1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49 
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52 
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56 
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60 
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76 
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102 
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105 
106 #ifdef CONFIG_JBD2_DEBUG
__jbd2_debug(int level,const char * file,const char * func,unsigned int line,const char * fmt,...)107 void __jbd2_debug(int level, const char *file, const char *func,
108 		  unsigned int line, const char *fmt, ...)
109 {
110 	struct va_format vaf;
111 	va_list args;
112 
113 	if (level > jbd2_journal_enable_debug)
114 		return;
115 	va_start(args, fmt);
116 	vaf.fmt = fmt;
117 	vaf.va = &args;
118 	printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
119 	va_end(args);
120 }
121 EXPORT_SYMBOL(__jbd2_debug);
122 #endif
123 
124 /* Checksumming functions */
jbd2_verify_csum_type(journal_t * j,journal_superblock_t * sb)125 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
126 {
127 	if (!jbd2_journal_has_csum_v2or3_feature(j))
128 		return 1;
129 
130 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
131 }
132 
jbd2_superblock_csum(journal_t * j,journal_superblock_t * sb)133 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
134 {
135 	__u32 csum;
136 	__be32 old_csum;
137 
138 	old_csum = sb->s_checksum;
139 	sb->s_checksum = 0;
140 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
141 	sb->s_checksum = old_csum;
142 
143 	return cpu_to_be32(csum);
144 }
145 
jbd2_superblock_csum_verify(journal_t * j,journal_superblock_t * sb)146 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
147 {
148 	if (!jbd2_journal_has_csum_v2or3(j))
149 		return 1;
150 
151 	return sb->s_checksum == jbd2_superblock_csum(j, sb);
152 }
153 
jbd2_superblock_csum_set(journal_t * j,journal_superblock_t * sb)154 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
155 {
156 	if (!jbd2_journal_has_csum_v2or3(j))
157 		return;
158 
159 	sb->s_checksum = jbd2_superblock_csum(j, sb);
160 }
161 
162 /*
163  * Helper function used to manage commit timeouts
164  */
165 
commit_timeout(unsigned long __data)166 static void commit_timeout(unsigned long __data)
167 {
168 	struct task_struct * p = (struct task_struct *) __data;
169 
170 	wake_up_process(p);
171 }
172 
173 /*
174  * kjournald2: The main thread function used to manage a logging device
175  * journal.
176  *
177  * This kernel thread is responsible for two things:
178  *
179  * 1) COMMIT:  Every so often we need to commit the current state of the
180  *    filesystem to disk.  The journal thread is responsible for writing
181  *    all of the metadata buffers to disk.
182  *
183  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
184  *    of the data in that part of the log has been rewritten elsewhere on
185  *    the disk.  Flushing these old buffers to reclaim space in the log is
186  *    known as checkpointing, and this thread is responsible for that job.
187  */
188 
kjournald2(void * arg)189 static int kjournald2(void *arg)
190 {
191 	journal_t *journal = arg;
192 	transaction_t *transaction;
193 
194 	/*
195 	 * Set up an interval timer which can be used to trigger a commit wakeup
196 	 * after the commit interval expires
197 	 */
198 	setup_timer(&journal->j_commit_timer, commit_timeout,
199 			(unsigned long)current);
200 
201 	set_freezable();
202 
203 	/* Record that the journal thread is running */
204 	journal->j_task = current;
205 	wake_up(&journal->j_wait_done_commit);
206 
207 	/*
208 	 * And now, wait forever for commit wakeup events.
209 	 */
210 	write_lock(&journal->j_state_lock);
211 
212 loop:
213 	if (journal->j_flags & JBD2_UNMOUNT)
214 		goto end_loop;
215 
216 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
217 		journal->j_commit_sequence, journal->j_commit_request);
218 
219 	if (journal->j_commit_sequence != journal->j_commit_request) {
220 		jbd_debug(1, "OK, requests differ\n");
221 		write_unlock(&journal->j_state_lock);
222 		del_timer_sync(&journal->j_commit_timer);
223 		jbd2_journal_commit_transaction(journal);
224 		write_lock(&journal->j_state_lock);
225 		goto loop;
226 	}
227 
228 	wake_up(&journal->j_wait_done_commit);
229 	if (freezing(current)) {
230 		/*
231 		 * The simpler the better. Flushing journal isn't a
232 		 * good idea, because that depends on threads that may
233 		 * be already stopped.
234 		 */
235 		jbd_debug(1, "Now suspending kjournald2\n");
236 		write_unlock(&journal->j_state_lock);
237 		try_to_freeze();
238 		write_lock(&journal->j_state_lock);
239 	} else {
240 		/*
241 		 * We assume on resume that commits are already there,
242 		 * so we don't sleep
243 		 */
244 		DEFINE_WAIT(wait);
245 		int should_sleep = 1;
246 
247 		prepare_to_wait(&journal->j_wait_commit, &wait,
248 				TASK_INTERRUPTIBLE);
249 		if (journal->j_commit_sequence != journal->j_commit_request)
250 			should_sleep = 0;
251 		transaction = journal->j_running_transaction;
252 		if (transaction && time_after_eq(jiffies,
253 						transaction->t_expires))
254 			should_sleep = 0;
255 		if (journal->j_flags & JBD2_UNMOUNT)
256 			should_sleep = 0;
257 		if (should_sleep) {
258 			write_unlock(&journal->j_state_lock);
259 			schedule();
260 			write_lock(&journal->j_state_lock);
261 		}
262 		finish_wait(&journal->j_wait_commit, &wait);
263 	}
264 
265 	jbd_debug(1, "kjournald2 wakes\n");
266 
267 	/*
268 	 * Were we woken up by a commit wakeup event?
269 	 */
270 	transaction = journal->j_running_transaction;
271 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
272 		journal->j_commit_request = transaction->t_tid;
273 		jbd_debug(1, "woke because of timeout\n");
274 	}
275 	goto loop;
276 
277 end_loop:
278 	write_unlock(&journal->j_state_lock);
279 	del_timer_sync(&journal->j_commit_timer);
280 	journal->j_task = NULL;
281 	wake_up(&journal->j_wait_done_commit);
282 	jbd_debug(1, "Journal thread exiting.\n");
283 	return 0;
284 }
285 
jbd2_journal_start_thread(journal_t * journal)286 static int jbd2_journal_start_thread(journal_t *journal)
287 {
288 	struct task_struct *t;
289 
290 	t = kthread_run(kjournald2, journal, "jbd2/%s",
291 			journal->j_devname);
292 	if (IS_ERR(t))
293 		return PTR_ERR(t);
294 
295 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
296 	return 0;
297 }
298 
journal_kill_thread(journal_t * journal)299 static void journal_kill_thread(journal_t *journal)
300 {
301 	write_lock(&journal->j_state_lock);
302 	journal->j_flags |= JBD2_UNMOUNT;
303 
304 	while (journal->j_task) {
305 		write_unlock(&journal->j_state_lock);
306 		wake_up(&journal->j_wait_commit);
307 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
308 		write_lock(&journal->j_state_lock);
309 	}
310 	write_unlock(&journal->j_state_lock);
311 }
312 
313 /*
314  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
315  *
316  * Writes a metadata buffer to a given disk block.  The actual IO is not
317  * performed but a new buffer_head is constructed which labels the data
318  * to be written with the correct destination disk block.
319  *
320  * Any magic-number escaping which needs to be done will cause a
321  * copy-out here.  If the buffer happens to start with the
322  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
323  * magic number is only written to the log for descripter blocks.  In
324  * this case, we copy the data and replace the first word with 0, and we
325  * return a result code which indicates that this buffer needs to be
326  * marked as an escaped buffer in the corresponding log descriptor
327  * block.  The missing word can then be restored when the block is read
328  * during recovery.
