1/*
2 *  linux/fs/super.c
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 *
6 *  super.c contains code to handle: - mount structures
7 *                                   - super-block tables
8 *                                   - filesystem drivers list
9 *                                   - mount system call
10 *                                   - umount system call
11 *                                   - ustat system call
12 *
13 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14 *
15 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 *  Added options to /proc/mounts:
18 *    Torbj��rn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23#include <linux/export.h>
24#include <linux/slab.h>
25#include <linux/blkdev.h>
26#include <linux/mount.h>
27#include <linux/security.h>
28#include <linux/writeback.h>		/* for the emergency remount stuff */
29#include <linux/idr.h>
30#include <linux/mutex.h>
31#include <linux/backing-dev.h>
32#include <linux/rculist_bl.h>
33#include <linux/cleancache.h>
34#include <linux/fsnotify.h>
35#include <linux/lockdep.h>
36#include "internal.h"
37
38
39static LIST_HEAD(super_blocks);
40static DEFINE_SPINLOCK(sb_lock);
41
42static char *sb_writers_name[SB_FREEZE_LEVELS] = {
43	"sb_writers",
44	"sb_pagefaults",
45	"sb_internal",
46};
47
48/*
49 * One thing we have to be careful of with a per-sb shrinker is that we don't
50 * drop the last active reference to the superblock from within the shrinker.
51 * If that happens we could trigger unregistering the shrinker from within the
52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53 * take a passive reference to the superblock to avoid this from occurring.
54 */
55static unsigned long super_cache_scan(struct shrinker *shrink,
56				      struct shrink_control *sc)
57{
58	struct super_block *sb;
59	long	fs_objects = 0;
60	long	total_objects;
61	long	freed = 0;
62	long	dentries;
63	long	inodes;
64
65	sb = container_of(shrink, struct super_block, s_shrink);
66
67	/*
68	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
69	 * to recurse into the FS that called us in clear_inode() and friends..
70	 */
71	if (!(sc->gfp_mask & __GFP_FS))
72		return SHRINK_STOP;
73
74	if (!trylock_super(sb))
75		return SHRINK_STOP;
76
77	if (sb->s_op->nr_cached_objects)
78		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
79
80	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
81	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
82	total_objects = dentries + inodes + fs_objects + 1;
83	if (!total_objects)
84		total_objects = 1;
85
86	/* proportion the scan between the caches */
87	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
88	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
89	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
90
91	/*
92	 * prune the dcache first as the icache is pinned by it, then
93	 * prune the icache, followed by the filesystem specific caches
94	 *
95	 * Ensure that we always scan at least one object - memcg kmem
96	 * accounting uses this to fully empty the caches.
97	 */
98	sc->nr_to_scan = dentries + 1;
99	freed = prune_dcache_sb(sb, sc);
100	sc->nr_to_scan = inodes + 1;
101	freed += prune_icache_sb(sb, sc);
102
103	if (fs_objects) {
104		sc->nr_to_scan = fs_objects + 1;
105		freed += sb->s_op->free_cached_objects(sb, sc);
106	}
107
108	up_read(&sb->s_umount);
109	return freed;
110}
111
112static unsigned long super_cache_count(struct shrinker *shrink,
113				       struct shrink_control *sc)
114{
115	struct super_block *sb;
116	long	total_objects = 0;
117
118	sb = container_of(shrink, struct super_block, s_shrink);
119
120	/*
121	 * Don't call trylock_super as it is a potential
122	 * scalability bottleneck. The counts could get updated
123	 * between super_cache_count and super_cache_scan anyway.
124	 * Call to super_cache_count with shrinker_rwsem held
125	 * ensures the safety of call to list_lru_shrink_count() and
126	 * s_op->nr_cached_objects().
127	 */
128	if (sb->s_op && sb->s_op->nr_cached_objects)
129		total_objects = sb->s_op->nr_cached_objects(sb, sc);
130
131	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
132	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
133
134	total_objects = vfs_pressure_ratio(total_objects);
135	return total_objects;
136}
137
138static void destroy_super_work(struct work_struct *work)
139{
140	struct super_block *s = container_of(work, struct super_block,
141							destroy_work);
142	int i;
143
144	for (i = 0; i < SB_FREEZE_LEVELS; i++)
145		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
146	kfree(s);
147}
148
149static void destroy_super_rcu(struct rcu_head *head)
150{
151	struct super_block *s = container_of(head, struct super_block, rcu);
152	INIT_WORK(&s->destroy_work, destroy_super_work);
153	schedule_work(&s->destroy_work);
154}
155
156/**
157 *	destroy_super	-	frees a superblock
158 *	@s: superblock to free
159 *
160 *	Frees a superblock.
161 */
162static void destroy_super(struct super_block *s)
163{
164	list_lru_destroy(&s->s_dentry_lru);
165	list_lru_destroy(&s->s_inode_lru);
166	security_sb_free(s);
167	WARN_ON(!list_empty(&s->s_mounts));
168	kfree(s->s_subtype);
169	kfree(s->s_options);
170	call_rcu(&s->rcu, destroy_super_rcu);
171}
172
173/**
174 *	alloc_super	-	create new superblock
175 *	@type:	filesystem type superblock should belong to
176 *	@flags: the mount flags
177 *
178 *	Allocates and initializes a new &struct super_block.  alloc_super()
179 *	returns a pointer new superblock or %NULL if allocation had failed.
