1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5#include <linux/time.h>
6#include <linux/slab.h>
7#include <linux/string.h>
8#include "reiserfs.h"
9#include <linux/buffer_head.h>
10
11/*
12 * To make any changes in the tree we find a node that contains item
13 * to be changed/deleted or position in the node we insert a new item
14 * to. We call this node S. To do balancing we need to decide what we
15 * will shift to left/right neighbor, or to a new node, where new item
16 * will be etc. To make this analysis simpler we build virtual
17 * node. Virtual node is an array of items, that will replace items of
18 * node S. (For instance if we are going to delete an item, virtual
19 * node does not contain it). Virtual node keeps information about
20 * item sizes and types, mergeability of first and last items, sizes
21 * of all entries in directory item. We use this array of items when
22 * calculating what we can shift to neighbors and how many nodes we
23 * have to have if we do not any shiftings, if we shift to left/right
24 * neighbor or to both.
25 */
26
27/*
28 * Takes item number in virtual node, returns number of item
29 * that it has in source buffer
30 */
31static inline int old_item_num(int new_num, int affected_item_num, int mode)
32{
33	if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
34		return new_num;
35
36	if (mode == M_INSERT) {
37
38		RFALSE(new_num == 0,
39		       "vs-8005: for INSERT mode and item number of inserted item");
40
41		return new_num - 1;
42	}
43
44	RFALSE(mode != M_DELETE,
45	       "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
46	       mode);
47	/* delete mode */
48	return new_num + 1;
49}
50
51static void create_virtual_node(struct tree_balance *tb, int h)
52{
53	struct item_head *ih;
54	struct virtual_node *vn = tb->tb_vn;
55	int new_num;
56	struct buffer_head *Sh;	/* this comes from tb->S[h] */
57
58	Sh = PATH_H_PBUFFER(tb->tb_path, h);
59
60	/* size of changed node */
61	vn->vn_size =
62	    MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
63
64	/* for internal nodes array if virtual items is not created */
65	if (h) {
66		vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
67		return;
68	}
69
70	/* number of items in virtual node  */
71	vn->vn_nr_item =
72	    B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
73	    ((vn->vn_mode == M_DELETE) ? 1 : 0);
74
75	/* first virtual item */
76	vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
77	memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
78	vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
79
80	/* first item in the node */
81	ih = item_head(Sh, 0);
82
83	/* define the mergeability for 0-th item (if it is not being deleted) */
84	if (op_is_left_mergeable(&ih->ih_key, Sh->b_size)
85	    && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
86		vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
87
88	/*
89	 * go through all items that remain in the virtual
90	 * node (except for the new (inserted) one)
91	 */
92	for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
93		int j;
94		struct virtual_item *vi = vn->vn_vi + new_num;
95		int is_affected =
96		    ((new_num != vn->vn_affected_item_num) ? 0 : 1);
97
98		if (is_affected && vn->vn_mode == M_INSERT)
99			continue;
100
101		/* get item number in source node */
102		j = old_item_num(new_num, vn->vn_affected_item_num,
103				 vn->vn_mode);
104
105		vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
106		vi->vi_ih = ih + j;
107		vi->vi_item = ih_item_body(Sh, ih + j);
108		vi->vi_uarea = vn->vn_free_ptr;
109
110		/*
111		 * FIXME: there is no check that item operation did not
112		 * consume too much memory
113		 */
114		vn->vn_free_ptr +=
115		    op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
116		if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
117			reiserfs_panic(tb->tb_sb, "vs-8030",
118				       "virtual node space consumed");
119
120		if (!is_affected)
121			/* this is not being changed */
122			continue;
123
124		if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
125			vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
126			/* pointer to data which is going to be pasted */
127			vi->vi_new_data = vn->vn_data;
128		}
129	}
130
131	/* virtual inserted item is not defined yet */
132	if (vn->vn_mode == M_INSERT) {
133		struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
134
135		RFALSE(vn->vn_ins_ih == NULL,
136		       "vs-8040: item header of inserted item is not specified");
137		vi->vi_item_len = tb->insert_size[0];
138		vi->vi_ih = vn->vn_ins_ih;
139		vi->vi_item = vn->vn_data;
140		vi->vi_uarea = vn->vn_free_ptr;
141
142		op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
143			     tb->insert_size[0]);
144	}
145
146	/*
147	 * set right merge flag we take right delimiting key and
148	 * check whether it is a mergeable item
149	 */
150	if (tb->CFR[0]) {
151		struct reiserfs_key *key;
152
153		key = internal_key(tb->CFR[0], tb->rkey[0]);
154		if (op_is_left_mergeable(key, Sh->b_size)
155		    && (vn->vn_mode != M_DELETE
156			|| vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
157			vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
158			    VI_TYPE_RIGHT_MERGEABLE;
159
160#ifdef CONFIG_REISERFS_CHECK
161		if (op_is_left_mergeable(key, Sh->b_size) &&
162		    !(vn->vn_mode != M_DELETE
163		      || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
164			/*
165			 * we delete last item and it could be merged
166			 * with right neighbor's first item
167			 */
168			if (!
169			    (B_NR_ITEMS(Sh) == 1
170			     && is_direntry_le_ih(item_head(Sh, 0))
171			     && ih_entry_count(item_head(Sh, 0)) == 1)) {
172				/*
173				 * node contains more than 1 item, or item
174				 * is not directory item, or this item
175				 * contains more than 1 entry
176				 */
177				print_block(Sh, 0, -1, -1);
178				reiserfs_panic(tb->tb_sb, "vs-8045",
179					       "rdkey %k, affected item==%d "
180					       "(mode==%c) Must be %c",
181					       key, vn->vn_affected_item_num,
182					       vn->vn_mode, M_DELETE);
183			}
184		}
185#endif
186
187	}
188}
189
190/*
191 * Using virtual node check, how many items can be
192 * shifted to left neighbor
193 */
194static void check_left(struct tree_balance *tb, int h, int cur_free)
195{
196	int i;
197	struct virtual_node *vn = tb->tb_vn;
198	struct virtual_item *vi;
199	int d_size, ih_size;
200
201	RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
202
203	/* internal level */
204	if (h > 0) {
205		tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
206		return;
207	}
208
209	/* leaf level */
210
211	if (!cur_free || !vn->vn_nr_item) {
212		/* no free space or nothing to move */
213		tb->lnum[h] = 0;
214		tb->lbytes = -1;
215		return;
216	}
217
218	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
219	       "vs-8055: parent does not exist or invalid");
220
221	vi = vn->vn_vi;
222	if ((unsigned int)cur_free >=
223	    (vn->vn_size -
224	     ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
225		/* all contents of S[0] fits into L[0] */
226
227		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
228		       "vs-8055: invalid mode or balance condition failed");
229
230		tb->lnum[0] = vn->vn_nr_item;
231		tb->lbytes = -1;
232		return;
233	}
234
235	d_size = 0, ih_size = IH_SIZE;
236
237	/* first item may be merge with last item in left neighbor */
238	if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
239		d_size = -((int)IH_SIZE), ih_size = 0;
240
241	tb->lnum[0] = 0;
242	for (i = 0; i < vn->vn_nr_item;
243	     i++, ih_size = IH_SIZE, d_size = 0, vi++) {
244		d_size += vi->vi_item_len;
245		if (cur_free >= d_size) {
246			/* the item can be shifted entirely */
247			cur_free -= d_size;
248			tb->lnum[0]++;
249			continue;
250		}
251
252		/* the item cannot be shifted entirely, try to split it */
253		/*
254		 * check whether L[0] can hold ih and at least one byte
255		 * of the item body
256		 */
257
258		/* cannot shift even a part of the current item */
259		if (cur_free <= ih_size) {
260			tb->lbytes = -1;
261			return;
262		}
263		cur_free -= ih_size;
264
265		tb->lbytes = op_check_left(vi, cur_free, 0, 0);
266		if (tb->lbytes != -1)
267			/* count partially shifted item */
268			tb->lnum[0]++;
269
270		break;
271	}
272
273	return;
274}
275
276/*
277 * Using virtual node check, how many items can be
278 * shifted to right neighbor
279 */
280static void check_right(struct tree_balance *tb, int h, int cur_free)
281{
282	int i;
283	struct virtual_node *vn = tb->tb_vn;
284	struct virtual_item *vi;
285	int d_size, ih_size;
286
287	RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
288
289	/* internal level */
290	if (h > 0) {
291		tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
292		return;
293	}
294
295	/* leaf level */
296
297	if (!cur_free || !vn->vn_nr_item) {
298		/* no free space  */
299		tb->rnum[h] = 0;
300		tb->rbytes = -1;
301		return;
302	}
303
304	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
305	       "vs-8075: parent does not exist or invalid");
306
307	vi = vn->vn_vi + vn->vn_nr_item - 1;
308	if ((unsigned int)cur_free >=
309	    (vn->vn_size -
310	     ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
311		/* all contents of S[0] fits into R[0] */
312
313		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
314		       "vs-8080: invalid mode or balance condition failed");
315
316		tb->rnum[h] = vn->vn_nr_item;
317		tb->rbytes = -1;
318		return;
319	}
320
321	d_size = 0, ih_size = IH_SIZE;
322
323	/* last item may be merge with first item in right neighbor */
324	if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
325		d_size = -(int)IH_SIZE, ih_size = 0;
326
327	tb->rnum[0] = 0;
328	for (i = vn->vn_nr_item - 1; i >= 0;
329	     i--, d_size = 0, ih_size = IH_SIZE, vi--) {
330		d_size += vi->vi_item_len;
331		if (cur_free >= d_size) {
332			/* the item can be shifted entirely */
333			cur_free -= d_size;
334			tb->rnum[0]++;
335			continue;
336		}
337
338		/*
339		 * check whether R[0] can hold ih and at least one
340		 * byte of the item body
341		 */
342
343		/* cannot shift even a part of the current item */
344		if (cur_free <= ih_size) {
345			tb->rbytes = -1;
346			return;
347		}
348
349		/*
350		 * R[0] can hold the header of the item and at least
351		 * one byte of its body
352		 */
353		cur_free -= ih_size;	/* cur_free is still > 0 */
354
355		tb->rbytes = op_check_right(vi, cur_free);
356		if (tb->rbytes != -1)
357			/* count partially shifted item */
358			tb->rnum[0]++;
359
360		break;
361	}
362
363	return;
364}
365
366/*
367 * from - number of items, which are shifted to left neighbor entirely
368 * to - number of item, which are shifted to right neighbor entirely
369 * from_bytes - number of bytes of boundary item (or directory entries)
370 *              which are shifted to left neighbor
371 * to_bytes - number of bytes of boundary item (or directory entries)
372 *            which are shifted to right neighbor
373 */
374static int get_num_ver(int mode, struct tree_balance *tb, int h,
375		       int from, int from_bytes,
376		       int to, int to_bytes, short *snum012, int flow)
377{
378	int i;
379	int cur_free;
380	int units;
381	struct virtual_node *vn = tb->tb_vn;
382	int total_node_size, max_node_size, current_item_size;
383	int needed_nodes;
384
385	/* position of item we start filling node from */
386	int start_item;
387
388	/* position of item we finish filling node by */
389	int end_item;
390
391	/*
392	 * number of first bytes (entries for directory) of start_item-th item
393	 * we do not include into node that is being filled
394	 */
395	int start_bytes;
396
397	/*
398	 * number of last bytes (entries for directory) of end_item-th item
399	 * we do node include into node that is being filled
400	 */
401	int end_bytes;
402
403	/*
404	 * these are positions in virtual item of items, that are split
405	 * between S[0] and S1new and S1new and S2new
406	 */
407	int split_item_positions[2];
408
409	split_item_positions[0] = -1;
410	split_item_positions[1] = -1;
411
412	/*
413	 * We only create additional nodes if we are in insert or paste mode
414	 * or we are in replace mode at the internal level. If h is 0 and
415	 * the mode is M_REPLACE then in fix_nodes we change the mode to
416	 * paste or insert before we get here in the code.