329  *
330  * If the source buffer has already been modified by a new transaction
331  * since we took the last commit snapshot, we use the frozen copy of
332  * that data for IO. If we end up using the existing buffer_head's data
333  * for the write, then we have to make sure nobody modifies it while the
334  * IO is in progress. do_get_write_access() handles this.
335  *
336  * The function returns a pointer to the buffer_head to be used for IO.
337  *
338  *
339  * Return value:
340  *  <0: Error
341  * >=0: Finished OK
342  *
343  * On success:
344  * Bit 0 set == escape performed on the data
345  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
346  */
347 
jbd2_journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct buffer_head ** bh_out,sector_t blocknr)348 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
349 				  struct journal_head  *jh_in,
350 				  struct buffer_head **bh_out,
351 				  sector_t blocknr)
352 {
353 	int need_copy_out = 0;
354 	int done_copy_out = 0;
355 	int do_escape = 0;
356 	char *mapped_data;
357 	struct buffer_head *new_bh;
358 	struct page *new_page;
359 	unsigned int new_offset;
360 	struct buffer_head *bh_in = jh2bh(jh_in);
361 	journal_t *journal = transaction->t_journal;
362 
363 	/*
364 	 * The buffer really shouldn't be locked: only the current committing
365 	 * transaction is allowed to write it, so nobody else is allowed
366 	 * to do any IO.
367 	 *
368 	 * akpm: except if we're journalling data, and write() output is
369 	 * also part of a shared mapping, and another thread has
370 	 * decided to launch a writepage() against this buffer.
371 	 */
372 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
373 
374 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
375 
376 	/* keep subsequent assertions sane */
377 	atomic_set(&new_bh->b_count, 1);
378 
379 	jbd_lock_bh_state(bh_in);
380 repeat:
381 	/*
382 	 * If a new transaction has already done a buffer copy-out, then
383 	 * we use that version of the data for the commit.
384 	 */
385 	if (jh_in->b_frozen_data) {
386 		done_copy_out = 1;
387 		new_page = virt_to_page(jh_in->b_frozen_data);
388 		new_offset = offset_in_page(jh_in->b_frozen_data);
389 	} else {
390 		new_page = jh2bh(jh_in)->b_page;
391 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
392 	}
393 
394 	mapped_data = kmap_atomic(new_page);
395 	/*
396 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
397 	 * before checking for escaping, as the trigger may modify the magic
398 	 * offset.  If a copy-out happens afterwards, it will have the correct
399 	 * data in the buffer.
400 	 */
401 	if (!done_copy_out)
402 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
403 					   jh_in->b_triggers);
404 
405 	/*
406 	 * Check for escaping
407 	 */
408 	if (*((__be32 *)(mapped_data + new_offset)) ==
409 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
410 		need_copy_out = 1;
411 		do_escape = 1;
412 	}
413 	kunmap_atomic(mapped_data);
414 
415 	/*
416 	 * Do we need to do a data copy?
417 	 */
418 	if (need_copy_out && !done_copy_out) {
419 		char *tmp;
420 
421 		jbd_unlock_bh_state(bh_in);
422 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
423 		if (!tmp) {
424 			brelse(new_bh);
425 			return -ENOMEM;
426 		}
427 		jbd_lock_bh_state(bh_in);
428 		if (jh_in->b_frozen_data) {
429 			jbd2_free(tmp, bh_in->b_size);
430 			goto repeat;
431 		}
432 
433 		jh_in->b_frozen_data = tmp;
434 		mapped_data = kmap_atomic(new_page);
435 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
436 		kunmap_atomic(mapped_data);
437 
438 		new_page = virt_to_page(tmp);
439 		new_offset = offset_in_page(tmp);
440 		done_copy_out = 1;
441 
442 		/*
443 		 * This isn't strictly necessary, as we're using frozen
444 		 * data for the escaping, but it keeps consistency with
445 		 * b_frozen_data usage.
446 		 */
447 		jh_in->b_frozen_triggers = jh_in->b_triggers;
448 	}
449 
450 	/*
451 	 * Did we need to do an escaping?  Now we've done all the
452 	 * copying, we can finally do so.
453 	 */
454 	if (do_escape) {
455 		mapped_data = kmap_atomic(new_page);
456 		*((unsigned int *)(mapped_data + new_offset)) = 0;
457 		kunmap_atomic(mapped_data);
458 	}
459 
460 	set_bh_page(new_bh, new_page, new_offset);
461 	new_bh->b_size = bh_in->b_size;
462 	new_bh->b_bdev = journal->j_dev;
463 	new_bh->b_blocknr = blocknr;
464 	new_bh->b_private = bh_in;
465 	set_buffer_mapped(new_bh);
466 	set_buffer_dirty(new_bh);
467 
468 	*bh_out = new_bh;
469 
470 	/*
471 	 * The to-be-written buffer needs to get moved to the io queue,
472 	 * and the original buffer whose contents we are shadowing or
473 	 * copying is moved to the transaction's shadow queue.
474 	 */
475 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
476 	spin_lock(&journal->j_list_lock);
477 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
478 	spin_unlock(&journal->j_list_lock);
479 	set_buffer_shadow(bh_in);
480 	jbd_unlock_bh_state(bh_in);
481 
482 	return do_escape | (done_copy_out << 1);
483 }
484 
485 /*
486  * Allocation code for the journal file.  Manage the space left in the
487  * journal, so that we can begin checkpointing when appropriate.
488  */
489 
490 /*
491  * Called with j_state_lock locked for writing.
492  * Returns true if a transaction commit was started.
493  */
__jbd2_log_start_commit(journal_t * journal,tid_t target)494 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
495 {
496 	/* Return if the txn has already requested to be committed */
497 	if (journal->j_commit_request == target)
498 		return 0;
499 
500 	/*
501 	 * The only transaction we can possibly wait upon is the
502 	 * currently running transaction (if it exists).  Otherwise,
503 	 * the target tid must be an old one.
504 	 */
505 	if (journal->j_running_transaction &&
506 	    journal->j_running_transaction->t_tid == target) {
507 		/*
508 		 * We want a new commit: OK, mark the request and wakeup the
509 		 * commit thread.  We do _not_ do the commit ourselves.
510 		 */
511 
512 		journal->j_commit_request = target;
513 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
514 			  journal->j_commit_request,
515 			  journal->j_commit_sequence);
516 		journal->j_running_transaction->t_requested = jiffies;
517 		wake_up(&journal->j_wait_commit);
518 		return 1;
519 	} else if (!tid_geq(journal->j_commit_request, target))
520 		/* This should never happen, but if it does, preserve
521 		   the evidence before kjournald goes into a loop and
522 		   increments j_commit_sequence beyond all recognition. */
523 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
524 			  journal->j_commit_request,
525 			  journal->j_commit_sequence,
526 			  target, journal->j_running_transaction ?
527 			  journal->j_running_transaction->t_tid : 0);
528 	return 0;
529 }
530 
jbd2_log_start_commit(journal_t * journal,tid_t tid)531 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
532 {
533 	int ret;
534 
535 	write_lock(&journal->j_state_lock);
536 	ret = __jbd2_log_start_commit(journal, tid);
537 	write_unlock(&journal->j_state_lock);
538 	return ret;
539 }
540 
541 /*
542  * Force and wait any uncommitted transactions.  We can only force the running
543  * transaction if we don't have an active handle, otherwise, we will deadlock.
544  * Returns: <0 in case of error,
545  *           0 if nothing to commit,
546  *           1 if transaction was successfully committed.
