1/*
2 * inode.c
3 *
4 * PURPOSE
5 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 *  This file is distributed under the terms of the GNU General Public
9 *  License (GPL). Copies of the GPL can be obtained from:
10 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11 *  Each contributing author retains all rights to their own work.
12 *
13 *  (C) 1998 Dave Boynton
14 *  (C) 1998-2004 Ben Fennema
15 *  (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 *  10/04/98 dgb  Added rudimentary directory functions
20 *  10/07/98      Fully working udf_block_map! It works!
21 *  11/25/98      bmap altered to better support extents
22 *  12/06/98 blf  partition support in udf_iget, udf_block_map
23 *                and udf_read_inode
24 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25 *                block boundaries (which is not actually allowed)
26 *  12/20/98      added support for strategy 4096
27 *  03/07/99      rewrote udf_block_map (again)
28 *                New funcs, inode_bmap, udf_next_aext
29 *  04/19/99      Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/writeback.h>
37#include <linux/slab.h>
38#include <linux/crc-itu-t.h>
39#include <linux/mpage.h>
40#include <linux/uio.h>
41
42#include "udf_i.h"
43#include "udf_sb.h"
44
45MODULE_AUTHOR("Ben Fennema");
46MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47MODULE_LICENSE("GPL");
48
49#define EXTENT_MERGE_SIZE 5
50
51static umode_t udf_convert_permissions(struct fileEntry *);
52static int udf_update_inode(struct inode *, int);
53static int udf_sync_inode(struct inode *inode);
54static int udf_alloc_i_data(struct inode *inode, size_t size);
55static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
56static int8_t udf_insert_aext(struct inode *, struct extent_position,
57			      struct kernel_lb_addr, uint32_t);
58static void udf_split_extents(struct inode *, int *, int, int,
59			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
60static void udf_prealloc_extents(struct inode *, int, int,
61				 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
62static void udf_merge_extents(struct inode *,
63			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
64static void udf_update_extents(struct inode *,
65			       struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
66			       struct extent_position *);
67static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
68
69static void __udf_clear_extent_cache(struct inode *inode)
70{
71	struct udf_inode_info *iinfo = UDF_I(inode);
72
73	if (iinfo->cached_extent.lstart != -1) {
74		brelse(iinfo->cached_extent.epos.bh);
75		iinfo->cached_extent.lstart = -1;
76	}
77}
78
79/* Invalidate extent cache */
80static void udf_clear_extent_cache(struct inode *inode)
81{
82	struct udf_inode_info *iinfo = UDF_I(inode);
83
84	spin_lock(&iinfo->i_extent_cache_lock);
85	__udf_clear_extent_cache(inode);
86	spin_unlock(&iinfo->i_extent_cache_lock);
87}
88
89/* Return contents of extent cache */
90static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
91				 loff_t *lbcount, struct extent_position *pos)
92{
93	struct udf_inode_info *iinfo = UDF_I(inode);
94	int ret = 0;
95
96	spin_lock(&iinfo->i_extent_cache_lock);
97	if ((iinfo->cached_extent.lstart <= bcount) &&
98	    (iinfo->cached_extent.lstart != -1)) {
99		/* Cache hit */
100		*lbcount = iinfo->cached_extent.lstart;
101		memcpy(pos, &iinfo->cached_extent.epos,
102		       sizeof(struct extent_position));
103		if (pos->bh)
104			get_bh(pos->bh);
105		ret = 1;
106	}
107	spin_unlock(&iinfo->i_extent_cache_lock);
108	return ret;
109}
110
111/* Add extent to extent cache */
112static void udf_update_extent_cache(struct inode *inode, loff_t estart,
113				    struct extent_position *pos, int next_epos)
114{
115	struct udf_inode_info *iinfo = UDF_I(inode);
116
117	spin_lock(&iinfo->i_extent_cache_lock);
118	/* Invalidate previously cached extent */
119	__udf_clear_extent_cache(inode);
120	if (pos->bh)
121		get_bh(pos->bh);
122	memcpy(&iinfo->cached_extent.epos, pos,
123	       sizeof(struct extent_position));
124	iinfo->cached_extent.lstart = estart;
125	if (next_epos)
126		switch (iinfo->i_alloc_type) {
127		case ICBTAG_FLAG_AD_SHORT:
128			iinfo->cached_extent.epos.offset -=
129			sizeof(struct short_ad);
130			break;
131		case ICBTAG_FLAG_AD_LONG:
132			iinfo->cached_extent.epos.offset -=
133			sizeof(struct long_ad);
134		}
135	spin_unlock(&iinfo->i_extent_cache_lock);
136}
137
138void udf_evict_inode(struct inode *inode)
139{
140	struct udf_inode_info *iinfo = UDF_I(inode);
141	int want_delete = 0;
142
143	if (!inode->i_nlink && !is_bad_inode(inode)) {
144		want_delete = 1;
145		udf_setsize(inode, 0);
146		udf_update_inode(inode, IS_SYNC(inode));
147	}
148	truncate_inode_pages_final(&inode->i_data);
149	invalidate_inode_buffers(inode);
150	clear_inode(inode);
151	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
152	    inode->i_size != iinfo->i_lenExtents) {
153		udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
154			 inode->i_ino, inode->i_mode,
155			 (unsigned long long)inode->i_size,
156			 (unsigned long long)iinfo->i_lenExtents);
157	}
158	kfree(iinfo->i_ext.i_data);
159	iinfo->i_ext.i_data = NULL;
160	udf_clear_extent_cache(inode);
161	if (want_delete) {
162		udf_free_inode(inode);
163	}
164}
165
166static void udf_write_failed(struct address_space *mapping, loff_t to)
167{
168	struct inode *inode = mapping->host;
169	struct udf_inode_info *iinfo = UDF_I(inode);
170	loff_t isize = inode->i_size;
171
172	if (to > isize) {
173		truncate_pagecache(inode, isize);
174		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
175			down_write(&iinfo->i_data_sem);
176			udf_clear_extent_cache(inode);
177			udf_truncate_extents(inode);
178			up_write(&iinfo->i_data_sem);
179		}
180	}
181}
182
183static int udf_writepage(struct page *page, struct writeback_control *wbc)
184{
185	return block_write_full_page(page, udf_get_block, wbc);
186}
187
188static int udf_writepages(struct address_space *mapping,
189			struct writeback_control *wbc)
190{
191	return mpage_writepages(mapping, wbc, udf_get_block);
192}
193
194static int udf_readpage(struct file *file, struct page *page)
195{
196	return mpage_readpage(page, udf_get_block);
197}
198
199static int udf_readpages(struct file *file, struct address_space *mapping,
200			struct list_head *pages, unsigned nr_pages)
201{
202	return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
203}
204
205static int udf_write_begin(struct file *file, struct address_space *mapping,
206			loff_t pos, unsigned len, unsigned flags,
207			struct page **pagep, void **fsdata)
208{
209	int ret;
210
211	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
212	if (unlikely(ret))
213		udf_write_failed(mapping, pos + len);
214	return ret;
215}
216
217static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
218			     loff_t offset)
219{
220	struct file *file = iocb->ki_filp;
221	struct address_space *mapping = file->f_mapping;
222	struct inode *inode = mapping->host;
223	size_t count = iov_iter_count(iter);
224	ssize_t ret;
225
226	ret = blockdev_direct_IO(iocb, inode, iter, offset, udf_get_block);
227	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228		udf_write_failed(mapping, offset + count);
229	return ret;
230}
231
232static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233{
234	return generic_block_bmap(mapping, block, udf_get_block);
235}
236
237const struct address_space_operations udf_aops = {
238	.readpage	= udf_readpage,
239	.readpages	= udf_readpages,
240	.writepage	= udf_writepage,
241	.writepages	= udf_writepages,
242	.write_begin	= udf_write_begin,
243	.write_end	= generic_write_end,
244	.direct_IO	= udf_direct_IO,
245	.bmap		= udf_bmap,
246};
247
248/*
249 * Expand file stored in ICB to a normal one-block-file
250 *
251 * This function requires i_data_sem for writing and releases it.
252 * This function requires i_mutex held
253 */
254int udf_expand_file_adinicb(struct inode *inode)
255{
256	struct page *page;
257	char *kaddr;
258	struct udf_inode_info *iinfo = UDF_I(inode);
259	int err;
260	struct writeback_control udf_wbc = {
261		.sync_mode = WB_SYNC_NONE,
262		.nr_to_write = 1,
263	};
264
265	WARN_ON_ONCE(!mutex_is_locked(&inode->i_mutex));
266	if (!iinfo->i_lenAlloc) {
267		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
268			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
269		else
270			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
271		/* from now on we have normal address_space methods */
272		inode->i_data.a_ops = &udf_aops;
273		up_write(&iinfo->i_data_sem);
274		mark_inode_dirty(inode);
275		return 0;
276	}
277	/*
278	 * Release i_data_sem so that we can lock a page - page lock ranks
279	 * above i_data_sem. i_mutex still protects us against file changes.
