1/*
2 *  linux/fs/nfs/dir.c
3 *
4 *  Copyright (C) 1992  Rick Sladkey
5 *
6 *  nfs directory handling functions
7 *
8 * 10 Apr 1996	Added silly rename for unlink	--okir
9 * 28 Sep 1996	Improved directory cache --okir
10 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11 *              Re-implemented silly rename for unlink, newly implemented
12 *              silly rename for nfs_rename() following the suggestions
13 *              of Olaf Kirch (okir) found in this file.
14 *              Following Linus comments on my original hack, this version
15 *              depends only on the dcache stuff and doesn't touch the inode
16 *              layer (iput() and friends).
17 *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18 */
19
20#include <linux/module.h>
21#include <linux/time.h>
22#include <linux/errno.h>
23#include <linux/stat.h>
24#include <linux/fcntl.h>
25#include <linux/string.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/mm.h>
29#include <linux/sunrpc/clnt.h>
30#include <linux/nfs_fs.h>
31#include <linux/nfs_mount.h>
32#include <linux/pagemap.h>
33#include <linux/pagevec.h>
34#include <linux/namei.h>
35#include <linux/mount.h>
36#include <linux/swap.h>
37#include <linux/sched.h>
38#include <linux/kmemleak.h>
39#include <linux/xattr.h>
40
41#include "delegation.h"
42#include "iostat.h"
43#include "internal.h"
44#include "fscache.h"
45
46#include "nfstrace.h"
47
48/* #define NFS_DEBUG_VERBOSE 1 */
49
50static int nfs_opendir(struct inode *, struct file *);
51static int nfs_closedir(struct inode *, struct file *);
52static int nfs_readdir(struct file *, struct dir_context *);
53static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55static void nfs_readdir_clear_array(struct page*);
56
57const struct file_operations nfs_dir_operations = {
58	.llseek		= nfs_llseek_dir,
59	.read		= generic_read_dir,
60	.iterate	= nfs_readdir,
61	.open		= nfs_opendir,
62	.release	= nfs_closedir,
63	.fsync		= nfs_fsync_dir,
64};
65
66const struct address_space_operations nfs_dir_aops = {
67	.freepage = nfs_readdir_clear_array,
68};
69
70static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71{
72	struct nfs_inode *nfsi = NFS_I(dir);
73	struct nfs_open_dir_context *ctx;
74	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75	if (ctx != NULL) {
76		ctx->duped = 0;
77		ctx->attr_gencount = nfsi->attr_gencount;
78		ctx->dir_cookie = 0;
79		ctx->dup_cookie = 0;
80		ctx->cred = get_rpccred(cred);
81		spin_lock(&dir->i_lock);
82		list_add(&ctx->list, &nfsi->open_files);
83		spin_unlock(&dir->i_lock);
84		return ctx;
85	}
86	return  ERR_PTR(-ENOMEM);
87}
88
89static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90{
91	spin_lock(&dir->i_lock);
92	list_del(&ctx->list);
93	spin_unlock(&dir->i_lock);
94	put_rpccred(ctx->cred);
95	kfree(ctx);
96}
97
98/*
99 * Open file
100 */
101static int
102nfs_opendir(struct inode *inode, struct file *filp)
103{
104	int res = 0;
105	struct nfs_open_dir_context *ctx;
106	struct rpc_cred *cred;
107
108	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109
110	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111
112	cred = rpc_lookup_cred();
113	if (IS_ERR(cred))
114		return PTR_ERR(cred);
115	ctx = alloc_nfs_open_dir_context(inode, cred);
116	if (IS_ERR(ctx)) {
117		res = PTR_ERR(ctx);
118		goto out;
119	}
120	filp->private_data = ctx;
121	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122		/* This is a mountpoint, so d_revalidate will never
123		 * have been called, so we need to refresh the
124		 * inode (for close-open consistency) ourselves.
125		 */
126		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
127	}
128out:
129	put_rpccred(cred);
130	return res;
131}
132
133static int
134nfs_closedir(struct inode *inode, struct file *filp)
135{
136	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137	return 0;
138}
139
140struct nfs_cache_array_entry {
141	u64 cookie;
142	u64 ino;
143	struct qstr string;
144	unsigned char d_type;
145};
146
147struct nfs_cache_array {
148	int size;
149	int eof_index;
150	u64 last_cookie;
151	struct nfs_cache_array_entry array[0];
152};
153
154typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
155typedef struct {
156	struct file	*file;
157	struct page	*page;
158	struct dir_context *ctx;
159	unsigned long	page_index;
160	u64		*dir_cookie;
161	u64		last_cookie;
162	loff_t		current_index;
163	decode_dirent_t	decode;
164
165	unsigned long	timestamp;
166	unsigned long	gencount;
167	unsigned int	cache_entry_index;
168	unsigned int	plus:1;
169	unsigned int	eof:1;
170} nfs_readdir_descriptor_t;
171
172/*
173 * The caller is responsible for calling nfs_readdir_release_array(page)
174 */
175static
176struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
177{
178	void *ptr;
179	if (page == NULL)
180		return ERR_PTR(-EIO);
181	ptr = kmap(page);
182	if (ptr == NULL)
183		return ERR_PTR(-ENOMEM);
184	return ptr;
185}
186
187static
188void nfs_readdir_release_array(struct page *page)
189{
190	kunmap(page);
191}
192
193/*
194 * we are freeing strings created by nfs_add_to_readdir_array()
195 */
196static
197void nfs_readdir_clear_array(struct page *page)
198{
199	struct nfs_cache_array *array;
200	int i;
201
202	array = kmap_atomic(page);
203	for (i = 0; i < array->size; i++)
204		kfree(array->array[i].string.name);
205	kunmap_atomic(array);
206}
207
208/*
209 * the caller is responsible for freeing qstr.name
210 * when called by nfs_readdir_add_to_array, the strings will be freed in
211 * nfs_clear_readdir_array()
212 */
213static
214int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
215{
216	string->len = len;
217	string->name = kmemdup(name, len, GFP_KERNEL);
218	if (string->name == NULL)
219		return -ENOMEM;
220	/*
221	 * Avoid a kmemleak false positive. The pointer to the name is stored
222	 * in a page cache page which kmemleak does not scan.
223	 */
224	kmemleak_not_leak(string->name);
225	string->hash = full_name_hash(name, len);
226	return 0;
227}
228
229static
230int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
231{
232	struct nfs_cache_array *array = nfs_readdir_get_array(page);
233	struct nfs_cache_array_entry *cache_entry;
234	int ret;
235
236	if (IS_ERR(array))
237		return PTR_ERR(array);
238
239	cache_entry = &array->array[array->size];
240
241	/* Check that this entry lies within the page bounds */
242	ret = -ENOSPC;
243	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
244		goto out;
245
246	cache_entry->cookie = entry->prev_cookie;
247	cache_entry->ino = entry->ino;
248	cache_entry->d_type = entry->d_type;
249	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
250	if (ret)
251		goto out;
252	array->last_cookie = entry->cookie;
253	array->size++;
254	if (entry->eof != 0)
255		array->eof_index = array->size;
256out:
257	nfs_readdir_release_array(page);
258	return ret;
259}
260
261static
262int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
263{
264	loff_t diff = desc->ctx->pos - desc->current_index;
265	unsigned int index;
266
267	if (diff < 0)
268		goto out_eof;
269	if (diff >= array->size) {
270		if (array->eof_index >= 0)
271			goto out_eof;
272		return -EAGAIN;
273	}
274
275	index = (unsigned int)diff;
276	*desc->dir_cookie = array->array[index].cookie;
277	desc->cache_entry_index = index;
278	return 0;
279out_eof:
280	desc->eof = 1;
281	return -EBADCOOKIE;
282}
283
284static bool
285nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
286{
287	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288		return false;
289	smp_rmb();
290	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
291}
292
293static
294int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
295{
296	int i;
297	loff_t new_pos;
298	int status = -EAGAIN;
299
300	for (i = 0; i < array->size; i++) {
301		if (array->array[i].cookie == *desc->dir_cookie) {
302			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303			struct nfs_open_dir_context *ctx = desc->file->private_data;
304
305			new_pos = desc->current_index + i;
306			if (ctx->attr_gencount != nfsi->attr_gencount ||
307			    !nfs_readdir_inode_mapping_valid(nfsi)) {
308				ctx->duped = 0;
309				ctx->attr_gencount = nfsi->attr_gencount;
310			} else if (new_pos < desc->ctx->pos) {
311				if (ctx->duped > 0
312				    && ctx->dup_cookie == *desc->dir_cookie) {
313					if (printk_ratelimit()) {
314						pr_notice("NFS: directory %pD2 contains a readdir loop."