547  */
__jbd2_journal_force_commit(journal_t * journal)548 static int __jbd2_journal_force_commit(journal_t *journal)
549 {
550 	transaction_t *transaction = NULL;
551 	tid_t tid;
552 	int need_to_start = 0, ret = 0;
553 
554 	read_lock(&journal->j_state_lock);
555 	if (journal->j_running_transaction && !current->journal_info) {
556 		transaction = journal->j_running_transaction;
557 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
558 			need_to_start = 1;
559 	} else if (journal->j_committing_transaction)
560 		transaction = journal->j_committing_transaction;
561 
562 	if (!transaction) {
563 		/* Nothing to commit */
564 		read_unlock(&journal->j_state_lock);
565 		return 0;
566 	}
567 	tid = transaction->t_tid;
568 	read_unlock(&journal->j_state_lock);
569 	if (need_to_start)
570 		jbd2_log_start_commit(journal, tid);
571 	ret = jbd2_log_wait_commit(journal, tid);
572 	if (!ret)
573 		ret = 1;
574 
575 	return ret;
576 }
577 
578 /**
579  * Force and wait upon a commit if the calling process is not within
580  * transaction.  This is used for forcing out undo-protected data which contains
581  * bitmaps, when the fs is running out of space.
582  *
583  * @journal: journal to force
584  * Returns true if progress was made.
585  */
jbd2_journal_force_commit_nested(journal_t * journal)586 int jbd2_journal_force_commit_nested(journal_t *journal)
587 {
588 	int ret;
589 
590 	ret = __jbd2_journal_force_commit(journal);
591 	return ret > 0;
592 }
593 
594 /**
595  * int journal_force_commit() - force any uncommitted transactions
596  * @journal: journal to force
597  *
598  * Caller want unconditional commit. We can only force the running transaction
599  * if we don't have an active handle, otherwise, we will deadlock.
600  */
jbd2_journal_force_commit(journal_t * journal)601 int jbd2_journal_force_commit(journal_t *journal)
602 {
603 	int ret;
604 
605 	J_ASSERT(!current->journal_info);
606 	ret = __jbd2_journal_force_commit(journal);
607 	if (ret > 0)
608 		ret = 0;
609 	return ret;
610 }
611 
612 /*
613  * Start a commit of the current running transaction (if any).  Returns true
614  * if a transaction is going to be committed (or is currently already
615  * committing), and fills its tid in at *ptid
616  */
jbd2_journal_start_commit(journal_t * journal,tid_t * ptid)617 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
618 {
619 	int ret = 0;
620 
621 	write_lock(&journal->j_state_lock);
622 	if (journal->j_running_transaction) {
623 		tid_t tid = journal->j_running_transaction->t_tid;
624 
625 		__jbd2_log_start_commit(journal, tid);
626 		/* There's a running transaction and we've just made sure
627 		 * it's commit has been scheduled. */
628 		if (ptid)
629 			*ptid = tid;
630 		ret = 1;
631 	} else if (journal->j_committing_transaction) {
632 		/*
633 		 * If commit has been started, then we have to wait for
634 		 * completion of that transaction.
635 		 */
636 		if (ptid)
637 			*ptid = journal->j_committing_transaction->t_tid;
638 		ret = 1;
639 	}
640 	write_unlock(&journal->j_state_lock);
641 	return ret;
642 }
643 
644 /*
645  * Return 1 if a given transaction has not yet sent barrier request
646  * connected with a transaction commit. If 0 is returned, transaction
647  * may or may not have sent the barrier. Used to avoid sending barrier
648  * twice in common cases.
649  */
jbd2_trans_will_send_data_barrier(journal_t * journal,tid_t tid)650 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
651 {
652 	int ret = 0;
653 	transaction_t *commit_trans;
654 
655 	if (!(journal->j_flags & JBD2_BARRIER))
656 		return 0;
657 	read_lock(&journal->j_state_lock);
658 	/* Transaction already committed? */
659 	if (tid_geq(journal->j_commit_sequence, tid))
660 		goto out;
661 	commit_trans = journal->j_committing_transaction;
662 	if (!commit_trans || commit_trans->t_tid != tid) {
663 		ret = 1;
664 		goto out;
665 	}
666 	/*
667 	 * Transaction is being committed and we already proceeded to
668 	 * submitting a flush to fs partition?
669 	 */
670 	if (journal->j_fs_dev != journal->j_dev) {
671 		if (!commit_trans->t_need_data_flush ||
672 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
673 			goto out;
674 	} else {
675 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
676 			goto out;
677 	}
678 	ret = 1;
679 out:
680 	read_unlock(&journal->j_state_lock);
681 	return ret;
682 }
683 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
684 
685 /*
686  * Wait for a specified commit to complete.
687  * The caller may not hold the journal lock.
688  */
jbd2_log_wait_commit(journal_t * journal,tid_t tid)689 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
690 {
691 	int err = 0;
692 
693 	read_lock(&journal->j_state_lock);
694 #ifdef CONFIG_JBD2_DEBUG
695 	if (!tid_geq(journal->j_commit_request, tid)) {
696 		printk(KERN_ERR
697 		       "%s: error: j_commit_request=%d, tid=%d\n",
698 		       __func__, journal->j_commit_request, tid);
699 	}
700 #endif
701 	while (tid_gt(tid, journal->j_commit_sequence)) {
702 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
703 				  tid, journal->j_commit_sequence);
704 		read_unlock(&journal->j_state_lock);
705 		wake_up(&journal->j_wait_commit);
706 		wait_event(journal->j_wait_done_commit,
707 				!tid_gt(tid, journal->j_commit_sequence));
708 		read_lock(&journal->j_state_lock);
709 	}
710 	read_unlock(&journal->j_state_lock);
711 
712 	if (unlikely(is_journal_aborted(journal)))
713 		err = -EIO;
714 	return err;
715 }
716 
717 /*
718  * When this function returns the transaction corresponding to tid
719  * will be completed.  If the transaction has currently running, start
720  * committing that transaction before waiting for it to complete.  If
721  * the transaction id is stale, it is by definition already completed,
722  * so just return SUCCESS.
723  */
jbd2_complete_transaction(journal_t * journal,tid_t tid)724 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
725 {
726 	int	need_to_wait = 1;
727 
728 	read_lock(&journal->j_state_lock);
729 	if (journal->j_running_transaction &&
730 	    journal->j_running_transaction->t_tid == tid) {
731 		if (journal->j_commit_request != tid) {
732 			/* transaction not yet started, so request it */
733 			read_unlock(&journal->j_state_lock);
734 			jbd2_log_start_commit(journal, tid);
735 			goto wait_commit;
736 		}
737 	} else if (!(journal->j_committing_transaction &&
738 		     journal->j_committing_transaction->t_tid == tid))
739 		need_to_wait = 0;
740 	read_unlock(&journal->j_state_lock);
741 	if (!need_to_wait)
742 		return 0;
743 wait_commit:
744 	return jbd2_log_wait_commit(journal, tid);
745 }
746 EXPORT_SYMBOL(jbd2_complete_transaction);
747 
748 /*
749  * Log buffer allocation routines:
750  */
751 
jbd2_journal_next_log_block(journal_t * journal,unsigned long long * retp)752 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
753 {
754 	unsigned long blocknr;
755 
756 	write_lock(&journal->j_state_lock);
757 	J_ASSERT(journal->j_free > 1);
758 
759 	blocknr = journal->j_head;
760 	journal->j_head++;
761 	journal->j_free--;
762 	if (journal->j_head == journal->j_last)
763 		journal->j_head = journal->j_first;
764 	write_unlock(&journal->j_state_lock);
765 	return jbd2_journal_bmap(journal, blocknr, retp);
766 }
767 
768 /*
769  * Conversion of logical to physical block numbers for the journal
770  *
771  * On external journals the journal blocks are identity-mapped, so
772  * this is a no-op.  If needed, we can use j_blk_offset - everything is
773  * ready.