180 */
181static struct super_block *alloc_super(struct file_system_type *type, int flags)
182{
183	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
184	static const struct super_operations default_op;
185	int i;
186
187	if (!s)
188		return NULL;
189
190	INIT_LIST_HEAD(&s->s_mounts);
191
192	if (security_sb_alloc(s))
193		goto fail;
194
195	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
196		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
197					sb_writers_name[i],
198					&type->s_writers_key[i]))
199			goto fail;
200	}
201	init_waitqueue_head(&s->s_writers.wait_unfrozen);
202	s->s_bdi = &noop_backing_dev_info;
203	s->s_flags = flags;
204	INIT_HLIST_NODE(&s->s_instances);
205	INIT_HLIST_BL_HEAD(&s->s_anon);
206	mutex_init(&s->s_sync_lock);
207	INIT_LIST_HEAD(&s->s_inodes);
208	spin_lock_init(&s->s_inode_list_lock);
209
210	if (list_lru_init_memcg(&s->s_dentry_lru))
211		goto fail;
212	if (list_lru_init_memcg(&s->s_inode_lru))
213		goto fail;
214
215	init_rwsem(&s->s_umount);
216	lockdep_set_class(&s->s_umount, &type->s_umount_key);
217	/*
218	 * sget() can have s_umount recursion.
219	 *
220	 * When it cannot find a suitable sb, it allocates a new
221	 * one (this one), and tries again to find a suitable old
222	 * one.
223	 *
224	 * In case that succeeds, it will acquire the s_umount
225	 * lock of the old one. Since these are clearly distrinct
226	 * locks, and this object isn't exposed yet, there's no
227	 * risk of deadlocks.
228	 *
229	 * Annotate this by putting this lock in a different
230	 * subclass.
231	 */
232	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
233	s->s_count = 1;
234	atomic_set(&s->s_active, 1);
235	mutex_init(&s->s_vfs_rename_mutex);
236	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
237	mutex_init(&s->s_dquot.dqio_mutex);
238	mutex_init(&s->s_dquot.dqonoff_mutex);
239	s->s_maxbytes = MAX_NON_LFS;
240	s->s_op = &default_op;
241	s->s_time_gran = 1000000000;
242	s->cleancache_poolid = CLEANCACHE_NO_POOL;
243
244	s->s_shrink.seeks = DEFAULT_SEEKS;
245	s->s_shrink.scan_objects = super_cache_scan;
246	s->s_shrink.count_objects = super_cache_count;
247	s->s_shrink.batch = 1024;
248	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
249	return s;
250
251fail:
252	destroy_super(s);
253	return NULL;
254}
255
256/* Superblock refcounting  */
257
258/*
259 * Drop a superblock's refcount.  The caller must hold sb_lock.
260 */
261static void __put_super(struct super_block *sb)
262{
263	if (!--sb->s_count) {
264		list_del_init(&sb->s_list);
265		destroy_super(sb);
266	}
267}
268
269/**
270 *	put_super	-	drop a temporary reference to superblock
271 *	@sb: superblock in question
272 *
273 *	Drops a temporary reference, frees superblock if there's no
274 *	references left.
275 */
276static void put_super(struct super_block *sb)
277{
278	spin_lock(&sb_lock);
279	__put_super(sb);
280	spin_unlock(&sb_lock);
281}
282
283
284/**
285 *	deactivate_locked_super	-	drop an active reference to superblock
286 *	@s: superblock to deactivate
287 *
288 *	Drops an active reference to superblock, converting it into a temprory
289 *	one if there is no other active references left.  In that case we
290 *	tell fs driver to shut it down and drop the temporary reference we
291 *	had just acquired.
292 *
293 *	Caller holds exclusive lock on superblock; that lock is released.
294 */
295void deactivate_locked_super(struct super_block *s)
296{
297	struct file_system_type *fs = s->s_type;
298	if (atomic_dec_and_test(&s->s_active)) {
299		cleancache_invalidate_fs(s);
300		unregister_shrinker(&s->s_shrink);
301		fs->kill_sb(s);
302
303		/*
304		 * Since list_lru_destroy() may sleep, we cannot call it from
305		 * put_super(), where we hold the sb_lock. Therefore we destroy
306		 * the lru lists right now.
307		 */
308		list_lru_destroy(&s->s_dentry_lru);
309		list_lru_destroy(&s->s_inode_lru);
310
311		put_filesystem(fs);
312		put_super(s);
313	} else {
314		up_write(&s->s_umount);
315	}
316}
317
318EXPORT_SYMBOL(deactivate_locked_super);
319
320/**
321 *	deactivate_super	-	drop an active reference to superblock
322 *	@s: superblock to deactivate
323 *
324 *	Variant of deactivate_locked_super(), except that superblock is *not*
325 *	locked by caller.  If we are going to drop the final active reference,
326 *	lock will be acquired prior to that.