315								"Please contact your server vendor.  "
316								"The file: %.*s has duplicate cookie %llu\n",
317								desc->file, array->array[i].string.len,
318								array->array[i].string.name, *desc->dir_cookie);
319					}
320					status = -ELOOP;
321					goto out;
322				}
323				ctx->dup_cookie = *desc->dir_cookie;
324				ctx->duped = -1;
325			}
326			desc->ctx->pos = new_pos;
327			desc->cache_entry_index = i;
328			return 0;
329		}
330	}
331	if (array->eof_index >= 0) {
332		status = -EBADCOOKIE;
333		if (*desc->dir_cookie == array->last_cookie)
334			desc->eof = 1;
335	}
336out:
337	return status;
338}
339
340static
341int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
342{
343	struct nfs_cache_array *array;
344	int status;
345
346	array = nfs_readdir_get_array(desc->page);
347	if (IS_ERR(array)) {
348		status = PTR_ERR(array);
349		goto out;
350	}
351
352	if (*desc->dir_cookie == 0)
353		status = nfs_readdir_search_for_pos(array, desc);
354	else
355		status = nfs_readdir_search_for_cookie(array, desc);
356
357	if (status == -EAGAIN) {
358		desc->last_cookie = array->last_cookie;
359		desc->current_index += array->size;
360		desc->page_index++;
361	}
362	nfs_readdir_release_array(desc->page);
363out:
364	return status;
365}
366
367/* Fill a page with xdr information before transferring to the cache page */
368static
369int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
370			struct nfs_entry *entry, struct file *file, struct inode *inode)
371{
372	struct nfs_open_dir_context *ctx = file->private_data;
373	struct rpc_cred	*cred = ctx->cred;
374	unsigned long	timestamp, gencount;
375	int		error;
376
377 again:
378	timestamp = jiffies;
379	gencount = nfs_inc_attr_generation_counter();
380	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
381					  NFS_SERVER(inode)->dtsize, desc->plus);
382	if (error < 0) {
383		/* We requested READDIRPLUS, but the server doesn't grok it */
384		if (error == -ENOTSUPP && desc->plus) {
385			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
387			desc->plus = 0;
388			goto again;
389		}
390		goto error;
391	}
392	desc->timestamp = timestamp;
393	desc->gencount = gencount;
394error:
395	return error;
396}
397
398static int xdr_decode(nfs_readdir_descriptor_t *desc,
399		      struct nfs_entry *entry, struct xdr_stream *xdr)
400{
401	int error;
402
403	error = desc->decode(xdr, entry, desc->plus);
404	if (error)
405		return error;
406	entry->fattr->time_start = desc->timestamp;
407	entry->fattr->gencount = desc->gencount;
408	return 0;
409}
410
411/* Match file and dirent using either filehandle or fileid
412 * Note: caller is responsible for checking the fsid
413 */
414static
415int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
416{
417	struct nfs_inode *nfsi;
418
419	if (d_really_is_negative(dentry))
420		return 0;
421
422	nfsi = NFS_I(d_inode(dentry));
423	if (entry->fattr->fileid == nfsi->fileid)
424		return 1;
425	if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0)
426		return 1;
427	return 0;
428}
429
430static
431bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
432{
433	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
434		return false;
435	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
436		return true;
437	if (ctx->pos == 0)
438		return true;
439	return false;
440}
441
442/*
443 * This function is called by the lookup code to request the use of
444 * readdirplus to accelerate any future lookups in the same
445 * directory.
446 */
447static
448void nfs_advise_use_readdirplus(struct inode *dir)
449{
450	set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
451}
452
453/*
454 * This function is mainly for use by nfs_getattr().
455 *
456 * If this is an 'ls -l', we want to force use of readdirplus.
457 * Do this by checking if there is an active file descriptor
458 * and calling nfs_advise_use_readdirplus, then forcing a
459 * cache flush.
460 */
461void nfs_force_use_readdirplus(struct inode *dir)
462{
463	if (!list_empty(&NFS_I(dir)->open_files)) {
464		nfs_advise_use_readdirplus(dir);
465		nfs_zap_mapping(dir, dir->i_mapping);
466	}
467}
468
469static
470void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
471{
472	struct qstr filename = QSTR_INIT(entry->name, entry->len);
473	struct dentry *dentry;
474	struct dentry *alias;
475	struct inode *dir = d_inode(parent);
476	struct inode *inode;
477	int status;
478
479	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
480		return;
481	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
482		return;
483	if (filename.name[0] == '.') {
484		if (filename.len == 1)
485			return;
486		if (filename.len == 2 && filename.name[1] == '.')
487			return;
488	}
489	filename.hash = full_name_hash(filename.name, filename.len);
490
491	dentry = d_lookup(parent, &filename);
492	if (dentry != NULL) {
493		/* Is there a mountpoint here? If so, just exit */
494		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
495					&entry->fattr->fsid))
496			goto out;
497		if (nfs_same_file(dentry, entry)) {
498			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
499			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
500			if (!status)
501				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
502			goto out;
503		} else {
504			d_invalidate(dentry);
505			dput(dentry);
506		}
507	}
508
509	dentry = d_alloc(parent, &filename);
510	if (dentry == NULL)
511		return;
512
513	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
514	if (IS_ERR(inode))
515		goto out;
516
517	alias = d_splice_alias(inode, dentry);
518	if (IS_ERR(alias))
519		goto out;
520	else if (alias) {
521		nfs_set_verifier(alias, nfs_save_change_attribute(dir));
522		dput(alias);
523	} else
524		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
525
526out:
527	dput(dentry);
528}
529
530/* Perform conversion from xdr to cache array */
531static
532int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
533				struct page **xdr_pages, struct page *page, unsigned int buflen)
534{
535	struct xdr_stream stream;
536	struct xdr_buf buf;
537	struct page *scratch;
538	struct nfs_cache_array *array;
539	unsigned int count = 0;
540	int status;
541
542	scratch = alloc_page(GFP_KERNEL);
543	if (scratch == NULL)
544		return -ENOMEM;
545
546	if (buflen == 0)
547		goto out_nopages;
548
549	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
550	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
551
552	do {
553		status = xdr_decode(desc, entry, &stream);
554		if (status != 0) {
555			if (status == -EAGAIN)
556				status = 0;
557			break;
558		}
559
560		count++;
561
562		if (desc->plus != 0)
563			nfs_prime_dcache(file_dentry(desc->file), entry);
564
565		status = nfs_readdir_add_to_array(entry, page);
566		if (status != 0)
567			break;
568	} while (!entry->eof);
569
570out_nopages:
571	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
572		array = nfs_readdir_get_array(page);
573		if (!IS_ERR(array)) {
574			array->eof_index = array->size;
575			status = 0;
576			nfs_readdir_release_array(page);
577		} else
578			status = PTR_ERR(array);
579	}
580
581	put_page(scratch);
582	return status;
583}
584
585static
586void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
587{
588	unsigned int i;
589	for (i = 0; i < npages; i++)
590		put_page(pages[i]);
591}
592
593/*
594 * nfs_readdir_large_page will allocate pages that must be freed with a call
595 * to nfs_readdir_free_pagearray
596 */
597static
598int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
599{
600	unsigned int i;
601
602	for (i = 0; i < npages; i++) {
603		struct page *page = alloc_page(GFP_KERNEL);
604		if (page == NULL)
605			goto out_freepages;
606		pages[i] = page;
607	}
608	return 0;
609
610out_freepages:
611	nfs_readdir_free_pages(pages, i);
612	return -ENOMEM;
613}
614
615static
616int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
617{
618	struct page *pages[NFS_MAX_READDIR_PAGES];
619	struct nfs_entry entry;
620	struct file	*file = desc->file;
621	struct nfs_cache_array *array;
622	int status = -ENOMEM;
623	unsigned int array_size = ARRAY_SIZE(pages);
624
625	entry.prev_cookie = 0;
626	entry.cookie = desc->last_cookie;
627	entry.eof = 0;
628	entry.fh = nfs_alloc_fhandle();
629	entry.fattr = nfs_alloc_fattr();
630	entry.server = NFS_SERVER(inode);
631	if (entry.fh == NULL || entry.fattr == NULL)
632		goto out;
633
634	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
635	if (IS_ERR(entry.label)) {
636		status = PTR_ERR(entry.label);
637		goto out;
638	}
639
640	array = nfs_readdir_get_array(page);
641	if (IS_ERR(array)) {
642		status = PTR_ERR(array);
643		goto out_label_free;
644	}
645	memset(array, 0, sizeof(struct nfs_cache_array));
646	array->eof_index = -1;
647
648	status = nfs_readdir_alloc_pages(pages, array_size);
649	if (status < 0)
650		goto out_release_array;
651	do {
652		unsigned int pglen;
653		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
654
655		if (status < 0)
656			break;
657		pglen = status;
658		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
659		if (status < 0) {
660			if (status == -ENOSPC)
661				status = 0;
662			break;
663		}
664	} while (array->eof_index < 0);
665
666	nfs_readdir_free_pages(pages, array_size);
667out_release_array:
668	nfs_readdir_release_array(page);
669out_label_free:
670	nfs4_label_free(entry.label);
671out:
672	nfs_free_fattr(entry.fattr);
673	nfs_free_fhandle(entry.fh);
674	return status;
675}
676
677/*
678 * Now we cache directories properly, by converting xdr information
679 * to an array that can be used for lookups later.  This results in
680 * fewer cache pages, since we can store more information on each page.
