1/*
2 * super.c - NILFS module and super block management.
3 *
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19 *
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
21 */
22/*
23 *  linux/fs/ext2/super.c
24 *
25 * Copyright (C) 1992, 1993, 1994, 1995
26 * Remy Card (card@masi.ibp.fr)
27 * Laboratoire MASI - Institut Blaise Pascal
28 * Universite Pierre et Marie Curie (Paris VI)
29 *
30 *  from
31 *
32 *  linux/fs/minix/inode.c
33 *
34 *  Copyright (C) 1991, 1992  Linus Torvalds
35 *
36 *  Big-endian to little-endian byte-swapping/bitmaps by
37 *        David S. Miller (davem@caip.rutgers.edu), 1995
38 */
39
40#include <linux/module.h>
41#include <linux/string.h>
42#include <linux/slab.h>
43#include <linux/init.h>
44#include <linux/blkdev.h>
45#include <linux/parser.h>
46#include <linux/crc32.h>
47#include <linux/vfs.h>
48#include <linux/writeback.h>
49#include <linux/seq_file.h>
50#include <linux/mount.h>
51#include "nilfs.h"
52#include "export.h"
53#include "mdt.h"
54#include "alloc.h"
55#include "btree.h"
56#include "btnode.h"
57#include "page.h"
58#include "cpfile.h"
59#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
60#include "ifile.h"
61#include "dat.h"
62#include "segment.h"
63#include "segbuf.h"
64
65MODULE_AUTHOR("NTT Corp.");
66MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
67		   "(NILFS)");
68MODULE_LICENSE("GPL");
69
70static struct kmem_cache *nilfs_inode_cachep;
71struct kmem_cache *nilfs_transaction_cachep;
72struct kmem_cache *nilfs_segbuf_cachep;
73struct kmem_cache *nilfs_btree_path_cache;
74
75static int nilfs_setup_super(struct super_block *sb, int is_mount);
76static int nilfs_remount(struct super_block *sb, int *flags, char *data);
77
78static void nilfs_set_error(struct super_block *sb)
79{
80	struct the_nilfs *nilfs = sb->s_fs_info;
81	struct nilfs_super_block **sbp;
82
83	down_write(&nilfs->ns_sem);
84	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
85		nilfs->ns_mount_state |= NILFS_ERROR_FS;
86		sbp = nilfs_prepare_super(sb, 0);
87		if (likely(sbp)) {
88			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
89			if (sbp[1])
90				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
91			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
92		}
93	}
94	up_write(&nilfs->ns_sem);
95}
96
97/**
98 * nilfs_error() - report failure condition on a filesystem
99 *
100 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
101 * reporting an error message.  It should be called when NILFS detects
102 * incoherences or defects of meta data on disk.  As for sustainable
103 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
104 * function should be used instead.
105 *
106 * The segment constructor must not call this function because it can
107 * kill itself.
108 */
109void nilfs_error(struct super_block *sb, const char *function,
110		 const char *fmt, ...)
111{
112	struct the_nilfs *nilfs = sb->s_fs_info;
113	struct va_format vaf;
114	va_list args;
115
116	va_start(args, fmt);
117
118	vaf.fmt = fmt;
119	vaf.va = &args;
120
121	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
122	       sb->s_id, function, &vaf);
123
124	va_end(args);
125
126	if (!(sb->s_flags & MS_RDONLY)) {
127		nilfs_set_error(sb);
128
129		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
130			printk(KERN_CRIT "Remounting filesystem read-only\n");
131			sb->s_flags |= MS_RDONLY;
132		}
133	}
134
135	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
136		panic("NILFS (device %s): panic forced after error\n",
137		      sb->s_id);
138}
139
140void nilfs_warning(struct super_block *sb, const char *function,
141		   const char *fmt, ...)
142{
143	struct va_format vaf;
144	va_list args;
145
146	va_start(args, fmt);
147
148	vaf.fmt = fmt;
149	vaf.va = &args;
150
151	printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
152	       sb->s_id, function, &vaf);
153
154	va_end(args);
155}
156
157
158struct inode *nilfs_alloc_inode(struct super_block *sb)
159{
160	struct nilfs_inode_info *ii;
161
162	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
163	if (!ii)
164		return NULL;
165	ii->i_bh = NULL;
166	ii->i_state = 0;
167	ii->i_cno = 0;
168	ii->vfs_inode.i_version = 1;
169	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
170	return &ii->vfs_inode;
171}
172
173static void nilfs_i_callback(struct rcu_head *head)
174{
175	struct inode *inode = container_of(head, struct inode, i_rcu);
176	struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
177
178	if (mdi) {
179		kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
180		kfree(mdi);
181	}
182	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
183}
184
185void nilfs_destroy_inode(struct inode *inode)
186{
187	call_rcu(&inode->i_rcu, nilfs_i_callback);
188}
189
190static int nilfs_sync_super(struct super_block *sb, int flag)
191{
192	struct the_nilfs *nilfs = sb->s_fs_info;
193	int err;
194
195 retry:
196	set_buffer_dirty(nilfs->ns_sbh[0]);
197	if (nilfs_test_opt(nilfs, BARRIER)) {
198		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
199					  WRITE_SYNC | WRITE_FLUSH_FUA);
200	} else {
201		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
202	}
203
204	if (unlikely(err)) {
205		printk(KERN_ERR
206		       "NILFS: unable to write superblock (err=%d)\n", err);
207		if (err == -EIO && nilfs->ns_sbh[1]) {
208			/*
209			 * sbp[0] points to newer log than sbp[1],
210			 * so copy sbp[0] to sbp[1] to take over sbp[0].
