1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 *          Artem Bityutskiy (���������������� ����������)
21 */
22
23/*
24 * This file implements functions needed to recover from unclean un-mounts.
25 * When UBIFS is mounted, it checks a flag on the master node to determine if
26 * an un-mount was completed successfully. If not, the process of mounting
27 * incorporates additional checking and fixing of on-flash data structures.
28 * UBIFS always cleans away all remnants of an unclean un-mount, so that
29 * errors do not accumulate. However UBIFS defers recovery if it is mounted
30 * read-only, and the flash is not modified in that case.
31 *
32 * The general UBIFS approach to the recovery is that it recovers from
33 * corruptions which could be caused by power cuts, but it refuses to recover
34 * from corruption caused by other reasons. And UBIFS tries to distinguish
35 * between these 2 reasons of corruptions and silently recover in the former
36 * case and loudly complain in the latter case.
37 *
38 * UBIFS writes only to erased LEBs, so it writes only to the flash space
39 * containing only 0xFFs. UBIFS also always writes strictly from the beginning
40 * of the LEB to the end. And UBIFS assumes that the underlying flash media
41 * writes in @c->max_write_size bytes at a time.
42 *
43 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
44 * I/O unit corresponding to offset X to contain corrupted data, all the
45 * following min. I/O units have to contain empty space (all 0xFFs). If this is
46 * not true, the corruption cannot be the result of a power cut, and UBIFS
47 * refuses to mount.
48 */
49
50#include <linux/crc32.h>
51#include <linux/slab.h>
52#include "ubifs.h"
53
54/**
55 * is_empty - determine whether a buffer is empty (contains all 0xff).
56 * @buf: buffer to clean
57 * @len: length of buffer
58 *
59 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
60 * %0 is returned.
61 */
62static int is_empty(void *buf, int len)
63{
64	uint8_t *p = buf;
65	int i;
66
67	for (i = 0; i < len; i++)
68		if (*p++ != 0xff)
69			return 0;
70	return 1;
71}
72
73/**
74 * first_non_ff - find offset of the first non-0xff byte.
75 * @buf: buffer to search in
76 * @len: length of buffer
77 *
78 * This function returns offset of the first non-0xff byte in @buf or %-1 if
79 * the buffer contains only 0xff bytes.
80 */
81static int first_non_ff(void *buf, int len)
82{
83	uint8_t *p = buf;
84	int i;
85
86	for (i = 0; i < len; i++)
87		if (*p++ != 0xff)
88			return i;
89	return -1;
90}
91
92/**
93 * get_master_node - get the last valid master node allowing for corruption.
94 * @c: UBIFS file-system description object
95 * @lnum: LEB number
96 * @pbuf: buffer containing the LEB read, is returned here
97 * @mst: master node, if found, is returned here
98 * @cor: corruption, if found, is returned here
99 *
100 * This function allocates a buffer, reads the LEB into it, and finds and
101 * returns the last valid master node allowing for one area of corruption.
102 * The corrupt area, if there is one, must be consistent with the assumption
103 * that it is the result of an unclean unmount while the master node was being
104 * written. Under those circumstances, it is valid to use the previously written
105 * master node.
106 *
107 * This function returns %0 on success and a negative error code on failure.
108 */
109static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
110			   struct ubifs_mst_node **mst, void **cor)
111{
112	const int sz = c->mst_node_alsz;
113	int err, offs, len;
114	void *sbuf, *buf;
115
116	sbuf = vmalloc(c->leb_size);
117	if (!sbuf)
118		return -ENOMEM;
119
120	err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
121	if (err && err != -EBADMSG)
122		goto out_free;
123
124	/* Find the first position that is definitely not a node */
125	offs = 0;
126	buf = sbuf;
127	len = c->leb_size;
128	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
129		struct ubifs_ch *ch = buf;
130
131		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
132			break;
133		offs += sz;
134		buf  += sz;
135		len  -= sz;
136	}
137	/* See if there was a valid master node before that */
138	if (offs) {
139		int ret;
140
141		offs -= sz;
142		buf  -= sz;
143		len  += sz;
144		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
145		if (ret != SCANNED_A_NODE && offs) {
146			/* Could have been corruption so check one place back */
147			offs -= sz;
148			buf  -= sz;
149			len  += sz;
150			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
151			if (ret != SCANNED_A_NODE)
152				/*
153				 * We accept only one area of corruption because
154				 * we are assuming that it was caused while
155				 * trying to write a master node.
156				 */
157				goto out_err;
158		}
159		if (ret == SCANNED_A_NODE) {
160			struct ubifs_ch *ch = buf;
161
162			if (ch->node_type != UBIFS_MST_NODE)
163				goto out_err;
164			dbg_rcvry("found a master node at %d:%d", lnum, offs);
165			*mst = buf;
166			offs += sz;
167			buf  += sz;
168			len  -= sz;
169		}
170	}
171	/* Check for corruption */
172	if (offs < c->leb_size) {
173		if (!is_empty(buf, min_t(int, len, sz))) {
174			*cor = buf;
175			dbg_rcvry("found corruption at %d:%d", lnum, offs);
176		}
177		offs += sz;
178		buf  += sz;
179		len  -= sz;
180	}
181	/* Check remaining empty space */
182	if (offs < c->leb_size)
183		if (!is_empty(buf, len))
184			goto out_err;
185	*pbuf = sbuf;
186	return 0;
187
188out_err:
189	err = -EINVAL;
190out_free:
191	vfree(sbuf);
192	*mst = NULL;
193	*cor = NULL;
194	return err;
195}
196
197/**
198 * write_rcvrd_mst_node - write recovered master node.
199 * @c: UBIFS file-system description object
200 * @mst: master node
201 *
202 * This function returns %0 on success and a negative error code on failure.