774  */
jbd2_journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long long * retp)775 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
776 		 unsigned long long *retp)
777 {
778 	int err = 0;
779 	unsigned long long ret;
780 
781 	if (journal->j_inode) {
782 		ret = bmap(journal->j_inode, blocknr);
783 		if (ret)
784 			*retp = ret;
785 		else {
786 			printk(KERN_ALERT "%s: journal block not found "
787 					"at offset %lu on %s\n",
788 			       __func__, blocknr, journal->j_devname);
789 			err = -EIO;
790 			__journal_abort_soft(journal, err);
791 		}
792 	} else {
793 		*retp = blocknr; /* +journal->j_blk_offset */
794 	}
795 	return err;
796 }
797 
798 /*
799  * We play buffer_head aliasing tricks to write data/metadata blocks to
800  * the journal without copying their contents, but for journal
801  * descriptor blocks we do need to generate bona fide buffers.
802  *
803  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
804  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
805  * But we don't bother doing that, so there will be coherency problems with
806  * mmaps of blockdevs which hold live JBD-controlled filesystems.
807  */
jbd2_journal_get_descriptor_buffer(journal_t * journal)808 struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
809 {
810 	struct buffer_head *bh;
811 	unsigned long long blocknr;
812 	int err;
813 
814 	err = jbd2_journal_next_log_block(journal, &blocknr);
815 
816 	if (err)
817 		return NULL;
818 
819 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
820 	if (!bh)
821 		return NULL;
822 	lock_buffer(bh);
823 	memset(bh->b_data, 0, journal->j_blocksize);
824 	set_buffer_uptodate(bh);
825 	unlock_buffer(bh);
826 	BUFFER_TRACE(bh, "return this buffer");
827 	return bh;
828 }
829 
830 /*
831  * Return tid of the oldest transaction in the journal and block in the journal
832  * where the transaction starts.
833  *
834  * If the journal is now empty, return which will be the next transaction ID
835  * we will write and where will that transaction start.
836  *
837  * The return value is 0 if journal tail cannot be pushed any further, 1 if
838  * it can.
839  */
jbd2_journal_get_log_tail(journal_t * journal,tid_t * tid,unsigned long * block)840 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
841 			      unsigned long *block)
842 {
843 	transaction_t *transaction;
844 	int ret;
845 
846 	read_lock(&journal->j_state_lock);
847 	spin_lock(&journal->j_list_lock);
848 	transaction = journal->j_checkpoint_transactions;
849 	if (transaction) {
850 		*tid = transaction->t_tid;
851 		*block = transaction->t_log_start;
852 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
853 		*tid = transaction->t_tid;
854 		*block = transaction->t_log_start;
855 	} else if ((transaction = journal->j_running_transaction) != NULL) {
856 		*tid = transaction->t_tid;
857 		*block = journal->j_head;
858 	} else {
859 		*tid = journal->j_transaction_sequence;
860 		*block = journal->j_head;
861 	}
862 	ret = tid_gt(*tid, journal->j_tail_sequence);
863 	spin_unlock(&journal->j_list_lock);
864 	read_unlock(&journal->j_state_lock);
865 
866 	return ret;
867 }
868 
869 /*
870  * Update information in journal structure and in on disk journal superblock
871  * about log tail. This function does not check whether information passed in
872  * really pushes log tail further. It's responsibility of the caller to make
873  * sure provided log tail information is valid (e.g. by holding
874  * j_checkpoint_mutex all the time between computing log tail and calling this
875  * function as is the case with jbd2_cleanup_journal_tail()).
876  *
877  * Requires j_checkpoint_mutex
878  */
__jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)879 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
880 {
881 	unsigned long freed;
882 	int ret;
883 
884 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
885 
886 	/*
887 	 * We cannot afford for write to remain in drive's caches since as
888 	 * soon as we update j_tail, next transaction can start reusing journal
889 	 * space and if we lose sb update during power failure we'd replay
890 	 * old transaction with possibly newly overwritten data.
891 	 */
892 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
893 	if (ret)
894 		goto out;
895 
896 	write_lock(&journal->j_state_lock);
897 	freed = block - journal->j_tail;
898 	if (block < journal->j_tail)
899 		freed += journal->j_last - journal->j_first;
900 
901 	trace_jbd2_update_log_tail(journal, tid, block, freed);
902 	jbd_debug(1,
903 		  "Cleaning journal tail from %d to %d (offset %lu), "
904 		  "freeing %lu\n",
905 		  journal->j_tail_sequence, tid, block, freed);
906 
907 	journal->j_free += freed;
908 	journal->j_tail_sequence = tid;
909 	journal->j_tail = block;
910 	write_unlock(&journal->j_state_lock);
911 
912 out:
913 	return ret;
914 }
915 
916 /*
917  * This is a variaon of __jbd2_update_log_tail which checks for validity of
918  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
919  * with other threads updating log tail.
920  */
jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)921 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
922 {
923 	mutex_lock(&journal->j_checkpoint_mutex);
924 	if (tid_gt(tid, journal->j_tail_sequence))
925 		__jbd2_update_log_tail(journal, tid, block);
926 	mutex_unlock(&journal->j_checkpoint_mutex);
927 }
928 
929 struct jbd2_stats_proc_session {
930 	journal_t *journal;
931 	struct transaction_stats_s *stats;
932 	int start;
933 	int max;
934 };
935 
jbd2_seq_info_start(struct seq_file * seq,loff_t * pos)936 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
937 {
938 	return *pos ? NULL : SEQ_START_TOKEN;
939 }
940 
jbd2_seq_info_next(struct seq_file * seq,void * v,loff_t * pos)941 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
942 {
943 	return NULL;
944 }
945 
jbd2_seq_info_show(struct seq_file * seq,void * v)946 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
947 {
948 	struct jbd2_stats_proc_session *s = seq->private;
949 
950 	if (v != SEQ_START_TOKEN)
951 		return 0;
952 	seq_printf(seq, "%lu transactions (%lu requested), "
953 		   "each up to %u blocks\n",
954 		   s->stats->ts_tid, s->stats->ts_requested,
955 		   s->journal->j_max_transaction_buffers);
956 	if (s->stats->ts_tid == 0)
957 		return 0;
958 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
959 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
960 	seq_printf(seq, "  %ums request delay\n",
961 	    (s->stats->ts_requested == 0) ? 0 :
962 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
963 			     s->stats->ts_requested));
964 	seq_printf(seq, "  %ums running transaction\n",
965 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
966 	seq_printf(seq, "  %ums transaction was being locked\n",
967 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
968 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
969 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
970 	seq_printf(seq, "  %ums logging transaction\n",
971 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
972 	seq_printf(seq, "  %lluus average transaction commit time\n",
973 		   div_u64(s->journal->j_average_commit_time, 1000));
974 	seq_printf(seq, "  %lu handles per transaction\n",
975 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
976 	seq_printf(seq, "  %lu blocks per transaction\n",
977 	    s->stats->run.rs_blocks / s->stats->ts_tid);
978 	seq_printf(seq, "  %lu logged blocks per transaction\n",
979 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
980 	return 0;
981 }
982 
jbd2_seq_info_stop(struct seq_file * seq,void * v)983 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
984 {
985 }
986 
987 static const struct seq_operations jbd2_seq_info_ops = {
988 	.start  = jbd2_seq_info_start,
989 	.next   = jbd2_seq_info_next,
990 	.stop   = jbd2_seq_info_stop,
991 	.show   = jbd2_seq_info_show,
992 };
993 
jbd2_seq_info_open(struct inode * inode,struct file * file)994 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
995 {
996 	journal_t *journal = PDE_DATA(inode);
997 	struct jbd2_stats_proc_session *s;
998 	int rc, size;
999 
1000 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1001 	if (s == NULL)
1002 		return -ENOMEM;
1003 	size = sizeof(struct transaction_stats_s);
1004 	s->stats = kmalloc(size, GFP_KERNEL);
1005 	if (s->stats == NULL) {