211			 */
212			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
213			       nilfs->ns_sbsize);
214			nilfs_fall_back_super_block(nilfs);
215			goto retry;
216		}
217	} else {
218		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
219
220		nilfs->ns_sbwcount++;
221
222		/*
223		 * The latest segment becomes trailable from the position
224		 * written in superblock.
225		 */
226		clear_nilfs_discontinued(nilfs);
227
228		/* update GC protection for recent segments */
229		if (nilfs->ns_sbh[1]) {
230			if (flag == NILFS_SB_COMMIT_ALL) {
231				set_buffer_dirty(nilfs->ns_sbh[1]);
232				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
233					goto out;
234			}
235			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
236			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
237				sbp = nilfs->ns_sbp[1];
238		}
239
240		spin_lock(&nilfs->ns_last_segment_lock);
241		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
242		spin_unlock(&nilfs->ns_last_segment_lock);
243	}
244 out:
245	return err;
246}
247
248void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
249			  struct the_nilfs *nilfs)
250{
251	sector_t nfreeblocks;
252
253	/* nilfs->ns_sem must be locked by the caller. */
254	nilfs_count_free_blocks(nilfs, &nfreeblocks);
255	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
256
257	spin_lock(&nilfs->ns_last_segment_lock);
258	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
259	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
260	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
261	spin_unlock(&nilfs->ns_last_segment_lock);
262}
263
264struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
265					       int flip)
266{
267	struct the_nilfs *nilfs = sb->s_fs_info;
268	struct nilfs_super_block **sbp = nilfs->ns_sbp;
269
270	/* nilfs->ns_sem must be locked by the caller. */
271	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
272		if (sbp[1] &&
273		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
274			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
275		} else {
276			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
277			       sb->s_id);
278			return NULL;
279		}
280	} else if (sbp[1] &&
281		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
282			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
283	}
284
285	if (flip && sbp[1])
286		nilfs_swap_super_block(nilfs);
287
288	return sbp;
289}
290
291int nilfs_commit_super(struct super_block *sb, int flag)
292{
293	struct the_nilfs *nilfs = sb->s_fs_info;
294	struct nilfs_super_block **sbp = nilfs->ns_sbp;
295	time_t t;
296
297	/* nilfs->ns_sem must be locked by the caller. */
298	t = get_seconds();
299	nilfs->ns_sbwtime = t;
300	sbp[0]->s_wtime = cpu_to_le64(t);
301	sbp[0]->s_sum = 0;
302	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
303					     (unsigned char *)sbp[0],
304					     nilfs->ns_sbsize));
305	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
306		sbp[1]->s_wtime = sbp[0]->s_wtime;
307		sbp[1]->s_sum = 0;
308		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
309					    (unsigned char *)sbp[1],
310					    nilfs->ns_sbsize));
311	}
312	clear_nilfs_sb_dirty(nilfs);
313	nilfs->ns_flushed_device = 1;
314	/* make sure store to ns_flushed_device cannot be reordered */
315	smp_wmb();
316	return nilfs_sync_super(sb, flag);
317}
318
319/**
320 * nilfs_cleanup_super() - write filesystem state for cleanup
321 * @sb: super block instance to be unmounted or degraded to read-only
322 *
323 * This function restores state flags in the on-disk super block.
324 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
325 * filesystem was not clean previously.
326 */
327int nilfs_cleanup_super(struct super_block *sb)
328{
329	struct the_nilfs *nilfs = sb->s_fs_info;
330	struct nilfs_super_block **sbp;
331	int flag = NILFS_SB_COMMIT;
332	int ret = -EIO;
333
334	sbp = nilfs_prepare_super(sb, 0);
335	if (sbp) {
336		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
337		nilfs_set_log_cursor(sbp[0], nilfs);
338		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
339			/*
340			 * make the "clean" flag also to the opposite
341			 * super block if both super blocks point to
342			 * the same checkpoint.
343			 */
344			sbp[1]->s_state = sbp[0]->s_state;
345			flag = NILFS_SB_COMMIT_ALL;
346		}
347		ret = nilfs_commit_super(sb, flag);
348	}
349	return ret;
350}
351
352/**
353 * nilfs_move_2nd_super - relocate secondary super block
354 * @sb: super block instance
355 * @sb2off: new offset of the secondary super block (in bytes)
356 */
357static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
358{
359	struct the_nilfs *nilfs = sb->s_fs_info;
360	struct buffer_head *nsbh;
361	struct nilfs_super_block *nsbp;
362	sector_t blocknr, newblocknr;
363	unsigned long offset;
364	int sb2i;  /* array index of the secondary superblock */
365	int ret = 0;
366
367	/* nilfs->ns_sem must be locked by the caller. */
368	if (nilfs->ns_sbh[1] &&
369	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
370		sb2i = 1;
371		blocknr = nilfs->ns_sbh[1]->b_blocknr;
372	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
373		sb2i = 0;
374		blocknr = nilfs->ns_sbh[0]->b_blocknr;
375	} else {
376		sb2i = -1;
377		blocknr = 0;
378	}
379	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
380		goto out;  /* super block location is unchanged */
381
382	/* Get new super block buffer */
383	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
384	offset = sb2off & (nilfs->ns_blocksize - 1);
385	nsbh = sb_getblk(sb, newblocknr);
386	if (!nsbh) {
387		printk(KERN_WARNING
388		       "NILFS warning: unable to move secondary superblock "
389		       "to block %llu\n", (unsigned long long)newblocknr);
390		ret = -EIO;
391		goto out;
392	}
393	nsbp = (void *)nsbh->b_data + offset;
394	memset(nsbp, 0, nilfs->ns_blocksize);
395
396	if (sb2i >= 0) {
397		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
398		brelse(nilfs->ns_sbh[sb2i]);
399		nilfs->ns_sbh[sb2i] = nsbh;
400		nilfs->ns_sbp[sb2i] = nsbp;
401	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
402		/* secondary super block will be restored to index 1 */
403		nilfs->ns_sbh[1] = nsbh;
404		nilfs->ns_sbp[1] = nsbp;
405	} else {
406		brelse(nsbh);
407	}
408out:
409	return ret;
410}
411
412/**
413 * nilfs_resize_fs - resize the filesystem
414 * @sb: super block instance
415 * @newsize: new size of the filesystem (in bytes)
416 */
417int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
418{
419	struct the_nilfs *nilfs = sb->s_fs_info;
420	struct nilfs_super_block **sbp;
421	__u64 devsize, newnsegs;
422	loff_t sb2off;
423	int ret;
424
425	ret = -ERANGE;
426	devsize = i_size_read(sb->s_bdev->bd_inode);
427	if (newsize > devsize)
428		goto out;
429
430	/*
431	 * Write lock is required to protect some functions depending
432	 * on the number of segments, the number of reserved segments,
433	 * and so forth.
