1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include "xfs.h"
19#include <linux/stddef.h>
20#include <linux/errno.h>
21#include <linux/gfp.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/migrate.h>
34#include <linux/backing-dev.h>
35#include <linux/freezer.h>
36
37#include "xfs_format.h"
38#include "xfs_log_format.h"
39#include "xfs_trans_resv.h"
40#include "xfs_sb.h"
41#include "xfs_mount.h"
42#include "xfs_trace.h"
43#include "xfs_log.h"
44
45static kmem_zone_t *xfs_buf_zone;
46
47#ifdef XFS_BUF_LOCK_TRACKING
48# define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
49# define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
50# define XB_GET_OWNER(bp)	((bp)->b_last_holder)
51#else
52# define XB_SET_OWNER(bp)	do { } while (0)
53# define XB_CLEAR_OWNER(bp)	do { } while (0)
54# define XB_GET_OWNER(bp)	do { } while (0)
55#endif
56
57#define xb_to_gfp(flags) \
58	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59
60
61static inline int
62xfs_buf_is_vmapped(
63	struct xfs_buf	*bp)
64{
65	/*
66	 * Return true if the buffer is vmapped.
67	 *
68	 * b_addr is null if the buffer is not mapped, but the code is clever
69	 * enough to know it doesn't have to map a single page, so the check has
70	 * to be both for b_addr and bp->b_page_count > 1.
71	 */
72	return bp->b_addr && bp->b_page_count > 1;
73}
74
75static inline int
76xfs_buf_vmap_len(
77	struct xfs_buf	*bp)
78{
79	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80}
81
82/*
83 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
84 * b_lru_ref count so that the buffer is freed immediately when the buffer
85 * reference count falls to zero. If the buffer is already on the LRU, we need
86 * to remove the reference that LRU holds on the buffer.
87 *
88 * This prevents build-up of stale buffers on the LRU.
89 */
90void
91xfs_buf_stale(
92	struct xfs_buf	*bp)
93{
94	ASSERT(xfs_buf_islocked(bp));
95
96	bp->b_flags |= XBF_STALE;
97
98	/*
99	 * Clear the delwri status so that a delwri queue walker will not
100	 * flush this buffer to disk now that it is stale. The delwri queue has
101	 * a reference to the buffer, so this is safe to do.
102	 */
103	bp->b_flags &= ~_XBF_DELWRI_Q;
104
105	spin_lock(&bp->b_lock);
106	atomic_set(&bp->b_lru_ref, 0);
107	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
108	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
109		atomic_dec(&bp->b_hold);
110
111	ASSERT(atomic_read(&bp->b_hold) >= 1);
112	spin_unlock(&bp->b_lock);
113}
114
115static int
116xfs_buf_get_maps(
117	struct xfs_buf		*bp,
118	int			map_count)
119{
120	ASSERT(bp->b_maps == NULL);
121	bp->b_map_count = map_count;
122
123	if (map_count == 1) {
124		bp->b_maps = &bp->__b_map;
125		return 0;
126	}
127
128	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
129				KM_NOFS);
130	if (!bp->b_maps)
131		return -ENOMEM;
132	return 0;
133}
134
135/*
136 *	Frees b_pages if it was allocated.
137 */
138static void
139xfs_buf_free_maps(
140	struct xfs_buf	*bp)
141{
142	if (bp->b_maps != &bp->__b_map) {
143		kmem_free(bp->b_maps);
144		bp->b_maps = NULL;
145	}
146}
147
148struct xfs_buf *
149_xfs_buf_alloc(
150	struct xfs_buftarg	*target,
151	struct xfs_buf_map	*map,
152	int			nmaps,
153	xfs_buf_flags_t		flags)
154{
155	struct xfs_buf		*bp;
156	int			error;
157	int			i;
158
159	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
160	if (unlikely(!bp))
161		return NULL;
162
163	/*
164	 * We don't want certain flags to appear in b_flags unless they are
165	 * specifically set by later operations on the buffer.
166	 */
167	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
168
169	atomic_set(&bp->b_hold, 1);
170	atomic_set(&bp->b_lru_ref, 1);
171	init_completion(&bp->b_iowait);
172	INIT_LIST_HEAD(&bp->b_lru);
173	INIT_LIST_HEAD(&bp->b_list);
174	RB_CLEAR_NODE(&bp->b_rbnode);
175	sema_init(&bp->b_sema, 0); /* held, no waiters */
176	spin_lock_init(&bp->b_lock);
177	XB_SET_OWNER(bp);
178	bp->b_target = target;
179	bp->b_flags = flags;
180
181	/*
182	 * Set length and io_length to the same value initially.
183	 * I/O routines should use io_length, which will be the same in
184	 * most cases but may be reset (e.g. XFS recovery).
185	 */
186	error = xfs_buf_get_maps(bp, nmaps);
187	if (error)  {
188		kmem_zone_free(xfs_buf_zone, bp);
189		return NULL;
190	}
191
192	bp->b_bn = map[0].bm_bn;
193	bp->b_length = 0;
194	for (i = 0; i < nmaps; i++) {
195		bp->b_maps[i].bm_bn = map[i].bm_bn;
196		bp->b_maps[i].bm_len = map[i].bm_len;
197		bp->b_length += map[i].bm_len;
198	}
199	bp->b_io_length = bp->b_length;
200
201	atomic_set(&bp->b_pin_count, 0);
202	init_waitqueue_head(&bp->b_waiters);
203
204	XFS_STATS_INC(target->bt_mount, xb_create);
205	trace_xfs_buf_init(bp, _RET_IP_);
206
207	return bp;
208}
209
210/*
211 *	Allocate a page array capable of holding a specified number
212 *	of pages, and point the page buf at it.
213 */
214STATIC int
215_xfs_buf_get_pages(
216	xfs_buf_t		*bp,
217	int			page_count)
218{
219	/* Make sure that we have a page list */
220	if (bp->b_pages == NULL) {
221		bp->b_page_count = page_count;
222		if (page_count <= XB_PAGES) {
223			bp->b_pages = bp->b_page_array;
224		} else {
225			bp->b_pages = kmem_alloc(sizeof(struct page *) *
226						 page_count, KM_NOFS);
227			if (bp->b_pages == NULL)
228				return -ENOMEM;
229		}
230		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
231	}
232	return 0;
233}
234
235/*
236 *	Frees b_pages if it was allocated.
237 */
238STATIC void
239_xfs_buf_free_pages(
240	xfs_buf_t	*bp)
241{
242	if (bp->b_pages != bp->b_page_array) {
243		kmem_free(bp->b_pages);
244		bp->b_pages = NULL;
245	}
246}
247
248/*
249 *	Releases the specified buffer.
250 *
251 * 	The modification state of any associated pages is left unchanged.
