1/*
2 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
3 *
4 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
5 * Copyright (c) 2001,2002 Richard Russon
6 *
7 * This program/include file is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as published
9 * by the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program/include file is distributed in the hope that it will be
13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program (in the main directory of the Linux-NTFS
19 * distribution in the file COPYING); if not, write to the Free Software
20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21 */
22#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24#include <linux/stddef.h>
25#include <linux/init.h>
26#include <linux/slab.h>
27#include <linux/string.h>
28#include <linux/spinlock.h>
29#include <linux/blkdev.h>	/* For bdev_logical_block_size(). */
30#include <linux/backing-dev.h>
31#include <linux/buffer_head.h>
32#include <linux/vfs.h>
33#include <linux/moduleparam.h>
34#include <linux/bitmap.h>
35
36#include "sysctl.h"
37#include "logfile.h"
38#include "quota.h"
39#include "usnjrnl.h"
40#include "dir.h"
41#include "debug.h"
42#include "index.h"
43#include "inode.h"
44#include "aops.h"
45#include "layout.h"
46#include "malloc.h"
47#include "ntfs.h"
48
49/* Number of mounted filesystems which have compression enabled. */
50static unsigned long ntfs_nr_compression_users;
51
52/* A global default upcase table and a corresponding reference count. */
53static ntfschar *default_upcase;
54static unsigned long ntfs_nr_upcase_users;
55
56/* Error constants/strings used in inode.c::ntfs_show_options(). */
57typedef enum {
58	/* One of these must be present, default is ON_ERRORS_CONTINUE. */
59	ON_ERRORS_PANIC			= 0x01,
60	ON_ERRORS_REMOUNT_RO		= 0x02,
61	ON_ERRORS_CONTINUE		= 0x04,
62	/* Optional, can be combined with any of the above. */
63	ON_ERRORS_RECOVER		= 0x10,
64} ON_ERRORS_ACTIONS;
65
66const option_t on_errors_arr[] = {
67	{ ON_ERRORS_PANIC,	"panic" },
68	{ ON_ERRORS_REMOUNT_RO,	"remount-ro", },
69	{ ON_ERRORS_CONTINUE,	"continue", },
70	{ ON_ERRORS_RECOVER,	"recover" },
71	{ 0,			NULL }
72};
73
74/**
75 * simple_getbool -
76 *
77 * Copied from old ntfs driver (which copied from vfat driver).
78 */
79static int simple_getbool(char *s, bool *setval)
80{
81	if (s) {
82		if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true"))
83			*setval = true;
84		else if (!strcmp(s, "0") || !strcmp(s, "no") ||
85							!strcmp(s, "false"))
86			*setval = false;
87		else
88			return 0;
89	} else
90		*setval = true;
91	return 1;
92}
93
94/**
95 * parse_options - parse the (re)mount options
96 * @vol:	ntfs volume
97 * @opt:	string containing the (re)mount options
98 *
99 * Parse the recognized options in @opt for the ntfs volume described by @vol.
100 */
101static bool parse_options(ntfs_volume *vol, char *opt)
102{
103	char *p, *v, *ov;
104	static char *utf8 = "utf8";
105	int errors = 0, sloppy = 0;
106	kuid_t uid = INVALID_UID;
107	kgid_t gid = INVALID_GID;
108	umode_t fmask = (umode_t)-1, dmask = (umode_t)-1;
109	int mft_zone_multiplier = -1, on_errors = -1;
110	int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1;
111	struct nls_table *nls_map = NULL, *old_nls;
112
113	/* I am lazy... (-8 */
114#define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value)	\
115	if (!strcmp(p, option)) {					\
116		if (!v || !*v)						\
117			variable = default_value;			\
118		else {							\
119			variable = simple_strtoul(ov = v, &v, 0);	\
120			if (*v)						\
121				goto needs_val;				\
122		}							\
123	}
124#define NTFS_GETOPT(option, variable)					\
125	if (!strcmp(p, option)) {					\
126		if (!v || !*v)						\
127			goto needs_arg;					\
128		variable = simple_strtoul(ov = v, &v, 0);		\
129		if (*v)							\
130			goto needs_val;					\
131	}
132#define NTFS_GETOPT_UID(option, variable)				\
133	if (!strcmp(p, option)) {					\
134		uid_t uid_value;					\
135		if (!v || !*v)						\
136			goto needs_arg;					\
137		uid_value = simple_strtoul(ov = v, &v, 0);		\
138		if (*v)							\
139			goto needs_val;					\
140		variable = make_kuid(current_user_ns(), uid_value);	\
141		if (!uid_valid(variable))				\
142			goto needs_val;					\
143	}
144#define NTFS_GETOPT_GID(option, variable)				\
145	if (!strcmp(p, option)) {					\
146		gid_t gid_value;					\
147		if (!v || !*v)						\
148			goto needs_arg;					\
149		gid_value = simple_strtoul(ov = v, &v, 0);		\
150		if (*v)							\
151			goto needs_val;					\
152		variable = make_kgid(current_user_ns(), gid_value);	\
153		if (!gid_valid(variable))				\
154			goto needs_val;					\
155	}
156#define NTFS_GETOPT_OCTAL(option, variable)				\
157	if (!strcmp(p, option)) {					\
158		if (!v || !*v)						\
159			goto needs_arg;					\
160		variable = simple_strtoul(ov = v, &v, 8);		\
161		if (*v)							\
162			goto needs_val;					\
163	}
164#define NTFS_GETOPT_BOOL(option, variable)				\
165	if (!strcmp(p, option)) {					\
166		bool val;						\
167		if (!simple_getbool(v, &val))				\
168			goto needs_bool;				\
169		variable = val;						\
170	}
171#define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array)		\
172	if (!strcmp(p, option)) {					\
173		int _i;							\
174		if (!v || !*v)						\
175			goto needs_arg;					\
176		ov = v;							\
177		if (variable == -1)					\
178			variable = 0;					\
179		for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
180			if (!strcmp(opt_array[_i].str, v)) {		\
181				variable |= opt_array[_i].val;		\
182				break;					\
183			}						\
184		if (!opt_array[_i].str || !*opt_array[_i].str)		\
185			goto needs_val;					\
186	}
187	if (!opt || !*opt)
188		goto no_mount_options;
189	ntfs_debug("Entering with mount options string: %s", opt);
190	while ((p = strsep(&opt, ","))) {
191		if ((v = strchr(p, '=')))
192			*v++ = 0;
193		NTFS_GETOPT_UID("uid", uid)
194		else NTFS_GETOPT_GID("gid", gid)
195		else NTFS_GETOPT_OCTAL("umask", fmask = dmask)
196		else NTFS_GETOPT_OCTAL("fmask", fmask)
197		else NTFS_GETOPT_OCTAL("dmask", dmask)
198		else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier)
199		else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true)
200		else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files)
201		else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive)
202		else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse)
203		else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors,
204				on_errors_arr)
205		else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes"))
206			ntfs_warning(vol->sb, "Ignoring obsolete option %s.",
207					p);
208		else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) {
209			if (!strcmp(p, "iocharset"))
210				ntfs_warning(vol->sb, "Option iocharset is "
211						"deprecated. Please use "
212						"option nls=<charsetname> in "
213						"the future.");
214			if (!v || !*v)
215				goto needs_arg;
216use_utf8:
217			old_nls = nls_map;
218			nls_map = load_nls(v);
219			if (!nls_map) {
220				if (!old_nls) {
221					ntfs_error(vol->sb, "NLS character set "
222							"%s not found.", v);
223					return false;
224				}
225				ntfs_error(vol->sb, "NLS character set %s not "
226						"found. Using previous one %s.",
227						v, old_nls->charset);
228				nls_map = old_nls;
229			} else /* nls_map */ {
230				unload_nls(old_nls);
231			}
232		} else if (!strcmp(p, "utf8")) {
233			bool val = false;
234			ntfs_warning(vol->sb, "Option utf8 is no longer "
235				   "supported, using option nls=utf8. Please "
236				   "use option nls=utf8 in the future and "
237				   "make sure utf8 is compiled either as a "
238				   "module or into the kernel.");
239			if (!v || !*v)
240				val = true;
241			else if (!simple_getbool(v, &val))
242				goto needs_bool;
243			if (val) {
244				v = utf8;
245				goto use_utf8;
246			}
247		} else {
248			ntfs_error(vol->sb, "Unrecognized mount option %s.", p);
249			if (errors < INT_MAX)
250				errors++;
251		}
252#undef NTFS_GETOPT_OPTIONS_ARRAY
253#undef NTFS_GETOPT_BOOL
254#undef NTFS_GETOPT
255#undef NTFS_GETOPT_WITH_DEFAULT
256	}
257no_mount_options:
258	if (errors && !sloppy)
259		return false;
260	if (sloppy)
261		ntfs_warning(vol->sb, "Sloppy option given. Ignoring "
262				"unrecognized mount option(s) and continuing.");
263	/* Keep this first! */
264	if (on_errors != -1) {
265		if (!on_errors) {
266			ntfs_error(vol->sb, "Invalid errors option argument "
267					"or bug in options parser.");
268			return false;
269		}
270	}
271	if (nls_map) {
272		if (vol->nls_map && vol->nls_map != nls_map) {
273			ntfs_error(vol->sb, "Cannot change NLS character set "
274					"on remount.");
275			return false;
276		} /* else (!vol->nls_map) */
277		ntfs_debug("Using NLS character set %s.", nls_map->charset);
278		vol->nls_map = nls_map;
279	} else /* (!nls_map) */ {
280		if (!vol->nls_map) {
281			vol->nls_map = load_nls_default();
282			if (!vol->nls_map) {
283				ntfs_error(vol->sb, "Failed to load default "
284						"NLS character set.");
285				return false;
286			}
287			ntfs_debug("Using default NLS character set (%s).",
288					vol->nls_map->charset);
289		}
290	}
291	if (mft_zone_multiplier != -1) {
292		if (vol->mft_zone_multiplier && vol->mft_zone_multiplier !=
293				mft_zone_multiplier) {
294			ntfs_error(vol->sb, "Cannot change mft_zone_multiplier "
295					"on remount.");
296			return false;
297		}
298		if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) {
299			ntfs_error(vol->sb, "Invalid mft_zone_multiplier. "
300					"Using default value, i.e. 1.");
301			mft_zone_multiplier = 1;
302		}
303		vol->mft_zone_multiplier = mft_zone_multiplier;
304	}
305	if (!vol->mft_zone_multiplier)
306		vol->mft_zone_multiplier = 1;
307	if (on_errors != -1)
308		vol->on_errors = on_errors;
309	if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER)
310		vol->on_errors |= ON_ERRORS_CONTINUE;
311	if (uid_valid(uid))
312		vol->uid = uid;
313	if (gid_valid(gid))
314		vol->gid = gid;
315	if (fmask != (umode_t)-1)
316		vol->fmask = fmask;
317	if (dmask != (umode_t)-1)
318		vol->dmask = dmask;
319	if (show_sys_files != -1) {
320		if (show_sys_files)
321			NVolSetShowSystemFiles(vol);
322		else
323			NVolClearShowSystemFiles(vol);
324	}
325	if (case_sensitive != -1) {
326		if (case_sensitive)
327			NVolSetCaseSensitive(vol);
328		else
329			NVolClearCaseSensitive(vol);
330	}
331	if (disable_sparse != -1) {
332		if (disable_sparse)
333			NVolClearSparseEnabled(vol);
334		else {
335			if (!NVolSparseEnabled(vol) &&
336					vol->major_ver && vol->major_ver < 3)
337				ntfs_warning(vol->sb, "Not enabling sparse "
338						"support due to NTFS volume "
339						"version %i.%i (need at least "
340						"version 3.0).", vol->major_ver,
341						vol->minor_ver);
342			else
343				NVolSetSparseEnabled(vol);
344		}
345	}
346	return true;
347needs_arg:
348	ntfs_error(vol->sb, "The %s option requires an argument.", p);
349	return false;
350needs_bool:
351	ntfs_error(vol->sb, "The %s option requires a boolean argument.", p);
352	return false;
353needs_val:
354	ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov);
355	return false;
356}
357
358#ifdef NTFS_RW
359
360/**
361 * ntfs_write_volume_flags - write new flags to the volume information flags
362 * @vol:	ntfs volume on which to modify the flags
363 * @flags:	new flags value for the volume information flags
364 *
365 * Internal function.  You probably want to use ntfs_{set,clear}_volume_flags()
366 * instead (see below).
367 *
368 * Replace the volume information flags on the volume @vol with the value
369 * supplied in @flags.  Note, this overwrites the volume information flags, so
370 * make sure to combine the flags you want to modify with the old flags and use
371 * the result when calling ntfs_write_volume_flags().
372 *
373 * Return 0 on success and -errno on error.
374 */
375static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags)
376{
377	ntfs_inode *ni = NTFS_I(vol->vol_ino);
378	MFT_RECORD *m;
379	VOLUME_INFORMATION *vi;
380	ntfs_attr_search_ctx *ctx;
381	int err;
382
383	ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
384			le16_to_cpu(vol->vol_flags), le16_to_cpu(flags));
385	if (vol->vol_flags == flags)
386		goto done;
387	BUG_ON(!ni);
388	m = map_mft_record(ni);
389	if (IS_ERR(m)) {
390		err = PTR_ERR(m);
391		goto err_out;
392	}
393	ctx = ntfs_attr_get_search_ctx(ni, m);
394	if (!ctx) {
395		err = -ENOMEM;
396		goto put_unm_err_out;
397	}
398	err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
399			ctx);
400	if (err)
401		goto put_unm_err_out;
402	vi = (VOLUME_INFORMATION*)((u8*)ctx->attr +
403			le16_to_cpu(ctx->attr->data.resident.value_offset));
404	vol->vol_flags = vi->flags = flags;
405	flush_dcache_mft_record_page(ctx->ntfs_ino);
406	mark_mft_record_dirty(ctx->ntfs_ino);
407	ntfs_attr_put_search_ctx(ctx);
408	unmap_mft_record(ni);
409done:
410	ntfs_debug("Done.");
411	return 0;
412put_unm_err_out:
413	if (ctx)
414		ntfs_attr_put_search_ctx(ctx);
415	unmap_mft_record(ni);
416err_out:
417	ntfs_error(vol->sb, "Failed with error code %i.", -err);
418	return err;
419}
420
421/**
422 * ntfs_set_volume_flags - set bits in the volume information flags
423 * @vol:	ntfs volume on which to modify the flags
424 * @flags:	flags to set on the volume
425 *
426 * Set the bits in @flags in the volume information flags on the volume @vol.
427 *
428 * Return 0 on success and -errno on error.
429 */
430static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
431{
432	flags &= VOLUME_FLAGS_MASK;
433	return ntfs_write_volume_flags(vol, vol->vol_flags | flags);
434}
435
436/**
437 * ntfs_clear_volume_flags - clear bits in the volume information flags
438 * @vol:	ntfs volume on which to modify the flags
439 * @flags:	flags to clear on the volume
440 *
441 * Clear the bits in @flags in the volume information flags on the volume @vol.
442 *
443 * Return 0 on success and -errno on error.
444 */
445static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
446{
447	flags &= VOLUME_FLAGS_MASK;
448	flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags));
449	return ntfs_write_volume_flags(vol, flags);
450}
451
452#endif /* NTFS_RW */
453
454/**
455 * ntfs_remount - change the mount options of a mounted ntfs filesystem
456 * @sb:		superblock of mounted ntfs filesystem
457 * @flags:	remount flags
458 * @opt:	remount options string
459 *
460 * Change the mount options of an already mounted ntfs filesystem.