681 * We only need to convert from xdr once so future lookups are much simpler
682 */
683static
684int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
685{
686	struct inode	*inode = file_inode(desc->file);
687	int ret;
688
689	ret = nfs_readdir_xdr_to_array(desc, page, inode);
690	if (ret < 0)
691		goto error;
692	SetPageUptodate(page);
693
694	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
695		/* Should never happen */
696		nfs_zap_mapping(inode, inode->i_mapping);
697	}
698	unlock_page(page);
699	return 0;
700 error:
701	unlock_page(page);
702	return ret;
703}
704
705static
706void cache_page_release(nfs_readdir_descriptor_t *desc)
707{
708	if (!desc->page->mapping)
709		nfs_readdir_clear_array(desc->page);
710	page_cache_release(desc->page);
711	desc->page = NULL;
712}
713
714static
715struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
716{
717	return read_cache_page(file_inode(desc->file)->i_mapping,
718			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
719}
720
721/*
722 * Returns 0 if desc->dir_cookie was found on page desc->page_index
723 */
724static
725int find_cache_page(nfs_readdir_descriptor_t *desc)
726{
727	int res;
728
729	desc->page = get_cache_page(desc);
730	if (IS_ERR(desc->page))
731		return PTR_ERR(desc->page);
732
733	res = nfs_readdir_search_array(desc);
734	if (res != 0)
735		cache_page_release(desc);
736	return res;
737}
738
739/* Search for desc->dir_cookie from the beginning of the page cache */
740static inline
741int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
742{
743	int res;
744
745	if (desc->page_index == 0) {
746		desc->current_index = 0;
747		desc->last_cookie = 0;
748	}
749	do {
750		res = find_cache_page(desc);
751	} while (res == -EAGAIN);
752	return res;
753}
754
755/*
756 * Once we've found the start of the dirent within a page: fill 'er up...
757 */
758static
759int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
760{
761	struct file	*file = desc->file;
762	int i = 0;
763	int res = 0;
764	struct nfs_cache_array *array = NULL;
765	struct nfs_open_dir_context *ctx = file->private_data;
766
767	array = nfs_readdir_get_array(desc->page);
768	if (IS_ERR(array)) {
769		res = PTR_ERR(array);
770		goto out;
771	}
772
773	for (i = desc->cache_entry_index; i < array->size; i++) {
774		struct nfs_cache_array_entry *ent;
775
776		ent = &array->array[i];
777		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
778		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
779			desc->eof = 1;
780			break;
781		}
782		desc->ctx->pos++;
783		if (i < (array->size-1))
784			*desc->dir_cookie = array->array[i+1].cookie;
785		else
786			*desc->dir_cookie = array->last_cookie;
787		if (ctx->duped != 0)
788			ctx->duped = 1;
789	}
790	if (array->eof_index >= 0)
791		desc->eof = 1;
792
793	nfs_readdir_release_array(desc->page);
794out:
795	cache_page_release(desc);
796	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
797			(unsigned long long)*desc->dir_cookie, res);
798	return res;
799}
800
801/*
802 * If we cannot find a cookie in our cache, we suspect that this is
803 * because it points to a deleted file, so we ask the server to return
804 * whatever it thinks is the next entry. We then feed this to filldir.
805 * If all goes well, we should then be able to find our way round the
806 * cache on the next call to readdir_search_pagecache();
807 *
808 * NOTE: we cannot add the anonymous page to the pagecache because
809 *	 the data it contains might not be page aligned. Besides,
810 *	 we should already have a complete representation of the
811 *	 directory in the page cache by the time we get here.
812 */
813static inline
814int uncached_readdir(nfs_readdir_descriptor_t *desc)
815{
816	struct page	*page = NULL;
817	int		status;
818	struct inode *inode = file_inode(desc->file);
819	struct nfs_open_dir_context *ctx = desc->file->private_data;
820
821	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
822			(unsigned long long)*desc->dir_cookie);
823
824	page = alloc_page(GFP_HIGHUSER);
825	if (!page) {
826		status = -ENOMEM;
827		goto out;
828	}
829
830	desc->page_index = 0;
831	desc->last_cookie = *desc->dir_cookie;
832	desc->page = page;
833	ctx->duped = 0;
834
835	status = nfs_readdir_xdr_to_array(desc, page, inode);
836	if (status < 0)
837		goto out_release;
838
839	status = nfs_do_filldir(desc);
840
841 out:
842	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
843			__func__, status);
844	return status;
845 out_release:
846	cache_page_release(desc);
847	goto out;
848}
849
850static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
851{
852	struct nfs_inode *nfsi = NFS_I(dir);
853
854	if (nfs_attribute_cache_expired(dir))
855		return true;
856	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
857		return true;
858	return false;
859}
860
861/* The file offset position represents the dirent entry number.  A
862   last cookie cache takes care of the common case of reading the
863   whole directory.
864 */
865static int nfs_readdir(struct file *file, struct dir_context *ctx)
866{
867	struct dentry	*dentry = file_dentry(file);
868	struct inode	*inode = d_inode(dentry);
869	nfs_readdir_descriptor_t my_desc,
870			*desc = &my_desc;
871	struct nfs_open_dir_context *dir_ctx = file->private_data;
872	int res = 0;
873
874	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
875			file, (long long)ctx->pos);
876	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
877
878	/*
879	 * ctx->pos points to the dirent entry number.
880	 * *desc->dir_cookie has the cookie for the next entry. We have
881	 * to either find the entry with the appropriate number or
882	 * revalidate the cookie.
883	 */
884	memset(desc, 0, sizeof(*desc));
885
886	desc->file = file;
887	desc->ctx = ctx;
888	desc->dir_cookie = &dir_ctx->dir_cookie;
889	desc->decode = NFS_PROTO(inode)->decode_dirent;
890	desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
891
892	nfs_block_sillyrename(dentry);
893	if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
894		res = nfs_revalidate_mapping(inode, file->f_mapping);
895	if (res < 0)
896		goto out;
897
898	do {
899		res = readdir_search_pagecache(desc);
900
901		if (res == -EBADCOOKIE) {
902			res = 0;
903			/* This means either end of directory */
904			if (*desc->dir_cookie && desc->eof == 0) {
905				/* Or that the server has 'lost' a cookie */
906				res = uncached_readdir(desc);
907				if (res == 0)
908					continue;
909			}
910			break;
911		}
912		if (res == -ETOOSMALL && desc->plus) {
913			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
914			nfs_zap_caches(inode);
915			desc->page_index = 0;
916			desc->plus = 0;
917			desc->eof = 0;
918			continue;
919		}
920		if (res < 0)
921			break;
922
923		res = nfs_do_filldir(desc);
924		if (res < 0)
925			break;
926	} while (!desc->eof);
927out:
928	nfs_unblock_sillyrename(dentry);
929	if (res > 0)
930		res = 0;
931	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
932	return res;
933}
934
935static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
936{
937	struct inode *inode = file_inode(filp);
938	struct nfs_open_dir_context *dir_ctx = filp->private_data;
939
940	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
941			filp, offset, whence);
942
943	mutex_lock(&inode->i_mutex);
944	switch (whence) {
945		case 1:
946			offset += filp->f_pos;
947		case 0:
948			if (offset >= 0)
949				break;
950		default:
951			offset = -EINVAL;
952			goto out;
953	}
954	if (offset != filp->f_pos) {
955		filp->f_pos = offset;
956		dir_ctx->dir_cookie = 0;
957		dir_ctx->duped = 0;
958	}
959out:
960	mutex_unlock(&inode->i_mutex);
961	return offset;
962}
963
964/*
965 * All directory operations under NFS are synchronous, so fsync()
966 * is a dummy operation.
967 */
968static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
969			 int datasync)
970{
971	struct inode *inode = file_inode(filp);
972
973	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
974
975	mutex_lock(&inode->i_mutex);
976	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
977	mutex_unlock(&inode->i_mutex);
978	return 0;
979}
980
981/**
982 * nfs_force_lookup_revalidate - Mark the directory as having changed
983 * @dir - pointer to directory inode
984 *
985 * This forces the revalidation code in nfs_lookup_revalidate() to do a
986 * full lookup on all child dentries of 'dir' whenever a change occurs
987 * on the server that might have invalidated our dcache.
988 *
989 * The caller should be holding dir->i_lock
990 */
991void nfs_force_lookup_revalidate(struct inode *dir)
992{
993	NFS_I(dir)->cache_change_attribute++;
994}
995EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
996
997/*
998 * A check for whether or not the parent directory has changed.
999 * In the case it has, we assume that the dentries are untrustworthy
1000 * and may need to be looked up again.
1001 * If rcu_walk prevents us from performing a full check, return 0.
