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
153
154/**
155 * struct shash_alg - synchronous message digest definition
156 * @init: see struct ahash_alg
157 * @update: see struct ahash_alg
158 * @final: see struct ahash_alg
159 * @finup: see struct ahash_alg
160 * @digest: see struct ahash_alg
161 * @export: see struct ahash_alg
162 * @import: see struct ahash_alg
163 * @setkey: see struct ahash_alg
164 * @digestsize: see struct ahash_alg
165 * @statesize: see struct ahash_alg
166 * @descsize: Size of the operational state for the message digest. This state
167 * 	      size is the memory size that needs to be allocated for
168 *	      shash_desc.__ctx
169 * @base: internally used
170 */
171struct shash_alg {
172	int (*init)(struct shash_desc *desc);
173	int (*update)(struct shash_desc *desc, const u8 *data,
174		      unsigned int len);
175	int (*final)(struct shash_desc *desc, u8 *out);
176	int (*finup)(struct shash_desc *desc, const u8 *data,
177		     unsigned int len, u8 *out);
178	int (*digest)(struct shash_desc *desc, const u8 *data,
179		      unsigned int len, u8 *out);
180	int (*export)(struct shash_desc *desc, void *out);
181	int (*import)(struct shash_desc *desc, const void *in);
182	int (*setkey)(struct crypto_shash *tfm, const u8 *key,
183		      unsigned int keylen);
184
185	unsigned int descsize;
186
187	/* These fields must match hash_alg_common. */
188	unsigned int digestsize
189		__attribute__ ((aligned(__alignof__(struct hash_alg_common))));
190	unsigned int statesize;
191
192	struct crypto_alg base;
193};
194
195struct crypto_ahash {
196	int (*init)(struct ahash_request *req);
197	int (*update)(struct ahash_request *req);
198	int (*final)(struct ahash_request *req);
199	int (*finup)(struct ahash_request *req);
200	int (*digest)(struct ahash_request *req);
201	int (*export)(struct ahash_request *req, void *out);
202	int (*import)(struct ahash_request *req, const void *in);
203	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
204		      unsigned int keylen);
205
206	unsigned int reqsize;
207	bool has_setkey;
208	struct crypto_tfm base;
209};
210
211struct crypto_shash {
212	unsigned int descsize;
213	struct crypto_tfm base;
214};
215
216/**
217 * DOC: Asynchronous Message Digest API
218 *
219 * The asynchronous message digest API is used with the ciphers of type
220 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
221 *
222 * The asynchronous cipher operation discussion provided for the
223 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
224 */
225
226static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
227{
228	return container_of(tfm, struct crypto_ahash, base);
229}
230
231/**
232 * crypto_alloc_ahash() - allocate ahash cipher handle
233 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
234 *	      ahash cipher
235 * @type: specifies the type of the cipher
236 * @mask: specifies the mask for the cipher
237 *
238 * Allocate a cipher handle for an ahash. The returned struct
239 * crypto_ahash is the cipher handle that is required for any subsequent
240 * API invocation for that ahash.
241 *
242 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
243 *	   of an error, PTR_ERR() returns the error code.
244 */
245struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
246					u32 mask);
247
248static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
249{
250	return &tfm->base;
251}
252
253/**
254 * crypto_free_ahash() - zeroize and free the ahash handle
255 * @tfm: cipher handle to be freed
256 */
257static inline void crypto_free_ahash(struct crypto_ahash *tfm)
258{
259	crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
260}
261
262static inline unsigned int crypto_ahash_alignmask(
263	struct crypto_ahash *tfm)
264{
265	return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
266}
267
268/**
269 * crypto_ahash_blocksize() - obtain block size for cipher
270 * @tfm: cipher handle
271 *
272 * The block size for the message digest cipher referenced with the cipher
273 * handle is returned.
274 *
275 * Return: block size of cipher
276 */
277static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
278{
279	return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
280}
281
282static inline struct hash_alg_common *__crypto_hash_alg_common(
283	struct crypto_alg *alg)
284{
285	return container_of(alg, struct hash_alg_common, base);
286}
287
288static inline struct hash_alg_common *crypto_hash_alg_common(
289	struct crypto_ahash *tfm)
290{
291	return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
292}
293
294/**
295 * crypto_ahash_digestsize() - obtain message digest size
296 * @tfm: cipher handle
297 *
298 * The size for the message digest created by the message digest cipher
299 * referenced with the cipher handle is returned.