280	 */
281	up_write(&iinfo->i_data_sem);
282
283	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
284	if (!page)
285		return -ENOMEM;
286
287	if (!PageUptodate(page)) {
288		kaddr = kmap(page);
289		memset(kaddr + iinfo->i_lenAlloc, 0x00,
290		       PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
291		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
292			iinfo->i_lenAlloc);
293		flush_dcache_page(page);
294		SetPageUptodate(page);
295		kunmap(page);
296	}
297	down_write(&iinfo->i_data_sem);
298	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
299	       iinfo->i_lenAlloc);
300	iinfo->i_lenAlloc = 0;
301	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
302		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
303	else
304		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
305	/* from now on we have normal address_space methods */
306	inode->i_data.a_ops = &udf_aops;
307	up_write(&iinfo->i_data_sem);
308	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
309	if (err) {
310		/* Restore everything back so that we don't lose data... */
311		lock_page(page);
312		kaddr = kmap(page);
313		down_write(&iinfo->i_data_sem);
314		memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
315		       inode->i_size);
316		kunmap(page);
317		unlock_page(page);
318		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
319		inode->i_data.a_ops = &udf_adinicb_aops;
320		up_write(&iinfo->i_data_sem);
321	}
322	page_cache_release(page);
323	mark_inode_dirty(inode);
324
325	return err;
326}
327
328struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
329					   int *err)
330{
331	int newblock;
332	struct buffer_head *dbh = NULL;
333	struct kernel_lb_addr eloc;
334	uint8_t alloctype;
335	struct extent_position epos;
336
337	struct udf_fileident_bh sfibh, dfibh;
338	loff_t f_pos = udf_ext0_offset(inode);
339	int size = udf_ext0_offset(inode) + inode->i_size;
340	struct fileIdentDesc cfi, *sfi, *dfi;
341	struct udf_inode_info *iinfo = UDF_I(inode);
342
343	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
344		alloctype = ICBTAG_FLAG_AD_SHORT;
345	else
346		alloctype = ICBTAG_FLAG_AD_LONG;
347
348	if (!inode->i_size) {
349		iinfo->i_alloc_type = alloctype;
350		mark_inode_dirty(inode);
351		return NULL;
352	}
353
354	/* alloc block, and copy data to it */
355	*block = udf_new_block(inode->i_sb, inode,
356			       iinfo->i_location.partitionReferenceNum,
357			       iinfo->i_location.logicalBlockNum, err);
358	if (!(*block))
359		return NULL;
360	newblock = udf_get_pblock(inode->i_sb, *block,
361				  iinfo->i_location.partitionReferenceNum,
362				0);
363	if (!newblock)
364		return NULL;
365	dbh = udf_tgetblk(inode->i_sb, newblock);
366	if (!dbh)
367		return NULL;
368	lock_buffer(dbh);
369	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
370	set_buffer_uptodate(dbh);
371	unlock_buffer(dbh);
372	mark_buffer_dirty_inode(dbh, inode);
373
374	sfibh.soffset = sfibh.eoffset =
375			f_pos & (inode->i_sb->s_blocksize - 1);
376	sfibh.sbh = sfibh.ebh = NULL;
377	dfibh.soffset = dfibh.eoffset = 0;
378	dfibh.sbh = dfibh.ebh = dbh;
379	while (f_pos < size) {
380		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
381		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
382					 NULL, NULL, NULL);
383		if (!sfi) {
384			brelse(dbh);
385			return NULL;
386		}
387		iinfo->i_alloc_type = alloctype;
388		sfi->descTag.tagLocation = cpu_to_le32(*block);
389		dfibh.soffset = dfibh.eoffset;
390		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
391		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
392		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
393				 sfi->fileIdent +
394					le16_to_cpu(sfi->lengthOfImpUse))) {
395			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
396			brelse(dbh);
397			return NULL;
398		}
399	}
400	mark_buffer_dirty_inode(dbh, inode);
401
402	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
403		iinfo->i_lenAlloc);
404	iinfo->i_lenAlloc = 0;
405	eloc.logicalBlockNum = *block;
406	eloc.partitionReferenceNum =
407				iinfo->i_location.partitionReferenceNum;
408	iinfo->i_lenExtents = inode->i_size;
409	epos.bh = NULL;
410	epos.block = iinfo->i_location;
411	epos.offset = udf_file_entry_alloc_offset(inode);
412	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
413	/* UniqueID stuff */
414
415	brelse(epos.bh);
416	mark_inode_dirty(inode);
417	return dbh;
418}
419
420static int udf_get_block(struct inode *inode, sector_t block,
421			 struct buffer_head *bh_result, int create)
422{
423	int err, new;
424	sector_t phys = 0;
425	struct udf_inode_info *iinfo;
426
427	if (!create) {
428		phys = udf_block_map(inode, block);
429		if (phys)
430			map_bh(bh_result, inode->i_sb, phys);
431		return 0;
432	}
433
434	err = -EIO;
435	new = 0;
436	iinfo = UDF_I(inode);
437
438	down_write(&iinfo->i_data_sem);
439	if (block == iinfo->i_next_alloc_block + 1) {
440		iinfo->i_next_alloc_block++;
441		iinfo->i_next_alloc_goal++;
442	}
443
444	udf_clear_extent_cache(inode);
445	phys = inode_getblk(inode, block, &err, &new);
446	if (!phys)
447		goto abort;
448
449	if (new)
450		set_buffer_new(bh_result);
451	map_bh(bh_result, inode->i_sb, phys);
452
453abort:
454	up_write(&iinfo->i_data_sem);
455	return err;
456}
457
458static struct buffer_head *udf_getblk(struct inode *inode, long block,
459				      int create, int *err)
460{
461	struct buffer_head *bh;
462	struct buffer_head dummy;
463
464	dummy.b_state = 0;
465	dummy.b_blocknr = -1000;
466	*err = udf_get_block(inode, block, &dummy, create);
467	if (!*err && buffer_mapped(&dummy)) {
468		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
469		if (buffer_new(&dummy)) {
470			lock_buffer(bh);
471			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
472			set_buffer_uptodate(bh);
473			unlock_buffer(bh);
474			mark_buffer_dirty_inode(bh, inode);
475		}
476		return bh;
477	}
478
479	return NULL;
480}
481
482/* Extend the file by 'blocks' blocks, return the number of extents added */
483static int udf_do_extend_file(struct inode *inode,
484			      struct extent_position *last_pos,
485			      struct kernel_long_ad *last_ext,
486			      sector_t blocks)
487{
488	sector_t add;
489	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
490	struct super_block *sb = inode->i_sb;
491	struct kernel_lb_addr prealloc_loc = {};
492	int prealloc_len = 0;
493	struct udf_inode_info *iinfo;
494	int err;
495
496	/* The previous extent is fake and we should not extend by anything
497	 * - there's nothing to do... */
498	if (!blocks && fake)
499		return 0;
500
501	iinfo = UDF_I(inode);
502	/* Round the last extent up to a multiple of block size */
503	if (last_ext->extLength & (sb->s_blocksize - 1)) {
504		last_ext->extLength =
505			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
506			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
507			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
508		iinfo->i_lenExtents =
509			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
510			~(sb->s_blocksize - 1);
511	}
512
513	/* Last extent are just preallocated blocks? */
514	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
515						EXT_NOT_RECORDED_ALLOCATED) {
516		/* Save the extent so that we can reattach it to the end */
517		prealloc_loc = last_ext->extLocation;
518		prealloc_len = last_ext->extLength;
519		/* Mark the extent as a hole */
520		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
521			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
522		last_ext->extLocation.logicalBlockNum = 0;
523		last_ext->extLocation.partitionReferenceNum = 0;
524	}
525
526	/* Can we merge with the previous extent? */
527	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
528					EXT_NOT_RECORDED_NOT_ALLOCATED) {
529		add = ((1 << 30) - sb->s_blocksize -
530			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
531			sb->s_blocksize_bits;
532		if (add > blocks)
533			add = blocks;
534		blocks -= add;
535		last_ext->extLength += add << sb->s_blocksize_bits;
536	}
537
538	if (fake) {
539		udf_add_aext(inode, last_pos, &last_ext->extLocation,
540			     last_ext->extLength, 1);
541		count++;
542	} else
543		udf_write_aext(inode, last_pos, &last_ext->extLocation,
544				last_ext->extLength, 1);
545
546	/* Managed to do everything necessary? */
547	if (!blocks)
548		goto out;
549
550	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
551	last_ext->extLocation.logicalBlockNum = 0;
552	last_ext->extLocation.partitionReferenceNum = 0;
553	add = (1 << (30-sb->s_blocksize_bits)) - 1;
554	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
555				(add << sb->s_blocksize_bits);
556
557	/* Create enough extents to cover the whole hole */
558	while (blocks > add) {
559		blocks -= add;
560		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
561				   last_ext->extLength, 1);
562		if (err)
563			return err;
564		count++;
565	}
566	if (blocks) {
567		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
568			(blocks << sb->s_blocksize_bits);
569		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
570				   last_ext->extLength, 1);
571		if (err)
572			return err;
573		count++;
574	}
575
576out:
577	/* Do we have some preallocated blocks saved? */
578	if (prealloc_len) {
579		err = udf_add_aext(inode, last_pos, &prealloc_loc,
580				   prealloc_len, 1);
581		if (err)
582			return err;
583		last_ext->extLocation = prealloc_loc;
584		last_ext->extLength = prealloc_len;
585		count++;
586	}
587
588	/* last_pos should point to the last written extent... */
589	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
590		last_pos->offset -= sizeof(struct short_ad);
591	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
592		last_pos->offset -= sizeof(struct long_ad);
593	else
594		return -EIO;
595
596	return count;
597}
598
599static int udf_extend_file(struct inode *inode, loff_t newsize)
600{
601
602	struct extent_position epos;
603	struct kernel_lb_addr eloc;
604	uint32_t elen;
605	int8_t etype;
606	struct super_block *sb = inode->i_sb;
607	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
608	int adsize;
609	struct udf_inode_info *iinfo = UDF_I(inode);