252 * 	The buffer must not be on any hash - use xfs_buf_rele instead for
253 * 	hashed and refcounted buffers
254 */
255void
256xfs_buf_free(
257	xfs_buf_t		*bp)
258{
259	trace_xfs_buf_free(bp, _RET_IP_);
260
261	ASSERT(list_empty(&bp->b_lru));
262
263	if (bp->b_flags & _XBF_PAGES) {
264		uint		i;
265
266		if (xfs_buf_is_vmapped(bp))
267			vm_unmap_ram(bp->b_addr - bp->b_offset,
268					bp->b_page_count);
269
270		for (i = 0; i < bp->b_page_count; i++) {
271			struct page	*page = bp->b_pages[i];
272
273			__free_page(page);
274		}
275	} else if (bp->b_flags & _XBF_KMEM)
276		kmem_free(bp->b_addr);
277	_xfs_buf_free_pages(bp);
278	xfs_buf_free_maps(bp);
279	kmem_zone_free(xfs_buf_zone, bp);
280}
281
282/*
283 * Allocates all the pages for buffer in question and builds it's page list.
284 */
285STATIC int
286xfs_buf_allocate_memory(
287	xfs_buf_t		*bp,
288	uint			flags)
289{
290	size_t			size;
291	size_t			nbytes, offset;
292	gfp_t			gfp_mask = xb_to_gfp(flags);
293	unsigned short		page_count, i;
294	xfs_off_t		start, end;
295	int			error;
296
297	/*
298	 * for buffers that are contained within a single page, just allocate
299	 * the memory from the heap - there's no need for the complexity of
300	 * page arrays to keep allocation down to order 0.
301	 */
302	size = BBTOB(bp->b_length);
303	if (size < PAGE_SIZE) {
304		bp->b_addr = kmem_alloc(size, KM_NOFS);
305		if (!bp->b_addr) {
306			/* low memory - use alloc_page loop instead */
307			goto use_alloc_page;
308		}
309
310		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
311		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
312			/* b_addr spans two pages - use alloc_page instead */
313			kmem_free(bp->b_addr);
314			bp->b_addr = NULL;
315			goto use_alloc_page;
316		}
317		bp->b_offset = offset_in_page(bp->b_addr);
318		bp->b_pages = bp->b_page_array;
319		bp->b_pages[0] = virt_to_page(bp->b_addr);
320		bp->b_page_count = 1;
321		bp->b_flags |= _XBF_KMEM;
322		return 0;
323	}
324
325use_alloc_page:
326	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
327	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
328								>> PAGE_SHIFT;
329	page_count = end - start;
330	error = _xfs_buf_get_pages(bp, page_count);
331	if (unlikely(error))
332		return error;
333
334	offset = bp->b_offset;
335	bp->b_flags |= _XBF_PAGES;
336
337	for (i = 0; i < bp->b_page_count; i++) {
338		struct page	*page;
339		uint		retries = 0;
340retry:
341		page = alloc_page(gfp_mask);
342		if (unlikely(page == NULL)) {
343			if (flags & XBF_READ_AHEAD) {
344				bp->b_page_count = i;
345				error = -ENOMEM;
346				goto out_free_pages;
347			}
348
349			/*
350			 * This could deadlock.
351			 *
352			 * But until all the XFS lowlevel code is revamped to
353			 * handle buffer allocation failures we can't do much.
354			 */
355			if (!(++retries % 100))
356				xfs_err(NULL,
357		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
358					current->comm, current->pid,
359					__func__, gfp_mask);
360
361			XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
362			congestion_wait(BLK_RW_ASYNC, HZ/50);
363			goto retry;
364		}
365
366		XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
367
368		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
369		size -= nbytes;
370		bp->b_pages[i] = page;
371		offset = 0;
372	}
373	return 0;
374
375out_free_pages:
376	for (i = 0; i < bp->b_page_count; i++)
377		__free_page(bp->b_pages[i]);
378	return error;
379}
380
381/*
382 *	Map buffer into kernel address-space if necessary.
383 */
384STATIC int
385_xfs_buf_map_pages(
386	xfs_buf_t		*bp,
387	uint			flags)
388{
389	ASSERT(bp->b_flags & _XBF_PAGES);
390	if (bp->b_page_count == 1) {
391		/* A single page buffer is always mappable */
392		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
393	} else if (flags & XBF_UNMAPPED) {
394		bp->b_addr = NULL;
395	} else {
396		int retried = 0;
397		unsigned noio_flag;
398
399		/*
400		 * vm_map_ram() will allocate auxillary structures (e.g.
401		 * pagetables) with GFP_KERNEL, yet we are likely to be under
402		 * GFP_NOFS context here. Hence we need to tell memory reclaim
403		 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
404		 * memory reclaim re-entering the filesystem here and
405		 * potentially deadlocking.
406		 */
407		noio_flag = memalloc_noio_save();
408		do {
409			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
410						-1, PAGE_KERNEL);
411			if (bp->b_addr)
412				break;
413			vm_unmap_aliases();
414		} while (retried++ <= 1);
415		memalloc_noio_restore(noio_flag);
416
417		if (!bp->b_addr)
418			return -ENOMEM;
419		bp->b_addr += bp->b_offset;
420	}
421
422	return 0;
423}
424
425/*
426 *	Finding and Reading Buffers
427 */
428
429/*
430 *	Look up, and creates if absent, a lockable buffer for
431 *	a given range of an inode.  The buffer is returned
432 *	locked.	No I/O is implied by this call.
433 */
434xfs_buf_t *
435_xfs_buf_find(
436	struct xfs_buftarg	*btp,
437	struct xfs_buf_map	*map,
438	int			nmaps,
439	xfs_buf_flags_t		flags,
440	xfs_buf_t		*new_bp)
441{
442	struct xfs_perag	*pag;
443	struct rb_node		**rbp;
444	struct rb_node		*parent;
445	xfs_buf_t		*bp;
446	xfs_daddr_t		blkno = map[0].bm_bn;
447	xfs_daddr_t		eofs;
448	int			numblks = 0;
449	int			i;
450
451	for (i = 0; i < nmaps; i++)
452		numblks += map[i].bm_len;
453
454	/* Check for IOs smaller than the sector size / not sector aligned */
455	ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize));
456	ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
457
458	/*
459	 * Corrupted block numbers can get through to here, unfortunately, so we
460	 * have to check that the buffer falls within the filesystem bounds.
461	 */
462	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
463	if (blkno < 0 || blkno >= eofs) {
464		/*
465		 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
466		 * but none of the higher level infrastructure supports
467		 * returning a specific error on buffer lookup failures.
468		 */
469		xfs_alert(btp->bt_mount,
470			  "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
471			  __func__, blkno, eofs);
472		WARN_ON(1);
473		return NULL;
474	}
475
476	/* get tree root */
477	pag = xfs_perag_get(btp->bt_mount,
478				xfs_daddr_to_agno(btp->bt_mount, blkno));
479
480	/* walk tree */
481	spin_lock(&pag->pag_buf_lock);
482	rbp = &pag->pag_buf_tree.rb_node;
483	parent = NULL;
484	bp = NULL;
485	while (*rbp) {
486		parent = *rbp;
487		bp = rb_entry(parent, struct xfs_buf, b_rbnode);
488
489		if (blkno < bp->b_bn)
490			rbp = &(*rbp)->rb_left;
491		else if (blkno > bp->b_bn)
492			rbp = &(*rbp)->rb_right;
493		else {
494			/*
495			 * found a block number match. If the range doesn't
496			 * match, the only way this is allowed is if the buffer
497			 * in the cache is stale and the transaction that made
498			 * it stale has not yet committed. i.e. we are
499			 * reallocating a busy extent. Skip this buffer and
500			 * continue searching to the right for an exact match.