300 *
301 *
302 * Return: message digest size of cipher
303 */
304static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
305{
306	return crypto_hash_alg_common(tfm)->digestsize;
307}
308
309static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
310{
311	return crypto_hash_alg_common(tfm)->statesize;
312}
313
314static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
315{
316	return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
317}
318
319static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
320{
321	crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
322}
323
324static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
325{
326	crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
327}
328
329/**
330 * crypto_ahash_reqtfm() - obtain cipher handle from request
331 * @req: asynchronous request handle that contains the reference to the ahash
332 *	 cipher handle
333 *
334 * Return the ahash cipher handle that is registered with the asynchronous
335 * request handle ahash_request.
336 *
337 * Return: ahash cipher handle
338 */
339static inline struct crypto_ahash *crypto_ahash_reqtfm(
340	struct ahash_request *req)
341{
342	return __crypto_ahash_cast(req->base.tfm);
343}
344
345/**
346 * crypto_ahash_reqsize() - obtain size of the request data structure
347 * @tfm: cipher handle
348 *
349 * Return the size of the ahash state size. With the crypto_ahash_export
350 * function, the caller can export the state into a buffer whose size is
351 * defined with this function.
352 *
353 * Return: size of the ahash state
354 */
355static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
356{
357	return tfm->reqsize;
358}
359
360static inline void *ahash_request_ctx(struct ahash_request *req)
361{
362	return req->__ctx;
363}
364
365/**
366 * crypto_ahash_setkey - set key for cipher handle
367 * @tfm: cipher handle
368 * @key: buffer holding the key
369 * @keylen: length of the key in bytes
370 *
371 * The caller provided key is set for the ahash cipher. The cipher
372 * handle must point to a keyed hash in order for this function to succeed.
373 *
374 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
375 */
376int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
377			unsigned int keylen);
378
379static inline bool crypto_ahash_has_setkey(struct crypto_ahash *tfm)
380{
381	return tfm->has_setkey;
382}
383
384/**
385 * crypto_ahash_finup() - update and finalize message digest
386 * @req: reference to the ahash_request handle that holds all information
387 *	 needed to perform the cipher operation
388 *
389 * This function is a "short-hand" for the function calls of
390 * crypto_ahash_update and crypto_shash_final. The parameters have the same
391 * meaning as discussed for those separate functions.
392 *
393 * Return: 0 if the message digest creation was successful; < 0 if an error
394 *	   occurred
395 */
396int crypto_ahash_finup(struct ahash_request *req);
397
398/**
399 * crypto_ahash_final() - calculate message digest
400 * @req: reference to the ahash_request handle that holds all information
401 *	 needed to perform the cipher operation
402 *
403 * Finalize the message digest operation and create the message digest
404 * based on all data added to the cipher handle. The message digest is placed
405 * into the output buffer registered with the ahash_request handle.
406 *
407 * Return: 0 if the message digest creation was successful; < 0 if an error
408 *	   occurred
409 */
410int crypto_ahash_final(struct ahash_request *req);
411
412/**
413 * crypto_ahash_digest() - calculate message digest for a buffer
414 * @req: reference to the ahash_request handle that holds all information
415 *	 needed to perform the cipher operation
416 *
417 * This function is a "short-hand" for the function calls of crypto_ahash_init,
418 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
419 * meaning as discussed for those separate three functions.
420 *
421 * Return: 0 if the message digest creation was successful; < 0 if an error
422 *	   occurred
423 */
424int crypto_ahash_digest(struct ahash_request *req);
425
426/**
427 * crypto_ahash_export() - extract current message digest state
428 * @req: reference to the ahash_request handle whose state is exported
429 * @out: output buffer of sufficient size that can hold the hash state
430 *
431 * This function exports the hash state of the ahash_request handle into the
432 * caller-allocated output buffer out which must have sufficient size (e.g. by
433 * calling crypto_ahash_reqsize).
434 *
435 * Return: 0 if the export was successful; < 0 if an error occurred
436 */
437static inline int crypto_ahash_export(struct ahash_request *req, void *out)
438{
439	return crypto_ahash_reqtfm(req)->export(req, out);
440}
441
442/**
443 * crypto_ahash_import() - import message digest state
444 * @req: reference to ahash_request handle the state is imported into
445 * @in: buffer holding the state
446 *
447 * This function imports the hash state into the ahash_request handle from the
448 * input buffer. That buffer should have been generated with the
449 * crypto_ahash_export function.
