1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
23#include "xfs_mount.h"
24#include "xfs_inode.h"
25#include "xfs_trans.h"
26#include "xfs_inode_item.h"
27#include "xfs_error.h"
28#include "xfs_trace.h"
29#include "xfs_trans_priv.h"
30#include "xfs_log.h"
31
32
33kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
34
35static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
36{
37	return container_of(lip, struct xfs_inode_log_item, ili_item);
38}
39
40STATIC void
41xfs_inode_item_data_fork_size(
42	struct xfs_inode_log_item *iip,
43	int			*nvecs,
44	int			*nbytes)
45{
46	struct xfs_inode	*ip = iip->ili_inode;
47
48	switch (ip->i_d.di_format) {
49	case XFS_DINODE_FMT_EXTENTS:
50		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
51		    ip->i_d.di_nextents > 0 &&
52		    ip->i_df.if_bytes > 0) {
53			/* worst case, doesn't subtract delalloc extents */
54			*nbytes += XFS_IFORK_DSIZE(ip);
55			*nvecs += 1;
56		}
57		break;
58	case XFS_DINODE_FMT_BTREE:
59		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
60		    ip->i_df.if_broot_bytes > 0) {
61			*nbytes += ip->i_df.if_broot_bytes;
62			*nvecs += 1;
63		}
64		break;
65	case XFS_DINODE_FMT_LOCAL:
66		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
67		    ip->i_df.if_bytes > 0) {
68			*nbytes += roundup(ip->i_df.if_bytes, 4);
69			*nvecs += 1;
70		}
71		break;
72
73	case XFS_DINODE_FMT_DEV:
74	case XFS_DINODE_FMT_UUID:
75		break;
76	default:
77		ASSERT(0);
78		break;
79	}
80}
81
82STATIC void
83xfs_inode_item_attr_fork_size(
84	struct xfs_inode_log_item *iip,
85	int			*nvecs,
86	int			*nbytes)
87{
88	struct xfs_inode	*ip = iip->ili_inode;
89
90	switch (ip->i_d.di_aformat) {
91	case XFS_DINODE_FMT_EXTENTS:
92		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
93		    ip->i_d.di_anextents > 0 &&
94		    ip->i_afp->if_bytes > 0) {
95			/* worst case, doesn't subtract unused space */
96			*nbytes += XFS_IFORK_ASIZE(ip);
97			*nvecs += 1;
98		}
99		break;
100	case XFS_DINODE_FMT_BTREE:
101		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
102		    ip->i_afp->if_broot_bytes > 0) {
103			*nbytes += ip->i_afp->if_broot_bytes;
104			*nvecs += 1;
105		}
106		break;
107	case XFS_DINODE_FMT_LOCAL:
108		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
109		    ip->i_afp->if_bytes > 0) {
110			*nbytes += roundup(ip->i_afp->if_bytes, 4);
111			*nvecs += 1;
112		}
113		break;
114	default:
115		ASSERT(0);
116		break;
117	}
118}
119
120/*
121 * This returns the number of iovecs needed to log the given inode item.
122 *
123 * We need one iovec for the inode log format structure, one for the
124 * inode core, and possibly one for the inode data/extents/b-tree root
125 * and one for the inode attribute data/extents/b-tree root.
