1/* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (���������������� ����������) 20 * Adrian Hunter 21 */ 22 23/* 24 * This file implements most of the debugging stuff which is compiled in only 25 * when it is enabled. But some debugging check functions are implemented in 26 * corresponding subsystem, just because they are closely related and utilize 27 * various local functions of those subsystems. 28 */ 29 30#include <linux/module.h> 31#include <linux/debugfs.h> 32#include <linux/math64.h> 33#include <linux/uaccess.h> 34#include <linux/random.h> 35#include "ubifs.h" 36 37static DEFINE_SPINLOCK(dbg_lock); 38 39static const char *get_key_fmt(int fmt) 40{ 41 switch (fmt) { 42 case UBIFS_SIMPLE_KEY_FMT: 43 return "simple"; 44 default: 45 return "unknown/invalid format"; 46 } 47} 48 49static const char *get_key_hash(int hash) 50{ 51 switch (hash) { 52 case UBIFS_KEY_HASH_R5: 53 return "R5"; 54 case UBIFS_KEY_HASH_TEST: 55 return "test"; 56 default: 57 return "unknown/invalid name hash"; 58 } 59} 60 61static const char *get_key_type(int type) 62{ 63 switch (type) { 64 case UBIFS_INO_KEY: 65 return "inode"; 66 case UBIFS_DENT_KEY: 67 return "direntry"; 68 case UBIFS_XENT_KEY: 69 return "xentry"; 70 case UBIFS_DATA_KEY: 71 return "data"; 72 case UBIFS_TRUN_KEY: 73 return "truncate"; 74 default: 75 return "unknown/invalid key"; 76 } 77} 78 79static const char *get_dent_type(int type) 80{ 81 switch (type) { 82 case UBIFS_ITYPE_REG: 83 return "file"; 84 case UBIFS_ITYPE_DIR: 85 return "dir"; 86 case UBIFS_ITYPE_LNK: 87 return "symlink"; 88 case UBIFS_ITYPE_BLK: 89 return "blkdev"; 90 case UBIFS_ITYPE_CHR: 91 return "char dev"; 92 case UBIFS_ITYPE_FIFO: 93 return "fifo"; 94 case UBIFS_ITYPE_SOCK: 95 return "socket"; 96 default: 97 return "unknown/invalid type"; 98 } 99} 100 101const char *dbg_snprintf_key(const struct ubifs_info *c, 102 const union ubifs_key *key, char *buffer, int len) 103{ 104 char *p = buffer; 105 int type = key_type(c, key); 106 107 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 108 switch (type) { 109 case UBIFS_INO_KEY: 110 len -= snprintf(p, len, "(%lu, %s)", 111 (unsigned long)key_inum(c, key), 112 get_key_type(type)); 113 break; 114 case UBIFS_DENT_KEY: 115 case UBIFS_XENT_KEY: 116 len -= snprintf(p, len, "(%lu, %s, %#08x)", 117 (unsigned long)key_inum(c, key), 118 get_key_type(type), key_hash(c, key)); 119 break; 120 case UBIFS_DATA_KEY: 121 len -= snprintf(p, len, "(%lu, %s, %u)", 122 (unsigned long)key_inum(c, key), 123 get_key_type(type), key_block(c, key)); 124 break; 125 case UBIFS_TRUN_KEY: 126 len -= snprintf(p, len, "(%lu, %s)", 127 (unsigned long)key_inum(c, key), 128 get_key_type(type)); 129 break; 130 default: 131 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)", 132 key->u32[0], key->u32[1]); 133 } 134 } else 135 len -= snprintf(p, len, "bad key format %d", c->key_fmt); 136 ubifs_assert(len > 0); 137 return p; 138} 139 140const char *dbg_ntype(int type) 141{ 142 switch (type) { 143 case UBIFS_PAD_NODE: 144 return "padding node"; 145 case UBIFS_SB_NODE: 146 return "superblock node"; 147 case UBIFS_MST_NODE: 148 return "master node"; 149 case UBIFS_REF_NODE: 150 return "reference node"; 151 case UBIFS_INO_NODE: 152 return "inode node"; 153 case UBIFS_DENT_NODE: 154 return "direntry node"; 155 case UBIFS_XENT_NODE: 156 return "xentry node"; 157 case UBIFS_DATA_NODE: 158 return "data node"; 159 case UBIFS_TRUN_NODE: 160 return "truncate node"; 161 case UBIFS_IDX_NODE: 162 return "indexing node"; 163 case UBIFS_CS_NODE: 164 return "commit start node"; 165 case UBIFS_ORPH_NODE: 166 return "orphan node"; 167 default: 168 return "unknown node"; 169 } 170} 171 172static const char *dbg_gtype(int type) 173{ 174 switch (type) { 175 case UBIFS_NO_NODE_GROUP: 176 return "no node group"; 177 case UBIFS_IN_NODE_GROUP: 178 return "in node group"; 179 case UBIFS_LAST_OF_NODE_GROUP: 180 return "last of node group"; 181 default: 182 return "unknown"; 183 } 184} 185 186const char *dbg_cstate(int cmt_state) 187{ 188 switch (cmt_state) { 189 case COMMIT_RESTING: 190 return "commit resting"; 191 case COMMIT_BACKGROUND: 192 return "background commit requested"; 193 case COMMIT_REQUIRED: 194 return "commit required"; 195 case COMMIT_RUNNING_BACKGROUND: 196 return "BACKGROUND commit running"; 197 case COMMIT_RUNNING_REQUIRED: 198 return "commit running and required"; 199 case COMMIT_BROKEN: 200 return "broken commit"; 201 default: 202 return "unknown commit state"; 203 } 204} 205 206const char *dbg_jhead(int jhead) 207{ 208 switch (jhead) { 209 case GCHD: 210 return "0 (GC)"; 211 case BASEHD: 212 return "1 (base)"; 213 case DATAHD: 214 return "2 (data)"; 215 default: 216 return "unknown journal head"; 217 } 218} 219 220static void dump_ch(const struct ubifs_ch *ch) 221{ 222 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic)); 223 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc)); 224 pr_err("\tnode_type %d (%s)\n", ch->node_type, 225 dbg_ntype(ch->node_type)); 226 pr_err("\tgroup_type %d (%s)\n", ch->group_type, 227 dbg_gtype(ch->group_type)); 228 pr_err("\tsqnum %llu\n", 229 (unsigned long long)le64_to_cpu(ch->sqnum)); 230 pr_err("\tlen %u\n", le32_to_cpu(ch->len)); 231} 232 233void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode) 234{ 235 const struct ubifs_inode *ui = ubifs_inode(inode); 236 struct qstr nm = { .name = NULL }; 237 union ubifs_key key; 238 struct ubifs_dent_node *dent, *pdent = NULL; 239 int count = 2; 240 241 pr_err("Dump in-memory inode:"); 242 pr_err("\tinode %lu\n", inode->i_ino); 243 pr_err("\tsize %llu\n", 244 (unsigned long long)i_size_read(inode)); 245 pr_err("\tnlink %u\n", inode->i_nlink); 246 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode)); 247 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode)); 248 pr_err("\tatime %u.%u\n", 249 (unsigned int)inode->i_atime.tv_sec, 250 (unsigned int)inode->i_atime.tv_nsec); 251 pr_err("\tmtime %u.%u\n", 252 (unsigned int)inode->i_mtime.tv_sec, 253 (unsigned int)inode->i_mtime.tv_nsec); 254 pr_err("\tctime %u.%u\n", 255 (unsigned int)inode->i_ctime.tv_sec, 256 (unsigned int)inode->i_ctime.tv_nsec); 257 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum); 258 pr_err("\txattr_size %u\n", ui->xattr_size); 259 pr_err("\txattr_cnt %u\n", ui->xattr_cnt); 260 pr_err("\txattr_names %u\n", ui->xattr_names); 261 pr_err("\tdirty %u\n", ui->dirty); 262 pr_err("\txattr %u\n", ui->xattr); 263 pr_err("\tbulk_read %u\n", ui->xattr); 264 pr_err("\tsynced_i_size %llu\n", 265 (unsigned long long)ui->synced_i_size); 266 pr_err("\tui_size %llu\n", 267 (unsigned long long)ui->ui_size); 268 pr_err("\tflags %d\n", ui->flags); 269 pr_err("\tcompr_type %d\n", ui->compr_type); 270 pr_err("\tlast_page_read %lu\n", ui->last_page_read); 271 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row); 272 pr_err("\tdata_len %d\n", ui->data_len); 273 274 if (!S_ISDIR(inode->i_mode)) 275 return; 276 277 pr_err("List of directory entries:\n"); 278 ubifs_assert(!mutex_is_locked(&c->tnc_mutex)); 279 280 lowest_dent_key(c, &key, inode->i_ino); 281 while (1) { 282 dent = ubifs_tnc_next_ent(c, &key, &nm); 283 if (IS_ERR(dent)) { 284 if (PTR_ERR(dent) != -ENOENT) 285 pr_err("error %ld\n", PTR_ERR(dent)); 286 break; 287 } 288 289 pr_err("\t%d: %s (%s)\n", 290 count++, dent->name, get_dent_type(dent->type)); 291 292 nm.name = dent->name; 293 nm.len = le16_to_cpu(dent->nlen); 294 kfree(pdent); 295 pdent = dent; 296 key_read(c, &dent->key, &key); 297 } 298 kfree(pdent); 299} 300 301void ubifs_dump_node(const struct ubifs_info *c, const void *node) 302{ 303 int i, n; 304 union ubifs_key key; 305 const struct ubifs_ch *ch = node; 306 char key_buf[DBG_KEY_BUF_LEN]; 307 308 /* If the magic is incorrect, just hexdump the first bytes */ 309 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 310 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ); 311 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1, 312 (void *)node, UBIFS_CH_SZ, 1); 313 return; 314 } 315 316 spin_lock(&dbg_lock); 317 dump_ch(node); 318 319 switch (ch->node_type) { 320 case UBIFS_PAD_NODE: 321 { 322 const struct ubifs_pad_node *pad = node; 323 324 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len)); 325 break; 326 } 327 case UBIFS_SB_NODE: 328 { 329 const struct ubifs_sb_node *sup = node; 330 unsigned int sup_flags = le32_to_cpu(sup->flags); 331 332 pr_err("\tkey_hash %d (%s)\n", 333 (int)sup->key_hash, get_key_hash(sup->key_hash)); 334 pr_err("\tkey_fmt %d (%s)\n", 335 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 336 pr_err("\tflags %#x\n", sup_flags); 337 pr_err("\tbig_lpt %u\n", 338 !!(sup_flags & UBIFS_FLG_BIGLPT)); 339 pr_err("\tspace_fixup %u\n", 340 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); 341 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size)); 342 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size)); 343 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt)); 344 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt)); 345 pr_err("\tmax_bud_bytes %llu\n", 346 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 347 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs)); 348 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs)); 349 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs)); 350 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt)); 351 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout)); 352 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt)); 353 pr_err("\tdefault_compr %u\n", 354 (int)le16_to_cpu(sup->default_compr)); 355 pr_err("\trp_size %llu\n", 356 (unsigned long long)le64_to_cpu(sup->rp_size)); 357 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid)); 358 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid)); 359 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version)); 360 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran)); 361 pr_err("\tUUID %pUB\n", sup->uuid); 362 break; 363 } 364 case UBIFS_MST_NODE: 365 { 366 const struct ubifs_mst_node *mst = node; 367 368 pr_err("\thighest_inum %llu\n", 369 (unsigned long long)le64_to_cpu(mst->highest_inum)); 370 pr_err("\tcommit number %llu\n", 371 (unsigned long long)le64_to_cpu(mst->cmt_no)); 372 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags)); 373 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum)); 374 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum)); 375 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs)); 376 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len)); 377 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum)); 378 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum)); 379 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs)); 380 pr_err("\tindex_size %llu\n", 381 (unsigned long long)le64_to_cpu(mst->index_size)); 382 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum)); 383 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs)); 384 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum)); 385 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs)); 386 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum)); 387 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs)); 388 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum)); 389 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs)); 390 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum)); 391 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt)); 392 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs)); 393 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs)); 394 pr_err("\ttotal_free %llu\n", 395 (unsigned long long)le64_to_cpu(mst->total_free)); 396 pr_err("\ttotal_dirty %llu\n", 397 (unsigned long long)le64_to_cpu(mst->total_dirty)); 398 pr_err("\ttotal_used %llu\n", 399 (unsigned long long)le64_to_cpu(mst->total_used)); 400 pr_err("\ttotal_dead %llu\n", 401 (unsigned long long)le64_to_cpu(mst->total_dead)); 402 pr_err("\ttotal_dark %llu\n", 403 (unsigned long long)le64_to_cpu(mst->total_dark)); 404 break; 405 } 406 case UBIFS_REF_NODE: 407 { 408 const struct ubifs_ref_node *ref = node; 409 410 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum)); 411 pr_err("\toffs %u\n", le32_to_cpu(ref->offs)); 412 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead)); 413 break; 414 } 415 case UBIFS_INO_NODE: 416 { 417 const struct ubifs_ino_node *ino = node; 418 419 key_read(c, &ino->key, &key); 420 pr_err("\tkey %s\n", 421 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 422 pr_err("\tcreat_sqnum %llu\n", 423 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 424 pr_err("\tsize %llu\n", 425 (unsigned long long)le64_to_cpu(ino->size)); 426 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink)); 427 pr_err("\tatime %lld.