327 */
328void deactivate_super(struct super_block *s)
329{
330        if (!atomic_add_unless(&s->s_active, -1, 1)) {
331		down_write(&s->s_umount);
332		deactivate_locked_super(s);
333	}
334}
335
336EXPORT_SYMBOL(deactivate_super);
337
338/**
339 *	grab_super - acquire an active reference
340 *	@s: reference we are trying to make active
341 *
342 *	Tries to acquire an active reference.  grab_super() is used when we
343 * 	had just found a superblock in super_blocks or fs_type->fs_supers
344 *	and want to turn it into a full-blown active reference.  grab_super()
345 *	is called with sb_lock held and drops it.  Returns 1 in case of
346 *	success, 0 if we had failed (superblock contents was already dead or
347 *	dying when grab_super() had been called).  Note that this is only
348 *	called for superblocks not in rundown mode (== ones still on ->fs_supers
349 *	of their type), so increment of ->s_count is OK here.
350 */
351static int grab_super(struct super_block *s) __releases(sb_lock)
352{
353	s->s_count++;
354	spin_unlock(&sb_lock);
355	down_write(&s->s_umount);
356	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
357		put_super(s);
358		return 1;
359	}
360	up_write(&s->s_umount);
361	put_super(s);
362	return 0;
363}
364
365/*
366 *	trylock_super - try to grab ->s_umount shared
367 *	@sb: reference we are trying to grab
368 *
369 *	Try to prevent fs shutdown.  This is used in places where we
370 *	cannot take an active reference but we need to ensure that the
371 *	filesystem is not shut down while we are working on it. It returns
372 *	false if we cannot acquire s_umount or if we lose the race and
373 *	filesystem already got into shutdown, and returns true with the s_umount
374 *	lock held in read mode in case of success. On successful return,
375 *	the caller must drop the s_umount lock when done.
376 *
377 *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
378 *	The reason why it's safe is that we are OK with doing trylock instead
379 *	of down_read().  There's a couple of places that are OK with that, but
380 *	it's very much not a general-purpose interface.
381 */
382bool trylock_super(struct super_block *sb)
383{
384	if (down_read_trylock(&sb->s_umount)) {
385		if (!hlist_unhashed(&sb->s_instances) &&
386		    sb->s_root && (sb->s_flags & MS_BORN))
387			return true;
388		up_read(&sb->s_umount);
389	}
390
391	return false;
392}
393
394/**
395 *	generic_shutdown_super	-	common helper for ->kill_sb()
396 *	@sb: superblock to kill
397 *
398 *	generic_shutdown_super() does all fs-independent work on superblock
399 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
400 *	that need destruction out of superblock, call generic_shutdown_super()
401 *	and release aforementioned objects.  Note: dentries and inodes _are_
402 *	taken care of and do not need specific handling.
403 *
404 *	Upon calling this function, the filesystem may no longer alter or
405 *	rearrange the set of dentries belonging to this super_block, nor may it
406 *	change the attachments of dentries to inodes.
407 */
408void generic_shutdown_super(struct super_block *sb)
409{
410	const struct super_operations *sop = sb->s_op;
411
412	if (sb->s_root) {
413		shrink_dcache_for_umount(sb);
414		sync_filesystem(sb);
415		sb->s_flags &= ~MS_ACTIVE;
416
417		fsnotify_unmount_inodes(sb);
418		cgroup_writeback_umount();
419
420		evict_inodes(sb);
421
422		if (sb->s_dio_done_wq) {
423			destroy_workqueue(sb->s_dio_done_wq);
424			sb->s_dio_done_wq = NULL;
425		}
426
427		if (sop->put_super)
428			sop->put_super(sb);
429
430		if (!list_empty(&sb->s_inodes)) {
431			printk("VFS: Busy inodes after unmount of %s. "
432			   "Self-destruct in 5 seconds.  Have a nice day...\n",
433			   sb->s_id);
434		}
435	}
436	spin_lock(&sb_lock);
437	/* should be initialized for __put_super_and_need_restart() */
438	hlist_del_init(&sb->s_instances);
439	spin_unlock(&sb_lock);
440	up_write(&sb->s_umount);
441}
442
443EXPORT_SYMBOL(generic_shutdown_super);
444
445/**
446 *	sget	-	find or create a superblock
447 *	@type:	filesystem type superblock should belong to
448 *	@test:	comparison callback
449 *	@set:	setup callback
450 *	@flags:	mount flags
451 *	@data:	argument to each of them
452 */
453struct super_block *sget(struct file_system_type *type,
454			int (*test)(struct super_block *,void *),
455			int (*set)(struct super_block *,void *),
456			int flags,
457			void *data)
458{
459	struct super_block *s = NULL;
460	struct super_block *old;
461	int err;
462
463retry:
464	spin_lock(&sb_lock);
465	if (test) {
466		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
467			if (!test(old, data))
468				continue;
469			if (!grab_super(old))
470				goto retry;
471			if (s) {
472				up_write(&s->s_umount);
473				destroy_super(s);
474				s = NULL;
475			}
476			return old;
477		}
478	}
479	if (!s) {
480		spin_unlock(&sb_lock);
481		s = alloc_super(type, flags);
482		if (!s)
483			return ERR_PTR(-ENOMEM);
484		goto retry;
485	}
486
487	err = set(s, data);
488	if (err) {
489		spin_unlock(&sb_lock);
490		up_write(&s->s_umount);
491		destroy_super(s);
492		return ERR_PTR(err);
493	}
494	s->s_type = type;
495	strlcpy(s->s_id, type->name, sizeof(s->s_id));
496	list_add_tail(&s->s_list, &super_blocks);
497	hlist_add_head(&s->s_instances, &type->fs_supers);
498	spin_unlock(&sb_lock);
499	get_filesystem(type);
500	register_shrinker(&s->s_shrink);
501	return s;
502}
503
504EXPORT_SYMBOL(sget);
505
506void drop_super(struct super_block *sb)
507{
508	up_read(&sb->s_umount);
509	put_super(sb);
510}
511
512EXPORT_SYMBOL(drop_super);
513
514/**
515 *	iterate_supers - call function for all active superblocks
516 *	@f: function to call
517 *	@arg: argument to pass to it
518 *
519 *	Scans the superblock list and calls given function, passing it
520 *	locked superblock and given argument.