1002 */
1003static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1004			      int rcu_walk)
1005{
1006	int ret;
1007
1008	if (IS_ROOT(dentry))
1009		return 1;
1010	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1011		return 0;
1012	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1013		return 0;
1014	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1015	if (rcu_walk)
1016		ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1017	else
1018		ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1019	if (ret < 0)
1020		return 0;
1021	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1022		return 0;
1023	return 1;
1024}
1025
1026/*
1027 * Use intent information to check whether or not we're going to do
1028 * an O_EXCL create using this path component.
1029 */
1030static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1031{
1032	if (NFS_PROTO(dir)->version == 2)
1033		return 0;
1034	return flags & LOOKUP_EXCL;
1035}
1036
1037/*
1038 * Inode and filehandle revalidation for lookups.
1039 *
1040 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1041 * or if the intent information indicates that we're about to open this
1042 * particular file and the "nocto" mount flag is not set.
1043 *
1044 */
1045static
1046int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1047{
1048	struct nfs_server *server = NFS_SERVER(inode);
1049	int ret;
1050
1051	if (IS_AUTOMOUNT(inode))
1052		return 0;
1053	/* VFS wants an on-the-wire revalidation */
1054	if (flags & LOOKUP_REVAL)
1055		goto out_force;
1056	/* This is an open(2) */
1057	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1058	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1059		goto out_force;
1060out:
1061	return (inode->i_nlink == 0) ? -ENOENT : 0;
1062out_force:
1063	if (flags & LOOKUP_RCU)
1064		return -ECHILD;
1065	ret = __nfs_revalidate_inode(server, inode);
1066	if (ret != 0)
1067		return ret;
1068	goto out;
1069}
1070
1071/*
1072 * We judge how long we want to trust negative
1073 * dentries by looking at the parent inode mtime.
1074 *
1075 * If parent mtime has changed, we revalidate, else we wait for a
1076 * period corresponding to the parent's attribute cache timeout value.
1077 *
1078 * If LOOKUP_RCU prevents us from performing a full check, return 1
1079 * suggesting a reval is needed.
1080 */
1081static inline
1082int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1083		       unsigned int flags)
1084{
1085	/* Don't revalidate a negative dentry if we're creating a new file */
1086	if (flags & LOOKUP_CREATE)
1087		return 0;
1088	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1089		return 1;
1090	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1091}
1092
1093/*
1094 * This is called every time the dcache has a lookup hit,
1095 * and we should check whether we can really trust that
1096 * lookup.
1097 *
1098 * NOTE! The hit can be a negative hit too, don't assume
1099 * we have an inode!
1100 *
1101 * If the parent directory is seen to have changed, we throw out the
1102 * cached dentry and do a new lookup.
1103 */
1104static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1105{
1106	struct inode *dir;
1107	struct inode *inode;
1108	struct dentry *parent;
1109	struct nfs_fh *fhandle = NULL;
1110	struct nfs_fattr *fattr = NULL;
1111	struct nfs4_label *label = NULL;
1112	int error;
1113
1114	if (flags & LOOKUP_RCU) {
1115		parent = ACCESS_ONCE(dentry->d_parent);
1116		dir = d_inode_rcu(parent);
1117		if (!dir)
1118			return -ECHILD;
1119	} else {
1120		parent = dget_parent(dentry);
1121		dir = d_inode(parent);
1122	}
1123	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1124	inode = d_inode(dentry);
1125
1126	if (!inode) {
1127		if (nfs_neg_need_reval(dir, dentry, flags)) {
1128			if (flags & LOOKUP_RCU)
1129				return -ECHILD;
1130			goto out_bad;
1131		}
1132		goto out_valid_noent;
1133	}
1134
1135	if (is_bad_inode(inode)) {
1136		if (flags & LOOKUP_RCU)
1137			return -ECHILD;
1138		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1139				__func__, dentry);
1140		goto out_bad;
1141	}
1142
1143	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1144		goto out_set_verifier;
1145
1146	/* Force a full look up iff the parent directory has changed */
1147	if (!nfs_is_exclusive_create(dir, flags) &&
1148	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1149
1150		if (nfs_lookup_verify_inode(inode, flags)) {
1151			if (flags & LOOKUP_RCU)
1152				return -ECHILD;
1153			goto out_zap_parent;
1154		}
1155		goto out_valid;
1156	}
1157
1158	if (flags & LOOKUP_RCU)
1159		return -ECHILD;
1160
1161	if (NFS_STALE(inode))
1162		goto out_bad;
1163
1164	error = -ENOMEM;
1165	fhandle = nfs_alloc_fhandle();
1166	fattr = nfs_alloc_fattr();
1167	if (fhandle == NULL || fattr == NULL)
1168		goto out_error;
1169
1170	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1171	if (IS_ERR(label))
1172		goto out_error;
1173
1174	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1175	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1176	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1177	if (error)
1178		goto out_bad;
1179	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1180		goto out_bad;
1181	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1182		goto out_bad;
1183
1184	nfs_setsecurity(inode, fattr, label);
1185
1186	nfs_free_fattr(fattr);
1187	nfs_free_fhandle(fhandle);
1188	nfs4_label_free(label);
1189
1190out_set_verifier:
1191	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1192 out_valid:
1193	/* Success: notify readdir to use READDIRPLUS */
1194	nfs_advise_use_readdirplus(dir);
1195 out_valid_noent:
1196	if (flags & LOOKUP_RCU) {
1197		if (parent != ACCESS_ONCE(dentry->d_parent))
1198			return -ECHILD;
1199	} else
1200		dput(parent);
1201	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1202			__func__, dentry);
1203	return 1;
1204out_zap_parent:
1205	nfs_zap_caches(dir);
1206 out_bad:
1207	WARN_ON(flags & LOOKUP_RCU);
1208	nfs_free_fattr(fattr);
1209	nfs_free_fhandle(fhandle);
1210	nfs4_label_free(label);
1211	nfs_mark_for_revalidate(dir);
1212	if (inode && S_ISDIR(inode->i_mode)) {
1213		/* Purge readdir caches. */
1214		nfs_zap_caches(inode);
1215		/*
1216		 * We can't d_drop the root of a disconnected tree:
1217		 * its d_hash is on the s_anon list and d_drop() would hide
1218		 * it from shrink_dcache_for_unmount(), leading to busy
1219		 * inodes on unmount and further oopses.
1220		 */
1221		if (IS_ROOT(dentry))
1222			goto out_valid;
1223	}
1224	dput(parent);
1225	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1226			__func__, dentry);
1227	return 0;
1228out_error:
1229	WARN_ON(flags & LOOKUP_RCU);
1230	nfs_free_fattr(fattr);
1231	nfs_free_fhandle(fhandle);
1232	nfs4_label_free(label);
1233	dput(parent);
1234	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1235			__func__, dentry, error);
1236	return error;
1237}
1238
1239/*
1240 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1241 * when we don't really care about the dentry name. This is called when a
1242 * pathwalk ends on a dentry that was not found via a normal lookup in the
1243 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1244 *
1245 * In this situation, we just want to verify that the inode itself is OK
1246 * since the dentry might have changed on the server.
1247 */
1248static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1249{
1250	int error;
1251	struct inode *inode = d_inode(dentry);
1252
1253	/*
1254	 * I believe we can only get a negative dentry here in the case of a
1255	 * procfs-style symlink. Just assume it's correct for now, but we may
1256	 * eventually need to do something more here.
1257	 */
1258	if (!inode) {
1259		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1260				__func__, dentry);
1261		return 1;
1262	}
1263
1264	if (is_bad_inode(inode)) {
1265		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1266				__func__, dentry);
1267		return 0;
1268	}
1269
1270	error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1271	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1272			__func__, inode->i_ino, error ? "invalid" : "valid");
1273	return !error;
1274}
1275
1276/*
1277 * This is called from dput() when d_count is going to 0.
1278 */
1279static int nfs_dentry_delete(const struct dentry *dentry)
1280{
1281	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1282		dentry, dentry->d_flags);
1283
1284	/* Unhash any dentry with a stale inode */
1285	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1286		return 1;
1287
1288	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1289		/* Unhash it, so that ->d_iput() would be called */
1290		return 1;
1291	}
1292	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1293		/* Unhash it, so that ancestors of killed async unlink
1294		 * files will be cleaned up during umount */
1295		return 1;
1296	}
1297	return 0;
1298
1299}
1300
1301/* Ensure that we revalidate inode->i_nlink */
1302static void nfs_drop_nlink(struct inode *inode)
1303{
1304	spin_lock(&inode->i_lock);
1305	/* drop the inode if we're reasonably sure this is the last link */
1306	if (inode->i_nlink == 1)
1307		clear_nlink(inode);
1308	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1309	spin_unlock(&inode->i_lock);
1310}
1311
1312/*
1313 * Called when the dentry loses inode.
1314 * We use it to clean up silly-renamed files.