417	 */
418	RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
419	       "vs-8100: insert_size < 0 in overflow");
420
421	max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
422
423	/*
424	 * snum012 [0-2] - number of items, that lay
425	 * to S[0], first new node and second new node
426	 */
427	snum012[3] = -1;	/* s1bytes */
428	snum012[4] = -1;	/* s2bytes */
429
430	/* internal level */
431	if (h > 0) {
432		i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
433		if (i == max_node_size)
434			return 1;
435		return (i / max_node_size + 1);
436	}
437
438	/* leaf level */
439	needed_nodes = 1;
440	total_node_size = 0;
441	cur_free = max_node_size;
442
443	/* start from 'from'-th item */
444	start_item = from;
445	/* skip its first 'start_bytes' units */
446	start_bytes = ((from_bytes != -1) ? from_bytes : 0);
447
448	/* last included item is the 'end_item'-th one */
449	end_item = vn->vn_nr_item - to - 1;
450	/* do not count last 'end_bytes' units of 'end_item'-th item */
451	end_bytes = (to_bytes != -1) ? to_bytes : 0;
452
453	/*
454	 * go through all item beginning from the start_item-th item
455	 * and ending by the end_item-th item. Do not count first
456	 * 'start_bytes' units of 'start_item'-th item and last
457	 * 'end_bytes' of 'end_item'-th item
458	 */
459	for (i = start_item; i <= end_item; i++) {
460		struct virtual_item *vi = vn->vn_vi + i;
461		int skip_from_end = ((i == end_item) ? end_bytes : 0);
462
463		RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
464
465		/* get size of current item */
466		current_item_size = vi->vi_item_len;
467
468		/*
469		 * do not take in calculation head part (from_bytes)
470		 * of from-th item
471		 */
472		current_item_size -=
473		    op_part_size(vi, 0 /*from start */ , start_bytes);
474
475		/* do not take in calculation tail part of last item */
476		current_item_size -=
477		    op_part_size(vi, 1 /*from end */ , skip_from_end);
478
479		/* if item fits into current node entierly */
480		if (total_node_size + current_item_size <= max_node_size) {
481			snum012[needed_nodes - 1]++;
482			total_node_size += current_item_size;
483			start_bytes = 0;
484			continue;
485		}
486
487		/*
488		 * virtual item length is longer, than max size of item in
489		 * a node. It is impossible for direct item
490		 */
491		if (current_item_size > max_node_size) {
492			RFALSE(is_direct_le_ih(vi->vi_ih),
493			       "vs-8110: "
494			       "direct item length is %d. It can not be longer than %d",
495			       current_item_size, max_node_size);
496			/* we will try to split it */
497			flow = 1;
498		}
499
500		/* as we do not split items, take new node and continue */
501		if (!flow) {
502			needed_nodes++;
503			i--;
504			total_node_size = 0;
505			continue;
506		}
507
508		/*
509		 * calculate number of item units which fit into node being
510		 * filled
511		 */
512		{
513			int free_space;
514
515			free_space = max_node_size - total_node_size - IH_SIZE;
516			units =
517			    op_check_left(vi, free_space, start_bytes,
518					  skip_from_end);
519			/*
520			 * nothing fits into current node, take new
521			 * node and continue
522			 */
523			if (units == -1) {
524				needed_nodes++, i--, total_node_size = 0;
525				continue;
526			}
527		}
528
529		/* something fits into the current node */
530		start_bytes += units;
531		snum012[needed_nodes - 1 + 3] = units;
532
533		if (needed_nodes > 2)
534			reiserfs_warning(tb->tb_sb, "vs-8111",
535					 "split_item_position is out of range");
536		snum012[needed_nodes - 1]++;
537		split_item_positions[needed_nodes - 1] = i;
538		needed_nodes++;
539		/* continue from the same item with start_bytes != -1 */
540		start_item = i;
541		i--;
542		total_node_size = 0;
543	}
544
545	/*
546	 * sum012[4] (if it is not -1) contains number of units of which
547	 * are to be in S1new, snum012[3] - to be in S0. They are supposed
548	 * to be S1bytes and S2bytes correspondingly, so recalculate
549	 */
550	if (snum012[4] > 0) {
551		int split_item_num;
552		int bytes_to_r, bytes_to_l;
553		int bytes_to_S1new;
554
555		split_item_num = split_item_positions[1];
556		bytes_to_l =
557		    ((from == split_item_num
558		      && from_bytes != -1) ? from_bytes : 0);
559		bytes_to_r =
560		    ((end_item == split_item_num
561		      && end_bytes != -1) ? end_bytes : 0);
562		bytes_to_S1new =
563		    ((split_item_positions[0] ==
564		      split_item_positions[1]) ? snum012[3] : 0);
565
566		/* s2bytes */
567		snum012[4] =
568		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
569		    bytes_to_r - bytes_to_l - bytes_to_S1new;
570
571		if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
572		    vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
573			reiserfs_warning(tb->tb_sb, "vs-8115",
574					 "not directory or indirect item");
575	}
576
577	/* now we know S2bytes, calculate S1bytes */
578	if (snum012[3] > 0) {
579		int split_item_num;
580		int bytes_to_r, bytes_to_l;
581		int bytes_to_S2new;
582
583		split_item_num = split_item_positions[0];
584		bytes_to_l =
585		    ((from == split_item_num
586		      && from_bytes != -1) ? from_bytes : 0);
587		bytes_to_r =
588		    ((end_item == split_item_num
589		      && end_bytes != -1) ? end_bytes : 0);
590		bytes_to_S2new =
591		    ((split_item_positions[0] == split_item_positions[1]
592		      && snum012[4] != -1) ? snum012[4] : 0);
593
594		/* s1bytes */
595		snum012[3] =
596		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
597		    bytes_to_r - bytes_to_l - bytes_to_S2new;
598	}
599
600	return needed_nodes;
601}
602
603
604/*
605 * Set parameters for balancing.
606 * Performs write of results of analysis of balancing into structure tb,
607 * where it will later be used by the functions that actually do the balancing.
608 * Parameters:
609 *	tb	tree_balance structure;
610 *	h	current level of the node;
611 *	lnum	number of items from S[h] that must be shifted to L[h];
612 *	rnum	number of items from S[h] that must be shifted to R[h];
613 *	blk_num	number of blocks that S[h] will be splitted into;
614 *	s012	number of items that fall into splitted nodes.
615 *	lbytes	number of bytes which flow to the left neighbor from the
616 *              item that is not not shifted entirely
617 *	rbytes	number of bytes which flow to the right neighbor from the
618 *              item that is not not shifted entirely
619 *	s1bytes	number of bytes which flow to the first  new node when
620 *              S[0] splits (this number is contained in s012 array)
621 */
622
623static void set_parameters(struct tree_balance *tb, int h, int lnum,
624			   int rnum, int blk_num, short *s012, int lb, int rb)
625{
626
627	tb->lnum[h] = lnum;
628	tb->rnum[h] = rnum;
629	tb->blknum[h] = blk_num;
630
631	/* only for leaf level */
632	if (h == 0) {
633		if (s012 != NULL) {
634			tb->s0num = *s012++;
635			tb->snum[0] = *s012++;
636			tb->snum[1] = *s012++;
637			tb->sbytes[0] = *s012++;
638			tb->sbytes[1] = *s012;
639		}
640		tb->lbytes = lb;
641		tb->rbytes = rb;
642	}
643	PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
644	PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
645
646	PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
647	PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
648}
649
650/*
651 * check if node disappears if we shift tb->lnum[0] items to left
652 * neighbor and tb->rnum[0] to the right one.
653 */
654static int is_leaf_removable(struct tree_balance *tb)
655{
656	struct virtual_node *vn = tb->tb_vn;
657	int to_left, to_right;
658	int size;
659	int remain_items;
660
661	/*
662	 * number of items that will be shifted to left (right) neighbor
663	 * entirely
664	 */
665	to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
666	to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
667	remain_items = vn->vn_nr_item;
668
669	/* how many items remain in S[0] after shiftings to neighbors */
670	remain_items -= (to_left + to_right);
671
672	/* all content of node can be shifted to neighbors */
673	if (remain_items < 1) {
674		set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
675			       NULL, -1, -1);
676		return 1;
677	}
678
679	/* S[0] is not removable */
680	if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
681		return 0;
682
683	/* check whether we can divide 1 remaining item between neighbors */
684
685	/* get size of remaining item (in item units) */
686	size = op_unit_num(&vn->vn_vi[to_left]);
687
688	if (tb->lbytes + tb->rbytes >= size) {
689		set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
690			       tb->lbytes, -1);
691		return 1;
692	}
693
694	return 0;
695}
696
697/* check whether L, S, R can be joined in one node */
698static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
699{
700	struct virtual_node *vn = tb->tb_vn;
701	int ih_size;
702	struct buffer_head *S0;
703
704	S0 = PATH_H_PBUFFER(tb->tb_path, 0);
705
706	ih_size = 0;
707	if (vn->vn_nr_item) {
708		if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
709			ih_size += IH_SIZE;
710
711		if (vn->vn_vi[vn->vn_nr_item - 1].
712		    vi_type & VI_TYPE_RIGHT_MERGEABLE)
713			ih_size += IH_SIZE;
714	} else {
715		/* there was only one item and it will be deleted */
716		struct item_head *ih;
717
718		RFALSE(B_NR_ITEMS(S0) != 1,
719		       "vs-8125: item number must be 1: it is %d",
720		       B_NR_ITEMS(S0));
721
722		ih = item_head(S0, 0);
723		if (tb->CFR[0]
724		    && !comp_short_le_keys(&ih->ih_key,
725					   internal_key(tb->CFR[0],
726							  tb->rkey[0])))
727			/*
728			 * Directory must be in correct state here: that is
729			 * somewhere at the left side should exist first
730			 * directory item. But the item being deleted can
731			 * not be that first one because its right neighbor
732			 * is item of the same directory. (But first item
733			 * always gets deleted in last turn). So, neighbors
734			 * of deleted item can be merged, so we can save
735			 * ih_size
736			 */
737			if (is_direntry_le_ih(ih)) {
738				ih_size = IH_SIZE;
739
740				/*
741				 * we might check that left neighbor exists
742				 * and is of the same directory
743				 */
744				RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
745				       "vs-8130: first directory item can not be removed until directory is not empty");
746			}
747
748	}
749
750	if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
751		set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
752		PROC_INFO_INC(tb->tb_sb, leaves_removable);
753		return 1;
754	}
755	return 0;
756
757}
758
759/* when we do not split item, lnum and rnum are numbers of entire items */
760#define SET_PAR_SHIFT_LEFT \
761if (h)\
762{\
763   int to_l;\
764   \
765   to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
766	      (MAX_NR_KEY(Sh) + 1 - lpar);\
767	      \
768	      set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
769}\
770else \
771{\
772   if (lset==LEFT_SHIFT_FLOW)\
773     set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
774		     tb->lbytes, -1);\
775   else\
776     set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
777		     -1, -1);\
778}
779
780#define SET_PAR_SHIFT_RIGHT \
781if (h)\
782{\
783   int to_r;\
784   \
785   to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
786   \
787   set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
788}\
789else \
790{\
791   if (rset==RIGHT_SHIFT_FLOW)\
792     set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
793		  -1, tb->rbytes);\
794   else\
795     set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
796		  -1, -1);\
797}
798
799static void free_buffers_in_tb(struct tree_balance *tb)
800{
801	int i;
802
803	pathrelse(tb->tb_path);
804
805	for (i = 0; i < MAX_HEIGHT; i++) {
806		brelse(tb->L[i]);
807		brelse(tb->R[i]);
808		brelse(tb->FL[i]);
809		brelse(tb->FR[i]);
810		brelse(tb->CFL[i]);
811		brelse(tb->CFR[i]);
812
813		tb->L[i] = NULL;
814		tb->R[i] = NULL;
815		tb->FL[i] = NULL;
816		tb->FR[i] = NULL;
817		tb->CFL[i] = NULL;
818		tb->CFR[i] = NULL;
819	}
820}
821
822/*
823 * Get new buffers for storing new nodes that are created while balancing.