610	struct kernel_long_ad extent;
611	int err;
612
613	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
614		adsize = sizeof(struct short_ad);
615	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
616		adsize = sizeof(struct long_ad);
617	else
618		BUG();
619
620	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
621
622	/* File has extent covering the new size (could happen when extending
623	 * inside a block)? */
624	if (etype != -1)
625		return 0;
626	if (newsize & (sb->s_blocksize - 1))
627		offset++;
628	/* Extended file just to the boundary of the last file block? */
629	if (offset == 0)
630		return 0;
631
632	/* Truncate is extending the file by 'offset' blocks */
633	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
634	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
635		/* File has no extents at all or has empty last
636		 * indirect extent! Create a fake extent... */
637		extent.extLocation.logicalBlockNum = 0;
638		extent.extLocation.partitionReferenceNum = 0;
639		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
640	} else {
641		epos.offset -= adsize;
642		etype = udf_next_aext(inode, &epos, &extent.extLocation,
643				      &extent.extLength, 0);
644		extent.extLength |= etype << 30;
645	}
646	err = udf_do_extend_file(inode, &epos, &extent, offset);
647	if (err < 0)
648		goto out;
649	err = 0;
650	iinfo->i_lenExtents = newsize;
651out:
652	brelse(epos.bh);
653	return err;
654}
655
656static sector_t inode_getblk(struct inode *inode, sector_t block,
657			     int *err, int *new)
658{
659	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
660	struct extent_position prev_epos, cur_epos, next_epos;
661	int count = 0, startnum = 0, endnum = 0;
662	uint32_t elen = 0, tmpelen;
663	struct kernel_lb_addr eloc, tmpeloc;
664	int c = 1;
665	loff_t lbcount = 0, b_off = 0;
666	uint32_t newblocknum, newblock;
667	sector_t offset = 0;
668	int8_t etype;
669	struct udf_inode_info *iinfo = UDF_I(inode);
670	int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
671	int lastblock = 0;
672	bool isBeyondEOF;
673
674	*err = 0;
675	*new = 0;
676	prev_epos.offset = udf_file_entry_alloc_offset(inode);
677	prev_epos.block = iinfo->i_location;
678	prev_epos.bh = NULL;
679	cur_epos = next_epos = prev_epos;
680	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
681
682	/* find the extent which contains the block we are looking for.
683	   alternate between laarr[0] and laarr[1] for locations of the
684	   current extent, and the previous extent */
685	do {
686		if (prev_epos.bh != cur_epos.bh) {
687			brelse(prev_epos.bh);
688			get_bh(cur_epos.bh);
689			prev_epos.bh = cur_epos.bh;
690		}
691		if (cur_epos.bh != next_epos.bh) {
692			brelse(cur_epos.bh);
693			get_bh(next_epos.bh);
694			cur_epos.bh = next_epos.bh;
695		}
696
697		lbcount += elen;
698
699		prev_epos.block = cur_epos.block;
700		cur_epos.block = next_epos.block;
701
702		prev_epos.offset = cur_epos.offset;
703		cur_epos.offset = next_epos.offset;
704
705		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
706		if (etype == -1)
707			break;
708
709		c = !c;
710
711		laarr[c].extLength = (etype << 30) | elen;
712		laarr[c].extLocation = eloc;
713
714		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
715			pgoal = eloc.logicalBlockNum +
716				((elen + inode->i_sb->s_blocksize - 1) >>
717				 inode->i_sb->s_blocksize_bits);
718
719		count++;
720	} while (lbcount + elen <= b_off);
721
722	b_off -= lbcount;
723	offset = b_off >> inode->i_sb->s_blocksize_bits;
724	/*
725	 * Move prev_epos and cur_epos into indirect extent if we are at
726	 * the pointer to it
727	 */
728	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
729	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
730
731	/* if the extent is allocated and recorded, return the block
732	   if the extent is not a multiple of the blocksize, round up */
733
734	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
735		if (elen & (inode->i_sb->s_blocksize - 1)) {
736			elen = EXT_RECORDED_ALLOCATED |
737				((elen + inode->i_sb->s_blocksize - 1) &
738				 ~(inode->i_sb->s_blocksize - 1));
739			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
740		}
741		brelse(prev_epos.bh);
742		brelse(cur_epos.bh);
743		brelse(next_epos.bh);
744		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
745		return newblock;
746	}
747
748	/* Are we beyond EOF? */
749	if (etype == -1) {
750		int ret;
751		isBeyondEOF = true;
752		if (count) {
753			if (c)
754				laarr[0] = laarr[1];
755			startnum = 1;
756		} else {
757			/* Create a fake extent when there's not one */
758			memset(&laarr[0].extLocation, 0x00,
759				sizeof(struct kernel_lb_addr));
760			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
761			/* Will udf_do_extend_file() create real extent from
762			   a fake one? */
763			startnum = (offset > 0);
764		}
765		/* Create extents for the hole between EOF and offset */
766		ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
767		if (ret < 0) {
768			brelse(prev_epos.bh);
769			brelse(cur_epos.bh);
770			brelse(next_epos.bh);
771			*err = ret;
772			return 0;
773		}
774		c = 0;
775		offset = 0;
776		count += ret;
777		/* We are not covered by a preallocated extent? */
778		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
779						EXT_NOT_RECORDED_ALLOCATED) {
780			/* Is there any real extent? - otherwise we overwrite
781			 * the fake one... */
782			if (count)
783				c = !c;
784			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
785				inode->i_sb->s_blocksize;
786			memset(&laarr[c].extLocation, 0x00,
787				sizeof(struct kernel_lb_addr));
788			count++;
789		}
790		endnum = c + 1;
791		lastblock = 1;
792	} else {
793		isBeyondEOF = false;
794		endnum = startnum = ((count > 2) ? 2 : count);
795
796		/* if the current extent is in position 0,
797		   swap it with the previous */
798		if (!c && count != 1) {
799			laarr[2] = laarr[0];
800			laarr[0] = laarr[1];
801			laarr[1] = laarr[2];
802			c = 1;
803		}
804
805		/* if the current block is located in an extent,
806		   read the next extent */
807		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
808		if (etype != -1) {
809			laarr[c + 1].extLength = (etype << 30) | elen;
810			laarr[c + 1].extLocation = eloc;
811			count++;
812			startnum++;
813			endnum++;
814		} else
815			lastblock = 1;
816	}
817
818	/* if the current extent is not recorded but allocated, get the
819	 * block in the extent corresponding to the requested block */
820	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
821		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
822	else { /* otherwise, allocate a new block */
823		if (iinfo->i_next_alloc_block == block)
824			goal = iinfo->i_next_alloc_goal;
825
826		if (!goal) {
827			if (!(goal = pgoal)) /* XXX: what was intended here? */
828				goal = iinfo->i_location.logicalBlockNum + 1;
829		}
830
831		newblocknum = udf_new_block(inode->i_sb, inode,
832				iinfo->i_location.partitionReferenceNum,
833				goal, err);
834		if (!newblocknum) {
835			brelse(prev_epos.bh);
836			brelse(cur_epos.bh);
837			brelse(next_epos.bh);
838			*err = -ENOSPC;
839			return 0;
840		}
841		if (isBeyondEOF)
842			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
843	}
844
845	/* if the extent the requsted block is located in contains multiple
846	 * blocks, split the extent into at most three extents. blocks prior
847	 * to requested block, requested block, and blocks after requested
848	 * block */
849	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
850
851#ifdef UDF_PREALLOCATE
852	/* We preallocate blocks only for regular files. It also makes sense
853	 * for directories but there's a problem when to drop the
854	 * preallocation. We might use some delayed work for that but I feel
855	 * it's overengineering for a filesystem like UDF. */
856	if (S_ISREG(inode->i_mode))
857		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
858#endif
859
860	/* merge any continuous blocks in laarr */
861	udf_merge_extents(inode, laarr, &endnum);
862
863	/* write back the new extents, inserting new extents if the new number
864	 * of extents is greater than the old number, and deleting extents if
865	 * the new number of extents is less than the old number */
866	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
867
868	brelse(prev_epos.bh);
869	brelse(cur_epos.bh);
870	brelse(next_epos.bh);
871
872	newblock = udf_get_pblock(inode->i_sb, newblocknum,
873				iinfo->i_location.partitionReferenceNum, 0);
874	if (!newblock) {
875		*err = -EIO;
876		return 0;
877	}
878	*new = 1;
879	iinfo->i_next_alloc_block = block;
880	iinfo->i_next_alloc_goal = newblocknum;
881	inode->i_ctime = current_fs_time(inode->i_sb);
882
883	if (IS_SYNC(inode))
884		udf_sync_inode(inode);
885	else
886		mark_inode_dirty(inode);
887
888	return newblock;
889}
890
891static void udf_split_extents(struct inode *inode, int *c, int offset,
892			      int newblocknum,
893			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
894			      int *endnum)
895{
896	unsigned long blocksize = inode->i_sb->s_blocksize;
897	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
898
899	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
900	    (laarr[*c].extLength >> 30) ==
901				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
902		int curr = *c;
903		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
904			    blocksize - 1) >> blocksize_bits;
905		int8_t etype = (laarr[curr].extLength >> 30);
906
907		if (blen == 1)
908			;
909		else if (!offset || blen == offset + 1) {
910			laarr[curr + 2] = laarr[curr + 1];
911			laarr[curr + 1] = laarr[curr];
912		} else {
913			laarr[curr + 3] = laarr[curr + 1];
914			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
915		}
916
917		if (offset) {
918			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
919				udf_free_blocks(inode->i_sb, inode,
920						&laarr[curr].extLocation,
921						0, offset);
922				laarr[curr].extLength =
923					EXT_NOT_RECORDED_NOT_ALLOCATED |
924					(offset << blocksize_bits);
925				laarr[curr].extLocation.logicalBlockNum = 0;
926				laarr[curr].extLocation.