1006 		kfree(s);
1007 		return -ENOMEM;
1008 	}
1009 	spin_lock(&journal->j_history_lock);
1010 	memcpy(s->stats, &journal->j_stats, size);
1011 	s->journal = journal;
1012 	spin_unlock(&journal->j_history_lock);
1013 
1014 	rc = seq_open(file, &jbd2_seq_info_ops);
1015 	if (rc == 0) {
1016 		struct seq_file *m = file->private_data;
1017 		m->private = s;
1018 	} else {
1019 		kfree(s->stats);
1020 		kfree(s);
1021 	}
1022 	return rc;
1023 
1024 }
1025 
jbd2_seq_info_release(struct inode * inode,struct file * file)1026 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1027 {
1028 	struct seq_file *seq = file->private_data;
1029 	struct jbd2_stats_proc_session *s = seq->private;
1030 	kfree(s->stats);
1031 	kfree(s);
1032 	return seq_release(inode, file);
1033 }
1034 
1035 static const struct file_operations jbd2_seq_info_fops = {
1036 	.owner		= THIS_MODULE,
1037 	.open           = jbd2_seq_info_open,
1038 	.read           = seq_read,
1039 	.llseek         = seq_lseek,
1040 	.release        = jbd2_seq_info_release,
1041 };
1042 
1043 static struct proc_dir_entry *proc_jbd2_stats;
1044 
jbd2_stats_proc_init(journal_t * journal)1045 static void jbd2_stats_proc_init(journal_t *journal)
1046 {
1047 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1048 	if (journal->j_proc_entry) {
1049 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1050 				 &jbd2_seq_info_fops, journal);
1051 	}
1052 }
1053 
jbd2_stats_proc_exit(journal_t * journal)1054 static void jbd2_stats_proc_exit(journal_t *journal)
1055 {
1056 	remove_proc_entry("info", journal->j_proc_entry);
1057 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1058 }
1059 
1060 /*
1061  * Management for journal control blocks: functions to create and
1062  * destroy journal_t structures, and to initialise and read existing
1063  * journal blocks from disk.  */
1064 
1065 /* First: create and setup a journal_t object in memory.  We initialise
1066  * very few fields yet: that has to wait until we have created the
1067  * journal structures from from scratch, or loaded them from disk. */
1068 
journal_init_common(void)1069 static journal_t * journal_init_common (void)
1070 {
1071 	journal_t *journal;
1072 	int err;
1073 
1074 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1075 	if (!journal)
1076 		return NULL;
1077 
1078 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1079 	init_waitqueue_head(&journal->j_wait_done_commit);
1080 	init_waitqueue_head(&journal->j_wait_commit);
1081 	init_waitqueue_head(&journal->j_wait_updates);
1082 	init_waitqueue_head(&journal->j_wait_reserved);
1083 	mutex_init(&journal->j_barrier);
1084 	mutex_init(&journal->j_checkpoint_mutex);
1085 	spin_lock_init(&journal->j_revoke_lock);
1086 	spin_lock_init(&journal->j_list_lock);
1087 	rwlock_init(&journal->j_state_lock);
1088 
1089 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1090 	journal->j_min_batch_time = 0;
1091 	journal->j_max_batch_time = 15000; /* 15ms */
1092 	atomic_set(&journal->j_reserved_credits, 0);
1093 
1094 	/* The journal is marked for error until we succeed with recovery! */
1095 	journal->j_flags = JBD2_ABORT;
1096 
1097 	/* Set up a default-sized revoke table for the new mount. */
1098 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1099 	if (err) {
1100 		kfree(journal);
1101 		return NULL;
1102 	}
1103 
1104 	spin_lock_init(&journal->j_history_lock);
1105 
1106 	return journal;
1107 }
1108 
1109 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1110  *
1111  * Create a journal structure assigned some fixed set of disk blocks to
1112  * the journal.  We don't actually touch those disk blocks yet, but we
1113  * need to set up all of the mapping information to tell the journaling
1114  * system where the journal blocks are.
1115  *
1116  */
1117 
1118 /**
1119  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1120  *  @bdev: Block device on which to create the journal
1121  *  @fs_dev: Device which hold journalled filesystem for this journal.
1122  *  @start: Block nr Start of journal.
1123  *  @len:  Length of the journal in blocks.
1124  *  @blocksize: blocksize of journalling device
1125  *
1126  *  Returns: a newly created journal_t *
1127  *
1128  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1129  *  range of blocks on an arbitrary block device.
1130  *
1131  */
jbd2_journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1132 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1133 			struct block_device *fs_dev,
1134 			unsigned long long start, int len, int blocksize)
1135 {
1136 	journal_t *journal = journal_init_common();
1137 	struct buffer_head *bh;
1138 	int n;
1139 
1140 	if (!journal)
1141 		return NULL;
1142 
1143 	/* journal descriptor can store up to n blocks -bzzz */
1144 	journal->j_blocksize = blocksize;
1145 	journal->j_dev = bdev;
1146 	journal->j_fs_dev = fs_dev;
1147 	journal->j_blk_offset = start;
1148 	journal->j_maxlen = len;
1149 	bdevname(journal->j_dev, journal->j_devname);
1150 	strreplace(journal->j_devname, '/', '!');
1151 	jbd2_stats_proc_init(journal);
1152 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1153 	journal->j_wbufsize = n;
1154 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1155 	if (!journal->j_wbuf) {
1156 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1157 			__func__);
1158 		goto out_err;
1159 	}
1160 
1161 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1162 	if (!bh) {
1163 		printk(KERN_ERR
1164 		       "%s: Cannot get buffer for journal superblock\n",
1165 		       __func__);
1166 		goto out_err;
1167 	}
1168 	journal->j_sb_buffer = bh;
1169 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1170 
1171 	return journal;
1172 out_err:
1173 	kfree(journal->j_wbuf);
1174 	jbd2_stats_proc_exit(journal);
1175 	kfree(journal);
1176 	return NULL;
1177 }
1178 
1179 /**
1180  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1181  *  @inode: An inode to create the journal in
1182  *
1183  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1184  * the journal.  The inode must exist already, must support bmap() and
1185  * must have all data blocks preallocated.
1186  */
jbd2_journal_init_inode(struct inode * inode)1187 journal_t * jbd2_journal_init_inode (struct inode *inode)
1188 {
1189 	struct buffer_head *bh;
1190 	journal_t *journal = journal_init_common();
1191 	char *p;
1192 	int err;
1193 	int n;
1194 	unsigned long long blocknr;
1195 
1196 	if (!journal)
1197 		return NULL;
1198 
1199 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1200 	journal->j_inode = inode;
1201 	bdevname(journal->j_dev, journal->j_devname);
1202 	p = strreplace(journal->j_devname, '/', '!');
1203 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1204 	jbd_debug(1,
1205 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1206 		  journal, inode->i_sb->s_id, inode->i_ino,
1207 		  (long long) inode->i_size,
1208 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1209 
1210 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1211 	journal->j_blocksize = inode->i_sb->s_blocksize;
1212 	jbd2_stats_proc_init(journal);
1213 
1214 	/* journal descriptor can store up to n blocks -bzzz */
1215 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1216 	journal->j_wbufsize = n;
1217 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1218 	if (!journal->j_wbuf) {
1219 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1220 			__func__);
1221 		goto out_err;
1222 	}
1223 
1224 	err = jbd2_journal_bmap(journal, 0, &blocknr);
1225 	/* If that failed, give up */
1226 	if (err) {
1227 		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1228 		       __func__);
1229 		goto out_err;
1230 	}
1231 
1232 	bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize);
1233 	if (!bh) {
1234 		printk(KERN_ERR
1235 		       "%s: Cannot get buffer for journal superblock\n",
1236 		       __func__);
1237 		goto out_err;
1238 	}
1239 	journal->j_sb_buffer = bh;
1240 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1241 
1242 	return journal;
1243 out_err:
1244 	kfree(journal->j_wbuf);
1245 	jbd2_stats_proc_exit(journal);
1246 	kfree(journal);
1247 	return NULL;
1248 }
1249 
1250 /*
1251  * If the journal init or create aborts, we need to mark the journal
1252  * superblock as being NULL to prevent the journal destroy from writing
1253  * back a bogus superblock.