%u\n", 428 (long long)le64_to_cpu(ino->atime_sec), 429 le32_to_cpu(ino->atime_nsec)); 430 pr_err("\tmtime %lld.%u\n", 431 (long long)le64_to_cpu(ino->mtime_sec), 432 le32_to_cpu(ino->mtime_nsec)); 433 pr_err("\tctime %lld.%u\n", 434 (long long)le64_to_cpu(ino->ctime_sec), 435 le32_to_cpu(ino->ctime_nsec)); 436 pr_err("\tuid %u\n", le32_to_cpu(ino->uid)); 437 pr_err("\tgid %u\n", le32_to_cpu(ino->gid)); 438 pr_err("\tmode %u\n", le32_to_cpu(ino->mode)); 439 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags)); 440 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt)); 441 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size)); 442 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names)); 443 pr_err("\tcompr_type %#x\n", 444 (int)le16_to_cpu(ino->compr_type)); 445 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len)); 446 break; 447 } 448 case UBIFS_DENT_NODE: 449 case UBIFS_XENT_NODE: 450 { 451 const struct ubifs_dent_node *dent = node; 452 int nlen = le16_to_cpu(dent->nlen); 453 454 key_read(c, &dent->key, &key); 455 pr_err("\tkey %s\n", 456 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 457 pr_err("\tinum %llu\n", 458 (unsigned long long)le64_to_cpu(dent->inum)); 459 pr_err("\ttype %d\n", (int)dent->type); 460 pr_err("\tnlen %d\n", nlen); 461 pr_err("\tname "); 462 463 if (nlen > UBIFS_MAX_NLEN) 464 pr_err("(bad name length, not printing, bad or corrupted node)"); 465 else { 466 for (i = 0; i < nlen && dent->name[i]; i++) 467 pr_cont("%c", dent->name[i]); 468 } 469 pr_cont("\n"); 470 471 break; 472 } 473 case UBIFS_DATA_NODE: 474 { 475 const struct ubifs_data_node *dn = node; 476 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 477 478 key_read(c, &dn->key, &key); 479 pr_err("\tkey %s\n", 480 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 481 pr_err("\tsize %u\n", le32_to_cpu(dn->size)); 482 pr_err("\tcompr_typ %d\n", 483 (int)le16_to_cpu(dn->compr_type)); 484 pr_err("\tdata size %d\n", dlen); 485 pr_err("\tdata:\n"); 486 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1, 487 (void *)&dn->data, dlen, 0); 488 break; 489 } 490 case UBIFS_TRUN_NODE: 491 { 492 const struct ubifs_trun_node *trun = node; 493 494 pr_err("\tinum %u\n", le32_to_cpu(trun->inum)); 495 pr_err("\told_size %llu\n", 496 (unsigned long long)le64_to_cpu(trun->old_size)); 497 pr_err("\tnew_size %llu\n", 498 (unsigned long long)le64_to_cpu(trun->new_size)); 499 break; 500 } 501 case UBIFS_IDX_NODE: 502 { 503 const struct ubifs_idx_node *idx = node; 504 505 n = le16_to_cpu(idx->child_cnt); 506 pr_err("\tchild_cnt %d\n", n); 507 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level)); 508 pr_err("\tBranches:\n"); 509 510 for (i = 0; i < n && i < c->fanout - 1; i++) { 511 const struct ubifs_branch *br; 512 513 br = ubifs_idx_branch(c, idx, i); 514 key_read(c, &br->key, &key); 515 pr_err("\t%d: LEB %d:%d len %d key %s\n", 516 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 517 le32_to_cpu(br->len), 518 dbg_snprintf_key(c, &key, key_buf, 519 DBG_KEY_BUF_LEN)); 520 } 521 break; 522 } 523 case UBIFS_CS_NODE: 524 break; 525 case UBIFS_ORPH_NODE: 526 { 527 const struct ubifs_orph_node *orph = node; 528 529 pr_err("\tcommit number %llu\n", 530 (unsigned long long) 531 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 532 pr_err("\tlast node flag %llu\n", 533 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 534 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 535 pr_err("\t%d orphan inode numbers:\n", n); 536 for (i = 0; i < n; i++) 537 pr_err("\t ino %llu\n", 538 (unsigned long long)le64_to_cpu(orph->inos[i])); 539 break; 540 } 541 default: 542 pr_err("node type %d was not recognized\n", 543 (int)ch->node_type); 544 } 545 spin_unlock(&dbg_lock); 546} 547 548void ubifs_dump_budget_req(const struct ubifs_budget_req *req) 549{ 550 spin_lock(&dbg_lock); 551 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n", 552 req->new_ino, req->dirtied_ino); 553 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n", 554 req->new_ino_d, req->dirtied_ino_d); 555 pr_err("\tnew_page %d, dirtied_page %d\n", 556 req->new_page, req->dirtied_page); 557 pr_err("\tnew_dent %d, mod_dent %d\n", 558 req->new_dent, req->mod_dent); 559 pr_err("\tidx_growth %d\n", req->idx_growth); 560 pr_err("\tdata_growth %d dd_growth %d\n", 561 req->data_growth, req->dd_growth); 562 spin_unlock(&dbg_lock); 563} 564 565void ubifs_dump_lstats(const struct ubifs_lp_stats *lst) 566{ 567 spin_lock(&dbg_lock); 568 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n", 569 current->pid, lst->empty_lebs, lst->idx_lebs); 570 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n", 571 lst->taken_empty_lebs, lst->total_free, lst->total_dirty); 572 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n", 573 lst->total_used, lst->total_dark, lst->total_dead); 574 spin_unlock(&dbg_lock); 575} 576 577void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 578{ 579 int i; 580 struct rb_node *rb; 581 struct ubifs_bud *bud; 582 struct ubifs_gced_idx_leb *idx_gc; 583 long long available, outstanding, free; 584 585 spin_lock(&c->space_lock); 586 spin_lock(&dbg_lock); 587 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n", 588 current->pid, bi->data_growth + bi->dd_growth, 589 bi->data_growth + bi->dd_growth + bi->idx_growth); 590 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n", 591 bi->data_growth, bi->dd_growth, bi->idx_growth); 592 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n", 593 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx); 594 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n", 595 bi->page_budget, bi->inode_budget, bi->dent_budget); 596 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp); 597 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 598 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 599 600 if (bi != &c->bi) 601 /* 602 * If we are dumping saved budgeting data, do not print 603 * additional information which is about the current state, not 604 * the old one which corresponded to the saved budgeting data. 605 */ 606 goto out_unlock; 607 608 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", 609 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); 610 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n", 611 atomic_long_read(&c->dirty_pg_cnt), 612 atomic_long_read(&c->dirty_zn_cnt), 613 atomic_long_read(&c->clean_zn_cnt)); 614 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum); 615 616 /* If we are in R/O mode, journal heads do not exist */ 617 if (c->jheads) 618 for (i = 0; i < c->jhead_cnt; i++) 619 pr_err("\tjhead %s\t LEB %d\n", 620 dbg_jhead(c->jheads[i].wbuf.jhead), 621 c->jheads[i].wbuf.lnum); 622 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 623 bud = rb_entry(rb, struct ubifs_bud, rb); 624 pr_err("\tbud LEB %d\n", bud->lnum); 625 } 626 list_for_each_entry(bud, &c->old_buds, list) 627 pr_err("\told bud LEB %d\n", bud->lnum); 628 list_for_each_entry(idx_gc, &c->idx_gc, list) 629 pr_err("\tGC'ed idx LEB %d unmap %d\n", 630 idx_gc->lnum, idx_gc->unmap); 631 pr_err("\tcommit state %d\n", c->cmt_state); 632 633 /* Print budgeting predictions */ 634 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 635 outstanding = c->bi.data_growth + c->bi.dd_growth; 636 free = ubifs_get_free_space_nolock(c); 637 pr_err("Budgeting predictions:\n"); 638 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n", 639 available, outstanding, free); 640out_unlock: 641 spin_unlock(&dbg_lock); 642 spin_unlock(&c->space_lock); 643} 644 645void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 646{ 647 int i, spc, dark = 0, dead = 0; 648 struct rb_node *rb; 649 struct ubifs_bud *bud; 650 651 spc = lp->free + lp->dirty; 652 if (spc < c->dead_wm) 653 dead = spc; 654 else 655 dark = ubifs_calc_dark(c, spc); 656 657 if (lp->flags & LPROPS_INDEX) 658 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (", 659 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 660 lp->flags); 661 else 662 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (", 663 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 664 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); 665 666 if (lp->flags & LPROPS_TAKEN) { 667 if (lp->flags & LPROPS_INDEX) 668 pr_cont("index, taken"); 669 else 670 pr_cont("taken"); 671 } else { 672 const char *s; 673 674 if (lp->flags & LPROPS_INDEX) { 675 switch (lp->flags & LPROPS_CAT_MASK) { 676 case LPROPS_DIRTY_IDX: 677 s = "dirty index"; 678 break; 679 case LPROPS_FRDI_IDX: 680 s = "freeable index"; 681 break; 682 default: 683 s = "index"; 684 } 685 } else { 686 switch (lp->flags & LPROPS_CAT_MASK) { 687 case LPROPS_UNCAT: 688 s = "not categorized"; 689 break; 690 case LPROPS_DIRTY: 691 s = "dirty"; 692 break; 693 case LPROPS_FREE: 694 s = "free"; 695 break; 696 case LPROPS_EMPTY: 697 s = "empty"; 698 break; 699 case LPROPS_FREEABLE: 700 s = "freeable"; 701 break; 702 default: 703 s = NULL; 704 break; 705 } 706 } 707 pr_cont("%s", s); 708 } 709 710 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { 711 bud = rb_entry(rb, struct ubifs_bud, rb); 712 if (bud->lnum == lp->lnum) { 713 int head = 0; 714 for (i = 0; i < c->jhead_cnt; i++) { 715 /* 716 * Note, if we are in R/O mode or in the middle 717 * of mounting/re-mounting, the write-buffers do 718 * not exist. 