521 */
522void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
523{
524	struct super_block *sb, *p = NULL;
525
526	spin_lock(&sb_lock);
527	list_for_each_entry(sb, &super_blocks, s_list) {
528		if (hlist_unhashed(&sb->s_instances))
529			continue;
530		sb->s_count++;
531		spin_unlock(&sb_lock);
532
533		down_read(&sb->s_umount);
534		if (sb->s_root && (sb->s_flags & MS_BORN))
535			f(sb, arg);
536		up_read(&sb->s_umount);
537
538		spin_lock(&sb_lock);
539		if (p)
540			__put_super(p);
541		p = sb;
542	}
543	if (p)
544		__put_super(p);
545	spin_unlock(&sb_lock);
546}
547
548/**
549 *	iterate_supers_type - call function for superblocks of given type
550 *	@type: fs type
551 *	@f: function to call
552 *	@arg: argument to pass to it
553 *
554 *	Scans the superblock list and calls given function, passing it
555 *	locked superblock and given argument.
556 */
557void iterate_supers_type(struct file_system_type *type,
558	void (*f)(struct super_block *, void *), void *arg)
559{
560	struct super_block *sb, *p = NULL;
561
562	spin_lock(&sb_lock);
563	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
564		sb->s_count++;
565		spin_unlock(&sb_lock);
566
567		down_read(&sb->s_umount);
568		if (sb->s_root && (sb->s_flags & MS_BORN))
569			f(sb, arg);
570		up_read(&sb->s_umount);
571
572		spin_lock(&sb_lock);
573		if (p)
574			__put_super(p);
575		p = sb;
576	}
577	if (p)
578		__put_super(p);
579	spin_unlock(&sb_lock);
580}
581
582EXPORT_SYMBOL(iterate_supers_type);
583
584/**
585 *	get_super - get the superblock of a device
586 *	@bdev: device to get the superblock for
587 *
588 *	Scans the superblock list and finds the superblock of the file system
589 *	mounted on the device given. %NULL is returned if no match is found.
590 */
591
592struct super_block *get_super(struct block_device *bdev)
593{
594	struct super_block *sb;
595
596	if (!bdev)
597		return NULL;
598
599	spin_lock(&sb_lock);
600rescan:
601	list_for_each_entry(sb, &super_blocks, s_list) {
602		if (hlist_unhashed(&sb->s_instances))
603			continue;
604		if (sb->s_bdev == bdev) {
605			sb->s_count++;
606			spin_unlock(&sb_lock);
607			down_read(&sb->s_umount);
608			/* still alive? */
609			if (sb->s_root && (sb->s_flags & MS_BORN))
610				return sb;
611			up_read(&sb->s_umount);
612			/* nope, got unmounted */
613			spin_lock(&sb_lock);
614			__put_super(sb);
615			goto rescan;
616		}
617	}
618	spin_unlock(&sb_lock);
619	return NULL;
620}
621
622EXPORT_SYMBOL(get_super);
623
624/**
625 *	get_super_thawed - get thawed superblock of a device
626 *	@bdev: device to get the superblock for
627 *
628 *	Scans the superblock list and finds the superblock of the file system
629 *	mounted on the device. The superblock is returned once it is thawed
630 *	(or immediately if it was not frozen). %NULL is returned if no match
631 *	is found.
632 */
633struct super_block *get_super_thawed(struct block_device *bdev)
634{
635	while (1) {
636		struct super_block *s = get_super(bdev);
637		if (!s || s->s_writers.frozen == SB_UNFROZEN)
638			return s;
639		up_read(&s->s_umount);
640		wait_event(s->s_writers.wait_unfrozen,
641			   s->s_writers.frozen == SB_UNFROZEN);
642		put_super(s);
643	}
644}
645EXPORT_SYMBOL(get_super_thawed);
646
647/**
648 * get_active_super - get an active reference to the superblock of a device
649 * @bdev: device to get the superblock for
650 *
651 * Scans the superblock list and finds the superblock of the file system
652 * mounted on the device given.  Returns the superblock with an active
653 * reference or %NULL if none was found.
654 */
655struct super_block *get_active_super(struct block_device *bdev)
656{
657	struct super_block *sb;
658
659	if (!bdev)
660		return NULL;
661
662restart:
663	spin_lock(&sb_lock);
664	list_for_each_entry(sb, &super_blocks, s_list) {
665		if (hlist_unhashed(&sb->s_instances))
666			continue;
667		if (sb->s_bdev == bdev) {
668			if (!grab_super(sb))
669				goto restart;
670			up_write(&sb->s_umount);
671			return sb;
672		}
673	}
674	spin_unlock(&sb_lock);
675	return NULL;
676}
677
678struct super_block *user_get_super(dev_t dev)
679{
680	struct super_block *sb;
681
682	spin_lock(&sb_lock);
683rescan:
684	list_for_each_entry(sb, &super_blocks, s_list) {
685		if (hlist_unhashed(&sb->s_instances))
686			continue;
687		if (sb->s_dev ==  dev) {
688			sb->s_count++;
689			spin_unlock(&sb_lock);
690			down_read(&sb->s_umount);
691			/* still alive? */
692			if (sb->s_root && (sb->s_flags & MS_BORN))
693				return sb;
694			up_read(&sb->s_umount);
695			/* nope, got unmounted */
696			spin_lock(&sb_lock);
697			__put_super(sb);
698			goto rescan;
699		}
700	}
701	spin_unlock(&sb_lock);
702	return NULL;
703}
704
705/**
706 *	do_remount_sb - asks filesystem to change mount options.