203 */
204static int write_rcvrd_mst_node(struct ubifs_info *c,
205				struct ubifs_mst_node *mst)
206{
207	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
208	__le32 save_flags;
209
210	dbg_rcvry("recovery");
211
212	save_flags = mst->flags;
213	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
214
215	ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
216	err = ubifs_leb_change(c, lnum, mst, sz);
217	if (err)
218		goto out;
219	err = ubifs_leb_change(c, lnum + 1, mst, sz);
220	if (err)
221		goto out;
222out:
223	mst->flags = save_flags;
224	return err;
225}
226
227/**
228 * ubifs_recover_master_node - recover the master node.
229 * @c: UBIFS file-system description object
230 *
231 * This function recovers the master node from corruption that may occur due to
232 * an unclean unmount.
233 *
234 * This function returns %0 on success and a negative error code on failure.
235 */
236int ubifs_recover_master_node(struct ubifs_info *c)
237{
238	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
239	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
240	const int sz = c->mst_node_alsz;
241	int err, offs1, offs2;
242
243	dbg_rcvry("recovery");
244
245	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
246	if (err)
247		goto out_free;
248
249	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
250	if (err)
251		goto out_free;
252
253	if (mst1) {
254		offs1 = (void *)mst1 - buf1;
255		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
256		    (offs1 == 0 && !cor1)) {
257			/*
258			 * mst1 was written by recovery at offset 0 with no
259			 * corruption.
260			 */
261			dbg_rcvry("recovery recovery");
262			mst = mst1;
263		} else if (mst2) {
264			offs2 = (void *)mst2 - buf2;
265			if (offs1 == offs2) {
266				/* Same offset, so must be the same */
267				if (memcmp((void *)mst1 + UBIFS_CH_SZ,
268					   (void *)mst2 + UBIFS_CH_SZ,
269					   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
270					goto out_err;
271				mst = mst1;
272			} else if (offs2 + sz == offs1) {
273				/* 1st LEB was written, 2nd was not */
274				if (cor1)
275					goto out_err;
276				mst = mst1;
277			} else if (offs1 == 0 &&
278				   c->leb_size - offs2 - sz < sz) {
279				/* 1st LEB was unmapped and written, 2nd not */
280				if (cor1)
281					goto out_err;
282				mst = mst1;
283			} else
284				goto out_err;
285		} else {
286			/*
287			 * 2nd LEB was unmapped and about to be written, so
288			 * there must be only one master node in the first LEB
289			 * and no corruption.
290			 */
291			if (offs1 != 0 || cor1)
292				goto out_err;
293			mst = mst1;
294		}
295	} else {
296		if (!mst2)
297			goto out_err;
298		/*
299		 * 1st LEB was unmapped and about to be written, so there must
300		 * be no room left in 2nd LEB.
301		 */
302		offs2 = (void *)mst2 - buf2;
303		if (offs2 + sz + sz <= c->leb_size)
304			goto out_err;
305		mst = mst2;
306	}
307
308	ubifs_msg(c, "recovered master node from LEB %d",
309		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
310
311	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
312
313	if (c->ro_mount) {
314		/* Read-only mode. Keep a copy for switching to rw mode */
315		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
316		if (!c->rcvrd_mst_node) {
317			err = -ENOMEM;
318			goto out_free;
319		}
320		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
321
322		/*
323		 * We had to recover the master node, which means there was an
324		 * unclean reboot. However, it is possible that the master node
325		 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
326		 * E.g., consider the following chain of events:
327		 *
328		 * 1. UBIFS was cleanly unmounted, so the master node is clean
329		 * 2. UBIFS is being mounted R/W and starts changing the master
330		 *    node in the first (%UBIFS_MST_LNUM). A power cut happens,
331		 *    so this LEB ends up with some amount of garbage at the
332		 *    end.
333		 * 3. UBIFS is being mounted R/O. We reach this place and
334		 *    recover the master node from the second LEB
335		 *    (%UBIFS_MST_LNUM + 1). But we cannot update the media
336		 *    because we are being mounted R/O. We have to defer the
337		 *    operation.
338		 * 4. However, this master node (@c->mst_node) is marked as
339		 *    clean (since the step 1). And if we just return, the
340		 *    mount code will be confused and won't recover the master
341		 *    node when it is re-mounter R/W later.
342		 *
343		 *    Thus, to force the recovery by marking the master node as
344		 *    dirty.
345		 */
346		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
347	} else {
348		/* Write the recovered master node */
349		c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
350		err = write_rcvrd_mst_node(c, c->mst_node);
351		if (err)
352			goto out_free;
353	}
354
355	vfree(buf2);
356	vfree(buf1);
357
358	return 0;
359
360out_err:
361	err = -EINVAL;
362out_free:
363	ubifs_err(c, "failed to recover master node");
364	if (mst1) {
365		ubifs_err(c, "dumping first master node");
366		ubifs_dump_node(c, mst1);
367	}
368	if (mst2) {
369		ubifs_err(c, "dumping second master node");
370		ubifs_dump_node(c, mst2);
371	}
372	vfree(buf2);
373	vfree(buf1);
374	return err;
375}
376
377/**
378 * ubifs_write_rcvrd_mst_node - write the recovered master node.
379 * @c: UBIFS file-system description object
380 *
381 * This function writes the master node that was recovered during mounting in
382 * read-only mode and must now be written because we are remounting rw.
383 *
384 * This function returns %0 on success and a negative error code on failure.
385 */
386int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
387{
388	int err;
389
390	if (!c->rcvrd_mst_node)
391		return 0;
392	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
393	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
394	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
395	if (err)
396		return err;
397	kfree(c->rcvrd_mst_node);
398	c->rcvrd_mst_node = NULL;
399	return 0;
400}
401
402/**
403 * is_last_write - determine if an offset was in the last write to a LEB.
404 * @c: UBIFS file-system description object
405 * @buf: buffer to check
406 * @offs: offset to check
407 *
408 * This function returns %1 if @offs was in the last write to the LEB whose data
409 * is in @buf, otherwise %0 is returned. The determination is made by checking
410 * for subsequent empty space starting from the next @c->max_write_size
411 * boundary.
412 */
413static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
414{
415	int empty_offs, check_len;
416	uint8_t *p;
417
418	/*
419	 * Round up to the next @c->max_write_size boundary i.e. @offs is in
420	 * the last wbuf written. After that should be empty space.