719 */ 720 if (c->jheads && 721 lp->lnum == c->jheads[i].wbuf.lnum) { 722 pr_cont(", jhead %s", dbg_jhead(i)); 723 head = 1; 724 } 725 } 726 if (!head) 727 pr_cont(", bud of jhead %s", 728 dbg_jhead(bud->jhead)); 729 } 730 } 731 if (lp->lnum == c->gc_lnum) 732 pr_cont(", GC LEB"); 733 pr_cont(")\n"); 734} 735 736void ubifs_dump_lprops(struct ubifs_info *c) 737{ 738 int lnum, err; 739 struct ubifs_lprops lp; 740 struct ubifs_lp_stats lst; 741 742 pr_err("(pid %d) start dumping LEB properties\n", current->pid); 743 ubifs_get_lp_stats(c, &lst); 744 ubifs_dump_lstats(&lst); 745 746 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 747 err = ubifs_read_one_lp(c, lnum, &lp); 748 if (err) { 749 ubifs_err(c, "cannot read lprops for LEB %d", lnum); 750 continue; 751 } 752 753 ubifs_dump_lprop(c, &lp); 754 } 755 pr_err("(pid %d) finish dumping LEB properties\n", current->pid); 756} 757 758void ubifs_dump_lpt_info(struct ubifs_info *c) 759{ 760 int i; 761 762 spin_lock(&dbg_lock); 763 pr_err("(pid %d) dumping LPT information\n", current->pid); 764 pr_err("\tlpt_sz: %lld\n", c->lpt_sz); 765 pr_err("\tpnode_sz: %d\n", c->pnode_sz); 766 pr_err("\tnnode_sz: %d\n", c->nnode_sz); 767 pr_err("\tltab_sz: %d\n", c->ltab_sz); 768 pr_err("\tlsave_sz: %d\n", c->lsave_sz); 769 pr_err("\tbig_lpt: %d\n", c->big_lpt); 770 pr_err("\tlpt_hght: %d\n", c->lpt_hght); 771 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt); 772 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt); 773 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 774 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 775 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt); 776 pr_err("\tspace_bits: %d\n", c->space_bits); 777 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 778 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 779 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 780 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits); 781 pr_err("\tlnum_bits: %d\n", c->lnum_bits); 782 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 783 pr_err("\tLPT head is at %d:%d\n", 784 c->nhead_lnum, c->nhead_offs); 785 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs); 786 if (c->big_lpt) 787 pr_err("\tLPT lsave is at %d:%d\n", 788 c->lsave_lnum, c->lsave_offs); 789 for (i = 0; i < c->lpt_lebs; i++) 790 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n", 791 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty, 792 c->ltab[i].tgc, c->ltab[i].cmt); 793 spin_unlock(&dbg_lock); 794} 795 796void ubifs_dump_sleb(const struct ubifs_info *c, 797 const struct ubifs_scan_leb *sleb, int offs) 798{ 799 struct ubifs_scan_node *snod; 800 801 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n", 802 current->pid, sleb->lnum, offs); 803 804 list_for_each_entry(snod, &sleb->nodes, list) { 805 cond_resched(); 806 pr_err("Dumping node at LEB %d:%d len %d\n", 807 sleb->lnum, snod->offs, snod->len); 808 ubifs_dump_node(c, snod->node); 809 } 810} 811 812void ubifs_dump_leb(const struct ubifs_info *c, int lnum) 813{ 814 struct ubifs_scan_leb *sleb; 815 struct ubifs_scan_node *snod; 816 void *buf; 817 818 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum); 819 820 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 821 if (!buf) { 822 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum); 823 return; 824 } 825 826 sleb = ubifs_scan(c, lnum, 0, buf, 0); 827 if (IS_ERR(sleb)) { 828 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb)); 829 goto out; 830 } 831 832 pr_err("LEB %d has %d nodes ending at %d\n", lnum, 833 sleb->nodes_cnt, sleb->endpt); 834 835 list_for_each_entry(snod, &sleb->nodes, list) { 836 cond_resched(); 837 pr_err("Dumping node at LEB %d:%d len %d\n", lnum, 838 snod->offs, snod->len); 839 ubifs_dump_node(c, snod->node); 840 } 841 842 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum); 843 ubifs_scan_destroy(sleb); 844 845out: 846 vfree(buf); 847 return; 848} 849 850void ubifs_dump_znode(const struct ubifs_info *c, 851 const struct ubifs_znode *znode) 852{ 853 int n; 854 const struct ubifs_zbranch *zbr; 855 char key_buf[DBG_KEY_BUF_LEN]; 856 857 spin_lock(&dbg_lock); 858 if (znode->parent) 859 zbr = &znode->parent->zbranch[znode->iip]; 860 else 861 zbr = &c->zroot; 862 863 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n", 864 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip, 865 znode->level, znode->child_cnt, znode->flags); 866 867 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 868 spin_unlock(&dbg_lock); 869 return; 870 } 871 872 pr_err("zbranches:\n"); 873 for (n = 0; n < znode->child_cnt; n++) { 874 zbr = &znode->zbranch[n]; 875 if (znode->level > 0) 876 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n", 877 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 878 dbg_snprintf_key(c, &zbr->key, key_buf, 879 DBG_KEY_BUF_LEN)); 880 else 881 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n", 882 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 883 dbg_snprintf_key(c, &zbr->key, key_buf, 884 DBG_KEY_BUF_LEN)); 885 } 886 spin_unlock(&dbg_lock); 887} 888 889void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 890{ 891 int i; 892 893 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n", 894 current->pid, cat, heap->cnt); 895 for (i = 0; i < heap->cnt; i++) { 896 struct ubifs_lprops *lprops = heap->arr[i]; 897 898 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n", 899 i, lprops->lnum, lprops->hpos, lprops->free, 900 lprops->dirty, lprops->flags); 901 } 902 pr_err("(pid %d) finish dumping heap\n", current->pid); 903} 904 905void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 906 struct ubifs_nnode *parent, int iip) 907{ 908 int i; 909 910 pr_err("(pid %d) dumping pnode:\n", current->pid); 911 pr_err("\taddress %zx parent %zx cnext %zx\n", 912 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 913 pr_err("\tflags %lu iip %d level %d num %d\n", 914 pnode->flags, iip, pnode->level, pnode->num); 915 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 916 struct ubifs_lprops *lp = &pnode->lprops[i]; 917 918 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n", 919 i, lp->free, lp->dirty, lp->flags, lp->lnum); 920 } 921} 922 923void ubifs_dump_tnc(struct ubifs_info *c) 924{ 925 struct ubifs_znode *znode; 926 int level; 927 928 pr_err("\n"); 929 pr_err("(pid %d) start dumping TNC tree\n", current->pid); 930 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); 931 level = znode->level; 932 pr_err("== Level %d ==\n", level); 933 while (znode) { 934 if (level != znode->level) { 935 level = znode->level; 936 pr_err("== Level %d ==\n", level); 937 } 938 ubifs_dump_znode(c, znode); 939 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); 940 } 941 pr_err("(pid %d) finish dumping TNC tree\n", current->pid); 942} 943 944static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 945 void *priv) 946{ 947 ubifs_dump_znode(c, znode); 948 return 0; 949} 950 951/** 952 * ubifs_dump_index - dump the on-flash index. 953 * @c: UBIFS file-system description object 954 * 955 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()' 956 * which dumps only in-memory znodes and does not read znodes which from flash. 957 */ 958void ubifs_dump_index(struct ubifs_info *c) 959{ 960 dbg_walk_index(c, NULL, dump_znode, NULL); 961} 962 963/** 964 * dbg_save_space_info - save information about flash space. 965 * @c: UBIFS file-system description object 966 * 967 * This function saves information about UBIFS free space, dirty space, etc, in 968 * order to check it later. 969 */ 970void dbg_save_space_info(struct ubifs_info *c) 971{ 972 struct ubifs_debug_info *d = c->dbg; 973 int freeable_cnt; 974 975 spin_lock(&c->space_lock); 976 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); 977 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); 978 d->saved_idx_gc_cnt = c->idx_gc_cnt; 979 980 /* 981 * We use a dirty hack here and zero out @c->freeable_cnt, because it 982 * affects the free space calculations, and UBIFS might not know about 983 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks 984 * only when we read their lprops, and we do this only lazily, upon the 985 * need. So at any given point of time @c->freeable_cnt might be not 986 * exactly accurate. 987 * 988 * Just one example about the issue we hit when we did not zero 989 * @c->freeable_cnt. 990 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the 991 * amount of free space in @d->saved_free 992 * 2. We re-mount R/W, which makes UBIFS to read the "lsave" 993 * information from flash, where we cache LEBs from various 994 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' 995 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' 996 * -> 'ubifs_get_pnode()' -> 'update_cats()' 997 * -> 'ubifs_add_to_cat()'). 998 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt 999 * becomes %1. 1000 * 4. We calculate the amount of free space when the re-mount is 1001 * finished in 'dbg_check_space_info()' and it does not match 1002 * @d->saved_free. 1003 */ 1004 freeable_cnt = c->freeable_cnt; 1005 c->freeable_cnt = 0; 1006 d->saved_free = ubifs_get_free_space_nolock(c); 1007 c->freeable_cnt = freeable_cnt; 1008 spin_unlock(&c->space_lock); 1009} 1010 1011/** 1012 * dbg_check_space_info - check flash space information. 1013 * @c: UBIFS file-system description object 1014 * 1015 * This function compares current flash space information with the information 1016 * which was saved when the 'dbg_save_space_info()' function was called. 1017 * Returns zero if the information has not changed, and %-EINVAL it it has 1018 * changed. 1019 */ 1020int dbg_check_space_info(struct ubifs_info *c) 1021{ 1022 struct ubifs_debug_info *d = c->dbg; 1023 struct ubifs_lp_stats lst; 1024 long long free; 1025 int freeable_cnt; 1026 1027 spin_lock(&c->space_lock); 1028 freeable_cnt = c->freeable_cnt; 1029 c->freeable_cnt = 0; 1030 free = ubifs_get_free_space_nolock(c); 1031 c->freeable_cnt = freeable_cnt; 1032 spin_unlock(&c->space_lock); 1033 1034 if (free != d->saved_free) { 1035 ubifs_err(c, "free space changed from %lld to %lld", 1036 d->saved_free, free); 1037 goto out; 1038 } 1039 1040 return 0; 1041 1042out: 1043 ubifs_msg(c, "saved lprops statistics dump"); 1044 ubifs_dump_lstats(&d->saved_lst); 1045 ubifs_msg(c, "saved budgeting info dump"); 1046 ubifs_dump_budg(c, &d->saved_bi); 1047 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt); 1048 ubifs_msg(c, "current lprops statistics dump"); 1049 ubifs_get_lp_stats(c, &lst); 1050 ubifs_dump_lstats(&lst); 1051 ubifs_msg(c, "current budgeting info dump"); 1052 ubifs_dump_budg(c, &c->bi); 1053 dump_stack(); 1054 return -EINVAL; 1055} 1056 1057/** 1058 * dbg_check_synced_i_size - check synchronized inode size. 1059 * @c: UBIFS file-system description object 1060 * @inode: inode to check 1061 * 1062 * If inode is clean, synchronized inode size has to be equivalent to current 1063 * inode size. This function has to be called only for locked inodes (@i_mutex 1064 * has to be locked). Returns %0 if synchronized inode size if correct, and 1065 * %-EINVAL if not. 1066 */ 1067int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode) 1068{ 1069 int err = 0; 1070 struct ubifs_inode *ui = ubifs_inode(inode); 1071 1072 if (!dbg_is_chk_gen(c)) 1073 return 0; 1074 if (!S_ISREG(inode->i_mode)) 1075 return 0; 1076 1077 mutex_lock(&ui->ui_mutex); 1078 spin_lock(&ui->ui_lock); 1079 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 1080 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean", 1081 ui->ui_size, ui->synced_i_size); 1082 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 1083 inode->i_mode, i_size_read(inode)); 1084 dump_stack(); 1085 err = -EINVAL; 1086 } 1087 spin_unlock(&ui->ui_lock); 1088 mutex_unlock(&ui->ui_mutex); 1089 return err; 1090} 1091 1092/* 1093 * dbg_check_dir - check directory inode size and link count. 