126 */
127STATIC void
128xfs_inode_item_size(
129	struct xfs_log_item	*lip,
130	int			*nvecs,
131	int			*nbytes)
132{
133	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
134	struct xfs_inode	*ip = iip->ili_inode;
135
136	*nvecs += 2;
137	*nbytes += sizeof(struct xfs_inode_log_format) +
138		   xfs_icdinode_size(ip->i_d.di_version);
139
140	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
141	if (XFS_IFORK_Q(ip))
142		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
143}
144
145STATIC void
146xfs_inode_item_format_data_fork(
147	struct xfs_inode_log_item *iip,
148	struct xfs_inode_log_format *ilf,
149	struct xfs_log_vec	*lv,
150	struct xfs_log_iovec	**vecp)
151{
152	struct xfs_inode	*ip = iip->ili_inode;
153	size_t			data_bytes;
154
155	switch (ip->i_d.di_format) {
156	case XFS_DINODE_FMT_EXTENTS:
157		iip->ili_fields &=
158			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
159			  XFS_ILOG_DEV | XFS_ILOG_UUID);
160
161		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
162		    ip->i_d.di_nextents > 0 &&
163		    ip->i_df.if_bytes > 0) {
164			struct xfs_bmbt_rec *p;
165
166			ASSERT(ip->i_df.if_u1.if_extents != NULL);
167			ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
168
169			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
170			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
171			xlog_finish_iovec(lv, *vecp, data_bytes);
172
173			ASSERT(data_bytes <= ip->i_df.if_bytes);
174
175			ilf->ilf_dsize = data_bytes;
176			ilf->ilf_size++;
177		} else {
178			iip->ili_fields &= ~XFS_ILOG_DEXT;
179		}
180		break;
181	case XFS_DINODE_FMT_BTREE:
182		iip->ili_fields &=
183			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
184			  XFS_ILOG_DEV | XFS_ILOG_UUID);
185
186		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
187		    ip->i_df.if_broot_bytes > 0) {
188			ASSERT(ip->i_df.if_broot != NULL);
189			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
190					ip->i_df.if_broot,
191					ip->i_df.if_broot_bytes);
192			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
193			ilf->ilf_size++;
194		} else {
195			ASSERT(!(iip->ili_fields &
196				 XFS_ILOG_DBROOT));
197			iip->ili_fields &= ~XFS_ILOG_DBROOT;
198		}
199		break;
200	case XFS_DINODE_FMT_LOCAL:
201		iip->ili_fields &=
202			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
203			  XFS_ILOG_DEV | XFS_ILOG_UUID);
204		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
205		    ip->i_df.if_bytes > 0) {
206			/*
207			 * Round i_bytes up to a word boundary.
208			 * The underlying memory is guaranteed to
209			 * to be there by xfs_idata_realloc().
210			 */
211			data_bytes = roundup(ip->i_df.if_bytes, 4);
212			ASSERT(ip->i_df.if_real_bytes == 0 ||
213			       ip->i_df.if_real_bytes == data_bytes);
214			ASSERT(ip->i_df.if_u1.if_data != NULL);
215			ASSERT(ip->i_d.di_size > 0);
216			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
217					ip->i_df.if_u1.if_data, data_bytes);
218			ilf->ilf_dsize = (unsigned)data_bytes;
219			ilf->ilf_size++;
220		} else {
221			iip->ili_fields &= ~XFS_ILOG_DDATA;
222		}
223		break;
224	case XFS_DINODE_FMT_DEV:
225		iip->ili_fields &=
226			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
227			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
228		if (iip->ili_fields & XFS_ILOG_DEV)
229			ilf->ilf_u.ilfu_rdev = ip->i_df.if_u2.if_rdev;
230		break;
231	case XFS_DINODE_FMT_UUID:
232		iip->ili_fields &=
233			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
234			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
235		if (iip->ili_fields & XFS_ILOG_UUID)
236			ilf->ilf_u.ilfu_uuid = ip->i_df.if_u2.if_uuid;
237		break;
238	default:
239		ASSERT(0);
240		break;
241	}
242}
243
244STATIC void
245xfs_inode_item_format_attr_fork(
246	struct xfs_inode_log_item *iip,
247	struct xfs_inode_log_format *ilf,
248	struct xfs_log_vec	*lv,
249	struct xfs_log_iovec	**vecp)
250{
251	struct xfs_inode	*ip = iip->ili_inode;
252	size_t			data_bytes;
253
254	switch (ip->i_d.di_aformat) {
255	case XFS_DINODE_FMT_EXTENTS:
256		iip->ili_fields &=
257			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
258
259		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
260		    ip->i_d.di_anextents > 0 &&
261		    ip->i_afp->if_bytes > 0) {
262			struct xfs_bmbt_rec *p;
263
264			ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
265				ip->i_d.di_anextents);
266			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
267
268			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
269			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
270			xlog_finish_iovec(lv, *vecp, data_bytes);
271
272			ilf->ilf_asize = data_bytes;
273			ilf->ilf_size++;
274		} else {
275			iip->ili_fields &= ~XFS_ILOG_AEXT;
276		}
277		break;
278	case XFS_DINODE_FMT_BTREE:
279		iip->ili_fields &=
280			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
281
282		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
283		    ip->i_afp->if_broot_bytes > 0) {
284			ASSERT(ip->i_afp->if_broot != NULL);
285
286			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
287					ip->i_afp->if_broot,
288					ip->i_afp->if_broot_bytes);
289			ilf->ilf_asize = ip->i_afp->if_broot_bytes;
290			ilf->ilf_size++;
291		} else {
292			iip->ili_fields &= ~XFS_ILOG_ABROOT;
293		}
294		break;
295	case XFS_DINODE_FMT_LOCAL:
296		iip->ili_fields &=
297			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
298
299		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
300		    ip->i_afp->if_bytes > 0) {
301			/*
302			 * Round i_bytes up to a word boundary.