1254  */
journal_fail_superblock(journal_t * journal)1255 static void journal_fail_superblock (journal_t *journal)
1256 {
1257 	struct buffer_head *bh = journal->j_sb_buffer;
1258 	brelse(bh);
1259 	journal->j_sb_buffer = NULL;
1260 }
1261 
1262 /*
1263  * Given a journal_t structure, initialise the various fields for
1264  * startup of a new journaling session.  We use this both when creating
1265  * a journal, and after recovering an old journal to reset it for
1266  * subsequent use.
1267  */
1268 
journal_reset(journal_t * journal)1269 static int journal_reset(journal_t *journal)
1270 {
1271 	journal_superblock_t *sb = journal->j_superblock;
1272 	unsigned long long first, last;
1273 
1274 	first = be32_to_cpu(sb->s_first);
1275 	last = be32_to_cpu(sb->s_maxlen);
1276 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1277 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1278 		       first, last);
1279 		journal_fail_superblock(journal);
1280 		return -EINVAL;
1281 	}
1282 
1283 	journal->j_first = first;
1284 	journal->j_last = last;
1285 
1286 	journal->j_head = first;
1287 	journal->j_tail = first;
1288 	journal->j_free = last - first;
1289 
1290 	journal->j_tail_sequence = journal->j_transaction_sequence;
1291 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1292 	journal->j_commit_request = journal->j_commit_sequence;
1293 
1294 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1295 
1296 	/*
1297 	 * As a special case, if the on-disk copy is already marked as needing
1298 	 * no recovery (s_start == 0), then we can safely defer the superblock
1299 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1300 	 * attempting a write to a potential-readonly device.
1301 	 */
1302 	if (sb->s_start == 0) {
1303 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1304 			"(start %ld, seq %d, errno %d)\n",
1305 			journal->j_tail, journal->j_tail_sequence,
1306 			journal->j_errno);
1307 		journal->j_flags |= JBD2_FLUSHED;
1308 	} else {
1309 		/* Lock here to make assertions happy... */
1310 		mutex_lock(&journal->j_checkpoint_mutex);
1311 		/*
1312 		 * Update log tail information. We use WRITE_FUA since new
1313 		 * transaction will start reusing journal space and so we
1314 		 * must make sure information about current log tail is on
1315 		 * disk before that.
1316 		 */
1317 		jbd2_journal_update_sb_log_tail(journal,
1318 						journal->j_tail_sequence,
1319 						journal->j_tail,
1320 						WRITE_FUA);
1321 		mutex_unlock(&journal->j_checkpoint_mutex);
1322 	}
1323 	return jbd2_journal_start_thread(journal);
1324 }
1325 
jbd2_write_superblock(journal_t * journal,int write_op)1326 static int jbd2_write_superblock(journal_t *journal, int write_op)
1327 {
1328 	struct buffer_head *bh = journal->j_sb_buffer;
1329 	journal_superblock_t *sb = journal->j_superblock;
1330 	int ret;
1331 
1332 	trace_jbd2_write_superblock(journal, write_op);
1333 	if (!(journal->j_flags & JBD2_BARRIER))
1334 		write_op &= ~(REQ_FUA | REQ_FLUSH);
1335 	lock_buffer(bh);
1336 	if (buffer_write_io_error(bh)) {
1337 		/*
1338 		 * Oh, dear.  A previous attempt to write the journal
1339 		 * superblock failed.  This could happen because the
1340 		 * USB device was yanked out.  Or it could happen to
1341 		 * be a transient write error and maybe the block will
1342 		 * be remapped.  Nothing we can do but to retry the
1343 		 * write and hope for the best.
1344 		 */
1345 		printk(KERN_ERR "JBD2: previous I/O error detected "
1346 		       "for journal superblock update for %s.\n",
1347 		       journal->j_devname);
1348 		clear_buffer_write_io_error(bh);
1349 		set_buffer_uptodate(bh);
1350 	}
1351 	jbd2_superblock_csum_set(journal, sb);
1352 	get_bh(bh);
1353 	bh->b_end_io = end_buffer_write_sync;
1354 	ret = submit_bh(write_op, bh);
1355 	wait_on_buffer(bh);
1356 	if (buffer_write_io_error(bh)) {
1357 		clear_buffer_write_io_error(bh);
1358 		set_buffer_uptodate(bh);
1359 		ret = -EIO;
1360 	}
1361 	if (ret) {
1362 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1363 		       "journal superblock for %s.\n", ret,
1364 		       journal->j_devname);
1365 		jbd2_journal_abort(journal, ret);
1366 	}
1367 
1368 	return ret;
1369 }
1370 
1371 /**
1372  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1373  * @journal: The journal to update.
1374  * @tail_tid: TID of the new transaction at the tail of the log
1375  * @tail_block: The first block of the transaction at the tail of the log
1376  * @write_op: With which operation should we write the journal sb
1377  *
1378  * Update a journal's superblock information about log tail and write it to
1379  * disk, waiting for the IO to complete.
1380  */
jbd2_journal_update_sb_log_tail(journal_t * journal,tid_t tail_tid,unsigned long tail_block,int write_op)1381 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1382 				     unsigned long tail_block, int write_op)
1383 {
1384 	journal_superblock_t *sb = journal->j_superblock;
1385 	int ret;
1386 
1387 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1388 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1389 		  tail_block, tail_tid);
1390 
1391 	sb->s_sequence = cpu_to_be32(tail_tid);
1392 	sb->s_start    = cpu_to_be32(tail_block);
1393 
1394 	ret = jbd2_write_superblock(journal, write_op);
1395 	if (ret)
1396 		goto out;
1397 
1398 	/* Log is no longer empty */
1399 	write_lock(&journal->j_state_lock);
1400 	WARN_ON(!sb->s_sequence);
1401 	journal->j_flags &= ~JBD2_FLUSHED;
1402 	write_unlock(&journal->j_state_lock);
1403 
1404 out:
1405 	return ret;
1406 }
1407 
1408 /**
1409  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1410  * @journal: The journal to update.
1411  * @write_op: With which operation should we write the journal sb
1412  *
1413  * Update a journal's dynamic superblock fields to show that journal is empty.
1414  * Write updated superblock to disk waiting for IO to complete.
1415  */
jbd2_mark_journal_empty(journal_t * journal,int write_op)1416 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1417 {
1418 	journal_superblock_t *sb = journal->j_superblock;
1419 
1420 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1421 	read_lock(&journal->j_state_lock);
1422 	/* Is it already empty? */
1423 	if (sb->s_start == 0) {
1424 		read_unlock(&journal->j_state_lock);
1425 		return;
1426 	}
1427 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1428 		  journal->j_tail_sequence);
1429 
1430 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1431 	sb->s_start    = cpu_to_be32(0);
1432 	read_unlock(&journal->j_state_lock);
1433 
1434 	jbd2_write_superblock(journal, write_op);
1435 
1436 	/* Log is no longer empty */
1437 	write_lock(&journal->j_state_lock);
1438 	journal->j_flags |= JBD2_FLUSHED;
1439 	write_unlock(&journal->j_state_lock);
1440 }
1441 
1442 
1443 /**
1444  * jbd2_journal_update_sb_errno() - Update error in the journal.
1445  * @journal: The journal to update.
1446  *
1447  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1448  * to complete.