434	 */
435	down_write(&nilfs->ns_segctor_sem);
436
437	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
438	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
439	do_div(newnsegs, nilfs->ns_blocks_per_segment);
440
441	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
442	up_write(&nilfs->ns_segctor_sem);
443	if (ret < 0)
444		goto out;
445
446	ret = nilfs_construct_segment(sb);
447	if (ret < 0)
448		goto out;
449
450	down_write(&nilfs->ns_sem);
451	nilfs_move_2nd_super(sb, sb2off);
452	ret = -EIO;
453	sbp = nilfs_prepare_super(sb, 0);
454	if (likely(sbp)) {
455		nilfs_set_log_cursor(sbp[0], nilfs);
456		/*
457		 * Drop NILFS_RESIZE_FS flag for compatibility with
458		 * mount-time resize which may be implemented in a
459		 * future release.
460		 */
461		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
462					      ~NILFS_RESIZE_FS);
463		sbp[0]->s_dev_size = cpu_to_le64(newsize);
464		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
465		if (sbp[1])
466			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
467		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
468	}
469	up_write(&nilfs->ns_sem);
470
471	/*
472	 * Reset the range of allocatable segments last.  This order
473	 * is important in the case of expansion because the secondary
474	 * superblock must be protected from log write until migration
475	 * completes.
476	 */
477	if (!ret)
478		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
479out:
480	return ret;
481}
482
483static void nilfs_put_super(struct super_block *sb)
484{
485	struct the_nilfs *nilfs = sb->s_fs_info;
486
487	nilfs_detach_log_writer(sb);
488
489	if (!(sb->s_flags & MS_RDONLY)) {
490		down_write(&nilfs->ns_sem);
491		nilfs_cleanup_super(sb);
492		up_write(&nilfs->ns_sem);
493	}
494
495	iput(nilfs->ns_sufile);
496	iput(nilfs->ns_cpfile);
497	iput(nilfs->ns_dat);
498
499	destroy_nilfs(nilfs);
500	sb->s_fs_info = NULL;
501}
502
503static int nilfs_sync_fs(struct super_block *sb, int wait)
504{
505	struct the_nilfs *nilfs = sb->s_fs_info;
506	struct nilfs_super_block **sbp;
507	int err = 0;
508
509	/* This function is called when super block should be written back */
510	if (wait)
511		err = nilfs_construct_segment(sb);
512
513	down_write(&nilfs->ns_sem);
514	if (nilfs_sb_dirty(nilfs)) {
515		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
516		if (likely(sbp)) {
517			nilfs_set_log_cursor(sbp[0], nilfs);
518			nilfs_commit_super(sb, NILFS_SB_COMMIT);
519		}
520	}
521	up_write(&nilfs->ns_sem);
522
523	if (!err)
524		err = nilfs_flush_device(nilfs);
525
526	return err;
527}
528
529int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
530			    struct nilfs_root **rootp)
531{
532	struct the_nilfs *nilfs = sb->s_fs_info;
533	struct nilfs_root *root;
534	struct nilfs_checkpoint *raw_cp;
535	struct buffer_head *bh_cp;
536	int err = -ENOMEM;
537
538	root = nilfs_find_or_create_root(
539		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
540	if (!root)
541		return err;
542
543	if (root->ifile)
544		goto reuse; /* already attached checkpoint */
545
546	down_read(&nilfs->ns_segctor_sem);
547	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
548					  &bh_cp);
549	up_read(&nilfs->ns_segctor_sem);
550	if (unlikely(err)) {
551		if (err == -ENOENT || err == -EINVAL) {
552			printk(KERN_ERR
553			       "NILFS: Invalid checkpoint "
554			       "(checkpoint number=%llu)\n",
555			       (unsigned long long)cno);
556			err = -EINVAL;
557		}
558		goto failed;
559	}
560
561	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
562			       &raw_cp->cp_ifile_inode, &root->ifile);
563	if (err)
564		goto failed_bh;
565
566	atomic64_set(&root->inodes_count,
567			le64_to_cpu(raw_cp->cp_inodes_count));
568	atomic64_set(&root->blocks_count,
569			le64_to_cpu(raw_cp->cp_blocks_count));
570
571	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
572
573 reuse:
574	*rootp = root;
575	return 0;
576
577 failed_bh:
578	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
579 failed:
580	nilfs_put_root(root);
581
582	return err;
583}
584
585static int nilfs_freeze(struct super_block *sb)
586{
587	struct the_nilfs *nilfs = sb->s_fs_info;
588	int err;
589
590	if (sb->s_flags & MS_RDONLY)
591		return 0;
592
593	/* Mark super block clean */
594	down_write(&nilfs->ns_sem);
595	err = nilfs_cleanup_super(sb);
596	up_write(&nilfs->ns_sem);
597	return err;
598}
599
600static int nilfs_unfreeze(struct super_block *sb)
601{
602	struct the_nilfs *nilfs = sb->s_fs_info;
603
604	if (sb->s_flags & MS_RDONLY)
605		return 0;
606
607	down_write(&nilfs->ns_sem);
608	nilfs_setup_super(sb, false);
609	up_write(&nilfs->ns_sem);
610	return 0;
611}
612
613static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
614{
615	struct super_block *sb = dentry->d_sb;
616	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
617	struct the_nilfs *nilfs = root->nilfs;
618	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
619	unsigned long long blocks;
620	unsigned long overhead;
621	unsigned long nrsvblocks;
622	sector_t nfreeblocks;
623	u64 nmaxinodes, nfreeinodes;
624	int err;
625
626	/*
627	 * Compute all of the segment blocks
628	 *
629	 * The blocks before first segment and after last segment
630	 * are excluded.