461 *
462 * NOTE:  The VFS sets the @sb->s_flags remount flags to @flags after
463 * ntfs_remount() returns successfully (i.e. returns 0).  Otherwise,
464 * @sb->s_flags are not changed.
465 */
466static int ntfs_remount(struct super_block *sb, int *flags, char *opt)
467{
468	ntfs_volume *vol = NTFS_SB(sb);
469
470	ntfs_debug("Entering with remount options string: %s", opt);
471
472	sync_filesystem(sb);
473
474#ifndef NTFS_RW
475	/* For read-only compiled driver, enforce read-only flag. */
476	*flags |= MS_RDONLY;
477#else /* NTFS_RW */
478	/*
479	 * For the read-write compiled driver, if we are remounting read-write,
480	 * make sure there are no volume errors and that no unsupported volume
481	 * flags are set.  Also, empty the logfile journal as it would become
482	 * stale as soon as something is written to the volume and mark the
483	 * volume dirty so that chkdsk is run if the volume is not umounted
484	 * cleanly.  Finally, mark the quotas out of date so Windows rescans
485	 * the volume on boot and updates them.
486	 *
487	 * When remounting read-only, mark the volume clean if no volume errors
488	 * have occurred.
489	 */
490	if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
491		static const char *es = ".  Cannot remount read-write.";
492
493		/* Remounting read-write. */
494		if (NVolErrors(vol)) {
495			ntfs_error(sb, "Volume has errors and is read-only%s",
496					es);
497			return -EROFS;
498		}
499		if (vol->vol_flags & VOLUME_IS_DIRTY) {
500			ntfs_error(sb, "Volume is dirty and read-only%s", es);
501			return -EROFS;
502		}
503		if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
504			ntfs_error(sb, "Volume has been modified by chkdsk "
505					"and is read-only%s", es);
506			return -EROFS;
507		}
508		if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
509			ntfs_error(sb, "Volume has unsupported flags set "
510					"(0x%x) and is read-only%s",
511					(unsigned)le16_to_cpu(vol->vol_flags),
512					es);
513			return -EROFS;
514		}
515		if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
516			ntfs_error(sb, "Failed to set dirty bit in volume "
517					"information flags%s", es);
518			return -EROFS;
519		}
520#if 0
521		// TODO: Enable this code once we start modifying anything that
522		//	 is different between NTFS 1.2 and 3.x...
523		/* Set NT4 compatibility flag on newer NTFS version volumes. */
524		if ((vol->major_ver > 1)) {
525			if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
526				ntfs_error(sb, "Failed to set NT4 "
527						"compatibility flag%s", es);
528				NVolSetErrors(vol);
529				return -EROFS;
530			}
531		}
532#endif
533		if (!ntfs_empty_logfile(vol->logfile_ino)) {
534			ntfs_error(sb, "Failed to empty journal $LogFile%s",
535					es);
536			NVolSetErrors(vol);
537			return -EROFS;
538		}
539		if (!ntfs_mark_quotas_out_of_date(vol)) {
540			ntfs_error(sb, "Failed to mark quotas out of date%s",
541					es);
542			NVolSetErrors(vol);
543			return -EROFS;
544		}
545		if (!ntfs_stamp_usnjrnl(vol)) {
546			ntfs_error(sb, "Failed to stamp transaction log "
547					"($UsnJrnl)%s", es);
548			NVolSetErrors(vol);
549			return -EROFS;
550		}
551	} else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
552		/* Remounting read-only. */
553		if (!NVolErrors(vol)) {
554			if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
555				ntfs_warning(sb, "Failed to clear dirty bit "
556						"in volume information "
557						"flags.  Run chkdsk.");
558		}
559	}
560#endif /* NTFS_RW */
561
562	// TODO: Deal with *flags.
563
564	if (!parse_options(vol, opt))
565		return -EINVAL;
566
567	ntfs_debug("Done.");
568	return 0;
569}
570
571/**
572 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
573 * @sb:		Super block of the device to which @b belongs.
574 * @b:		Boot sector of device @sb to check.
575 * @silent:	If 'true', all output will be silenced.
576 *
577 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
578 * sector. Returns 'true' if it is valid and 'false' if not.
579 *
580 * @sb is only needed for warning/error output, i.e. it can be NULL when silent
581 * is 'true'.
582 */
583static bool is_boot_sector_ntfs(const struct super_block *sb,
584		const NTFS_BOOT_SECTOR *b, const bool silent)
585{
586	/*
587	 * Check that checksum == sum of u32 values from b to the checksum
588	 * field.  If checksum is zero, no checking is done.  We will work when
589	 * the checksum test fails, since some utilities update the boot sector
590	 * ignoring the checksum which leaves the checksum out-of-date.  We
591	 * report a warning if this is the case.
592	 */
593	if ((void*)b < (void*)&b->checksum && b->checksum && !silent) {
594		le32 *u;
595		u32 i;
596
597		for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u)
598			i += le32_to_cpup(u);
599		if (le32_to_cpu(b->checksum) != i)
600			ntfs_warning(sb, "Invalid boot sector checksum.");
601	}
602	/* Check OEMidentifier is "NTFS    " */
603	if (b->oem_id != magicNTFS)
604		goto not_ntfs;
605	/* Check bytes per sector value is between 256 and 4096. */
606	if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 ||
607			le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000)
608		goto not_ntfs;
609	/* Check sectors per cluster value is valid. */
610	switch (b->bpb.sectors_per_cluster) {
611	case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
612		break;
613	default:
614		goto not_ntfs;
615	}
616	/* Check the cluster size is not above the maximum (64kiB). */
617	if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) *
618			b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE)
619		goto not_ntfs;
620	/* Check reserved/unused fields are really zero. */
621	if (le16_to_cpu(b->bpb.reserved_sectors) ||
622			le16_to_cpu(b->bpb.root_entries) ||
623			le16_to_cpu(b->bpb.sectors) ||
624			le16_to_cpu(b->bpb.sectors_per_fat) ||
625			le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats)
626		goto not_ntfs;
627	/* Check clusters per file mft record value is valid. */
628	if ((u8)b->clusters_per_mft_record < 0xe1 ||
629			(u8)b->clusters_per_mft_record > 0xf7)
630		switch (b->clusters_per_mft_record) {
631		case 1: case 2: case 4: case 8: case 16: case 32: case 64:
632			break;
633		default:
634			goto not_ntfs;
635		}
636	/* Check clusters per index block value is valid. */
637	if ((u8)b->clusters_per_index_record < 0xe1 ||
638			(u8)b->clusters_per_index_record > 0xf7)
639		switch (b->clusters_per_index_record) {
640		case 1: case 2: case 4: case 8: case 16: case 32: case 64:
641			break;
642		default:
643			goto not_ntfs;
644		}
645	/*
646	 * Check for valid end of sector marker. We will work without it, but
647	 * many BIOSes will refuse to boot from a bootsector if the magic is
648	 * incorrect, so we emit a warning.
649	 */
650	if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55))
651		ntfs_warning(sb, "Invalid end of sector marker.");
652	return true;
653not_ntfs:
654	return false;
655}
656
657/**
658 * read_ntfs_boot_sector - read the NTFS boot sector of a device
659 * @sb:		super block of device to read the boot sector from
660 * @silent:	if true, suppress all output
661 *
662 * Reads the boot sector from the device and validates it. If that fails, tries
663 * to read the backup boot sector, first from the end of the device a-la NT4 and
664 * later and then from the middle of the device a-la NT3.51 and before.
665 *
666 * If a valid boot sector is found but it is not the primary boot sector, we
667 * repair the primary boot sector silently (unless the device is read-only or
668 * the primary boot sector is not accessible).
669 *
670 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
671 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
672 * to their respective values.
673 *
674 * Return the unlocked buffer head containing the boot sector or NULL on error.
675 */
676static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb,
677		const int silent)
678{
679	const char *read_err_str = "Unable to read %s boot sector.";
680	struct buffer_head *bh_primary, *bh_backup;
681	sector_t nr_blocks = NTFS_SB(sb)->nr_blocks;
682
683	/* Try to read primary boot sector. */
684	if ((bh_primary = sb_bread(sb, 0))) {
685		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
686				bh_primary->b_data, silent))
687			return bh_primary;
688		if (!silent)
689			ntfs_error(sb, "Primary boot sector is invalid.");
690	} else if (!silent)
691		ntfs_error(sb, read_err_str, "primary");
692	if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) {
693		if (bh_primary)
694			brelse(bh_primary);
695		if (!silent)
696			ntfs_error(sb, "Mount option errors=recover not used. "
697					"Aborting without trying to recover.");
698		return NULL;
699	}
700	/* Try to read NT4+ backup boot sector. */
701	if ((bh_backup = sb_bread(sb, nr_blocks - 1))) {
702		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
703				bh_backup->b_data, silent))
704			goto hotfix_primary_boot_sector;
705		brelse(bh_backup);
706	} else if (!silent)
707		ntfs_error(sb, read_err_str, "backup");
708	/* Try to read NT3.51- backup boot sector. */
709	if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) {
710		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
711				bh_backup->b_data, silent))
712			goto hotfix_primary_boot_sector;
713		if (!silent)
714			ntfs_error(sb, "Could not find a valid backup boot "
715					"sector.");
716		brelse(bh_backup);
717	} else if (!silent)
718		ntfs_error(sb, read_err_str, "backup");
719	/* We failed. Cleanup and return. */
720	if (bh_primary)
721		brelse(bh_primary);
722	return NULL;
723hotfix_primary_boot_sector:
724	if (bh_primary) {
725		/*
726		 * If we managed to read sector zero and the volume is not
727		 * read-only, copy the found, valid backup boot sector to the
728		 * primary boot sector.  Note we only copy the actual boot
729		 * sector structure, not the actual whole device sector as that
730		 * may be bigger and would potentially damage the $Boot system
731		 * file (FIXME: Would be nice to know if the backup boot sector
732		 * on a large sector device contains the whole boot loader or
733		 * just the first 512 bytes).
734		 */
735		if (!(sb->s_flags & MS_RDONLY)) {
736			ntfs_warning(sb, "Hot-fix: Recovering invalid primary "
737					"boot sector from backup copy.");
738			memcpy(bh_primary->b_data, bh_backup->b_data,
739					NTFS_BLOCK_SIZE);
740			mark_buffer_dirty(bh_primary);
741			sync_dirty_buffer(bh_primary);
742			if (buffer_uptodate(bh_primary)) {
743				brelse(bh_backup);
744				return bh_primary;
745			}
746			ntfs_error(sb, "Hot-fix: Device write error while "
747					"recovering primary boot sector.");
748		} else {
749			ntfs_warning(sb, "Hot-fix: Recovery of primary boot "
750					"sector failed: Read-only mount.");
751		}
752		brelse(bh_primary);
753	}
754	ntfs_warning(sb, "Using backup boot sector.");
755	return bh_backup;
756}
757
758/**
759 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
760 * @vol:	volume structure to initialise with data from boot sector
761 * @b:		boot sector to parse
762 *
763 * Parse the ntfs boot sector @b and store all imporant information therein in
764 * the ntfs super block @vol.  Return 'true' on success and 'false' on error.
765 */
766static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b)
767{
768	unsigned int sectors_per_cluster_bits, nr_hidden_sects;
769	int clusters_per_mft_record, clusters_per_index_record;
770	s64 ll;
771
772	vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector);
773	vol->sector_size_bits = ffs(vol->sector_size) - 1;
774	ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size,
775			vol->sector_size);
776	ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits,
777			vol->sector_size_bits);
778	if (vol->sector_size < vol->sb->s_blocksize) {
779		ntfs_error(vol->sb, "Sector size (%i) is smaller than the "
780				"device block size (%lu).  This is not "
781				"supported.  Sorry.", vol->sector_size,
782				vol->sb->s_blocksize);
783		return false;
784	}
785	ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster);
786	sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1;
787	ntfs_debug("sectors_per_cluster_bits = 0x%x",
788			sectors_per_cluster_bits);
789	nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors);
790	ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects);
791	vol->cluster_size = vol->sector_size << sectors_per_cluster_bits;
792	vol->cluster_size_mask = vol->cluster_size - 1;
793	vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
794	ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size,
795			vol->cluster_size);
796	ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask);
797	ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits);
798	if (vol->cluster_size < vol->sector_size) {
799		ntfs_error(vol->sb, "Cluster size (%i) is smaller than the "
800				"sector size (%i).  This is not supported.  "
801				"Sorry.", vol->cluster_size, vol->sector_size);
802		return false;
803	}
804	clusters_per_mft_record = b->clusters_per_mft_record;
805	ntfs_debug("clusters_per_mft_record = %i (0x%x)",
806			clusters_per_mft_record, clusters_per_mft_record);
807	if (clusters_per_mft_record > 0)
808		vol->mft_record_size = vol->cluster_size <<
809				(ffs(clusters_per_mft_record) - 1);
810	else
811		/*
812		 * When mft_record_size < cluster_size, clusters_per_mft_record
813		 * = -log2(mft_record_size) bytes. mft_record_size normaly is
814		 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
815		 */
816		vol->mft_record_size = 1 << -clusters_per_mft_record;
817	vol->mft_record_size_mask = vol->mft_record_size - 1;
818	vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
819	ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size,
820			vol->mft_record_size);
821	ntfs_debug("vol->mft_record_size_mask = 0x%x",
822			vol->mft_record_size_mask);
823	ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
824			vol->mft_record_size_bits, vol->mft_record_size_bits);
825	/*
826	 * We cannot support mft record sizes above the PAGE_CACHE_SIZE since
827	 * we store $MFT/$DATA, the table of mft records in the page cache.
828	 */
829	if (vol->mft_record_size > PAGE_CACHE_SIZE) {
830		ntfs_error(vol->sb, "Mft record size (%i) exceeds the "
831				"PAGE_CACHE_SIZE on your system (%lu).  "
832				"This is not supported.  Sorry.",
833				vol->mft_record_size, PAGE_CACHE_SIZE);
834		return false;
835	}
836	/* We cannot support mft record sizes below the sector size. */
837	if (vol->mft_record_size < vol->sector_size) {
838		ntfs_error(vol->sb, "Mft record size (%i) is smaller than the "
839				"sector size (%i).  This is not supported.  "
840				"Sorry.", vol->mft_record_size,
841				vol->sector_size);
842		return false;
843	}
844	clusters_per_index_record = b->clusters_per_index_record;
845	ntfs_debug("clusters_per_index_record = %i (0x%x)",
846			clusters_per_index_record, clusters_per_index_record);
847	if (clusters_per_index_record > 0)
848		vol->index_record_size = vol->cluster_size <<
849				(ffs(clusters_per_index_record) - 1);
850	else
851		/*
852		 * When index_record_size < cluster_size,
853		 * clusters_per_index_record = -log2(index_record_size) bytes.
854		 * index_record_size normaly equals 4096 bytes, which is
855		 * encoded as 0xF4 (-12 in decimal).