421	 */
422	empty_offs = ALIGN(offs + 1, c->max_write_size);
423	check_len = c->leb_size - empty_offs;
424	p = buf + empty_offs - offs;
425	return is_empty(p, check_len);
426}
427
428/**
429 * clean_buf - clean the data from an LEB sitting in a buffer.
430 * @c: UBIFS file-system description object
431 * @buf: buffer to clean
432 * @lnum: LEB number to clean
433 * @offs: offset from which to clean
434 * @len: length of buffer
435 *
436 * This function pads up to the next min_io_size boundary (if there is one) and
437 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
438 * @c->min_io_size boundary.
439 */
440static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
441		      int *offs, int *len)
442{
443	int empty_offs, pad_len;
444
445	lnum = lnum;
446	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
447
448	ubifs_assert(!(*offs & 7));
449	empty_offs = ALIGN(*offs, c->min_io_size);
450	pad_len = empty_offs - *offs;
451	ubifs_pad(c, *buf, pad_len);
452	*offs += pad_len;
453	*buf += pad_len;
454	*len -= pad_len;
455	memset(*buf, 0xff, c->leb_size - empty_offs);
456}
457
458/**
459 * no_more_nodes - determine if there are no more nodes in a buffer.
460 * @c: UBIFS file-system description object
461 * @buf: buffer to check
462 * @len: length of buffer
463 * @lnum: LEB number of the LEB from which @buf was read
464 * @offs: offset from which @buf was read
465 *
466 * This function ensures that the corrupted node at @offs is the last thing
467 * written to a LEB. This function returns %1 if more data is not found and
468 * %0 if more data is found.
469 */
470static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
471			int lnum, int offs)
472{
473	struct ubifs_ch *ch = buf;
474	int skip, dlen = le32_to_cpu(ch->len);
475
476	/* Check for empty space after the corrupt node's common header */
477	skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
478	if (is_empty(buf + skip, len - skip))
479		return 1;
480	/*
481	 * The area after the common header size is not empty, so the common
482	 * header must be intact. Check it.
483	 */
484	if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
485		dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
486		return 0;
487	}
488	/* Now we know the corrupt node's length we can skip over it */
489	skip = ALIGN(offs + dlen, c->max_write_size) - offs;
490	/* After which there should be empty space */
491	if (is_empty(buf + skip, len - skip))
492		return 1;
493	dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
494	return 0;
495}
496
497/**
498 * fix_unclean_leb - fix an unclean LEB.
499 * @c: UBIFS file-system description object
500 * @sleb: scanned LEB information
501 * @start: offset where scan started
502 */
503static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
504			   int start)
505{
506	int lnum = sleb->lnum, endpt = start;
507
508	/* Get the end offset of the last node we are keeping */
509	if (!list_empty(&sleb->nodes)) {
510		struct ubifs_scan_node *snod;
511
512		snod = list_entry(sleb->nodes.prev,
513				  struct ubifs_scan_node, list);
514		endpt = snod->offs + snod->len;
515	}
516
517	if (c->ro_mount && !c->remounting_rw) {
518		/* Add to recovery list */
519		struct ubifs_unclean_leb *ucleb;
520
521		dbg_rcvry("need to fix LEB %d start %d endpt %d",
522			  lnum, start, sleb->endpt);
523		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
524		if (!ucleb)
525			return -ENOMEM;
526		ucleb->lnum = lnum;
527		ucleb->endpt = endpt;
528		list_add_tail(&ucleb->list, &c->unclean_leb_list);
529	} else {
530		/* Write the fixed LEB back to flash */
531		int err;
532
533		dbg_rcvry("fixing LEB %d start %d endpt %d",
534			  lnum, start, sleb->endpt);
535		if (endpt == 0) {
536			err = ubifs_leb_unmap(c, lnum);
537			if (err)
538				return err;
539		} else {
540			int len = ALIGN(endpt, c->min_io_size);
541
542			if (start) {
543				err = ubifs_leb_read(c, lnum, sleb->buf, 0,
544						     start, 1);
545				if (err)
546					return err;
547			}
548			/* Pad to min_io_size */
549			if (len > endpt) {
550				int pad_len = len - ALIGN(endpt, 8);
551
552				if (pad_len > 0) {
553					void *buf = sleb->buf + len - pad_len;
554
555					ubifs_pad(c, buf, pad_len);
556				}
557			}
558			err = ubifs_leb_change(c, lnum, sleb->buf, len);
559			if (err)
560				return err;
561		}
562	}
563	return 0;
564}
565
566/**
567 * drop_last_group - drop the last group of nodes.
568 * @sleb: scanned LEB information
569 * @offs: offset of dropped nodes is returned here
570 *
571 * This is a helper function for 'ubifs_recover_leb()' which drops the last
572 * group of nodes of the scanned LEB.
573 */
574static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
575{
576	while (!list_empty(&sleb->nodes)) {
577		struct ubifs_scan_node *snod;
578		struct ubifs_ch *ch;
579
580		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
581				  list);
582		ch = snod->node;
583		if (ch->group_type != UBIFS_IN_NODE_GROUP)
584			break;
585
586		dbg_rcvry("dropping grouped node at %d:%d",
587			  sleb->lnum, snod->offs);
588		*offs = snod->offs;
589		list_del(&snod->list);
590		kfree(snod);
591		sleb->nodes_cnt -= 1;
592	}
593}
594
595/**
596 * drop_last_node - drop the last node.
597 * @sleb: scanned LEB information
598 * @offs: offset of dropped nodes is returned here
599 *
600 * This is a helper function for 'ubifs_recover_leb()' which drops the last
601 * node of the scanned LEB.
602 */
603static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
604{
605	struct ubifs_scan_node *snod;
606
607	if (!list_empty(&sleb->nodes)) {
608		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
609				  list);
610
611		dbg_rcvry("dropping last node at %d:%d",
612			  sleb->lnum, snod->offs);
613		*offs = snod->offs;
614		list_del(&snod->list);
615		kfree(snod);
616		sleb->nodes_cnt -= 1;
617	}
618}
619
620/**
621 * ubifs_recover_leb - scan and recover a LEB.