303			 * The underlying memory is guaranteed to
304			 * to be there by xfs_idata_realloc().
305			 */
306			data_bytes = roundup(ip->i_afp->if_bytes, 4);
307			ASSERT(ip->i_afp->if_real_bytes == 0 ||
308			       ip->i_afp->if_real_bytes == data_bytes);
309			ASSERT(ip->i_afp->if_u1.if_data != NULL);
310			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
311					ip->i_afp->if_u1.if_data,
312					data_bytes);
313			ilf->ilf_asize = (unsigned)data_bytes;
314			ilf->ilf_size++;
315		} else {
316			iip->ili_fields &= ~XFS_ILOG_ADATA;
317		}
318		break;
319	default:
320		ASSERT(0);
321		break;
322	}
323}
324
325/*
326 * This is called to fill in the vector of log iovecs for the given inode
327 * log item.  It fills the first item with an inode log format structure,
328 * the second with the on-disk inode structure, and a possible third and/or
329 * fourth with the inode data/extents/b-tree root and inode attributes
330 * data/extents/b-tree root.
331 */
332STATIC void
333xfs_inode_item_format(
334	struct xfs_log_item	*lip,
335	struct xfs_log_vec	*lv)
336{
337	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
338	struct xfs_inode	*ip = iip->ili_inode;
339	struct xfs_inode_log_format *ilf;
340	struct xfs_log_iovec	*vecp = NULL;
341
342	ASSERT(ip->i_d.di_version > 1);
343
344	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
345	ilf->ilf_type = XFS_LI_INODE;
346	ilf->ilf_ino = ip->i_ino;
347	ilf->ilf_blkno = ip->i_imap.im_blkno;
348	ilf->ilf_len = ip->i_imap.im_len;
349	ilf->ilf_boffset = ip->i_imap.im_boffset;
350	ilf->ilf_fields = XFS_ILOG_CORE;
351	ilf->ilf_size = 2; /* format + core */
352	xlog_finish_iovec(lv, vecp, sizeof(struct xfs_inode_log_format));
353
354	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_ICORE,
355			&ip->i_d,
356			xfs_icdinode_size(ip->i_d.di_version));
357
358	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
359	if (XFS_IFORK_Q(ip)) {
360		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
361	} else {
362		iip->ili_fields &=
363			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
364	}
365
366	/* update the format with the exact fields we actually logged */
367	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
368}
369
370/*
371 * This is called to pin the inode associated with the inode log
372 * item in memory so it cannot be written out.
373 */
374STATIC void
375xfs_inode_item_pin(
376	struct xfs_log_item	*lip)
377{
378	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
379
380	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
381
382	trace_xfs_inode_pin(ip, _RET_IP_);
383	atomic_inc(&ip->i_pincount);
384}
385
386
387/*
388 * This is called to unpin the inode associated with the inode log
389 * item which was previously pinned with a call to xfs_inode_item_pin().