824 * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
825 *	        CARRY_ON - schedule didn't occur while the function worked;
826 *	        NO_DISK_SPACE - no disk space.
827 */
828/* The function is NOT SCHEDULE-SAFE! */
829static int get_empty_nodes(struct tree_balance *tb, int h)
830{
831	struct buffer_head *new_bh, *Sh = PATH_H_PBUFFER(tb->tb_path, h);
832	b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
833	int counter, number_of_freeblk;
834	int  amount_needed;	/* number of needed empty blocks */
835	int  retval = CARRY_ON;
836	struct super_block *sb = tb->tb_sb;
837
838	/*
839	 * number_of_freeblk is the number of empty blocks which have been
840	 * acquired for use by the balancing algorithm minus the number of
841	 * empty blocks used in the previous levels of the analysis,
842	 * number_of_freeblk = tb->cur_blknum can be non-zero if a schedule
843	 * occurs after empty blocks are acquired, and the balancing analysis
844	 * is then restarted, amount_needed is the number needed by this
845	 * level (h) of the balancing analysis.
846	 *
847	 * Note that for systems with many processes writing, it would be
848	 * more layout optimal to calculate the total number needed by all
849	 * levels and then to run reiserfs_new_blocks to get all of them at
850	 * once.
851	 */
852
853	/*
854	 * Initiate number_of_freeblk to the amount acquired prior to the
855	 * restart of the analysis or 0 if not restarted, then subtract the
856	 * amount needed by all of the levels of the tree below h.
857	 */
858	/* blknum includes S[h], so we subtract 1 in this calculation */
859	for (counter = 0, number_of_freeblk = tb->cur_blknum;
860	     counter < h; counter++)
861		number_of_freeblk -=
862		    (tb->blknum[counter]) ? (tb->blknum[counter] -
863						   1) : 0;
864
865	/* Allocate missing empty blocks. */
866	/* if Sh == 0  then we are getting a new root */
867	amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
868	/*
869	 * Amount_needed = the amount that we need more than the
870	 * amount that we have.
871	 */
872	if (amount_needed > number_of_freeblk)
873		amount_needed -= number_of_freeblk;
874	else	/* If we have enough already then there is nothing to do. */
875		return CARRY_ON;
876
877	/*
878	 * No need to check quota - is not allocated for blocks used
879	 * for formatted nodes
880	 */
881	if (reiserfs_new_form_blocknrs(tb, blocknrs,
882				       amount_needed) == NO_DISK_SPACE)
883		return NO_DISK_SPACE;
884
885	/* for each blocknumber we just got, get a buffer and stick it on FEB */
886	for (blocknr = blocknrs, counter = 0;
887	     counter < amount_needed; blocknr++, counter++) {
888
889		RFALSE(!*blocknr,
890		       "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
891
892		new_bh = sb_getblk(sb, *blocknr);
893		RFALSE(buffer_dirty(new_bh) ||
894		       buffer_journaled(new_bh) ||
895		       buffer_journal_dirty(new_bh),
896		       "PAP-8140: journaled or dirty buffer %b for the new block",
897		       new_bh);
898
899		/* Put empty buffers into the array. */
900		RFALSE(tb->FEB[tb->cur_blknum],
901		       "PAP-8141: busy slot for new buffer");
902
903		set_buffer_journal_new(new_bh);
904		tb->FEB[tb->cur_blknum++] = new_bh;
905	}
906
907	if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
908		retval = REPEAT_SEARCH;
909
910	return retval;
911}
912
913/*
914 * Get free space of the left neighbor, which is stored in the parent
915 * node of the left neighbor.
916 */
917static int get_lfree(struct tree_balance *tb, int h)
918{
919	struct buffer_head *l, *f;
920	int order;
921
922	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
923	    (l = tb->FL[h]) == NULL)
924		return 0;
925
926	if (f == l)
927		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
928	else {
929		order = B_NR_ITEMS(l);
930		f = l;
931	}
932
933	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
934}
935
936/*
937 * Get free space of the right neighbor,
938 * which is stored in the parent node of the right neighbor.
939 */
940static int get_rfree(struct tree_balance *tb, int h)
941{
942	struct buffer_head *r, *f;
943	int order;
944
945	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
946	    (r = tb->FR[h]) == NULL)
947		return 0;
948
949	if (f == r)
950		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
951	else {
952		order = 0;
953		f = r;
954	}
955
956	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
957
958}
959
960/* Check whether left neighbor is in memory. */
961static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
962{
963	struct buffer_head *father, *left;
964	struct super_block *sb = tb->tb_sb;
965	b_blocknr_t left_neighbor_blocknr;
966	int left_neighbor_position;
967
968	/* Father of the left neighbor does not exist. */
969	if (!tb->FL[h])
970		return 0;
971
972	/* Calculate father of the node to be balanced. */
973	father = PATH_H_PBUFFER(tb->tb_path, h + 1);
974
975	RFALSE(!father ||
976	       !B_IS_IN_TREE(father) ||
977	       !B_IS_IN_TREE(tb->FL[h]) ||
978	       !buffer_uptodate(father) ||
979	       !buffer_uptodate(tb->FL[h]),
980	       "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
981	       father, tb->FL[h]);
982
983	/*
984	 * Get position of the pointer to the left neighbor
985	 * into the left father.
986	 */
987	left_neighbor_position = (father == tb->FL[h]) ?
988	    tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
989	/* Get left neighbor block number. */
990	left_neighbor_blocknr =
991	    B_N_CHILD_NUM(tb->FL[h], left_neighbor_position);
992	/* Look for the left neighbor in the cache. */
993	if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) {
994
995		RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
996		       "vs-8170: left neighbor (%b %z) is not in the tree",
997		       left, left);
998		put_bh(left);
999		return 1;
1000	}
1001
1002	return 0;
1003}
1004
1005#define LEFT_PARENTS  'l'
1006#define RIGHT_PARENTS 'r'
1007
1008static void decrement_key(struct cpu_key *key)
1009{
1010	/* call item specific function for this key */
1011	item_ops[cpu_key_k_type(key)]->decrement_key(key);
1012}
1013
1014/*
1015 * Calculate far left/right parent of the left/right neighbor of the
1016 * current node, that is calculate the left/right (FL[h]/FR[h]) neighbor
1017 * of the parent F[h].
1018 * Calculate left/right common parent of the current node and L[h]/R[h].
1019 * Calculate left/right delimiting key position.
1020 * Returns:	PATH_INCORRECT    - path in the tree is not correct
1021 *		SCHEDULE_OCCURRED - schedule occurred while the function worked
1022 *	        CARRY_ON          - schedule didn't occur while the function
1023 *				    worked
1024 */
1025static int get_far_parent(struct tree_balance *tb,
1026			  int h,
1027			  struct buffer_head **pfather,
1028			  struct buffer_head **pcom_father, char c_lr_par)
1029{
1030	struct buffer_head *parent;
1031	INITIALIZE_PATH(s_path_to_neighbor_father);
1032	struct treepath *path = tb->tb_path;
1033	struct cpu_key s_lr_father_key;
1034	int counter,
1035	    position = INT_MAX,
1036	    first_last_position = 0,
1037	    path_offset = PATH_H_PATH_OFFSET(path, h);
1038
1039	/*
1040	 * Starting from F[h] go upwards in the tree, and look for the common
1041	 * ancestor of F[h], and its neighbor l/r, that should be obtained.
1042	 */
1043
1044	counter = path_offset;
1045
1046	RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET,
1047	       "PAP-8180: invalid path length");
1048
1049	for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
1050		/*
1051		 * Check whether parent of the current buffer in the path
1052		 * is really parent in the tree.
1053		 */
1054		if (!B_IS_IN_TREE
1055		    (parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
1056			return REPEAT_SEARCH;
1057
1058		/* Check whether position in the parent is correct. */
1059		if ((position =
1060		     PATH_OFFSET_POSITION(path,
1061					  counter - 1)) >
1062		    B_NR_ITEMS(parent))
1063			return REPEAT_SEARCH;
1064
1065		/*
1066		 * Check whether parent at the path really points
1067		 * to the child.
1068		 */
1069		if (B_N_CHILD_NUM(parent, position) !=
1070		    PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
1071			return REPEAT_SEARCH;
1072
1073		/*
1074		 * Return delimiting key if position in the parent is not
1075		 * equal to first/last one.
1076		 */
1077		if (c_lr_par == RIGHT_PARENTS)
1078			first_last_position = B_NR_ITEMS(parent);
1079		if (position != first_last_position) {
1080			*pcom_father = parent;
1081			get_bh(*pcom_father);
1082			/*(*pcom_father = parent)->b_count++; */
1083			break;
1084		}
1085	}
1086
1087	/* if we are in the root of the tree, then there is no common father */
1088	if (counter == FIRST_PATH_ELEMENT_OFFSET) {
1089		/*
1090		 * Check whether first buffer in the path is the
1091		 * root of the tree.
1092		 */
1093		if (PATH_OFFSET_PBUFFER
1094		    (tb->tb_path,
1095		     FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1096		    SB_ROOT_BLOCK(tb->tb_sb)) {
1097			*pfather = *pcom_father = NULL;
1098			return CARRY_ON;
1099		}
1100		return REPEAT_SEARCH;
1101	}
1102
1103	RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
1104	       "PAP-8185: (%b %z) level too small",
1105	       *pcom_father, *pcom_father);
1106
1107	/* Check whether the common parent is locked. */
1108
1109	if (buffer_locked(*pcom_father)) {
1110
1111		/* Release the write lock while the buffer is busy */
1112		int depth = reiserfs_write_unlock_nested(tb->tb_sb);
1113		__wait_on_buffer(*pcom_father);
1114		reiserfs_write_lock_nested(tb->tb_sb, depth);
1115		if (FILESYSTEM_CHANGED_TB(tb)) {
1116			brelse(*pcom_father);
1117			return REPEAT_SEARCH;
1118		}
1119	}
1120
1121	/*
1122	 * So, we got common parent of the current node and its
1123	 * left/right neighbor.  Now we are getting the parent of the
1124	 * left/right neighbor.