501			 */
502			if (bp->b_length != numblks) {
503				ASSERT(bp->b_flags & XBF_STALE);
504				rbp = &(*rbp)->rb_right;
505				continue;
506			}
507			atomic_inc(&bp->b_hold);
508			goto found;
509		}
510	}
511
512	/* No match found */
513	if (new_bp) {
514		rb_link_node(&new_bp->b_rbnode, parent, rbp);
515		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
516		/* the buffer keeps the perag reference until it is freed */
517		new_bp->b_pag = pag;
518		spin_unlock(&pag->pag_buf_lock);
519	} else {
520		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
521		spin_unlock(&pag->pag_buf_lock);
522		xfs_perag_put(pag);
523	}
524	return new_bp;
525
526found:
527	spin_unlock(&pag->pag_buf_lock);
528	xfs_perag_put(pag);
529
530	if (!xfs_buf_trylock(bp)) {
531		if (flags & XBF_TRYLOCK) {
532			xfs_buf_rele(bp);
533			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
534			return NULL;
535		}
536		xfs_buf_lock(bp);
537		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
538	}
539
540	/*
541	 * if the buffer is stale, clear all the external state associated with
542	 * it. We need to keep flags such as how we allocated the buffer memory
543	 * intact here.
544	 */
545	if (bp->b_flags & XBF_STALE) {
546		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
547		ASSERT(bp->b_iodone == NULL);
548		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
549		bp->b_ops = NULL;
550	}
551
552	trace_xfs_buf_find(bp, flags, _RET_IP_);
553	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
554	return bp;
555}
556
557/*
558 * Assembles a buffer covering the specified range. The code is optimised for
559 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
560 * more hits than misses.
561 */
562struct xfs_buf *
563xfs_buf_get_map(
564	struct xfs_buftarg	*target,
565	struct xfs_buf_map	*map,
566	int			nmaps,
567	xfs_buf_flags_t		flags)
568{
569	struct xfs_buf		*bp;
570	struct xfs_buf		*new_bp;
571	int			error = 0;
572
573	bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
574	if (likely(bp))
575		goto found;
576
577	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
578	if (unlikely(!new_bp))
579		return NULL;
580
581	error = xfs_buf_allocate_memory(new_bp, flags);
582	if (error) {
583		xfs_buf_free(new_bp);
584		return NULL;
585	}
586
587	bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
588	if (!bp) {
589		xfs_buf_free(new_bp);
590		return NULL;
591	}
592
593	if (bp != new_bp)
594		xfs_buf_free(new_bp);
595
596found:
597	if (!bp->b_addr) {
598		error = _xfs_buf_map_pages(bp, flags);
599		if (unlikely(error)) {
600			xfs_warn(target->bt_mount,
601				"%s: failed to map pagesn", __func__);
602			xfs_buf_relse(bp);
603			return NULL;
604		}
605	}
606
607	/*
608	 * Clear b_error if this is a lookup from a caller that doesn't expect
609	 * valid data to be found in the buffer.
610	 */
611	if (!(flags & XBF_READ))
612		xfs_buf_ioerror(bp, 0);
613
614	XFS_STATS_INC(target->bt_mount, xb_get);
615	trace_xfs_buf_get(bp, flags, _RET_IP_);
616	return bp;
617}
618
619STATIC int
620_xfs_buf_read(
621	xfs_buf_t		*bp,
622	xfs_buf_flags_t		flags)
623{
624	ASSERT(!(flags & XBF_WRITE));
625	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
626
627	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
628	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
629
630	if (flags & XBF_ASYNC) {
631		xfs_buf_submit(bp);
632		return 0;
633	}
634	return xfs_buf_submit_wait(bp);
635}
636
637xfs_buf_t *
638xfs_buf_read_map(
639	struct xfs_buftarg	*target,
640	struct xfs_buf_map	*map,
641	int			nmaps,
642	xfs_buf_flags_t		flags,
643	const struct xfs_buf_ops *ops)
644{
645	struct xfs_buf		*bp;
646
647	flags |= XBF_READ;
648
649	bp = xfs_buf_get_map(target, map, nmaps, flags);
650	if (bp) {
651		trace_xfs_buf_read(bp, flags, _RET_IP_);
652
653		if (!XFS_BUF_ISDONE(bp)) {
654			XFS_STATS_INC(target->bt_mount, xb_get_read);
655			bp->b_ops = ops;
656			_xfs_buf_read(bp, flags);
657		} else if (flags & XBF_ASYNC) {
658			/*
659			 * Read ahead call which is already satisfied,
660			 * drop the buffer
661			 */
662			xfs_buf_relse(bp);
663			return NULL;
664		} else {
665			/* We do not want read in the flags */
666			bp->b_flags &= ~XBF_READ;
667		}
668	}
669
670	return bp;
671}
672
673/*
674 *	If we are not low on memory then do the readahead in a deadlock
675 *	safe manner.
676 */
677void
678xfs_buf_readahead_map(
679	struct xfs_buftarg	*target,
680	struct xfs_buf_map	*map,
681	int			nmaps,
682	const struct xfs_buf_ops *ops)
683{
684	if (bdi_read_congested(target->bt_bdi))
685		return;
686
687	xfs_buf_read_map(target, map, nmaps,
688		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
689}
690
691/*
692 * Read an uncached buffer from disk. Allocates and returns a locked
693 * buffer containing the disk contents or nothing.
694 */
695int
696xfs_buf_read_uncached(
697	struct xfs_buftarg	*target,
698	xfs_daddr_t		daddr,
699	size_t			numblks,
700	int			flags,
701	struct xfs_buf		**bpp,
702	const struct xfs_buf_ops *ops)
703{
704	struct xfs_buf		*bp;
705
706	*bpp = NULL;
707
708	bp = xfs_buf_get_uncached(target, numblks, flags);
709	if (!bp)
710		return -ENOMEM;
711
712	/* set up the buffer for a read IO */
713	ASSERT(bp->b_map_count == 1);
714	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
715	bp->b_maps[0].bm_bn = daddr;
716	bp->b_flags |= XBF_READ;
717	bp->b_ops = ops;
718
719	xfs_buf_submit_wait(bp);
720	if (bp->b_error) {
721		int	error = bp->b_error;
722		xfs_buf_relse(bp);
723		return error;
724	}
725
726	*bpp = bp;
727	return 0;
728}
729
730/*
731 * Return a buffer allocated as an empty buffer and associated to external
732 * memory via xfs_buf_associate_memory() back to it's empty state.