631	 */
632	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
633		- nilfs->ns_first_data_block;
634	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
635
636	/*
637	 * Compute the overhead
638	 *
639	 * When distributing meta data blocks outside segment structure,
640	 * We must count them as the overhead.
641	 */
642	overhead = 0;
643
644	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
645	if (unlikely(err))
646		return err;
647
648	err = nilfs_ifile_count_free_inodes(root->ifile,
649					    &nmaxinodes, &nfreeinodes);
650	if (unlikely(err)) {
651		printk(KERN_WARNING
652			"NILFS warning: fail to count free inodes: err %d.\n",
653			err);
654		if (err == -ERANGE) {
655			/*
656			 * If nilfs_palloc_count_max_entries() returns
657			 * -ERANGE error code then we simply treat
658			 * curent inodes count as maximum possible and
659			 * zero as free inodes value.
660			 */
661			nmaxinodes = atomic64_read(&root->inodes_count);
662			nfreeinodes = 0;
663			err = 0;
664		} else
665			return err;
666	}
667
668	buf->f_type = NILFS_SUPER_MAGIC;
669	buf->f_bsize = sb->s_blocksize;
670	buf->f_blocks = blocks - overhead;
671	buf->f_bfree = nfreeblocks;
672	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
673		(buf->f_bfree - nrsvblocks) : 0;
674	buf->f_files = nmaxinodes;
675	buf->f_ffree = nfreeinodes;
676	buf->f_namelen = NILFS_NAME_LEN;
677	buf->f_fsid.val[0] = (u32)id;
678	buf->f_fsid.val[1] = (u32)(id >> 32);
679
680	return 0;
681}
682
683static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
684{
685	struct super_block *sb = dentry->d_sb;
686	struct the_nilfs *nilfs = sb->s_fs_info;
687	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
688
689	if (!nilfs_test_opt(nilfs, BARRIER))
690		seq_puts(seq, ",nobarrier");
691	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
692		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
693	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
694		seq_puts(seq, ",errors=panic");
695	if (nilfs_test_opt(nilfs, ERRORS_CONT))
696		seq_puts(seq, ",errors=continue");
697	if (nilfs_test_opt(nilfs, STRICT_ORDER))
698		seq_puts(seq, ",order=strict");
699	if (nilfs_test_opt(nilfs, NORECOVERY))
700		seq_puts(seq, ",norecovery");
701	if (nilfs_test_opt(nilfs, DISCARD))
702		seq_puts(seq, ",discard");
703
704	return 0;
705}
706
707static const struct super_operations nilfs_sops = {
708	.alloc_inode    = nilfs_alloc_inode,
709	.destroy_inode  = nilfs_destroy_inode,
710	.dirty_inode    = nilfs_dirty_inode,
711	.evict_inode    = nilfs_evict_inode,
712	.put_super      = nilfs_put_super,
713	.sync_fs        = nilfs_sync_fs,
714	.freeze_fs	= nilfs_freeze,
715	.unfreeze_fs	= nilfs_unfreeze,
716	.statfs         = nilfs_statfs,
717	.remount_fs     = nilfs_remount,
718	.show_options = nilfs_show_options
719};
720
721enum {
722	Opt_err_cont, Opt_err_panic, Opt_err_ro,
723	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
724	Opt_discard, Opt_nodiscard, Opt_err,
725};
726
727static match_table_t tokens = {
728	{Opt_err_cont, "errors=continue"},
729	{Opt_err_panic, "errors=panic"},
730	{Opt_err_ro, "errors=remount-ro"},
731	{Opt_barrier, "barrier"},
732	{Opt_nobarrier, "nobarrier"},
733	{Opt_snapshot, "cp=%u"},
734	{Opt_order, "order=%s"},
735	{Opt_norecovery, "norecovery"},
736	{Opt_discard, "discard"},
737	{Opt_nodiscard, "nodiscard"},
738	{Opt_err, NULL}
739};
740
741static int parse_options(char *options, struct super_block *sb, int is_remount)
742{
743	struct the_nilfs *nilfs = sb->s_fs_info;
744	char *p;
745	substring_t args[MAX_OPT_ARGS];
746
747	if (!options)
748		return 1;
749
750	while ((p = strsep(&options, ",")) != NULL) {
751		int token;
752		if (!*p)
753			continue;
754
755		token = match_token(p, tokens, args);
756		switch (token) {
757		case Opt_barrier:
758			nilfs_set_opt(nilfs, BARRIER);
759			break;
760		case Opt_nobarrier:
761			nilfs_clear_opt(nilfs, BARRIER);
762			break;
763		case Opt_order:
764			if (strcmp(args[0].from, "relaxed") == 0)
765				/* Ordered data semantics */
766				nilfs_clear_opt(nilfs, STRICT_ORDER);
767			else if (strcmp(args[0].from, "strict") == 0)
768				/* Strict in-order semantics */
769				nilfs_set_opt(nilfs, STRICT_ORDER);
770			else
771				return 0;
772			break;
773		case Opt_err_panic:
774			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
775			break;
776		case Opt_err_ro:
777			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
778			break;
779		case Opt_err_cont:
780			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
781			break;
782		case Opt_snapshot:
783			if (is_remount) {
784				printk(KERN_ERR
785				       "NILFS: \"%s\" option is invalid "
786				       "for remount.\n", p);
787				return 0;
788			}
789			break;
790		case Opt_norecovery:
791			nilfs_set_opt(nilfs, NORECOVERY);
792			break;
793		case Opt_discard:
794			nilfs_set_opt(nilfs, DISCARD);
795			break;
796		case Opt_nodiscard:
797			nilfs_clear_opt(nilfs, DISCARD);
798			break;
799		default:
800			printk(KERN_ERR
