1/*
2 * linux/fs/jbd2/revoke.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5 *
6 * Copyright 2000 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Journal revoke routines for the generic filesystem journaling code;
13 * part of the ext2fs journaling system.
14 *
15 * Revoke is the mechanism used to prevent old log records for deleted
16 * metadata from being replayed on top of newer data using the same
17 * blocks.  The revoke mechanism is used in two separate places:
18 *
19 * + Commit: during commit we write the entire list of the current
20 *   transaction's revoked blocks to the journal
21 *
22 * + Recovery: during recovery we record the transaction ID of all
23 *   revoked blocks.  If there are multiple revoke records in the log
24 *   for a single block, only the last one counts, and if there is a log
25 *   entry for a block beyond the last revoke, then that log entry still
26 *   gets replayed.
27 *
28 * We can get interactions between revokes and new log data within a
29 * single transaction:
30 *
31 * Block is revoked and then journaled:
32 *   The desired end result is the journaling of the new block, so we
33 *   cancel the revoke before the transaction commits.
34 *
35 * Block is journaled and then revoked:
36 *   The revoke must take precedence over the write of the block, so we
37 *   need either to cancel the journal entry or to write the revoke
38 *   later in the log than the log block.  In this case, we choose the
39 *   latter: journaling a block cancels any revoke record for that block
40 *   in the current transaction, so any revoke for that block in the
41 *   transaction must have happened after the block was journaled and so
42 *   the revoke must take precedence.
43 *
44 * Block is revoked and then written as data:
45 *   The data write is allowed to succeed, but the revoke is _not_
46 *   cancelled.  We still need to prevent old log records from
47 *   overwriting the new data.  We don't even need to clear the revoke
48 *   bit here.
49 *
50 * We cache revoke status of a buffer in the current transaction in b_states
51 * bits.  As the name says, revokevalid flag indicates that the cached revoke
52 * status of a buffer is valid and we can rely on the cached status.
53 *
54 * Revoke information on buffers is a tri-state value:
55 *
56 * RevokeValid clear:	no cached revoke status, need to look it up
57 * RevokeValid set, Revoked clear:
58 *			buffer has not been revoked, and cancel_revoke
59 *			need do nothing.
60 * RevokeValid set, Revoked set:
61 *			buffer has been revoked.
62 *
63 * Locking rules:
64 * We keep two hash tables of revoke records. One hashtable belongs to the
65 * running transaction (is pointed to by journal->j_revoke), the other one
66 * belongs to the committing transaction. Accesses to the second hash table
67 * happen only from the kjournald and no other thread touches this table.  Also
68 * journal_switch_revoke_table() which switches which hashtable belongs to the
69 * running and which to the committing transaction is called only from
70 * kjournald. Therefore we need no locks when accessing the hashtable belonging
71 * to the committing transaction.
72 *
73 * All users operating on the hash table belonging to the running transaction
74 * have a handle to the transaction. Therefore they are safe from kjournald
75 * switching hash tables under them. For operations on the lists of entries in
76 * the hash table j_revoke_lock is used.
77 *
78 * Finally, also replay code uses the hash tables but at this moment no one else
79 * can touch them (filesystem isn't mounted yet) and hence no locking is
80 * needed.