707 *	@sb:	superblock in question
708 *	@flags:	numeric part of options
709 *	@data:	the rest of options
710 *      @force: whether or not to force the change
711 *
712 *	Alters the mount options of a mounted file system.
713 */
714int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
715{
716	int retval;
717	int remount_ro;
718
719	if (sb->s_writers.frozen != SB_UNFROZEN)
720		return -EBUSY;
721
722#ifdef CONFIG_BLOCK
723	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
724		return -EACCES;
725#endif
726
727	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
728
729	if (remount_ro) {
730		if (!hlist_empty(&sb->s_pins)) {
731			up_write(&sb->s_umount);
732			group_pin_kill(&sb->s_pins);
733			down_write(&sb->s_umount);
734			if (!sb->s_root)
735				return 0;
736			if (sb->s_writers.frozen != SB_UNFROZEN)
737				return -EBUSY;
738			remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
739		}
740	}
741	shrink_dcache_sb(sb);
742
743	/* If we are remounting RDONLY and current sb is read/write,
744	   make sure there are no rw files opened */
745	if (remount_ro) {
746		if (force) {
747			sb->s_readonly_remount = 1;
748			smp_wmb();
749		} else {
750			retval = sb_prepare_remount_readonly(sb);
751			if (retval)
752				return retval;
753		}
754	}
755
756	if (sb->s_op->remount_fs) {
757		retval = sb->s_op->remount_fs(sb, &flags, data);
758		if (retval) {
759			if (!force)
760				goto cancel_readonly;
761			/* If forced remount, go ahead despite any errors */
762			WARN(1, "forced remount of a %s fs returned %i\n",
763			     sb->s_type->name, retval);
764		}
765	}
766	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
767	/* Needs to be ordered wrt mnt_is_readonly() */
768	smp_wmb();
769	sb->s_readonly_remount = 0;
770
771	/*
772	 * Some filesystems modify their metadata via some other path than the
773	 * bdev buffer cache (eg. use a private mapping, or directories in
774	 * pagecache, etc). Also file data modifications go via their own
775	 * mappings. So If we try to mount readonly then copy the filesystem
776	 * from bdev, we could get stale data, so invalidate it to give a best
777	 * effort at coherency.
778	 */
779	if (remount_ro && sb->s_bdev)
780		invalidate_bdev(sb->s_bdev);
781	return 0;
782
783cancel_readonly:
784	sb->s_readonly_remount = 0;
785	return retval;
786}
787
788static void do_emergency_remount(struct work_struct *work)
789{
790	struct super_block *sb, *p = NULL;
791
792	spin_lock(&sb_lock);
793	list_for_each_entry(sb, &super_blocks, s_list) {
794		if (hlist_unhashed(&sb->s_instances))
795			continue;
796		sb->s_count++;
797		spin_unlock(&sb_lock);
798		down_write(&sb->s_umount);
799		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
800		    !(sb->s_flags & MS_RDONLY)) {
801			/*
802			 * What lock protects sb->s_flags??
803			 */
804			do_remount_sb(sb, MS_RDONLY, NULL, 1);
805		}
806		up_write(&sb->s_umount);
807		spin_lock(&sb_lock);
808		if (p)
809			__put_super(p);
810		p = sb;
811	}
812	if (p)
813		__put_super(p);
814	spin_unlock(&sb_lock);
815	kfree(work);
816	printk("Emergency Remount complete\n");
817}
818
819void emergency_remount(void)
820{
821	struct work_struct *work;
822
823	work = kmalloc(sizeof(*work), GFP_ATOMIC);
824	if (work) {
825		INIT_WORK(work, do_emergency_remount);
826		schedule_work(work);
827	}
828}
829
830/*
831 * Unnamed block devices are dummy devices used by virtual
832 * filesystems which don't use real block-devices.  -- jrs
833 */
834
835static DEFINE_IDA(unnamed_dev_ida);
836static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
837/* Many userspace utilities consider an FSID of 0 invalid.
838 * Always return at least 1 from get_anon_bdev.