450 *
451 * Return: 0 if the import was successful; < 0 if an error occurred
452 */
453static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
454{
455	return crypto_ahash_reqtfm(req)->import(req, in);
456}
457
458/**
459 * crypto_ahash_init() - (re)initialize message digest handle
460 * @req: ahash_request handle that already is initialized with all necessary
461 *	 data using the ahash_request_* API functions
462 *
463 * The call (re-)initializes the message digest referenced by the ahash_request
464 * handle. Any potentially existing state created by previous operations is
465 * discarded.
466 *
467 * Return: 0 if the message digest initialization was successful; < 0 if an
468 *	   error occurred
469 */
470static inline int crypto_ahash_init(struct ahash_request *req)
471{
472	return crypto_ahash_reqtfm(req)->init(req);
473}
474
475/**
476 * crypto_ahash_update() - add data to message digest for processing
477 * @req: ahash_request handle that was previously initialized with the
478 *	 crypto_ahash_init call.
479 *
480 * Updates the message digest state of the &ahash_request handle. The input data
481 * is pointed to by the scatter/gather list registered in the &ahash_request
482 * handle
483 *
484 * Return: 0 if the message digest update was successful; < 0 if an error
485 *	   occurred
486 */
487static inline int crypto_ahash_update(struct ahash_request *req)
488{
489	return crypto_ahash_reqtfm(req)->update(req);
490}
491
492/**
493 * DOC: Asynchronous Hash Request Handle
494 *
495 * The &ahash_request data structure contains all pointers to data
496 * required for the asynchronous cipher operation. This includes the cipher
497 * handle (which can be used by multiple &ahash_request instances), pointer
498 * to plaintext and the message digest output buffer, asynchronous callback
499 * function, etc. It acts as a handle to the ahash_request_* API calls in a
500 * similar way as ahash handle to the crypto_ahash_* API calls.
501 */
502
503/**
504 * ahash_request_set_tfm() - update cipher handle reference in request
505 * @req: request handle to be modified
506 * @tfm: cipher handle that shall be added to the request handle
507 *
508 * Allow the caller to replace the existing ahash handle in the request
509 * data structure with a different one.
510 */
511static inline void ahash_request_set_tfm(struct ahash_request *req,
512					 struct crypto_ahash *tfm)
513{
514	req->base.tfm = crypto_ahash_tfm(tfm);
515}
516
517/**
518 * ahash_request_alloc() - allocate request data structure
519 * @tfm: cipher handle to be registered with the request
520 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
521 *
522 * Allocate the request data structure that must be used with the ahash
523 * message digest API calls. During
524 * the allocation, the provided ahash handle
525 * is registered in the request data structure.
526 *
527 * Return: allocated request handle in case of success; IS_ERR() is true in case
528 *	   of an error, PTR_ERR() returns the error code.
529 */
530static inline struct ahash_request *ahash_request_alloc(
531	struct crypto_ahash *tfm, gfp_t gfp)
532{
533	struct ahash_request *req;
534
535	req = kmalloc(sizeof(struct ahash_request) +
536		      crypto_ahash_reqsize(tfm), gfp);
537
538	if (likely(req))
539		ahash_request_set_tfm(req, tfm);
540
541	return req;
542}
543
544/**
545 * ahash_request_free() - zeroize and free the request data structure
546 * @req: request data structure cipher handle to be freed
547 */
548static inline void ahash_request_free(struct ahash_request *req)
549{
550	kzfree(req);
551}
552
553static inline struct ahash_request *ahash_request_cast(
554	struct crypto_async_request *req)
555{
556	return container_of(req, struct ahash_request, base);
557}
558
559/**
560 * ahash_request_set_callback() - set asynchronous callback function
561 * @req: request handle
562 * @flags: specify zero or an ORing of the flags
563 *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
564 *	   increase the wait queue beyond the initial maximum size;
565 *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
566 * @compl: callback function pointer to be registered with the request handle
567 * @data: The data pointer refers to memory that is not used by the kernel
568 *	  crypto API, but provided to the callback function for it to use. Here,
569 *	  the caller can provide a reference to memory the callback function can
570 *	  operate on. As the callback function is invoked asynchronously to the
571 *	  related functionality, it may need to access data structures of the
572 *	  related functionality which can be referenced using this pointer. The
573 *	  callback function can access the memory via the "data" field in the
574 *	  &crypto_async_request data structure provided to the callback function.