81 */
82
83#ifndef __KERNEL__
84#include "jfs_user.h"
85#else
86#include <linux/time.h>
87#include <linux/fs.h>
88#include <linux/jbd2.h>
89#include <linux/errno.h>
90#include <linux/slab.h>
91#include <linux/list.h>
92#include <linux/init.h>
93#include <linux/bio.h>
94#include <linux/log2.h>
95#include <linux/hash.h>
96#endif
97
98static struct kmem_cache *jbd2_revoke_record_cache;
99static struct kmem_cache *jbd2_revoke_table_cache;
100
101/* Each revoke record represents one single revoked block.  During
102   journal replay, this involves recording the transaction ID of the
103   last transaction to revoke this block. */
104
105struct jbd2_revoke_record_s
106{
107	struct list_head  hash;
108	tid_t		  sequence;	/* Used for recovery only */
109	unsigned long long	  blocknr;
110};
111
112
113/* The revoke table is just a simple hash table of revoke records. */
114struct jbd2_revoke_table_s
115{
116	/* It is conceivable that we might want a larger hash table
117	 * for recovery.  Must be a power of two. */
118	int		  hash_size;
119	int		  hash_shift;
120	struct list_head *hash_table;
121};
122
123
124#ifdef __KERNEL__
125static void write_one_revoke_record(journal_t *, transaction_t *,
126				    struct list_head *,
127				    struct buffer_head **, int *,
128				    struct jbd2_revoke_record_s *, int);
129static void flush_descriptor(journal_t *, struct buffer_head *, int, int);
130#endif
131
132/* Utility functions to maintain the revoke table */
133
134static inline int hash(journal_t *journal, unsigned long long block)
135{
136	return hash_64(block, journal->j_revoke->hash_shift);
137}
138
139static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
140			      tid_t seq)
141{
142	struct list_head *hash_list;
143	struct jbd2_revoke_record_s *record;
144	gfp_t gfp_mask = GFP_NOFS;
145
146	if (journal_oom_retry)
147		gfp_mask |= __GFP_NOFAIL;
148	record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask);
149	if (!record)
150		return -ENOMEM;
151
152	record->sequence = seq;
153	record->blocknr = blocknr;
154	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
155	spin_lock(&journal->j_revoke_lock);
156	list_add(&record->hash, hash_list);
157	spin_unlock(&journal->j_revoke_lock);
158	return 0;
159}
160
161/* Find a revoke record in the journal's hash table. */
162
163static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
164						      unsigned long long blocknr)
165{
166	struct list_head *hash_list;
167	struct jbd2_revoke_record_s *record;
168
169	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
170
171	spin_lock(&journal->j_revoke_lock);
172	record = (struct jbd2_revoke_record_s *) hash_list->next;
173	while (&(record->hash) != hash_list) {
174		if (record->blocknr == blocknr) {
175			spin_unlock(&journal->j_revoke_lock);
176			return record;
177		}
178		record = (struct jbd2_revoke_record_s *) record->hash.next;
179	}
180	spin_unlock(&journal->j_revoke_lock);
181	return NULL;
182}
183
184void jbd2_journal_destroy_revoke_caches(void)
185{
186	if (jbd2_revoke_record_cache) {
187		kmem_cache_destroy(jbd2_revoke_record_cache);
188		jbd2_revoke_record_cache = NULL;
189	}
190	if (jbd2_revoke_table_cache) {
191		kmem_cache_destroy(jbd2_revoke_table_cache);
192		jbd2_revoke_table_cache = NULL;
193	}
194}
195
196int __init jbd2_journal_init_revoke_caches(void)
197{
198	J_ASSERT(!jbd2_revoke_record_cache);
199	J_ASSERT(!jbd2_revoke_table_cache);
200
201	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
202					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
203	if (!jbd2_revoke_record_cache)
204		goto record_cache_failure;
205
206	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
207					     SLAB_TEMPORARY);
208	if (!jbd2_revoke_table_cache)
209		goto table_cache_failure;
210	return 0;
211table_cache_failure:
212	jbd2_journal_destroy_revoke_caches();
213record_cache_failure:
214		return -ENOMEM;
215}
216
217static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
218{
219	int shift = 0;
220	int tmp = hash_size;
221	struct jbd2_revoke_table_s *table;
222
223	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
224	if (!table)
225		goto out;
226
227	while((tmp >>= 1UL) != 0UL)
228		shift++;
229
230	table->hash_size = hash_size;
231	table->hash_shift = shift;
232	table->hash_table =
233		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
234	if (!table->hash_table) {
235		kmem_cache_free(jbd2_revoke_table_cache, table);
236		table = NULL;
237		goto out;
238	}
239
240	for (tmp = 0; tmp < hash_size; tmp++)
241		INIT_LIST_HEAD(&table->hash_table[tmp]);
242
243out:
244	return table;
245}
246
247static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