733 */
734void
735xfs_buf_set_empty(
736	struct xfs_buf		*bp,
737	size_t			numblks)
738{
739	if (bp->b_pages)
740		_xfs_buf_free_pages(bp);
741
742	bp->b_pages = NULL;
743	bp->b_page_count = 0;
744	bp->b_addr = NULL;
745	bp->b_length = numblks;
746	bp->b_io_length = numblks;
747
748	ASSERT(bp->b_map_count == 1);
749	bp->b_bn = XFS_BUF_DADDR_NULL;
750	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
751	bp->b_maps[0].bm_len = bp->b_length;
752}
753
754static inline struct page *
755mem_to_page(
756	void			*addr)
757{
758	if ((!is_vmalloc_addr(addr))) {
759		return virt_to_page(addr);
760	} else {
761		return vmalloc_to_page(addr);
762	}
763}
764
765int
766xfs_buf_associate_memory(
767	xfs_buf_t		*bp,
768	void			*mem,
769	size_t			len)
770{
771	int			rval;
772	int			i = 0;
773	unsigned long		pageaddr;
774	unsigned long		offset;
775	size_t			buflen;
776	int			page_count;
777
778	pageaddr = (unsigned long)mem & PAGE_MASK;
779	offset = (unsigned long)mem - pageaddr;
780	buflen = PAGE_ALIGN(len + offset);
781	page_count = buflen >> PAGE_SHIFT;
782
783	/* Free any previous set of page pointers */
784	if (bp->b_pages)
785		_xfs_buf_free_pages(bp);
786
787	bp->b_pages = NULL;
788	bp->b_addr = mem;
789
790	rval = _xfs_buf_get_pages(bp, page_count);
791	if (rval)
792		return rval;
793
794	bp->b_offset = offset;
795
796	for (i = 0; i < bp->b_page_count; i++) {
797		bp->b_pages[i] = mem_to_page((void *)pageaddr);
798		pageaddr += PAGE_SIZE;
799	}
800
801	bp->b_io_length = BTOBB(len);
802	bp->b_length = BTOBB(buflen);
803
804	return 0;
805}
806
807xfs_buf_t *
808xfs_buf_get_uncached(
809	struct xfs_buftarg	*target,
810	size_t			numblks,
811	int			flags)
812{
813	unsigned long		page_count;
814	int			error, i;
815	struct xfs_buf		*bp;
816	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
817
818	bp = _xfs_buf_alloc(target, &map, 1, 0);
819	if (unlikely(bp == NULL))
820		goto fail;
821
822	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
823	error = _xfs_buf_get_pages(bp, page_count);
824	if (error)
825		goto fail_free_buf;
826
827	for (i = 0; i < page_count; i++) {
828		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
829		if (!bp->b_pages[i])
830			goto fail_free_mem;
831	}
832	bp->b_flags |= _XBF_PAGES;
833
834	error = _xfs_buf_map_pages(bp, 0);
835	if (unlikely(error)) {
836		xfs_warn(target->bt_mount,
837			"%s: failed to map pages", __func__);
838		goto fail_free_mem;
839	}
840
841	trace_xfs_buf_get_uncached(bp, _RET_IP_);
842	return bp;
843
844 fail_free_mem:
845	while (--i >= 0)
846		__free_page(bp->b_pages[i]);
847	_xfs_buf_free_pages(bp);
848 fail_free_buf:
849	xfs_buf_free_maps(bp);
850	kmem_zone_free(xfs_buf_zone, bp);
851 fail:
852	return NULL;
853}
854
855/*
856 *	Increment reference count on buffer, to hold the buffer concurrently
857 *	with another thread which may release (free) the buffer asynchronously.
858 *	Must hold the buffer already to call this function.
859 */
860void
861xfs_buf_hold(
862	xfs_buf_t		*bp)
863{
864	trace_xfs_buf_hold(bp, _RET_IP_);
865	atomic_inc(&bp->b_hold);
866}
867
868/*
869 *	Releases a hold on the specified buffer.  If the
870 *	the hold count is 1, calls xfs_buf_free.
871 */
872void
873xfs_buf_rele(
874	xfs_buf_t		*bp)
875{
876	struct xfs_perag	*pag = bp->b_pag;
877
878	trace_xfs_buf_rele(bp, _RET_IP_);
879
880	if (!pag) {
881		ASSERT(list_empty(&bp->b_lru));
882		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
883		if (atomic_dec_and_test(&bp->b_hold))
884			xfs_buf_free(bp);
885		return;
886	}
887
888	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
889
890	ASSERT(atomic_read(&bp->b_hold) > 0);
891	if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
892		spin_lock(&bp->b_lock);
893		if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
894			/*
895			 * If the buffer is added to the LRU take a new
896			 * reference to the buffer for the LRU and clear the
897			 * (now stale) dispose list state flag
898			 */
899			if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
900				bp->b_state &= ~XFS_BSTATE_DISPOSE;
901				atomic_inc(&bp->b_hold);
902			}
903			spin_unlock(&bp->b_lock);
904			spin_unlock(&pag->pag_buf_lock);
905		} else {
906			/*
907			 * most of the time buffers will already be removed from
908			 * the LRU, so optimise that case by checking for the
909			 * XFS_BSTATE_DISPOSE flag indicating the last list the
910			 * buffer was on was the disposal list
911			 */
912			if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
913				list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
914			} else {
915				ASSERT(list_empty(&bp->b_lru));
916			}
917			spin_unlock(&bp->b_lock);
918
919			ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
920			rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
921			spin_unlock(&pag->pag_buf_lock);
922			xfs_perag_put(pag);
923			xfs_buf_free(bp);
924		}
925	}
926}
927
928
929/*
930 *	Lock a buffer object, if it is not already locked.
931 *
932 *	If we come across a stale, pinned, locked buffer, we know that we are
933 *	being asked to lock a buffer that has been reallocated. Because it is
934 *	pinned, we know that the log has not been pushed to disk and hence it
935 *	will still be locked.  Rather than continuing to have trylock attempts
936 *	fail until someone else pushes the log, push it ourselves before
937 *	returning.  This means that the xfsaild will not get stuck trying
938 *	to push on stale inode buffers.
939 */
940int
941xfs_buf_trylock(
942	struct xfs_buf		*bp)
943{
944	int			locked;
945
946	locked = down_trylock(&bp->b_sema) == 0;
947	if (locked)
948		XB_SET_OWNER(bp);
949
950	trace_xfs_buf_trylock(bp, _RET_IP_);
951	return locked;
952}
953
954/*
955 *	Lock a buffer object.
956 *
957 *	If we come across a stale, pinned, locked buffer, we know that we
958 *	are being asked to lock a buffer that has been reallocated. Because
959 *	it is pinned, we know that the log has not been pushed to disk and
960 *	hence it will still be locked. Rather than sleeping until someone
961 *	else pushes the log, push it ourselves before trying to get the lock.