1315 */
1316static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1317{
1318	if (S_ISDIR(inode->i_mode))
1319		/* drop any readdir cache as it could easily be old */
1320		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1321
1322	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1323		nfs_complete_unlink(dentry, inode);
1324		nfs_drop_nlink(inode);
1325	}
1326	iput(inode);
1327}
1328
1329static void nfs_d_release(struct dentry *dentry)
1330{
1331	/* free cached devname value, if it survived that far */
1332	if (unlikely(dentry->d_fsdata)) {
1333		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1334			WARN_ON(1);
1335		else
1336			kfree(dentry->d_fsdata);
1337	}
1338}
1339
1340const struct dentry_operations nfs_dentry_operations = {
1341	.d_revalidate	= nfs_lookup_revalidate,
1342	.d_weak_revalidate	= nfs_weak_revalidate,
1343	.d_delete	= nfs_dentry_delete,
1344	.d_iput		= nfs_dentry_iput,
1345	.d_automount	= nfs_d_automount,
1346	.d_release	= nfs_d_release,
1347};
1348EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1349
1350struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1351{
1352	struct dentry *res;
1353	struct dentry *parent;
1354	struct inode *inode = NULL;
1355	struct nfs_fh *fhandle = NULL;
1356	struct nfs_fattr *fattr = NULL;
1357	struct nfs4_label *label = NULL;
1358	int error;
1359
1360	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1361	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1362
1363	res = ERR_PTR(-ENAMETOOLONG);
1364	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1365		goto out;
1366
1367	/*
1368	 * If we're doing an exclusive create, optimize away the lookup
1369	 * but don't hash the dentry.
1370	 */
1371	if (nfs_is_exclusive_create(dir, flags)) {
1372		d_instantiate(dentry, NULL);
1373		res = NULL;
1374		goto out;
1375	}
1376
1377	res = ERR_PTR(-ENOMEM);
1378	fhandle = nfs_alloc_fhandle();
1379	fattr = nfs_alloc_fattr();
1380	if (fhandle == NULL || fattr == NULL)
1381		goto out;
1382
1383	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1384	if (IS_ERR(label))
1385		goto out;
1386
1387	parent = dentry->d_parent;
1388	/* Protect against concurrent sillydeletes */
1389	trace_nfs_lookup_enter(dir, dentry, flags);
1390	nfs_block_sillyrename(parent);
1391	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1392	if (error == -ENOENT)
1393		goto no_entry;
1394	if (error < 0) {
1395		res = ERR_PTR(error);
1396		goto out_unblock_sillyrename;
1397	}
1398	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1399	res = ERR_CAST(inode);
1400	if (IS_ERR(res))
1401		goto out_unblock_sillyrename;
1402
1403	/* Success: notify readdir to use READDIRPLUS */
1404	nfs_advise_use_readdirplus(dir);
1405
1406no_entry:
1407	res = d_splice_alias(inode, dentry);
1408	if (res != NULL) {
1409		if (IS_ERR(res))
1410			goto out_unblock_sillyrename;
1411		dentry = res;
1412	}
1413	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1414out_unblock_sillyrename:
1415	nfs_unblock_sillyrename(parent);
1416	trace_nfs_lookup_exit(dir, dentry, flags, error);
1417	nfs4_label_free(label);
1418out:
1419	nfs_free_fattr(fattr);
1420	nfs_free_fhandle(fhandle);
1421	return res;
1422}
1423EXPORT_SYMBOL_GPL(nfs_lookup);
1424
1425#if IS_ENABLED(CONFIG_NFS_V4)
1426static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1427
1428const struct dentry_operations nfs4_dentry_operations = {
1429	.d_revalidate	= nfs4_lookup_revalidate,
1430	.d_delete	= nfs_dentry_delete,
1431	.d_iput		= nfs_dentry_iput,
1432	.d_automount	= nfs_d_automount,
1433	.d_release	= nfs_d_release,
1434};
1435EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1436
1437static fmode_t flags_to_mode(int flags)
1438{
1439	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1440	if ((flags & O_ACCMODE) != O_WRONLY)
1441		res |= FMODE_READ;
1442	if ((flags & O_ACCMODE) != O_RDONLY)
1443		res |= FMODE_WRITE;
1444	return res;
1445}
1446
1447static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1448{
1449	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1450}
1451
1452static int do_open(struct inode *inode, struct file *filp)
1453{
1454	nfs_fscache_open_file(inode, filp);
1455	return 0;
1456}
1457
1458static int nfs_finish_open(struct nfs_open_context *ctx,
1459			   struct dentry *dentry,
1460			   struct file *file, unsigned open_flags,
1461			   int *opened)
1462{
1463	int err;
1464
1465	err = finish_open(file, dentry, do_open, opened);
1466	if (err)
1467		goto out;
1468	nfs_file_set_open_context(file, ctx);
1469
1470out:
1471	return err;
1472}
1473
1474int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1475		    struct file *file, unsigned open_flags,
1476		    umode_t mode, int *opened)
1477{
1478	struct nfs_open_context *ctx;
1479	struct dentry *res;
1480	struct iattr attr = { .ia_valid = ATTR_OPEN };
1481	struct inode *inode;
1482	unsigned int lookup_flags = 0;
1483	int err;
1484
1485	/* Expect a negative dentry */
1486	BUG_ON(d_inode(dentry));
1487
1488	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1489			dir->i_sb->s_id, dir->i_ino, dentry);
1490
1491	err = nfs_check_flags(open_flags);
1492	if (err)
1493		return err;
1494
1495	/* NFS only supports OPEN on regular files */
1496	if ((open_flags & O_DIRECTORY)) {
1497		if (!d_unhashed(dentry)) {
1498			/*
1499			 * Hashed negative dentry with O_DIRECTORY: dentry was
1500			 * revalidated and is fine, no need to perform lookup
1501			 * again
1502			 */
1503			return -ENOENT;
1504		}
1505		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1506		goto no_open;
1507	}
1508
1509	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1510		return -ENAMETOOLONG;
1511
1512	if (open_flags & O_CREAT) {
1513		attr.ia_valid |= ATTR_MODE;
1514		attr.ia_mode = mode & ~current_umask();
1515	}
1516	if (open_flags & O_TRUNC) {
1517		attr.ia_valid |= ATTR_SIZE;
1518		attr.ia_size = 0;
1519	}
1520
1521	ctx = create_nfs_open_context(dentry, open_flags);
1522	err = PTR_ERR(ctx);
1523	if (IS_ERR(ctx))
1524		goto out;
1525
1526	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1527	nfs_block_sillyrename(dentry->d_parent);
1528	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1529	nfs_unblock_sillyrename(dentry->d_parent);
1530	if (IS_ERR(inode)) {
1531		err = PTR_ERR(inode);
1532		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1533		put_nfs_open_context(ctx);
1534		switch (err) {
1535		case -ENOENT:
1536			d_drop(dentry);
1537			d_add(dentry, NULL);
1538			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1539			break;
1540		case -EISDIR:
1541		case -ENOTDIR:
1542			goto no_open;
1543		case -ELOOP:
1544			if (!(open_flags & O_NOFOLLOW))
1545				goto no_open;
1546			break;
1547			/* case -EINVAL: */
1548		default:
1549			break;
1550		}
1551		goto out;
1552	}
1553
1554	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1555	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1556	put_nfs_open_context(ctx);
1557out:
1558	return err;
1559
1560no_open:
1561	res = nfs_lookup(dir, dentry, lookup_flags);
1562	err = PTR_ERR(res);
1563	if (IS_ERR(res))
1564		goto out;
1565
1566	return finish_no_open(file, res);
1567}
1568EXPORT_SYMBOL_GPL(nfs_atomic_open);
1569
1570static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1571{
1572	struct inode *inode;
1573	int ret = 0;
1574
1575	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1576		goto no_open;
1577	if (d_mountpoint(dentry))
1578		goto no_open;
1579	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1580		goto no_open;
1581
1582	inode = d_inode(dentry);
1583
1584	/* We can't create new files in nfs_open_revalidate(), so we
1585	 * optimize away revalidation of negative dentries.
1586	 */
1587	if (inode == NULL) {
1588		struct dentry *parent;
1589		struct inode *dir;
1590
1591		if (flags & LOOKUP_RCU) {
1592			parent = ACCESS_ONCE(dentry->d_parent);
1593			dir = d_inode_rcu(parent);
1594			if (!dir)
1595				return -ECHILD;
1596		} else {
1597			parent = dget_parent(dentry);
1598			dir = d_inode(parent);
1599		}
1600		if (!nfs_neg_need_reval(dir, dentry, flags))
1601			ret = 1;
1602		else if (flags & LOOKUP_RCU)
1603			ret = -ECHILD;
1604		if (!(flags & LOOKUP_RCU))
1605			dput(parent);
1606		else if (parent != ACCESS_ONCE(dentry->d_parent))
1607			return -ECHILD;
1608		goto out;
1609	}
1610
1611	/* NFS only supports OPEN on regular files */
1612	if (!S_ISREG(inode->i_mode))
1613		goto no_open;
1614	/* We cannot do exclusive creation on a positive dentry */
1615	if (flags & LOOKUP_EXCL)
1616		goto no_open;
1617
1618	/* Let f_op->open() actually open (and revalidate) the file */
1619	ret = 1;
1620
1621out:
1622	return ret;
1623
1624no_open:
1625	return nfs_lookup_revalidate(dentry, flags);
1626}
1627
1628#endif /* CONFIG_NFSV4 */
1629
1630/*
1631 * Code common to create, mkdir, and mknod.