856		 */
857		vol->index_record_size = 1 << -clusters_per_index_record;
858	vol->index_record_size_mask = vol->index_record_size - 1;
859	vol->index_record_size_bits = ffs(vol->index_record_size) - 1;
860	ntfs_debug("vol->index_record_size = %i (0x%x)",
861			vol->index_record_size, vol->index_record_size);
862	ntfs_debug("vol->index_record_size_mask = 0x%x",
863			vol->index_record_size_mask);
864	ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
865			vol->index_record_size_bits,
866			vol->index_record_size_bits);
867	/* We cannot support index record sizes below the sector size. */
868	if (vol->index_record_size < vol->sector_size) {
869		ntfs_error(vol->sb, "Index record size (%i) is smaller than "
870				"the sector size (%i).  This is not "
871				"supported.  Sorry.", vol->index_record_size,
872				vol->sector_size);
873		return false;
874	}
875	/*
876	 * Get the size of the volume in clusters and check for 64-bit-ness.
877	 * Windows currently only uses 32 bits to save the clusters so we do
878	 * the same as it is much faster on 32-bit CPUs.
879	 */
880	ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits;
881	if ((u64)ll >= 1ULL << 32) {
882		ntfs_error(vol->sb, "Cannot handle 64-bit clusters.  Sorry.");
883		return false;
884	}
885	vol->nr_clusters = ll;
886	ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters);
887	/*
888	 * On an architecture where unsigned long is 32-bits, we restrict the
889	 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
890	 * will hopefully optimize the whole check away.
891	 */
892	if (sizeof(unsigned long) < 8) {
893		if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) {
894			ntfs_error(vol->sb, "Volume size (%lluTiB) is too "
895					"large for this architecture.  "
896					"Maximum supported is 2TiB.  Sorry.",
897					(unsigned long long)ll >> (40 -
898					vol->cluster_size_bits));
899			return false;
900		}
901	}
902	ll = sle64_to_cpu(b->mft_lcn);
903	if (ll >= vol->nr_clusters) {
904		ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of "
905				"volume.  Weird.", (unsigned long long)ll,
906				(unsigned long long)ll);
907		return false;
908	}
909	vol->mft_lcn = ll;
910	ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn);
911	ll = sle64_to_cpu(b->mftmirr_lcn);
912	if (ll >= vol->nr_clusters) {
913		ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
914				"of volume.  Weird.", (unsigned long long)ll,
915				(unsigned long long)ll);
916		return false;
917	}
918	vol->mftmirr_lcn = ll;
919	ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn);
920#ifdef NTFS_RW
921	/*
922	 * Work out the size of the mft mirror in number of mft records. If the
923	 * cluster size is less than or equal to the size taken by four mft
924	 * records, the mft mirror stores the first four mft records. If the
925	 * cluster size is bigger than the size taken by four mft records, the
926	 * mft mirror contains as many mft records as will fit into one
927	 * cluster.
928	 */
929	if (vol->cluster_size <= (4 << vol->mft_record_size_bits))
930		vol->mftmirr_size = 4;
931	else
932		vol->mftmirr_size = vol->cluster_size >>
933				vol->mft_record_size_bits;
934	ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size);
935#endif /* NTFS_RW */
936	vol->serial_no = le64_to_cpu(b->volume_serial_number);
937	ntfs_debug("vol->serial_no = 0x%llx",
938			(unsigned long long)vol->serial_no);
939	return true;
940}
941
942/**
943 * ntfs_setup_allocators - initialize the cluster and mft allocators
944 * @vol:	volume structure for which to setup the allocators
945 *
946 * Setup the cluster (lcn) and mft allocators to the starting values.
947 */
948static void ntfs_setup_allocators(ntfs_volume *vol)
949{
950#ifdef NTFS_RW
951	LCN mft_zone_size, mft_lcn;
952#endif /* NTFS_RW */
953
954	ntfs_debug("vol->mft_zone_multiplier = 0x%x",
955			vol->mft_zone_multiplier);
956#ifdef NTFS_RW
957	/* Determine the size of the MFT zone. */
958	mft_zone_size = vol->nr_clusters;
959	switch (vol->mft_zone_multiplier) {  /* % of volume size in clusters */
960	case 4:
961		mft_zone_size >>= 1;			/* 50%   */
962		break;
963	case 3:
964		mft_zone_size = (mft_zone_size +
965				(mft_zone_size >> 1)) >> 2;	/* 37.5% */
966		break;
967	case 2:
968		mft_zone_size >>= 2;			/* 25%   */
969		break;
970	/* case 1: */
971	default:
972		mft_zone_size >>= 3;			/* 12.5% */
973		break;
974	}
975	/* Setup the mft zone. */
976	vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
977	ntfs_debug("vol->mft_zone_pos = 0x%llx",
978			(unsigned long long)vol->mft_zone_pos);
979	/*
980	 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
981	 * source) and if the actual mft_lcn is in the expected place or even
982	 * further to the front of the volume, extend the mft_zone to cover the
983	 * beginning of the volume as well.  This is in order to protect the
984	 * area reserved for the mft bitmap as well within the mft_zone itself.
985	 * On non-standard volumes we do not protect it as the overhead would
986	 * be higher than the speed increase we would get by doing it.
987	 */
988	mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
989	if (mft_lcn * vol->cluster_size < 16 * 1024)
990		mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
991				vol->cluster_size;
992	if (vol->mft_zone_start <= mft_lcn)
993		vol->mft_zone_start = 0;
994	ntfs_debug("vol->mft_zone_start = 0x%llx",
995			(unsigned long long)vol->mft_zone_start);
996	/*
997	 * Need to cap the mft zone on non-standard volumes so that it does
998	 * not point outside the boundaries of the volume.  We do this by
999	 * halving the zone size until we are inside the volume.
1000	 */
1001	vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
1002	while (vol->mft_zone_end >= vol->nr_clusters) {
1003		mft_zone_size >>= 1;
1004		vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
1005	}
1006	ntfs_debug("vol->mft_zone_end = 0x%llx",
1007			(unsigned long long)vol->mft_zone_end);
1008	/*
1009	 * Set the current position within each data zone to the start of the
1010	 * respective zone.
1011	 */
1012	vol->data1_zone_pos = vol->mft_zone_end;
1013	ntfs_debug("vol->data1_zone_pos = 0x%llx",
1014			(unsigned long long)vol->data1_zone_pos);
1015	vol->data2_zone_pos = 0;
1016	ntfs_debug("vol->data2_zone_pos = 0x%llx",
1017			(unsigned long long)vol->data2_zone_pos);
1018
1019	/* Set the mft data allocation position to mft record 24. */
1020	vol->mft_data_pos = 24;
1021	ntfs_debug("vol->mft_data_pos = 0x%llx",
1022			(unsigned long long)vol->mft_data_pos);
1023#endif /* NTFS_RW */
1024}
1025
1026#ifdef NTFS_RW
1027
1028/**
1029 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
1030 * @vol:	ntfs super block describing device whose mft mirror to load
1031 *
1032 * Return 'true' on success or 'false' on error.
1033 */
1034static bool load_and_init_mft_mirror(ntfs_volume *vol)
1035{
1036	struct inode *tmp_ino;
1037	ntfs_inode *tmp_ni;
1038
1039	ntfs_debug("Entering.");
1040	/* Get mft mirror inode. */
1041	tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr);
1042	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1043		if (!IS_ERR(tmp_ino))
1044			iput(tmp_ino);
1045		/* Caller will display error message. */
1046		return false;
1047	}
1048	/*
1049	 * Re-initialize some specifics about $MFTMirr's inode as
1050	 * ntfs_read_inode() will have set up the default ones.
1051	 */
1052	/* Set uid and gid to root. */
1053	tmp_ino->i_uid = GLOBAL_ROOT_UID;
1054	tmp_ino->i_gid = GLOBAL_ROOT_GID;
1055	/* Regular file.  No access for anyone. */
1056	tmp_ino->i_mode = S_IFREG;
1057	/* No VFS initiated operations allowed for $MFTMirr. */
1058	tmp_ino->i_op = &ntfs_empty_inode_ops;
1059	tmp_ino->i_fop = &ntfs_empty_file_ops;
1060	/* Put in our special address space operations. */
1061	tmp_ino->i_mapping->a_ops = &ntfs_mst_aops;
1062	tmp_ni = NTFS_I(tmp_ino);
1063	/* The $MFTMirr, like the $MFT is multi sector transfer protected. */
1064	NInoSetMstProtected(tmp_ni);
1065	NInoSetSparseDisabled(tmp_ni);
1066	/*
1067	 * Set up our little cheat allowing us to reuse the async read io
1068	 * completion handler for directories.
1069	 */
1070	tmp_ni->itype.index.block_size = vol->mft_record_size;
1071	tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1072	vol->mftmirr_ino = tmp_ino;
1073	ntfs_debug("Done.");
1074	return true;
1075}
1076
1077/**
1078 * check_mft_mirror - compare contents of the mft mirror with the mft
1079 * @vol:	ntfs super block describing device whose mft mirror to check
1080 *
1081 * Return 'true' on success or 'false' on error.
1082 *
1083 * Note, this function also results in the mft mirror runlist being completely
1084 * mapped into memory.  The mft mirror write code requires this and will BUG()
1085 * should it find an unmapped runlist element.
1086 */
1087static bool check_mft_mirror(ntfs_volume *vol)
1088{
1089	struct super_block *sb = vol->sb;
1090	ntfs_inode *mirr_ni;
1091	struct page *mft_page, *mirr_page;
1092	u8 *kmft, *kmirr;
1093	runlist_element *rl, rl2[2];
1094	pgoff_t index;
1095	int mrecs_per_page, i;
1096
1097	ntfs_debug("Entering.");
1098	/* Compare contents of $MFT and $MFTMirr. */
1099	mrecs_per_page = PAGE_CACHE_SIZE / vol->mft_record_size;
1100	BUG_ON(!mrecs_per_page);
1101	BUG_ON(!vol->mftmirr_size);
1102	mft_page = mirr_page = NULL;
1103	kmft = kmirr = NULL;
1104	index = i = 0;
1105	do {
1106		u32 bytes;
1107
1108		/* Switch pages if necessary. */
1109		if (!(i % mrecs_per_page)) {
1110			if (index) {
1111				ntfs_unmap_page(mft_page);
1112				ntfs_unmap_page(mirr_page);
1113			}
1114			/* Get the $MFT page. */
1115			mft_page = ntfs_map_page(vol->mft_ino->i_mapping,
1116					index);
1117			if (IS_ERR(mft_page)) {
1118				ntfs_error(sb, "Failed to read $MFT.");
1119				return false;
1120			}
1121			kmft = page_address(mft_page);
1122			/* Get the $MFTMirr page. */
1123			mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping,
1124					index);
1125			if (IS_ERR(mirr_page)) {
1126				ntfs_error(sb, "Failed to read $MFTMirr.");
1127				goto mft_unmap_out;
1128			}
1129			kmirr = page_address(mirr_page);
1130			++index;
1131		}
1132		/* Do not check the record if it is not in use. */
1133		if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) {
1134			/* Make sure the record is ok. */
1135			if (ntfs_is_baad_recordp((le32*)kmft)) {
1136				ntfs_error(sb, "Incomplete multi sector "
1137						"transfer detected in mft "
1138						"record %i.", i);
1139mm_unmap_out:
1140				ntfs_unmap_page(mirr_page);
1141mft_unmap_out:
1142				ntfs_unmap_page(mft_page);
1143				return false;
1144			}
1145		}
1146		/* Do not check the mirror record if it is not in use. */
1147		if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) {
1148			if (ntfs_is_baad_recordp((le32*)kmirr)) {
1149				ntfs_error(sb, "Incomplete multi sector "
1150						"transfer detected in mft "
1151						"mirror record %i.", i);
1152				goto mm_unmap_out;
1153			}
1154		}
1155		/* Get the amount of data in the current record. */
1156		bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use);
1157		if (bytes < sizeof(MFT_RECORD_OLD) ||
1158				bytes > vol->mft_record_size ||
1159				ntfs_is_baad_recordp((le32*)kmft)) {
1160			bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use);
1161			if (bytes < sizeof(MFT_RECORD_OLD) ||
1162					bytes > vol->mft_record_size ||
1163					ntfs_is_baad_recordp((le32*)kmirr))
1164				bytes = vol->mft_record_size;
1165		}
1166		/* Compare the two records. */
1167		if (memcmp(kmft, kmirr, bytes)) {
1168			ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not "
1169					"match.  Run ntfsfix or chkdsk.", i);
1170			goto mm_unmap_out;
1171		}
1172		kmft += vol->mft_record_size;
1173		kmirr += vol->mft_record_size;
1174	} while (++i < vol->mftmirr_size);
1175	/* Release the last pages. */
1176	ntfs_unmap_page(mft_page);
1177	ntfs_unmap_page(mirr_page);
1178
1179	/* Construct the mft mirror runlist by hand. */
1180	rl2[0].vcn = 0;
1181	rl2[0].lcn = vol->mftmirr_lcn;
1182	rl2[0].length = (vol->mftmirr_size * vol->mft_record_size +
1183			vol->cluster_size - 1) / vol->cluster_size;
1184	rl2[1].vcn = rl2[0].length;
1185	rl2[1].lcn = LCN_ENOENT;
1186	rl2[1].length = 0;
1187	/*
1188	 * Because we have just read all of the mft mirror, we know we have
1189	 * mapped the full runlist for it.
1190	 */
1191	mirr_ni = NTFS_I(vol->mftmirr_ino);
1192	down_read(&mirr_ni->runlist.lock);
1193	rl = mirr_ni->runlist.rl;
1194	/* Compare the two runlists.  They must be identical. */
1195	i = 0;
1196	do {
1197		if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn ||
1198				rl2[i].length != rl[i].length) {
1199			ntfs_error(sb, "$MFTMirr location mismatch.  "
1200					"Run chkdsk.");
1201			up_read(&mirr_ni->runlist.lock);
1202			return false;
1203		}
1204	} while (rl2[i++].length);
1205	up_read(&mirr_ni->runlist.lock);
1206	ntfs_debug("Done.");
1207	return true;
1208}
1209
1210/**
1211 * load_and_check_logfile - load and check the logfile inode for a volume
1212 * @vol:	ntfs super block describing device whose logfile to load
1213 *
1214 * Return 'true' on success or 'false' on error.
1215 */
1216static bool load_and_check_logfile(ntfs_volume *vol,
1217		RESTART_PAGE_HEADER **rp)
1218{
1219	struct inode *tmp_ino;
1220
1221	ntfs_debug("Entering.");
1222	tmp_ino = ntfs_iget(vol->sb, FILE_LogFile);
1223	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1224		if (!IS_ERR(tmp_ino))
1225			iput(tmp_ino);
1226		/* Caller will display error message. */
1227		return false;
1228	}
1229	if (!ntfs_check_logfile(tmp_ino, rp)) {
1230		iput(tmp_ino);
1231		/* ntfs_check_logfile() will have displayed error output. */
1232		return false;
1233	}
1234	NInoSetSparseDisabled(NTFS_I(tmp_ino));
1235	vol->logfile_ino = tmp_ino;
1236	ntfs_debug("Done.");
1237	return true;
1238}
1239
1240#define NTFS_HIBERFIL_HEADER_SIZE	4096
1241
1242/**
1243 * check_windows_hibernation_status - check if Windows is suspended on a volume
1244 * @vol:	ntfs super block of device to check
1245 *
1246 * Check if Windows is hibernated on the ntfs volume @vol.  This is done by
1247 * looking for the file hiberfil.sys in the root directory of the volume.  If
1248 * the file is not present Windows is definitely not suspended.