248{
249	int i;
250	struct list_head *hash_list;
251
252	for (i = 0; i < table->hash_size; i++) {
253		hash_list = &table->hash_table[i];
254		J_ASSERT(list_empty(hash_list));
255	}
256
257	kfree(table->hash_table);
258	kmem_cache_free(jbd2_revoke_table_cache, table);
259}
260
261/* Initialise the revoke table for a given journal to a given size. */
262int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
263{
264	J_ASSERT(journal->j_revoke_table[0] == NULL);
265	J_ASSERT(is_power_of_2(hash_size));
266
267	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
268	if (!journal->j_revoke_table[0])
269		goto fail0;
270
271	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
272	if (!journal->j_revoke_table[1])
273		goto fail1;
274
275	journal->j_revoke = journal->j_revoke_table[1];
276
277	spin_lock_init(&journal->j_revoke_lock);
278
279	return 0;
280
281fail1:
282	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
283fail0:
284	return -ENOMEM;
285}
286
287/* Destroy a journal's revoke table.  The table must already be empty! */
288void jbd2_journal_destroy_revoke(journal_t *journal)
289{
290	journal->j_revoke = NULL;
291	if (journal->j_revoke_table[0])
292		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
293	if (journal->j_revoke_table[1])
294		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
295}
296
297
298#ifdef __KERNEL__
299
300/*
301 * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
302 * prevents the block from being replayed during recovery if we take a
303 * crash after this current transaction commits.  Any subsequent
304 * metadata writes of the buffer in this transaction cancel the
305 * revoke.
306 *
307 * Note that this call may block --- it is up to the caller to make
308 * sure that there are no further calls to journal_write_metadata
309 * before the revoke is complete.  In ext3, this implies calling the
310 * revoke before clearing the block bitmap when we are deleting
311 * metadata.
312 *
313 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
314 * parameter, but does _not_ forget the buffer_head if the bh was only
315 * found implicitly.
316 *
317 * bh_in may not be a journalled buffer - it may have come off
318 * the hash tables without an attached journal_head.
319 *
320 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
321 * by one.
322 */
323
324int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
325		   struct buffer_head *bh_in)
326{
327	struct buffer_head *bh = NULL;
328	journal_t *journal;
329	struct block_device *bdev;
330	int err;
331
332	might_sleep();
333	if (bh_in)
334		BUFFER_TRACE(bh_in, "enter");
335
336	journal = handle->h_transaction->t_journal;
337	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
338		J_ASSERT (!"Cannot set revoke feature!");
339		return -EINVAL;
340	}
341
342	bdev = journal->j_fs_dev;
343	bh = bh_in;
344
345	if (!bh) {
346		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
347		if (bh)
348			BUFFER_TRACE(bh, "found on hash");
349	}
350#ifdef JBD2_EXPENSIVE_CHECKING
351	else {
352		struct buffer_head *bh2;
353
354		/* If there is a different buffer_head lying around in
355		 * memory anywhere... */
356		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
357		if (bh2) {
358			/* ... and it has RevokeValid status... */
359			if (bh2 != bh && buffer_revokevalid(bh2))
360				/* ...then it better be revoked too,
361				 * since it's illegal to create a revoke
362				 * record against a buffer_head which is
363				 * not marked revoked --- that would
364				 * risk missing a subsequent revoke
365				 * cancel. */
366				J_ASSERT_BH(bh2, buffer_revoked(bh2));
367			put_bh(bh2);
368		}
369	}
370#endif
371
372	/* We really ought not ever to revoke twice in a row without
373           first having the revoke cancelled: it's illegal to free a
374           block twice without allocating it in between! */
375	if (bh) {
376		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
377				 "inconsistent data on disk")) {
378			if (!bh_in)
379				brelse(bh);
380			return -EIO;
381		}
382		set_buffer_revoked(bh);
383		set_buffer_revokevalid(bh);
384		if (bh_in) {
385			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
386			jbd2_journal_forget(handle, bh_in);
387		} else {
388			BUFFER_TRACE(bh, "call brelse");
389			__brelse(bh);
390		}
391	}
392
393	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
394	err = insert_revoke_hash(journal, blocknr,
395				handle->h_transaction->t_tid);
396	BUFFER_TRACE(bh_in, "exit");
397	return err;
398}
399
400/*
401 * Cancel an outstanding revoke.  For use only internally by the
402 * journaling code (called from jbd2_journal_get_write_access).