962 */
963void
964xfs_buf_lock(
965	struct xfs_buf		*bp)
966{
967	trace_xfs_buf_lock(bp, _RET_IP_);
968
969	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
970		xfs_log_force(bp->b_target->bt_mount, 0);
971	down(&bp->b_sema);
972	XB_SET_OWNER(bp);
973
974	trace_xfs_buf_lock_done(bp, _RET_IP_);
975}
976
977void
978xfs_buf_unlock(
979	struct xfs_buf		*bp)
980{
981	XB_CLEAR_OWNER(bp);
982	up(&bp->b_sema);
983
984	trace_xfs_buf_unlock(bp, _RET_IP_);
985}
986
987STATIC void
988xfs_buf_wait_unpin(
989	xfs_buf_t		*bp)
990{
991	DECLARE_WAITQUEUE	(wait, current);
992
993	if (atomic_read(&bp->b_pin_count) == 0)
994		return;
995
996	add_wait_queue(&bp->b_waiters, &wait);
997	for (;;) {
998		set_current_state(TASK_UNINTERRUPTIBLE);
999		if (atomic_read(&bp->b_pin_count) == 0)
1000			break;
1001		io_schedule();
1002	}
1003	remove_wait_queue(&bp->b_waiters, &wait);
1004	set_current_state(TASK_RUNNING);
1005}
1006
1007/*
1008 *	Buffer Utility Routines
1009 */
1010
1011void
1012xfs_buf_ioend(
1013	struct xfs_buf	*bp)
1014{
1015	bool		read = bp->b_flags & XBF_READ;
1016
1017	trace_xfs_buf_iodone(bp, _RET_IP_);
1018
1019	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1020
1021	/*
1022	 * Pull in IO completion errors now. We are guaranteed to be running
1023	 * single threaded, so we don't need the lock to read b_io_error.
1024	 */
1025	if (!bp->b_error && bp->b_io_error)
1026		xfs_buf_ioerror(bp, bp->b_io_error);
1027
1028	/* Only validate buffers that were read without errors */
1029	if (read && !bp->b_error && bp->b_ops) {
1030		ASSERT(!bp->b_iodone);
1031		bp->b_ops->verify_read(bp);
1032	}
1033
1034	if (!bp->b_error)
1035		bp->b_flags |= XBF_DONE;
1036
1037	if (bp->b_iodone)
1038		(*(bp->b_iodone))(bp);
1039	else if (bp->b_flags & XBF_ASYNC)
1040		xfs_buf_relse(bp);
1041	else
1042		complete(&bp->b_iowait);
1043}
1044
1045static void
1046xfs_buf_ioend_work(
1047	struct work_struct	*work)
1048{
1049	struct xfs_buf		*bp =
1050		container_of(work, xfs_buf_t, b_ioend_work);
1051
1052	xfs_buf_ioend(bp);
1053}
1054
1055void
1056xfs_buf_ioend_async(
1057	struct xfs_buf	*bp)
1058{
1059	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1060	queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1061}
1062
1063void
1064xfs_buf_ioerror(
1065	xfs_buf_t		*bp,
1066	int			error)
1067{
1068	ASSERT(error <= 0 && error >= -1000);
1069	bp->b_error = error;
1070	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1071}
1072
1073void
1074xfs_buf_ioerror_alert(
1075	struct xfs_buf		*bp,
1076	const char		*func)
1077{
1078	xfs_alert(bp->b_target->bt_mount,
1079"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1080		(__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1081}
1082
1083int
1084xfs_bwrite(
1085	struct xfs_buf		*bp)
1086{
1087	int			error;
1088
1089	ASSERT(xfs_buf_islocked(bp));
1090
1091	bp->b_flags |= XBF_WRITE;
1092	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1093			 XBF_WRITE_FAIL | XBF_DONE);
1094
1095	error = xfs_buf_submit_wait(bp);
1096	if (error) {
1097		xfs_force_shutdown(bp->b_target->bt_mount,
1098				   SHUTDOWN_META_IO_ERROR);
1099	}
1100	return error;
1101}
1102
1103STATIC void
1104xfs_buf_bio_end_io(
1105	struct bio		*bio)
1106{
1107	xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private;
1108
1109	/*
1110	 * don't overwrite existing errors - otherwise we can lose errors on
1111	 * buffers that require multiple bios to complete.
1112	 */
1113	if (bio->bi_error) {
1114		spin_lock(&bp->b_lock);
1115		if (!bp->b_io_error)
1116			bp->b_io_error = bio->bi_error;
1117		spin_unlock(&bp->b_lock);
1118	}
1119
1120	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1121		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1122
1123	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1124		xfs_buf_ioend_async(bp);
1125	bio_put(bio);
1126}
1127
1128static void
1129xfs_buf_ioapply_map(
1130	struct xfs_buf	*bp,
1131	int		map,
1132	int		*buf_offset,
1133	int		*count,
1134	int		rw)
1135{
1136	int		page_index;
1137	int		total_nr_pages = bp->b_page_count;
1138	int		nr_pages;
1139	struct bio	*bio;
1140	sector_t	sector =  bp->b_maps[map].bm_bn;
1141	int		size;
1142	int		offset;
1143
1144	total_nr_pages = bp->b_page_count;
1145
1146	/* skip the pages in the buffer before the start offset */
1147	page_index = 0;
1148	offset = *buf_offset;
1149	while (offset >= PAGE_SIZE) {
1150		page_index++;
1151		offset -= PAGE_SIZE;
1152	}
1153
1154	/*
1155	 * Limit the IO size to the length of the current vector, and update the
1156	 * remaining IO count for the next time around.
1157	 */
1158	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1159	*count -= size;
1160	*buf_offset += size;
1161
1162next_chunk:
1163	atomic_inc(&bp->b_io_remaining);
1164	nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1165	if (nr_pages > total_nr_pages)
1166		nr_pages = total_nr_pages;
1167
1168	bio = bio_alloc(GFP_NOIO, nr_pages);
1169	bio->bi_bdev = bp->b_target->bt_bdev;
1170	bio->bi_iter.bi_sector = sector;
1171	bio->bi_end_io = xfs_buf_bio_end_io;
1172	bio->bi_private = bp;
1173
1174
1175	for (; size && nr_pages; nr_pages--, page_index++) {
1176		int	rbytes, nbytes = PAGE_SIZE - offset;
1177
1178		if (nbytes > size)
1179			nbytes = size;
1180
1181		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1182				      offset);
1183		if (rbytes < nbytes)
1184			break;
1185
1186		offset = 0;
1187		sector += BTOBB(nbytes);
1188		size -= nbytes;
1189		total_nr_pages--;
1190	}
1191
1192	if (likely(bio->bi_iter.bi_size)) {
1193		if (xfs_buf_is_vmapped(bp)) {
1194			flush_kernel_vmap_range(bp->b_addr,
1195						xfs_buf_vmap_len(bp));
1196		}
1197		submit_bio(rw, bio);
1198		if (size)
1199			goto next_chunk;
1200	} else {
1201		/*
1202		 * This is guaranteed not to be the last io reference count
1203		 * because the caller (xfs_buf_submit) holds a count itself.
1204		 */
1205		atomic_dec(&bp->b_io_remaining);
1206		xfs_buf_ioerror(bp, -EIO);
1207		bio_put(bio);
1208	}
1209
1210}
1211
1212STATIC void
1213_xfs_buf_ioapply(
1214	struct xfs_buf	*bp)
1215{
1216	struct blk_plug	plug;
1217	int		rw;
1218	int		offset;
1219	int		size;
1220	int		i;
1221
1222	/*
1223	 * Make sure we capture only current IO errors rather than stale errors
1224	 * left over from previous use of the buffer (e.g. failed readahead).