839 */
840static int unnamed_dev_start = 1;
841
842int get_anon_bdev(dev_t *p)
843{
844	int dev;
845	int error;
846
847 retry:
848	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
849		return -ENOMEM;
850	spin_lock(&unnamed_dev_lock);
851	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
852	if (!error)
853		unnamed_dev_start = dev + 1;
854	spin_unlock(&unnamed_dev_lock);
855	if (error == -EAGAIN)
856		/* We raced and lost with another CPU. */
857		goto retry;
858	else if (error)
859		return -EAGAIN;
860
861	if (dev >= (1 << MINORBITS)) {
862		spin_lock(&unnamed_dev_lock);
863		ida_remove(&unnamed_dev_ida, dev);
864		if (unnamed_dev_start > dev)
865			unnamed_dev_start = dev;
866		spin_unlock(&unnamed_dev_lock);
867		return -EMFILE;
868	}
869	*p = MKDEV(0, dev & MINORMASK);
870	return 0;
871}
872EXPORT_SYMBOL(get_anon_bdev);
873
874void free_anon_bdev(dev_t dev)
875{
876	int slot = MINOR(dev);
877	spin_lock(&unnamed_dev_lock);
878	ida_remove(&unnamed_dev_ida, slot);
879	if (slot < unnamed_dev_start)
880		unnamed_dev_start = slot;
881	spin_unlock(&unnamed_dev_lock);
882}
883EXPORT_SYMBOL(free_anon_bdev);
884
885int set_anon_super(struct super_block *s, void *data)
886{
887	return get_anon_bdev(&s->s_dev);
888}
889
890EXPORT_SYMBOL(set_anon_super);
891
892void kill_anon_super(struct super_block *sb)
893{
894	dev_t dev = sb->s_dev;
895	generic_shutdown_super(sb);
896	free_anon_bdev(dev);
897}
898
899EXPORT_SYMBOL(kill_anon_super);
900
901void kill_litter_super(struct super_block *sb)
902{
903	if (sb->s_root)
904		d_genocide(sb->s_root);
905	kill_anon_super(sb);
906}
907
908EXPORT_SYMBOL(kill_litter_super);
909
910static int ns_test_super(struct super_block *sb, void *data)
911{
912	return sb->s_fs_info == data;
913}
914
915static int ns_set_super(struct super_block *sb, void *data)
916{
917	sb->s_fs_info = data;
918	return set_anon_super(sb, NULL);
919}
920
921struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
922	void *data, int (*fill_super)(struct super_block *, void *, int))
923{
924	struct super_block *sb;
925
926	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
927	if (IS_ERR(sb))
928		return ERR_CAST(sb);
929
930	if (!sb->s_root) {
931		int err;
932		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
933		if (err) {
934			deactivate_locked_super(sb);
935			return ERR_PTR(err);
936		}
937
938		sb->s_flags |= MS_ACTIVE;
939	}
940
941	return dget(sb->s_root);
942}
943
944EXPORT_SYMBOL(mount_ns);
945
946#ifdef CONFIG_BLOCK
947static int set_bdev_super(struct super_block *s, void *data)
948{
949	s->s_bdev = data;
950	s->s_dev = s->s_bdev->bd_dev;
951
952	/*
953	 * We set the bdi here to the queue backing, file systems can
954	 * overwrite this in ->fill_super()
955	 */
956	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
957	return 0;
958}
959
960static int test_bdev_super(struct super_block *s, void *data)
961{
962	return (void *)s->s_bdev == data;
963}
964
965struct dentry *mount_bdev(struct file_system_type *fs_type,
966	int flags, const char *dev_name, void *data,
967	int (*fill_super)(struct super_block *, void *, int))
968{
969	struct block_device *bdev;
970	struct super_block *s;
971	fmode_t mode = FMODE_READ | FMODE_EXCL;
972	int error = 0;
973
974	if (!(flags & MS_RDONLY))
975		mode |= FMODE_WRITE;
976
977	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
978	if (IS_ERR(bdev))
979		return ERR_CAST(bdev);
980
981	/*
982	 * once the super is inserted into the list by sget, s_umount
983	 * will protect the lockfs code from trying to start a snapshot
984	 * while we are mounting
985	 */
986	mutex_lock(&bdev->bd_fsfreeze_mutex);
987	if (bdev->bd_fsfreeze_count > 0) {
988		mutex_unlock(&bdev->bd_fsfreeze_mutex);
989		error = -EBUSY;
990		goto error_bdev;
991	}
992	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
993		 bdev);
994	mutex_unlock(&bdev->bd_fsfreeze_mutex);
995	if (IS_ERR(s))
996		goto error_s;
997
998	if (s->s_root) {
999		if ((flags ^ s->s_flags) & MS_RDONLY) {
1000			deactivate_locked_super(s);
1001			error = -EBUSY;
1002			goto error_bdev;
1003		}
1004
1005		/*
1006		 * s_umount nests inside bd_mutex during
1007		 * __invalidate_device().  blkdev_put() acquires
1008		 * bd_mutex and can't be called under s_umount.  Drop
1009		 * s_umount temporarily.  This is safe as we're
1010		 * holding an active reference.