927						partitionReferenceNum = 0;
928			} else
929				laarr[curr].extLength = (etype << 30) |
930					(offset << blocksize_bits);
931			curr++;
932			(*c)++;
933			(*endnum)++;
934		}
935
936		laarr[curr].extLocation.logicalBlockNum = newblocknum;
937		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
938			laarr[curr].extLocation.partitionReferenceNum =
939				UDF_I(inode)->i_location.partitionReferenceNum;
940		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
941			blocksize;
942		curr++;
943
944		if (blen != offset + 1) {
945			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
946				laarr[curr].extLocation.logicalBlockNum +=
947								offset + 1;
948			laarr[curr].extLength = (etype << 30) |
949				((blen - (offset + 1)) << blocksize_bits);
950			curr++;
951			(*endnum)++;
952		}
953	}
954}
955
956static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
957				 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
958				 int *endnum)
959{
960	int start, length = 0, currlength = 0, i;
961
962	if (*endnum >= (c + 1)) {
963		if (!lastblock)
964			return;
965		else
966			start = c;
967	} else {
968		if ((laarr[c + 1].extLength >> 30) ==
969					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
970			start = c + 1;
971			length = currlength =
972				(((laarr[c + 1].extLength &
973					UDF_EXTENT_LENGTH_MASK) +
974				inode->i_sb->s_blocksize - 1) >>
975				inode->i_sb->s_blocksize_bits);
976		} else
977			start = c;
978	}
979
980	for (i = start + 1; i <= *endnum; i++) {
981		if (i == *endnum) {
982			if (lastblock)
983				length += UDF_DEFAULT_PREALLOC_BLOCKS;
984		} else if ((laarr[i].extLength >> 30) ==
985				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
986			length += (((laarr[i].extLength &
987						UDF_EXTENT_LENGTH_MASK) +
988				    inode->i_sb->s_blocksize - 1) >>
989				    inode->i_sb->s_blocksize_bits);
990		} else
991			break;
992	}
993
994	if (length) {
995		int next = laarr[start].extLocation.logicalBlockNum +
996			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
997			  inode->i_sb->s_blocksize - 1) >>
998			  inode->i_sb->s_blocksize_bits);
999		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1000				laarr[start].extLocation.partitionReferenceNum,
1001				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1002				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1003				currlength);
1004		if (numalloc) 	{
1005			if (start == (c + 1))
1006				laarr[start].extLength +=
1007					(numalloc <<
1008					 inode->i_sb->s_blocksize_bits);
1009			else {
1010				memmove(&laarr[c + 2], &laarr[c + 1],
1011					sizeof(struct long_ad) * (*endnum - (c + 1)));
1012				(*endnum)++;
1013				laarr[c + 1].extLocation.logicalBlockNum = next;
1014				laarr[c + 1].extLocation.partitionReferenceNum =
1015					laarr[c].extLocation.
1016							partitionReferenceNum;
1017				laarr[c + 1].extLength =
1018					EXT_NOT_RECORDED_ALLOCATED |
1019					(numalloc <<
1020					 inode->i_sb->s_blocksize_bits);
1021				start = c + 1;
1022			}
1023
1024			for (i = start + 1; numalloc && i < *endnum; i++) {
1025				int elen = ((laarr[i].extLength &
1026						UDF_EXTENT_LENGTH_MASK) +
1027					    inode->i_sb->s_blocksize - 1) >>
1028					    inode->i_sb->s_blocksize_bits;
1029
1030				if (elen > numalloc) {
1031					laarr[i].extLength -=
1032						(numalloc <<
1033						 inode->i_sb->s_blocksize_bits);
1034					numalloc = 0;
1035				} else {
1036					numalloc -= elen;
1037					if (*endnum > (i + 1))
1038						memmove(&laarr[i],
1039							&laarr[i + 1],
1040							sizeof(struct long_ad) *
1041							(*endnum - (i + 1)));
1042					i--;
1043					(*endnum)--;
1044				}
1045			}
1046			UDF_I(inode)->i_lenExtents +=
1047				numalloc << inode->i_sb->s_blocksize_bits;
1048		}
1049	}
1050}
1051
1052static void udf_merge_extents(struct inode *inode,
1053			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1054			      int *endnum)
1055{
1056	int i;
1057	unsigned long blocksize = inode->i_sb->s_blocksize;
1058	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1059
1060	for (i = 0; i < (*endnum - 1); i++) {
1061		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1062		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1063
1064		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1065			(((li->extLength >> 30) ==
1066				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1067			((lip1->extLocation.logicalBlockNum -
1068			  li->extLocation.logicalBlockNum) ==
1069			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1070			blocksize - 1) >> blocksize_bits)))) {
1071
1072			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1073				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1074				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1075				lip1->extLength = (lip1->extLength -
1076						  (li->extLength &
1077						   UDF_EXTENT_LENGTH_MASK) +
1078						   UDF_EXTENT_LENGTH_MASK) &
1079							~(blocksize - 1);
1080				li->extLength = (li->extLength &
1081						 UDF_EXTENT_FLAG_MASK) +
1082						(UDF_EXTENT_LENGTH_MASK + 1) -
1083						blocksize;
1084				lip1->extLocation.logicalBlockNum =
1085					li->extLocation.logicalBlockNum +
1086					((li->extLength &
1087						UDF_EXTENT_LENGTH_MASK) >>
1088						blocksize_bits);
1089			} else {
1090				li->extLength = lip1->extLength +
1091					(((li->extLength &
1092						UDF_EXTENT_LENGTH_MASK) +
1093					 blocksize - 1) & ~(blocksize - 1));
1094				if (*endnum > (i + 2))
1095					memmove(&laarr[i + 1], &laarr[i + 2],
1096						sizeof(struct long_ad) *
1097						(*endnum - (i + 2)));
1098				i--;
1099				(*endnum)--;
1100			}
1101		} else if (((li->extLength >> 30) ==
1102				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1103			   ((lip1->extLength >> 30) ==
1104				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1105			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1106					((li->extLength &
1107					  UDF_EXTENT_LENGTH_MASK) +
1108					 blocksize - 1) >> blocksize_bits);
1109			li->extLocation.logicalBlockNum = 0;
1110			li->extLocation.partitionReferenceNum = 0;
1111
1112			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1113			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1114			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1115				lip1->extLength = (lip1->extLength -
1116						   (li->extLength &
1117						   UDF_EXTENT_LENGTH_MASK) +
1118						   UDF_EXTENT_LENGTH_MASK) &
1119						   ~(blocksize - 1);
1120				li->extLength = (li->extLength &
1121						 UDF_EXTENT_FLAG_MASK) +
1122						(UDF_EXTENT_LENGTH_MASK + 1) -
1123						blocksize;
1124			} else {
1125				li->extLength = lip1->extLength +
1126					(((li->extLength &
1127						UDF_EXTENT_LENGTH_MASK) +
1128					  blocksize - 1) & ~(blocksize - 1));
1129				if (*endnum > (i + 2))
1130					memmove(&laarr[i + 1], &laarr[i + 2],
1131						sizeof(struct long_ad) *
1132						(*endnum - (i + 2)));
1133				i--;
1134				(*endnum)--;
1135			}
1136		} else if ((li->extLength >> 30) ==
1137					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1138			udf_free_blocks(inode->i_sb, inode,
1139					&li->extLocation, 0,
1140					((li->extLength &
1141						UDF_EXTENT_LENGTH_MASK) +
1142					 blocksize - 1) >> blocksize_bits);
1143			li->extLocation.logicalBlockNum = 0;
1144			li->extLocation.partitionReferenceNum = 0;
1145			li->extLength = (li->extLength &
1146						UDF_EXTENT_LENGTH_MASK) |
1147						EXT_NOT_RECORDED_NOT_ALLOCATED;
1148		}
1149	}
1150}
1151
1152static void udf_update_extents(struct inode *inode,
1153			       struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1154			       int startnum, int endnum,
1155			       struct extent_position *epos)
1156{
1157	int start = 0, i;
1158	struct kernel_lb_addr tmploc;
1159	uint32_t tmplen;
1160
1161	if (startnum > endnum) {
1162		for (i = 0; i < (startnum - endnum); i++)
1163			udf_delete_aext(inode, *epos, laarr[i].extLocation,
1164					laarr[i].extLength);
1165	} else if (startnum < endnum) {
1166		for (i = 0; i < (endnum - startnum); i++) {
1167			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1168					laarr[i].extLength);
1169			udf_next_aext(inode, epos, &laarr[i].extLocation,
1170				      &laarr[i].extLength, 1);
1171			start++;
1172		}
1173	}
1174
1175	for (i = start; i < endnum; i++) {
1176		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1177		udf_write_aext(inode, epos, &laarr[i].extLocation,
1178			       laarr[i].extLength, 1);
1179	}
1180}
1181
1182struct buffer_head *udf_bread(struct inode *inode, int block,
1183			      int create, int *err)
1184{
1185	struct buffer_head *bh = NULL;
1186
1187	bh = udf_getblk(inode, block, create, err);
1188	if (!bh)
1189		return NULL;
1190
1191	if (buffer_uptodate(bh))
1192		return bh;
1193
1194	ll_rw_block(READ, 1, &bh);
1195
1196	wait_on_buffer(bh);
1197	if (buffer_uptodate(bh))
1198		return bh;
1199
1200	brelse(bh);
1201	*err = -EIO;
1202	return NULL;
1203}
1204
1205int udf_setsize(struct inode *inode, loff_t newsize)
1206{
1207	int err;
1208	struct udf_inode_info *iinfo;
1209	int bsize = 1 << inode->i_blkbits;
1210
1211	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1212	      S_ISLNK(inode->i_mode)))
1213		return -EINVAL;
1214	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1215		return -EPERM;
1216
1217	iinfo = UDF_I(inode);
1218	if (newsize > inode->i_size) {
1219		down_write(&iinfo->i_data_sem);
1220		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1221			if (bsize <