1249 *
1250 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
1251 * definitely suspended (this volume is not the system volume).  Caveat:  on a
1252 * system with many volumes it is possible that the < 4kiB check is bogus but
1253 * for now this should do fine.
1254 *
1255 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
1256 * hiberfil header (which is the first 4kiB).  If this begins with "hibr",
1257 * Windows is definitely suspended.  If it is completely full of zeroes,
1258 * Windows is definitely not hibernated.  Any other case is treated as if
1259 * Windows is suspended.  This caters for the above mentioned caveat of a
1260 * system with many volumes where no "hibr" magic would be present and there is
1261 * no zero header.
1262 *
1263 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
1264 * hibernated on the volume, and -errno on error.
1265 */
1266static int check_windows_hibernation_status(ntfs_volume *vol)
1267{
1268	MFT_REF mref;
1269	struct inode *vi;
1270	struct page *page;
1271	u32 *kaddr, *kend;
1272	ntfs_name *name = NULL;
1273	int ret = 1;
1274	static const ntfschar hiberfil[13] = { cpu_to_le16('h'),
1275			cpu_to_le16('i'), cpu_to_le16('b'),
1276			cpu_to_le16('e'), cpu_to_le16('r'),
1277			cpu_to_le16('f'), cpu_to_le16('i'),
1278			cpu_to_le16('l'), cpu_to_le16('.'),
1279			cpu_to_le16('s'), cpu_to_le16('y'),
1280			cpu_to_le16('s'), 0 };
1281
1282	ntfs_debug("Entering.");
1283	/*
1284	 * Find the inode number for the hibernation file by looking up the
1285	 * filename hiberfil.sys in the root directory.
1286	 */
1287	mutex_lock(&vol->root_ino->i_mutex);
1288	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12,
1289			&name);
1290	mutex_unlock(&vol->root_ino->i_mutex);
1291	if (IS_ERR_MREF(mref)) {
1292		ret = MREF_ERR(mref);
1293		/* If the file does not exist, Windows is not hibernated. */
1294		if (ret == -ENOENT) {
1295			ntfs_debug("hiberfil.sys not present.  Windows is not "
1296					"hibernated on the volume.");
1297			return 0;
1298		}
1299		/* A real error occurred. */
1300		ntfs_error(vol->sb, "Failed to find inode number for "
1301				"hiberfil.sys.");
1302		return ret;
1303	}
1304	/* We do not care for the type of match that was found. */
1305	kfree(name);
1306	/* Get the inode. */
1307	vi = ntfs_iget(vol->sb, MREF(mref));
1308	if (IS_ERR(vi) || is_bad_inode(vi)) {
1309		if (!IS_ERR(vi))
1310			iput(vi);
1311		ntfs_error(vol->sb, "Failed to load hiberfil.sys.");
1312		return IS_ERR(vi) ? PTR_ERR(vi) : -EIO;
1313	}
1314	if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) {
1315		ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx).  "
1316				"Windows is hibernated on the volume.  This "
1317				"is not the system volume.", i_size_read(vi));
1318		goto iput_out;
1319	}
1320	page = ntfs_map_page(vi->i_mapping, 0);
1321	if (IS_ERR(page)) {
1322		ntfs_error(vol->sb, "Failed to read from hiberfil.sys.");
1323		ret = PTR_ERR(page);
1324		goto iput_out;
1325	}
1326	kaddr = (u32*)page_address(page);
1327	if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) {
1328		ntfs_debug("Magic \"hibr\" found in hiberfil.sys.  Windows is "
1329				"hibernated on the volume.  This is the "
1330				"system volume.");
1331		goto unm_iput_out;
1332	}
1333	kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr);
1334	do {
1335		if (unlikely(*kaddr)) {
1336			ntfs_debug("hiberfil.sys is larger than 4kiB "
1337					"(0x%llx), does not contain the "
1338					"\"hibr\" magic, and does not have a "
1339					"zero header.  Windows is hibernated "
1340					"on the volume.  This is not the "
1341					"system volume.", i_size_read(vi));
1342			goto unm_iput_out;
1343		}
1344	} while (++kaddr < kend);
1345	ntfs_debug("hiberfil.sys contains a zero header.  Windows is not "
1346			"hibernated on the volume.  This is the system "
1347			"volume.");
1348	ret = 0;
1349unm_iput_out:
1350	ntfs_unmap_page(page);
1351iput_out:
1352	iput(vi);
1353	return ret;
1354}
1355
1356/**
1357 * load_and_init_quota - load and setup the quota file for a volume if present
1358 * @vol:	ntfs super block describing device whose quota file to load
1359 *
1360 * Return 'true' on success or 'false' on error.  If $Quota is not present, we
1361 * leave vol->quota_ino as NULL and return success.
1362 */
1363static bool load_and_init_quota(ntfs_volume *vol)
1364{
1365	MFT_REF mref;
1366	struct inode *tmp_ino;
1367	ntfs_name *name = NULL;
1368	static const ntfschar Quota[7] = { cpu_to_le16('$'),
1369			cpu_to_le16('Q'), cpu_to_le16('u'),
1370			cpu_to_le16('o'), cpu_to_le16('t'),
1371			cpu_to_le16('a'), 0 };
1372	static ntfschar Q[3] = { cpu_to_le16('$'),
1373			cpu_to_le16('Q'), 0 };
1374
1375	ntfs_debug("Entering.");
1376	/*
1377	 * Find the inode number for the quota file by looking up the filename
1378	 * $Quota in the extended system files directory $Extend.
1379	 */
1380	mutex_lock(&vol->extend_ino->i_mutex);
1381	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6,
1382			&name);
1383	mutex_unlock(&vol->extend_ino->i_mutex);
1384	if (IS_ERR_MREF(mref)) {
1385		/*
1386		 * If the file does not exist, quotas are disabled and have
1387		 * never been enabled on this volume, just return success.
1388		 */
1389		if (MREF_ERR(mref) == -ENOENT) {
1390			ntfs_debug("$Quota not present.  Volume does not have "
1391					"quotas enabled.");
1392			/*
1393			 * No need to try to set quotas out of date if they are
1394			 * not enabled.
1395			 */
1396			NVolSetQuotaOutOfDate(vol);
1397			return true;
1398		}
1399		/* A real error occurred. */
1400		ntfs_error(vol->sb, "Failed to find inode number for $Quota.");
1401		return false;
1402	}
1403	/* We do not care for the type of match that was found. */
1404	kfree(name);
1405	/* Get the inode. */
1406	tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1407	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1408		if (!IS_ERR(tmp_ino))
1409			iput(tmp_ino);
1410		ntfs_error(vol->sb, "Failed to load $Quota.");
1411		return false;
1412	}
1413	vol->quota_ino = tmp_ino;
1414	/* Get the $Q index allocation attribute. */
1415	tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2);
1416	if (IS_ERR(tmp_ino)) {
1417		ntfs_error(vol->sb, "Failed to load $Quota/$Q index.");
1418		return false;
1419	}
1420	vol->quota_q_ino = tmp_ino;
1421	ntfs_debug("Done.");
1422	return true;
1423}
1424
1425/**
1426 * load_and_init_usnjrnl - load and setup the transaction log if present
1427 * @vol:	ntfs super block describing device whose usnjrnl file to load
1428 *
1429 * Return 'true' on success or 'false' on error.
1430 *
1431 * If $UsnJrnl is not present or in the process of being disabled, we set
1432 * NVolUsnJrnlStamped() and return success.
1433 *
1434 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
1435 * i.e. transaction logging has only just been enabled or the journal has been
1436 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
1437 * and return success.
1438 */
1439static bool load_and_init_usnjrnl(ntfs_volume *vol)
1440{
1441	MFT_REF mref;
1442	struct inode *tmp_ino;
1443	ntfs_inode *tmp_ni;
1444	struct page *page;
1445	ntfs_name *name = NULL;
1446	USN_HEADER *uh;
1447	static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'),
1448			cpu_to_le16('U'), cpu_to_le16('s'),
1449			cpu_to_le16('n'), cpu_to_le16('J'),
1450			cpu_to_le16('r'), cpu_to_le16('n'),
1451			cpu_to_le16('l'), 0 };
1452	static ntfschar Max[5] = { cpu_to_le16('$'),
1453			cpu_to_le16('M'), cpu_to_le16('a'),
1454			cpu_to_le16('x'), 0 };
1455	static ntfschar J[3] = { cpu_to_le16('$'),
1456			cpu_to_le16('J'), 0 };
1457
1458	ntfs_debug("Entering.");
1459	/*
1460	 * Find the inode number for the transaction log file by looking up the
1461	 * filename $UsnJrnl in the extended system files directory $Extend.
1462	 */
1463	mutex_lock(&vol->extend_ino->i_mutex);
1464	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8,
1465			&name);
1466	mutex_unlock(&vol->extend_ino->i_mutex);
1467	if (IS_ERR_MREF(mref)) {
1468		/*
1469		 * If the file does not exist, transaction logging is disabled,
1470		 * just return success.
1471		 */
1472		if (MREF_ERR(mref) == -ENOENT) {
1473			ntfs_debug("$UsnJrnl not present.  Volume does not "
1474					"have transaction logging enabled.");
1475not_enabled:
1476			/*
1477			 * No need to try to stamp the transaction log if
1478			 * transaction logging is not enabled.
1479			 */
1480			NVolSetUsnJrnlStamped(vol);
1481			return true;
1482		}
1483		/* A real error occurred. */
1484		ntfs_error(vol->sb, "Failed to find inode number for "
1485				"$UsnJrnl.");
1486		return false;
1487	}
1488	/* We do not care for the type of match that was found. */
1489	kfree(name);
1490	/* Get the inode. */
1491	tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1492	if (unlikely(IS_ERR(tmp_ino) || is_bad_inode(tmp_ino))) {
1493		if (!IS_ERR(tmp_ino))
1494			iput(tmp_ino);
1495		ntfs_error(vol->sb, "Failed to load $UsnJrnl.");
1496		return false;
1497	}
1498	vol->usnjrnl_ino = tmp_ino;
1499	/*
1500	 * If the transaction log is in the process of being deleted, we can
1501	 * ignore it.
1502	 */
1503	if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) {
1504		ntfs_debug("$UsnJrnl in the process of being disabled.  "
1505				"Volume does not have transaction logging "
1506				"enabled.");
1507		goto not_enabled;
1508	}
1509	/* Get the $DATA/$Max attribute. */
1510	tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4);
1511	if (IS_ERR(tmp_ino)) {
1512		ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max "
1513				"attribute.");
1514		return false;
1515	}
1516	vol->usnjrnl_max_ino = tmp_ino;
1517	if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) {
1518		ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max "
1519				"attribute (size is 0x%llx but should be at "
1520				"least 0x%zx bytes).", i_size_read(tmp_ino),
1521				sizeof(USN_HEADER));
1522		return false;
1523	}
1524	/* Get the $DATA/$J attribute. */
1525	tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2);
1526	if (IS_ERR(tmp_ino)) {
1527		ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J "
1528				"attribute.");
1529		return false;
1530	}
1531	vol->usnjrnl_j_ino = tmp_ino;
1532	/* Verify $J is non-resident and sparse. */
1533	tmp_ni = NTFS_I(vol->usnjrnl_j_ino);
1534	if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) {
1535		ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident "
1536				"and/or not sparse.");
1537		return false;
1538	}
1539	/* Read the USN_HEADER from $DATA/$Max. */
1540	page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0);
1541	if (IS_ERR(page)) {
1542		ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max "
1543				"attribute.");
1544		return false;
1545	}
1546	uh = (USN_HEADER*)page_address(page);
1547	/* Sanity check the $Max. */
1548	if (unlikely(sle64_to_cpu(uh->allocation_delta) >
1549			sle64_to_cpu(uh->maximum_size))) {
1550		ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds "
1551				"maximum size (0x%llx).  $UsnJrnl is corrupt.",
1552				(long long)sle64_to_cpu(uh->allocation_delta),
1553				(long long)sle64_to_cpu(uh->maximum_size));
1554		ntfs_unmap_page(page);
1555		return false;
1556	}
1557	/*
1558	 * If the transaction log has been stamped and nothing has been written
1559	 * to it since, we do not need to stamp it.
1560	 */
1561	if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >=
1562			i_size_read(vol->usnjrnl_j_ino))) {
1563		if (likely(sle64_to_cpu(uh->lowest_valid_usn) ==
1564				i_size_read(vol->usnjrnl_j_ino))) {
1565			ntfs_unmap_page(page);
1566			ntfs_debug("$UsnJrnl is enabled but nothing has been "
1567					"logged since it was last stamped.  "
1568					"Treating this as if the volume does "
1569					"not have transaction logging "
1570					"enabled.");
1571			goto not_enabled;
1572		}
1573		ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) "
1574				"which is out of bounds (0x%llx).  $UsnJrnl "
1575				"is corrupt.",
1576				(long long)sle64_to_cpu(uh->lowest_valid_usn),
1577				i_size_read(vol->usnjrnl_j_ino));
1578		ntfs_unmap_page(page);
1579		return false;
1580	}
1581	ntfs_unmap_page(page);
1582	ntfs_debug("Done.");
1583	return true;
1584}
1585
1586/**
1587 * load_and_init_attrdef - load the attribute definitions table for a volume
1588 * @vol:	ntfs super block describing device whose attrdef to load
1589 *
1590 * Return 'true' on success or 'false' on error.
1591 */
1592static bool load_and_init_attrdef(ntfs_volume *vol)
1593{
1594	loff_t i_size;
1595	struct super_block *sb = vol->sb;
1596	struct inode *ino;
1597	struct page *page;
1598	pgoff_t index, max_index;
1599	unsigned int size;
1600
1601	ntfs_debug("Entering.");
1602	/* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1603	ino = ntfs_iget(sb, FILE_AttrDef);
1604	if (IS_ERR(ino) || is_bad_inode(ino)) {
1605		if (!IS_ERR(ino))
1606			iput(ino);
1607		goto failed;
1608	}
1609	NInoSetSparseDisabled(NTFS_I(ino));
1610	/* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1611	i_size = i_size_read(ino);
1612	if (i_size <= 0 || i_size > 0x7fffffff)
1613		goto iput_failed;
1614	vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size);
1615	if (!vol->attrdef)
1616		goto iput_failed;
1617	index = 0;
1618	max_index = i_size >> PAGE_CACHE_SHIFT;
1619	size = PAGE_CACHE_SIZE;
1620	while (index < max_index) {
1621		/* Read the attrdef table and copy it into the linear buffer. */
1622read_partial_attrdef_page:
1623		page = ntfs_map_page(ino->i_mapping, index);
1624		if (IS_ERR(page))
1625			goto free_iput_failed;
1626		memcpy((u8*)vol->attrdef + (index++ << PAGE_CACHE_SHIFT),
1627				page_address(page), size);
1628		ntfs_unmap_page(page);
1629	};
1630	if (size == PAGE_CACHE_SIZE) {
1631		size = i_size & ~PAGE_CACHE_MASK;
1632		if (size)
1633			goto read_partial_attrdef_page;
1634	}
1635	vol->attrdef_size = i_size;
1636	ntfs_debug("Read %llu bytes from $AttrDef.", i_size);
1637	iput(ino);
1638	return true;
1639free_iput_failed:
1640	ntfs_free(vol->attrdef);
1641	vol->attrdef = NULL;
1642iput_failed:
1643	iput(ino);
1644failed:
1645	ntfs_error(sb, "Failed to initialize attribute definition table.");
1646	return false;
1647}
1648
1649#endif /* NTFS_RW */
1650
1651/**
1652 * load_and_init_upcase - load the upcase table for an ntfs volume
1653 * @vol:	ntfs super block describing device whose upcase to load
1654 *
1655 * Return 'true' on success or 'false' on error.