390 *
391 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
392 */
393STATIC void
394xfs_inode_item_unpin(
395	struct xfs_log_item	*lip,
396	int			remove)
397{
398	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
399
400	trace_xfs_inode_unpin(ip, _RET_IP_);
401	ASSERT(atomic_read(&ip->i_pincount) > 0);
402	if (atomic_dec_and_test(&ip->i_pincount))
403		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
404}
405
406STATIC uint
407xfs_inode_item_push(
408	struct xfs_log_item	*lip,
409	struct list_head	*buffer_list)
410{
411	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
412	struct xfs_inode	*ip = iip->ili_inode;
413	struct xfs_buf		*bp = NULL;
414	uint			rval = XFS_ITEM_SUCCESS;
415	int			error;
416
417	if (xfs_ipincount(ip) > 0)
418		return XFS_ITEM_PINNED;
419
420	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
421		return XFS_ITEM_LOCKED;
422
423	/*
424	 * Re-check the pincount now that we stabilized the value by
425	 * taking the ilock.
426	 */
427	if (xfs_ipincount(ip) > 0) {
428		rval = XFS_ITEM_PINNED;
429		goto out_unlock;
430	}
431
432	/*
433	 * Stale inode items should force out the iclog.
434	 */
435	if (ip->i_flags & XFS_ISTALE) {
436		rval = XFS_ITEM_PINNED;
437		goto out_unlock;
438	}
439
440	/*
441	 * Someone else is already flushing the inode.  Nothing we can do
442	 * here but wait for the flush to finish and remove the item from
443	 * the AIL.
444	 */
445	if (!xfs_iflock_nowait(ip)) {
446		rval = XFS_ITEM_FLUSHING;
447		goto out_unlock;
448	}
449
450	ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
451	ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
452
453	spin_unlock(&lip->li_ailp->xa_lock);
454
455	error = xfs_iflush(ip, &bp);
456	if (!error) {
457		if (!xfs_buf_delwri_queue(bp, buffer_list))
458			rval = XFS_ITEM_FLUSHING;
459		xfs_buf_relse(bp);
460	}
461
462	spin_lock(&lip->li_ailp->xa_lock);
463out_unlock:
464	xfs_iunlock(ip, XFS_ILOCK_SHARED);
465	return rval;
466}
467
468/*
469 * Unlock the inode associated with the inode log item.
470 * Clear the fields of the inode and inode log item that
471 * are specific to the current transaction.  If the
472 * hold flags is set, do not unlock the inode.
473 */
474STATIC void
475xfs_inode_item_unlock(
476	struct xfs_log_item	*lip)
477{
478	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
479	struct xfs_inode	*ip = iip->ili_inode;
480	unsigned short		lock_flags;
481
482	ASSERT(ip->i_itemp != NULL);
483	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
484
485	lock_flags = iip->ili_lock_flags;
486	iip->ili_lock_flags = 0;
487	if (lock_flags)
488		xfs_iunlock(ip, lock_flags);
489}
490
491/*
492 * This is called to find out where the oldest active copy of the inode log
493 * item in the on disk log resides now that the last log write of it completed
494 * at the given lsn.  Since we always re-log all dirty data in an inode, the
495 * latest copy in the on disk log is the only one that matters.  Therefore,
496 * simply return the given lsn.
497 *
498 * If the inode has been marked stale because the cluster is being freed, we
499 * don't want to (re-)insert this inode into the AIL. There is a race condition
500 * where the cluster buffer may be unpinned before the inode is inserted into
501 * the AIL during transaction committed processing. If the buffer is unpinned
502 * before the inode item has been committed and inserted, then it is possible
503 * for the buffer to be written and IO completes before the inode is inserted
504 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
505 * AIL which will never get removed. It will, however, get reclaimed which
506 * triggers an assert in xfs_inode_free() complaining about freein an inode
507 * still in the AIL.
508 *
509 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
510 * transaction committed code knows that it does not need to do any further
511 * processing on the item.
512 */
513STATIC xfs_lsn_t
514xfs_inode_item_committed(
515	struct xfs_log_item	*lip,
516	xfs_lsn_t		lsn)
517{
518	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
519	struct xfs_inode	*ip = iip->ili_inode;
520
521	if (xfs_iflags_test(ip, XFS_ISTALE)) {
522		xfs_inode_item_unpin(lip, 0);
523		return -1;
524	}
525	return lsn;
526}
527
528/*
529 * XXX rcc - this one really has to do something.  Probably needs
530 * to stamp in a new field in the incore inode.