801			       "NILFS: Unrecognized mount option \"%s\"\n", p);
802			return 0;
803		}
804	}
805	return 1;
806}
807
808static inline void
809nilfs_set_default_options(struct super_block *sb,
810			  struct nilfs_super_block *sbp)
811{
812	struct the_nilfs *nilfs = sb->s_fs_info;
813
814	nilfs->ns_mount_opt =
815		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
816}
817
818static int nilfs_setup_super(struct super_block *sb, int is_mount)
819{
820	struct the_nilfs *nilfs = sb->s_fs_info;
821	struct nilfs_super_block **sbp;
822	int max_mnt_count;
823	int mnt_count;
824
825	/* nilfs->ns_sem must be locked by the caller. */
826	sbp = nilfs_prepare_super(sb, 0);
827	if (!sbp)
828		return -EIO;
829
830	if (!is_mount)
831		goto skip_mount_setup;
832
833	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
834	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
835
836	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
837		printk(KERN_WARNING
838		       "NILFS warning: mounting fs with errors\n");
839#if 0
840	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
841		printk(KERN_WARNING
842		       "NILFS warning: maximal mount count reached\n");
843#endif
844	}
845	if (!max_mnt_count)
846		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
847
848	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
849	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
850
851skip_mount_setup:
852	sbp[0]->s_state =
853		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
854	/* synchronize sbp[1] with sbp[0] */
855	if (sbp[1])
856		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
857	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
858}
859
860struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
861						 u64 pos, int blocksize,
862						 struct buffer_head **pbh)
863{
864	unsigned long long sb_index = pos;
865	unsigned long offset;
866
867	offset = do_div(sb_index, blocksize);
868	*pbh = sb_bread(sb, sb_index);
869	if (!*pbh)
870		return NULL;
871	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
872}
873
874int nilfs_store_magic_and_option(struct super_block *sb,
875				 struct nilfs_super_block *sbp,
876				 char *data)
877{
878	struct the_nilfs *nilfs = sb->s_fs_info;
879
880	sb->s_magic = le16_to_cpu(sbp->s_magic);
881
882	/* FS independent flags */
883#ifdef NILFS_ATIME_DISABLE
884	sb->s_flags |= MS_NOATIME;
885#endif
886
887	nilfs_set_default_options(sb, sbp);
888
889	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
890	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
891	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
892	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
893
894	return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
895}
896
897int nilfs_check_feature_compatibility(struct super_block *sb,
898				      struct nilfs_super_block *sbp)
899{
900	__u64 features;
901
902	features = le64_to_cpu(sbp->s_feature_incompat) &
903		~NILFS_FEATURE_INCOMPAT_SUPP;
904	if (features) {
905		printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
906		       "optional features (%llx)\n",
907		       (unsigned long long)features);
908		return -EINVAL;
909	}
910	features = le64_to_cpu(sbp->s_feature_compat_ro) &
911		~NILFS_FEATURE_COMPAT_RO_SUPP;
912	if (!(sb->s_flags & MS_RDONLY) && features) {
913		printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
914		       "unsupported optional features (%llx)\n",
915		       (unsigned long long)features);
916		return -EINVAL;
917	}
918	return 0;
919}
920
921static int nilfs_get_root_dentry(struct super_block *sb,
922				 struct nilfs_root *root,
923				 struct dentry **root_dentry)
924{
925	struct inode *inode;
926	struct dentry *dentry;
927	int ret = 0;
928
929	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
930	if (IS_ERR(inode)) {
931		printk(KERN_ERR "NILFS: get root inode failed\n");
932		ret = PTR_ERR(inode);
933		goto out;
934	}
935	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
936		iput(inode);
937		printk(KERN_ERR "NILFS: corrupt root inode.\n");
938		ret = -EINVAL;
939		goto out;
940	}
941
942	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
943		dentry = d_find_alias(inode);
944		if (!dentry) {
945			dentry = d_make_root(inode);
946			if (!dentry) {
947				ret = -ENOMEM;
948				goto failed_dentry;
949			}
950		} else {
951			iput(inode);
952		}
953	} else {
954		dentry = d_obtain_root(inode);
955		if (IS_ERR(dentry)) {
956			ret = PTR_ERR(dentry);
957			goto failed_dentry;
958		}
959	}
960	*root_dentry = dentry;
961 out:
962	return ret;
963
964 failed_dentry:
965	printk(KERN_ERR "NILFS: get root dentry failed\n");
966	goto out;
967}
968
969static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
970				 struct dentry **root_dentry)
971{
972	struct the_nilfs *nilfs = s->s_fs_info;
973	struct nilfs_root *root;
974	int ret;
975
976	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
977
978	down_read(&nilfs->ns_segctor_sem);
979	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