1656 */
1657static bool load_and_init_upcase(ntfs_volume *vol)
1658{
1659	loff_t i_size;
1660	struct super_block *sb = vol->sb;
1661	struct inode *ino;
1662	struct page *page;
1663	pgoff_t index, max_index;
1664	unsigned int size;
1665	int i, max;
1666
1667	ntfs_debug("Entering.");
1668	/* Read upcase table and setup vol->upcase and vol->upcase_len. */
1669	ino = ntfs_iget(sb, FILE_UpCase);
1670	if (IS_ERR(ino) || is_bad_inode(ino)) {
1671		if (!IS_ERR(ino))
1672			iput(ino);
1673		goto upcase_failed;
1674	}
1675	/*
1676	 * The upcase size must not be above 64k Unicode characters, must not
1677	 * be zero and must be a multiple of sizeof(ntfschar).
1678	 */
1679	i_size = i_size_read(ino);
1680	if (!i_size || i_size & (sizeof(ntfschar) - 1) ||
1681			i_size > 64ULL * 1024 * sizeof(ntfschar))
1682		goto iput_upcase_failed;
1683	vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size);
1684	if (!vol->upcase)
1685		goto iput_upcase_failed;
1686	index = 0;
1687	max_index = i_size >> PAGE_CACHE_SHIFT;
1688	size = PAGE_CACHE_SIZE;
1689	while (index < max_index) {
1690		/* Read the upcase table and copy it into the linear buffer. */
1691read_partial_upcase_page:
1692		page = ntfs_map_page(ino->i_mapping, index);
1693		if (IS_ERR(page))
1694			goto iput_upcase_failed;
1695		memcpy((char*)vol->upcase + (index++ << PAGE_CACHE_SHIFT),
1696				page_address(page), size);
1697		ntfs_unmap_page(page);
1698	};
1699	if (size == PAGE_CACHE_SIZE) {
1700		size = i_size & ~PAGE_CACHE_MASK;
1701		if (size)
1702			goto read_partial_upcase_page;
1703	}
1704	vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS;
1705	ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1706			i_size, 64 * 1024 * sizeof(ntfschar));
1707	iput(ino);
1708	mutex_lock(&ntfs_lock);
1709	if (!default_upcase) {
1710		ntfs_debug("Using volume specified $UpCase since default is "
1711				"not present.");
1712		mutex_unlock(&ntfs_lock);
1713		return true;
1714	}
1715	max = default_upcase_len;
1716	if (max > vol->upcase_len)
1717		max = vol->upcase_len;
1718	for (i = 0; i < max; i++)
1719		if (vol->upcase[i] != default_upcase[i])
1720			break;
1721	if (i == max) {
1722		ntfs_free(vol->upcase);
1723		vol->upcase = default_upcase;
1724		vol->upcase_len = max;
1725		ntfs_nr_upcase_users++;
1726		mutex_unlock(&ntfs_lock);
1727		ntfs_debug("Volume specified $UpCase matches default. Using "
1728				"default.");
1729		return true;
1730	}
1731	mutex_unlock(&ntfs_lock);
1732	ntfs_debug("Using volume specified $UpCase since it does not match "
1733			"the default.");
1734	return true;
1735iput_upcase_failed:
1736	iput(ino);
1737	ntfs_free(vol->upcase);
1738	vol->upcase = NULL;
1739upcase_failed:
1740	mutex_lock(&ntfs_lock);
1741	if (default_upcase) {
1742		vol->upcase = default_upcase;
1743		vol->upcase_len = default_upcase_len;
1744		ntfs_nr_upcase_users++;
1745		mutex_unlock(&ntfs_lock);
1746		ntfs_error(sb, "Failed to load $UpCase from the volume. Using "
1747				"default.");
1748		return true;
1749	}
1750	mutex_unlock(&ntfs_lock);
1751	ntfs_error(sb, "Failed to initialize upcase table.");
1752	return false;
1753}
1754
1755/*
1756 * The lcn and mft bitmap inodes are NTFS-internal inodes with
1757 * their own special locking rules:
1758 */
1759static struct lock_class_key
1760	lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key,
1761	mftbmp_runlist_lock_key, mftbmp_mrec_lock_key;
1762
1763/**
1764 * load_system_files - open the system files using normal functions
1765 * @vol:	ntfs super block describing device whose system files to load
1766 *
1767 * Open the system files with normal access functions and complete setting up
1768 * the ntfs super block @vol.
1769 *
1770 * Return 'true' on success or 'false' on error.
1771 */
1772static bool load_system_files(ntfs_volume *vol)
1773{
1774	struct super_block *sb = vol->sb;
1775	MFT_RECORD *m;
1776	VOLUME_INFORMATION *vi;
1777	ntfs_attr_search_ctx *ctx;
1778#ifdef NTFS_RW
1779	RESTART_PAGE_HEADER *rp;
1780	int err;
1781#endif /* NTFS_RW */
1782
1783	ntfs_debug("Entering.");
1784#ifdef NTFS_RW
1785	/* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1786	if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) {
1787		static const char *es1 = "Failed to load $MFTMirr";
1788		static const char *es2 = "$MFTMirr does not match $MFT";
1789		static const char *es3 = ".  Run ntfsfix and/or chkdsk.";
1790
1791		/* If a read-write mount, convert it to a read-only mount. */
1792		if (!(sb->s_flags & MS_RDONLY)) {
1793			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1794					ON_ERRORS_CONTINUE))) {
1795				ntfs_error(sb, "%s and neither on_errors="
1796						"continue nor on_errors="
1797						"remount-ro was specified%s",
1798						!vol->mftmirr_ino ? es1 : es2,
1799						es3);
1800				goto iput_mirr_err_out;
1801			}
1802			sb->s_flags |= MS_RDONLY;
1803			ntfs_error(sb, "%s.  Mounting read-only%s",
1804					!vol->mftmirr_ino ? es1 : es2, es3);
1805		} else
1806			ntfs_warning(sb, "%s.  Will not be able to remount "
1807					"read-write%s",
1808					!vol->mftmirr_ino ? es1 : es2, es3);
1809		/* This will prevent a read-write remount. */
1810		NVolSetErrors(vol);
1811	}
1812#endif /* NTFS_RW */
1813	/* Get mft bitmap attribute inode. */
1814	vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0);
1815	if (IS_ERR(vol->mftbmp_ino)) {
1816		ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute.");
1817		goto iput_mirr_err_out;
1818	}
1819	lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock,
1820			   &mftbmp_runlist_lock_key);
1821	lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock,
1822			   &mftbmp_mrec_lock_key);
1823	/* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1824	if (!load_and_init_upcase(vol))
1825		goto iput_mftbmp_err_out;
1826#ifdef NTFS_RW
1827	/*
1828	 * Read attribute definitions table and setup @vol->attrdef and
1829	 * @vol->attrdef_size.
1830	 */
1831	if (!load_and_init_attrdef(vol))
1832		goto iput_upcase_err_out;
1833#endif /* NTFS_RW */
1834	/*
1835	 * Get the cluster allocation bitmap inode and verify the size, no
1836	 * need for any locking at this stage as we are already running
1837	 * exclusively as we are mount in progress task.
1838	 */
1839	vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap);
1840	if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) {
1841		if (!IS_ERR(vol->lcnbmp_ino))
1842			iput(vol->lcnbmp_ino);
1843		goto bitmap_failed;
1844	}
1845	lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock,
1846			   &lcnbmp_runlist_lock_key);
1847	lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock,
1848			   &lcnbmp_mrec_lock_key);
1849
1850	NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino));
1851	if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) {
1852		iput(vol->lcnbmp_ino);
1853bitmap_failed:
1854		ntfs_error(sb, "Failed to load $Bitmap.");
1855		goto iput_attrdef_err_out;
1856	}
1857	/*
1858	 * Get the volume inode and setup our cache of the volume flags and
1859	 * version.
1860	 */
1861	vol->vol_ino = ntfs_iget(sb, FILE_Volume);
1862	if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) {
1863		if (!IS_ERR(vol->vol_ino))
1864			iput(vol->vol_ino);
1865volume_failed:
1866		ntfs_error(sb, "Failed to load $Volume.");
1867		goto iput_lcnbmp_err_out;
1868	}
1869	m = map_mft_record(NTFS_I(vol->vol_ino));
1870	if (IS_ERR(m)) {
1871iput_volume_failed:
1872		iput(vol->vol_ino);
1873		goto volume_failed;
1874	}
1875	if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) {
1876		ntfs_error(sb, "Failed to get attribute search context.");
1877		goto get_ctx_vol_failed;
1878	}
1879	if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
1880			ctx) || ctx->attr->non_resident || ctx->attr->flags) {
1881err_put_vol:
1882		ntfs_attr_put_search_ctx(ctx);
1883get_ctx_vol_failed:
1884		unmap_mft_record(NTFS_I(vol->vol_ino));
1885		goto iput_volume_failed;
1886	}
1887	vi = (VOLUME_INFORMATION*)((char*)ctx->attr +
1888			le16_to_cpu(ctx->attr->data.resident.value_offset));
1889	/* Some bounds checks. */
1890	if ((u8*)vi < (u8*)ctx->attr || (u8*)vi +
1891			le32_to_cpu(ctx->attr->data.resident.value_length) >
1892			(u8*)ctx->attr + le32_to_cpu(ctx->attr->length))
1893		goto err_put_vol;
1894	/* Copy the volume flags and version to the ntfs_volume structure. */
1895	vol->vol_flags = vi->flags;
1896	vol->major_ver = vi->major_ver;
1897	vol->minor_ver = vi->minor_ver;
1898	ntfs_attr_put_search_ctx(ctx);
1899	unmap_mft_record(NTFS_I(vol->vol_ino));
1900	pr_info("volume version %i.%i.\n", vol->major_ver,
1901			vol->minor_ver);
1902	if (vol->major_ver < 3 && NVolSparseEnabled(vol)) {
1903		ntfs_warning(vol->sb, "Disabling sparse support due to NTFS "
1904				"volume version %i.%i (need at least version "
1905				"3.0).", vol->major_ver, vol->minor_ver);
1906		NVolClearSparseEnabled(vol);
1907	}
1908#ifdef NTFS_RW
1909	/* Make sure that no unsupported volume flags are set. */
1910	if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
1911		static const char *es1a = "Volume is dirty";
1912		static const char *es1b = "Volume has been modified by chkdsk";
1913		static const char *es1c = "Volume has unsupported flags set";
1914		static const char *es2a = ".  Run chkdsk and mount in Windows.";
1915		static const char *es2b = ".  Mount in Windows.";
1916		const char *es1, *es2;
1917
1918		es2 = es2a;
1919		if (vol->vol_flags & VOLUME_IS_DIRTY)
1920			es1 = es1a;
1921		else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
1922			es1 = es1b;
1923			es2 = es2b;
1924		} else {
1925			es1 = es1c;
1926			ntfs_warning(sb, "Unsupported volume flags 0x%x "
1927					"encountered.",
1928					(unsigned)le16_to_cpu(vol->vol_flags));
1929		}
1930		/* If a read-write mount, convert it to a read-only mount. */
1931		if (!(sb->s_flags & MS_RDONLY)) {
1932			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1933					ON_ERRORS_CONTINUE))) {
1934				ntfs_error(sb, "%s and neither on_errors="
1935						"continue nor on_errors="
1936						"remount-ro was specified%s",
1937						es1, es2);
1938				goto iput_vol_err_out;
1939			}
1940			sb->s_flags |= MS_RDONLY;
1941			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1942		} else
1943			ntfs_warning(sb, "%s.  Will not be able to remount "
1944					"read-write%s", es1, es2);
1945		/*
1946		 * Do not set NVolErrors() because ntfs_remount() re-checks the
1947		 * flags which we need to do in case any flags have changed.
1948		 */
1949	}
1950	/*
1951	 * Get the inode for the logfile, check it and determine if the volume
1952	 * was shutdown cleanly.
1953	 */
1954	rp = NULL;
1955	if (!load_and_check_logfile(vol, &rp) ||
1956			!ntfs_is_logfile_clean(vol->logfile_ino, rp)) {
1957		static const char *es1a = "Failed to load $LogFile";
1958		static const char *es1b = "$LogFile is not clean";
1959		static const char *es2 = ".  Mount in Windows.";
1960		const char *es1;
1961
1962		es1 = !vol->logfile_ino ? es1a : es1b;
1963		/* If a read-write mount, convert it to a read-only mount. */
1964		if (!(sb->s_flags & MS_RDONLY)) {
1965			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1966					ON_ERRORS_CONTINUE))) {
1967				ntfs_error(sb, "%s and neither on_errors="
1968						"continue nor on_errors="
1969						"remount-ro was specified%s",
1970						es1, es2);
1971				if (vol->logfile_ino) {
1972					BUG_ON(!rp);
1973					ntfs_free(rp);
1974				}
1975				goto iput_logfile_err_out;
1976			}
1977			sb->s_flags |= MS_RDONLY;
1978			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1979		} else
1980			ntfs_warning(sb, "%s.  Will not be able to remount "
1981					"read-write%s", es1, es2);
1982		/* This will prevent a read-write remount. */
1983		NVolSetErrors(vol);
1984	}
1985	ntfs_free(rp);
1986#endif /* NTFS_RW */
1987	/* Get the root directory inode so we can do path lookups. */
1988	vol->root_ino = ntfs_iget(sb, FILE_root);
1989	if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) {
1990		if (!IS_ERR(vol->root_ino))
1991			iput(vol->root_ino);
1992		ntfs_error(sb, "Failed to load root directory.");
1993		goto iput_logfile_err_out;
1994	}
1995#ifdef NTFS_RW
1996	/*
1997	 * Check if Windows is suspended to disk on the target volume.  If it
1998	 * is hibernated, we must not write *anything* to the disk so set
1999	 * NVolErrors() without setting the dirty volume flag and mount
2000	 * read-only.  This will prevent read-write remounting and it will also
2001	 * prevent all writes.
2002	 */
2003	err = check_windows_hibernation_status(vol);
2004	if (unlikely(err)) {
2005		static const char *es1a = "Failed to determine if Windows is "
2006				"hibernated";
2007		static const char *es1b = "Windows is hibernated";
2008		static const char *es2 = ".  Run chkdsk.";
2009		const char *es1;
2010
2011		es1 = err < 0 ? es1a : es1b;
2012		/* If a read-write mount, convert it to a read-only mount. */
2013		if (!(sb->s_flags & MS_RDONLY)) {
2014			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2015					ON_ERRORS_CONTINUE))) {
2016				ntfs_error(sb, "%s and neither on_errors="
2017						"continue nor on_errors="
2018						"remount-ro was specified%s",
2019						es1, es2);
2020				goto iput_root_err_out;
2021			}
2022			sb->s_flags |= MS_RDONLY;
2023			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2024		} else
2025			ntfs_warning(sb, "%s.  Will not be able to remount "
2026					"read-write%s", es1, es2);
2027		/* This will prevent a read-write remount. */
2028		NVolSetErrors(vol);
2029	}
2030	/* If (still) a read-write mount, mark the volume dirty. */
2031	if (!(sb->s_flags & MS_RDONLY) &&
2032			ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
2033		static const char *es1 = "Failed to set dirty bit in volume "
2034				"information flags";
2035		static const char *es2 = ".  Run chkdsk.";
2036
2037		/* Convert to a read-only mount. */
2038		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2039				ON_ERRORS_CONTINUE))) {
2040			ntfs_error(sb, "%s and neither on_errors=continue nor "
2041					"on_errors=remount-ro was specified%s",
2042					es1, es2);
2043			goto iput_root_err_out;
2044		}
2045		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2046		sb->s_flags |= MS_RDONLY;
2047		/*
2048		 * Do not set NVolErrors() because ntfs_remount() might manage
2049		 * to set the dirty flag in which case all would be well.