1632 */
1633int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1634				struct nfs_fattr *fattr,
1635				struct nfs4_label *label)
1636{
1637	struct dentry *parent = dget_parent(dentry);
1638	struct inode *dir = d_inode(parent);
1639	struct inode *inode;
1640	int error = -EACCES;
1641
1642	d_drop(dentry);
1643
1644	/* We may have been initialized further down */
1645	if (d_really_is_positive(dentry))
1646		goto out;
1647	if (fhandle->size == 0) {
1648		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1649		if (error)
1650			goto out_error;
1651	}
1652	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1653	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1654		struct nfs_server *server = NFS_SB(dentry->d_sb);
1655		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1656		if (error < 0)
1657			goto out_error;
1658	}
1659	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1660	error = PTR_ERR(inode);
1661	if (IS_ERR(inode))
1662		goto out_error;
1663	d_add(dentry, inode);
1664out:
1665	dput(parent);
1666	return 0;
1667out_error:
1668	nfs_mark_for_revalidate(dir);
1669	dput(parent);
1670	return error;
1671}
1672EXPORT_SYMBOL_GPL(nfs_instantiate);
1673
1674/*
1675 * Following a failed create operation, we drop the dentry rather
1676 * than retain a negative dentry. This avoids a problem in the event
1677 * that the operation succeeded on the server, but an error in the
1678 * reply path made it appear to have failed.
1679 */
1680int nfs_create(struct inode *dir, struct dentry *dentry,
1681		umode_t mode, bool excl)
1682{
1683	struct iattr attr;
1684	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1685	int error;
1686
1687	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1688			dir->i_sb->s_id, dir->i_ino, dentry);
1689
1690	attr.ia_mode = mode;
1691	attr.ia_valid = ATTR_MODE;
1692
1693	trace_nfs_create_enter(dir, dentry, open_flags);
1694	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1695	trace_nfs_create_exit(dir, dentry, open_flags, error);
1696	if (error != 0)
1697		goto out_err;
1698	return 0;
1699out_err:
1700	d_drop(dentry);
1701	return error;
1702}
1703EXPORT_SYMBOL_GPL(nfs_create);
1704
1705/*
1706 * See comments for nfs_proc_create regarding failed operations.
1707 */
1708int
1709nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1710{
1711	struct iattr attr;
1712	int status;
1713
1714	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1715			dir->i_sb->s_id, dir->i_ino, dentry);
1716
1717	attr.ia_mode = mode;
1718	attr.ia_valid = ATTR_MODE;
1719
1720	trace_nfs_mknod_enter(dir, dentry);
1721	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1722	trace_nfs_mknod_exit(dir, dentry, status);
1723	if (status != 0)
1724		goto out_err;
1725	return 0;
1726out_err:
1727	d_drop(dentry);
1728	return status;
1729}
1730EXPORT_SYMBOL_GPL(nfs_mknod);
1731
1732/*
1733 * See comments for nfs_proc_create regarding failed operations.
1734 */
1735int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1736{
1737	struct iattr attr;
1738	int error;
1739
1740	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1741			dir->i_sb->s_id, dir->i_ino, dentry);
1742
1743	attr.ia_valid = ATTR_MODE;
1744	attr.ia_mode = mode | S_IFDIR;
1745
1746	trace_nfs_mkdir_enter(dir, dentry);
1747	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1748	trace_nfs_mkdir_exit(dir, dentry, error);
1749	if (error != 0)
1750		goto out_err;
1751	return 0;
1752out_err:
1753	d_drop(dentry);
1754	return error;
1755}
1756EXPORT_SYMBOL_GPL(nfs_mkdir);
1757
1758static void nfs_dentry_handle_enoent(struct dentry *dentry)
1759{
1760	if (simple_positive(dentry))
1761		d_delete(dentry);
1762}
1763
1764int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1765{
1766	int error;
1767
1768	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1769			dir->i_sb->s_id, dir->i_ino, dentry);
1770
1771	trace_nfs_rmdir_enter(dir, dentry);
1772	if (d_really_is_positive(dentry)) {
1773		nfs_wait_on_sillyrename(dentry);
1774		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1775		/* Ensure the VFS deletes this inode */
1776		switch (error) {
1777		case 0:
1778			clear_nlink(d_inode(dentry));
1779			break;
1780		case -ENOENT:
1781			nfs_dentry_handle_enoent(dentry);
1782		}
1783	} else
1784		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1785	trace_nfs_rmdir_exit(dir, dentry, error);
1786
1787	return error;
1788}
1789EXPORT_SYMBOL_GPL(nfs_rmdir);
1790
1791/*
1792 * Remove a file after making sure there are no pending writes,
1793 * and after checking that the file has only one user.
1794 *
1795 * We invalidate the attribute cache and free the inode prior to the operation
1796 * to avoid possible races if the server reuses the inode.
1797 */
1798static int nfs_safe_remove(struct dentry *dentry)
1799{
1800	struct inode *dir = d_inode(dentry->d_parent);
1801	struct inode *inode = d_inode(dentry);
1802	int error = -EBUSY;
1803
1804	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1805
1806	/* If the dentry was sillyrenamed, we simply call d_delete() */
1807	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1808		error = 0;
1809		goto out;
1810	}
1811
1812	trace_nfs_remove_enter(dir, dentry);
1813	if (inode != NULL) {
1814		NFS_PROTO(inode)->return_delegation(inode);
1815		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1816		if (error == 0)
1817			nfs_drop_nlink(inode);
1818	} else
1819		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1820	if (error == -ENOENT)
1821		nfs_dentry_handle_enoent(dentry);
1822	trace_nfs_remove_exit(dir, dentry, error);
1823out:
1824	return error;
1825}
1826
1827/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1828 *  belongs to an active ".nfs..." file and we return -EBUSY.
1829 *
1830 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1831 */
1832int nfs_unlink(struct inode *dir, struct dentry *dentry)
1833{
1834	int error;
1835	int need_rehash = 0;
1836
1837	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1838		dir->i_ino, dentry);
1839
1840	trace_nfs_unlink_enter(dir, dentry);
1841	spin_lock(&dentry->d_lock);
1842	if (d_count(dentry) > 1) {
1843		spin_unlock(&dentry->d_lock);
1844		/* Start asynchronous writeout of the inode */
1845		write_inode_now(d_inode(dentry), 0);
1846		error = nfs_sillyrename(dir, dentry);
1847		goto out;
1848	}
1849	if (!d_unhashed(dentry)) {
1850		__d_drop(dentry);
1851		need_rehash = 1;
1852	}
1853	spin_unlock(&dentry->d_lock);
1854	error = nfs_safe_remove(dentry);
1855	if (!error || error == -ENOENT) {
1856		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1857	} else if (need_rehash)
1858		d_rehash(dentry);
1859out:
1860	trace_nfs_unlink_exit(dir, dentry, error);
1861	return error;
1862}
1863EXPORT_SYMBOL_GPL(nfs_unlink);
1864
1865/*
1866 * To create a symbolic link, most file systems instantiate a new inode,
1867 * add a page to it containing the path, then write it out to the disk
1868 * using prepare_write/commit_write.
1869 *
1870 * Unfortunately the NFS client can't create the in-core inode first
1871 * because it needs a file handle to create an in-core inode (see
1872 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1873 * symlink request has completed on the server.
1874 *
1875 * So instead we allocate a raw page, copy the symname into it, then do
1876 * the SYMLINK request with the page as the buffer.  If it succeeds, we
1877 * now have a new file handle and can instantiate an in-core NFS inode
1878 * and move the raw page into its mapping.
1879 */
1880int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1881{
1882	struct page *page;
1883	char *kaddr;
1884	struct iattr attr;
1885	unsigned int pathlen = strlen(symname);
1886	int error;
1887
1888	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1889		dir->i_ino, dentry, symname);
1890
1891	if (pathlen > PAGE_SIZE)
1892		return -ENAMETOOLONG;
1893
1894	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1895	attr.ia_valid = ATTR_MODE;
1896
1897	page = alloc_page(GFP_HIGHUSER);
1898	if (!page)
1899		return -ENOMEM;
1900
1901	kaddr = kmap_atomic(page);
1902	memcpy(kaddr, symname, pathlen);
1903	if (pathlen < PAGE_SIZE)
1904		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1905	kunmap_atomic(kaddr);
1906
1907	trace_nfs_symlink_enter(dir, dentry);
1908	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1909	trace_nfs_symlink_exit(dir, dentry, error);
1910	if (error != 0) {
1911		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1912			dir->i_sb->s_id, dir->i_ino,
1913			dentry, symname, error);
1914		d_drop(dentry);
1915		__free_page(page);
1916		return error;
1917	}
1918
1919	/*
1920	 * No big deal if we can't add this page to the page cache here.