980	up_read(&nilfs->ns_segctor_sem);
981	if (ret < 0) {
982		ret = (ret == -ENOENT) ? -EINVAL : ret;
983		goto out;
984	} else if (!ret) {
985		printk(KERN_ERR "NILFS: The specified checkpoint is "
986		       "not a snapshot (checkpoint number=%llu).\n",
987		       (unsigned long long)cno);
988		ret = -EINVAL;
989		goto out;
990	}
991
992	ret = nilfs_attach_checkpoint(s, cno, false, &root);
993	if (ret) {
994		printk(KERN_ERR "NILFS: error loading snapshot "
995		       "(checkpoint number=%llu).\n",
996	       (unsigned long long)cno);
997		goto out;
998	}
999	ret = nilfs_get_root_dentry(s, root, root_dentry);
1000	nilfs_put_root(root);
1001 out:
1002	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
1003	return ret;
1004}
1005
1006/**
1007 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1008 * @root_dentry: root dentry of the tree to be shrunk
1009 *
1010 * This function returns true if the tree was in-use.
1011 */
1012static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1013{
1014	shrink_dcache_parent(root_dentry);
1015	return d_count(root_dentry) > 1;
1016}
1017
1018int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1019{
1020	struct the_nilfs *nilfs = sb->s_fs_info;
1021	struct nilfs_root *root;
1022	struct inode *inode;
1023	struct dentry *dentry;
1024	int ret;
1025
1026	if (cno > nilfs->ns_cno)
1027		return false;
1028
1029	if (cno >= nilfs_last_cno(nilfs))
1030		return true;	/* protect recent checkpoints */
1031
1032	ret = false;
1033	root = nilfs_lookup_root(nilfs, cno);
1034	if (root) {
1035		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1036		if (inode) {
1037			dentry = d_find_alias(inode);
1038			if (dentry) {
1039				ret = nilfs_tree_is_busy(dentry);
1040				dput(dentry);
1041			}
1042			iput(inode);
1043		}
1044		nilfs_put_root(root);
1045	}
1046	return ret;
1047}
1048
1049/**
1050 * nilfs_fill_super() - initialize a super block instance
1051 * @sb: super_block
1052 * @data: mount options
1053 * @silent: silent mode flag
1054 *
1055 * This function is called exclusively by nilfs->ns_mount_mutex.
1056 * So, the recovery process is protected from other simultaneous mounts.
1057 */
1058static int
1059nilfs_fill_super(struct super_block *sb, void *data, int silent)
1060{
1061	struct the_nilfs *nilfs;
1062	struct nilfs_root *fsroot;
1063	__u64 cno;
1064	int err;
1065
1066	nilfs = alloc_nilfs(sb->s_bdev);
1067	if (!nilfs)
1068		return -ENOMEM;
1069
1070	sb->s_fs_info = nilfs;
1071
1072	err = init_nilfs(nilfs, sb, (char *)data);
1073	if (err)
1074		goto failed_nilfs;
1075
1076	sb->s_op = &nilfs_sops;
1077	sb->s_export_op = &nilfs_export_ops;
1078	sb->s_root = NULL;
1079	sb->s_time_gran = 1;
1080	sb->s_max_links = NILFS_LINK_MAX;
1081
1082	sb->s_bdi = &bdev_get_queue(sb->s_bdev)->backing_dev_info;
1083
1084	err = load_nilfs(nilfs, sb);
1085	if (err)
1086		goto failed_nilfs;
1087
1088	cno = nilfs_last_cno(nilfs);
1089	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1090	if (err) {
1091		printk(KERN_ERR "NILFS: error loading last checkpoint "
1092		       "(checkpoint number=%llu).\n", (unsigned long long)cno);
1093		goto failed_unload;
1094	}
1095
1096	if (!(sb->s_flags & MS_RDONLY)) {
1097		err = nilfs_attach_log_writer(sb, fsroot);
1098		if (err)
1099			goto failed_checkpoint;
1100	}
1101
1102	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1103	if (err)
1104		goto failed_segctor;
1105
1106	nilfs_put_root(fsroot);
1107
1108	if (!(sb->s_flags & MS_RDONLY)) {
1109		down_write(&nilfs->ns_sem);
1110		nilfs_setup_super(sb, true);
1111		up_write(&nilfs->ns_sem);
1112	}
1113
1114	return 0;
1115
1116 failed_segctor:
1117	nilfs_detach_log_writer(sb);
1118
1119 failed_checkpoint:
1120	nilfs_put_root(fsroot);
1121
1122 failed_unload:
1123	iput(nilfs->ns_sufile);
1124	iput(nilfs->ns_cpfile);
1125	iput(nilfs->ns_dat);
1126
1127 failed_nilfs:
1128	destroy_nilfs(nilfs);
1129	return err;
1130}
1131
1132static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1133{
1134	struct the_nilfs *nilfs = sb->s_fs_info;
1135	unsigned long old_sb_flags;
1136	unsigned long old_mount_opt;
1137	int err;
1138
1139	sync_filesystem(sb);
1140	old_sb_flags = sb->s_flags;
1141	old_mount_opt = nilfs->ns_mount_opt;
1142
1143	if (!parse_options(data, sb, 1)) {
1144		err = -EINVAL;
1145		goto restore_opts;
1146	}
1147	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1148
1149	err = -EINVAL;
1150
1151	if (!nilfs_valid_fs(nilfs)) {
1152		printk(KERN_WARNING "NILFS (device %s): couldn't "
1153		       "remount because the filesystem is in an "
1154		       "incomplete recovery state.\n", sb->s_id);
1155		goto restore_opts;
1156	}
1157
1158	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1159		goto out;
1160	if (*flags & MS_RDONLY) {
1161		/* Shutting down log writer */
1162		nilfs_detach_log_writer(sb);
1163		sb->s_flags |= MS_RDONLY;
1164
1165		/*
1166		 * Remounting a valid RW partition RDONLY, so set
1167		 * the RDONLY flag and then mark the partition as valid again.