2050		 */
2051	}
2052#if 0
2053	// TODO: Enable this code once we start modifying anything that is
2054	//	 different between NTFS 1.2 and 3.x...
2055	/*
2056	 * If (still) a read-write mount, set the NT4 compatibility flag on
2057	 * newer NTFS version volumes.
2058	 */
2059	if (!(sb->s_flags & MS_RDONLY) && (vol->major_ver > 1) &&
2060			ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
2061		static const char *es1 = "Failed to set NT4 compatibility flag";
2062		static const char *es2 = ".  Run chkdsk.";
2063
2064		/* Convert to a read-only mount. */
2065		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2066				ON_ERRORS_CONTINUE))) {
2067			ntfs_error(sb, "%s and neither on_errors=continue nor "
2068					"on_errors=remount-ro was specified%s",
2069					es1, es2);
2070			goto iput_root_err_out;
2071		}
2072		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2073		sb->s_flags |= MS_RDONLY;
2074		NVolSetErrors(vol);
2075	}
2076#endif
2077	/* If (still) a read-write mount, empty the logfile. */
2078	if (!(sb->s_flags & MS_RDONLY) &&
2079			!ntfs_empty_logfile(vol->logfile_ino)) {
2080		static const char *es1 = "Failed to empty $LogFile";
2081		static const char *es2 = ".  Mount in Windows.";
2082
2083		/* Convert to a read-only mount. */
2084		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2085				ON_ERRORS_CONTINUE))) {
2086			ntfs_error(sb, "%s and neither on_errors=continue nor "
2087					"on_errors=remount-ro was specified%s",
2088					es1, es2);
2089			goto iput_root_err_out;
2090		}
2091		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2092		sb->s_flags |= MS_RDONLY;
2093		NVolSetErrors(vol);
2094	}
2095#endif /* NTFS_RW */
2096	/* If on NTFS versions before 3.0, we are done. */
2097	if (unlikely(vol->major_ver < 3))
2098		return true;
2099	/* NTFS 3.0+ specific initialization. */
2100	/* Get the security descriptors inode. */
2101	vol->secure_ino = ntfs_iget(sb, FILE_Secure);
2102	if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) {
2103		if (!IS_ERR(vol->secure_ino))
2104			iput(vol->secure_ino);
2105		ntfs_error(sb, "Failed to load $Secure.");
2106		goto iput_root_err_out;
2107	}
2108	// TODO: Initialize security.
2109	/* Get the extended system files' directory inode. */
2110	vol->extend_ino = ntfs_iget(sb, FILE_Extend);
2111	if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) {
2112		if (!IS_ERR(vol->extend_ino))
2113			iput(vol->extend_ino);
2114		ntfs_error(sb, "Failed to load $Extend.");
2115		goto iput_sec_err_out;
2116	}
2117#ifdef NTFS_RW
2118	/* Find the quota file, load it if present, and set it up. */
2119	if (!load_and_init_quota(vol)) {
2120		static const char *es1 = "Failed to load $Quota";
2121		static const char *es2 = ".  Run chkdsk.";
2122
2123		/* If a read-write mount, convert it to a read-only mount. */
2124		if (!(sb->s_flags & MS_RDONLY)) {
2125			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2126					ON_ERRORS_CONTINUE))) {
2127				ntfs_error(sb, "%s and neither on_errors="
2128						"continue nor on_errors="
2129						"remount-ro was specified%s",
2130						es1, es2);
2131				goto iput_quota_err_out;
2132			}
2133			sb->s_flags |= MS_RDONLY;
2134			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2135		} else
2136			ntfs_warning(sb, "%s.  Will not be able to remount "
2137					"read-write%s", es1, es2);
2138		/* This will prevent a read-write remount. */
2139		NVolSetErrors(vol);
2140	}
2141	/* If (still) a read-write mount, mark the quotas out of date. */
2142	if (!(sb->s_flags & MS_RDONLY) &&
2143			!ntfs_mark_quotas_out_of_date(vol)) {
2144		static const char *es1 = "Failed to mark quotas out of date";
2145		static const char *es2 = ".  Run chkdsk.";
2146
2147		/* Convert to a read-only mount. */
2148		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2149				ON_ERRORS_CONTINUE))) {
2150			ntfs_error(sb, "%s and neither on_errors=continue nor "
2151					"on_errors=remount-ro was specified%s",
2152					es1, es2);
2153			goto iput_quota_err_out;
2154		}
2155		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2156		sb->s_flags |= MS_RDONLY;
2157		NVolSetErrors(vol);
2158	}
2159	/*
2160	 * Find the transaction log file ($UsnJrnl), load it if present, check
2161	 * it, and set it up.
2162	 */
2163	if (!load_and_init_usnjrnl(vol)) {
2164		static const char *es1 = "Failed to load $UsnJrnl";
2165		static const char *es2 = ".  Run chkdsk.";
2166
2167		/* If a read-write mount, convert it to a read-only mount. */
2168		if (!(sb->s_flags & MS_RDONLY)) {
2169			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2170					ON_ERRORS_CONTINUE))) {
2171				ntfs_error(sb, "%s and neither on_errors="
2172						"continue nor on_errors="
2173						"remount-ro was specified%s",
2174						es1, es2);
2175				goto iput_usnjrnl_err_out;
2176			}
2177			sb->s_flags |= MS_RDONLY;
2178			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2179		} else
2180			ntfs_warning(sb, "%s.  Will not be able to remount "
2181					"read-write%s", es1, es2);
2182		/* This will prevent a read-write remount. */
2183		NVolSetErrors(vol);
2184	}
2185	/* If (still) a read-write mount, stamp the transaction log. */
2186	if (!(sb->s_flags & MS_RDONLY) && !ntfs_stamp_usnjrnl(vol)) {
2187		static const char *es1 = "Failed to stamp transaction log "
2188				"($UsnJrnl)";
2189		static const char *es2 = ".  Run chkdsk.";
2190
2191		/* Convert to a read-only mount. */
2192		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2193				ON_ERRORS_CONTINUE))) {
2194			ntfs_error(sb, "%s and neither on_errors=continue nor "
2195					"on_errors=remount-ro was specified%s",
2196					es1, es2);
2197			goto iput_usnjrnl_err_out;
2198		}
2199		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2200		sb->s_flags |= MS_RDONLY;
2201		NVolSetErrors(vol);
2202	}
2203#endif /* NTFS_RW */
2204	return true;
2205#ifdef NTFS_RW
2206iput_usnjrnl_err_out:
2207	iput(vol->usnjrnl_j_ino);
2208	iput(vol->usnjrnl_max_ino);
2209	iput(vol->usnjrnl_ino);
2210iput_quota_err_out:
2211	iput(vol->quota_q_ino);
2212	iput(vol->quota_ino);
2213	iput(vol->extend_ino);
2214#endif /* NTFS_RW */
2215iput_sec_err_out:
2216	iput(vol->secure_ino);
2217iput_root_err_out:
2218	iput(vol->root_ino);
2219iput_logfile_err_out:
2220#ifdef NTFS_RW
2221	iput(vol->logfile_ino);
2222iput_vol_err_out:
2223#endif /* NTFS_RW */
2224	iput(vol->vol_ino);
2225iput_lcnbmp_err_out:
2226	iput(vol->lcnbmp_ino);
2227iput_attrdef_err_out:
2228	vol->attrdef_size = 0;
2229	if (vol->attrdef) {
2230		ntfs_free(vol->attrdef);
2231		vol->attrdef = NULL;
2232	}
2233#ifdef NTFS_RW
2234iput_upcase_err_out:
2235#endif /* NTFS_RW */
2236	vol->upcase_len = 0;
2237	mutex_lock(&ntfs_lock);
2238	if (vol->upcase == default_upcase) {
2239		ntfs_nr_upcase_users--;
2240		vol->upcase = NULL;
2241	}
2242	mutex_unlock(&ntfs_lock);
2243	if (vol->upcase) {
2244		ntfs_free(vol->upcase);
2245		vol->upcase = NULL;
2246	}
2247iput_mftbmp_err_out:
2248	iput(vol->mftbmp_ino);
2249iput_mirr_err_out:
2250#ifdef NTFS_RW
2251	iput(vol->mftmirr_ino);
2252#endif /* NTFS_RW */
2253	return false;
2254}
2255
2256/**
2257 * ntfs_put_super - called by the vfs to unmount a volume
2258 * @sb:		vfs superblock of volume to unmount
2259 *
2260 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
2261 * the volume is being unmounted (umount system call has been invoked) and it
2262 * releases all inodes and memory belonging to the NTFS specific part of the
2263 * super block.
2264 */
2265static void ntfs_put_super(struct super_block *sb)
2266{
2267	ntfs_volume *vol = NTFS_SB(sb);
2268
2269	ntfs_debug("Entering.");
2270
2271#ifdef NTFS_RW
2272	/*
2273	 * Commit all inodes while they are still open in case some of them
2274	 * cause others to be dirtied.
2275	 */
2276	ntfs_commit_inode(vol->vol_ino);
2277
2278	/* NTFS 3.0+ specific. */
2279	if (vol->major_ver >= 3) {
2280		if (vol->usnjrnl_j_ino)
2281			ntfs_commit_inode(vol->usnjrnl_j_ino);
2282		if (vol->usnjrnl_max_ino)
2283			ntfs_commit_inode(vol->usnjrnl_max_ino);
2284		if (vol->usnjrnl_ino)
2285			ntfs_commit_inode(vol->usnjrnl_ino);
2286		if (vol->quota_q_ino)
2287			ntfs_commit_inode(vol->quota_q_ino);
2288		if (vol->quota_ino)
2289			ntfs_commit_inode(vol->quota_ino);
2290		if (vol->extend_ino)
2291			ntfs_commit_inode(vol->extend_ino);
2292		if (vol->secure_ino)
2293			ntfs_commit_inode(vol->secure_ino);
2294	}
2295
2296	ntfs_commit_inode(vol->root_ino);
2297
2298	down_write(&vol->lcnbmp_lock);
2299	ntfs_commit_inode(vol->lcnbmp_ino);
2300	up_write(&vol->lcnbmp_lock);
2301
2302	down_write(&vol->mftbmp_lock);
2303	ntfs_commit_inode(vol->mftbmp_ino);
2304	up_write(&vol->mftbmp_lock);
2305
2306	if (vol->logfile_ino)
2307		ntfs_commit_inode(vol->logfile_ino);
2308
2309	if (vol->mftmirr_ino)
2310		ntfs_commit_inode(vol->mftmirr_ino);
2311	ntfs_commit_inode(vol->mft_ino);
2312
2313	/*
2314	 * If a read-write mount and no volume errors have occurred, mark the
2315	 * volume clean.  Also, re-commit all affected inodes.
2316	 */
2317	if (!(sb->s_flags & MS_RDONLY)) {
2318		if (!NVolErrors(vol)) {
2319			if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
2320				ntfs_warning(sb, "Failed to clear dirty bit "
2321						"in volume information "
2322						"flags.  Run chkdsk.");
2323			ntfs_commit_inode(vol->vol_ino);
2324			ntfs_commit_inode(vol->root_ino);
2325			if (vol->mftmirr_ino)
2326				ntfs_commit_inode(vol->mftmirr_ino);
2327			ntfs_commit_inode(vol->mft_ino);
2328		} else {
2329			ntfs_warning(sb, "Volume has errors.  Leaving volume "
2330					"marked dirty.  Run chkdsk.");
2331		}
2332	}
2333#endif /* NTFS_RW */
2334
2335	iput(vol->vol_ino);
2336	vol->vol_ino = NULL;
2337
2338	/* NTFS 3.0+ specific clean up. */
2339	if (vol->major_ver >= 3) {
2340#ifdef NTFS_RW
2341		if (vol->usnjrnl_j_ino) {
2342			iput(vol->usnjrnl_j_ino);
2343			vol->usnjrnl_j_ino = NULL;
2344		}
2345		if (vol->usnjrnl_max_ino) {
2346			iput(vol->usnjrnl_max_ino);
2347			vol->usnjrnl_max_ino = NULL;
2348		}
2349		if (vol->usnjrnl_ino) {
2350			iput(vol->usnjrnl_ino);
2351			vol->usnjrnl_ino = NULL;
2352		}
2353		if (vol->quota_q_ino) {
2354			iput(vol->quota_q_ino);
2355			vol->quota_q_ino = NULL;
2356		}
2357		if (vol->quota_ino) {
2358			iput(vol->quota_ino);
2359			vol->quota_ino = NULL;
2360		}
2361#endif /* NTFS_RW */
2362		if (vol->extend_ino) {
2363			iput(vol->extend_ino);
2364			vol->extend_ino = NULL;
2365		}
2366		if (vol->secure_ino) {
2367			iput(vol->secure_ino);
2368			vol->secure_ino = NULL;
2369		}
2370	}
2371
2372	iput(vol->root_ino);
2373	vol->root_ino = NULL;
2374
2375	down_write(&vol->lcnbmp_lock);
2376	iput(vol->lcnbmp_ino);
2377	vol->lcnbmp_ino = NULL;
2378	up_write(&vol->lcnbmp_lock);
2379
2380	down_write(&vol->mftbmp_lock);
2381	iput(vol->mftbmp_ino);
2382	vol->mftbmp_ino = NULL;
2383	up_write(&vol->mftbmp_lock);
2384
2385#ifdef NTFS_RW
2386	if (vol->logfile_ino) {
2387		iput(vol->logfile_ino);
2388		vol->logfile_ino = NULL;
2389	}
2390	if (vol->mftmirr_ino) {
2391		/* Re-commit the mft mirror and mft just in case. */
2392		ntfs_commit_inode(vol->mftmirr_ino);
2393		ntfs_commit_inode(vol->mft_ino);
2394		iput(vol->mftmirr_ino);
2395		vol->mftmirr_ino = NULL;
2396	}
2397	/*
2398	 * We should have no dirty inodes left, due to
2399	 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
2400	 * the underlying mft records are written out and cleaned.
2401	 */
2402	ntfs_commit_inode(vol->mft_ino);
2403	write_inode_now(vol->mft_ino, 1);
2404#endif /* NTFS_RW */
2405
2406	iput(vol->mft_ino);
2407	vol->mft_ino = NULL;
2408
2409	/* Throw away the table of attribute definitions. */
2410	vol->attrdef_size = 0;
2411	if (vol->attrdef) {
2412		ntfs_free(vol->attrdef);
2413		vol->attrdef = NULL;
2414	}
2415	vol->upcase_len = 0;
2416	/*
2417	 * Destroy the global default upcase table if necessary.  Also decrease
2418	 * the number of upcase users if we are a user.