531 */
532STATIC void
533xfs_inode_item_committing(
534	struct xfs_log_item	*lip,
535	xfs_lsn_t		lsn)
536{
537	INODE_ITEM(lip)->ili_last_lsn = lsn;
538}
539
540/*
541 * This is the ops vector shared by all buf log items.
542 */
543static const struct xfs_item_ops xfs_inode_item_ops = {
544	.iop_size	= xfs_inode_item_size,
545	.iop_format	= xfs_inode_item_format,
546	.iop_pin	= xfs_inode_item_pin,
547	.iop_unpin	= xfs_inode_item_unpin,
548	.iop_unlock	= xfs_inode_item_unlock,
549	.iop_committed	= xfs_inode_item_committed,
550	.iop_push	= xfs_inode_item_push,
551	.iop_committing = xfs_inode_item_committing
552};
553
554
555/*
556 * Initialize the inode log item for a newly allocated (in-core) inode.
557 */
558void
559xfs_inode_item_init(
560	struct xfs_inode	*ip,
561	struct xfs_mount	*mp)
562{
563	struct xfs_inode_log_item *iip;
564
565	ASSERT(ip->i_itemp == NULL);
566	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
567
568	iip->ili_inode = ip;
569	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
570						&xfs_inode_item_ops);
571}
572
573/*
574 * Free the inode log item and any memory hanging off of it.
575 */
576void
577xfs_inode_item_destroy(
578	xfs_inode_t	*ip)
579{
580	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
581}
582
583
584/*
585 * This is the inode flushing I/O completion routine.  It is called
586 * from interrupt level when the buffer containing the inode is
587 * flushed to disk.  It is responsible for removing the inode item
588 * from the AIL if it has not been re-logged, and unlocking the inode's
589 * flush lock.
590 *
591 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
592 * list for other inodes that will run this function. We remove them from the
593 * buffer list so we can process all the inode IO completions in one AIL lock
594 * traversal.
595 */
596void
597xfs_iflush_done(
598	struct xfs_buf		*bp,
599	struct xfs_log_item	*lip)
600{
601	struct xfs_inode_log_item *iip;
602	struct xfs_log_item	*blip;
603	struct xfs_log_item	*next;
604	struct xfs_log_item	*prev;
605	struct xfs_ail		*ailp = lip->li_ailp;
606	int			need_ail = 0;
607
608	/*
609	 * Scan the buffer IO completions for other inodes being completed and
610	 * attach them to the current inode log item.
611	 */
612	blip = bp->b_fspriv;
613	prev = NULL;
614	while (blip != NULL) {
615		if (blip->li_cb != xfs_iflush_done) {
616			prev = blip;
617			blip = blip->li_bio_list;
618			continue;
619		}
620
621		/* remove from list */
622		next = blip->li_bio_list;
623		if (!prev) {
624			bp->b_fspriv = next;
625		} else {
626			prev->li_bio_list = next;
627		}
628
629		/* add to current list */
630		blip->li_bio_list = lip->li_bio_list;
631		lip->li_bio_list = blip;
632
633		/*
634		 * while we have the item, do the unlocked check for needing
635		 * the AIL lock.
636		 */
637		iip = INODE_ITEM(blip);
638		if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
639			need_ail++;
640
641		blip = next;
642	}
643
644	/* make sure we capture the state of the initial inode. */
645	iip = INODE_ITEM(lip);
646	if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
647		need_ail++;
648
649	/*
650	 * We only want to pull the item from the AIL if it is
651	 * actually there and its location in the log has not
652	 * changed since we started the flush.  Thus, we only bother
653	 * if the ili_logged flag is set and the inode's lsn has not
654	 * changed.  First we check the lsn outside
655	 * the lock since it's cheaper, and then we recheck while
656	 * holding the lock before removing the inode from the AIL.