1011		 */
1012		up_write(&s->s_umount);
1013		blkdev_put(bdev, mode);
1014		down_write(&s->s_umount);
1015	} else {
1016		char b[BDEVNAME_SIZE];
1017
1018		s->s_mode = mode;
1019		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1020		sb_set_blocksize(s, block_size(bdev));
1021		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1022		if (error) {
1023			deactivate_locked_super(s);
1024			goto error;
1025		}
1026
1027		s->s_flags |= MS_ACTIVE;
1028		bdev->bd_super = s;
1029	}
1030
1031	return dget(s->s_root);
1032
1033error_s:
1034	error = PTR_ERR(s);
1035error_bdev:
1036	blkdev_put(bdev, mode);
1037error:
1038	return ERR_PTR(error);
1039}
1040EXPORT_SYMBOL(mount_bdev);
1041
1042void kill_block_super(struct super_block *sb)
1043{
1044	struct block_device *bdev = sb->s_bdev;
1045	fmode_t mode = sb->s_mode;
1046
1047	bdev->bd_super = NULL;
1048	generic_shutdown_super(sb);
1049	sync_blockdev(bdev);
1050	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1051	blkdev_put(bdev, mode | FMODE_EXCL);
1052}
1053
1054EXPORT_SYMBOL(kill_block_super);
1055#endif
1056
1057struct dentry *mount_nodev(struct file_system_type *fs_type,
1058	int flags, void *data,
1059	int (*fill_super)(struct super_block *, void *, int))
1060{
1061	int error;
1062	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1063
1064	if (IS_ERR(s))
1065		return ERR_CAST(s);
1066
1067	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1068	if (error) {
1069		deactivate_locked_super(s);
1070		return ERR_PTR(error);
1071	}
1072	s->s_flags |= MS_ACTIVE;
1073	return dget(s->s_root);
1074}
1075EXPORT_SYMBOL(mount_nodev);
1076
1077static int compare_single(struct super_block *s, void *p)
1078{
1079	return 1;
1080}
1081
1082struct dentry *mount_single(struct file_system_type *fs_type,
1083	int flags, void *data,
1084	int (*fill_super)(struct super_block *, void *, int))
1085{
1086	struct super_block *s;
1087	int error;
1088
1089	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1090	if (IS_ERR(s))
1091		return ERR_CAST(s);
1092	if (!s->s_root) {
1093		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1094		if (error) {
1095			deactivate_locked_super(s);
1096			return ERR_PTR(error);
1097		}
1098		s->s_flags |= MS_ACTIVE;
1099	} else {
1100		do_remount_sb(s, flags, data, 0);
1101	}
1102	return dget(s->s_root);
1103}
1104EXPORT_SYMBOL(mount_single);
1105
1106struct dentry *
1107mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1108{
1109	struct dentry *root;
1110	struct super_block *sb;
1111	char *secdata = NULL;
1112	int error = -ENOMEM;
1113
1114	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1115		secdata = alloc_secdata();
1116		if (!secdata)
1117			goto out;
1118
1119		error = security_sb_copy_data(data, secdata);
1120		if (error)
1121			goto out_free_secdata;
1122	}
1123
1124	root = type->mount(type, flags, name, data);
1125	if (IS_ERR(root)) {
1126		error = PTR_ERR(root);
1127		goto out_free_secdata;
1128	}
1129	sb = root->d_sb;
1130	BUG_ON(!sb);
1131	WARN_ON(!sb->s_bdi);
1132	sb->s_flags |= MS_BORN;
1133
1134	error = security_sb_kern_mount(sb, flags, secdata);
1135	if (error)
1136		goto out_sb;
1137
1138	/*
1139	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1140	 * but s_maxbytes was an unsigned long long for many releases. Throw
1141	 * this warning for a little while to try and catch filesystems that
1142	 * violate this rule.
1143	 */
1144	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1145		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1146
1147	up_write(&sb->s_umount);
1148	free_secdata(secdata);
1149	return root;
1150out_sb:
1151	dput(root);
1152	deactivate_locked_super(sb);
1153out_free_secdata:
1154	free_secdata(secdata);
1155out:
1156	return ERR_PTR(error);
1157}
1158
1159/*
1160 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1161 * instead.
1162 */
1163void __sb_end_write(struct super_block *sb, int level)
1164{
1165	percpu_up_read(sb->s_writers.rw_sem + level-1);
1166}
1167EXPORT_SYMBOL(__sb_end_write);
1168
1169/*
1170 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1171 * instead.
1172 */
1173int __sb_start_write(struct super_block *sb, int level, bool wait)
1174{
1175	bool force_trylock = false;
1176	int ret = 1;
1177
1178#ifdef CONFIG_LOCKDEP
1179	/*
1180	 * We want lockdep to tell us about possible deadlocks with freezing
1181	 * but it's it bit tricky to properly instrument it. Getting a freeze
1182	 * protection works as getting a read lock but there are subtle
1183	 * problems. XFS for example gets freeze protection on internal level
1184	 * twice in some cases, which is OK only because we already hold a
1185	 * freeze protection also on higher level. Due to these cases we have
1186	 * to use wait == F (trylock mode) which must not fail.
1187	 */
1188	if (wait) {
1189		int i;
1190
1191		for (i = 0; i < level - 1; i++)
1192			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1193				force_trylock = true;
1194				break;
1195			}
1196	}
1197#endif
1198	if (wait && !force_trylock)
1199		percpu_down_read(sb->s_writers.rw_sem + level-1);
1200	else
1201		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1202
1203	WARN_ON(force_trylock & !ret);
1204	return ret;
1205}
1206EXPORT_SYMBOL(__sb_start_write);
1207
1208/**
1209 * sb_wait_write - wait until all writers to given file system finish
1210 * @sb: the super for which we wait
1211 * @level: type of writers we wait for (normal vs page fault)
1212 *
1213 * This function waits until there are no writers of given type to given file
1214 * system.
1215 */
1216static void sb_wait_write(struct super_block *sb, int level)
1217{
1218	percpu_down_write(sb->s_writers.rw_sem + level-1);
1219	/*
1220	 * We are going to return to userspace and forget about this lock, the
1221	 * ownership goes to the caller of thaw_super() which does unlock.