403 *
404 * We trust buffer_revoked() on the buffer if the buffer is already
405 * being journaled: if there is no revoke pending on the buffer, then we
406 * don't do anything here.
407 *
408 * This would break if it were possible for a buffer to be revoked and
409 * discarded, and then reallocated within the same transaction.  In such
410 * a case we would have lost the revoked bit, but when we arrived here
411 * the second time we would still have a pending revoke to cancel.  So,
412 * do not trust the Revoked bit on buffers unless RevokeValid is also
413 * set.
414 */
415int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
416{
417	struct jbd2_revoke_record_s *record;
418	journal_t *journal = handle->h_transaction->t_journal;
419	int need_cancel;
420	int did_revoke = 0;	/* akpm: debug */
421	struct buffer_head *bh = jh2bh(jh);
422
423	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
424
425	/* Is the existing Revoke bit valid?  If so, we trust it, and
426	 * only perform the full cancel if the revoke bit is set.  If
427	 * not, we can't trust the revoke bit, and we need to do the
428	 * full search for a revoke record. */
429	if (test_set_buffer_revokevalid(bh)) {
430		need_cancel = test_clear_buffer_revoked(bh);
431	} else {
432		need_cancel = 1;
433		clear_buffer_revoked(bh);
434	}
435
436	if (need_cancel) {
437		record = find_revoke_record(journal, bh->b_blocknr);
438		if (record) {
439			jbd_debug(4, "cancelled existing revoke on "
440				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
441			spin_lock(&journal->j_revoke_lock);
442			list_del(&record->hash);
443			spin_unlock(&journal->j_revoke_lock);
444			kmem_cache_free(jbd2_revoke_record_cache, record);
445			did_revoke = 1;
446		}
447	}
448
449#ifdef JBD2_EXPENSIVE_CHECKING
450	/* There better not be one left behind by now! */
451	record = find_revoke_record(journal, bh->b_blocknr);
452	J_ASSERT_JH(jh, record == NULL);
453#endif
454
455	/* Finally, have we just cleared revoke on an unhashed
456	 * buffer_head?  If so, we'd better make sure we clear the
457	 * revoked status on any hashed alias too, otherwise the revoke
458	 * state machine will get very upset later on. */
459	if (need_cancel) {
460		struct buffer_head *bh2;
461		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
462		if (bh2) {
463			if (bh2 != bh)
464				clear_buffer_revoked(bh2);
465			__brelse(bh2);
466		}
467	}
468	return did_revoke;
469}
470
471/*
472 * journal_clear_revoked_flag clears revoked flag of buffers in
473 * revoke table to reflect there is no revoked buffers in the next
474 * transaction which is going to be started.
475 */
476void jbd2_clear_buffer_revoked_flags(journal_t *journal)
477{
478	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
479	int i = 0;
480
481	for (i = 0; i < revoke->hash_size; i++) {
482		struct list_head *hash_list;
483		struct list_head *list_entry;
484		hash_list = &revoke->hash_table[i];
485
486		list_for_each(list_entry, hash_list) {
487			struct jbd2_revoke_record_s *record;
488			struct buffer_head *bh;
489			record = (struct jbd2_revoke_record_s *)list_entry;
490			bh = __find_get_block(journal->j_fs_dev,
491					      record->blocknr,
492					      journal->j_blocksize);
493			if (bh) {
494				clear_buffer_revoked(bh);
495				__brelse(bh);
496			}
497		}
498	}
499}
500
501/* journal_switch_revoke table select j_revoke for next transaction
502 * we do not want to suspend any processing until all revokes are
503 * written -bzzz
504 */
505void jbd2_journal_switch_revoke_table(journal_t *journal)
506{
507	int i;
508
509	if (journal->j_revoke == journal->j_revoke_table[0])
510		journal->j_revoke = journal->j_revoke_table[1];
511	else
512		journal->j_revoke = journal->j_revoke_table[0];
513
514	for (i = 0; i < journal->j_revoke->hash_size; i++)
515		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
516}
517
518/*
519 * Write revoke records to the journal for all entries in the current
520 * revoke hash, deleting the entries as we go.