575 *
576 * This function allows setting the callback function that is triggered once
577 * the cipher operation completes.
578 *
579 * The callback function is registered with the &ahash_request handle and
580 * must comply with the following template
581 *
582 *	void callback_function(struct crypto_async_request *req, int error)
583 */
584static inline void ahash_request_set_callback(struct ahash_request *req,
585					      u32 flags,
586					      crypto_completion_t compl,
587					      void *data)
588{
589	req->base.complete = compl;
590	req->base.data = data;
591	req->base.flags = flags;
592}
593
594/**
595 * ahash_request_set_crypt() - set data buffers
596 * @req: ahash_request handle to be updated
597 * @src: source scatter/gather list
598 * @result: buffer that is filled with the message digest -- the caller must
599 *	    ensure that the buffer has sufficient space by, for example, calling
600 *	    crypto_ahash_digestsize()
601 * @nbytes: number of bytes to process from the source scatter/gather list
602 *
603 * By using this call, the caller references the source scatter/gather list.
604 * The source scatter/gather list points to the data the message digest is to
605 * be calculated for.
606 */
607static inline void ahash_request_set_crypt(struct ahash_request *req,
608					   struct scatterlist *src, u8 *result,
609					   unsigned int nbytes)
610{
611	req->src = src;
612	req->nbytes = nbytes;
613	req->result = result;
614}
615
616/**
617 * DOC: Synchronous Message Digest API
618 *
619 * The synchronous message digest API is used with the ciphers of type
620 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
621 *
622 * The message digest API is able to maintain state information for the
623 * caller.
624 *
625 * The synchronous message digest API can store user-related context in in its
626 * shash_desc request data structure.
627 */
628
629/**
630 * crypto_alloc_shash() - allocate message digest handle
631 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
632 *	      message digest cipher
633 * @type: specifies the type of the cipher
634 * @mask: specifies the mask for the cipher
635 *
636 * Allocate a cipher handle for a message digest. The returned &struct
637 * crypto_shash is the cipher handle that is required for any subsequent
638 * API invocation for that message digest.
639 *
640 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
641 *	   of an error, PTR_ERR() returns the error code.
642 */
643struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
644					u32 mask);
645
646static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
647{
648	return &tfm->base;
649}
650
651/**
652 * crypto_free_shash() - zeroize and free the message digest handle
653 * @tfm: cipher handle to be freed
654 */
655static inline void crypto_free_shash(struct crypto_shash *tfm)
656{
657	crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
658}
659
660static inline unsigned int crypto_shash_alignmask(
661	struct crypto_shash *tfm)
662{
663	return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
664}
665
666/**
667 * crypto_shash_blocksize() - obtain block size for cipher
668 * @tfm: cipher handle
669 *
670 * The block size for the message digest cipher referenced with the cipher
671 * handle is returned.
672 *
673 * Return: block size of cipher
674 */
675static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
676{
677	return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
678}
679
680static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
681{
682	return container_of(alg, struct shash_alg, base);
683}
684
685static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
686{
687	return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
688}
689
690/**
691 * crypto_shash_digestsize() - obtain message digest size
692 * @tfm: cipher handle
693 *
694 * The size for the message digest created by the message digest cipher
695 * referenced with the cipher handle is returned.
696 *
697 * Return: digest size of cipher
698 */
699static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
700{
701	return crypto_shash_alg(tfm)->digestsize;
702}
703
704static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
705{
706	return crypto_shash_alg(tfm)->statesize;
707}
708
709static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
710{
711	return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
712}
713
714static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
715{
716	crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
717}
718
719static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
720{
721	crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
722}
723
724/**
725 * crypto_shash_descsize() - obtain the operational state size
726 * @tfm: cipher handle
727 *
728 * The size of the operational state the cipher needs during operation is
729 * returned for the hash referenced with the cipher handle. This size is
730 * required to calculate the memory requirements to allow the caller allocating
731 * sufficient memory for operational state.