2419	 */
2420	mutex_lock(&ntfs_lock);
2421	if (vol->upcase == default_upcase) {
2422		ntfs_nr_upcase_users--;
2423		vol->upcase = NULL;
2424	}
2425	if (!ntfs_nr_upcase_users && default_upcase) {
2426		ntfs_free(default_upcase);
2427		default_upcase = NULL;
2428	}
2429	if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
2430		free_compression_buffers();
2431	mutex_unlock(&ntfs_lock);
2432	if (vol->upcase) {
2433		ntfs_free(vol->upcase);
2434		vol->upcase = NULL;
2435	}
2436
2437	unload_nls(vol->nls_map);
2438
2439	sb->s_fs_info = NULL;
2440	kfree(vol);
2441}
2442
2443/**
2444 * get_nr_free_clusters - return the number of free clusters on a volume
2445 * @vol:	ntfs volume for which to obtain free cluster count
2446 *
2447 * Calculate the number of free clusters on the mounted NTFS volume @vol. We
2448 * actually calculate the number of clusters in use instead because this
2449 * allows us to not care about partial pages as these will be just zero filled
2450 * and hence not be counted as allocated clusters.
2451 *
2452 * The only particularity is that clusters beyond the end of the logical ntfs
2453 * volume will be marked as allocated to prevent errors which means we have to
2454 * discount those at the end. This is important as the cluster bitmap always
2455 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
2456 * the logical volume and marked in use when they are not as they do not exist.
2457 *
2458 * If any pages cannot be read we assume all clusters in the erroring pages are
2459 * in use. This means we return an underestimate on errors which is better than
2460 * an overestimate.
2461 */
2462static s64 get_nr_free_clusters(ntfs_volume *vol)
2463{
2464	s64 nr_free = vol->nr_clusters;
2465	struct address_space *mapping = vol->lcnbmp_ino->i_mapping;
2466	struct page *page;
2467	pgoff_t index, max_index;
2468
2469	ntfs_debug("Entering.");
2470	/* Serialize accesses to the cluster bitmap. */
2471	down_read(&vol->lcnbmp_lock);
2472	/*
2473	 * Convert the number of bits into bytes rounded up, then convert into
2474	 * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one
2475	 * full and one partial page max_index = 2.
2476	 */
2477	max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_CACHE_SIZE - 1) >>
2478			PAGE_CACHE_SHIFT;
2479	/* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2480	ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2481			max_index, PAGE_CACHE_SIZE / 4);
2482	for (index = 0; index < max_index; index++) {
2483		unsigned long *kaddr;
2484
2485		/*
2486		 * Read the page from page cache, getting it from backing store
2487		 * if necessary, and increment the use count.
2488		 */
2489		page = read_mapping_page(mapping, index, NULL);
2490		/* Ignore pages which errored synchronously. */
2491		if (IS_ERR(page)) {
2492			ntfs_debug("read_mapping_page() error. Skipping "
2493					"page (index 0x%lx).", index);
2494			nr_free -= PAGE_CACHE_SIZE * 8;
2495			continue;
2496		}
2497		kaddr = kmap_atomic(page);
2498		/*
2499		 * Subtract the number of set bits. If this
2500		 * is the last page and it is partial we don't really care as
2501		 * it just means we do a little extra work but it won't affect
2502		 * the result as all out of range bytes are set to zero by
2503		 * ntfs_readpage().
2504		 */
2505		nr_free -= bitmap_weight(kaddr,
2506					PAGE_CACHE_SIZE * BITS_PER_BYTE);
2507		kunmap_atomic(kaddr);
2508		page_cache_release(page);
2509	}
2510	ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1);
2511	/*
2512	 * Fixup for eventual bits outside logical ntfs volume (see function
2513	 * description above).
2514	 */
2515	if (vol->nr_clusters & 63)
2516		nr_free += 64 - (vol->nr_clusters & 63);
2517	up_read(&vol->lcnbmp_lock);
2518	/* If errors occurred we may well have gone below zero, fix this. */
2519	if (nr_free < 0)
2520		nr_free = 0;
2521	ntfs_debug("Exiting.");
2522	return nr_free;
2523}
2524
2525/**
2526 * __get_nr_free_mft_records - return the number of free inodes on a volume
2527 * @vol:	ntfs volume for which to obtain free inode count
2528 * @nr_free:	number of mft records in filesystem
2529 * @max_index:	maximum number of pages containing set bits
2530 *
2531 * Calculate the number of free mft records (inodes) on the mounted NTFS
2532 * volume @vol. We actually calculate the number of mft records in use instead
2533 * because this allows us to not care about partial pages as these will be just
2534 * zero filled and hence not be counted as allocated mft record.
2535 *
2536 * If any pages cannot be read we assume all mft records in the erroring pages
2537 * are in use. This means we return an underestimate on errors which is better
2538 * than an overestimate.
2539 *
2540 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2541 */
2542static unsigned long __get_nr_free_mft_records(ntfs_volume *vol,
2543		s64 nr_free, const pgoff_t max_index)
2544{
2545	struct address_space *mapping = vol->mftbmp_ino->i_mapping;
2546	struct page *page;
2547	pgoff_t index;
2548
2549	ntfs_debug("Entering.");
2550	/* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2551	ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2552			"0x%lx.", max_index, PAGE_CACHE_SIZE / 4);
2553	for (index = 0; index < max_index; index++) {
2554		unsigned long *kaddr;
2555
2556		/*
2557		 * Read the page from page cache, getting it from backing store
2558		 * if necessary, and increment the use count.
2559		 */
2560		page = read_mapping_page(mapping, index, NULL);
2561		/* Ignore pages which errored synchronously. */
2562		if (IS_ERR(page)) {
2563			ntfs_debug("read_mapping_page() error. Skipping "
2564					"page (index 0x%lx).", index);
2565			nr_free -= PAGE_CACHE_SIZE * 8;
2566			continue;
2567		}
2568		kaddr = kmap_atomic(page);
2569		/*
2570		 * Subtract the number of set bits. If this
2571		 * is the last page and it is partial we don't really care as
2572		 * it just means we do a little extra work but it won't affect
2573		 * the result as all out of range bytes are set to zero by
2574		 * ntfs_readpage().
2575		 */
2576		nr_free -= bitmap_weight(kaddr,
2577					PAGE_CACHE_SIZE * BITS_PER_BYTE);
2578		kunmap_atomic(kaddr);
2579		page_cache_release(page);
2580	}
2581	ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2582			index - 1);
2583	/* If errors occurred we may well have gone below zero, fix this. */
2584	if (nr_free < 0)
2585		nr_free = 0;
2586	ntfs_debug("Exiting.");
2587	return nr_free;
2588}
2589
2590/**
2591 * ntfs_statfs - return information about mounted NTFS volume
2592 * @dentry:	dentry from mounted volume
2593 * @sfs:	statfs structure in which to return the information
2594 *
2595 * Return information about the mounted NTFS volume @dentry in the statfs structure
2596 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2597 * called). We interpret the values to be correct of the moment in time at
2598 * which we are called. Most values are variable otherwise and this isn't just
2599 * the free values but the totals as well. For example we can increase the
2600 * total number of file nodes if we run out and we can keep doing this until
2601 * there is no more space on the volume left at all.
2602 *
2603 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2604 * ustat system calls.
2605 *
2606 * Return 0 on success or -errno on error.
2607 */
2608static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs)
2609{
2610	struct super_block *sb = dentry->d_sb;
2611	s64 size;
2612	ntfs_volume *vol = NTFS_SB(sb);
2613	ntfs_inode *mft_ni = NTFS_I(vol->mft_ino);
2614	pgoff_t max_index;
2615	unsigned long flags;
2616
2617	ntfs_debug("Entering.");
2618	/* Type of filesystem. */
2619	sfs->f_type   = NTFS_SB_MAGIC;
2620	/* Optimal transfer block size. */
2621	sfs->f_bsize  = PAGE_CACHE_SIZE;
2622	/*
2623	 * Total data blocks in filesystem in units of f_bsize and since
2624	 * inodes are also stored in data blocs ($MFT is a file) this is just
2625	 * the total clusters.
2626	 */
2627	sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >>
2628				PAGE_CACHE_SHIFT;
2629	/* Free data blocks in filesystem in units of f_bsize. */
2630	size	      = get_nr_free_clusters(vol) << vol->cluster_size_bits >>
2631				PAGE_CACHE_SHIFT;
2632	if (size < 0LL)
2633		size = 0LL;
2634	/* Free blocks avail to non-superuser, same as above on NTFS. */
2635	sfs->f_bavail = sfs->f_bfree = size;
2636	/* Serialize accesses to the inode bitmap. */
2637	down_read(&vol->mftbmp_lock);
2638	read_lock_irqsave(&mft_ni->size_lock, flags);
2639	size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits;
2640	/*
2641	 * Convert the maximum number of set bits into bytes rounded up, then
2642	 * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we
2643	 * have one full and one partial page max_index = 2.
2644	 */
2645	max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits)
2646			+ 7) >> 3) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2647	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2648	/* Number of inodes in filesystem (at this point in time). */
2649	sfs->f_files = size;
2650	/* Free inodes in fs (based on current total count). */
2651	sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index);
2652	up_read(&vol->mftbmp_lock);
2653	/*
2654	 * File system id. This is extremely *nix flavour dependent and even
2655	 * within Linux itself all fs do their own thing. I interpret this to
2656	 * mean a unique id associated with the mounted fs and not the id
2657	 * associated with the filesystem driver, the latter is already given
2658	 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
2659	 * volume serial number splitting it into two 32-bit parts. We enter
2660	 * the least significant 32-bits in f_fsid[0] and the most significant
2661	 * 32-bits in f_fsid[1].
2662	 */
2663	sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff;
2664	sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff;
2665	/* Maximum length of filenames. */
2666	sfs->f_namelen	   = NTFS_MAX_NAME_LEN;
2667	return 0;
2668}
2669
2670#ifdef NTFS_RW
2671static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc)
2672{
2673	return __ntfs_write_inode(vi, wbc->sync_mode == WB_SYNC_ALL);
2674}
2675#endif
2676
2677/**
2678 * The complete super operations.
2679 */
2680static const struct super_operations ntfs_sops = {
2681	.alloc_inode	= ntfs_alloc_big_inode,	  /* VFS: Allocate new inode. */
2682	.destroy_inode	= ntfs_destroy_big_inode, /* VFS: Deallocate inode. */
2683#ifdef NTFS_RW
2684	.write_inode	= ntfs_write_inode,	/* VFS: Write dirty inode to
2685						   disk. */
2686#endif /* NTFS_RW */
2687	.put_super	= ntfs_put_super,	/* Syscall: umount. */
2688	.statfs		= ntfs_statfs,		/* Syscall: statfs */
2689	.remount_fs	= ntfs_remount,		/* Syscall: mount -o remount. */
2690	.evict_inode	= ntfs_evict_big_inode,	/* VFS: Called when an inode is
2691						   removed from memory. */
2692	.show_options	= ntfs_show_options,	/* Show mount options in
2693						   proc. */
2694};
2695
2696/**
2697 * ntfs_fill_super - mount an ntfs filesystem
2698 * @sb:		super block of ntfs filesystem to mount
2699 * @opt:	string containing the mount options
2700 * @silent:	silence error output
2701 *
2702 * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2703 * with the mount otions in @data with the NTFS filesystem.
2704 *
2705 * If @silent is true, remain silent even if errors are detected. This is used
2706 * during bootup, when the kernel tries to mount the root filesystem with all
2707 * registered filesystems one after the other until one succeeds. This implies
2708 * that all filesystems except the correct one will quite correctly and
2709 * expectedly return an error, but nobody wants to see error messages when in
2710 * fact this is what is supposed to happen.
2711 *
2712 * NOTE: @sb->s_flags contains the mount options flags.
2713 */
2714static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent)
2715{
2716	ntfs_volume *vol;
2717	struct buffer_head *bh;
2718	struct inode *tmp_ino;
2719	int blocksize, result;
2720
2721	/*
2722	 * We do a pretty difficult piece of bootstrap by reading the
2723	 * MFT (and other metadata) from disk into memory. We'll only
2724	 * release this metadata during umount, so the locking patterns
2725	 * observed during bootstrap do not count. So turn off the
2726	 * observation of locking patterns (strictly for this context
2727	 * only) while mounting NTFS. [The validator is still active
2728	 * otherwise, even for this context: it will for example record
2729	 * lock class registrations.]
2730	 */
2731	lockdep_off();
2732	ntfs_debug("Entering.");
2733#ifndef NTFS_RW
2734	sb->s_flags |= MS_RDONLY;
2735#endif /* ! NTFS_RW */
2736	/* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2737	sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS);
2738	vol = NTFS_SB(sb);
2739	if (!vol) {
2740		if (!silent)
2741			ntfs_error(sb, "Allocation of NTFS volume structure "
2742					"failed. Aborting mount...");
2743		lockdep_on();
2744		return -ENOMEM;
2745	}
2746	/* Initialize ntfs_volume structure. */
2747	*vol = (ntfs_volume) {
2748		.sb = sb,
2749		/*
2750		 * Default is group and other don't have any access to files or
2751		 * directories while owner has full access. Further, files by
2752		 * default are not executable but directories are of course
2753		 * browseable.
2754		 */
2755		.fmask = 0177,
2756		.dmask = 0077,
2757	};
2758	init_rwsem(&vol->mftbmp_lock);
2759	init_rwsem(&vol->lcnbmp_lock);
2760
2761	/* By default, enable sparse support. */
2762	NVolSetSparseEnabled(vol);
2763
2764	/* Important to get the mount options dealt with now. */
2765	if (!parse_options(vol, (char*)opt))
2766		goto err_out_now;
2767
2768	/* We support sector sizes up to the PAGE_CACHE_SIZE. */
2769	if (bdev_logical_block_size(sb->s_bdev) > PAGE_CACHE_SIZE) {
2770		if (!silent)
2771			ntfs_error(sb, "Device has unsupported sector size "
2772					"(%i).  The maximum supported sector "
2773					"size on this architecture is %lu "
2774					"bytes.",
2775					bdev_logical_block_size(sb->s_bdev),
2776					PAGE_CACHE_SIZE);
2777		goto err_out_now;
2778	}
2779	/*
2780	 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard
2781	 * sector size, whichever is bigger.
2782	 */
2783	blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE);
2784	if (blocksize < NTFS_BLOCK_SIZE) {
2785		if (!silent)
2786			ntfs_error(sb, "Unable to set device block size.");
2787		goto err_out_now;
2788	}
2789	BUG_ON(blocksize != sb->s_blocksize);
2790	ntfs_debug("Set device block size to %i bytes (block size bits %i).",
2791			blocksize, sb->s_blocksize_bits);
2792	/* Determine the size of the device in units of block_size bytes. */
2793	if (!i_size_read(sb->s_bdev->bd_inode)) {
2794		if (!silent)
2795			ntfs_error(sb, "Unable to determine device size.");
2796		goto err_out_now;
2797	}
2798	vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2799			sb->s_blocksize_bits;
2800	/* Read the boot sector and return unlocked buffer head to it. */
2801	if (!(bh = read_ntfs_boot_sector(sb, silent))) {
2802		if (!silent)
2803			ntfs_error(sb, "Not an NTFS volume.");
2804		goto err_out_now;
2805	}
2806	/*
2807	 * Extract the data from the boot sector and setup the ntfs volume
2808	 * using it.