1094 * @c: UBIFS file-system description object 1095 * @dir: the directory to calculate size for 1096 * @size: the result is returned here 1097 * 1098 * This function makes sure that directory size and link count are correct. 1099 * Returns zero in case of success and a negative error code in case of 1100 * failure. 1101 * 1102 * Note, it is good idea to make sure the @dir->i_mutex is locked before 1103 * calling this function. 1104 */ 1105int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) 1106{ 1107 unsigned int nlink = 2; 1108 union ubifs_key key; 1109 struct ubifs_dent_node *dent, *pdent = NULL; 1110 struct qstr nm = { .name = NULL }; 1111 loff_t size = UBIFS_INO_NODE_SZ; 1112 1113 if (!dbg_is_chk_gen(c)) 1114 return 0; 1115 1116 if (!S_ISDIR(dir->i_mode)) 1117 return 0; 1118 1119 lowest_dent_key(c, &key, dir->i_ino); 1120 while (1) { 1121 int err; 1122 1123 dent = ubifs_tnc_next_ent(c, &key, &nm); 1124 if (IS_ERR(dent)) { 1125 err = PTR_ERR(dent); 1126 if (err == -ENOENT) 1127 break; 1128 return err; 1129 } 1130 1131 nm.name = dent->name; 1132 nm.len = le16_to_cpu(dent->nlen); 1133 size += CALC_DENT_SIZE(nm.len); 1134 if (dent->type == UBIFS_ITYPE_DIR) 1135 nlink += 1; 1136 kfree(pdent); 1137 pdent = dent; 1138 key_read(c, &dent->key, &key); 1139 } 1140 kfree(pdent); 1141 1142 if (i_size_read(dir) != size) { 1143 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu", 1144 dir->i_ino, (unsigned long long)i_size_read(dir), 1145 (unsigned long long)size); 1146 ubifs_dump_inode(c, dir); 1147 dump_stack(); 1148 return -EINVAL; 1149 } 1150 if (dir->i_nlink != nlink) { 1151 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u", 1152 dir->i_ino, dir->i_nlink, nlink); 1153 ubifs_dump_inode(c, dir); 1154 dump_stack(); 1155 return -EINVAL; 1156 } 1157 1158 return 0; 1159} 1160 1161/** 1162 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1163 * @c: UBIFS file-system description object 1164 * @zbr1: first zbranch 1165 * @zbr2: following zbranch 1166 * 1167 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1168 * names of the direntries/xentries which are referred by the keys. This 1169 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1170 * sure the name of direntry/xentry referred by @zbr1 is less than 1171 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1172 * and a negative error code in case of failure. 1173 */ 1174static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1175 struct ubifs_zbranch *zbr2) 1176{ 1177 int err, nlen1, nlen2, cmp; 1178 struct ubifs_dent_node *dent1, *dent2; 1179 union ubifs_key key; 1180 char key_buf[DBG_KEY_BUF_LEN]; 1181 1182 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); 1183 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1184 if (!dent1) 1185 return -ENOMEM; 1186 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1187 if (!dent2) { 1188 err = -ENOMEM; 1189 goto out_free; 1190 } 1191 1192 err = ubifs_tnc_read_node(c, zbr1, dent1); 1193 if (err) 1194 goto out_free; 1195 err = ubifs_validate_entry(c, dent1); 1196 if (err) 1197 goto out_free; 1198 1199 err = ubifs_tnc_read_node(c, zbr2, dent2); 1200 if (err) 1201 goto out_free; 1202 err = ubifs_validate_entry(c, dent2); 1203 if (err) 1204 goto out_free; 1205 1206 /* Make sure node keys are the same as in zbranch */ 1207 err = 1; 1208 key_read(c, &dent1->key, &key); 1209 if (keys_cmp(c, &zbr1->key, &key)) { 1210 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum, 1211 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1212 DBG_KEY_BUF_LEN)); 1213 ubifs_err(c, "but it should have key %s according to tnc", 1214 dbg_snprintf_key(c, &zbr1->key, key_buf, 1215 DBG_KEY_BUF_LEN)); 1216 ubifs_dump_node(c, dent1); 1217 goto out_free; 1218 } 1219 1220 key_read(c, &dent2->key, &key); 1221 if (keys_cmp(c, &zbr2->key, &key)) { 1222 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum, 1223 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1224 DBG_KEY_BUF_LEN)); 1225 ubifs_err(c, "but it should have key %s according to tnc", 1226 dbg_snprintf_key(c, &zbr2->key, key_buf, 1227 DBG_KEY_BUF_LEN)); 1228 ubifs_dump_node(c, dent2); 1229 goto out_free; 1230 } 1231 1232 nlen1 = le16_to_cpu(dent1->nlen); 1233 nlen2 = le16_to_cpu(dent2->nlen); 1234 1235 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1236 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1237 err = 0; 1238 goto out_free; 1239 } 1240 if (cmp == 0 && nlen1 == nlen2) 1241 ubifs_err(c, "2 xent/dent nodes with the same name"); 1242 else 1243 ubifs_err(c, "bad order of colliding key %s", 1244 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 1245 1246 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1247 ubifs_dump_node(c, dent1); 1248 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1249 ubifs_dump_node(c, dent2); 1250 1251out_free: 1252 kfree(dent2); 1253 kfree(dent1); 1254 return err; 1255} 1256 1257/** 1258 * dbg_check_znode - check if znode is all right. 1259 * @c: UBIFS file-system description object 1260 * @zbr: zbranch which points to this znode 1261 * 1262 * This function makes sure that znode referred to by @zbr is all right. 1263 * Returns zero if it is, and %-EINVAL if it is not. 1264 */ 1265static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1266{ 1267 struct ubifs_znode *znode = zbr->znode; 1268 struct ubifs_znode *zp = znode->parent; 1269 int n, err, cmp; 1270 1271 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1272 err = 1; 1273 goto out; 1274 } 1275 if (znode->level < 0) { 1276 err = 2; 1277 goto out; 1278 } 1279 if (znode->iip < 0 || znode->iip >= c->fanout) { 1280 err = 3; 1281 goto out; 1282 } 1283 1284 if (zbr->len == 0) 1285 /* Only dirty zbranch may have no on-flash nodes */ 1286 if (!ubifs_zn_dirty(znode)) { 1287 err = 4; 1288 goto out; 1289 } 1290 1291 if (ubifs_zn_dirty(znode)) { 1292 /* 1293 * If znode is dirty, its parent has to be dirty as well. The 1294 * order of the operation is important, so we have to have 1295 * memory barriers. 1296 */ 1297 smp_mb(); 1298 if (zp && !ubifs_zn_dirty(zp)) { 1299 /* 1300 * The dirty flag is atomic and is cleared outside the 1301 * TNC mutex, so znode's dirty flag may now have 1302 * been cleared. The child is always cleared before the 1303 * parent, so we just need to check again. 1304 */ 1305 smp_mb(); 1306 if (ubifs_zn_dirty(znode)) { 1307 err = 5; 1308 goto out; 1309 } 1310 } 1311 } 1312 1313 if (zp) { 1314 const union ubifs_key *min, *max; 1315 1316 if (znode->level != zp->level - 1) { 1317 err = 6; 1318 goto out; 1319 } 1320 1321 /* Make sure the 'parent' pointer in our znode is correct */ 1322 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1323 if (!err) { 1324 /* This zbranch does not exist in the parent */ 1325 err = 7; 1326 goto out; 1327 } 1328 1329 if (znode->iip >= zp->child_cnt) { 1330 err = 8; 1331 goto out; 1332 } 1333 1334 if (znode->iip != n) { 1335 /* This may happen only in case of collisions */ 1336 if (keys_cmp(c, &zp->zbranch[n].key, 1337 &zp->zbranch[znode->iip].key)) { 1338 err = 9; 1339 goto out; 1340 } 1341 n = znode->iip; 1342 } 1343 1344 /* 1345 * Make sure that the first key in our znode is greater than or 1346 * equal to the key in the pointing zbranch. 1347 */ 1348 min = &zbr->key; 1349 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1350 if (cmp == 1) { 1351 err = 10; 1352 goto out; 1353 } 1354 1355 if (n + 1 < zp->child_cnt) { 1356 max = &zp->zbranch[n + 1].key; 1357 1358 /* 1359 * Make sure the last key in our znode is less or 1360 * equivalent than the key in the zbranch which goes 1361 * after our pointing zbranch. 1362 */ 1363 cmp = keys_cmp(c, max, 1364 &znode->zbranch[znode->child_cnt - 1].key); 1365 if (cmp == -1) { 1366 err = 11; 1367 goto out; 1368 } 1369 } 1370 } else { 1371 /* This may only be root znode */ 1372 if (zbr != &c->zroot) { 1373 err = 12; 1374 goto out; 1375 } 1376 } 1377 1378 /* 1379 * Make sure that next key is greater or equivalent then the previous 1380 * one. 1381 */ 1382 for (n = 1; n < znode->child_cnt; n++) { 1383 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1384 &znode->zbranch[n].key); 1385 if (cmp > 0) { 1386 err = 13; 1387 goto out; 1388 } 1389 if (cmp == 0) { 1390 /* This can only be keys with colliding hash */ 1391 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1392 err = 14; 1393 goto out; 1394 } 1395 1396 if (znode->level != 0 || c->replaying) 1397 continue; 1398 1399 /* 1400 * Colliding keys should follow binary order of 1401 * corresponding xentry/dentry names. 1402 */ 1403 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1404 &znode->zbranch[n]); 1405 if (err < 0) 1406 return err; 1407 if (err) { 1408 err = 15; 1409 goto out; 1410 } 1411 } 1412 } 1413 1414 for (n = 0; n < znode->child_cnt; n++) { 1415 if (!znode->zbranch[n].znode && 1416 (znode->zbranch[n].lnum == 0 || 1417 znode->zbranch[n].len == 0)) { 1418 err = 16; 1419 goto out; 1420 } 1421 1422 if (znode->zbranch[n].lnum != 0 && 1423 znode->zbranch[n].len == 0) { 1424 err = 17; 1425 goto out; 1426 } 1427 1428 if (znode->zbranch[n].lnum == 0 && 1429 znode->zbranch[n].len != 0) { 1430 err = 18; 1431 goto out; 1432 } 1433 1434 if (znode->zbranch[n].lnum == 0 && 1435 znode->zbranch[n].offs != 0) { 1436 err = 19; 1437 goto out; 1438 } 1439 1440 if (znode->level != 0 && znode->zbranch[n].znode) 1441 if (znode->zbranch[n].znode->parent != znode) { 1442 err = 20; 1443 goto out; 1444 } 1445 } 1446 1447 return 0; 1448 1449out: 1450 ubifs_err(c, "failed, error %d", err); 1451 ubifs_msg(c, "dump of the znode"); 1452 ubifs_dump_znode(c, znode); 1453 if (zp) { 1454 ubifs_msg(c, "dump of the parent znode"); 1455 ubifs_dump_znode(c, zp); 1456 } 1457 dump_stack(); 1458 return -EINVAL; 1459} 1460 1461/** 1462 * dbg_check_tnc - check TNC tree. 1463 * @c: UBIFS file-system description object 1464 * @extra: do extra checks that are possible at start commit 1465 * 1466 * This function traverses whole TNC tree and checks every znode. Returns zero 1467 * if everything is all right and %-EINVAL if something is wrong with TNC. 1468 */ 1469int dbg_check_tnc(struct ubifs_info *c, int extra) 1470{ 1471 struct ubifs_znode *znode; 1472 long clean_cnt = 0, dirty_cnt = 0; 1473 int err, last; 1474 1475 if (!dbg_is_chk_index(c)) 1476 return 0; 1477 1478 ubifs_assert(mutex_is_locked(&c->tnc_mutex)); 1479 if (!c->zroot.znode) 1480 return 0; 1481 1482 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1483 while (1) { 1484 struct ubifs_znode *prev; 1485 struct ubifs_zbranch *zbr; 1486 1487 if (!znode->parent) 1488 zbr = &c->zroot; 1489 else 1490 zbr = &znode->parent->zbranch[znode->iip]; 1491 1492 err = dbg_check_znode(c, zbr); 1493 if (err) 1494 return err; 1495 1496 if (extra) { 1497 if (ubifs_zn_dirty(znode)) 1498 dirty_cnt += 1; 1499 else 1500 clean_cnt += 1; 1501 } 1502 1503 prev = znode; 1504 znode = ubifs_tnc_postorder_next(znode); 1505 if (!znode) 1506 break; 1507 1508 /* 1509 * If the last key of this znode is equivalent to the first key 1510 * of the next znode (collision), then check order of the keys. 1511 */ 1512 last = prev->child_cnt - 1; 1513 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1514 !keys_cmp(c, &prev->zbranch[last].key, 1515 &znode->zbranch[0].key)) { 1516 err = dbg_check_key_order(c, &prev->zbranch[last], 1517 &znode->zbranch[0]); 1518 if (err < 0) 1519 return err; 1520 if (err) { 1521 ubifs_msg(c, "first znode"); 1522 ubifs_dump_znode(c, prev); 1523 ubifs_msg(c, "second znode"); 1524 ubifs_dump_znode(c, znode); 1525 return -EINVAL; 1526 } 1527 } 1528 } 1529 1530 if (extra) { 1531 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1532 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld", 1533 atomic_long_read(&c->clean_zn_cnt), 1534 clean_cnt); 1535 return -EINVAL; 1536 } 1537 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1538 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld", 1539 atomic_long_read(&c->dirty_zn_cnt), 1540 dirty_cnt); 1541 return -EINVAL; 1542 } 1543 } 1544 1545 return 0; 1546} 1547 1548/** 1549 * dbg_walk_index - walk the on-flash index. 