622 * @c: UBIFS file-system description object
623 * @lnum: LEB number
624 * @offs: offset
625 * @sbuf: LEB-sized buffer to use
626 * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
627 *         belong to any journal head)
628 *
629 * This function does a scan of a LEB, but caters for errors that might have
630 * been caused by the unclean unmount from which we are attempting to recover.
631 * Returns the scanned information on success and a negative error code on
632 * failure.
633 */
634struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
635					 int offs, void *sbuf, int jhead)
636{
637	int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
638	int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
639	struct ubifs_scan_leb *sleb;
640	void *buf = sbuf + offs;
641
642	dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
643
644	sleb = ubifs_start_scan(c, lnum, offs, sbuf);
645	if (IS_ERR(sleb))
646		return sleb;
647
648	ubifs_assert(len >= 8);
649	while (len >= 8) {
650		dbg_scan("look at LEB %d:%d (%d bytes left)",
651			 lnum, offs, len);
652
653		cond_resched();
654
655		/*
656		 * Scan quietly until there is an error from which we cannot
657		 * recover
658		 */
659		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
660		if (ret == SCANNED_A_NODE) {
661			/* A valid node, and not a padding node */
662			struct ubifs_ch *ch = buf;
663			int node_len;
664
665			err = ubifs_add_snod(c, sleb, buf, offs);
666			if (err)
667				goto error;
668			node_len = ALIGN(le32_to_cpu(ch->len), 8);
669			offs += node_len;
670			buf += node_len;
671			len -= node_len;
672		} else if (ret > 0) {
673			/* Padding bytes or a valid padding node */
674			offs += ret;
675			buf += ret;
676			len -= ret;
677		} else if (ret == SCANNED_EMPTY_SPACE ||
678			   ret == SCANNED_GARBAGE     ||
679			   ret == SCANNED_A_BAD_PAD_NODE ||
680			   ret == SCANNED_A_CORRUPT_NODE) {
681			dbg_rcvry("found corruption (%d) at %d:%d",
682				  ret, lnum, offs);
683			break;
684		} else {
685			ubifs_err(c, "unexpected return value %d", ret);
686			err = -EINVAL;
687			goto error;
688		}
689	}
690
691	if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
692		if (!is_last_write(c, buf, offs))
693			goto corrupted_rescan;
694	} else if (ret == SCANNED_A_CORRUPT_NODE) {
695		if (!no_more_nodes(c, buf, len, lnum, offs))
696			goto corrupted_rescan;
697	} else if (!is_empty(buf, len)) {
698		if (!is_last_write(c, buf, offs)) {
699			int corruption = first_non_ff(buf, len);
700
701			/*
702			 * See header comment for this file for more
703			 * explanations about the reasons we have this check.
704			 */
705			ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d",
706				  lnum, offs, corruption);
707			/* Make sure we dump interesting non-0xFF data */
708			offs += corruption;
709			buf += corruption;
710			goto corrupted;
711		}
712	}
713
714	min_io_unit = round_down(offs, c->min_io_size);
715	if (grouped)
716		/*
717		 * If nodes are grouped, always drop the incomplete group at
718		 * the end.
719		 */
720		drop_last_group(sleb, &offs);
721
722	if (jhead == GCHD) {
723		/*
724		 * If this LEB belongs to the GC head then while we are in the
725		 * middle of the same min. I/O unit keep dropping nodes. So
726		 * basically, what we want is to make sure that the last min.
727		 * I/O unit where we saw the corruption is dropped completely
728		 * with all the uncorrupted nodes which may possibly sit there.
729		 *
730		 * In other words, let's name the min. I/O unit where the
731		 * corruption starts B, and the previous min. I/O unit A. The
732		 * below code tries to deal with a situation when half of B
733		 * contains valid nodes or the end of a valid node, and the
734		 * second half of B contains corrupted data or garbage. This
735		 * means that UBIFS had been writing to B just before the power
736		 * cut happened. I do not know how realistic is this scenario
737		 * that half of the min. I/O unit had been written successfully
738		 * and the other half not, but this is possible in our 'failure
739		 * mode emulation' infrastructure at least.
740		 *
741		 * So what is the problem, why we need to drop those nodes? Why
742		 * can't we just clean-up the second half of B by putting a
743		 * padding node there? We can, and this works fine with one
744		 * exception which was reproduced with power cut emulation
745		 * testing and happens extremely rarely.
746		 *
747		 * Imagine the file-system is full, we run GC which starts
748		 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
749		 * the current GC head LEB). The @c->gc_lnum is -1, which means
750		 * that GC will retain LEB X and will try to continue. Imagine
751		 * that LEB X is currently the dirtiest LEB, and the amount of
752		 * used space in LEB Y is exactly the same as amount of free
753		 * space in LEB X.
754		 *
755		 * And a power cut happens when nodes are moved from LEB X to
756		 * LEB Y. We are here trying to recover LEB Y which is the GC
757		 * head LEB. We find the min. I/O unit B as described above.
758		 * Then we clean-up LEB Y by padding min. I/O unit. And later
759		 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
760		 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
761		 * does not match because the amount of valid nodes there does
762		 * not fit the free space in LEB Y any more! And this is
763		 * because of the padding node which we added to LEB Y. The
764		 * user-visible effect of this which I once observed and
765		 * analysed is that we cannot mount the file-system with
766		 * -ENOSPC error.
767		 *
768		 * So obviously, to make sure that situation does not happen we
769		 * should free min. I/O unit B in LEB Y completely and the last
770		 * used min. I/O unit in LEB Y should be A. This is basically
771		 * what the below code tries to do.