1125	 */
1126
1127	/* Form key to get parent of the left/right neighbor. */
1128	le_key2cpu_key(&s_lr_father_key,
1129		       internal_key(*pcom_father,
1130				      (c_lr_par ==
1131				       LEFT_PARENTS) ? (tb->lkey[h - 1] =
1132							position -
1133							1) : (tb->rkey[h -
1134									   1] =
1135							      position)));
1136
1137	if (c_lr_par == LEFT_PARENTS)
1138		decrement_key(&s_lr_father_key);
1139
1140	if (search_by_key
1141	    (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
1142	     h + 1) == IO_ERROR)
1143		/* path is released */
1144		return IO_ERROR;
1145
1146	if (FILESYSTEM_CHANGED_TB(tb)) {
1147		pathrelse(&s_path_to_neighbor_father);
1148		brelse(*pcom_father);
1149		return REPEAT_SEARCH;
1150	}
1151
1152	*pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1153
1154	RFALSE(B_LEVEL(*pfather) != h + 1,
1155	       "PAP-8190: (%b %z) level too small", *pfather, *pfather);
1156	RFALSE(s_path_to_neighbor_father.path_length <
1157	       FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1158
1159	s_path_to_neighbor_father.path_length--;
1160	pathrelse(&s_path_to_neighbor_father);
1161	return CARRY_ON;
1162}
1163
1164/*
1165 * Get parents of neighbors of node in the path(S[path_offset]) and
1166 * common parents of S[path_offset] and L[path_offset]/R[path_offset]:
1167 * F[path_offset], FL[path_offset], FR[path_offset], CFL[path_offset],
1168 * CFR[path_offset].
1169 * Calculate numbers of left and right delimiting keys position:
1170 * lkey[path_offset], rkey[path_offset].
1171 * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked
1172 *	        CARRY_ON - schedule didn't occur while the function worked
1173 */
1174static int get_parents(struct tree_balance *tb, int h)
1175{
1176	struct treepath *path = tb->tb_path;
1177	int position,
1178	    ret,
1179	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
1180	struct buffer_head *curf, *curcf;
1181
1182	/* Current node is the root of the tree or will be root of the tree */
1183	if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1184		/*
1185		 * The root can not have parents.
1186		 * Release nodes which previously were obtained as
1187		 * parents of the current node neighbors.
1188		 */
1189		brelse(tb->FL[h]);
1190		brelse(tb->CFL[h]);
1191		brelse(tb->FR[h]);
1192		brelse(tb->CFR[h]);
1193		tb->FL[h]  = NULL;
1194		tb->CFL[h] = NULL;
1195		tb->FR[h]  = NULL;
1196		tb->CFR[h] = NULL;
1197		return CARRY_ON;
1198	}
1199
1200	/* Get parent FL[path_offset] of L[path_offset]. */
1201	position = PATH_OFFSET_POSITION(path, path_offset - 1);
1202	if (position) {
1203		/* Current node is not the first child of its parent. */
1204		curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1205		curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1206		get_bh(curf);
1207		get_bh(curf);
1208		tb->lkey[h] = position - 1;
1209	} else {
1210		/*
1211		 * Calculate current parent of L[path_offset], which is the
1212		 * left neighbor of the current node.  Calculate current
1213		 * common parent of L[path_offset] and the current node.
1214		 * Note that CFL[path_offset] not equal FL[path_offset] and
1215		 * CFL[path_offset] not equal F[path_offset].
1216		 * Calculate lkey[path_offset].
1217		 */
1218		if ((ret = get_far_parent(tb, h + 1, &curf,
1219						  &curcf,
1220						  LEFT_PARENTS)) != CARRY_ON)
1221			return ret;
1222	}
1223
1224	brelse(tb->FL[h]);
1225	tb->FL[h] = curf;	/* New initialization of FL[h]. */
1226	brelse(tb->CFL[h]);
1227	tb->CFL[h] = curcf;	/* New initialization of CFL[h]. */
1228
1229	RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1230	       (curcf && !B_IS_IN_TREE(curcf)),
1231	       "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
1232
1233	/* Get parent FR[h] of R[h]. */
1234
1235	/* Current node is the last child of F[h]. FR[h] != F[h]. */
1236	if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
1237		/*
1238		 * Calculate current parent of R[h], which is the right
1239		 * neighbor of F[h].  Calculate current common parent of
1240		 * R[h] and current node. Note that CFR[h] not equal
1241		 * FR[path_offset] and CFR[h] not equal F[h].
1242		 */
1243		if ((ret =
1244		     get_far_parent(tb, h + 1, &curf, &curcf,
1245				    RIGHT_PARENTS)) != CARRY_ON)
1246			return ret;
1247	} else {
1248		/* Current node is not the last child of its parent F[h]. */
1249		curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1250		curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1251		get_bh(curf);
1252		get_bh(curf);
1253		tb->rkey[h] = position;
1254	}
1255
1256	brelse(tb->FR[h]);
1257	/* New initialization of FR[path_offset]. */
1258	tb->FR[h] = curf;
1259
1260	brelse(tb->CFR[h]);
1261	/* New initialization of CFR[path_offset]. */
1262	tb->CFR[h] = curcf;
1263
1264	RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1265	       (curcf && !B_IS_IN_TREE(curcf)),
1266	       "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);
1267
1268	return CARRY_ON;
1269}
1270
1271/*
1272 * it is possible to remove node as result of shiftings to
1273 * neighbors even when we insert or paste item.
1274 */
1275static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1276				      struct tree_balance *tb, int h)
1277{
1278	struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1279	int levbytes = tb->insert_size[h];
1280	struct item_head *ih;
1281	struct reiserfs_key *r_key = NULL;
1282
1283	ih = item_head(Sh, 0);
1284	if (tb->CFR[h])
1285		r_key = internal_key(tb->CFR[h], tb->rkey[h]);
1286
1287	if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1288	    /* shifting may merge items which might save space */
1289	    -
1290	    ((!h
1291	      && op_is_left_mergeable(&ih->ih_key, Sh->b_size)) ? IH_SIZE : 0)
1292	    -
1293	    ((!h && r_key
1294	      && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1295	    + ((h) ? KEY_SIZE : 0)) {
1296		/* node can not be removed */
1297		if (sfree >= levbytes) {
1298			/* new item fits into node S[h] without any shifting */
1299			if (!h)
1300				tb->s0num =
1301				    B_NR_ITEMS(Sh) +
1302				    ((mode == M_INSERT) ? 1 : 0);
1303			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1304			return NO_BALANCING_NEEDED;
1305		}
1306	}
1307	PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1308	return !NO_BALANCING_NEEDED;
1309}
1310
1311/*
1312 * Check whether current node S[h] is balanced when increasing its size by
1313 * Inserting or Pasting.
1314 * Calculate parameters for balancing for current level h.
1315 * Parameters:
1316 *	tb	tree_balance structure;
1317 *	h	current level of the node;
1318 *	inum	item number in S[h];
1319 *	mode	i - insert, p - paste;
1320 * Returns:	1 - schedule occurred;
1321 *	        0 - balancing for higher levels needed;
1322 *	       -1 - no balancing for higher levels needed;
1323 *	       -2 - no disk space.
1324 */
1325/* ip means Inserting or Pasting */
1326static int ip_check_balance(struct tree_balance *tb, int h)
1327{
1328	struct virtual_node *vn = tb->tb_vn;
1329	/*
1330	 * Number of bytes that must be inserted into (value is negative
1331	 * if bytes are deleted) buffer which contains node being balanced.
1332	 * The mnemonic is that the attempted change in node space used
1333	 * level is levbytes bytes.
1334	 */
1335	int levbytes;
1336	int ret;
1337
1338	int lfree, sfree, rfree /* free space in L, S and R */ ;
1339
1340	/*
1341	 * nver is short for number of vertixes, and lnver is the number if
1342	 * we shift to the left, rnver is the number if we shift to the
1343	 * right, and lrnver is the number if we shift in both directions.
1344	 * The goal is to minimize first the number of vertixes, and second,
1345	 * the number of vertixes whose contents are changed by shifting,
1346	 * and third the number of uncached vertixes whose contents are
1347	 * changed by shifting and must be read from disk.
1348	 */
1349	int nver, lnver, rnver, lrnver;
1350
1351	/*
1352	 * used at leaf level only, S0 = S[0] is the node being balanced,
1353	 * sInum [ I = 0,1,2 ] is the number of items that will
1354	 * remain in node SI after balancing.  S1 and S2 are new
1355	 * nodes that might be created.
1356	 */
1357
1358	/*
1359	 * we perform 8 calls to get_num_ver().  For each call we
1360	 * calculate five parameters.  where 4th parameter is s1bytes
1361	 * and 5th - s2bytes
1362	 *
1363	 * s0num, s1num, s2num for 8 cases
1364	 * 0,1 - do not shift and do not shift but bottle
1365	 * 2   - shift only whole item to left
1366	 * 3   - shift to left and bottle as much as possible
1367	 * 4,5 - shift to right (whole items and as much as possible
1368	 * 6,7 - shift to both directions (whole items and as much as possible)
1369	 */
1370	short snum012[40] = { 0, };
1371
1372	/* Sh is the node whose balance is currently being checked */
1373	struct buffer_head *Sh;
1374
1375	Sh = PATH_H_PBUFFER(tb->tb_path, h);
1376	levbytes = tb->insert_size[h];
1377
1378	/* Calculate balance parameters for creating new root. */
1379	if (!Sh) {
1380		if (!h)
1381			reiserfs_panic(tb->tb_sb, "vs-8210",
1382				       "S[0] can not be 0");
1383		switch (ret = get_empty_nodes(tb, h)) {
1384		/* no balancing for higher levels needed */
1385		case CARRY_ON:
1386			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1387			return NO_BALANCING_NEEDED;
1388
1389		case NO_DISK_SPACE:
1390		case REPEAT_SEARCH:
1391			return ret;
1392		default:
1393			reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect "
1394				       "return value of get_empty_nodes");
1395		}
1396	}
1397
1398	/* get parents of S[h] neighbors. */
1399	ret = get_parents(tb, h);
1400	if (ret != CARRY_ON)
1401		return ret;
1402
1403	sfree = B_FREE_SPACE(Sh);
1404
1405	/* get free space of neighbors */
1406	rfree = get_rfree(tb, h);
1407	lfree = get_lfree(tb, h);
1408
1409	/* and new item fits into node S[h] without any shifting */
1410	if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1411	    NO_BALANCING_NEEDED)
1412		return NO_BALANCING_NEEDED;
1413
1414	create_virtual_node(tb, h);
1415
1416	/*
1417	 * determine maximal number of items we can shift to the left
1418	 * neighbor (in tb structure) and the maximal number of bytes
1419	 * that can flow to the left neighbor from the left most liquid
1420	 * item that cannot be shifted from S[0] entirely (returned value)
1421	 */
1422	check_left(tb, h, lfree);
1423
1424	/*
1425	 * determine maximal number of items we can shift to the right
1426	 * neighbor (in tb structure) and the maximal number of bytes
1427	 * that can flow to the right neighbor from the right most liquid
1428	 * item that cannot be shifted from S[0] entirely (returned value)
1429	 */
1430	check_right(tb, h, rfree);
1431
1432	/*
1433	 * all contents of internal node S[h] can be moved into its
1434	 * neighbors, S[h] will be removed after balancing
1435	 */
1436	if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1437		int to_r;
1438
1439		/*
1440		 * Since we are working on internal nodes, and our internal
1441		 * nodes have fixed size entries, then we can balance by the
1442		 * number of items rather than the space they consume.  In this
1443		 * routine we set the left node equal to the right node,
1444		 * allowing a difference of less than or equal to 1 child
1445		 * pointer.
1446		 */
1447		to_r =
1448		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1449		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1450						tb->rnum[h]);
1451		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1452			       -1, -1);
1453		return CARRY_ON;
1454	}
1455
1456	/*
1457	 * this checks balance condition, that any two neighboring nodes
1458	 * can not fit in one node
1459	 */
1460	RFALSE(h &&
1461	       (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1462		tb->rnum[h] >= vn->vn_nr_item + 1),
1463	       "vs-8220: tree is not balanced on internal level");
1464	RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1465		      (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1466	       "vs-8225: tree is not balanced on leaf level");
1467
1468	/*
1469	 * all contents of S[0] can be moved into its neighbors
1470	 * S[0] will be removed after balancing.