1550 * @c: UBIFS file-system description object 1551 * @leaf_cb: called for each leaf node 1552 * @znode_cb: called for each indexing node 1553 * @priv: private data which is passed to callbacks 1554 * 1555 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1556 * node and @znode_cb for each indexing node. Returns zero in case of success 1557 * and a negative error code in case of failure. 1558 * 1559 * It would be better if this function removed every znode it pulled to into 1560 * the TNC, so that the behavior more closely matched the non-debugging 1561 * behavior. 1562 */ 1563int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1564 dbg_znode_callback znode_cb, void *priv) 1565{ 1566 int err; 1567 struct ubifs_zbranch *zbr; 1568 struct ubifs_znode *znode, *child; 1569 1570 mutex_lock(&c->tnc_mutex); 1571 /* If the root indexing node is not in TNC - pull it */ 1572 if (!c->zroot.znode) { 1573 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1574 if (IS_ERR(c->zroot.znode)) { 1575 err = PTR_ERR(c->zroot.znode); 1576 c->zroot.znode = NULL; 1577 goto out_unlock; 1578 } 1579 } 1580 1581 /* 1582 * We are going to traverse the indexing tree in the postorder manner. 1583 * Go down and find the leftmost indexing node where we are going to 1584 * start from. 1585 */ 1586 znode = c->zroot.znode; 1587 while (znode->level > 0) { 1588 zbr = &znode->zbranch[0]; 1589 child = zbr->znode; 1590 if (!child) { 1591 child = ubifs_load_znode(c, zbr, znode, 0); 1592 if (IS_ERR(child)) { 1593 err = PTR_ERR(child); 1594 goto out_unlock; 1595 } 1596 zbr->znode = child; 1597 } 1598 1599 znode = child; 1600 } 1601 1602 /* Iterate over all indexing nodes */ 1603 while (1) { 1604 int idx; 1605 1606 cond_resched(); 1607 1608 if (znode_cb) { 1609 err = znode_cb(c, znode, priv); 1610 if (err) { 1611 ubifs_err(c, "znode checking function returned error %d", 1612 err); 1613 ubifs_dump_znode(c, znode); 1614 goto out_dump; 1615 } 1616 } 1617 if (leaf_cb && znode->level == 0) { 1618 for (idx = 0; idx < znode->child_cnt; idx++) { 1619 zbr = &znode->zbranch[idx]; 1620 err = leaf_cb(c, zbr, priv); 1621 if (err) { 1622 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d", 1623 err, zbr->lnum, zbr->offs); 1624 goto out_dump; 1625 } 1626 } 1627 } 1628 1629 if (!znode->parent) 1630 break; 1631 1632 idx = znode->iip + 1; 1633 znode = znode->parent; 1634 if (idx < znode->child_cnt) { 1635 /* Switch to the next index in the parent */ 1636 zbr = &znode->zbranch[idx]; 1637 child = zbr->znode; 1638 if (!child) { 1639 child = ubifs_load_znode(c, zbr, znode, idx); 1640 if (IS_ERR(child)) { 1641 err = PTR_ERR(child); 1642 goto out_unlock; 1643 } 1644 zbr->znode = child; 1645 } 1646 znode = child; 1647 } else 1648 /* 1649 * This is the last child, switch to the parent and 1650 * continue. 1651 */ 1652 continue; 1653 1654 /* Go to the lowest leftmost znode in the new sub-tree */ 1655 while (znode->level > 0) { 1656 zbr = &znode->zbranch[0]; 1657 child = zbr->znode; 1658 if (!child) { 1659 child = ubifs_load_znode(c, zbr, znode, 0); 1660 if (IS_ERR(child)) { 1661 err = PTR_ERR(child); 1662 goto out_unlock; 1663 } 1664 zbr->znode = child; 1665 } 1666 znode = child; 1667 } 1668 } 1669 1670 mutex_unlock(&c->tnc_mutex); 1671 return 0; 1672 1673out_dump: 1674 if (znode->parent) 1675 zbr = &znode->parent->zbranch[znode->iip]; 1676 else 1677 zbr = &c->zroot; 1678 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1679 ubifs_dump_znode(c, znode); 1680out_unlock: 1681 mutex_unlock(&c->tnc_mutex); 1682 return err; 1683} 1684 1685/** 1686 * add_size - add znode size to partially calculated index size. 1687 * @c: UBIFS file-system description object 1688 * @znode: znode to add size for 1689 * @priv: partially calculated index size 1690 * 1691 * This is a helper function for 'dbg_check_idx_size()' which is called for 1692 * every indexing node and adds its size to the 'long long' variable pointed to 1693 * by @priv. 1694 */ 1695static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1696{ 1697 long long *idx_size = priv; 1698 int add; 1699 1700 add = ubifs_idx_node_sz(c, znode->child_cnt); 1701 add = ALIGN(add, 8); 1702 *idx_size += add; 1703 return 0; 1704} 1705 1706/** 1707 * dbg_check_idx_size - check index size. 1708 * @c: UBIFS file-system description object 1709 * @idx_size: size to check 1710 * 1711 * This function walks the UBIFS index, calculates its size and checks that the 1712 * size is equivalent to @idx_size. Returns zero in case of success and a 1713 * negative error code in case of failure. 1714 */ 1715int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1716{ 1717 int err; 1718 long long calc = 0; 1719 1720 if (!dbg_is_chk_index(c)) 1721 return 0; 1722 1723 err = dbg_walk_index(c, NULL, add_size, &calc); 1724 if (err) { 1725 ubifs_err(c, "error %d while walking the index", err); 1726 return err; 1727 } 1728 1729 if (calc != idx_size) { 1730 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld", 1731 calc, idx_size); 1732 dump_stack(); 1733 return -EINVAL; 1734 } 1735 1736 return 0; 1737} 1738 1739/** 1740 * struct fsck_inode - information about an inode used when checking the file-system. 1741 * @rb: link in the RB-tree of inodes 1742 * @inum: inode number 1743 * @mode: inode type, permissions, etc 1744 * @nlink: inode link count 1745 * @xattr_cnt: count of extended attributes 1746 * @references: how many directory/xattr entries refer this inode (calculated 1747 * while walking the index) 1748 * @calc_cnt: for directory inode count of child directories 1749 * @size: inode size (read from on-flash inode) 1750 * @xattr_sz: summary size of all extended attributes (read from on-flash 1751 * inode) 1752 * @calc_sz: for directories calculated directory size 1753 * @calc_xcnt: count of extended attributes 1754 * @calc_xsz: calculated summary size of all extended attributes 1755 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1756 * inode (read from on-flash inode) 1757 * @calc_xnms: calculated sum of lengths of all extended attribute names 1758 */ 1759struct fsck_inode { 1760 struct rb_node rb; 1761 ino_t inum; 1762 umode_t mode; 1763 unsigned int nlink; 1764 unsigned int xattr_cnt; 1765 int references; 1766 int calc_cnt; 1767 long long size; 1768 unsigned int xattr_sz; 1769 long long calc_sz; 1770 long long calc_xcnt; 1771 long long calc_xsz; 1772 unsigned int xattr_nms; 1773 long long calc_xnms; 1774}; 1775 1776/** 1777 * struct fsck_data - private FS checking information. 1778 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1779 */ 1780struct fsck_data { 1781 struct rb_root inodes; 1782}; 1783 1784/** 1785 * add_inode - add inode information to RB-tree of inodes. 1786 * @c: UBIFS file-system description object 1787 * @fsckd: FS checking information 1788 * @ino: raw UBIFS inode to add 1789 * 1790 * This is a helper function for 'check_leaf()' which adds information about 1791 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1792 * case of success and a negative error code in case of failure. 1793 */ 1794static struct fsck_inode *add_inode(struct ubifs_info *c, 1795 struct fsck_data *fsckd, 1796 struct ubifs_ino_node *ino) 1797{ 1798 struct rb_node **p, *parent = NULL; 1799 struct fsck_inode *fscki; 1800 ino_t inum = key_inum_flash(c, &ino->key); 1801 struct inode *inode; 1802 struct ubifs_inode *ui; 1803 1804 p = &fsckd->inodes.rb_node; 1805 while (*p) { 1806 parent = *p; 1807 fscki = rb_entry(parent, struct fsck_inode, rb); 1808 if (inum < fscki->inum) 1809 p = &(*p)->rb_left; 1810 else if (inum > fscki->inum) 1811 p = &(*p)->rb_right; 1812 else 1813 return fscki; 1814 } 1815 1816 if (inum > c->highest_inum) { 1817 ubifs_err(c, "too high inode number, max. is %lu", 1818 (unsigned long)c->highest_inum); 1819 return ERR_PTR(-EINVAL); 1820 } 1821 1822 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1823 if (!fscki) 1824 return ERR_PTR(-ENOMEM); 1825 1826 inode = ilookup(c->vfs_sb, inum); 1827 1828 fscki->inum = inum; 1829 /* 1830 * If the inode is present in the VFS inode cache, use it instead of 1831 * the on-flash inode which might be out-of-date. E.g., the size might 1832 * be out-of-date. If we do not do this, the following may happen, for 1833 * example: 1834 * 1. A power cut happens 1835 * 2. We mount the file-system R/O, the replay process fixes up the 1836 * inode size in the VFS cache, but on on-flash. 1837 * 3. 'check_leaf()' fails because it hits a data node beyond inode 1838 * size. 1839 */ 1840 if (!inode) { 1841 fscki->nlink = le32_to_cpu(ino->nlink); 1842 fscki->size = le64_to_cpu(ino->size); 1843 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1844 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1845 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1846 fscki->mode = le32_to_cpu(ino->mode); 1847 } else { 1848 ui = ubifs_inode(inode); 1849 fscki->nlink = inode->i_nlink; 1850 fscki->size = inode->i_size; 1851 fscki->xattr_cnt = ui->xattr_cnt; 1852 fscki->xattr_sz = ui->xattr_size; 1853 fscki->xattr_nms = ui->xattr_names; 1854 fscki->mode = inode->i_mode; 1855 iput(inode); 1856 } 1857 1858 if (S_ISDIR(fscki->mode)) { 1859 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1860 fscki->calc_cnt = 2; 1861 } 1862 1863 rb_link_node(&fscki->rb, parent, p); 1864 rb_insert_color(&fscki->rb, &fsckd->inodes); 1865 1866 return fscki; 1867} 1868 1869/** 1870 * search_inode - search inode in the RB-tree of inodes. 1871 * @fsckd: FS checking information 1872 * @inum: inode number to search 1873 * 1874 * This is a helper function for 'check_leaf()' which searches inode @inum in 1875 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1876 * the inode was not found. 1877 */ 1878static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1879{ 1880 struct rb_node *p; 1881 struct fsck_inode *fscki; 1882 1883 p = fsckd->inodes.rb_node; 1884 while (p) { 1885 fscki = rb_entry(p, struct fsck_inode, rb); 1886 if (inum < fscki->inum) 1887 p = p->rb_left; 1888 else if (inum > fscki->inum) 1889 p = p->rb_right; 1890 else 1891 return fscki; 1892 } 1893 return NULL; 1894} 1895 1896/** 1897 * read_add_inode - read inode node and add it to RB-tree of inodes. 1898 * @c: UBIFS file-system description object 1899 * @fsckd: FS checking information 1900 * @inum: inode number to read 1901 * 1902 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1903 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1904 * information pointer in case of success and a negative error code in case of 1905 * failure. 