657	 */
658	if (need_ail) {
659		struct xfs_log_item *log_items[need_ail];
660		int i = 0;
661		spin_lock(&ailp->xa_lock);
662		for (blip = lip; blip; blip = blip->li_bio_list) {
663			iip = INODE_ITEM(blip);
664			if (iip->ili_logged &&
665			    blip->li_lsn == iip->ili_flush_lsn) {
666				log_items[i++] = blip;
667			}
668			ASSERT(i <= need_ail);
669		}
670		/* xfs_trans_ail_delete_bulk() drops the AIL lock. */
671		xfs_trans_ail_delete_bulk(ailp, log_items, i,
672					  SHUTDOWN_CORRUPT_INCORE);
673	}
674
675
676	/*
677	 * clean up and unlock the flush lock now we are done. We can clear the
678	 * ili_last_fields bits now that we know that the data corresponding to
679	 * them is safely on disk.
680	 */
681	for (blip = lip; blip; blip = next) {
682		next = blip->li_bio_list;
683		blip->li_bio_list = NULL;
684
685		iip = INODE_ITEM(blip);
686		iip->ili_logged = 0;
687		iip->ili_last_fields = 0;
688		xfs_ifunlock(iip->ili_inode);
689	}
690}
691
692/*
693 * This is the inode flushing abort routine.  It is called from xfs_iflush when
694 * the filesystem is shutting down to clean up the inode state.  It is
695 * responsible for removing the inode item from the AIL if it has not been
696 * re-logged, and unlocking the inode's flush lock.
697 */
698void
699xfs_iflush_abort(
700	xfs_inode_t		*ip,
701	bool			stale)
702{
703	xfs_inode_log_item_t	*iip = ip->i_itemp;
704
705	if (iip) {
706		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
707			xfs_trans_ail_remove(&iip->ili_item,
708					     stale ? SHUTDOWN_LOG_IO_ERROR :
709						     SHUTDOWN_CORRUPT_INCORE);
710		}
711		iip->ili_logged = 0;
712		/*
713		 * Clear the ili_last_fields bits now that we know that the
714		 * data corresponding to them is safely on disk.
715		 */
716		iip->ili_last_fields = 0;
717		/*
718		 * Clear the inode logging fields so no more flushes are
719		 * attempted.
720		 */
721		iip->ili_fields = 0;
722		iip->ili_fsync_fields = 0;
723	}
724	/*
725	 * Release the inode's flush lock since we're done with it.
726	 */
727	xfs_ifunlock(ip);
728}
729
730void
731xfs_istale_done(
732	struct xfs_buf		*bp,
733	struct xfs_log_item	*lip)
734{
735	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
736}
737
738/*
739 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
740 * (which can have different field alignments) to the native version
741 */
742int
743xfs_inode_item_format_convert(
744	xfs_log_iovec_t		*buf,
745	xfs_inode_log_format_t	*in_f)
746{
747	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
748		xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
749
750		in_f->ilf_type = in_f32->ilf_type;
751		in_f->ilf_size = in_f32->ilf_size;
752		in_f->ilf_fields = in_f32->ilf_fields;
753		in_f->ilf_asize = in_f32->ilf_asize;
754		in_f->ilf_dsize = in_f32->ilf_dsize;
755		in_f->ilf_ino = in_f32->ilf_ino;
756		/* copy biggest field of ilf_u */
757		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
758		       in_f32->ilf_u.ilfu_uuid.__u_bits,
759		       sizeof(uuid_t));
760		in_f->ilf_blkno = in_f32->ilf_blkno;
761		in_f->ilf_len = in_f32->ilf_len;
762		in_f->ilf_boffset = in_f32->ilf_boffset;
763		return 0;
764	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
765		xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
766
767		in_f->ilf_type = in_f64->ilf_type;
768		in_f->ilf_size = in_f64->ilf_size;
769		in_f->ilf_fields = in_f64->ilf_fields;
770		in_f->ilf_asize = in_f64->ilf_asize;
771		in_f->ilf_dsize = in_f64->ilf_dsize;
772		in_f->ilf_ino = in_f64->ilf_ino;
773		/* copy biggest field of ilf_u */
774		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
775		       in_f64->ilf_u.ilfu_uuid.__u_bits,
776		       sizeof(uuid_t));
777		in_f->ilf_blkno = in_f64->ilf_blkno;
778		in_f->ilf_len = in_f64->ilf_len;
779		in_f->ilf_boffset = in_f64->ilf_boffset;
780		return 0;
781	}
782	return -EFSCORRUPTED;
783}
784