1471	 */
1472	if (!h && is_leaf_removable(tb))
1473		return CARRY_ON;
1474
1475	/*
1476	 * why do we perform this check here rather than earlier??
1477	 * Answer: we can win 1 node in some cases above. Moreover we
1478	 * checked it above, when we checked, that S[0] is not removable
1479	 * in principle
1480	 */
1481
1482	 /* new item fits into node S[h] without any shifting */
1483	if (sfree >= levbytes) {
1484		if (!h)
1485			tb->s0num = vn->vn_nr_item;
1486		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1487		return NO_BALANCING_NEEDED;
1488	}
1489
1490	{
1491		int lpar, rpar, nset, lset, rset, lrset;
1492		/* regular overflowing of the node */
1493
1494		/*
1495		 * get_num_ver works in 2 modes (FLOW & NO_FLOW)
1496		 * lpar, rpar - number of items we can shift to left/right
1497		 *              neighbor (including splitting item)
1498		 * nset, lset, rset, lrset - shows, whether flowing items
1499		 *                           give better packing
1500		 */
1501#define FLOW 1
1502#define NO_FLOW 0		/* do not any splitting */
1503
1504		/* we choose one of the following */
1505#define NOTHING_SHIFT_NO_FLOW	0
1506#define NOTHING_SHIFT_FLOW	5
1507#define LEFT_SHIFT_NO_FLOW	10
1508#define LEFT_SHIFT_FLOW		15
1509#define RIGHT_SHIFT_NO_FLOW	20
1510#define RIGHT_SHIFT_FLOW	25
1511#define LR_SHIFT_NO_FLOW	30
1512#define LR_SHIFT_FLOW		35
1513
1514		lpar = tb->lnum[h];
1515		rpar = tb->rnum[h];
1516
1517		/*
1518		 * calculate number of blocks S[h] must be split into when
1519		 * nothing is shifted to the neighbors, as well as number of
1520		 * items in each part of the split node (s012 numbers),
1521		 * and number of bytes (s1bytes) of the shared drop which
1522		 * flow to S1 if any
1523		 */
1524		nset = NOTHING_SHIFT_NO_FLOW;
1525		nver = get_num_ver(vn->vn_mode, tb, h,
1526				   0, -1, h ? vn->vn_nr_item : 0, -1,
1527				   snum012, NO_FLOW);
1528
1529		if (!h) {
1530			int nver1;
1531
1532			/*
1533			 * note, that in this case we try to bottle
1534			 * between S[0] and S1 (S1 - the first new node)
1535			 */
1536			nver1 = get_num_ver(vn->vn_mode, tb, h,
1537					    0, -1, 0, -1,
1538					    snum012 + NOTHING_SHIFT_FLOW, FLOW);
1539			if (nver > nver1)
1540				nset = NOTHING_SHIFT_FLOW, nver = nver1;
1541		}
1542
1543		/*
1544		 * calculate number of blocks S[h] must be split into when
1545		 * l_shift_num first items and l_shift_bytes of the right
1546		 * most liquid item to be shifted are shifted to the left
1547		 * neighbor, as well as number of items in each part of the
1548		 * splitted node (s012 numbers), and number of bytes
1549		 * (s1bytes) of the shared drop which flow to S1 if any
1550		 */
1551		lset = LEFT_SHIFT_NO_FLOW;
1552		lnver = get_num_ver(vn->vn_mode, tb, h,
1553				    lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1554				    -1, h ? vn->vn_nr_item : 0, -1,
1555				    snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1556		if (!h) {
1557			int lnver1;
1558
1559			lnver1 = get_num_ver(vn->vn_mode, tb, h,
1560					     lpar -
1561					     ((tb->lbytes != -1) ? 1 : 0),
1562					     tb->lbytes, 0, -1,
1563					     snum012 + LEFT_SHIFT_FLOW, FLOW);
1564			if (lnver > lnver1)
1565				lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1566		}
1567
1568		/*
1569		 * calculate number of blocks S[h] must be split into when
1570		 * r_shift_num first items and r_shift_bytes of the left most
1571		 * liquid item to be shifted are shifted to the right neighbor,
1572		 * as well as number of items in each part of the splitted
1573		 * node (s012 numbers), and number of bytes (s1bytes) of the
1574		 * shared drop which flow to S1 if any
1575		 */
1576		rset = RIGHT_SHIFT_NO_FLOW;
1577		rnver = get_num_ver(vn->vn_mode, tb, h,
1578				    0, -1,
1579				    h ? (vn->vn_nr_item - rpar) : (rpar -
1580								   ((tb->
1581								     rbytes !=
1582								     -1) ? 1 :
1583								    0)), -1,
1584				    snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1585		if (!h) {
1586			int rnver1;
1587
1588			rnver1 = get_num_ver(vn->vn_mode, tb, h,
1589					     0, -1,
1590					     (rpar -
1591					      ((tb->rbytes != -1) ? 1 : 0)),
1592					     tb->rbytes,
1593					     snum012 + RIGHT_SHIFT_FLOW, FLOW);
1594
1595			if (rnver > rnver1)
1596				rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1597		}
1598
1599		/*
1600		 * calculate number of blocks S[h] must be split into when
1601		 * items are shifted in both directions, as well as number
1602		 * of items in each part of the splitted node (s012 numbers),
1603		 * and number of bytes (s1bytes) of the shared drop which
1604		 * flow to S1 if any
1605		 */
1606		lrset = LR_SHIFT_NO_FLOW;
1607		lrnver = get_num_ver(vn->vn_mode, tb, h,
1608				     lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1609				     -1,
1610				     h ? (vn->vn_nr_item - rpar) : (rpar -
1611								    ((tb->
1612								      rbytes !=
1613								      -1) ? 1 :
1614								     0)), -1,
1615				     snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1616		if (!h) {
1617			int lrnver1;
1618
1619			lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1620					      lpar -
1621					      ((tb->lbytes != -1) ? 1 : 0),
1622					      tb->lbytes,
1623					      (rpar -
1624					       ((tb->rbytes != -1) ? 1 : 0)),
1625					      tb->rbytes,
1626					      snum012 + LR_SHIFT_FLOW, FLOW);
1627			if (lrnver > lrnver1)
1628				lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1629		}
1630
1631		/*
1632		 * Our general shifting strategy is:
1633		 * 1) to minimized number of new nodes;
1634		 * 2) to minimized number of neighbors involved in shifting;
1635		 * 3) to minimized number of disk reads;
1636		 */
1637
1638		/* we can win TWO or ONE nodes by shifting in both directions */
1639		if (lrnver < lnver && lrnver < rnver) {
1640			RFALSE(h &&
1641			       (tb->lnum[h] != 1 ||
1642				tb->rnum[h] != 1 ||
1643				lrnver != 1 || rnver != 2 || lnver != 2
1644				|| h != 1), "vs-8230: bad h");
1645			if (lrset == LR_SHIFT_FLOW)
1646				set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1647					       lrnver, snum012 + lrset,
1648					       tb->lbytes, tb->rbytes);
1649			else
1650				set_parameters(tb, h,
1651					       tb->lnum[h] -
1652					       ((tb->lbytes == -1) ? 0 : 1),
1653					       tb->rnum[h] -
1654					       ((tb->rbytes == -1) ? 0 : 1),
1655					       lrnver, snum012 + lrset, -1, -1);
1656
1657			return CARRY_ON;
1658		}
1659
1660		/*
1661		 * if shifting doesn't lead to better packing
1662		 * then don't shift
1663		 */
1664		if (nver == lrnver) {
1665			set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1666				       -1);
1667			return CARRY_ON;
1668		}
1669
1670		/*
1671		 * now we know that for better packing shifting in only one
1672		 * direction either to the left or to the right is required
1673		 */
1674
1675		/*
1676		 * if shifting to the left is better than
1677		 * shifting to the right
1678		 */
1679		if (lnver < rnver) {
1680			SET_PAR_SHIFT_LEFT;
1681			return CARRY_ON;
1682		}
1683
1684		/*
1685		 * if shifting to the right is better than
1686		 * shifting to the left
1687		 */
1688		if (lnver > rnver) {
1689			SET_PAR_SHIFT_RIGHT;
1690			return CARRY_ON;
1691		}
1692
1693		/*
1694		 * now shifting in either direction gives the same number
1695		 * of nodes and we can make use of the cached neighbors
1696		 */
1697		if (is_left_neighbor_in_cache(tb, h)) {
1698			SET_PAR_SHIFT_LEFT;
1699			return CARRY_ON;
1700		}
1701
1702		/*
1703		 * shift to the right independently on whether the
1704		 * right neighbor in cache or not
1705		 */
1706		SET_PAR_SHIFT_RIGHT;
1707		return CARRY_ON;
1708	}
1709}
1710
1711/*
1712 * Check whether current node S[h] is balanced when Decreasing its size by
1713 * Deleting or Cutting for INTERNAL node of S+tree.
1714 * Calculate parameters for balancing for current level h.
1715 * Parameters:
1716 *	tb	tree_balance structure;
1717 *	h	current level of the node;
1718 *	inum	item number in S[h];
1719 *	mode	i - insert, p - paste;
1720 * Returns:	1 - schedule occurred;
1721 *	        0 - balancing for higher levels needed;
1722 *	       -1 - no balancing for higher levels needed;
1723 *	       -2 - no disk space.
1724 *
1725 * Note: Items of internal nodes have fixed size, so the balance condition for
1726 * the internal part of S+tree is as for the B-trees.
1727 */
1728static int dc_check_balance_internal(struct tree_balance *tb, int h)
1729{
1730	struct virtual_node *vn = tb->tb_vn;
1731
1732	/*
1733	 * Sh is the node whose balance is currently being checked,
1734	 * and Fh is its father.
1735	 */
1736	struct buffer_head *Sh, *Fh;
1737	int maxsize, ret;
1738	int lfree, rfree /* free space in L and R */ ;
1739
1740	Sh = PATH_H_PBUFFER(tb->tb_path, h);
1741	Fh = PATH_H_PPARENT(tb->tb_path, h);
1742
1743	maxsize = MAX_CHILD_SIZE(Sh);
1744
1745	/*
1746	 * using tb->insert_size[h], which is negative in this case,
1747	 * create_virtual_node calculates:
1748	 * new_nr_item = number of items node would have if operation is
1749	 * performed without balancing (new_nr_item);
1750	 */
1751	create_virtual_node(tb, h);
1752
1753	if (!Fh) {		/* S[h] is the root. */
1754		/* no balancing for higher levels needed */
1755		if (vn->vn_nr_item > 0) {
1756			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1757			return NO_BALANCING_NEEDED;
1758		}
1759		/*
1760		 * new_nr_item == 0.
1761		 * Current root will be deleted resulting in
1762		 * decrementing the tree height.
1763		 */
1764		set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1765		return CARRY_ON;
1766	}
1767
1768	if ((ret = get_parents(tb, h)) != CARRY_ON)
1769		return ret;
1770
1771	/* get free space of neighbors */
1772	rfree = get_rfree(tb, h);
1773	lfree = get_lfree(tb, h);
1774
1775	/* determine maximal number of items we can fit into neighbors */
1776	check_left(tb, h, lfree);
1777	check_right(tb, h, rfree);
1778
1779	/*
1780	 * Balance condition for the internal node is valid.
1781	 * In this case we balance only if it leads to better packing.
1782	 */
1783	if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) {
1784		/*
1785		 * Here we join S[h] with one of its neighbors,
1786		 * which is impossible with greater values of new_nr_item.