772		 */
773		while (offs > min_io_unit)
774			drop_last_node(sleb, &offs);
775	}
776
777	buf = sbuf + offs;
778	len = c->leb_size - offs;
779
780	clean_buf(c, &buf, lnum, &offs, &len);
781	ubifs_end_scan(c, sleb, lnum, offs);
782
783	err = fix_unclean_leb(c, sleb, start);
784	if (err)
785		goto error;
786
787	return sleb;
788
789corrupted_rescan:
790	/* Re-scan the corrupted data with verbose messages */
791	ubifs_err(c, "corruption %d", ret);
792	ubifs_scan_a_node(c, buf, len, lnum, offs, 0);
793corrupted:
794	ubifs_scanned_corruption(c, lnum, offs, buf);
795	err = -EUCLEAN;
796error:
797	ubifs_err(c, "LEB %d scanning failed", lnum);
798	ubifs_scan_destroy(sleb);
799	return ERR_PTR(err);
800}
801
802/**
803 * get_cs_sqnum - get commit start sequence number.
804 * @c: UBIFS file-system description object
805 * @lnum: LEB number of commit start node
806 * @offs: offset of commit start node
807 * @cs_sqnum: commit start sequence number is returned here
808 *
809 * This function returns %0 on success and a negative error code on failure.
810 */
811static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
812			unsigned long long *cs_sqnum)
813{
814	struct ubifs_cs_node *cs_node = NULL;
815	int err, ret;
816
817	dbg_rcvry("at %d:%d", lnum, offs);
818	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
819	if (!cs_node)
820		return -ENOMEM;
821	if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
822		goto out_err;
823	err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
824			     UBIFS_CS_NODE_SZ, 0);
825	if (err && err != -EBADMSG)
826		goto out_free;
827	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
828	if (ret != SCANNED_A_NODE) {
829		ubifs_err(c, "Not a valid node");
830		goto out_err;
831	}
832	if (cs_node->ch.node_type != UBIFS_CS_NODE) {
833		ubifs_err(c, "Node a CS node, type is %d", cs_node->ch.node_type);
834		goto out_err;
835	}
836	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
837		ubifs_err(c, "CS node cmt_no %llu != current cmt_no %llu",
838			  (unsigned long long)le64_to_cpu(cs_node->cmt_no),
839			  c->cmt_no);
840		goto out_err;
841	}
842	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
843	dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
844	kfree(cs_node);
845	return 0;
846
847out_err:
848	err = -EINVAL;
849out_free:
850	ubifs_err(c, "failed to get CS sqnum");
851	kfree(cs_node);
852	return err;
853}
854
855/**
856 * ubifs_recover_log_leb - scan and recover a log LEB.
857 * @c: UBIFS file-system description object
858 * @lnum: LEB number
859 * @offs: offset
860 * @sbuf: LEB-sized buffer to use
861 *
862 * This function does a scan of a LEB, but caters for errors that might have
863 * been caused by unclean reboots from which we are attempting to recover
864 * (assume that only the last log LEB can be corrupted by an unclean reboot).
865 *
866 * This function returns %0 on success and a negative error code on failure.
867 */
868struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
869					     int offs, void *sbuf)
870{
871	struct ubifs_scan_leb *sleb;
872	int next_lnum;
873
874	dbg_rcvry("LEB %d", lnum);
875	next_lnum = lnum + 1;
876	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
877		next_lnum = UBIFS_LOG_LNUM;
878	if (next_lnum != c->ltail_lnum) {
879		/*
880		 * We can only recover at the end of the log, so check that the
881		 * next log LEB is empty or out of date.
882		 */
883		sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
884		if (IS_ERR(sleb))
885			return sleb;
886		if (sleb->nodes_cnt) {
887			struct ubifs_scan_node *snod;
888			unsigned long long cs_sqnum = c->cs_sqnum;
889
890			snod = list_entry(sleb->nodes.next,
891					  struct ubifs_scan_node, list);
892			if (cs_sqnum == 0) {
893				int err;
894
895				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
896				if (err) {
897					ubifs_scan_destroy(sleb);
898					return ERR_PTR(err);
899				}
900			}
901			if (snod->sqnum > cs_sqnum) {
902				ubifs_err(c, "unrecoverable log corruption in LEB %d",
903					  lnum);
904				ubifs_scan_destroy(sleb);
905				return ERR_PTR(-EUCLEAN);
906			}
907		}
908		ubifs_scan_destroy(sleb);
909	}
910	return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
911}
912
913/**
914 * recover_head - recover a head.
915 * @c: UBIFS file-system description object
916 * @lnum: LEB number of head to recover
917 * @offs: offset of head to recover
918 * @sbuf: LEB-sized buffer to use
919 *
920 * This function ensures that there is no data on the flash at a head location.
921 *
922 * This function returns %0 on success and a negative error code on failure.
923 */
924static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
925{
926	int len = c->max_write_size, err;
927
928	if (offs + len > c->leb_size)
929		len = c->leb_size - offs;
930
931	if (!len)
932		return 0;
933
934	/* Read at the head location and check it is empty flash */
935	err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
936	if (err || !is_empty(sbuf, len)) {
937		dbg_rcvry("cleaning head at %d:%d", lnum, offs);
938		if (offs == 0)
939			return ubifs_leb_unmap(c, lnum);
940		err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
941		if (err)
942			return err;
943		return ubifs_leb_change(c, lnum, sbuf, offs);
944	}
945
946	return 0;
947}
948
949/**
950 * ubifs_recover_inl_heads - recover index and LPT heads.
951 * @c: UBIFS file-system description object
952 * @sbuf: LEB-sized buffer to use
953 *
954 * This function ensures that there is no data on the flash at the index and
955 * LPT head locations.
956 *
957 * This deals with the recovery of a half-completed journal commit. UBIFS is
958 * careful never to overwrite the last version of the index or the LPT. Because
959 * the index and LPT are wandering trees, data from a half-completed commit will
960 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
961 * assumed to be empty and will be unmapped anyway before use, or in the index
962 * and LPT heads.
963 *
964 * This function returns %0 on success and a negative error code on failure.
965 */
966int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
967{
968	int err;
969
970	ubifs_assert(!c->ro_mount || c->remounting_rw);
971
972	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
973	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
974	if (err)
975		return err;
976
977	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
978
979	return recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
980}
981
982/**
983 * clean_an_unclean_leb - read and write a LEB to remove corruption.