521 */
522void jbd2_journal_write_revoke_records(journal_t *journal,
523				       transaction_t *transaction,
524				       struct list_head *log_bufs,
525				       int write_op)
526{
527	struct buffer_head *descriptor;
528	struct jbd2_revoke_record_s *record;
529	struct jbd2_revoke_table_s *revoke;
530	struct list_head *hash_list;
531	int i, offset, count;
532
533	descriptor = NULL;
534	offset = 0;
535	count = 0;
536
537	/* select revoke table for committing transaction */
538	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
539		journal->j_revoke_table[1] : journal->j_revoke_table[0];
540
541	for (i = 0; i < revoke->hash_size; i++) {
542		hash_list = &revoke->hash_table[i];
543
544		while (!list_empty(hash_list)) {
545			record = (struct jbd2_revoke_record_s *)
546				hash_list->next;
547			write_one_revoke_record(journal, transaction, log_bufs,
548						&descriptor, &offset,
549						record, write_op);
550			count++;
551			list_del(&record->hash);
552			kmem_cache_free(jbd2_revoke_record_cache, record);
553		}
554	}
555	if (descriptor)
556		flush_descriptor(journal, descriptor, offset, write_op);
557	jbd_debug(1, "Wrote %d revoke records\n", count);
558}
559
560/*
561 * Write out one revoke record.  We need to create a new descriptor
562 * block if the old one is full or if we have not already created one.
563 */
564
565static void write_one_revoke_record(journal_t *journal,
566				    transaction_t *transaction,
567				    struct list_head *log_bufs,
568				    struct buffer_head **descriptorp,
569				    int *offsetp,
570				    struct jbd2_revoke_record_s *record,
571				    int write_op)
572{
573	int csum_size = 0;
574	struct buffer_head *descriptor;
575	int sz, offset;
576	journal_header_t *header;
577
578	/* If we are already aborting, this all becomes a noop.  We
579           still need to go round the loop in
580           jbd2_journal_write_revoke_records in order to free all of the
581           revoke records: only the IO to the journal is omitted. */
582	if (is_journal_aborted(journal))
583		return;
584
585	descriptor = *descriptorp;
586	offset = *offsetp;
587
588	/* Do we need to leave space at the end for a checksum? */
589	if (jbd2_journal_has_csum_v2or3(journal))
590		csum_size = sizeof(struct jbd2_journal_revoke_tail);
591
592	if (jbd2_has_feature_64bit(journal))
593		sz = 8;
594	else
595		sz = 4;
596
597	/* Make sure we have a descriptor with space left for the record */
598	if (descriptor) {
599		if (offset + sz > journal->j_blocksize - csum_size) {
600			flush_descriptor(journal, descriptor, offset, write_op);
601			descriptor = NULL;
602		}
603	}
604
605	if (!descriptor) {
606		descriptor = jbd2_journal_get_descriptor_buffer(journal);
607		if (!descriptor)
608			return;
609		header = (journal_header_t *)descriptor->b_data;
610		header->h_magic     = cpu_to_be32(JBD2_MAGIC_NUMBER);
611		header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK);
612		header->h_sequence  = cpu_to_be32(transaction->t_tid);
613
614		/* Record it so that we can wait for IO completion later */
615		BUFFER_TRACE(descriptor, "file in log_bufs");
616		jbd2_file_log_bh(log_bufs, descriptor);
617
618		offset = sizeof(jbd2_journal_revoke_header_t);
619		*descriptorp = descriptor;
620	}
621
622	if (jbd2_has_feature_64bit(journal))
623		* ((__be64 *)(&descriptor->b_data[offset])) =
624			cpu_to_be64(record->blocknr);
625	else
626		* ((__be32 *)(&descriptor->b_data[offset])) =
627			cpu_to_be32(record->blocknr);
628	offset += sz;
629
630	*offsetp = offset;
631}
632
633static void jbd2_revoke_csum_set(journal_t *j, struct buffer_head *bh)
634{
635	struct jbd2_journal_revoke_tail *tail;
636	__u32 csum;
637
638	if (!jbd2_journal_has_csum_v2or3(j))
639		return;
640
641	tail = (struct jbd2_journal_revoke_tail *)(bh->b_data + j->j_blocksize -
642			sizeof(struct jbd2_journal_revoke_tail));
643	tail->r_checksum = 0;
644	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
645	tail->r_checksum = cpu_to_be32(csum);
646}
647
648/*
649 * Flush a revoke descriptor out to the journal.  If we are aborting,
650 * this is a noop; otherwise we are generating a buffer which needs to
651 * be waited for during commit, so it has to go onto the appropriate
652 * journal buffer list.