2809	 */
2810	result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data);
2811	brelse(bh);
2812	if (!result) {
2813		if (!silent)
2814			ntfs_error(sb, "Unsupported NTFS filesystem.");
2815		goto err_out_now;
2816	}
2817	/*
2818	 * If the boot sector indicates a sector size bigger than the current
2819	 * device block size, switch the device block size to the sector size.
2820	 * TODO: It may be possible to support this case even when the set
2821	 * below fails, we would just be breaking up the i/o for each sector
2822	 * into multiple blocks for i/o purposes but otherwise it should just
2823	 * work.  However it is safer to leave disabled until someone hits this
2824	 * error message and then we can get them to try it without the setting
2825	 * so we know for sure that it works.
2826	 */
2827	if (vol->sector_size > blocksize) {
2828		blocksize = sb_set_blocksize(sb, vol->sector_size);
2829		if (blocksize != vol->sector_size) {
2830			if (!silent)
2831				ntfs_error(sb, "Unable to set device block "
2832						"size to sector size (%i).",
2833						vol->sector_size);
2834			goto err_out_now;
2835		}
2836		BUG_ON(blocksize != sb->s_blocksize);
2837		vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2838				sb->s_blocksize_bits;
2839		ntfs_debug("Changed device block size to %i bytes (block size "
2840				"bits %i) to match volume sector size.",
2841				blocksize, sb->s_blocksize_bits);
2842	}
2843	/* Initialize the cluster and mft allocators. */
2844	ntfs_setup_allocators(vol);
2845	/* Setup remaining fields in the super block. */
2846	sb->s_magic = NTFS_SB_MAGIC;
2847	/*
2848	 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2849	 *	sb->s_maxbytes = ~0ULL >> 1;
2850	 * But the kernel uses a long as the page cache page index which on
2851	 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2852	 * defined to the maximum the page cache page index can cope with
2853	 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2854	 */
2855	sb->s_maxbytes = MAX_LFS_FILESIZE;
2856	/* Ntfs measures time in 100ns intervals. */
2857	sb->s_time_gran = 100;
2858	/*
2859	 * Now load the metadata required for the page cache and our address
2860	 * space operations to function. We do this by setting up a specialised
2861	 * read_inode method and then just calling the normal iget() to obtain
2862	 * the inode for $MFT which is sufficient to allow our normal inode
2863	 * operations and associated address space operations to function.
2864	 */
2865	sb->s_op = &ntfs_sops;
2866	tmp_ino = new_inode(sb);
2867	if (!tmp_ino) {
2868		if (!silent)
2869			ntfs_error(sb, "Failed to load essential metadata.");
2870		goto err_out_now;
2871	}
2872	tmp_ino->i_ino = FILE_MFT;
2873	insert_inode_hash(tmp_ino);
2874	if (ntfs_read_inode_mount(tmp_ino) < 0) {
2875		if (!silent)
2876			ntfs_error(sb, "Failed to load essential metadata.");
2877		goto iput_tmp_ino_err_out_now;
2878	}
2879	mutex_lock(&ntfs_lock);
2880	/*
2881	 * The current mount is a compression user if the cluster size is
2882	 * less than or equal 4kiB.
2883	 */
2884	if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) {
2885		result = allocate_compression_buffers();
2886		if (result) {
2887			ntfs_error(NULL, "Failed to allocate buffers "
2888					"for compression engine.");
2889			ntfs_nr_compression_users--;
2890			mutex_unlock(&ntfs_lock);
2891			goto iput_tmp_ino_err_out_now;
2892		}
2893	}
2894	/*
2895	 * Generate the global default upcase table if necessary.  Also
2896	 * temporarily increment the number of upcase users to avoid race
2897	 * conditions with concurrent (u)mounts.
2898	 */
2899	if (!default_upcase)
2900		default_upcase = generate_default_upcase();
2901	ntfs_nr_upcase_users++;
2902	mutex_unlock(&ntfs_lock);
2903	/*
2904	 * From now on, ignore @silent parameter. If we fail below this line,
2905	 * it will be due to a corrupt fs or a system error, so we report it.
2906	 */
2907	/*
2908	 * Open the system files with normal access functions and complete
2909	 * setting up the ntfs super block.
2910	 */
2911	if (!load_system_files(vol)) {
2912		ntfs_error(sb, "Failed to load system files.");
2913		goto unl_upcase_iput_tmp_ino_err_out_now;
2914	}
2915
2916	/* We grab a reference, simulating an ntfs_iget(). */
2917	ihold(vol->root_ino);
2918	if ((sb->s_root = d_make_root(vol->root_ino))) {
2919		ntfs_debug("Exiting, status successful.");
2920		/* Release the default upcase if it has no users. */
2921		mutex_lock(&ntfs_lock);
2922		if (!--ntfs_nr_upcase_users && default_upcase) {
2923			ntfs_free(default_upcase);
2924			default_upcase = NULL;
2925		}
2926		mutex_unlock(&ntfs_lock);
2927		sb->s_export_op = &ntfs_export_ops;
2928		lockdep_on();
2929		return 0;
2930	}
2931	ntfs_error(sb, "Failed to allocate root directory.");
2932	/* Clean up after the successful load_system_files() call from above. */
2933	// TODO: Use ntfs_put_super() instead of repeating all this code...
2934	// FIXME: Should mark the volume clean as the error is most likely
2935	// 	  -ENOMEM.
2936	iput(vol->vol_ino);
2937	vol->vol_ino = NULL;
2938	/* NTFS 3.0+ specific clean up. */
2939	if (vol->major_ver >= 3) {
2940#ifdef NTFS_RW
2941		if (vol->usnjrnl_j_ino) {
2942			iput(vol->usnjrnl_j_ino);
2943			vol->usnjrnl_j_ino = NULL;
2944		}
2945		if (vol->usnjrnl_max_ino) {
2946			iput(vol->usnjrnl_max_ino);
2947			vol->usnjrnl_max_ino = NULL;
2948		}
2949		if (vol->usnjrnl_ino) {
2950			iput(vol->usnjrnl_ino);
2951			vol->usnjrnl_ino = NULL;
2952		}
2953		if (vol->quota_q_ino) {
2954			iput(vol->quota_q_ino);
2955			vol->quota_q_ino = NULL;
2956		}
2957		if (vol->quota_ino) {
2958			iput(vol->quota_ino);
2959			vol->quota_ino = NULL;
2960		}
2961#endif /* NTFS_RW */
2962		if (vol->extend_ino) {
2963			iput(vol->extend_ino);
2964			vol->extend_ino = NULL;
2965		}
2966		if (vol->secure_ino) {
2967			iput(vol->secure_ino);
2968			vol->secure_ino = NULL;
2969		}
2970	}
2971	iput(vol->root_ino);
2972	vol->root_ino = NULL;
2973	iput(vol->lcnbmp_ino);
2974	vol->lcnbmp_ino = NULL;
2975	iput(vol->mftbmp_ino);
2976	vol->mftbmp_ino = NULL;
2977#ifdef NTFS_RW
2978	if (vol->logfile_ino) {
2979		iput(vol->logfile_ino);
2980		vol->logfile_ino = NULL;
2981	}
2982	if (vol->mftmirr_ino) {
2983		iput(vol->mftmirr_ino);
2984		vol->mftmirr_ino = NULL;
2985	}
2986#endif /* NTFS_RW */
2987	/* Throw away the table of attribute definitions. */
2988	vol->attrdef_size = 0;
2989	if (vol->attrdef) {
2990		ntfs_free(vol->attrdef);
2991		vol->attrdef = NULL;
2992	}
2993	vol->upcase_len = 0;
2994	mutex_lock(&ntfs_lock);
2995	if (vol->upcase == default_upcase) {
2996		ntfs_nr_upcase_users--;
2997		vol->upcase = NULL;
2998	}
2999	mutex_unlock(&ntfs_lock);
3000	if (vol->upcase) {
3001		ntfs_free(vol->upcase);
3002		vol->upcase = NULL;
3003	}
3004	if (vol->nls_map) {
3005		unload_nls(vol->nls_map);
3006		vol->nls_map = NULL;
3007	}
3008	/* Error exit code path. */
3009unl_upcase_iput_tmp_ino_err_out_now:
3010	/*
3011	 * Decrease the number of upcase users and destroy the global default
3012	 * upcase table if necessary.
3013	 */
3014	mutex_lock(&ntfs_lock);
3015	if (!--ntfs_nr_upcase_users && default_upcase) {
3016		ntfs_free(default_upcase);
3017		default_upcase = NULL;
3018	}
3019	if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
3020		free_compression_buffers();
3021	mutex_unlock(&ntfs_lock);
3022iput_tmp_ino_err_out_now:
3023	iput(tmp_ino);
3024	if (vol->mft_ino && vol->mft_ino != tmp_ino)
3025		iput(vol->mft_ino);
3026	vol->mft_ino = NULL;
3027	/* Errors at this stage are irrelevant. */
3028err_out_now:
3029	sb->s_fs_info = NULL;
3030	kfree(vol);
3031	ntfs_debug("Failed, returning -EINVAL.");
3032	lockdep_on();
3033	return -EINVAL;
3034}
3035
3036/*
3037 * This is a slab cache to optimize allocations and deallocations of Unicode
3038 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
3039 * (255) Unicode characters + a terminating NULL Unicode character.
3040 */
3041struct kmem_cache *ntfs_name_cache;
3042
3043/* Slab caches for efficient allocation/deallocation of inodes. */
3044struct kmem_cache *ntfs_inode_cache;
3045struct kmem_cache *ntfs_big_inode_cache;
3046
3047/* Init once constructor for the inode slab cache. */
3048static void ntfs_big_inode_init_once(void *foo)
3049{
3050	ntfs_inode *ni = (ntfs_inode *)foo;
3051
3052	inode_init_once(VFS_I(ni));
3053}
3054
3055/*
3056 * Slab caches to optimize allocations and deallocations of attribute search
3057 * contexts and index contexts, respectively.
3058 */
3059struct kmem_cache *ntfs_attr_ctx_cache;
3060struct kmem_cache *ntfs_index_ctx_cache;
3061
3062/* Driver wide mutex. */
3063DEFINE_MUTEX(ntfs_lock);
3064
3065static struct dentry *ntfs_mount(struct file_system_type *fs_type,
3066	int flags, const char *dev_name, void *data)
3067{
3068	return mount_bdev(fs_type, flags, dev_name, data, ntfs_fill_super);
3069}
3070
3071static struct file_system_type ntfs_fs_type = {
3072	.owner		= THIS_MODULE,
3073	.name		= "ntfs",
3074	.mount		= ntfs_mount,
3075	.kill_sb	= kill_block_super,
3076	.fs_flags	= FS_REQUIRES_DEV,
3077};
3078MODULE_ALIAS_FS("ntfs");
3079
3080/* Stable names for the slab caches. */
3081static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache";
3082static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache";
3083static const char ntfs_name_cache_name[] = "ntfs_name_cache";
3084static const char ntfs_inode_cache_name[] = "ntfs_inode_cache";
3085static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache";
3086
3087static int __init init_ntfs_fs(void)
3088{
3089	int err = 0;
3090
3091	/* This may be ugly but it results in pretty output so who cares. (-8 */
3092	pr_info("driver " NTFS_VERSION " [Flags: R/"
3093#ifdef NTFS_RW
3094			"W"
3095#else
3096			"O"
3097#endif
3098#ifdef DEBUG
3099			" DEBUG"
3100#endif
3101#ifdef MODULE
3102			" MODULE"
3103#endif
3104			"].\n");
3105
3106	ntfs_debug("Debug messages are enabled.");
3107
3108	ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name,
3109			sizeof(ntfs_index_context), 0 /* offset */,
3110			SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3111	if (!ntfs_index_ctx_cache) {
3112		pr_crit("Failed to create %s!\n", ntfs_index_ctx_cache_name);
3113		goto ictx_err_out;
3114	}
3115	ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name,
3116			sizeof(ntfs_attr_search_ctx), 0 /* offset */,
3117			SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3118	if (!ntfs_attr_ctx_cache) {
3119		pr_crit("NTFS: Failed to create %s!\n",
3120			ntfs_attr_ctx_cache_name);
3121		goto actx_err_out;
3122	}
3123
3124	ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name,
3125			(NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0,
3126			SLAB_HWCACHE_ALIGN, NULL);
3127	if (!ntfs_name_cache) {
3128		pr_crit("Failed to create %s!\n", ntfs_name_cache_name);
3129		goto name_err_out;
3130	}
3131
3132	ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name,
3133			sizeof(ntfs_inode), 0,
3134			SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
3135	if (!ntfs_inode_cache) {
3136		pr_crit("Failed to create %s!\n", ntfs_inode_cache_name);
3137		goto inode_err_out;
3138	}
3139
3140	ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name,
3141			sizeof(big_ntfs_inode), 0,
3142			SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
3143			ntfs_big_inode_init_once);
3144	if (!ntfs_big_inode_cache) {
3145		pr_crit("Failed to create %s!\n", ntfs_big_inode_cache_name);
3146		goto big_inode_err_out;
3147	}
3148
3149	/* Register the ntfs sysctls. */
3150	err = ntfs_sysctl(1);
3151	if (err) {
3152		pr_crit("Failed to register NTFS sysctls!\n");
3153		goto sysctl_err_out;
3154	}
3155
3156	err = register_filesystem(&ntfs_fs_type);
3157	if (!err) {
3158		ntfs_debug("NTFS driver registered successfully.");
3159		return 0; /* Success! */
3160	}
3161	pr_crit("Failed to register NTFS filesystem driver!\n");
3162
3163	/* Unregister the ntfs sysctls. */
3164	ntfs_sysctl(0);
3165sysctl_err_out:
3166	kmem_cache_destroy(ntfs_big_inode_cache);
3167big_inode_err_out:
3168	kmem_cache_destroy(ntfs_inode_cache);
3169inode_err_out:
3170	kmem_cache_destroy(ntfs_name_cache);
3171name_err_out:
3172	kmem_cache_destroy(ntfs_attr_ctx_cache);
3173actx_err_out:
3174	kmem_cache_destroy(ntfs_index_ctx_cache);
3175ictx_err_out:
3176	if (!err) {
3177		pr_crit("Aborting NTFS filesystem driver registration...\n");
3178		err = -ENOMEM;
3179	}
3180	return err;
3181}
3182
3183static void __exit exit_ntfs_fs(void)
3184{
3185	ntfs_debug("Unregistering NTFS driver.");
3186
3187	unregister_filesystem(&ntfs_fs_type);
3188
3189	/*
3190	 * Make sure all delayed rcu free inodes are flushed before we
3191	 * destroy cache.
3192	 */
3193	rcu_barrier();
3194	kmem_cache_destroy(ntfs_big_inode_cache);
3195	kmem_cache_destroy(ntfs_inode_cache);
3196	kmem_cache_destroy(ntfs_name_cache);
3197	kmem_cache_destroy(ntfs_attr_ctx_cache);
3198	kmem_cache_destroy(ntfs_index_ctx_cache);
3199	/* Unregister the ntfs sysctls. */
3200	ntfs_sysctl(0);
3201}
3202
3203MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>");
3204MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.");
3205MODULE_VERSION(NTFS_VERSION);
3206MODULE_LICENSE("GPL");
3207#ifdef DEBUG
3208module_param(debug_msgs, bint, 0);
3209MODULE_PARM_DESC(debug_msgs, "Enable debug messages.");
3210#endif
3211
3212module_init(init_ntfs_fs)
3213module_exit(exit_ntfs_fs)
3214