1225	 */
1226	bp->b_error = 0;
1227
1228	/*
1229	 * Initialize the I/O completion workqueue if we haven't yet or the
1230	 * submitter has not opted to specify a custom one.
1231	 */
1232	if (!bp->b_ioend_wq)
1233		bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1234
1235	if (bp->b_flags & XBF_WRITE) {
1236		if (bp->b_flags & XBF_SYNCIO)
1237			rw = WRITE_SYNC;
1238		else
1239			rw = WRITE;
1240		if (bp->b_flags & XBF_FUA)
1241			rw |= REQ_FUA;
1242		if (bp->b_flags & XBF_FLUSH)
1243			rw |= REQ_FLUSH;
1244
1245		/*
1246		 * Run the write verifier callback function if it exists. If
1247		 * this function fails it will mark the buffer with an error and
1248		 * the IO should not be dispatched.
1249		 */
1250		if (bp->b_ops) {
1251			bp->b_ops->verify_write(bp);
1252			if (bp->b_error) {
1253				xfs_force_shutdown(bp->b_target->bt_mount,
1254						   SHUTDOWN_CORRUPT_INCORE);
1255				return;
1256			}
1257		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1258			struct xfs_mount *mp = bp->b_target->bt_mount;
1259
1260			/*
1261			 * non-crc filesystems don't attach verifiers during
1262			 * log recovery, so don't warn for such filesystems.
1263			 */
1264			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1265				xfs_warn(mp,
1266					"%s: no ops on block 0x%llx/0x%x",
1267					__func__, bp->b_bn, bp->b_length);
1268				xfs_hex_dump(bp->b_addr, 64);
1269				dump_stack();
1270			}
1271		}
1272	} else if (bp->b_flags & XBF_READ_AHEAD) {
1273		rw = READA;
1274	} else {
1275		rw = READ;
1276	}
1277
1278	/* we only use the buffer cache for meta-data */
1279	rw |= REQ_META;
1280
1281	/*
1282	 * Walk all the vectors issuing IO on them. Set up the initial offset
1283	 * into the buffer and the desired IO size before we start -
1284	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1285	 * subsequent call.
1286	 */
1287	offset = bp->b_offset;
1288	size = BBTOB(bp->b_io_length);
1289	blk_start_plug(&plug);
1290	for (i = 0; i < bp->b_map_count; i++) {
1291		xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1292		if (bp->b_error)
1293			break;
1294		if (size <= 0)
1295			break;	/* all done */
1296	}
1297	blk_finish_plug(&plug);
1298}
1299
1300/*
1301 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1302 * the current reference to the IO. It is not safe to reference the buffer after
1303 * a call to this function unless the caller holds an additional reference
1304 * itself.
1305 */
1306void
1307xfs_buf_submit(
1308	struct xfs_buf	*bp)
1309{
1310	trace_xfs_buf_submit(bp, _RET_IP_);
1311
1312	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1313	ASSERT(bp->b_flags & XBF_ASYNC);
1314
1315	/* on shutdown we stale and complete the buffer immediately */
1316	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1317		xfs_buf_ioerror(bp, -EIO);
1318		bp->b_flags &= ~XBF_DONE;
1319		xfs_buf_stale(bp);
1320		xfs_buf_ioend(bp);
1321		return;
1322	}
1323
1324	if (bp->b_flags & XBF_WRITE)
1325		xfs_buf_wait_unpin(bp);
1326
1327	/* clear the internal error state to avoid spurious errors */
1328	bp->b_io_error = 0;
1329
1330	/*
1331	 * The caller's reference is released during I/O completion.
1332	 * This occurs some time after the last b_io_remaining reference is
1333	 * released, so after we drop our Io reference we have to have some
1334	 * other reference to ensure the buffer doesn't go away from underneath
1335	 * us. Take a direct reference to ensure we have safe access to the
1336	 * buffer until we are finished with it.
1337	 */
1338	xfs_buf_hold(bp);
1339
1340	/*
1341	 * Set the count to 1 initially, this will stop an I/O completion
1342	 * callout which happens before we have started all the I/O from calling
1343	 * xfs_buf_ioend too early.
1344	 */
1345	atomic_set(&bp->b_io_remaining, 1);
1346	_xfs_buf_ioapply(bp);
1347
1348	/*
1349	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1350	 * reference we took above. If we drop it to zero, run completion so
1351	 * that we don't return to the caller with completion still pending.
1352	 */
1353	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1354		if (bp->b_error)
1355			xfs_buf_ioend(bp);
1356		else
1357			xfs_buf_ioend_async(bp);
1358	}
1359
1360	xfs_buf_rele(bp);
1361	/* Note: it is not safe to reference bp now we've dropped our ref */
1362}
1363
1364/*
1365 * Synchronous buffer IO submission path, read or write.
1366 */
1367int
1368xfs_buf_submit_wait(
1369	struct xfs_buf	*bp)
1370{
1371	int		error;
1372
1373	trace_xfs_buf_submit_wait(bp, _RET_IP_);
1374
1375	ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1376
1377	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1378		xfs_buf_ioerror(bp, -EIO);
1379		xfs_buf_stale(bp);
1380		bp->b_flags &= ~XBF_DONE;
1381		return -EIO;
1382	}
1383
1384	if (bp->b_flags & XBF_WRITE)
1385		xfs_buf_wait_unpin(bp);
1386
1387	/* clear the internal error state to avoid spurious errors */
1388	bp->b_io_error = 0;
1389
1390	/*
1391	 * For synchronous IO, the IO does not inherit the submitters reference
1392	 * count, nor the buffer lock. Hence we cannot release the reference we
1393	 * are about to take until we've waited for all IO completion to occur,
1394	 * including any xfs_buf_ioend_async() work that may be pending.
1395	 */
1396	xfs_buf_hold(bp);
1397
1398	/*
1399	 * Set the count to 1 initially, this will stop an I/O completion
1400	 * callout which happens before we have started all the I/O from calling
1401	 * xfs_buf_ioend too early.
1402	 */
1403	atomic_set(&bp->b_io_remaining, 1);
1404	_xfs_buf_ioapply(bp);
1405
1406	/*
1407	 * make sure we run completion synchronously if it raced with us and is
1408	 * already complete.
1409	 */
1410	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1411		xfs_buf_ioend(bp);
1412
1413	/* wait for completion before gathering the error from the buffer */
1414	trace_xfs_buf_iowait(bp, _RET_IP_);
1415	wait_for_completion(&bp->b_iowait);
1416	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1417	error = bp->b_error;
1418
1419	/*
1420	 * all done now, we can release the hold that keeps the buffer
1421	 * referenced for the entire IO.
1422	 */
1423	xfs_buf_rele(bp);
1424	return error;
1425}
1426
1427void *
1428xfs_buf_offset(
1429	struct xfs_buf		*bp,
1430	size_t			offset)
1431{
1432	struct page		*page;
1433
1434	if (bp->b_addr)
1435		return bp->b_addr + offset;
1436
1437	offset += bp->b_offset;
1438	page = bp->b_pages[offset >> PAGE_SHIFT];
1439	return page_address(page) + (offset & (PAGE_SIZE-1));
1440}
1441
1442/*
1443 *	Move data into or out of a buffer.