1787		 */
1788		if (vn->vn_nr_item == MIN_NR_KEY(Sh)) {
1789			/* All contents of S[h] can be moved to L[h]. */
1790			if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1791				int n;
1792				int order_L;
1793
1794				order_L =
1795				    ((n =
1796				      PATH_H_B_ITEM_ORDER(tb->tb_path,
1797							  h)) ==
1798				     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1799				n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1800				    (DC_SIZE + KEY_SIZE);
1801				set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1802					       -1);
1803				return CARRY_ON;
1804			}
1805
1806			/* All contents of S[h] can be moved to R[h]. */
1807			if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1808				int n;
1809				int order_R;
1810
1811				order_R =
1812				    ((n =
1813				      PATH_H_B_ITEM_ORDER(tb->tb_path,
1814							  h)) ==
1815				     B_NR_ITEMS(Fh)) ? 0 : n + 1;
1816				n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1817				    (DC_SIZE + KEY_SIZE);
1818				set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1819					       -1);
1820				return CARRY_ON;
1821			}
1822		}
1823
1824		/*
1825		 * All contents of S[h] can be moved to the neighbors
1826		 * (L[h] & R[h]).
1827		 */
1828		if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1829			int to_r;
1830
1831			to_r =
1832			    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1833			     tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1834			    (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1835			set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1836				       0, NULL, -1, -1);
1837			return CARRY_ON;
1838		}
1839
1840		/* Balancing does not lead to better packing. */
1841		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1842		return NO_BALANCING_NEEDED;
1843	}
1844
1845	/*
1846	 * Current node contain insufficient number of items.
1847	 * Balancing is required.
1848	 */
1849	/* Check whether we can merge S[h] with left neighbor. */
1850	if (tb->lnum[h] >= vn->vn_nr_item + 1)
1851		if (is_left_neighbor_in_cache(tb, h)
1852		    || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1853			int n;
1854			int order_L;
1855
1856			order_L =
1857			    ((n =
1858			      PATH_H_B_ITEM_ORDER(tb->tb_path,
1859						  h)) ==
1860			     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1861			n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1862								      KEY_SIZE);
1863			set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1864			return CARRY_ON;
1865		}
1866
1867	/* Check whether we can merge S[h] with right neighbor. */
1868	if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1869		int n;
1870		int order_R;
1871
1872		order_R =
1873		    ((n =
1874		      PATH_H_B_ITEM_ORDER(tb->tb_path,
1875					  h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1876		n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1877							      KEY_SIZE);
1878		set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1879		return CARRY_ON;
1880	}
1881
1882	/* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1883	if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1884		int to_r;
1885
1886		to_r =
1887		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1888		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1889						tb->rnum[h]);
1890		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1891			       -1, -1);
1892		return CARRY_ON;
1893	}
1894
1895	/* For internal nodes try to borrow item from a neighbor */
1896	RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1897
1898	/* Borrow one or two items from caching neighbor */
1899	if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1900		int from_l;
1901
1902		from_l =
1903		    (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1904		     1) / 2 - (vn->vn_nr_item + 1);
1905		set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1906		return CARRY_ON;
1907	}
1908
1909	set_parameters(tb, h, 0,
1910		       -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1911			  1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
1912	return CARRY_ON;
1913}
1914
1915/*
1916 * Check whether current node S[h] is balanced when Decreasing its size by
1917 * Deleting or Truncating for LEAF node of S+tree.
1918 * Calculate parameters for balancing for current level h.
1919 * Parameters:
1920 *	tb	tree_balance structure;
1921 *	h	current level of the node;
1922 *	inum	item number in S[h];
1923 *	mode	i - insert, p - paste;
1924 * Returns:	1 - schedule occurred;
1925 *	        0 - balancing for higher levels needed;
1926 *	       -1 - no balancing for higher levels needed;
1927 *	       -2 - no disk space.
1928 */
1929static int dc_check_balance_leaf(struct tree_balance *tb, int h)
1930{
1931	struct virtual_node *vn = tb->tb_vn;
1932
1933	/*
1934	 * Number of bytes that must be deleted from
1935	 * (value is negative if bytes are deleted) buffer which
1936	 * contains node being balanced.  The mnemonic is that the
1937	 * attempted change in node space used level is levbytes bytes.
1938	 */
1939	int levbytes;
1940
1941	/* the maximal item size */
1942	int maxsize, ret;
1943
1944	/*
1945	 * S0 is the node whose balance is currently being checked,
1946	 * and F0 is its father.
1947	 */
1948	struct buffer_head *S0, *F0;
1949	int lfree, rfree /* free space in L and R */ ;
1950
1951	S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1952	F0 = PATH_H_PPARENT(tb->tb_path, 0);
1953
1954	levbytes = tb->insert_size[h];
1955
1956	maxsize = MAX_CHILD_SIZE(S0);	/* maximal possible size of an item */
1957
1958	if (!F0) {		/* S[0] is the root now. */
1959
1960		RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1961		       "vs-8240: attempt to create empty buffer tree");
1962
1963		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1964		return NO_BALANCING_NEEDED;
1965	}
1966
1967	if ((ret = get_parents(tb, h)) != CARRY_ON)
1968		return ret;
1969
1970	/* get free space of neighbors */
1971	rfree = get_rfree(tb, h);
1972	lfree = get_lfree(tb, h);
1973
1974	create_virtual_node(tb, h);
1975
1976	/* if 3 leaves can be merge to one, set parameters and return */
1977	if (are_leaves_removable(tb, lfree, rfree))
1978		return CARRY_ON;
1979
1980	/*
1981	 * determine maximal number of items we can shift to the left/right
1982	 * neighbor and the maximal number of bytes that can flow to the
1983	 * left/right neighbor from the left/right most liquid item that
1984	 * cannot be shifted from S[0] entirely
1985	 */
1986	check_left(tb, h, lfree);
1987	check_right(tb, h, rfree);
1988
1989	/* check whether we can merge S with left neighbor. */
1990	if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1991		if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) ||	/* S can not be merged with R */
1992		    !tb->FR[h]) {
1993
1994			RFALSE(!tb->FL[h],
1995			       "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1996
1997			/* set parameter to merge S[0] with its left neighbor */
1998			set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1999			return CARRY_ON;
2000		}
2001
2002	/* check whether we can merge S[0] with right neighbor. */
2003	if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
2004		set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
2005		return CARRY_ON;
2006	}
2007
2008	/*
2009	 * All contents of S[0] can be moved to the neighbors (L[0] & R[0]).
2010	 * Set parameters and return
2011	 */
2012	if (is_leaf_removable(tb))
2013		return CARRY_ON;
2014
2015	/* Balancing is not required. */
2016	tb->s0num = vn->vn_nr_item;
2017	set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
2018	return NO_BALANCING_NEEDED;
2019}
2020
2021/*
2022 * Check whether current node S[h] is balanced when Decreasing its size by
2023 * Deleting or Cutting.
2024 * Calculate parameters for balancing for current level h.
2025 * Parameters:
2026 *	tb	tree_balance structure;
2027 *	h	current level of the node;
2028 *	inum	item number in S[h];
2029 *	mode	d - delete, c - cut.
2030 * Returns:	1 - schedule occurred;
2031 *	        0 - balancing for higher levels needed;
2032 *	       -1 - no balancing for higher levels needed;
2033 *	       -2 - no disk space.
2034 */
2035static int dc_check_balance(struct tree_balance *tb, int h)
2036{
2037	RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
2038	       "vs-8250: S is not initialized");
2039
2040	if (h)
2041		return dc_check_balance_internal(tb, h);
2042	else
2043		return dc_check_balance_leaf(tb, h);
2044}
2045
2046/*
2047 * Check whether current node S[h] is balanced.
2048 * Calculate parameters for balancing for current level h.
2049 * Parameters:
2050 *
2051 *	tb	tree_balance structure:
2052 *
2053 *              tb is a large structure that must be read about in the header
2054 *		file at the same time as this procedure if the reader is
2055 *		to successfully understand this procedure
2056 *
2057 *	h	current level of the node;
2058 *	inum	item number in S[h];
2059 *	mode	i - insert, p - paste, d - delete, c - cut.
2060 * Returns:	1 - schedule occurred;
2061 *	        0 - balancing for higher levels needed;
2062 *	       -1 - no balancing for higher levels needed;
2063 *	       -2 - no disk space.
2064 */
2065static int check_balance(int mode,
2066			 struct tree_balance *tb,
2067			 int h,
2068			 int inum,
2069			 int pos_in_item,
2070			 struct item_head *ins_ih, const void *data)
2071{
2072	struct virtual_node *vn;
2073
2074	vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
2075	vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
2076	vn->vn_mode = mode;
2077	vn->vn_affected_item_num = inum;
2078	vn->vn_pos_in_item = pos_in_item;
2079	vn->vn_ins_ih = ins_ih;
2080	vn->vn_data = data;
2081
2082	RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
2083	       "vs-8255: ins_ih can not be 0 in insert mode");
2084
2085	/* Calculate balance parameters when size of node is increasing. */
2086	if (tb->insert_size[h] > 0)
2087		return ip_check_balance(tb, h);
2088
2089	/* Calculate balance parameters when  size of node is decreasing. */
2090	return dc_check_balance(tb, h);
2091}
2092
2093/* Check whether parent at the path is the really parent of the current node.*/
2094static int get_direct_parent(struct tree_balance *tb, int h)
2095{
2096	struct buffer_head *bh;
2097	struct treepath *path = tb->tb_path;
2098	int position,
2099	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
2100
2101	/* We are in the root or in the new root. */
2102	if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
2103
2104		RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
2105		       "PAP-8260: invalid offset in the path");
2106
2107		if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
2108		    b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
2109			/* Root is not changed. */
2110			PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL;
2111			PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
2112			return CARRY_ON;
2113		}
2114		/* Root is changed and we must recalculate the path. */
2115		return REPEAT_SEARCH;
2116	}
2117
2118	/* Parent in the path is not in the tree. */
2119	if (!B_IS_IN_TREE
2120	    (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
2121		return REPEAT_SEARCH;
2122
2123	if ((position =
2124	     PATH_OFFSET_POSITION(path,
2125				  path_offset - 1)) > B_NR_ITEMS(bh))
2126		return REPEAT_SEARCH;
2127
2128	/* Parent in the path is not parent of the current node in the tree. */
2129	if (B_N_CHILD_NUM(bh, position) !=
2130	    PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
2131		return REPEAT_SEARCH;
2132
2133	if (buffer_locked(bh)) {
2134		int depth = reiserfs_write_unlock_nested(tb->tb_sb);
2135		__wait_on_buffer(bh);
2136		reiserfs_write_lock_nested(tb->tb_sb, depth);
2137		if (FILESYSTEM_CHANGED_TB(tb))
2138			return REPEAT_SEARCH;
2139	}
2140
2141	/*
2142	 * Parent in the path is unlocked and really parent
2143	 * of the current node.
2144	 */
2145	return CARRY_ON;
2146}
2147
2148/*
2149 * Using lnum[h] and rnum[h] we should determine what neighbors
2150 * of S[h] we
2151 * need in order to balance S[h], and get them if necessary.