732 *
733 * The operational state is defined with struct shash_desc where the size of
734 * that data structure is to be calculated as
735 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
736 *
737 * Return: size of the operational state
738 */
739static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
740{
741	return tfm->descsize;
742}
743
744static inline void *shash_desc_ctx(struct shash_desc *desc)
745{
746	return desc->__ctx;
747}
748
749/**
750 * crypto_shash_setkey() - set key for message digest
751 * @tfm: cipher handle
752 * @key: buffer holding the key
753 * @keylen: length of the key in bytes
754 *
755 * The caller provided key is set for the keyed message digest cipher. The
756 * cipher handle must point to a keyed message digest cipher in order for this
757 * function to succeed.
758 *
759 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
760 */
761int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
762			unsigned int keylen);
763
764/**
765 * crypto_shash_digest() - calculate message digest for buffer
766 * @desc: see crypto_shash_final()
767 * @data: see crypto_shash_update()
768 * @len: see crypto_shash_update()
769 * @out: see crypto_shash_final()
770 *
771 * This function is a "short-hand" for the function calls of crypto_shash_init,
772 * crypto_shash_update and crypto_shash_final. The parameters have the same
773 * meaning as discussed for those separate three functions.
774 *
775 * Return: 0 if the message digest creation was successful; < 0 if an error
776 *	   occurred
777 */
778int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
779			unsigned int len, u8 *out);
780
781/**
782 * crypto_shash_export() - extract operational state for message digest
783 * @desc: reference to the operational state handle whose state is exported
784 * @out: output buffer of sufficient size that can hold the hash state
785 *
786 * This function exports the hash state of the operational state handle into the
787 * caller-allocated output buffer out which must have sufficient size (e.g. by
788 * calling crypto_shash_descsize).
789 *
790 * Return: 0 if the export creation was successful; < 0 if an error occurred
791 */
792static inline int crypto_shash_export(struct shash_desc *desc, void *out)
793{
794	return crypto_shash_alg(desc->tfm)->export(desc, out);
795}
796
797/**
798 * crypto_shash_import() - import operational state
799 * @desc: reference to the operational state handle the state imported into
800 * @in: buffer holding the state
801 *
802 * This function imports the hash state into the operational state handle from
803 * the input buffer. That buffer should have been generated with the
804 * crypto_ahash_export function.
805 *
806 * Return: 0 if the import was successful; < 0 if an error occurred
807 */
808static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
809{
810	return crypto_shash_alg(desc->tfm)->import(desc, in);
811}
812
813/**
814 * crypto_shash_init() - (re)initialize message digest
815 * @desc: operational state handle that is already filled
816 *
817 * The call (re-)initializes the message digest referenced by the
818 * operational state handle. Any potentially existing state created by
819 * previous operations is discarded.
820 *
821 * Return: 0 if the message digest initialization was successful; < 0 if an
822 *	   error occurred
823 */
824static inline int crypto_shash_init(struct shash_desc *desc)
825{
826	return crypto_shash_alg(desc->tfm)->init(desc);
827}
828
829/**
830 * crypto_shash_update() - add data to message digest for processing
831 * @desc: operational state handle that is already initialized
832 * @data: input data to be added to the message digest
833 * @len: length of the input data
834 *
835 * Updates the message digest state of the operational state handle.
836 *
837 * Return: 0 if the message digest update was successful; < 0 if an error
838 *	   occurred
839 */
840int crypto_shash_update(struct shash_desc *desc, const u8 *data,
841			unsigned int len);
842
843/**
844 * crypto_shash_final() - calculate message digest
845 * @desc: operational state handle that is already filled with data
846 * @out: output buffer filled with the message digest
847 *
848 * Finalize the message digest operation and create the message digest
849 * based on all data added to the cipher handle. The message digest is placed
850 * into the output buffer. The caller must ensure that the output buffer is
851 * large enough by using crypto_shash_digestsize.
852 *
853 * Return: 0 if the message digest creation was successful; < 0 if an error
854 *	   occurred
855 */
856int crypto_shash_final(struct shash_desc *desc, u8 *out);
857
858/**
859 * crypto_shash_finup() - calculate message digest of buffer
860 * @desc: see crypto_shash_final()
861 * @data: see crypto_shash_update()
862 * @len: see crypto_shash_update()
863 * @out: see crypto_shash_final()
864 *
865 * This function is a "short-hand" for the function calls of
866 * crypto_shash_update and crypto_shash_final. The parameters have the same
867 * meaning as discussed for those separate functions.
868 *
869 * Return: 0 if the message digest creation was successful; < 0 if an error
870 *	   occurred
871 */
872int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
873		       unsigned int len, u8 *out);
874
875#endif	/* _CRYPTO_HASH_H */
876