1449  */
jbd2_journal_update_sb_errno(journal_t * journal)1450 void jbd2_journal_update_sb_errno(journal_t *journal)
1451 {
1452 	journal_superblock_t *sb = journal->j_superblock;
1453 
1454 	read_lock(&journal->j_state_lock);
1455 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1456 		  journal->j_errno);
1457 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1458 	read_unlock(&journal->j_state_lock);
1459 
1460 	jbd2_write_superblock(journal, WRITE_FUA);
1461 }
1462 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1463 
1464 /*
1465  * Read the superblock for a given journal, performing initial
1466  * validation of the format.
1467  */
journal_get_superblock(journal_t * journal)1468 static int journal_get_superblock(journal_t *journal)
1469 {
1470 	struct buffer_head *bh;
1471 	journal_superblock_t *sb;
1472 	int err = -EIO;
1473 
1474 	bh = journal->j_sb_buffer;
1475 
1476 	J_ASSERT(bh != NULL);
1477 	if (!buffer_uptodate(bh)) {
1478 		ll_rw_block(READ, 1, &bh);
1479 		wait_on_buffer(bh);
1480 		if (!buffer_uptodate(bh)) {
1481 			printk(KERN_ERR
1482 				"JBD2: IO error reading journal superblock\n");
1483 			goto out;
1484 		}
1485 	}
1486 
1487 	if (buffer_verified(bh))
1488 		return 0;
1489 
1490 	sb = journal->j_superblock;
1491 
1492 	err = -EINVAL;
1493 
1494 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1495 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1496 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1497 		goto out;
1498 	}
1499 
1500 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1501 	case JBD2_SUPERBLOCK_V1:
1502 		journal->j_format_version = 1;
1503 		break;
1504 	case JBD2_SUPERBLOCK_V2:
1505 		journal->j_format_version = 2;
1506 		break;
1507 	default:
1508 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1509 		goto out;
1510 	}
1511 
1512 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1513 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1514 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1515 		printk(KERN_WARNING "JBD2: journal file too short\n");
1516 		goto out;
1517 	}
1518 
1519 	if (be32_to_cpu(sb->s_first) == 0 ||
1520 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1521 		printk(KERN_WARNING
1522 			"JBD2: Invalid start block of journal: %u\n",
1523 			be32_to_cpu(sb->s_first));
1524 		goto out;
1525 	}
1526 
1527 	if (jbd2_has_feature_csum2(journal) &&
1528 	    jbd2_has_feature_csum3(journal)) {
1529 		/* Can't have checksum v2 and v3 at the same time! */
1530 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1531 		       "at the same time!\n");
1532 		goto out;
1533 	}
1534 
1535 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1536 	    jbd2_has_feature_checksum(journal)) {
1537 		/* Can't have checksum v1 and v2 on at the same time! */
1538 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1539 		       "at the same time!\n");
1540 		goto out;
1541 	}
1542 
1543 	if (!jbd2_verify_csum_type(journal, sb)) {
1544 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1545 		goto out;
1546 	}
1547 
1548 	/* Load the checksum driver */
1549 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1550 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1551 		if (IS_ERR(journal->j_chksum_driver)) {
1552 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1553 			err = PTR_ERR(journal->j_chksum_driver);
1554 			journal->j_chksum_driver = NULL;
1555 			goto out;
1556 		}
1557 	}
1558 
1559 	/* Check superblock checksum */
1560 	if (!jbd2_superblock_csum_verify(journal, sb)) {
1561 		printk(KERN_ERR "JBD2: journal checksum error\n");
1562 		err = -EFSBADCRC;
1563 		goto out;
1564 	}
1565 
1566 	/* Precompute checksum seed for all metadata */
1567 	if (jbd2_journal_has_csum_v2or3(journal))
1568 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1569 						   sizeof(sb->s_uuid));
1570 
1571 	set_buffer_verified(bh);
1572 
1573 	return 0;
1574 
1575 out:
1576 	journal_fail_superblock(journal);
1577 	return err;
1578 }
1579 
1580 /*
1581  * Load the on-disk journal superblock and read the key fields into the
1582  * journal_t.
1583  */
1584 
load_superblock(journal_t * journal)1585 static int load_superblock(journal_t *journal)
1586 {
1587 	int err;
1588 	journal_superblock_t *sb;
1589 
1590 	err = journal_get_superblock(journal);
1591 	if (err)
1592 		return err;
1593 
1594 	sb = journal->j_superblock;
1595 
1596 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1597 	journal->j_tail = be32_to_cpu(sb->s_start);
1598 	journal->j_first = be32_to_cpu(sb->s_first);
1599 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1600 	journal->j_errno = be32_to_cpu(sb->s_errno);
1601 
1602 	return 0;
1603 }
1604 
1605 
1606 /**
1607  * int jbd2_journal_load() - Read journal from disk.
1608  * @journal: Journal to act on.
1609  *
1610  * Given a journal_t structure which tells us which disk blocks contain
1611  * a journal, read the journal from disk to initialise the in-memory
1612  * structures.
1613  */
jbd2_journal_load(journal_t * journal)1614 int jbd2_journal_load(journal_t *journal)
1615 {
1616 	int err;
1617 	journal_superblock_t *sb;
1618 
1619 	err = load_superblock(journal);
1620 	if (err)
1621 		return err;
1622 
1623 	sb = journal->j_superblock;
1624 	/* If this is a V2 superblock, then we have to check the
1625 	 * features flags on it. */
1626 
1627 	if (journal->j_format_version >= 2) {
1628 		if ((sb->s_feature_ro_compat &
1629 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1630 		    (sb->s_feature_incompat &
1631 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1632 			printk(KERN_WARNING
1633 				"JBD2: Unrecognised features on journal\n");
1634 			return -EINVAL;
1635 		}
1636 	}
1637 
1638 	/*
1639 	 * Create a slab for this blocksize
1640 	 */
1641 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1642 	if (err)
1643 		return err;
1644 
1645 	/* Let the recovery code check whether it needs to recover any
1646 	 * data from the journal. */
1647 	if (jbd2_journal_recover(journal))
1648 		goto recovery_error;
1649 
1650 	if (journal->j_failed_commit) {
1651 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1652 		       "is corrupt.\n", journal->j_failed_commit,
1653 		       journal->j_devname);
1654 		return -EFSCORRUPTED;
1655 	}
1656 
1657 	/* OK, we've finished with the dynamic journal bits:
1658 	 * reinitialise the dynamic contents of the superblock in memory
1659 	 * and reset them on disk. */
1660 	if (journal_reset(journal))
1661 		goto recovery_error;
1662 
1663 	journal->j_flags &= ~JBD2_ABORT;
1664 	journal->j_flags |= JBD2_LOADED;
1665 	return 0;
1666 
1667 recovery_error:
1668 	printk(KERN_WARNING "JBD2: recovery failed\n");
1669 	return -EIO;
1670 }
1671 
1672 /**
1673  * void jbd2_journal_destroy() - Release a journal_t structure.
1674  * @journal: Journal to act on.
1675  *
1676  * Release a journal_t structure once it is no longer in use by the
1677  * journaled object.
1678  * Return <0 if we couldn't clean up the journal.