1906 */ 1907static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1908 struct fsck_data *fsckd, ino_t inum) 1909{ 1910 int n, err; 1911 union ubifs_key key; 1912 struct ubifs_znode *znode; 1913 struct ubifs_zbranch *zbr; 1914 struct ubifs_ino_node *ino; 1915 struct fsck_inode *fscki; 1916 1917 fscki = search_inode(fsckd, inum); 1918 if (fscki) 1919 return fscki; 1920 1921 ino_key_init(c, &key, inum); 1922 err = ubifs_lookup_level0(c, &key, &znode, &n); 1923 if (!err) { 1924 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum); 1925 return ERR_PTR(-ENOENT); 1926 } else if (err < 0) { 1927 ubifs_err(c, "error %d while looking up inode %lu", 1928 err, (unsigned long)inum); 1929 return ERR_PTR(err); 1930 } 1931 1932 zbr = &znode->zbranch[n]; 1933 if (zbr->len < UBIFS_INO_NODE_SZ) { 1934 ubifs_err(c, "bad node %lu node length %d", 1935 (unsigned long)inum, zbr->len); 1936 return ERR_PTR(-EINVAL); 1937 } 1938 1939 ino = kmalloc(zbr->len, GFP_NOFS); 1940 if (!ino) 1941 return ERR_PTR(-ENOMEM); 1942 1943 err = ubifs_tnc_read_node(c, zbr, ino); 1944 if (err) { 1945 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 1946 zbr->lnum, zbr->offs, err); 1947 kfree(ino); 1948 return ERR_PTR(err); 1949 } 1950 1951 fscki = add_inode(c, fsckd, ino); 1952 kfree(ino); 1953 if (IS_ERR(fscki)) { 1954 ubifs_err(c, "error %ld while adding inode %lu node", 1955 PTR_ERR(fscki), (unsigned long)inum); 1956 return fscki; 1957 } 1958 1959 return fscki; 1960} 1961 1962/** 1963 * check_leaf - check leaf node. 1964 * @c: UBIFS file-system description object 1965 * @zbr: zbranch of the leaf node to check 1966 * @priv: FS checking information 1967 * 1968 * This is a helper function for 'dbg_check_filesystem()' which is called for 1969 * every single leaf node while walking the indexing tree. It checks that the 1970 * leaf node referred from the indexing tree exists, has correct CRC, and does 1971 * some other basic validation. This function is also responsible for building 1972 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 1973 * calculates reference count, size, etc for each inode in order to later 1974 * compare them to the information stored inside the inodes and detect possible 1975 * inconsistencies. Returns zero in case of success and a negative error code 1976 * in case of failure. 1977 */ 1978static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 1979 void *priv) 1980{ 1981 ino_t inum; 1982 void *node; 1983 struct ubifs_ch *ch; 1984 int err, type = key_type(c, &zbr->key); 1985 struct fsck_inode *fscki; 1986 1987 if (zbr->len < UBIFS_CH_SZ) { 1988 ubifs_err(c, "bad leaf length %d (LEB %d:%d)", 1989 zbr->len, zbr->lnum, zbr->offs); 1990 return -EINVAL; 1991 } 1992 1993 node = kmalloc(zbr->len, GFP_NOFS); 1994 if (!node) 1995 return -ENOMEM; 1996 1997 err = ubifs_tnc_read_node(c, zbr, node); 1998 if (err) { 1999 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d", 2000 zbr->lnum, zbr->offs, err); 2001 goto out_free; 2002 } 2003 2004 /* If this is an inode node, add it to RB-tree of inodes */ 2005 if (type == UBIFS_INO_KEY) { 2006 fscki = add_inode(c, priv, node); 2007 if (IS_ERR(fscki)) { 2008 err = PTR_ERR(fscki); 2009 ubifs_err(c, "error %d while adding inode node", err); 2010 goto out_dump; 2011 } 2012 goto out; 2013 } 2014 2015 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 2016 type != UBIFS_DATA_KEY) { 2017 ubifs_err(c, "unexpected node type %d at LEB %d:%d", 2018 type, zbr->lnum, zbr->offs); 2019 err = -EINVAL; 2020 goto out_free; 2021 } 2022 2023 ch = node; 2024 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 2025 ubifs_err(c, "too high sequence number, max. is %llu", 2026 c->max_sqnum); 2027 err = -EINVAL; 2028 goto out_dump; 2029 } 2030 2031 if (type == UBIFS_DATA_KEY) { 2032 long long blk_offs; 2033 struct ubifs_data_node *dn = node; 2034 2035 ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ); 2036 2037 /* 2038 * Search the inode node this data node belongs to and insert 2039 * it to the RB-tree of inodes. 2040 */ 2041 inum = key_inum_flash(c, &dn->key); 2042 fscki = read_add_inode(c, priv, inum); 2043 if (IS_ERR(fscki)) { 2044 err = PTR_ERR(fscki); 2045 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu", 2046 err, (unsigned long)inum); 2047 goto out_dump; 2048 } 2049 2050 /* Make sure the data node is within inode size */ 2051 blk_offs = key_block_flash(c, &dn->key); 2052 blk_offs <<= UBIFS_BLOCK_SHIFT; 2053 blk_offs += le32_to_cpu(dn->size); 2054 if (blk_offs > fscki->size) { 2055 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld", 2056 zbr->lnum, zbr->offs, fscki->size); 2057 err = -EINVAL; 2058 goto out_dump; 2059 } 2060 } else { 2061 int nlen; 2062 struct ubifs_dent_node *dent = node; 2063 struct fsck_inode *fscki1; 2064 2065 ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ); 2066 2067 err = ubifs_validate_entry(c, dent); 2068 if (err) 2069 goto out_dump; 2070 2071 /* 2072 * Search the inode node this entry refers to and the parent 2073 * inode node and insert them to the RB-tree of inodes. 2074 */ 2075 inum = le64_to_cpu(dent->inum); 2076 fscki = read_add_inode(c, priv, inum); 2077 if (IS_ERR(fscki)) { 2078 err = PTR_ERR(fscki); 2079 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu", 2080 err, (unsigned long)inum); 2081 goto out_dump; 2082 } 2083 2084 /* Count how many direntries or xentries refers this inode */ 2085 fscki->references += 1; 2086 2087 inum = key_inum_flash(c, &dent->key); 2088 fscki1 = read_add_inode(c, priv, inum); 2089 if (IS_ERR(fscki1)) { 2090 err = PTR_ERR(fscki1); 2091 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu", 2092 err, (unsigned long)inum); 2093 goto out_dump; 2094 } 2095 2096 nlen = le16_to_cpu(dent->nlen); 2097 if (type == UBIFS_XENT_KEY) { 2098 fscki1->calc_xcnt += 1; 2099 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 2100 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 2101 fscki1->calc_xnms += nlen; 2102 } else { 2103 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 2104 if (dent->type == UBIFS_ITYPE_DIR) 2105 fscki1->calc_cnt += 1; 2106 } 2107 } 2108 2109out: 2110 kfree(node); 2111 return 0; 2112 2113out_dump: 2114 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 2115 ubifs_dump_node(c, node); 2116out_free: 2117 kfree(node); 2118 return err; 2119} 2120 2121/** 2122 * free_inodes - free RB-tree of inodes. 2123 * @fsckd: FS checking information 2124 */ 2125static void free_inodes(struct fsck_data *fsckd) 2126{ 2127 struct fsck_inode *fscki, *n; 2128 2129 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb) 2130 kfree(fscki); 2131} 2132 2133/** 2134 * check_inodes - checks all inodes. 2135 * @c: UBIFS file-system description object 2136 * @fsckd: FS checking information 2137 * 2138 * This is a helper function for 'dbg_check_filesystem()' which walks the 2139 * RB-tree of inodes after the index scan has been finished, and checks that 2140 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 2141 * %-EINVAL if not, and a negative error code in case of failure. 2142 */ 2143static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 2144{ 2145 int n, err; 2146 union ubifs_key key; 2147 struct ubifs_znode *znode; 2148 struct ubifs_zbranch *zbr; 2149 struct ubifs_ino_node *ino; 2150 struct fsck_inode *fscki; 2151 struct rb_node *this = rb_first(&fsckd->inodes); 2152 2153 while (this) { 2154 fscki = rb_entry(this, struct fsck_inode, rb); 2155 this = rb_next(this); 2156 2157 if (S_ISDIR(fscki->mode)) { 2158 /* 2159 * Directories have to have exactly one reference (they 2160 * cannot have hardlinks), although root inode is an 2161 * exception. 2162 */ 2163 if (fscki->inum != UBIFS_ROOT_INO && 2164 fscki->references != 1) { 2165 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1", 2166 (unsigned long)fscki->inum, 2167 fscki->references); 2168 goto out_dump; 2169 } 2170 if (fscki->inum == UBIFS_ROOT_INO && 2171 fscki->references != 0) { 2172 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it", 2173 (unsigned long)fscki->inum, 2174 fscki->references); 2175 goto out_dump; 2176 } 2177 if (fscki->calc_sz != fscki->size) { 2178 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld", 2179 (unsigned long)fscki->inum, 2180 fscki->size, fscki->calc_sz); 2181 goto out_dump; 2182 } 2183 if (fscki->calc_cnt != fscki->nlink) { 2184 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d", 2185 (unsigned long)fscki->inum, 2186 fscki->nlink, fscki->calc_cnt); 2187 goto out_dump; 2188 } 2189 } else { 2190 if (fscki->references != fscki->nlink) { 2191 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d", 2192 (unsigned long)fscki->inum, 2193 fscki->nlink, fscki->references); 2194 goto out_dump; 2195 } 2196 } 2197 if (fscki->xattr_sz != fscki->calc_xsz) { 2198 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld", 2199 (unsigned long)fscki->inum, fscki->xattr_sz, 2200 fscki->calc_xsz); 2201 goto out_dump; 2202 } 2203 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2204 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld", 2205 (unsigned long)fscki->inum, 2206 fscki->xattr_cnt, fscki->calc_xcnt); 2207 goto out_dump; 2208 } 2209 if (fscki->xattr_nms != fscki->calc_xnms) { 2210 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld", 2211 (unsigned long)fscki->inum, fscki->xattr_nms, 2212 fscki->calc_xnms); 2213 goto out_dump; 2214 } 2215 } 2216 2217 return 0; 2218 2219out_dump: 2220 /* Read the bad inode and dump it */ 2221 ino_key_init(c, &key, fscki->inum); 2222 err = ubifs_lookup_level0(c, &key, &znode, &n); 2223 if (!err) { 2224 ubifs_err(c, "inode %lu not found in index", 2225 (unsigned long)fscki->inum); 2226 return -ENOENT; 2227 } else if (err < 0) { 2228 ubifs_err(c, "error %d while looking up inode %lu", 2229 err, (unsigned long)fscki->inum); 2230 return err; 2231 } 2232 2233 zbr = &znode->zbranch[n]; 2234 ino = kmalloc(zbr->len, GFP_NOFS); 2235 if (!ino) 2236 return -ENOMEM; 2237 2238 err = ubifs_tnc_read_node(c, zbr, ino); 2239 if (err) { 2240 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 2241 zbr->lnum, zbr->offs, err); 2242 kfree(ino); 2243 return err; 2244 } 2245 2246 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d", 2247 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2248 ubifs_dump_node(c, ino); 2249 kfree(ino); 2250 return -EINVAL; 2251} 2252 2253/** 2254 * dbg_check_filesystem - check the file-system. 2255 * @c: UBIFS file-system description object 2256 * 2257 * This function checks the file system, namely: 2258 * o makes sure that all leaf nodes exist and their CRCs are correct; 2259 * o makes sure inode nlink, size, xattr size/count are correct (for all 2260 * inodes). 2261 * 2262 * The function reads whole indexing tree and all nodes, so it is pretty 2263 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2264 * not, and a negative error code in case of failure. 2265 */ 2266int dbg_check_filesystem(struct ubifs_info *c) 2267{ 2268 int err; 2269 struct fsck_data fsckd; 2270 2271 if (!dbg_is_chk_fs(c)) 2272 return 0; 2273 2274 fsckd.inodes = RB_ROOT; 2275 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2276 if (err) 2277 goto out_free; 2278 2279 err = check_inodes(c, &fsckd); 2280 if (err) 2281 goto out_free; 2282 2283 free_inodes(&fsckd); 2284 return 0; 2285 2286out_free: 2287 ubifs_err(c, "file-system check failed with error %d", err); 2288 dump_stack(); 2289 free_inodes(&fsckd); 2290 return err; 2291} 2292 2293/** 2294 * dbg_check_data_nodes_order - check that list of data nodes is sorted. 