1444 */
1445void
1446xfs_buf_iomove(
1447	xfs_buf_t		*bp,	/* buffer to process		*/
1448	size_t			boff,	/* starting buffer offset	*/
1449	size_t			bsize,	/* length to copy		*/
1450	void			*data,	/* data address			*/
1451	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1452{
1453	size_t			bend;
1454
1455	bend = boff + bsize;
1456	while (boff < bend) {
1457		struct page	*page;
1458		int		page_index, page_offset, csize;
1459
1460		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1461		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1462		page = bp->b_pages[page_index];
1463		csize = min_t(size_t, PAGE_SIZE - page_offset,
1464				      BBTOB(bp->b_io_length) - boff);
1465
1466		ASSERT((csize + page_offset) <= PAGE_SIZE);
1467
1468		switch (mode) {
1469		case XBRW_ZERO:
1470			memset(page_address(page) + page_offset, 0, csize);
1471			break;
1472		case XBRW_READ:
1473			memcpy(data, page_address(page) + page_offset, csize);
1474			break;
1475		case XBRW_WRITE:
1476			memcpy(page_address(page) + page_offset, data, csize);
1477		}
1478
1479		boff += csize;
1480		data += csize;
1481	}
1482}
1483
1484/*
1485 *	Handling of buffer targets (buftargs).
1486 */
1487
1488/*
1489 * Wait for any bufs with callbacks that have been submitted but have not yet
1490 * returned. These buffers will have an elevated hold count, so wait on those
1491 * while freeing all the buffers only held by the LRU.
1492 */
1493static enum lru_status
1494xfs_buftarg_wait_rele(
1495	struct list_head	*item,
1496	struct list_lru_one	*lru,
1497	spinlock_t		*lru_lock,
1498	void			*arg)
1499
1500{
1501	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1502	struct list_head	*dispose = arg;
1503
1504	if (atomic_read(&bp->b_hold) > 1) {
1505		/* need to wait, so skip it this pass */
1506		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1507		return LRU_SKIP;
1508	}
1509	if (!spin_trylock(&bp->b_lock))
1510		return LRU_SKIP;
1511
1512	/*
1513	 * clear the LRU reference count so the buffer doesn't get
1514	 * ignored in xfs_buf_rele().
1515	 */
1516	atomic_set(&bp->b_lru_ref, 0);
1517	bp->b_state |= XFS_BSTATE_DISPOSE;
1518	list_lru_isolate_move(lru, item, dispose);
1519	spin_unlock(&bp->b_lock);
1520	return LRU_REMOVED;
1521}
1522
1523void
1524xfs_wait_buftarg(
1525	struct xfs_buftarg	*btp)
1526{
1527	LIST_HEAD(dispose);
1528	int loop = 0;
1529
1530	/*
1531	 * We need to flush the buffer workqueue to ensure that all IO
1532	 * completion processing is 100% done. Just waiting on buffer locks is
1533	 * not sufficient for async IO as the reference count held over IO is
1534	 * not released until after the buffer lock is dropped. Hence we need to
1535	 * ensure here that all reference counts have been dropped before we
1536	 * start walking the LRU list.
1537	 */
1538	drain_workqueue(btp->bt_mount->m_buf_workqueue);
1539
1540	/* loop until there is nothing left on the lru list. */
1541	while (list_lru_count(&btp->bt_lru)) {
1542		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1543			      &dispose, LONG_MAX);
1544
1545		while (!list_empty(&dispose)) {
1546			struct xfs_buf *bp;
1547			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1548			list_del_init(&bp->b_lru);
1549			if (bp->b_flags & XBF_WRITE_FAIL) {
1550				xfs_alert(btp->bt_mount,
1551"Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1552					(long long)bp->b_bn);
1553				xfs_alert(btp->bt_mount,
1554"Please run xfs_repair to determine the extent of the problem.");
1555			}
1556			xfs_buf_rele(bp);
1557		}
1558		if (loop++ != 0)
1559			delay(100);
1560	}
1561}
1562
1563static enum lru_status
1564xfs_buftarg_isolate(
1565	struct list_head	*item,
1566	struct list_lru_one	*lru,
1567	spinlock_t		*lru_lock,
1568	void			*arg)
1569{
1570	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1571	struct list_head	*dispose = arg;
1572
1573	/*
1574	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1575	 * If we fail to get the lock, just skip it.
1576	 */
1577	if (!spin_trylock(&bp->b_lock))
1578		return LRU_SKIP;
1579	/*
1580	 * Decrement the b_lru_ref count unless the value is already
1581	 * zero. If the value is already zero, we need to reclaim the
1582	 * buffer, otherwise it gets another trip through the LRU.
1583	 */
1584	if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1585		spin_unlock(&bp->b_lock);
1586		return LRU_ROTATE;
1587	}
1588
1589	bp->b_state |= XFS_BSTATE_DISPOSE;
1590	list_lru_isolate_move(lru, item, dispose);
1591	spin_unlock(&bp->b_lock);
1592	return LRU_REMOVED;
1593}
1594
1595static unsigned long
1596xfs_buftarg_shrink_scan(
1597	struct shrinker		*shrink,
1598	struct shrink_control	*sc)
1599{
1600	struct xfs_buftarg	*btp = container_of(shrink,
1601					struct xfs_buftarg, bt_shrinker);
1602	LIST_HEAD(dispose);
1603	unsigned long		freed;
1604
1605	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1606				     xfs_buftarg_isolate, &dispose);
1607
1608	while (!list_empty(&dispose)) {
1609		struct xfs_buf *bp;
1610		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1611		list_del_init(&bp->b_lru);
1612		xfs_buf_rele(bp);
1613	}
1614
1615	return freed;
1616}
1617
1618static unsigned long
1619xfs_buftarg_shrink_count(
1620	struct shrinker		*shrink,
1621	struct shrink_control	*sc)
1622{
1623	struct xfs_buftarg	*btp = container_of(shrink,
1624					struct xfs_buftarg, bt_shrinker);
1625	return list_lru_shrink_count(&btp->bt_lru, sc);
1626}
1627
1628void
1629xfs_free_buftarg(
1630	struct xfs_mount	*mp,
1631	struct xfs_buftarg	*btp)
1632{
1633	unregister_shrinker(&btp->bt_shrinker);
1634	list_lru_destroy(&btp->bt_lru);
1635
1636	if (mp->m_flags & XFS_MOUNT_BARRIER)
1637		xfs_blkdev_issue_flush(btp);
1638
1639	kmem_free(btp);
1640}
1641
1642int
1643xfs_setsize_buftarg(
1644	xfs_buftarg_t		*btp,
1645	unsigned int		sectorsize)
1646{
1647	/* Set up metadata sector size info */
1648	btp->bt_meta_sectorsize = sectorsize;
1649	btp->bt_meta_sectormask = sectorsize - 1;
1650
1651	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1652		char name[BDEVNAME_SIZE];
1653
1654		bdevname(btp->bt_bdev, name);
1655
1656		xfs_warn(btp->bt_mount,
1657			"Cannot set_blocksize to %u on device %s",
1658			sectorsize, name);
1659		return -EINVAL;
1660	}
1661
1662	/* Set up device logical sector size mask */
1663	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1664	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1665
1666	return 0;
1667}
1668
1669/*
1670 * When allocating the initial buffer target we have not yet
1671 * read in the superblock, so don't know what sized sectors
1672 * are being used at this early stage.  Play safe.