1222			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1223				err = udf_expand_file_adinicb(inode);
1224				if (err)
1225					return err;
1226				down_write(&iinfo->i_data_sem);
1227			} else {
1228				iinfo->i_lenAlloc = newsize;
1229				goto set_size;
1230			}
1231		}
1232		err = udf_extend_file(inode, newsize);
1233		if (err) {
1234			up_write(&iinfo->i_data_sem);
1235			return err;
1236		}
1237set_size:
1238		truncate_setsize(inode, newsize);
1239		up_write(&iinfo->i_data_sem);
1240	} else {
1241		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1242			down_write(&iinfo->i_data_sem);
1243			udf_clear_extent_cache(inode);
1244			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1245			       0x00, bsize - newsize -
1246			       udf_file_entry_alloc_offset(inode));
1247			iinfo->i_lenAlloc = newsize;
1248			truncate_setsize(inode, newsize);
1249			up_write(&iinfo->i_data_sem);
1250			goto update_time;
1251		}
1252		err = block_truncate_page(inode->i_mapping, newsize,
1253					  udf_get_block);
1254		if (err)
1255			return err;
1256		down_write(&iinfo->i_data_sem);
1257		udf_clear_extent_cache(inode);
1258		truncate_setsize(inode, newsize);
1259		udf_truncate_extents(inode);
1260		up_write(&iinfo->i_data_sem);
1261	}
1262update_time:
1263	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1264	if (IS_SYNC(inode))
1265		udf_sync_inode(inode);
1266	else
1267		mark_inode_dirty(inode);
1268	return 0;
1269}
1270
1271/*
1272 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1273 * arbitrary - just that we hopefully don't limit any real use of rewritten
1274 * inode on write-once media but avoid looping for too long on corrupted media.
1275 */
1276#define UDF_MAX_ICB_NESTING 1024
1277
1278static int udf_read_inode(struct inode *inode, bool hidden_inode)
1279{
1280	struct buffer_head *bh = NULL;
1281	struct fileEntry *fe;
1282	struct extendedFileEntry *efe;
1283	uint16_t ident;
1284	struct udf_inode_info *iinfo = UDF_I(inode);
1285	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1286	struct kernel_lb_addr *iloc = &iinfo->i_location;
1287	unsigned int link_count;
1288	unsigned int indirections = 0;
1289	int bs = inode->i_sb->s_blocksize;
1290	int ret = -EIO;
1291
1292reread:
1293	if (iloc->logicalBlockNum >=
1294	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1295		udf_debug("block=%d, partition=%d out of range\n",
1296			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1297		return -EIO;
1298	}
1299
1300	/*
1301	 * Set defaults, but the inode is still incomplete!
1302	 * Note: get_new_inode() sets the following on a new inode:
1303	 *      i_sb = sb
1304	 *      i_no = ino
1305	 *      i_flags = sb->s_flags
1306	 *      i_state = 0
1307	 * clean_inode(): zero fills and sets
1308	 *      i_count = 1
1309	 *      i_nlink = 1
1310	 *      i_op = NULL;
1311	 */
1312	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1313	if (!bh) {
1314		udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1315		return -EIO;
1316	}
1317
1318	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1319	    ident != TAG_IDENT_USE) {
1320		udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1321			inode->i_ino, ident);
1322		goto out;
1323	}
1324
1325	fe = (struct fileEntry *)bh->b_data;
1326	efe = (struct extendedFileEntry *)bh->b_data;
1327
1328	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1329		struct buffer_head *ibh;
1330
1331		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1332		if (ident == TAG_IDENT_IE && ibh) {
1333			struct kernel_lb_addr loc;
1334			struct indirectEntry *ie;
1335
1336			ie = (struct indirectEntry *)ibh->b_data;
1337			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1338
1339			if (ie->indirectICB.extLength) {
1340				brelse(ibh);
1341				memcpy(&iinfo->i_location, &loc,
1342				       sizeof(struct kernel_lb_addr));
1343				if (++indirections > UDF_MAX_ICB_NESTING) {
1344					udf_err(inode->i_sb,
1345						"too many ICBs in ICB hierarchy"
1346						" (max %d supported)\n",
1347						UDF_MAX_ICB_NESTING);
1348					goto out;
1349				}
1350				brelse(bh);
1351				goto reread;
1352			}
1353		}
1354		brelse(ibh);
1355	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1356		udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1357			le16_to_cpu(fe->icbTag.strategyType));
1358		goto out;
1359	}
1360	if (fe->icbTag.strategyType == cpu_to_le16(4))
1361		iinfo->i_strat4096 = 0;
1362	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1363		iinfo->i_strat4096 = 1;
1364
1365	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1366							ICBTAG_FLAG_AD_MASK;
1367	iinfo->i_unique = 0;
1368	iinfo->i_lenEAttr = 0;
1369	iinfo->i_lenExtents = 0;
1370	iinfo->i_lenAlloc = 0;
1371	iinfo->i_next_alloc_block = 0;
1372	iinfo->i_next_alloc_goal = 0;
1373	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1374		iinfo->i_efe = 1;
1375		iinfo->i_use = 0;
1376		ret = udf_alloc_i_data(inode, bs -
1377					sizeof(struct extendedFileEntry));
1378		if (ret)
1379			goto out;
1380		memcpy(iinfo->i_ext.i_data,
1381		       bh->b_data + sizeof(struct extendedFileEntry),
1382		       bs - sizeof(struct extendedFileEntry));
1383	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1384		iinfo->i_efe = 0;
1385		iinfo->i_use = 0;
1386		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1387		if (ret)
1388			goto out;
1389		memcpy(iinfo->i_ext.i_data,
1390		       bh->b_data + sizeof(struct fileEntry),
1391		       bs - sizeof(struct fileEntry));
1392	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1393		iinfo->i_efe = 0;
1394		iinfo->i_use = 1;
1395		iinfo->i_lenAlloc = le32_to_cpu(
1396				((struct unallocSpaceEntry *)bh->b_data)->
1397				 lengthAllocDescs);
1398		ret = udf_alloc_i_data(inode, bs -
1399					sizeof(struct unallocSpaceEntry));
1400		if (ret)
1401			goto out;
1402		memcpy(iinfo->i_ext.i_data,
1403		       bh->b_data + sizeof(struct unallocSpaceEntry),
1404		       bs - sizeof(struct unallocSpaceEntry));
1405		return 0;
1406	}
1407
1408	ret = -EIO;
1409	read_lock(&sbi->s_cred_lock);
1410	i_uid_write(inode, le32_to_cpu(fe->uid));
1411	if (!uid_valid(inode->i_uid) ||
1412	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1413	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1414		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1415
1416	i_gid_write(inode, le32_to_cpu(fe->gid));
1417	if (!gid_valid(inode->i_gid) ||
1418	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1419	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1420		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1421
1422	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1423			sbi->s_fmode != UDF_INVALID_MODE)
1424		inode->i_mode = sbi->s_fmode;
1425	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1426			sbi->s_dmode != UDF_INVALID_MODE)
1427		inode->i_mode = sbi->s_dmode;
1428	else
1429		inode->i_mode = udf_convert_permissions(fe);
1430	inode->i_mode &= ~sbi->s_umask;
1431	read_unlock(&sbi->s_cred_lock);
1432
1433	link_count = le16_to_cpu(fe->fileLinkCount);
1434	if (!link_count) {
1435		if (!hidden_inode) {
1436			ret = -ESTALE;
1437			goto out;
1438		}
1439		link_count = 1;
1440	}
1441	set_nlink(inode, link_count);
1442
1443	inode->i_size = le64_to_cpu(fe->informationLength);
1444	iinfo->i_lenExtents = inode->i_size;
1445
1446	if (iinfo->i_efe == 0) {
1447		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1448			(inode->i_sb->s_blocksize_bits - 9);
1449
1450		if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1451			inode->i_atime = sbi->s_record_time;
1452
1453		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1454					    fe->modificationTime))
1455			inode->i_mtime = sbi->s_record_time;
1456
1457		if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1458			inode->i_ctime = sbi->s_record_time;
1459
1460		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1461		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1462		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1463		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1464	} else {
1465		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1466		    (inode->i_sb->s_blocksize_bits - 9);
1467
1468		if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1469			inode->i_atime = sbi->s_record_time;
1470
1471		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1472					    efe->modificationTime))
1473			inode->i_mtime = sbi->s_record_time;
1474
1475		if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1476			iinfo->i_crtime = sbi->s_record_time;
1477
1478		if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1479			inode->i_ctime = sbi->s_record_time;
1480
1481		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1482		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1483		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1484		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1485	}
1486	inode->i_generation = iinfo->i_unique;
1487
1488	/*
1489	 * Sanity check length of allocation descriptors and extended attrs to
1490	 * avoid integer overflows
1491	 */
1492	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1493		goto out;
1494	/* Now do exact checks */
1495	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1496		goto out;
1497	/* Sanity checks for files in ICB so that we don't get confused later */
1498	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1499		/*
1500		 * For file in ICB data is stored in allocation descriptor
1501		 * so sizes should match