1168		 */
1169		down_write(&nilfs->ns_sem);
1170		nilfs_cleanup_super(sb);
1171		up_write(&nilfs->ns_sem);
1172	} else {
1173		__u64 features;
1174		struct nilfs_root *root;
1175
1176		/*
1177		 * Mounting a RDONLY partition read-write, so reread and
1178		 * store the current valid flag.  (It may have been changed
1179		 * by fsck since we originally mounted the partition.)
1180		 */
1181		down_read(&nilfs->ns_sem);
1182		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1183			~NILFS_FEATURE_COMPAT_RO_SUPP;
1184		up_read(&nilfs->ns_sem);
1185		if (features) {
1186			printk(KERN_WARNING "NILFS (device %s): couldn't "
1187			       "remount RDWR because of unsupported optional "
1188			       "features (%llx)\n",
1189			       sb->s_id, (unsigned long long)features);
1190			err = -EROFS;
1191			goto restore_opts;
1192		}
1193
1194		sb->s_flags &= ~MS_RDONLY;
1195
1196		root = NILFS_I(d_inode(sb->s_root))->i_root;
1197		err = nilfs_attach_log_writer(sb, root);
1198		if (err)
1199			goto restore_opts;
1200
1201		down_write(&nilfs->ns_sem);
1202		nilfs_setup_super(sb, true);
1203		up_write(&nilfs->ns_sem);
1204	}
1205 out:
1206	return 0;
1207
1208 restore_opts:
1209	sb->s_flags = old_sb_flags;
1210	nilfs->ns_mount_opt = old_mount_opt;
1211	return err;
1212}
1213
1214struct nilfs_super_data {
1215	struct block_device *bdev;
1216	__u64 cno;
1217	int flags;
1218};
1219
1220/**
1221 * nilfs_identify - pre-read mount options needed to identify mount instance
1222 * @data: mount options
1223 * @sd: nilfs_super_data
1224 */
1225static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1226{
1227	char *p, *options = data;
1228	substring_t args[MAX_OPT_ARGS];
1229	int token;
1230	int ret = 0;
1231
1232	do {
1233		p = strsep(&options, ",");
1234		if (p != NULL && *p) {
1235			token = match_token(p, tokens, args);
1236			if (token == Opt_snapshot) {
1237				if (!(sd->flags & MS_RDONLY)) {
1238					ret++;
1239				} else {
1240					sd->cno = simple_strtoull(args[0].from,
1241								  NULL, 0);
1242					/*
1243					 * No need to see the end pointer;
1244					 * match_token() has done syntax
1245					 * checking.
1246					 */
1247					if (sd->cno == 0)
1248						ret++;
1249				}
1250			}
1251			if (ret)
1252				printk(KERN_ERR
1253				       "NILFS: invalid mount option: %s\n", p);
1254		}
1255		if (!options)
1256			break;
1257		BUG_ON(options == data);
1258		*(options - 1) = ',';
1259	} while (!ret);
1260	return ret;
1261}
1262
1263static int nilfs_set_bdev_super(struct super_block *s, void *data)
1264{
1265	s->s_bdev = data;
1266	s->s_dev = s->s_bdev->bd_dev;
1267	return 0;
1268}
1269
1270static int nilfs_test_bdev_super(struct super_block *s, void *data)
1271{
1272	return (void *)s->s_bdev == data;
1273}
1274
1275static struct dentry *
1276nilfs_mount(struct file_system_type *fs_type, int flags,
1277	     const char *dev_name, void *data)
1278{
1279	struct nilfs_super_data sd;
1280	struct super_block *s;
1281	fmode_t mode = FMODE_READ | FMODE_EXCL;
1282	struct dentry *root_dentry;
1283	int err, s_new = false;
1284
1285	if (!(flags & MS_RDONLY))
1286		mode |= FMODE_WRITE;
1287
1288	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1289	if (IS_ERR(sd.bdev))
1290		return ERR_CAST(sd.bdev);
1291
1292	sd.cno = 0;
1293	sd.flags = flags;
1294	if (nilfs_identify((char *)data, &sd)) {
1295		err = -EINVAL;
1296		goto failed;
1297	}
1298
1299	/*
1300	 * once the super is inserted into the list by sget, s_umount
1301	 * will protect the lockfs code from trying to start a snapshot
1302	 * while we are mounting
1303	 */
1304	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1305	if (sd.bdev->bd_fsfreeze_count > 0) {
1306		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1307		err = -EBUSY;
1308		goto failed;
1309	}
1310	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1311		 sd.bdev);
1312	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1313	if (IS_ERR(s)) {
1314		err = PTR_ERR(s);
1315		goto failed;
1316	}
1317
1318	if (!s->s_root) {
1319		char b[BDEVNAME_SIZE];
1320
1321		s_new = true;
1322
1323		/* New superblock instance created */
1324		s->s_mode = mode;
1325		strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1326		sb_set_blocksize(s, block_size(sd.bdev));
1327
1328		err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1329		if (err)
1330			goto failed_super;
1331
1332		s->s_flags |= MS_ACTIVE;
1333	} else if (!sd.cno) {
1334		if (nilfs_tree_is_busy(s->s_root)) {
1335			if ((flags ^ s->s_flags) & MS_RDONLY) {
1336				printk(KERN_ERR "NILFS: the device already "
1337				       "has a %s mount.\n",
1338				       (s->s_flags & MS_RDONLY) ?