984 * @c: UBIFS file-system description object
985 * @ucleb: unclean LEB information
986 * @sbuf: LEB-sized buffer to use
987 *
988 * This function reads a LEB up to a point pre-determined by the mount recovery,
989 * checks the nodes, and writes the result back to the flash, thereby cleaning
990 * off any following corruption, or non-fatal ECC errors.
991 *
992 * This function returns %0 on success and a negative error code on failure.
993 */
994static int clean_an_unclean_leb(struct ubifs_info *c,
995				struct ubifs_unclean_leb *ucleb, void *sbuf)
996{
997	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
998	void *buf = sbuf;
999
1000	dbg_rcvry("LEB %d len %d", lnum, len);
1001
1002	if (len == 0) {
1003		/* Nothing to read, just unmap it */
1004		return ubifs_leb_unmap(c, lnum);
1005	}
1006
1007	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1008	if (err && err != -EBADMSG)
1009		return err;
1010
1011	while (len >= 8) {
1012		int ret;
1013
1014		cond_resched();
1015
1016		/* Scan quietly until there is an error */
1017		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
1018
1019		if (ret == SCANNED_A_NODE) {
1020			/* A valid node, and not a padding node */
1021			struct ubifs_ch *ch = buf;
1022			int node_len;
1023
1024			node_len = ALIGN(le32_to_cpu(ch->len), 8);
1025			offs += node_len;
1026			buf += node_len;
1027			len -= node_len;
1028			continue;
1029		}
1030
1031		if (ret > 0) {
1032			/* Padding bytes or a valid padding node */
1033			offs += ret;
1034			buf += ret;
1035			len -= ret;
1036			continue;
1037		}
1038
1039		if (ret == SCANNED_EMPTY_SPACE) {
1040			ubifs_err(c, "unexpected empty space at %d:%d",
1041				  lnum, offs);
1042			return -EUCLEAN;
1043		}
1044
1045		if (quiet) {
1046			/* Redo the last scan but noisily */
1047			quiet = 0;
1048			continue;
1049		}
1050
1051		ubifs_scanned_corruption(c, lnum, offs, buf);
1052		return -EUCLEAN;
1053	}
1054
1055	/* Pad to min_io_size */
1056	len = ALIGN(ucleb->endpt, c->min_io_size);
1057	if (len > ucleb->endpt) {
1058		int pad_len = len - ALIGN(ucleb->endpt, 8);
1059
1060		if (pad_len > 0) {
1061			buf = c->sbuf + len - pad_len;
1062			ubifs_pad(c, buf, pad_len);
1063		}
1064	}
1065
1066	/* Write back the LEB atomically */
1067	err = ubifs_leb_change(c, lnum, sbuf, len);
1068	if (err)
1069		return err;
1070
1071	dbg_rcvry("cleaned LEB %d", lnum);
1072
1073	return 0;
1074}
1075
1076/**
1077 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1078 * @c: UBIFS file-system description object
1079 * @sbuf: LEB-sized buffer to use
1080 *
1081 * This function cleans a LEB identified during recovery that needs to be
1082 * written but was not because UBIFS was mounted read-only. This happens when
1083 * remounting to read-write mode.
1084 *
1085 * This function returns %0 on success and a negative error code on failure.
1086 */
1087int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
1088{
1089	dbg_rcvry("recovery");
1090	while (!list_empty(&c->unclean_leb_list)) {
1091		struct ubifs_unclean_leb *ucleb;
1092		int err;
1093
1094		ucleb = list_entry(c->unclean_leb_list.next,
1095				   struct ubifs_unclean_leb, list);
1096		err = clean_an_unclean_leb(c, ucleb, sbuf);
1097		if (err)
1098			return err;
1099		list_del(&ucleb->list);
1100		kfree(ucleb);
1101	}
1102	return 0;
1103}
1104
1105/**
1106 * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
1107 * @c: UBIFS file-system description object
1108 *
1109 * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
1110 * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
1111 * zero in case of success and a negative error code in case of failure.
1112 */
1113static int grab_empty_leb(struct ubifs_info *c)
1114{
1115	int lnum, err;
1116
1117	/*
1118	 * Note, it is very important to first search for an empty LEB and then
1119	 * run the commit, not vice-versa. The reason is that there might be
1120	 * only one empty LEB at the moment, the one which has been the
1121	 * @c->gc_lnum just before the power cut happened. During the regular
1122	 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
1123	 * one but GC can grab it. But at this moment this single empty LEB is
1124	 * not marked as taken, so if we run commit - what happens? Right, the
1125	 * commit will grab it and write the index there. Remember that the
1126	 * index always expands as long as there is free space, and it only
1127	 * starts consolidating when we run out of space.
1128	 *
1129	 * IOW, if we run commit now, we might not be able to find a free LEB
1130	 * after this.
1131	 */
1132	lnum = ubifs_find_free_leb_for_idx(c);
1133	if (lnum < 0) {
1134		ubifs_err(c, "could not find an empty LEB");
1135		ubifs_dump_lprops(c);
1136		ubifs_dump_budg(c, &c->bi);
1137		return lnum;
1138	}
1139
1140	/* Reset the index flag */
1141	err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1142				  LPROPS_INDEX, 0);
1143	if (err)
1144		return err;
1145
1146	c->gc_lnum = lnum;
1147	dbg_rcvry("found empty LEB %d, run commit", lnum);
1148
1149	return ubifs_run_commit(c);
1150}
1151
1152/**
1153 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1154 * @c: UBIFS file-system description object
1155 *
1156 * Out-of-place garbage collection requires always one empty LEB with which to
1157 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1158 * written to the master node on unmounting. In the case of an unclean unmount
1159 * the value of gc_lnum recorded in the master node is out of date and cannot
1160 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1161 * However, there may not be enough empty space, in which case it must be
1162 * possible to GC the dirtiest LEB into the GC head LEB.