653 */
654
655static void flush_descriptor(journal_t *journal,
656			     struct buffer_head *descriptor,
657			     int offset, int write_op)
658{
659	jbd2_journal_revoke_header_t *header;
660
661	if (is_journal_aborted(journal)) {
662		put_bh(descriptor);
663		return;
664	}
665
666	header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
667	header->r_count = cpu_to_be32(offset);
668	jbd2_revoke_csum_set(journal, descriptor);
669
670	set_buffer_jwrite(descriptor);
671	BUFFER_TRACE(descriptor, "write");
672	set_buffer_dirty(descriptor);
673	write_dirty_buffer(descriptor, write_op);
674}
675#endif
676
677/*
678 * Revoke support for recovery.
679 *
680 * Recovery needs to be able to:
681 *
682 *  record all revoke records, including the tid of the latest instance
683 *  of each revoke in the journal
684 *
685 *  check whether a given block in a given transaction should be replayed
686 *  (ie. has not been revoked by a revoke record in that or a subsequent
687 *  transaction)
688 *
689 *  empty the revoke table after recovery.
690 */
691
692/*
693 * First, setting revoke records.  We create a new revoke record for
694 * every block ever revoked in the log as we scan it for recovery, and
695 * we update the existing records if we find multiple revokes for a
696 * single block.
697 */
698
699int jbd2_journal_set_revoke(journal_t *journal,
700		       unsigned long long blocknr,
701		       tid_t sequence)
702{
703	struct jbd2_revoke_record_s *record;
704
705	record = find_revoke_record(journal, blocknr);
706	if (record) {
707		/* If we have multiple occurrences, only record the
708		 * latest sequence number in the hashed record */
709		if (tid_gt(sequence, record->sequence))
710			record->sequence = sequence;
711		return 0;
712	}
713	return insert_revoke_hash(journal, blocknr, sequence);
714}
715
716/*
717 * Test revoke records.  For a given block referenced in the log, has
718 * that block been revoked?  A revoke record with a given transaction
719 * sequence number revokes all blocks in that transaction and earlier
720 * ones, but later transactions still need replayed.
721 */
722
723int jbd2_journal_test_revoke(journal_t *journal,
724			unsigned long long blocknr,
725			tid_t sequence)
726{
727	struct jbd2_revoke_record_s *record;
728
729	record = find_revoke_record(journal, blocknr);
730	if (!record)
731		return 0;
732	if (tid_gt(sequence, record->sequence))
733		return 0;
734	return 1;
735}
736
737/*
738 * Finally, once recovery is over, we need to clear the revoke table so
739 * that it can be reused by the running filesystem.
740 */
741
742void jbd2_journal_clear_revoke(journal_t *journal)
743{
744	int i;
745	struct list_head *hash_list;
746	struct jbd2_revoke_record_s *record;
747	struct jbd2_revoke_table_s *revoke;
748
749	revoke = journal->j_revoke;
750
751	for (i = 0; i < revoke->hash_size; i++) {
752		hash_list = &revoke->hash_table[i];
753		while (!list_empty(hash_list)) {
754			record = (struct jbd2_revoke_record_s*) hash_list->next;
755			list_del(&record->hash);
756			kmem_cache_free(jbd2_revoke_record_cache, record);
757		}
758	}
759}
760