1502		 */
1503		if (iinfo->i_lenAlloc != inode->i_size)
1504			goto out;
1505		/* File in ICB has to fit in there... */
1506		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1507			goto out;
1508	}
1509
1510	switch (fe->icbTag.fileType) {
1511	case ICBTAG_FILE_TYPE_DIRECTORY:
1512		inode->i_op = &udf_dir_inode_operations;
1513		inode->i_fop = &udf_dir_operations;
1514		inode->i_mode |= S_IFDIR;
1515		inc_nlink(inode);
1516		break;
1517	case ICBTAG_FILE_TYPE_REALTIME:
1518	case ICBTAG_FILE_TYPE_REGULAR:
1519	case ICBTAG_FILE_TYPE_UNDEF:
1520	case ICBTAG_FILE_TYPE_VAT20:
1521		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1522			inode->i_data.a_ops = &udf_adinicb_aops;
1523		else
1524			inode->i_data.a_ops = &udf_aops;
1525		inode->i_op = &udf_file_inode_operations;
1526		inode->i_fop = &udf_file_operations;
1527		inode->i_mode |= S_IFREG;
1528		break;
1529	case ICBTAG_FILE_TYPE_BLOCK:
1530		inode->i_mode |= S_IFBLK;
1531		break;
1532	case ICBTAG_FILE_TYPE_CHAR:
1533		inode->i_mode |= S_IFCHR;
1534		break;
1535	case ICBTAG_FILE_TYPE_FIFO:
1536		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1537		break;
1538	case ICBTAG_FILE_TYPE_SOCKET:
1539		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1540		break;
1541	case ICBTAG_FILE_TYPE_SYMLINK:
1542		inode->i_data.a_ops = &udf_symlink_aops;
1543		inode->i_op = &udf_symlink_inode_operations;
1544		inode->i_mode = S_IFLNK | S_IRWXUGO;
1545		break;
1546	case ICBTAG_FILE_TYPE_MAIN:
1547		udf_debug("METADATA FILE-----\n");
1548		break;
1549	case ICBTAG_FILE_TYPE_MIRROR:
1550		udf_debug("METADATA MIRROR FILE-----\n");
1551		break;
1552	case ICBTAG_FILE_TYPE_BITMAP:
1553		udf_debug("METADATA BITMAP FILE-----\n");
1554		break;
1555	default:
1556		udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1557			inode->i_ino, fe->icbTag.fileType);
1558		goto out;
1559	}
1560	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1561		struct deviceSpec *dsea =
1562			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1563		if (dsea) {
1564			init_special_inode(inode, inode->i_mode,
1565				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1566				      le32_to_cpu(dsea->minorDeviceIdent)));
1567			/* Developer ID ??? */
1568		} else
1569			goto out;
1570	}
1571	ret = 0;
1572out:
1573	brelse(bh);
1574	return ret;
1575}
1576
1577static int udf_alloc_i_data(struct inode *inode, size_t size)
1578{
1579	struct udf_inode_info *iinfo = UDF_I(inode);
1580	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1581
1582	if (!iinfo->i_ext.i_data) {
1583		udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1584			inode->i_ino);
1585		return -ENOMEM;
1586	}
1587
1588	return 0;
1589}
1590
1591static umode_t udf_convert_permissions(struct fileEntry *fe)
1592{
1593	umode_t mode;
1594	uint32_t permissions;
1595	uint32_t flags;
1596
1597	permissions = le32_to_cpu(fe->permissions);
1598	flags = le16_to_cpu(fe->icbTag.flags);
1599
1600	mode =	((permissions) & S_IRWXO) |
1601		((permissions >> 2) & S_IRWXG) |
1602		((permissions >> 4) & S_IRWXU) |
1603		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1604		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1605		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1606
1607	return mode;
1608}
1609
1610int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1611{
1612	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1613}
1614
1615static int udf_sync_inode(struct inode *inode)
1616{
1617	return udf_update_inode(inode, 1);
1618}
1619
1620static int udf_update_inode(struct inode *inode, int do_sync)
1621{
1622	struct buffer_head *bh = NULL;
1623	struct fileEntry *fe;
1624	struct extendedFileEntry *efe;
1625	uint64_t lb_recorded;
1626	uint32_t udfperms;
1627	uint16_t icbflags;
1628	uint16_t crclen;
1629	int err = 0;
1630	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1631	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1632	struct udf_inode_info *iinfo = UDF_I(inode);
1633
1634	bh = udf_tgetblk(inode->i_sb,
1635			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1636	if (!bh) {
1637		udf_debug("getblk failure\n");
1638		return -EIO;
1639	}
1640
1641	lock_buffer(bh);
1642	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1643	fe = (struct fileEntry *)bh->b_data;
1644	efe = (struct extendedFileEntry *)bh->b_data;
1645
1646	if (iinfo->i_use) {
1647		struct unallocSpaceEntry *use =
1648			(struct unallocSpaceEntry *)bh->b_data;
1649
1650		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1651		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1652		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1653					sizeof(struct unallocSpaceEntry));
1654		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1655		crclen = sizeof(struct unallocSpaceEntry);
1656
1657		goto finish;
1658	}
1659
1660	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1661		fe->uid = cpu_to_le32(-1);
1662	else
1663		fe->uid = cpu_to_le32(i_uid_read(inode));
1664
1665	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1666		fe->gid = cpu_to_le32(-1);
1667	else
1668		fe->gid = cpu_to_le32(i_gid_read(inode));
1669
1670	udfperms = ((inode->i_mode & S_IRWXO)) |
1671		   ((inode->i_mode & S_IRWXG) << 2) |
1672		   ((inode->i_mode & S_IRWXU) << 4);
1673
1674	udfperms |= (le32_to_cpu(fe->permissions) &
1675		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1676		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1677		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1678	fe->permissions = cpu_to_le32(udfperms);
1679
1680	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1681		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1682	else
1683		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1684
1685	fe->informationLength = cpu_to_le64(inode->i_size);
1686
1687	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1688		struct regid *eid;
1689		struct deviceSpec *dsea =
1690			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1691		if (!dsea) {
1692			dsea = (struct deviceSpec *)
1693				udf_add_extendedattr(inode,
1694						     sizeof(struct deviceSpec) +
1695						     sizeof(struct regid), 12, 0x3);
1696			dsea->attrType = cpu_to_le32(12);
1697			dsea->attrSubtype = 1;
1698			dsea->attrLength = cpu_to_le32(
1699						sizeof(struct deviceSpec) +
1700						sizeof(struct regid));
1701			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1702		}
1703		eid = (struct regid *)dsea->impUse;
1704		memset(eid, 0, sizeof(struct regid));
1705		strcpy(eid->ident, UDF_ID_DEVELOPER);
1706		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1707		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1708		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1709		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1710	}
1711
1712	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1713		lb_recorded = 0; /* No extents => no blocks! */
1714	else
1715		lb_recorded =
1716			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1717			(blocksize_bits - 9);
1718
1719	if (iinfo->i_efe == 0) {
1720		memcpy(bh->b_data + sizeof(struct fileEntry),
1721		       iinfo->i_ext.i_data,
1722		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1723		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1724
1725		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1726		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1727		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1728		memset(&(fe->impIdent), 0, sizeof(struct regid));
1729		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1730		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1731		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1732		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1733		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1734		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1735		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1736		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1737		crclen = sizeof(struct fileEntry);
1738	} else {
1739		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1740		       iinfo->i_ext.i_data,
1741		       inode->i_sb->s_blocksize -
1742					sizeof(struct extendedFileEntry));
1743		efe->objectSize = cpu_to_le64(inode->i_size);
1744		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1745
1746		if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1747		    (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1748		     iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1749			iinfo->i_crtime = inode->i_atime;
1750
1751		if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1752		    (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1753		     iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1754			iinfo->i_crtime = inode->i_mtime;
1755
1756		if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1757		    (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1758		     iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1759			iinfo->i_crtime = inode->i_ctime;
1760
1761		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1762		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1763		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1764		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1765
1766		memset(&(efe->impIdent), 0, sizeof(struct regid));