1222	 *
1223	 * FIXME: we should do this before return from freeze_super() after we
1224	 * called sync_filesystem(sb) and s_op->freeze_fs(sb), and thaw_super()
1225	 * should re-acquire these locks before s_op->unfreeze_fs(sb). However
1226	 * this leads to lockdep false-positives, so currently we do the early
1227	 * release right after acquire.
1228	 */
1229	percpu_rwsem_release(sb->s_writers.rw_sem + level-1, 0, _THIS_IP_);
1230}
1231
1232static void sb_freeze_unlock(struct super_block *sb)
1233{
1234	int level;
1235
1236	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1237		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1238
1239	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1240		percpu_up_write(sb->s_writers.rw_sem + level);
1241}
1242
1243/**
1244 * freeze_super - lock the filesystem and force it into a consistent state
1245 * @sb: the super to lock
1246 *
1247 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1248 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1249 * -EBUSY.
1250 *
1251 * During this function, sb->s_writers.frozen goes through these values:
1252 *
1253 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1254 *
1255 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1256 * writes should be blocked, though page faults are still allowed. We wait for
1257 * all writes to complete and then proceed to the next stage.
1258 *
1259 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1260 * but internal fs threads can still modify the filesystem (although they
1261 * should not dirty new pages or inodes), writeback can run etc. After waiting
1262 * for all running page faults we sync the filesystem which will clean all
1263 * dirty pages and inodes (no new dirty pages or inodes can be created when
1264 * sync is running).
1265 *
1266 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1267 * modification are blocked (e.g. XFS preallocation truncation on inode
1268 * reclaim). This is usually implemented by blocking new transactions for
1269 * filesystems that have them and need this additional guard. After all
1270 * internal writers are finished we call ->freeze_fs() to finish filesystem
1271 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1272 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1273 *
1274 * sb->s_writers.frozen is protected by sb->s_umount.
1275 */
1276int freeze_super(struct super_block *sb)
1277{
1278	int ret;
1279
1280	atomic_inc(&sb->s_active);
1281	down_write(&sb->s_umount);
1282	if (sb->s_writers.frozen != SB_UNFROZEN) {
1283		deactivate_locked_super(sb);
1284		return -EBUSY;
1285	}
1286
1287	if (!(sb->s_flags & MS_BORN)) {
1288		up_write(&sb->s_umount);
1289		return 0;	/* sic - it's "nothing to do" */
1290	}
1291
1292	if (sb->s_flags & MS_RDONLY) {
1293		/* Nothing to do really... */
1294		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1295		up_write(&sb->s_umount);
1296		return 0;
1297	}
1298
1299	sb->s_writers.frozen = SB_FREEZE_WRITE;
1300	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1301	up_write(&sb->s_umount);
1302	sb_wait_write(sb, SB_FREEZE_WRITE);
1303	down_write(&sb->s_umount);
1304
1305	/* Now we go and block page faults... */
1306	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1307	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1308
1309	/* All writers are done so after syncing there won't be dirty data */
1310	sync_filesystem(sb);
1311
1312	/* Now wait for internal filesystem counter */
1313	sb->s_writers.frozen = SB_FREEZE_FS;
1314	sb_wait_write(sb, SB_FREEZE_FS);
1315
1316	if (sb->s_op->freeze_fs) {
1317		ret = sb->s_op->freeze_fs(sb);
1318		if (ret) {
1319			printk(KERN_ERR
1320				"VFS:Filesystem freeze failed\n");
1321			sb->s_writers.frozen = SB_UNFROZEN;
1322			sb_freeze_unlock(sb);
1323			wake_up(&sb->s_writers.wait_unfrozen);
1324			deactivate_locked_super(sb);
1325			return ret;
1326		}
1327	}
1328	/*
1329	 * This is just for debugging purposes so that fs can warn if it
1330	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1331	 */
1332	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1333	up_write(&sb->s_umount);
1334	return 0;
1335}
1336EXPORT_SYMBOL(freeze_super);
1337
1338/**
1339 * thaw_super -- unlock filesystem
1340 * @sb: the super to thaw
1341 *
1342 * Unlocks the filesystem and marks it writeable again after freeze_super().
1343 */
1344int thaw_super(struct super_block *sb)
1345{
1346	int error;
1347
1348	down_write(&sb->s_umount);
1349	if (sb->s_writers.frozen == SB_UNFROZEN) {
1350		up_write(&sb->s_umount);
1351		return -EINVAL;
1352	}
1353
1354	if (sb->s_flags & MS_RDONLY) {
1355		sb->s_writers.frozen = SB_UNFROZEN;
1356		goto out;
1357	}
1358
1359	if (sb->s_op->unfreeze_fs) {
1360		error = sb->s_op->unfreeze_fs(sb);
1361		if (error) {
1362			printk(KERN_ERR
1363				"VFS:Filesystem thaw failed\n");
1364			up_write(&sb->s_umount);
1365			return error;
1366		}
1367	}
1368
1369	sb->s_writers.frozen = SB_UNFROZEN;
1370	sb_freeze_unlock(sb);
1371out:
1372	wake_up(&sb->s_writers.wait_unfrozen);
1373	deactivate_locked_super(sb);
1374	return 0;
1375}
1376EXPORT_SYMBOL(thaw_super);
1377