1921	 * READLINK will get the missing page from the server if needed.
1922	 */
1923	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1924							GFP_KERNEL)) {
1925		SetPageUptodate(page);
1926		unlock_page(page);
1927		/*
1928		 * add_to_page_cache_lru() grabs an extra page refcount.
1929		 * Drop it here to avoid leaking this page later.
1930		 */
1931		page_cache_release(page);
1932	} else
1933		__free_page(page);
1934
1935	return 0;
1936}
1937EXPORT_SYMBOL_GPL(nfs_symlink);
1938
1939int
1940nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1941{
1942	struct inode *inode = d_inode(old_dentry);
1943	int error;
1944
1945	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1946		old_dentry, dentry);
1947
1948	trace_nfs_link_enter(inode, dir, dentry);
1949	NFS_PROTO(inode)->return_delegation(inode);
1950
1951	d_drop(dentry);
1952	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1953	if (error == 0) {
1954		ihold(inode);
1955		d_add(dentry, inode);
1956	}
1957	trace_nfs_link_exit(inode, dir, dentry, error);
1958	return error;
1959}
1960EXPORT_SYMBOL_GPL(nfs_link);
1961
1962/*
1963 * RENAME
1964 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1965 * different file handle for the same inode after a rename (e.g. when
1966 * moving to a different directory). A fail-safe method to do so would
1967 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1968 * rename the old file using the sillyrename stuff. This way, the original
1969 * file in old_dir will go away when the last process iput()s the inode.
1970 *
1971 * FIXED.
1972 *
1973 * It actually works quite well. One needs to have the possibility for
1974 * at least one ".nfs..." file in each directory the file ever gets
1975 * moved or linked to which happens automagically with the new
1976 * implementation that only depends on the dcache stuff instead of
1977 * using the inode layer
1978 *
1979 * Unfortunately, things are a little more complicated than indicated
1980 * above. For a cross-directory move, we want to make sure we can get
1981 * rid of the old inode after the operation.  This means there must be
1982 * no pending writes (if it's a file), and the use count must be 1.
1983 * If these conditions are met, we can drop the dentries before doing
1984 * the rename.
1985 */
1986int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1987		      struct inode *new_dir, struct dentry *new_dentry)
1988{
1989	struct inode *old_inode = d_inode(old_dentry);
1990	struct inode *new_inode = d_inode(new_dentry);
1991	struct dentry *dentry = NULL, *rehash = NULL;
1992	struct rpc_task *task;
1993	int error = -EBUSY;
1994
1995	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1996		 old_dentry, new_dentry,
1997		 d_count(new_dentry));
1998
1999	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2000	/*
2001	 * For non-directories, check whether the target is busy and if so,
2002	 * make a copy of the dentry and then do a silly-rename. If the
2003	 * silly-rename succeeds, the copied dentry is hashed and becomes
2004	 * the new target.
2005	 */
2006	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2007		/*
2008		 * To prevent any new references to the target during the
2009		 * rename, we unhash the dentry in advance.
2010		 */
2011		if (!d_unhashed(new_dentry)) {
2012			d_drop(new_dentry);
2013			rehash = new_dentry;
2014		}
2015
2016		if (d_count(new_dentry) > 2) {
2017			int err;
2018
2019			/* copy the target dentry's name */
2020			dentry = d_alloc(new_dentry->d_parent,
2021					 &new_dentry->d_name);
2022			if (!dentry)
2023				goto out;
2024
2025			/* silly-rename the existing target ... */
2026			err = nfs_sillyrename(new_dir, new_dentry);
2027			if (err)
2028				goto out;
2029
2030			new_dentry = dentry;
2031			rehash = NULL;
2032			new_inode = NULL;
2033		}
2034	}
2035
2036	NFS_PROTO(old_inode)->return_delegation(old_inode);
2037	if (new_inode != NULL)
2038		NFS_PROTO(new_inode)->return_delegation(new_inode);
2039
2040	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2041	if (IS_ERR(task)) {
2042		error = PTR_ERR(task);
2043		goto out;
2044	}
2045
2046	error = rpc_wait_for_completion_task(task);
2047	if (error == 0)
2048		error = task->tk_status;
2049	rpc_put_task(task);
2050	nfs_mark_for_revalidate(old_inode);
2051out:
2052	if (rehash)
2053		d_rehash(rehash);
2054	trace_nfs_rename_exit(old_dir, old_dentry,
2055			new_dir, new_dentry, error);
2056	if (!error) {
2057		if (new_inode != NULL)
2058			nfs_drop_nlink(new_inode);
2059		d_move(old_dentry, new_dentry);
2060		nfs_set_verifier(new_dentry,
2061					nfs_save_change_attribute(new_dir));
2062	} else if (error == -ENOENT)
2063		nfs_dentry_handle_enoent(old_dentry);
2064
2065	/* new dentry created? */
2066	if (dentry)
2067		dput(dentry);
2068	return error;
2069}
2070EXPORT_SYMBOL_GPL(nfs_rename);
2071
2072static DEFINE_SPINLOCK(nfs_access_lru_lock);
2073static LIST_HEAD(nfs_access_lru_list);
2074static atomic_long_t nfs_access_nr_entries;
2075
2076static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2077module_param(nfs_access_max_cachesize, ulong, 0644);
2078MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2079
2080static void nfs_access_free_entry(struct nfs_access_entry *entry)
2081{
2082	put_rpccred(entry->cred);
2083	kfree_rcu(entry, rcu_head);
2084	smp_mb__before_atomic();
2085	atomic_long_dec(&nfs_access_nr_entries);
2086	smp_mb__after_atomic();
2087}
2088
2089static void nfs_access_free_list(struct list_head *head)
2090{
2091	struct nfs_access_entry *cache;
2092
2093	while (!list_empty(head)) {
2094		cache = list_entry(head->next, struct nfs_access_entry, lru);
2095		list_del(&cache->lru);
2096		nfs_access_free_entry(cache);
2097	}
2098}
2099
2100static unsigned long
2101nfs_do_access_cache_scan(unsigned int nr_to_scan)
2102{
2103	LIST_HEAD(head);
2104	struct nfs_inode *nfsi, *next;
2105	struct nfs_access_entry *cache;
2106	long freed = 0;
2107
2108	spin_lock(&nfs_access_lru_lock);
2109	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2110		struct inode *inode;
2111
2112		if (nr_to_scan-- == 0)
2113			break;
2114		inode = &nfsi->vfs_inode;
2115		spin_lock(&inode->i_lock);
2116		if (list_empty(&nfsi->access_cache_entry_lru))
2117			goto remove_lru_entry;
2118		cache = list_entry(nfsi->access_cache_entry_lru.next,
2119				struct nfs_access_entry, lru);
2120		list_move(&cache->lru, &head);
2121		rb_erase(&cache->rb_node, &nfsi->access_cache);
2122		freed++;
2123		if (!list_empty(&nfsi->access_cache_entry_lru))
2124			list_move_tail(&nfsi->access_cache_inode_lru,
2125					&nfs_access_lru_list);
2126		else {
2127remove_lru_entry:
2128			list_del_init(&nfsi->access_cache_inode_lru);
2129			smp_mb__before_atomic();
2130			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2131			smp_mb__after_atomic();
2132		}
2133		spin_unlock(&inode->i_lock);
2134	}
2135	spin_unlock(&nfs_access_lru_lock);
2136	nfs_access_free_list(&head);
2137	return freed;
2138}
2139
2140unsigned long
2141nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2142{
2143	int nr_to_scan = sc->nr_to_scan;
2144	gfp_t gfp_mask = sc->gfp_mask;
2145
2146	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2147		return SHRINK_STOP;
2148	return nfs_do_access_cache_scan(nr_to_scan);
2149}
2150
2151
2152unsigned long
2153nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2154{
2155	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2156}
2157
2158static void
2159nfs_access_cache_enforce_limit(void)
2160{
2161	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2162	unsigned long diff;
2163	unsigned int nr_to_scan;
2164
2165	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2166		return;
2167	nr_to_scan = 100;
2168	diff = nr_entries - nfs_access_max_cachesize;
2169	if (diff < nr_to_scan)
2170		nr_to_scan = diff;
2171	nfs_do_access_cache_scan(nr_to_scan);
2172}
2173
2174static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2175{
2176	struct rb_root *root_node = &nfsi->access_cache;
2177	struct rb_node *n;
2178	struct nfs_access_entry *entry;
2179
2180	/* Unhook entries from the cache */
2181	while ((n = rb_first(root_node)) != NULL) {
2182		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2183		rb_erase(n, root_node);
2184		list_move(&entry->lru, head);
2185	}
2186	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2187}
2188
2189void nfs_access_zap_cache(struct inode *inode)
2190{
2191	LIST_HEAD(head);
2192
2193	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2194		return;
2195	/* Remove from global LRU init */
2196	spin_lock(&nfs_access_lru_lock);
2197	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2198		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2199
2200	spin_lock(&inode->i_lock);
2201	__nfs_access_zap_cache(NFS_I(inode), &head);
2202	spin_unlock(&inode->i_lock);
2203	spin_unlock(&nfs_access_lru_lock);
2204	nfs_access_free_list(&head);
2205}
2206EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2207
2208static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2209{
2210	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2211	struct nfs_access_entry *entry;
2212
2213	while (n != NULL) {
2214		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2215
2216		if (cred < entry->cred)
2217			n = n->rb_left;
2218		else if (cred > entry->cred)
2219			n = n->rb_right;
2220		else
2221			return entry;
2222	}
2223	return NULL;
2224}
2225
2226static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2227{
2228	struct nfs_inode *nfsi = NFS_I(inode);
2229	struct nfs_access_entry *cache;
2230	int err = -ENOENT;
2231
2232	spin_lock(&inode->i_lock);
2233	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2234		goto out_zap;
2235	cache = nfs_access_search_rbtree(inode, cred);
2236	if (cache == NULL)
2237		goto out;
2238	if (!nfs_have_delegated_attributes(inode) &&
2239	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2240		goto out_stale;
2241	res->jiffies = cache->jiffies;
2242	res->cred = cache->cred;
2243	res->mask = cache->mask;
2244	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2245	err = 0;
2246out:
2247	spin_unlock(&inode->i_lock);
2248	return err;
2249out_stale:
2250	rb_erase(&cache->rb_node, &nfsi->access_cache);
2251	list_del(&cache->lru);
2252	spin_unlock(&inode->i_lock);
2253	nfs_access_free_entry(cache);
2254	return -ENOENT;
2255out_zap:
2256	spin_unlock(&inode->i_lock);
2257	nfs_access_zap_cache(inode);
2258	return -ENOENT;
2259}
2260
2261static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2262{
2263	/* Only check the most recently returned cache entry,
2264	 * but do it without locking.