1767		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1768		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1769		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1770		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1771		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1772		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1773		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1774		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1775		crclen = sizeof(struct extendedFileEntry);
1776	}
1777
1778finish:
1779	if (iinfo->i_strat4096) {
1780		fe->icbTag.strategyType = cpu_to_le16(4096);
1781		fe->icbTag.strategyParameter = cpu_to_le16(1);
1782		fe->icbTag.numEntries = cpu_to_le16(2);
1783	} else {
1784		fe->icbTag.strategyType = cpu_to_le16(4);
1785		fe->icbTag.numEntries = cpu_to_le16(1);
1786	}
1787
1788	if (iinfo->i_use)
1789		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1790	else if (S_ISDIR(inode->i_mode))
1791		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1792	else if (S_ISREG(inode->i_mode))
1793		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1794	else if (S_ISLNK(inode->i_mode))
1795		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1796	else if (S_ISBLK(inode->i_mode))
1797		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1798	else if (S_ISCHR(inode->i_mode))
1799		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1800	else if (S_ISFIFO(inode->i_mode))
1801		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1802	else if (S_ISSOCK(inode->i_mode))
1803		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1804
1805	icbflags =	iinfo->i_alloc_type |
1806			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1807			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1808			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1809			(le16_to_cpu(fe->icbTag.flags) &
1810				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1811				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1812
1813	fe->icbTag.flags = cpu_to_le16(icbflags);
1814	if (sbi->s_udfrev >= 0x0200)
1815		fe->descTag.descVersion = cpu_to_le16(3);
1816	else
1817		fe->descTag.descVersion = cpu_to_le16(2);
1818	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1819	fe->descTag.tagLocation = cpu_to_le32(
1820					iinfo->i_location.logicalBlockNum);
1821	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1822	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1823	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1824						  crclen));
1825	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1826
1827	set_buffer_uptodate(bh);
1828	unlock_buffer(bh);
1829
1830	/* write the data blocks */
1831	mark_buffer_dirty(bh);
1832	if (do_sync) {
1833		sync_dirty_buffer(bh);
1834		if (buffer_write_io_error(bh)) {
1835			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1836				 inode->i_ino);
1837			err = -EIO;
1838		}
1839	}
1840	brelse(bh);
1841
1842	return err;
1843}
1844
1845struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1846			 bool hidden_inode)
1847{
1848	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1849	struct inode *inode = iget_locked(sb, block);
1850	int err;
1851
1852	if (!inode)
1853		return ERR_PTR(-ENOMEM);
1854
1855	if (!(inode->i_state & I_NEW))
1856		return inode;
1857
1858	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1859	err = udf_read_inode(inode, hidden_inode);
1860	if (err < 0) {
1861		iget_failed(inode);
1862		return ERR_PTR(err);
1863	}
1864	unlock_new_inode(inode);
1865
1866	return inode;
1867}
1868
1869int udf_add_aext(struct inode *inode, struct extent_position *epos,
1870		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1871{
1872	int adsize;
1873	struct short_ad *sad = NULL;
1874	struct long_ad *lad = NULL;
1875	struct allocExtDesc *aed;
1876	uint8_t *ptr;
1877	struct udf_inode_info *iinfo = UDF_I(inode);
1878
1879	if (!epos->bh)
1880		ptr = iinfo->i_ext.i_data + epos->offset -
1881			udf_file_entry_alloc_offset(inode) +
1882			iinfo->i_lenEAttr;
1883	else
1884		ptr = epos->bh->b_data + epos->offset;
1885
1886	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1887		adsize = sizeof(struct short_ad);
1888	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1889		adsize = sizeof(struct long_ad);
1890	else
1891		return -EIO;
1892
1893	if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1894		unsigned char *sptr, *dptr;
1895		struct buffer_head *nbh;
1896		int err, loffset;
1897		struct kernel_lb_addr obloc = epos->block;
1898
1899		epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1900						obloc.partitionReferenceNum,
1901						obloc.logicalBlockNum, &err);
1902		if (!epos->block.logicalBlockNum)
1903			return -ENOSPC;
1904		nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1905								 &epos->block,
1906								 0));
1907		if (!nbh)
1908			return -EIO;
1909		lock_buffer(nbh);
1910		memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1911		set_buffer_uptodate(nbh);
1912		unlock_buffer(nbh);
1913		mark_buffer_dirty_inode(nbh, inode);
1914
1915		aed = (struct allocExtDesc *)(nbh->b_data);
1916		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1917			aed->previousAllocExtLocation =
1918					cpu_to_le32(obloc.logicalBlockNum);
1919		if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1920			loffset = epos->offset;
1921			aed->lengthAllocDescs = cpu_to_le32(adsize);
1922			sptr = ptr - adsize;
1923			dptr = nbh->b_data + sizeof(struct allocExtDesc);
1924			memcpy(dptr, sptr, adsize);
1925			epos->offset = sizeof(struct allocExtDesc) + adsize;
1926		} else {
1927			loffset = epos->offset + adsize;
1928			aed->lengthAllocDescs = cpu_to_le32(0);
1929			sptr = ptr;
1930			epos->offset = sizeof(struct allocExtDesc);
1931
1932			if (epos->bh) {
1933				aed = (struct allocExtDesc *)epos->bh->b_data;
1934				le32_add_cpu(&aed->lengthAllocDescs, adsize);
1935			} else {
1936				iinfo->i_lenAlloc += adsize;
1937				mark_inode_dirty(inode);
1938			}
1939		}
1940		if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1941			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1942				    epos->block.logicalBlockNum, sizeof(struct tag));
1943		else
1944			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1945				    epos->block.logicalBlockNum, sizeof(struct tag));
1946		switch (iinfo->i_alloc_type) {
1947		case ICBTAG_FLAG_AD_SHORT:
1948			sad = (struct short_ad *)sptr;
1949			sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1950						     inode->i_sb->s_blocksize);
1951			sad->extPosition =
1952				cpu_to_le32(epos->block.logicalBlockNum);
1953			break;
1954		case ICBTAG_FLAG_AD_LONG:
1955			lad = (struct long_ad *)sptr;
1956			lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1957						     inode->i_sb->s_blocksize);
1958			lad->extLocation = cpu_to_lelb(epos->block);
1959			memset(lad->impUse, 0x00, sizeof(lad->impUse));
1960			break;
1961		}
1962		if (epos->bh) {
1963			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1964			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1965				udf_update_tag(epos->bh->b_data, loffset);
1966			else
1967				udf_update_tag(epos->bh->b_data,
1968						sizeof(struct allocExtDesc));
1969			mark_buffer_dirty_inode(epos->bh, inode);
1970			brelse(epos->bh);
1971		} else {
1972			mark_inode_dirty(inode);
1973		}
1974		epos->bh = nbh;
1975	}
1976
1977	udf_write_aext(inode, epos, eloc, elen, inc);
1978
1979	if (!epos->bh) {
1980		iinfo->i_lenAlloc += adsize;
1981		mark_inode_dirty(inode);
1982	} else {
1983		aed = (struct allocExtDesc *)epos->bh->b_data;
1984		le32_add_cpu(&aed->lengthAllocDescs, adsize);
1985		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1986				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1987			udf_update_tag(epos->bh->b_data,
1988					epos->offset + (inc ? 0 : adsize));
1989		else
1990			udf_update_tag(epos->bh->b_data,
1991					sizeof(struct allocExtDesc));
1992		mark_buffer_dirty_inode(epos->bh, inode);
1993	}
1994
1995	return 0;
1996}
1997
1998void udf_write_aext(struct inode *inode, struct extent_position *epos,
1999		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2000{
2001	int adsize;
2002	uint8_t *ptr;
2003	struct short_ad *sad;
2004	struct long_ad *lad;
2005	struct udf_inode_info *iinfo = UDF_I(inode);
2006
2007	if (!epos->bh)
2008		ptr = iinfo->i_ext.i_data + epos->offset -
2009			udf_file_entry_alloc_offset(inode) +
2010			iinfo->i_lenEAttr;
2011	else
2012		ptr = epos->bh->b_data + epos->offset;
2013
2014	switch (iinfo->i_alloc_type) {
2015	case ICBTAG_FLAG_AD_SHORT:
2016		sad = (struct short_ad *)ptr;
2017		sad->extLength = cpu_to_le32(elen);
2018		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2019		adsize = sizeof(struct short_ad);
2020		break;
2021	case ICBTAG_FLAG_AD_LONG:
2022		lad = (struct long_ad *)ptr;
2023		lad->extLength = cpu_to_le32(elen);
2024		lad->extLocation = cpu_to_lelb(*eloc);
2025		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2026		adsize = sizeof(struct long_ad);
2027		break;
2028	default:
2029		return;
2030	}
2031
2032	if (epos->bh) {
2033		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2034		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2035			struct allocExtDesc *aed =
2036				(struct allocExtDesc *)epos->bh->b_data;
2037			udf_update_tag(epos->bh->b_data,
2038				       le32_to_cpu(aed->lengthAllocDescs) +
2039				       sizeof(struct allocExtDesc));
2040		}
2041		mark_buffer_dirty_inode(epos->bh, inode);
2042	} else {
2043		mark_inode_dirty(inode);
2044	}
2045
2046	if (inc)
2047		epos->offset += adsize;
2048}
2049
2050/*
2051 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2052 * someone does some weird stuff.