1163 *
1164 * This function also runs the commit which causes the TNC updates from
1165 * size-recovery and orphans to be written to the flash. That is important to
1166 * ensure correct replay order for subsequent mounts.
1167 *
1168 * This function returns %0 on success and a negative error code on failure.
1169 */
1170int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1171{
1172	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1173	struct ubifs_lprops lp;
1174	int err;
1175
1176	dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
1177
1178	c->gc_lnum = -1;
1179	if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
1180		return grab_empty_leb(c);
1181
1182	err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1183	if (err) {
1184		if (err != -ENOSPC)
1185			return err;
1186
1187		dbg_rcvry("could not find a dirty LEB");
1188		return grab_empty_leb(c);
1189	}
1190
1191	ubifs_assert(!(lp.flags & LPROPS_INDEX));
1192	ubifs_assert(lp.free + lp.dirty >= wbuf->offs);
1193
1194	/*
1195	 * We run the commit before garbage collection otherwise subsequent
1196	 * mounts will see the GC and orphan deletion in a different order.
1197	 */
1198	dbg_rcvry("committing");
1199	err = ubifs_run_commit(c);
1200	if (err)
1201		return err;
1202
1203	dbg_rcvry("GC'ing LEB %d", lp.lnum);
1204	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1205	err = ubifs_garbage_collect_leb(c, &lp);
1206	if (err >= 0) {
1207		int err2 = ubifs_wbuf_sync_nolock(wbuf);
1208
1209		if (err2)
1210			err = err2;
1211	}
1212	mutex_unlock(&wbuf->io_mutex);
1213	if (err < 0) {
1214		ubifs_err(c, "GC failed, error %d", err);
1215		if (err == -EAGAIN)
1216			err = -EINVAL;
1217		return err;
1218	}
1219
1220	ubifs_assert(err == LEB_RETAINED);
1221	if (err != LEB_RETAINED)
1222		return -EINVAL;
1223
1224	err = ubifs_leb_unmap(c, c->gc_lnum);
1225	if (err)
1226		return err;
1227
1228	dbg_rcvry("allocated LEB %d for GC", lp.lnum);
1229	return 0;
1230}
1231
1232/**
1233 * struct size_entry - inode size information for recovery.
1234 * @rb: link in the RB-tree of sizes
1235 * @inum: inode number
1236 * @i_size: size on inode
1237 * @d_size: maximum size based on data nodes
1238 * @exists: indicates whether the inode exists
1239 * @inode: inode if pinned in memory awaiting rw mode to fix it
1240 */
1241struct size_entry {
1242	struct rb_node rb;
1243	ino_t inum;
1244	loff_t i_size;
1245	loff_t d_size;
1246	int exists;
1247	struct inode *inode;
1248};
1249
1250/**
1251 * add_ino - add an entry to the size tree.
1252 * @c: UBIFS file-system description object
1253 * @inum: inode number
1254 * @i_size: size on inode
1255 * @d_size: maximum size based on data nodes
1256 * @exists: indicates whether the inode exists
1257 */
1258static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1259		   loff_t d_size, int exists)
1260{
1261	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1262	struct size_entry *e;
1263
1264	while (*p) {
1265		parent = *p;
1266		e = rb_entry(parent, struct size_entry, rb);
1267		if (inum < e->inum)
1268			p = &(*p)->rb_left;
1269		else
1270			p = &(*p)->rb_right;
1271	}
1272
1273	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1274	if (!e)
1275		return -ENOMEM;
1276
1277	e->inum = inum;
1278	e->i_size = i_size;
1279	e->d_size = d_size;
1280	e->exists = exists;
1281
1282	rb_link_node(&e->rb, parent, p);
1283	rb_insert_color(&e->rb, &c->size_tree);
1284
1285	return 0;
1286}
1287
1288/**
1289 * find_ino - find an entry on the size tree.
1290 * @c: UBIFS file-system description object
1291 * @inum: inode number
1292 */
1293static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1294{
1295	struct rb_node *p = c->size_tree.rb_node;
1296	struct size_entry *e;
1297
1298	while (p) {
1299		e = rb_entry(p, struct size_entry, rb);
1300		if (inum < e->inum)
1301			p = p->rb_left;
1302		else if (inum > e->inum)
1303			p = p->rb_right;
1304		else
1305			return e;
1306	}
1307	return NULL;
1308}
1309
1310/**
1311 * remove_ino - remove an entry from the size tree.
1312 * @c: UBIFS file-system description object
1313 * @inum: inode number
1314 */
1315static void remove_ino(struct ubifs_info *c, ino_t inum)
1316{
1317	struct size_entry *e = find_ino(c, inum);
1318
1319	if (!e)
1320		return;
1321	rb_erase(&e->rb, &c->size_tree);
1322	kfree(e);
1323}
1324
1325/**
1326 * ubifs_destroy_size_tree - free resources related to the size tree.
1327 * @c: UBIFS file-system description object
1328 */
1329void ubifs_destroy_size_tree(struct ubifs_info *c)
1330{
1331	struct size_entry *e, *n;
1332
1333	rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
1334		iput(e->inode);
1335		kfree(e);
1336	}
1337
1338	c->size_tree = RB_ROOT;
1339}
1340
1341/**
1342 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1343 * @c: UBIFS file-system description object
1344 * @key: node key
1345 * @deletion: node is for a deletion
1346 * @new_size: inode size
1347 *
1348 * This function has two purposes:
1349 *     1) to ensure there are no data nodes that fall outside the inode size
1350 *     2) to ensure there are no data nodes for inodes that do not exist
1351 * To accomplish those purposes, a rb-tree is constructed containing an entry
1352 * for each inode number in the journal that has not been deleted, and recording
1353 * the size from the inode node, the maximum size of any data node (also altered
1354 * by truncations) and a flag indicating a inode number for which no inode node
1355 * was present in the journal.
1356 *
1357 * Note that there is still the possibility that there are data nodes that have
1358 * been committed that are beyond the inode size, however the only way to find
1359 * them would be to scan the entire index. Alternatively, some provision could
1360 * be made to record the size of inodes at the start of commit, which would seem
1361 * very cumbersome for a scenario that is quite unlikely and the only negative
1362 * consequence of which is wasted space.