1339				       "read-only" : "read/write");
1340				err = -EBUSY;
1341				goto failed_super;
1342			}
1343		} else {
1344			/*
1345			 * Try remount to setup mount states if the current
1346			 * tree is not mounted and only snapshots use this sb.
1347			 */
1348			err = nilfs_remount(s, &flags, data);
1349			if (err)
1350				goto failed_super;
1351		}
1352	}
1353
1354	if (sd.cno) {
1355		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1356		if (err)
1357			goto failed_super;
1358	} else {
1359		root_dentry = dget(s->s_root);
1360	}
1361
1362	if (!s_new)
1363		blkdev_put(sd.bdev, mode);
1364
1365	return root_dentry;
1366
1367 failed_super:
1368	deactivate_locked_super(s);
1369
1370 failed:
1371	if (!s_new)
1372		blkdev_put(sd.bdev, mode);
1373	return ERR_PTR(err);
1374}
1375
1376struct file_system_type nilfs_fs_type = {
1377	.owner    = THIS_MODULE,
1378	.name     = "nilfs2",
1379	.mount    = nilfs_mount,
1380	.kill_sb  = kill_block_super,
1381	.fs_flags = FS_REQUIRES_DEV,
1382};
1383MODULE_ALIAS_FS("nilfs2");
1384
1385static void nilfs_inode_init_once(void *obj)
1386{
1387	struct nilfs_inode_info *ii = obj;
1388
1389	INIT_LIST_HEAD(&ii->i_dirty);
1390#ifdef CONFIG_NILFS_XATTR
1391	init_rwsem(&ii->xattr_sem);
1392#endif
1393	address_space_init_once(&ii->i_btnode_cache);
1394	ii->i_bmap = &ii->i_bmap_data;
1395	inode_init_once(&ii->vfs_inode);
1396}
1397
1398static void nilfs_segbuf_init_once(void *obj)
1399{
1400	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1401}
1402
1403static void nilfs_destroy_cachep(void)
1404{
1405	/*
1406	 * Make sure all delayed rcu free inodes are flushed before we
1407	 * destroy cache.
1408	 */
1409	rcu_barrier();
1410
1411	kmem_cache_destroy(nilfs_inode_cachep);
1412	kmem_cache_destroy(nilfs_transaction_cachep);
1413	kmem_cache_destroy(nilfs_segbuf_cachep);
1414	kmem_cache_destroy(nilfs_btree_path_cache);
1415}
1416
1417static int __init nilfs_init_cachep(void)
1418{
1419	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1420			sizeof(struct nilfs_inode_info), 0,
1421			SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1422	if (!nilfs_inode_cachep)
1423		goto fail;
1424
1425	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1426			sizeof(struct nilfs_transaction_info), 0,
1427			SLAB_RECLAIM_ACCOUNT, NULL);
1428	if (!nilfs_transaction_cachep)
1429		goto fail;
1430
1431	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1432			sizeof(struct nilfs_segment_buffer), 0,
1433			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1434	if (!nilfs_segbuf_cachep)
1435		goto fail;
1436
1437	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1438			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1439			0, 0, NULL);
1440	if (!nilfs_btree_path_cache)
1441		goto fail;
1442
1443	return 0;
1444
1445fail:
1446	nilfs_destroy_cachep();
1447	return -ENOMEM;
1448}
1449
1450static int __init init_nilfs_fs(void)
1451{
1452	int err;
1453
1454	err = nilfs_init_cachep();
1455	if (err)
1456		goto fail;
1457
1458	err = nilfs_sysfs_init();
1459	if (err)
1460		goto free_cachep;
1461
1462	err = register_filesystem(&nilfs_fs_type);
1463	if (err)
1464		goto deinit_sysfs_entry;
1465
1466	printk(KERN_INFO "NILFS version 2 loaded\n");
1467	return 0;
1468
1469deinit_sysfs_entry:
1470	nilfs_sysfs_exit();
1471free_cachep:
1472	nilfs_destroy_cachep();
1473fail:
1474	return err;
1475}
1476
1477static void __exit exit_nilfs_fs(void)
1478{
1479	nilfs_destroy_cachep();
1480	nilfs_sysfs_exit();
1481	unregister_filesystem(&nilfs_fs_type);
1482}
1483
1484module_init(init_nilfs_fs)
1485module_exit(exit_nilfs_fs)
1486