2295 * @c: UBIFS file-system description object 2296 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2297 * 2298 * This function returns zero if the list of data nodes is sorted correctly, 2299 * and %-EINVAL if not. 2300 */ 2301int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) 2302{ 2303 struct list_head *cur; 2304 struct ubifs_scan_node *sa, *sb; 2305 2306 if (!dbg_is_chk_gen(c)) 2307 return 0; 2308 2309 for (cur = head->next; cur->next != head; cur = cur->next) { 2310 ino_t inuma, inumb; 2311 uint32_t blka, blkb; 2312 2313 cond_resched(); 2314 sa = container_of(cur, struct ubifs_scan_node, list); 2315 sb = container_of(cur->next, struct ubifs_scan_node, list); 2316 2317 if (sa->type != UBIFS_DATA_NODE) { 2318 ubifs_err(c, "bad node type %d", sa->type); 2319 ubifs_dump_node(c, sa->node); 2320 return -EINVAL; 2321 } 2322 if (sb->type != UBIFS_DATA_NODE) { 2323 ubifs_err(c, "bad node type %d", sb->type); 2324 ubifs_dump_node(c, sb->node); 2325 return -EINVAL; 2326 } 2327 2328 inuma = key_inum(c, &sa->key); 2329 inumb = key_inum(c, &sb->key); 2330 2331 if (inuma < inumb) 2332 continue; 2333 if (inuma > inumb) { 2334 ubifs_err(c, "larger inum %lu goes before inum %lu", 2335 (unsigned long)inuma, (unsigned long)inumb); 2336 goto error_dump; 2337 } 2338 2339 blka = key_block(c, &sa->key); 2340 blkb = key_block(c, &sb->key); 2341 2342 if (blka > blkb) { 2343 ubifs_err(c, "larger block %u goes before %u", blka, blkb); 2344 goto error_dump; 2345 } 2346 if (blka == blkb) { 2347 ubifs_err(c, "two data nodes for the same block"); 2348 goto error_dump; 2349 } 2350 } 2351 2352 return 0; 2353 2354error_dump: 2355 ubifs_dump_node(c, sa->node); 2356 ubifs_dump_node(c, sb->node); 2357 return -EINVAL; 2358} 2359 2360/** 2361 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. 2362 * @c: UBIFS file-system description object 2363 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2364 * 2365 * This function returns zero if the list of non-data nodes is sorted correctly, 2366 * and %-EINVAL if not. 2367 */ 2368int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) 2369{ 2370 struct list_head *cur; 2371 struct ubifs_scan_node *sa, *sb; 2372 2373 if (!dbg_is_chk_gen(c)) 2374 return 0; 2375 2376 for (cur = head->next; cur->next != head; cur = cur->next) { 2377 ino_t inuma, inumb; 2378 uint32_t hasha, hashb; 2379 2380 cond_resched(); 2381 sa = container_of(cur, struct ubifs_scan_node, list); 2382 sb = container_of(cur->next, struct ubifs_scan_node, list); 2383 2384 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2385 sa->type != UBIFS_XENT_NODE) { 2386 ubifs_err(c, "bad node type %d", sa->type); 2387 ubifs_dump_node(c, sa->node); 2388 return -EINVAL; 2389 } 2390 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2391 sa->type != UBIFS_XENT_NODE) { 2392 ubifs_err(c, "bad node type %d", sb->type); 2393 ubifs_dump_node(c, sb->node); 2394 return -EINVAL; 2395 } 2396 2397 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2398 ubifs_err(c, "non-inode node goes before inode node"); 2399 goto error_dump; 2400 } 2401 2402 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) 2403 continue; 2404 2405 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2406 /* Inode nodes are sorted in descending size order */ 2407 if (sa->len < sb->len) { 2408 ubifs_err(c, "smaller inode node goes first"); 2409 goto error_dump; 2410 } 2411 continue; 2412 } 2413 2414 /* 2415 * This is either a dentry or xentry, which should be sorted in 2416 * ascending (parent ino, hash) order. 2417 */ 2418 inuma = key_inum(c, &sa->key); 2419 inumb = key_inum(c, &sb->key); 2420 2421 if (inuma < inumb) 2422 continue; 2423 if (inuma > inumb) { 2424 ubifs_err(c, "larger inum %lu goes before inum %lu", 2425 (unsigned long)inuma, (unsigned long)inumb); 2426 goto error_dump; 2427 } 2428 2429 hasha = key_block(c, &sa->key); 2430 hashb = key_block(c, &sb->key); 2431 2432 if (hasha > hashb) { 2433 ubifs_err(c, "larger hash %u goes before %u", 2434 hasha, hashb); 2435 goto error_dump; 2436 } 2437 } 2438 2439 return 0; 2440 2441error_dump: 2442 ubifs_msg(c, "dumping first node"); 2443 ubifs_dump_node(c, sa->node); 2444 ubifs_msg(c, "dumping second node"); 2445 ubifs_dump_node(c, sb->node); 2446 return -EINVAL; 2447 return 0; 2448} 2449 2450static inline int chance(unsigned int n, unsigned int out_of) 2451{ 2452 return !!((prandom_u32() % out_of) + 1 <= n); 2453 2454} 2455 2456static int power_cut_emulated(struct ubifs_info *c, int lnum, int write) 2457{ 2458 struct ubifs_debug_info *d = c->dbg; 2459 2460 ubifs_assert(dbg_is_tst_rcvry(c)); 2461 2462 if (!d->pc_cnt) { 2463 /* First call - decide delay to the power cut */ 2464 if (chance(1, 2)) { 2465 unsigned long delay; 2466 2467 if (chance(1, 2)) { 2468 d->pc_delay = 1; 2469 /* Fail within 1 minute */ 2470 delay = prandom_u32() % 60000; 2471 d->pc_timeout = jiffies; 2472 d->pc_timeout += msecs_to_jiffies(delay); 2473 ubifs_warn(c, "failing after %lums", delay); 2474 } else { 2475 d->pc_delay = 2; 2476 delay = prandom_u32() % 10000; 2477 /* Fail within 10000 operations */ 2478 d->pc_cnt_max = delay; 2479 ubifs_warn(c, "failing after %lu calls", delay); 2480 } 2481 } 2482 2483 d->pc_cnt += 1; 2484 } 2485 2486 /* Determine if failure delay has expired */ 2487 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout)) 2488 return 0; 2489 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max) 2490 return 0; 2491 2492 if (lnum == UBIFS_SB_LNUM) { 2493 if (write && chance(1, 2)) 2494 return 0; 2495 if (chance(19, 20)) 2496 return 0; 2497 ubifs_warn(c, "failing in super block LEB %d", lnum); 2498 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2499 if (chance(19, 20)) 2500 return 0; 2501 ubifs_warn(c, "failing in master LEB %d", lnum); 2502 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2503 if (write && chance(99, 100)) 2504 return 0; 2505 if (chance(399, 400)) 2506 return 0; 2507 ubifs_warn(c, "failing in log LEB %d", lnum); 2508 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2509 if (write && chance(7, 8)) 2510 return 0; 2511 if (chance(19, 20)) 2512 return 0; 2513 ubifs_warn(c, "failing in LPT LEB %d", lnum); 2514 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2515 if (write && chance(1, 2)) 2516 return 0; 2517 if (chance(9, 10)) 2518 return 0; 2519 ubifs_warn(c, "failing in orphan LEB %d", lnum); 2520 } else if (lnum == c->ihead_lnum) { 2521 if (chance(99, 100)) 2522 return 0; 2523 ubifs_warn(c, "failing in index head LEB %d", lnum); 2524 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2525 if (chance(9, 10)) 2526 return 0; 2527 ubifs_warn(c, "failing in GC head LEB %d", lnum); 2528 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2529 !ubifs_search_bud(c, lnum)) { 2530 if (chance(19, 20)) 2531 return 0; 2532 ubifs_warn(c, "failing in non-bud LEB %d", lnum); 2533 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2534 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2535 if (chance(999, 1000)) 2536 return 0; 2537 ubifs_warn(c, "failing in bud LEB %d commit running", lnum); 2538 } else { 2539 if (chance(9999, 10000)) 2540 return 0; 2541 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum); 2542 } 2543 2544 d->pc_happened = 1; 2545 ubifs_warn(c, "========== Power cut emulated =========="); 2546 dump_stack(); 2547 return 1; 2548} 2549 2550static int corrupt_data(const struct ubifs_info *c, const void *buf, 2551 unsigned int len) 2552{ 2553 unsigned int from, to, ffs = chance(1, 2); 2554 unsigned char *p = (void *)buf; 2555 2556 from = prandom_u32() % len; 2557 /* Corruption span max to end of write unit */ 2558 to = min(len, ALIGN(from + 1, c->max_write_size)); 2559 2560 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1, 2561 ffs ? "0xFFs" : "random data"); 2562 2563 if (ffs) 2564 memset(p + from, 0xFF, to - from); 2565 else 2566 prandom_bytes(p + from, to - from); 2567 2568 return to; 2569} 2570 2571int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, 2572 int offs, int len) 2573{ 2574 int err, failing; 2575 2576 if (dbg_is_power_cut(c)) 2577 return -EROFS; 2578 2579 failing = power_cut_emulated(c, lnum, 1); 2580 if (failing) { 2581 len = corrupt_data(c, buf, len); 2582 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)", 2583 len, lnum, offs); 2584 } 2585 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 2586 if (err) 2587 return err; 2588 if (failing) 2589 return -EROFS; 2590 return 0; 2591} 2592 2593int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, 2594 int len) 2595{ 2596 int err; 2597 2598 if (dbg_is_power_cut(c)) 2599 return -EROFS; 2600 if (power_cut_emulated(c, lnum, 1)) 2601 return -EROFS; 2602 err = ubi_leb_change(c->ubi, lnum, buf, len); 2603 if (err) 2604 return err; 2605 if (power_cut_emulated(c, lnum, 1)) 2606 return -EROFS; 2607 return 0; 2608} 2609 2610int dbg_leb_unmap(struct ubifs_info *c, int lnum) 2611{ 2612 int err; 2613 2614 if (dbg_is_power_cut(c)) 2615 return -EROFS; 2616 if (power_cut_emulated(c, lnum, 0)) 2617 return -EROFS; 2618 err = ubi_leb_unmap(c->ubi, lnum); 2619 if (err) 2620 return err; 2621 if (power_cut_emulated(c, lnum, 0)) 2622 return -EROFS; 2623 return 0; 2624} 2625 2626int dbg_leb_map(struct ubifs_info *c, int lnum) 2627{ 2628 int err; 2629 2630 if (dbg_is_power_cut(c)) 2631 return -EROFS; 2632 if (power_cut_emulated(c, lnum, 0)) 2633 return -EROFS; 2634 err = ubi_leb_map(c->ubi, lnum); 2635 if (err) 2636 return err; 2637 if (power_cut_emulated(c, lnum, 0)) 2638 return -EROFS; 2639 return 0; 2640} 2641 2642/* 2643 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2644 * contain the stuff specific to particular file-system mounts. 2645 */ 2646static struct dentry *dfs_rootdir; 2647 2648static int dfs_file_open(struct inode *inode, struct file *file) 2649{ 2650 file->private_data = inode->i_private; 2651 return nonseekable_open(inode, file); 2652} 2653 2654/** 2655 * provide_user_output - provide output to the user reading a debugfs file. 2656 * @val: boolean value for the answer 2657 * @u: the buffer to store the answer at 2658 * @count: size of the buffer 2659 * @ppos: position in the @u output buffer 2660 * 2661 * This is a simple helper function which stores @val boolean value in the user 2662 * buffer when the user reads one of UBIFS debugfs files. Returns amount of 2663 * bytes written to @u in case of success and a negative error code in case of 2664 * failure. 2665 */ 2666static int provide_user_output(int val, char __user *u, size_t count, 2667 loff_t *ppos) 2668{ 2669 char buf[3]; 2670 2671 if (val) 2672 buf[0] = '1'; 2673 else 2674 buf[0] = '0'; 2675 buf[1] = '\n'; 2676 buf[2] = 0x00; 2677 2678 return simple_read_from_buffer(u, count, ppos, buf, 2); 2679} 2680 2681static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count, 2682 loff_t *ppos) 2683{ 2684 struct dentry *dent = file->f_path.dentry; 2685 struct ubifs_info *c = file->private_data; 2686 struct ubifs_debug_info *d = c->dbg; 2687 int val; 2688 2689 if (dent == d->dfs_chk_gen) 2690 val = d->chk_gen; 2691 else if (dent == d->dfs_chk_index) 2692 val = d->chk_index; 2693 else if (dent == d->dfs_chk_orph) 2694 val = d->chk_orph; 2695 else if (dent == d->dfs_chk_lprops) 2696 val = d->chk_lprops; 2697 else if (dent == d->dfs_chk_fs) 2698 val = d->chk_fs; 2699 else if (dent == d->dfs_tst_rcvry) 2700 val = d->tst_rcvry; 2701 else if (dent == d->dfs_ro_error) 2702 val = c->ro_error; 2703 else 2704 return -EINVAL; 2705 2706 return provide_user_output(val, u, count, ppos); 2707} 2708 2709/** 2710 * interpret_user_input - interpret user debugfs file input. 