1363 *
1364 * This functions returns %0 on success and a negative error code on failure.
1365 */
1366int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1367			     int deletion, loff_t new_size)
1368{
1369	ino_t inum = key_inum(c, key);
1370	struct size_entry *e;
1371	int err;
1372
1373	switch (key_type(c, key)) {
1374	case UBIFS_INO_KEY:
1375		if (deletion)
1376			remove_ino(c, inum);
1377		else {
1378			e = find_ino(c, inum);
1379			if (e) {
1380				e->i_size = new_size;
1381				e->exists = 1;
1382			} else {
1383				err = add_ino(c, inum, new_size, 0, 1);
1384				if (err)
1385					return err;
1386			}
1387		}
1388		break;
1389	case UBIFS_DATA_KEY:
1390		e = find_ino(c, inum);
1391		if (e) {
1392			if (new_size > e->d_size)
1393				e->d_size = new_size;
1394		} else {
1395			err = add_ino(c, inum, 0, new_size, 0);
1396			if (err)
1397				return err;
1398		}
1399		break;
1400	case UBIFS_TRUN_KEY:
1401		e = find_ino(c, inum);
1402		if (e)
1403			e->d_size = new_size;
1404		break;
1405	}
1406	return 0;
1407}
1408
1409/**
1410 * fix_size_in_place - fix inode size in place on flash.
1411 * @c: UBIFS file-system description object
1412 * @e: inode size information for recovery
1413 */
1414static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1415{
1416	struct ubifs_ino_node *ino = c->sbuf;
1417	unsigned char *p;
1418	union ubifs_key key;
1419	int err, lnum, offs, len;
1420	loff_t i_size;
1421	uint32_t crc;
1422
1423	/* Locate the inode node LEB number and offset */
1424	ino_key_init(c, &key, e->inum);
1425	err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1426	if (err)
1427		goto out;
1428	/*
1429	 * If the size recorded on the inode node is greater than the size that
1430	 * was calculated from nodes in the journal then don't change the inode.
1431	 */
1432	i_size = le64_to_cpu(ino->size);
1433	if (i_size >= e->d_size)
1434		return 0;
1435	/* Read the LEB */
1436	err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
1437	if (err)
1438		goto out;
1439	/* Change the size field and recalculate the CRC */
1440	ino = c->sbuf + offs;
1441	ino->size = cpu_to_le64(e->d_size);
1442	len = le32_to_cpu(ino->ch.len);
1443	crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1444	ino->ch.crc = cpu_to_le32(crc);
1445	/* Work out where data in the LEB ends and free space begins */
1446	p = c->sbuf;
1447	len = c->leb_size - 1;
1448	while (p[len] == 0xff)
1449		len -= 1;
1450	len = ALIGN(len + 1, c->min_io_size);
1451	/* Atomically write the fixed LEB back again */
1452	err = ubifs_leb_change(c, lnum, c->sbuf, len);
1453	if (err)
1454		goto out;
1455	dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
1456		  (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1457	return 0;
1458
1459out:
1460	ubifs_warn(c, "inode %lu failed to fix size %lld -> %lld error %d",
1461		   (unsigned long)e->inum, e->i_size, e->d_size, err);
1462	return err;
1463}
1464
1465/**
1466 * ubifs_recover_size - recover inode size.
1467 * @c: UBIFS file-system description object
1468 *
1469 * This function attempts to fix inode size discrepancies identified by the
1470 * 'ubifs_recover_size_accum()' function.
1471 *
1472 * This functions returns %0 on success and a negative error code on failure.
1473 */
1474int ubifs_recover_size(struct ubifs_info *c)
1475{
1476	struct rb_node *this = rb_first(&c->size_tree);
1477
1478	while (this) {
1479		struct size_entry *e;
1480		int err;
1481
1482		e = rb_entry(this, struct size_entry, rb);
1483		if (!e->exists) {
1484			union ubifs_key key;
1485
1486			ino_key_init(c, &key, e->inum);
1487			err = ubifs_tnc_lookup(c, &key, c->sbuf);
1488			if (err && err != -ENOENT)
1489				return err;
1490			if (err == -ENOENT) {
1491				/* Remove data nodes that have no inode */
1492				dbg_rcvry("removing ino %lu",
1493					  (unsigned long)e->inum);
1494				err = ubifs_tnc_remove_ino(c, e->inum);
1495				if (err)
1496					return err;
1497			} else {
1498				struct ubifs_ino_node *ino = c->sbuf;
1499
1500				e->exists = 1;
1501				e->i_size = le64_to_cpu(ino->size);
1502			}
1503		}
1504
1505		if (e->exists && e->i_size < e->d_size) {
1506			if (c->ro_mount) {
1507				/* Fix the inode size and pin it in memory */
1508				struct inode *inode;
1509				struct ubifs_inode *ui;
1510
1511				ubifs_assert(!e->inode);
1512
1513				inode = ubifs_iget(c->vfs_sb, e->inum);
1514				if (IS_ERR(inode))
1515					return PTR_ERR(inode);
1516
1517				ui = ubifs_inode(inode);
1518				if (inode->i_size < e->d_size) {
1519					dbg_rcvry("ino %lu size %lld -> %lld",
1520						  (unsigned long)e->inum,
1521						  inode->i_size, e->d_size);
1522					inode->i_size = e->d_size;
1523					ui->ui_size = e->d_size;
1524					ui->synced_i_size = e->d_size;
1525					e->inode = inode;
1526					this = rb_next(this);
1527					continue;
1528				}
1529				iput(inode);
1530			} else {
1531				/* Fix the size in place */
1532				err = fix_size_in_place(c, e);
1533				if (err)
1534					return err;
1535				iput(e->inode);
1536			}
1537		}
1538
1539		this = rb_next(this);
1540		rb_erase(&e->rb, &c->size_tree);
1541		kfree(e);
1542	}
1543
1544	return 0;
1545}
1546