2265	 */
2266	struct nfs_inode *nfsi = NFS_I(inode);
2267	struct nfs_access_entry *cache;
2268	int err = -ECHILD;
2269	struct list_head *lh;
2270
2271	rcu_read_lock();
2272	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2273		goto out;
2274	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2275	cache = list_entry(lh, struct nfs_access_entry, lru);
2276	if (lh == &nfsi->access_cache_entry_lru ||
2277	    cred != cache->cred)
2278		cache = NULL;
2279	if (cache == NULL)
2280		goto out;
2281	if (!nfs_have_delegated_attributes(inode) &&
2282	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2283		goto out;
2284	res->jiffies = cache->jiffies;
2285	res->cred = cache->cred;
2286	res->mask = cache->mask;
2287	err = 0;
2288out:
2289	rcu_read_unlock();
2290	return err;
2291}
2292
2293static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2294{
2295	struct nfs_inode *nfsi = NFS_I(inode);
2296	struct rb_root *root_node = &nfsi->access_cache;
2297	struct rb_node **p = &root_node->rb_node;
2298	struct rb_node *parent = NULL;
2299	struct nfs_access_entry *entry;
2300
2301	spin_lock(&inode->i_lock);
2302	while (*p != NULL) {
2303		parent = *p;
2304		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2305
2306		if (set->cred < entry->cred)
2307			p = &parent->rb_left;
2308		else if (set->cred > entry->cred)
2309			p = &parent->rb_right;
2310		else
2311			goto found;
2312	}
2313	rb_link_node(&set->rb_node, parent, p);
2314	rb_insert_color(&set->rb_node, root_node);
2315	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2316	spin_unlock(&inode->i_lock);
2317	return;
2318found:
2319	rb_replace_node(parent, &set->rb_node, root_node);
2320	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2321	list_del(&entry->lru);
2322	spin_unlock(&inode->i_lock);
2323	nfs_access_free_entry(entry);
2324}
2325
2326void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2327{
2328	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2329	if (cache == NULL)
2330		return;
2331	RB_CLEAR_NODE(&cache->rb_node);
2332	cache->jiffies = set->jiffies;
2333	cache->cred = get_rpccred(set->cred);
2334	cache->mask = set->mask;
2335
2336	/* The above field assignments must be visible
2337	 * before this item appears on the lru.  We cannot easily
2338	 * use rcu_assign_pointer, so just force the memory barrier.
2339	 */
2340	smp_wmb();
2341	nfs_access_add_rbtree(inode, cache);
2342
2343	/* Update accounting */
2344	smp_mb__before_atomic();
2345	atomic_long_inc(&nfs_access_nr_entries);
2346	smp_mb__after_atomic();
2347
2348	/* Add inode to global LRU list */
2349	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2350		spin_lock(&nfs_access_lru_lock);
2351		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2352			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2353					&nfs_access_lru_list);
2354		spin_unlock(&nfs_access_lru_lock);
2355	}
2356	nfs_access_cache_enforce_limit();
2357}
2358EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2359
2360void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2361{
2362	entry->mask = 0;
2363	if (access_result & NFS4_ACCESS_READ)
2364		entry->mask |= MAY_READ;
2365	if (access_result &
2366	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2367		entry->mask |= MAY_WRITE;
2368	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2369		entry->mask |= MAY_EXEC;
2370}
2371EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2372
2373static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2374{
2375	struct nfs_access_entry cache;
2376	int status;
2377
2378	trace_nfs_access_enter(inode);
2379
2380	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2381	if (status != 0)
2382		status = nfs_access_get_cached(inode, cred, &cache);
2383	if (status == 0)
2384		goto out_cached;
2385
2386	status = -ECHILD;
2387	if (mask & MAY_NOT_BLOCK)
2388		goto out;
2389
2390	/* Be clever: ask server to check for all possible rights */
2391	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2392	cache.cred = cred;
2393	cache.jiffies = jiffies;
2394	status = NFS_PROTO(inode)->access(inode, &cache);
2395	if (status != 0) {
2396		if (status == -ESTALE) {
2397			nfs_zap_caches(inode);
2398			if (!S_ISDIR(inode->i_mode))
2399				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2400		}
2401		goto out;
2402	}
2403	nfs_access_add_cache(inode, &cache);
2404out_cached:
2405	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2406		status = -EACCES;
2407out:
2408	trace_nfs_access_exit(inode, status);
2409	return status;
2410}
2411
2412static int nfs_open_permission_mask(int openflags)
2413{
2414	int mask = 0;
2415
2416	if (openflags & __FMODE_EXEC) {
2417		/* ONLY check exec rights */
2418		mask = MAY_EXEC;
2419	} else {
2420		if ((openflags & O_ACCMODE) != O_WRONLY)
2421			mask |= MAY_READ;
2422		if ((openflags & O_ACCMODE) != O_RDONLY)
2423			mask |= MAY_WRITE;
2424	}
2425
2426	return mask;
2427}
2428
2429int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2430{
2431	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2432}
2433EXPORT_SYMBOL_GPL(nfs_may_open);
2434
2435int nfs_permission(struct inode *inode, int mask)
2436{
2437	struct rpc_cred *cred;
2438	int res = 0;
2439
2440	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2441
2442	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2443		goto out;
2444	/* Is this sys_access() ? */
2445	if (mask & (MAY_ACCESS | MAY_CHDIR))
2446		goto force_lookup;
2447
2448	switch (inode->i_mode & S_IFMT) {
2449		case S_IFLNK:
2450			goto out;
2451		case S_IFREG:
2452			break;
2453		case S_IFDIR:
2454			/*
2455			 * Optimize away all write operations, since the server
2456			 * will check permissions when we perform the op.
2457			 */
2458			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2459				goto out;
2460	}
2461
2462force_lookup:
2463	if (!NFS_PROTO(inode)->access)
2464		goto out_notsup;
2465
2466	/* Always try fast lookups first */
2467	rcu_read_lock();
2468	cred = rpc_lookup_cred_nonblock();
2469	if (!IS_ERR(cred))
2470		res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2471	else
2472		res = PTR_ERR(cred);
2473	rcu_read_unlock();
2474	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2475		/* Fast lookup failed, try the slow way */
2476		cred = rpc_lookup_cred();
2477		if (!IS_ERR(cred)) {
2478			res = nfs_do_access(inode, cred, mask);
2479			put_rpccred(cred);
2480		} else
2481			res = PTR_ERR(cred);
2482	}
2483out:
2484	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2485		res = -EACCES;
2486
2487	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2488		inode->i_sb->s_id, inode->i_ino, mask, res);
2489	return res;
2490out_notsup:
2491	if (mask & MAY_NOT_BLOCK)
2492		return -ECHILD;
2493
2494	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2495	if (res == 0)
2496		res = generic_permission(inode, mask);
2497	goto out;
2498}
2499EXPORT_SYMBOL_GPL(nfs_permission);
2500
2501/*
2502 * Local variables:
2503 *  version-control: t
2504 *  kept-new-versions: 5
2505 * End:
2506 */
2507