1673 */
1674STATIC int
1675xfs_setsize_buftarg_early(
1676	xfs_buftarg_t		*btp,
1677	struct block_device	*bdev)
1678{
1679	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1680}
1681
1682xfs_buftarg_t *
1683xfs_alloc_buftarg(
1684	struct xfs_mount	*mp,
1685	struct block_device	*bdev)
1686{
1687	xfs_buftarg_t		*btp;
1688
1689	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1690
1691	btp->bt_mount = mp;
1692	btp->bt_dev =  bdev->bd_dev;
1693	btp->bt_bdev = bdev;
1694	btp->bt_bdi = blk_get_backing_dev_info(bdev);
1695
1696	if (xfs_setsize_buftarg_early(btp, bdev))
1697		goto error;
1698
1699	if (list_lru_init(&btp->bt_lru))
1700		goto error;
1701
1702	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1703	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1704	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1705	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1706	register_shrinker(&btp->bt_shrinker);
1707	return btp;
1708
1709error:
1710	kmem_free(btp);
1711	return NULL;
1712}
1713
1714/*
1715 * Add a buffer to the delayed write list.
1716 *
1717 * This queues a buffer for writeout if it hasn't already been.  Note that
1718 * neither this routine nor the buffer list submission functions perform
1719 * any internal synchronization.  It is expected that the lists are thread-local
1720 * to the callers.
1721 *
1722 * Returns true if we queued up the buffer, or false if it already had
1723 * been on the buffer list.
1724 */
1725bool
1726xfs_buf_delwri_queue(
1727	struct xfs_buf		*bp,
1728	struct list_head	*list)
1729{
1730	ASSERT(xfs_buf_islocked(bp));
1731	ASSERT(!(bp->b_flags & XBF_READ));
1732
1733	/*
1734	 * If the buffer is already marked delwri it already is queued up
1735	 * by someone else for imediate writeout.  Just ignore it in that
1736	 * case.
1737	 */
1738	if (bp->b_flags & _XBF_DELWRI_Q) {
1739		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1740		return false;
1741	}
1742
1743	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1744
1745	/*
1746	 * If a buffer gets written out synchronously or marked stale while it
1747	 * is on a delwri list we lazily remove it. To do this, the other party
1748	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1749	 * It remains referenced and on the list.  In a rare corner case it
1750	 * might get readded to a delwri list after the synchronous writeout, in
1751	 * which case we need just need to re-add the flag here.
1752	 */
1753	bp->b_flags |= _XBF_DELWRI_Q;
1754	if (list_empty(&bp->b_list)) {
1755		atomic_inc(&bp->b_hold);
1756		list_add_tail(&bp->b_list, list);
1757	}
1758
1759	return true;
1760}
1761
1762/*
1763 * Compare function is more complex than it needs to be because
1764 * the return value is only 32 bits and we are doing comparisons
1765 * on 64 bit values
1766 */
1767static int
1768xfs_buf_cmp(
1769	void		*priv,
1770	struct list_head *a,
1771	struct list_head *b)
1772{
1773	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1774	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1775	xfs_daddr_t		diff;
1776
1777	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1778	if (diff < 0)
1779		return -1;
1780	if (diff > 0)
1781		return 1;
1782	return 0;
1783}
1784
1785static int
1786__xfs_buf_delwri_submit(
1787	struct list_head	*buffer_list,
1788	struct list_head	*io_list,
1789	bool			wait)
1790{
1791	struct blk_plug		plug;
1792	struct xfs_buf		*bp, *n;
1793	int			pinned = 0;
1794
1795	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1796		if (!wait) {
1797			if (xfs_buf_ispinned(bp)) {
1798				pinned++;
1799				continue;
1800			}
1801			if (!xfs_buf_trylock(bp))
1802				continue;
1803		} else {
1804			xfs_buf_lock(bp);
1805		}
1806
1807		/*
1808		 * Someone else might have written the buffer synchronously or
1809		 * marked it stale in the meantime.  In that case only the
1810		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1811		 * reference and remove it from the list here.
1812		 */
1813		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1814			list_del_init(&bp->b_list);
1815			xfs_buf_relse(bp);
1816			continue;
1817		}
1818
1819		list_move_tail(&bp->b_list, io_list);
1820		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1821	}
1822
1823	list_sort(NULL, io_list, xfs_buf_cmp);
1824
1825	blk_start_plug(&plug);
1826	list_for_each_entry_safe(bp, n, io_list, b_list) {
1827		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
1828		bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1829
1830		/*
1831		 * we do all Io submission async. This means if we need to wait
1832		 * for IO completion we need to take an extra reference so the
1833		 * buffer is still valid on the other side.
1834		 */
1835		if (wait)
1836			xfs_buf_hold(bp);
1837		else
1838			list_del_init(&bp->b_list);
1839
1840		xfs_buf_submit(bp);
1841	}
1842	blk_finish_plug(&plug);
1843
1844	return pinned;
1845}
1846
1847/*
1848 * Write out a buffer list asynchronously.
1849 *
1850 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1851 * out and not wait for I/O completion on any of the buffers.  This interface
1852 * is only safely useable for callers that can track I/O completion by higher
1853 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1854 * function.
1855 */
1856int
1857xfs_buf_delwri_submit_nowait(
1858	struct list_head	*buffer_list)
1859{
1860	LIST_HEAD		(io_list);
1861	return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1862}
1863
1864/*
1865 * Write out a buffer list synchronously.
1866 *
1867 * This will take the @buffer_list, write all buffers out and wait for I/O
1868 * completion on all of the buffers. @buffer_list is consumed by the function,
1869 * so callers must have some other way of tracking buffers if they require such
1870 * functionality.
1871 */
1872int
1873xfs_buf_delwri_submit(
1874	struct list_head	*buffer_list)
1875{
1876	LIST_HEAD		(io_list);
1877	int			error = 0, error2;
1878	struct xfs_buf		*bp;
1879
1880	__xfs_buf_delwri_submit(buffer_list, &io_list, true);
1881
1882	/* Wait for IO to complete. */
1883	while (!list_empty(&io_list)) {
1884		bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1885
1886		list_del_init(&bp->b_list);
1887
1888		/* locking the buffer will wait for async IO completion. */
1889		xfs_buf_lock(bp);
1890		error2 = bp->b_error;
1891		xfs_buf_relse(bp);
1892		if (!error)
1893			error = error2;
1894	}
1895
1896	return error;
1897}
1898
1899int __init
1900xfs_buf_init(void)
1901{
1902	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1903						KM_ZONE_HWALIGN, NULL);
1904	if (!xfs_buf_zone)
1905		goto out;
1906
1907	return 0;
1908
1909 out:
1910	return -ENOMEM;
1911}
1912
1913void
1914xfs_buf_terminate(void)
1915{
1916	kmem_zone_destroy(xfs_buf_zone);
1917}
1918