2152 * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
2153 *	        CARRY_ON - schedule didn't occur while the function worked;
2154 */
2155static int get_neighbors(struct tree_balance *tb, int h)
2156{
2157	int child_position,
2158	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1);
2159	unsigned long son_number;
2160	struct super_block *sb = tb->tb_sb;
2161	struct buffer_head *bh;
2162	int depth;
2163
2164	PROC_INFO_INC(sb, get_neighbors[h]);
2165
2166	if (tb->lnum[h]) {
2167		/* We need left neighbor to balance S[h]. */
2168		PROC_INFO_INC(sb, need_l_neighbor[h]);
2169		bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
2170
2171		RFALSE(bh == tb->FL[h] &&
2172		       !PATH_OFFSET_POSITION(tb->tb_path, path_offset),
2173		       "PAP-8270: invalid position in the parent");
2174
2175		child_position =
2176		    (bh ==
2177		     tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->
2178								       FL[h]);
2179		son_number = B_N_CHILD_NUM(tb->FL[h], child_position);
2180		depth = reiserfs_write_unlock_nested(tb->tb_sb);
2181		bh = sb_bread(sb, son_number);
2182		reiserfs_write_lock_nested(tb->tb_sb, depth);
2183		if (!bh)
2184			return IO_ERROR;
2185		if (FILESYSTEM_CHANGED_TB(tb)) {
2186			brelse(bh);
2187			PROC_INFO_INC(sb, get_neighbors_restart[h]);
2188			return REPEAT_SEARCH;
2189		}
2190
2191		RFALSE(!B_IS_IN_TREE(tb->FL[h]) ||
2192		       child_position > B_NR_ITEMS(tb->FL[h]) ||
2193		       B_N_CHILD_NUM(tb->FL[h], child_position) !=
2194		       bh->b_blocknr, "PAP-8275: invalid parent");
2195		RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child");
2196		RFALSE(!h &&
2197		       B_FREE_SPACE(bh) !=
2198		       MAX_CHILD_SIZE(bh) -
2199		       dc_size(B_N_CHILD(tb->FL[0], child_position)),
2200		       "PAP-8290: invalid child size of left neighbor");
2201
2202		brelse(tb->L[h]);
2203		tb->L[h] = bh;
2204	}
2205
2206	/* We need right neighbor to balance S[path_offset]. */
2207	if (tb->rnum[h]) {
2208		PROC_INFO_INC(sb, need_r_neighbor[h]);
2209		bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
2210
2211		RFALSE(bh == tb->FR[h] &&
2212		       PATH_OFFSET_POSITION(tb->tb_path,
2213					    path_offset) >=
2214		       B_NR_ITEMS(bh),
2215		       "PAP-8295: invalid position in the parent");
2216
2217		child_position =
2218		    (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0;
2219		son_number = B_N_CHILD_NUM(tb->FR[h], child_position);
2220		depth = reiserfs_write_unlock_nested(tb->tb_sb);
2221		bh = sb_bread(sb, son_number);
2222		reiserfs_write_lock_nested(tb->tb_sb, depth);
2223		if (!bh)
2224			return IO_ERROR;
2225		if (FILESYSTEM_CHANGED_TB(tb)) {
2226			brelse(bh);
2227			PROC_INFO_INC(sb, get_neighbors_restart[h]);
2228			return REPEAT_SEARCH;
2229		}
2230		brelse(tb->R[h]);
2231		tb->R[h] = bh;
2232
2233		RFALSE(!h
2234		       && B_FREE_SPACE(bh) !=
2235		       MAX_CHILD_SIZE(bh) -
2236		       dc_size(B_N_CHILD(tb->FR[0], child_position)),
2237		       "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
2238		       B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh),
2239		       dc_size(B_N_CHILD(tb->FR[0], child_position)));
2240
2241	}
2242	return CARRY_ON;
2243}
2244
2245static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
2246{
2247	int max_num_of_items;
2248	int max_num_of_entries;
2249	unsigned long blocksize = sb->s_blocksize;
2250
2251#define MIN_NAME_LEN 1
2252
2253	max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2254	max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2255	    (DEH_SIZE + MIN_NAME_LEN);
2256
2257	return sizeof(struct virtual_node) +
2258	    max(max_num_of_items * sizeof(struct virtual_item),
2259		sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
2260		(max_num_of_entries - 1) * sizeof(__u16));
2261}
2262
2263/*
2264 * maybe we should fail balancing we are going to perform when kmalloc
2265 * fails several times. But now it will loop until kmalloc gets
2266 * required memory
2267 */
2268static int get_mem_for_virtual_node(struct tree_balance *tb)
2269{
2270	int check_fs = 0;
2271	int size;
2272	char *buf;
2273
2274	size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
2275
2276	/* we have to allocate more memory for virtual node */
2277	if (size > tb->vn_buf_size) {
2278		if (tb->vn_buf) {
2279			/* free memory allocated before */
2280			kfree(tb->vn_buf);
2281			/* this is not needed if kfree is atomic */
2282			check_fs = 1;
2283		}
2284
2285		/* virtual node requires now more memory */
2286		tb->vn_buf_size = size;
2287
2288		/* get memory for virtual item */
2289		buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
2290		if (!buf) {
2291			/*
2292			 * getting memory with GFP_KERNEL priority may involve
2293			 * balancing now (due to indirect_to_direct conversion
2294			 * on dcache shrinking). So, release path and collected
2295			 * resources here
2296			 */
2297			free_buffers_in_tb(tb);
2298			buf = kmalloc(size, GFP_NOFS);
2299			if (!buf) {
2300				tb->vn_buf_size = 0;
2301			}
2302			tb->vn_buf = buf;
2303			schedule();
2304			return REPEAT_SEARCH;
2305		}
2306
2307		tb->vn_buf = buf;
2308	}
2309
2310	if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2311		return REPEAT_SEARCH;
2312
2313	return CARRY_ON;
2314}
2315
2316#ifdef CONFIG_REISERFS_CHECK
2317static void tb_buffer_sanity_check(struct super_block *sb,
2318				   struct buffer_head *bh,
2319				   const char *descr, int level)
2320{
2321	if (bh) {
2322		if (atomic_read(&(bh->b_count)) <= 0)
2323
2324			reiserfs_panic(sb, "jmacd-1", "negative or zero "
2325				       "reference counter for buffer %s[%d] "
2326				       "(%b)", descr, level, bh);
2327
2328		if (!buffer_uptodate(bh))
2329			reiserfs_panic(sb, "jmacd-2", "buffer is not up "
2330				       "to date %s[%d] (%b)",
2331				       descr, level, bh);
2332
2333		if (!B_IS_IN_TREE(bh))
2334			reiserfs_panic(sb, "jmacd-3", "buffer is not "
2335				       "in tree %s[%d] (%b)",
2336				       descr, level, bh);
2337
2338		if (bh->b_bdev != sb->s_bdev)
2339			reiserfs_panic(sb, "jmacd-4", "buffer has wrong "
2340				       "device %s[%d] (%b)",
2341				       descr, level, bh);
2342
2343		if (bh->b_size != sb->s_blocksize)
2344			reiserfs_panic(sb, "jmacd-5", "buffer has wrong "
2345				       "blocksize %s[%d] (%b)",
2346				       descr, level, bh);
2347
2348		if (bh->b_blocknr > SB_BLOCK_COUNT(sb))
2349			reiserfs_panic(sb, "jmacd-6", "buffer block "
2350				       "number too high %s[%d] (%b)",
2351				       descr, level, bh);
2352	}
2353}
2354#else
2355static void tb_buffer_sanity_check(struct super_block *sb,
2356				   struct buffer_head *bh,
2357				   const char *descr, int level)
2358{;
2359}
2360#endif
2361
2362static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
2363{
2364	return reiserfs_prepare_for_journal(s, bh, 0);
2365}
2366
2367static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
2368{
2369	struct buffer_head *locked;
2370#ifdef CONFIG_REISERFS_CHECK
2371	int repeat_counter = 0;
2372#endif
2373	int i;
2374
2375	do {
2376
2377		locked = NULL;
2378
2379		for (i = tb->tb_path->path_length;
2380		     !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
2381			if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
2382				/*
2383				 * if I understand correctly, we can only
2384				 * be sure the last buffer in the path is
2385				 * in the tree --clm
2386				 */
2387#ifdef CONFIG_REISERFS_CHECK
2388				if (PATH_PLAST_BUFFER(tb->tb_path) ==
2389				    PATH_OFFSET_PBUFFER(tb->tb_path, i))
2390					tb_buffer_sanity_check(tb->tb_sb,
2391							       PATH_OFFSET_PBUFFER
2392							       (tb->tb_path,
2393								i), "S",
2394							       tb->tb_path->
2395							       path_length - i);
2396#endif
2397				if (!clear_all_dirty_bits(tb->tb_sb,
2398							  PATH_OFFSET_PBUFFER
2399							  (tb->tb_path,
2400							   i))) {
2401					locked =
2402					    PATH_OFFSET_PBUFFER(tb->tb_path,
2403								i);
2404				}
2405			}
2406		}
2407
2408		for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i];
2409		     i++) {
2410
2411			if (tb->lnum[i]) {
2412
2413				if (tb->L[i]) {
2414					tb_buffer_sanity_check(tb->tb_sb,
2415							       tb->L[i],
2416							       "L", i);
2417					if (!clear_all_dirty_bits
2418					    (tb->tb_sb, tb->L[i]))
2419						locked = tb->L[i];
2420				}
2421
2422				if (!locked && tb->FL[i]) {
2423					tb_buffer_sanity_check(tb->tb_sb,
2424							       tb->FL[i],
2425							       "FL", i);
2426					if (!clear_all_dirty_bits
2427					    (tb->tb_sb, tb->FL[i]))
2428						locked = tb->FL[i];
2429				}
2430
2431				if (!locked && tb->CFL[i]) {
2432					tb_buffer_sanity_check(tb->tb_sb,
2433							       tb->CFL[i],
2434							       "CFL", i);
2435					if (!clear_all_dirty_bits
2436					    (tb->tb_sb, tb->CFL[i]))
2437						locked = tb->CFL[i];
2438				}
2439
2440			}
2441
2442			if (!locked && (tb->rnum[i])) {
2443
2444				if (tb->R[i]) {
2445					tb_buffer_sanity_check(tb->tb_sb,
2446							       tb->R[i],
2447							       "R", i);
2448					if (!clear_all_dirty_bits
2449					    (tb->tb_sb, tb->R[i]))
2450						locked = tb->R[i];
2451				}
2452
2453				if (!locked && tb->FR[i]) {
2454					tb_buffer_sanity_check(tb->tb_sb,
2455							       tb->FR[i],
2456							       "FR", i);
2457					if (!clear_all_dirty_bits
2458					    (tb->tb_sb, tb->FR[i]))
2459						locked = tb->FR[i];
2460				}
2461
2462				if (!locked && tb->CFR[i]) {
2463					tb_buffer_sanity_check(tb->tb_sb,
2464							       tb->CFR[i],
2465							       "CFR", i);
2466					if (!clear_all_dirty_bits
2467					    (tb->tb_sb, tb->CFR[i]))
2468						locked = tb->CFR[i];
2469				}
2470			}
2471		}
2472
2473		/*
2474		 * as far as I can tell, this is not required.  The FEB list
2475		 * seems to be full of newly allocated nodes, which will
2476		 * never be locked, dirty, or anything else.
2477		 * To be safe, I'm putting in the checks and waits in.
2478		 * For the moment, they are needed to keep the code in
2479		 * journal.c from complaining about the buffer.
2480		 * That code is inside CONFIG_REISERFS_CHECK as well.  --clm
2481		 */
2482		for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
2483			if (tb->FEB[i]) {
2484				if (!clear_all_dirty_bits
2485				    (tb->tb_sb, tb->FEB[i]))
2486					locked = tb->FEB[i];
2487			}
2488		}
2489
2490		if (locked) {
2491			int depth;
2492#ifdef CONFIG_REISERFS_CHECK
2493			repeat_counter++;
2494			if ((repeat_counter % 10000) == 0) {
2495				reiserfs_warning(tb->tb_sb, "reiserfs-8200",
2496						 "too many iterations waiting "
2497						 "for buffer to unlock "
2498						 "(%b)", locked);
2499
2500				/* Don't loop forever.  Try to recover from possible error. */
2501
2502				return (FILESYSTEM_CHANGED_TB(tb)) ?