2711 * @u: user-provided buffer with the input 2712 * @count: buffer size 2713 * 2714 * This is a helper function which interpret user input to a boolean UBIFS 2715 * debugfs file. Returns %0 or %1 in case of success and a negative error code 2716 * in case of failure. 2717 */ 2718static int interpret_user_input(const char __user *u, size_t count) 2719{ 2720 size_t buf_size; 2721 char buf[8]; 2722 2723 buf_size = min_t(size_t, count, (sizeof(buf) - 1)); 2724 if (copy_from_user(buf, u, buf_size)) 2725 return -EFAULT; 2726 2727 if (buf[0] == '1') 2728 return 1; 2729 else if (buf[0] == '0') 2730 return 0; 2731 2732 return -EINVAL; 2733} 2734 2735static ssize_t dfs_file_write(struct file *file, const char __user *u, 2736 size_t count, loff_t *ppos) 2737{ 2738 struct ubifs_info *c = file->private_data; 2739 struct ubifs_debug_info *d = c->dbg; 2740 struct dentry *dent = file->f_path.dentry; 2741 int val; 2742 2743 /* 2744 * TODO: this is racy - the file-system might have already been 2745 * unmounted and we'd oops in this case. The plan is to fix it with 2746 * help of 'iterate_supers_type()' which we should have in v3.0: when 2747 * a debugfs opened, we rember FS's UUID in file->private_data. Then 2748 * whenever we access the FS via a debugfs file, we iterate all UBIFS 2749 * superblocks and fine the one with the same UUID, and take the 2750 * locking right. 2751 * 2752 * The other way to go suggested by Al Viro is to create a separate 2753 * 'ubifs-debug' file-system instead. 2754 */ 2755 if (file->f_path.dentry == d->dfs_dump_lprops) { 2756 ubifs_dump_lprops(c); 2757 return count; 2758 } 2759 if (file->f_path.dentry == d->dfs_dump_budg) { 2760 ubifs_dump_budg(c, &c->bi); 2761 return count; 2762 } 2763 if (file->f_path.dentry == d->dfs_dump_tnc) { 2764 mutex_lock(&c->tnc_mutex); 2765 ubifs_dump_tnc(c); 2766 mutex_unlock(&c->tnc_mutex); 2767 return count; 2768 } 2769 2770 val = interpret_user_input(u, count); 2771 if (val < 0) 2772 return val; 2773 2774 if (dent == d->dfs_chk_gen) 2775 d->chk_gen = val; 2776 else if (dent == d->dfs_chk_index) 2777 d->chk_index = val; 2778 else if (dent == d->dfs_chk_orph) 2779 d->chk_orph = val; 2780 else if (dent == d->dfs_chk_lprops) 2781 d->chk_lprops = val; 2782 else if (dent == d->dfs_chk_fs) 2783 d->chk_fs = val; 2784 else if (dent == d->dfs_tst_rcvry) 2785 d->tst_rcvry = val; 2786 else if (dent == d->dfs_ro_error) 2787 c->ro_error = !!val; 2788 else 2789 return -EINVAL; 2790 2791 return count; 2792} 2793 2794static const struct file_operations dfs_fops = { 2795 .open = dfs_file_open, 2796 .read = dfs_file_read, 2797 .write = dfs_file_write, 2798 .owner = THIS_MODULE, 2799 .llseek = no_llseek, 2800}; 2801 2802/** 2803 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2804 * @c: UBIFS file-system description object 2805 * 2806 * This function creates all debugfs files for this instance of UBIFS. Returns 2807 * zero in case of success and a negative error code in case of failure. 2808 * 2809 * Note, the only reason we have not merged this function with the 2810 * 'ubifs_debugging_init()' function is because it is better to initialize 2811 * debugfs interfaces at the very end of the mount process, and remove them at 2812 * the very beginning of the mount process. 2813 */ 2814int dbg_debugfs_init_fs(struct ubifs_info *c) 2815{ 2816 int err, n; 2817 const char *fname; 2818 struct dentry *dent; 2819 struct ubifs_debug_info *d = c->dbg; 2820 2821 if (!IS_ENABLED(CONFIG_DEBUG_FS)) 2822 return 0; 2823 2824 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME, 2825 c->vi.ubi_num, c->vi.vol_id); 2826 if (n == UBIFS_DFS_DIR_LEN) { 2827 /* The array size is too small */ 2828 fname = UBIFS_DFS_DIR_NAME; 2829 dent = ERR_PTR(-EINVAL); 2830 goto out; 2831 } 2832 2833 fname = d->dfs_dir_name; 2834 dent = debugfs_create_dir(fname, dfs_rootdir); 2835 if (IS_ERR_OR_NULL(dent)) 2836 goto out; 2837 d->dfs_dir = dent; 2838 2839 fname = "dump_lprops"; 2840 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2841 if (IS_ERR_OR_NULL(dent)) 2842 goto out_remove; 2843 d->dfs_dump_lprops = dent; 2844 2845 fname = "dump_budg"; 2846 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2847 if (IS_ERR_OR_NULL(dent)) 2848 goto out_remove; 2849 d->dfs_dump_budg = dent; 2850 2851 fname = "dump_tnc"; 2852 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2853 if (IS_ERR_OR_NULL(dent)) 2854 goto out_remove; 2855 d->dfs_dump_tnc = dent; 2856 2857 fname = "chk_general"; 2858 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2859 &dfs_fops); 2860 if (IS_ERR_OR_NULL(dent)) 2861 goto out_remove; 2862 d->dfs_chk_gen = dent; 2863 2864 fname = "chk_index"; 2865 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2866 &dfs_fops); 2867 if (IS_ERR_OR_NULL(dent)) 2868 goto out_remove; 2869 d->dfs_chk_index = dent; 2870 2871 fname = "chk_orphans"; 2872 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2873 &dfs_fops); 2874 if (IS_ERR_OR_NULL(dent)) 2875 goto out_remove; 2876 d->dfs_chk_orph = dent; 2877 2878 fname = "chk_lprops"; 2879 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2880 &dfs_fops); 2881 if (IS_ERR_OR_NULL(dent)) 2882 goto out_remove; 2883 d->dfs_chk_lprops = dent; 2884 2885 fname = "chk_fs"; 2886 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2887 &dfs_fops); 2888 if (IS_ERR_OR_NULL(dent)) 2889 goto out_remove; 2890 d->dfs_chk_fs = dent; 2891 2892 fname = "tst_recovery"; 2893 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2894 &dfs_fops); 2895 if (IS_ERR_OR_NULL(dent)) 2896 goto out_remove; 2897 d->dfs_tst_rcvry = dent; 2898 2899 fname = "ro_error"; 2900 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2901 &dfs_fops); 2902 if (IS_ERR_OR_NULL(dent)) 2903 goto out_remove; 2904 d->dfs_ro_error = dent; 2905 2906 return 0; 2907 2908out_remove: 2909 debugfs_remove_recursive(d->dfs_dir); 2910out: 2911 err = dent ? PTR_ERR(dent) : -ENODEV; 2912 ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n", 2913 fname, err); 2914 return err; 2915} 2916 2917/** 2918 * dbg_debugfs_exit_fs - remove all debugfs files. 2919 * @c: UBIFS file-system description object 2920 */ 2921void dbg_debugfs_exit_fs(struct ubifs_info *c) 2922{ 2923 if (IS_ENABLED(CONFIG_DEBUG_FS)) 2924 debugfs_remove_recursive(c->dbg->dfs_dir); 2925} 2926 2927struct ubifs_global_debug_info ubifs_dbg; 2928 2929static struct dentry *dfs_chk_gen; 2930static struct dentry *dfs_chk_index; 2931static struct dentry *dfs_chk_orph; 2932static struct dentry *dfs_chk_lprops; 2933static struct dentry *dfs_chk_fs; 2934static struct dentry *dfs_tst_rcvry; 2935 2936static ssize_t dfs_global_file_read(struct file *file, char __user *u, 2937 size_t count, loff_t *ppos) 2938{ 2939 struct dentry *dent = file->f_path.dentry; 2940 int val; 2941 2942 if (dent == dfs_chk_gen) 2943 val = ubifs_dbg.chk_gen; 2944 else if (dent == dfs_chk_index) 2945 val = ubifs_dbg.chk_index; 2946 else if (dent == dfs_chk_orph) 2947 val = ubifs_dbg.chk_orph; 2948 else if (dent == dfs_chk_lprops) 2949 val = ubifs_dbg.chk_lprops; 2950 else if (dent == dfs_chk_fs) 2951 val = ubifs_dbg.chk_fs; 2952 else if (dent == dfs_tst_rcvry) 2953 val = ubifs_dbg.tst_rcvry; 2954 else 2955 return -EINVAL; 2956 2957 return provide_user_output(val, u, count, ppos); 2958} 2959 2960static ssize_t dfs_global_file_write(struct file *file, const char __user *u, 2961 size_t count, loff_t *ppos) 2962{ 2963 struct dentry *dent = file->f_path.dentry; 2964 int val; 2965 2966 val = interpret_user_input(u, count); 2967 if (val < 0) 2968 return val; 2969 2970 if (dent == dfs_chk_gen) 2971 ubifs_dbg.chk_gen = val; 2972 else if (dent == dfs_chk_index) 2973 ubifs_dbg.chk_index = val; 2974 else if (dent == dfs_chk_orph) 2975 ubifs_dbg.chk_orph = val; 2976 else if (dent == dfs_chk_lprops) 2977 ubifs_dbg.chk_lprops = val; 2978 else if (dent == dfs_chk_fs) 2979 ubifs_dbg.chk_fs = val; 2980 else if (dent == dfs_tst_rcvry) 2981 ubifs_dbg.tst_rcvry = val; 2982 else 2983 return -EINVAL; 2984 2985 return count; 2986} 2987 2988static const struct file_operations dfs_global_fops = { 2989 .read = dfs_global_file_read, 2990 .write = dfs_global_file_write, 2991 .owner = THIS_MODULE, 2992 .llseek = no_llseek, 2993}; 2994 2995/** 2996 * dbg_debugfs_init - initialize debugfs file-system. 2997 * 2998 * UBIFS uses debugfs file-system to expose various debugging knobs to 2999 * user-space. This function creates "ubifs" directory in the debugfs 3000 * file-system. Returns zero in case of success and a negative error code in 3001 * case of failure. 3002 */ 3003int dbg_debugfs_init(void) 3004{ 3005 int err; 3006 const char *fname; 3007 struct dentry *dent; 3008 3009 if (!IS_ENABLED(CONFIG_DEBUG_FS)) 3010 return 0; 3011 3012 fname = "ubifs"; 3013 dent = debugfs_create_dir(fname, NULL); 3014 if (IS_ERR_OR_NULL(dent)) 3015 goto out; 3016 dfs_rootdir = dent; 3017 3018 fname = "chk_general"; 3019 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3020 &dfs_global_fops); 3021 if (IS_ERR_OR_NULL(dent)) 3022 goto out_remove; 3023 dfs_chk_gen = dent; 3024 3025 fname = "chk_index"; 3026 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3027 &dfs_global_fops); 3028 if (IS_ERR_OR_NULL(dent)) 3029 goto out_remove; 3030 dfs_chk_index = dent; 3031 3032 fname = "chk_orphans"; 3033 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3034 &dfs_global_fops); 3035 if (IS_ERR_OR_NULL(dent)) 3036 goto out_remove; 3037 dfs_chk_orph = dent; 3038 3039 fname = "chk_lprops"; 3040 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3041 &dfs_global_fops); 3042 if (IS_ERR_OR_NULL(dent)) 3043 goto out_remove; 3044 dfs_chk_lprops = dent; 3045 3046 fname = "chk_fs"; 3047 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3048 &dfs_global_fops); 3049 if (IS_ERR_OR_NULL(dent)) 3050 goto out_remove; 3051 dfs_chk_fs = dent; 3052 3053 fname = "tst_recovery"; 3054 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3055 &dfs_global_fops); 3056 if (IS_ERR_OR_NULL(dent)) 3057 goto out_remove; 3058 dfs_tst_rcvry = dent; 3059 3060 return 0; 3061 3062out_remove: 3063 debugfs_remove_recursive(dfs_rootdir); 3064out: 3065 err = dent ? PTR_ERR(dent) : -ENODEV; 3066 pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n", 3067 current->pid, fname, err); 3068 return err; 3069} 3070 3071/** 3072 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 3073 */ 3074void dbg_debugfs_exit(void) 3075{ 3076 if (IS_ENABLED(CONFIG_DEBUG_FS)) 3077 debugfs_remove_recursive(dfs_rootdir); 3078} 3079 3080/** 3081 * ubifs_debugging_init - initialize UBIFS debugging. 3082 * @c: UBIFS file-system description object 3083 * 3084 * This function initializes debugging-related data for the file system. 3085 * Returns zero in case of success and a negative error code in case of 3086 * failure. 3087 */ 3088int ubifs_debugging_init(struct ubifs_info *c) 3089{ 3090 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 3091 if (!c->dbg) 3092 return -ENOMEM; 3093 3094 return 0; 3095} 3096 3097/** 3098 * ubifs_debugging_exit - free debugging data. 3099 * @c: UBIFS file-system description object 3100 */ 3101void ubifs_debugging_exit(struct ubifs_info *c) 3102{ 3103 kfree(c->dbg); 3104} 3105