2053 */
2054#define UDF_MAX_INDIR_EXTS 16
2055
2056int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2057		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2058{
2059	int8_t etype;
2060	unsigned int indirections = 0;
2061
2062	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2063	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2064		int block;
2065
2066		if (++indirections > UDF_MAX_INDIR_EXTS) {
2067			udf_err(inode->i_sb,
2068				"too many indirect extents in inode %lu\n",
2069				inode->i_ino);
2070			return -1;
2071		}
2072
2073		epos->block = *eloc;
2074		epos->offset = sizeof(struct allocExtDesc);
2075		brelse(epos->bh);
2076		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2077		epos->bh = udf_tread(inode->i_sb, block);
2078		if (!epos->bh) {
2079			udf_debug("reading block %d failed!\n", block);
2080			return -1;
2081		}
2082	}
2083
2084	return etype;
2085}
2086
2087int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2088			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2089{
2090	int alen;
2091	int8_t etype;
2092	uint8_t *ptr;
2093	struct short_ad *sad;
2094	struct long_ad *lad;
2095	struct udf_inode_info *iinfo = UDF_I(inode);
2096
2097	if (!epos->bh) {
2098		if (!epos->offset)
2099			epos->offset = udf_file_entry_alloc_offset(inode);
2100		ptr = iinfo->i_ext.i_data + epos->offset -
2101			udf_file_entry_alloc_offset(inode) +
2102			iinfo->i_lenEAttr;
2103		alen = udf_file_entry_alloc_offset(inode) +
2104							iinfo->i_lenAlloc;
2105	} else {
2106		if (!epos->offset)
2107			epos->offset = sizeof(struct allocExtDesc);
2108		ptr = epos->bh->b_data + epos->offset;
2109		alen = sizeof(struct allocExtDesc) +
2110			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2111							lengthAllocDescs);
2112	}
2113
2114	switch (iinfo->i_alloc_type) {
2115	case ICBTAG_FLAG_AD_SHORT:
2116		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2117		if (!sad)
2118			return -1;
2119		etype = le32_to_cpu(sad->extLength) >> 30;
2120		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2121		eloc->partitionReferenceNum =
2122				iinfo->i_location.partitionReferenceNum;
2123		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2124		break;
2125	case ICBTAG_FLAG_AD_LONG:
2126		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2127		if (!lad)
2128			return -1;
2129		etype = le32_to_cpu(lad->extLength) >> 30;
2130		*eloc = lelb_to_cpu(lad->extLocation);
2131		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2132		break;
2133	default:
2134		udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2135		return -1;
2136	}
2137
2138	return etype;
2139}
2140
2141static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2142			      struct kernel_lb_addr neloc, uint32_t nelen)
2143{
2144	struct kernel_lb_addr oeloc;
2145	uint32_t oelen;
2146	int8_t etype;
2147
2148	if (epos.bh)
2149		get_bh(epos.bh);
2150
2151	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2152		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2153		neloc = oeloc;
2154		nelen = (etype << 30) | oelen;
2155	}
2156	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2157	brelse(epos.bh);
2158
2159	return (nelen >> 30);
2160}
2161
2162int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2163		       struct kernel_lb_addr eloc, uint32_t elen)
2164{
2165	struct extent_position oepos;
2166	int adsize;
2167	int8_t etype;
2168	struct allocExtDesc *aed;
2169	struct udf_inode_info *iinfo;
2170
2171	if (epos.bh) {
2172		get_bh(epos.bh);
2173		get_bh(epos.bh);
2174	}
2175
2176	iinfo = UDF_I(inode);
2177	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2178		adsize = sizeof(struct short_ad);
2179	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2180		adsize = sizeof(struct long_ad);
2181	else
2182		adsize = 0;
2183
2184	oepos = epos;
2185	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2186		return -1;
2187
2188	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2189		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2190		if (oepos.bh != epos.bh) {
2191			oepos.block = epos.block;
2192			brelse(oepos.bh);
2193			get_bh(epos.bh);
2194			oepos.bh = epos.bh;
2195			oepos.offset = epos.offset - adsize;
2196		}
2197	}
2198	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2199	elen = 0;
2200
2201	if (epos.bh != oepos.bh) {
2202		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2203		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2204		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2205		if (!oepos.bh) {
2206			iinfo->i_lenAlloc -= (adsize * 2);
2207			mark_inode_dirty(inode);
2208		} else {
2209			aed = (struct allocExtDesc *)oepos.bh->b_data;
2210			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2211			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2212			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2213				udf_update_tag(oepos.bh->b_data,
2214						oepos.offset - (2 * adsize));
2215			else
2216				udf_update_tag(oepos.bh->b_data,
2217						sizeof(struct allocExtDesc));
2218			mark_buffer_dirty_inode(oepos.bh, inode);
2219		}
2220	} else {
2221		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2222		if (!oepos.bh) {
2223			iinfo->i_lenAlloc -= adsize;
2224			mark_inode_dirty(inode);
2225		} else {
2226			aed = (struct allocExtDesc *)oepos.bh->b_data;
2227			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2228			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2229			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2230				udf_update_tag(oepos.bh->b_data,
2231						epos.offset - adsize);
2232			else
2233				udf_update_tag(oepos.bh->b_data,
2234						sizeof(struct allocExtDesc));
2235			mark_buffer_dirty_inode(oepos.bh, inode);
2236		}
2237	}
2238
2239	brelse(epos.bh);
2240	brelse(oepos.bh);
2241
2242	return (elen >> 30);
2243}
2244
2245int8_t inode_bmap(struct inode *inode, sector_t block,
2246		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2247		  uint32_t *elen, sector_t *offset)
2248{
2249	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2250	loff_t lbcount = 0, bcount =
2251	    (loff_t) block << blocksize_bits;
2252	int8_t etype;
2253	struct udf_inode_info *iinfo;
2254
2255	iinfo = UDF_I(inode);
2256	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2257		pos->offset = 0;
2258		pos->block = iinfo->i_location;
2259		pos->bh = NULL;
2260	}
2261	*elen = 0;
2262	do {
2263		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2264		if (etype == -1) {
2265			*offset = (bcount - lbcount) >> blocksize_bits;
2266			iinfo->i_lenExtents = lbcount;
2267			return -1;
2268		}
2269		lbcount += *elen;
2270	} while (lbcount <= bcount);
2271	/* update extent cache */
2272	udf_update_extent_cache(inode, lbcount - *elen, pos, 1);
2273	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2274
2275	return etype;
2276}
2277
2278long udf_block_map(struct inode *inode, sector_t block)
2279{
2280	struct kernel_lb_addr eloc;
2281	uint32_t elen;
2282	sector_t offset;
2283	struct extent_position epos = {};
2284	int ret;
2285
2286	down_read(&UDF_I(inode)->i_data_sem);
2287
2288	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2289						(EXT_RECORDED_ALLOCATED >> 30))
2290		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2291	else
2292		ret = 0;
2293
2294	up_read(&UDF_I(inode)->i_data_sem);
2295	brelse(epos.bh);
2296
2297	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2298		return udf_fixed_to_variable(ret);
2299	else
2300		return ret;
2301}
2302