2503				    REPEAT_SEARCH : CARRY_ON;
2504			}
2505#endif
2506			depth = reiserfs_write_unlock_nested(tb->tb_sb);
2507			__wait_on_buffer(locked);
2508			reiserfs_write_lock_nested(tb->tb_sb, depth);
2509			if (FILESYSTEM_CHANGED_TB(tb))
2510				return REPEAT_SEARCH;
2511		}
2512
2513	} while (locked);
2514
2515	return CARRY_ON;
2516}
2517
2518/*
2519 * Prepare for balancing, that is
2520 *	get all necessary parents, and neighbors;
2521 *	analyze what and where should be moved;
2522 *	get sufficient number of new nodes;
2523 * Balancing will start only after all resources will be collected at a time.
2524 *
2525 * When ported to SMP kernels, only at the last moment after all needed nodes
2526 * are collected in cache, will the resources be locked using the usual
2527 * textbook ordered lock acquisition algorithms.  Note that ensuring that
2528 * this code neither write locks what it does not need to write lock nor locks
2529 * out of order will be a pain in the butt that could have been avoided.
2530 * Grumble grumble. -Hans
2531 *
2532 * fix is meant in the sense of render unchanging
2533 *
2534 * Latency might be improved by first gathering a list of what buffers
2535 * are needed and then getting as many of them in parallel as possible? -Hans
2536 *
2537 * Parameters:
2538 *	op_mode	i - insert, d - delete, c - cut (truncate), p - paste (append)
2539 *	tb	tree_balance structure;
2540 *	inum	item number in S[h];
2541 *      pos_in_item - comment this if you can
2542 *      ins_ih	item head of item being inserted
2543 *	data	inserted item or data to be pasted
2544 * Returns:	1 - schedule occurred while the function worked;
2545 *	        0 - schedule didn't occur while the function worked;
2546 *             -1 - if no_disk_space
2547 */
2548
2549int fix_nodes(int op_mode, struct tree_balance *tb,
2550	      struct item_head *ins_ih, const void *data)
2551{
2552	int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
2553	int pos_in_item;
2554
2555	/*
2556	 * we set wait_tb_buffers_run when we have to restore any dirty
2557	 * bits cleared during wait_tb_buffers_run
2558	 */
2559	int wait_tb_buffers_run = 0;
2560	struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
2561
2562	++REISERFS_SB(tb->tb_sb)->s_fix_nodes;
2563
2564	pos_in_item = tb->tb_path->pos_in_item;
2565
2566	tb->fs_gen = get_generation(tb->tb_sb);
2567
2568	/*
2569	 * we prepare and log the super here so it will already be in the
2570	 * transaction when do_balance needs to change it.
2571	 * This way do_balance won't have to schedule when trying to prepare
2572	 * the super for logging
2573	 */
2574	reiserfs_prepare_for_journal(tb->tb_sb,
2575				     SB_BUFFER_WITH_SB(tb->tb_sb), 1);
2576	journal_mark_dirty(tb->transaction_handle,
2577			   SB_BUFFER_WITH_SB(tb->tb_sb));
2578	if (FILESYSTEM_CHANGED_TB(tb))
2579		return REPEAT_SEARCH;
2580
2581	/* if it possible in indirect_to_direct conversion */
2582	if (buffer_locked(tbS0)) {
2583		int depth = reiserfs_write_unlock_nested(tb->tb_sb);
2584		__wait_on_buffer(tbS0);
2585		reiserfs_write_lock_nested(tb->tb_sb, depth);
2586		if (FILESYSTEM_CHANGED_TB(tb))
2587			return REPEAT_SEARCH;
2588	}
2589#ifdef CONFIG_REISERFS_CHECK
2590	if (REISERFS_SB(tb->tb_sb)->cur_tb) {
2591		print_cur_tb("fix_nodes");
2592		reiserfs_panic(tb->tb_sb, "PAP-8305",
2593			       "there is pending do_balance");
2594	}
2595
2596	if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0))
2597		reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is "
2598			       "not uptodate at the beginning of fix_nodes "
2599			       "or not in tree (mode %c)",
2600			       tbS0, tbS0, op_mode);
2601
2602	/* Check parameters. */
2603	switch (op_mode) {
2604	case M_INSERT:
2605		if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0))
2606			reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect "
2607				       "item number %d (in S0 - %d) in case "
2608				       "of insert", item_num,
2609				       B_NR_ITEMS(tbS0));
2610		break;
2611	case M_PASTE:
2612	case M_DELETE:
2613	case M_CUT:
2614		if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) {
2615			print_block(tbS0, 0, -1, -1);
2616			reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect "
2617				       "item number(%d); mode = %c "
2618				       "insert_size = %d",
2619				       item_num, op_mode,
2620				       tb->insert_size[0]);
2621		}
2622		break;
2623	default:
2624		reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode "
2625			       "of operation");
2626	}
2627#endif
2628
2629	if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
2630		/* FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat */
2631		return REPEAT_SEARCH;
2632
2633	/* Starting from the leaf level; for all levels h of the tree. */
2634	for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) {
2635		ret = get_direct_parent(tb, h);
2636		if (ret != CARRY_ON)
2637			goto repeat;
2638
2639		ret = check_balance(op_mode, tb, h, item_num,
2640				    pos_in_item, ins_ih, data);
2641		if (ret != CARRY_ON) {
2642			if (ret == NO_BALANCING_NEEDED) {
2643				/* No balancing for higher levels needed. */
2644				ret = get_neighbors(tb, h);
2645				if (ret != CARRY_ON)
2646					goto repeat;
2647				if (h != MAX_HEIGHT - 1)
2648					tb->insert_size[h + 1] = 0;
2649				/*
2650				 * ok, analysis and resource gathering
2651				 * are complete
2652				 */
2653				break;
2654			}
2655			goto repeat;
2656		}
2657
2658		ret = get_neighbors(tb, h);
2659		if (ret != CARRY_ON)
2660			goto repeat;
2661
2662		/*
2663		 * No disk space, or schedule occurred and analysis may be
2664		 * invalid and needs to be redone.
2665		 */
2666		ret = get_empty_nodes(tb, h);
2667		if (ret != CARRY_ON)
2668			goto repeat;
2669
2670		/*
2671		 * We have a positive insert size but no nodes exist on this
2672		 * level, this means that we are creating a new root.
2673		 */
2674		if (!PATH_H_PBUFFER(tb->tb_path, h)) {
2675
2676			RFALSE(tb->blknum[h] != 1,
2677			       "PAP-8350: creating new empty root");
2678
2679			if (h < MAX_HEIGHT - 1)
2680				tb->insert_size[h + 1] = 0;
2681		} else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
2682			/*
2683			 * The tree needs to be grown, so this node S[h]
2684			 * which is the root node is split into two nodes,
2685			 * and a new node (S[h+1]) will be created to
2686			 * become the root node.
2687			 */
2688			if (tb->blknum[h] > 1) {
2689
2690				RFALSE(h == MAX_HEIGHT - 1,
2691				       "PAP-8355: attempt to create too high of a tree");
2692
2693				tb->insert_size[h + 1] =
2694				    (DC_SIZE +
2695				     KEY_SIZE) * (tb->blknum[h] - 1) +
2696				    DC_SIZE;
2697			} else if (h < MAX_HEIGHT - 1)
2698				tb->insert_size[h + 1] = 0;
2699		} else
2700			tb->insert_size[h + 1] =
2701			    (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1);
2702	}
2703
2704	ret = wait_tb_buffers_until_unlocked(tb);
2705	if (ret == CARRY_ON) {
2706		if (FILESYSTEM_CHANGED_TB(tb)) {
2707			wait_tb_buffers_run = 1;
2708			ret = REPEAT_SEARCH;
2709			goto repeat;
2710		} else {
2711			return CARRY_ON;
2712		}
2713	} else {
2714		wait_tb_buffers_run = 1;
2715		goto repeat;
2716	}
2717
2718repeat:
2719	/*
2720	 * fix_nodes was unable to perform its calculation due to
2721	 * filesystem got changed under us, lack of free disk space or i/o
2722	 * failure. If the first is the case - the search will be
2723	 * repeated. For now - free all resources acquired so far except
2724	 * for the new allocated nodes
2725	 */
2726	{
2727		int i;
2728
2729		/* Release path buffers. */
2730		if (wait_tb_buffers_run) {
2731			pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2732		} else {
2733			pathrelse(tb->tb_path);
2734		}
2735		/* brelse all resources collected for balancing */
2736		for (i = 0; i < MAX_HEIGHT; i++) {
2737			if (wait_tb_buffers_run) {
2738				reiserfs_restore_prepared_buffer(tb->tb_sb,
2739								 tb->L[i]);
2740				reiserfs_restore_prepared_buffer(tb->tb_sb,
2741								 tb->R[i]);
2742				reiserfs_restore_prepared_buffer(tb->tb_sb,
2743								 tb->FL[i]);
2744				reiserfs_restore_prepared_buffer(tb->tb_sb,
2745								 tb->FR[i]);
2746				reiserfs_restore_prepared_buffer(tb->tb_sb,
2747								 tb->
2748								 CFL[i]);
2749				reiserfs_restore_prepared_buffer(tb->tb_sb,
2750								 tb->
2751								 CFR[i]);
2752			}
2753
2754			brelse(tb->L[i]);
2755			brelse(tb->R[i]);
2756			brelse(tb->FL[i]);
2757			brelse(tb->FR[i]);
2758			brelse(tb->CFL[i]);
2759			brelse(tb->CFR[i]);
2760
2761			tb->L[i] = NULL;
2762			tb->R[i] = NULL;
2763			tb->FL[i] = NULL;
2764			tb->FR[i] = NULL;
2765			tb->CFL[i] = NULL;
2766			tb->CFR[i] = NULL;
2767		}
2768
2769		if (wait_tb_buffers_run) {
2770			for (i = 0; i < MAX_FEB_SIZE; i++) {
2771				if (tb->FEB[i])
2772					reiserfs_restore_prepared_buffer
2773					    (tb->tb_sb, tb->FEB[i]);
2774			}
2775		}
2776		return ret;
2777	}
2778
2779}
2780
2781void unfix_nodes(struct tree_balance *tb)
2782{
2783	int i;
2784
2785	/* Release path buffers. */
2786	pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2787
2788	/* brelse all resources collected for balancing */
2789	for (i = 0; i < MAX_HEIGHT; i++) {
2790		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2791		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2792		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2793		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2794		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2795		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
2796
2797		brelse(tb->L[i]);
2798		brelse(tb->R[i]);
2799		brelse(tb->FL[i]);
2800		brelse(tb->FR[i]);
2801		brelse(tb->CFL[i]);
2802		brelse(tb->CFR[i]);
2803	}
2804
2805	/* deal with list of allocated (used and unused) nodes */
2806	for (i = 0; i < MAX_FEB_SIZE; i++) {
2807		if (tb->FEB[i]) {
2808			b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2809			/*
2810			 * de-allocated block which was not used by
2811			 * balancing and bforget about buffer for it
2812			 */
2813			brelse(tb->FEB[i]);
2814			reiserfs_free_block(tb->transaction_handle, NULL,
2815					    blocknr, 0);
2816		}
2817		if (tb->used[i]) {
2818			/* release used as new nodes including a new root */
2819			brelse(tb->used[i]);
2820		}
2821	}
2822
2823	kfree(tb->vn_buf);
2824
2825}
2826