1679  */
jbd2_journal_destroy(journal_t * journal)1680 int jbd2_journal_destroy(journal_t *journal)
1681 {
1682 	int err = 0;
1683 
1684 	/* Wait for the commit thread to wake up and die. */
1685 	journal_kill_thread(journal);
1686 
1687 	/* Force a final log commit */
1688 	if (journal->j_running_transaction)
1689 		jbd2_journal_commit_transaction(journal);
1690 
1691 	/* Force any old transactions to disk */
1692 
1693 	/* Totally anal locking here... */
1694 	spin_lock(&journal->j_list_lock);
1695 	while (journal->j_checkpoint_transactions != NULL) {
1696 		spin_unlock(&journal->j_list_lock);
1697 		mutex_lock(&journal->j_checkpoint_mutex);
1698 		err = jbd2_log_do_checkpoint(journal);
1699 		mutex_unlock(&journal->j_checkpoint_mutex);
1700 		/*
1701 		 * If checkpointing failed, just free the buffers to avoid
1702 		 * looping forever
1703 		 */
1704 		if (err) {
1705 			jbd2_journal_destroy_checkpoint(journal);
1706 			spin_lock(&journal->j_list_lock);
1707 			break;
1708 		}
1709 		spin_lock(&journal->j_list_lock);
1710 	}
1711 
1712 	J_ASSERT(journal->j_running_transaction == NULL);
1713 	J_ASSERT(journal->j_committing_transaction == NULL);
1714 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1715 	spin_unlock(&journal->j_list_lock);
1716 
1717 	if (journal->j_sb_buffer) {
1718 		if (!is_journal_aborted(journal)) {
1719 			mutex_lock(&journal->j_checkpoint_mutex);
1720 
1721 			write_lock(&journal->j_state_lock);
1722 			journal->j_tail_sequence =
1723 				++journal->j_transaction_sequence;
1724 			write_unlock(&journal->j_state_lock);
1725 
1726 			jbd2_mark_journal_empty(journal, WRITE_FLUSH_FUA);
1727 			mutex_unlock(&journal->j_checkpoint_mutex);
1728 		} else
1729 			err = -EIO;
1730 		brelse(journal->j_sb_buffer);
1731 	}
1732 
1733 	if (journal->j_proc_entry)
1734 		jbd2_stats_proc_exit(journal);
1735 	iput(journal->j_inode);
1736 	if (journal->j_revoke)
1737 		jbd2_journal_destroy_revoke(journal);
1738 	if (journal->j_chksum_driver)
1739 		crypto_free_shash(journal->j_chksum_driver);
1740 	kfree(journal->j_wbuf);
1741 	kfree(journal);
1742 
1743 	return err;
1744 }
1745 
1746 
1747 /**
1748  *int jbd2_journal_check_used_features () - Check if features specified are used.
1749  * @journal: Journal to check.
1750  * @compat: bitmask of compatible features
1751  * @ro: bitmask of features that force read-only mount
1752  * @incompat: bitmask of incompatible features
1753  *
1754  * Check whether the journal uses all of a given set of
1755  * features.  Return true (non-zero) if it does.
1756  **/
1757 
jbd2_journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1758 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1759 				 unsigned long ro, unsigned long incompat)
1760 {
1761 	journal_superblock_t *sb;
1762 
1763 	if (!compat && !ro && !incompat)
1764 		return 1;
1765 	/* Load journal superblock if it is not loaded yet. */
1766 	if (journal->j_format_version == 0 &&
1767 	    journal_get_superblock(journal) != 0)
1768 		return 0;
1769 	if (journal->j_format_version == 1)
1770 		return 0;
1771 
1772 	sb = journal->j_superblock;
1773 
1774 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1775 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1776 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1777 		return 1;
1778 
1779 	return 0;
1780 }
1781 
1782 /**
1783  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1784  * @journal: Journal to check.
1785  * @compat: bitmask of compatible features
1786  * @ro: bitmask of features that force read-only mount
1787  * @incompat: bitmask of incompatible features
1788  *
1789  * Check whether the journaling code supports the use of
1790  * all of a given set of features on this journal.  Return true
1791  * (non-zero) if it can. */
1792 
jbd2_journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1793 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1794 				      unsigned long ro, unsigned long incompat)
1795 {
1796 	if (!compat && !ro && !incompat)
1797 		return 1;
1798 
1799 	/* We can support any known requested features iff the
1800 	 * superblock is in version 2.  Otherwise we fail to support any
1801 	 * extended sb features. */
1802 
1803 	if (journal->j_format_version != 2)
1804 		return 0;
1805 
1806 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1807 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1808 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1809 		return 1;
1810 
1811 	return 0;
1812 }
1813 
1814 /**
1815  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1816  * @journal: Journal to act on.
1817  * @compat: bitmask of compatible features
1818  * @ro: bitmask of features that force read-only mount
1819  * @incompat: bitmask of incompatible features
1820  *
1821  * Mark a given journal feature as present on the
1822  * superblock.  Returns true if the requested features could be set.
1823  *
1824  */
1825 
jbd2_journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1826 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1827 			  unsigned long ro, unsigned long incompat)
1828 {
1829 #define INCOMPAT_FEATURE_ON(f) \
1830 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1831 #define COMPAT_FEATURE_ON(f) \
1832 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1833 	journal_superblock_t *sb;
1834 
1835 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1836 		return 1;
1837 
1838 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1839 		return 0;
1840 
1841 	/* If enabling v2 checksums, turn on v3 instead */
1842 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1843 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1844 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1845 	}
1846 
1847 	/* Asking for checksumming v3 and v1?  Only give them v3. */
1848 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1849 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1850 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1851 
1852 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1853 		  compat, ro, incompat);
1854 
1855 	sb = journal->j_superblock;
1856 
1857 	/* If enabling v3 checksums, update superblock */
1858 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1859 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1860 		sb->s_feature_compat &=
1861 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1862 
1863 		/* Load the checksum driver */
1864 		if (journal->j_chksum_driver == NULL) {
1865 			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1866 								      0, 0);
1867 			if (IS_ERR(journal->j_chksum_driver)) {
1868 				printk(KERN_ERR "JBD2: Cannot load crc32c "
1869 				       "driver.\n");
1870 				journal->j_chksum_driver = NULL;
1871 				return 0;
1872 			}
1873 
1874 			/* Precompute checksum seed for all metadata */
1875 			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1876 							   sb->s_uuid,
1877 							   sizeof(sb->s_uuid));
1878 		}
1879 	}
1880 
1881 	/* If enabling v1 checksums, downgrade superblock */
1882 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1883 		sb->s_feature_incompat &=
1884 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1885 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1886 
1887 	sb->s_feature_compat    |= cpu_to_be32(compat);
1888 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1889 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1890 
1891 	return 1;
1892 #undef COMPAT_FEATURE_ON
1893 #undef INCOMPAT_FEATURE_ON
1894 }
1895 
1896 /*
1897  * jbd2_journal_clear_features () - Clear a given journal feature in the
1898  * 				    superblock
1899  * @journal: Journal to act on.
1900  * @compat: bitmask of compatible features
1901  * @ro: bitmask of features that force read-only mount
1902  * @incompat: bitmask of incompatible features
1903  *
1904  * Clear a given journal feature as present on the
1905  * superblock.
1906  */
jbd2_journal_clear_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1907 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1908 				unsigned long ro, unsigned long incompat)
1909 {
1910 	journal_superblock_t *sb;
1911 
1912 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1913 		  compat, ro, incompat);
1914 
1915 	sb = journal->j_superblock;
1916 
1917 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1918 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1919 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1920 }
1921 EXPORT_SYMBOL(jbd2_journal_clear_features);
1922 
1923 /**
1924  * int jbd2_journal_flush () - Flush journal
1925  * @journal: Journal to act on.
1926  *
1927  * Flush all data for a given journal to disk and empty the journal.
1928  * Filesystems can use this when remounting readonly to ensure that
1929  * recovery does not need to happen on remount.
1930  */
1931 
jbd2_journal_flush(journal_t * journal)1932 int jbd2_journal_flush(journal_t *journal)
1933 {
1934 	int err = 0;
1935 	transaction_t *transaction = NULL;
1936 
1937 	write_lock(&journal->j_state_lock);
1938 
1939 	/* Force everything buffered to the log... */
1940 	if (journal->j_running_transaction) {
1941 		transaction = journal->j_running_transaction;
1942 		__jbd2_log_start_commit(journal, transaction->t_tid);
1943 	} else if (journal->j_committing_transaction)
1944 		transaction = journal->j_committing_transaction;
1945 
1946 	/* Wait for the log commit to complete... */
1947 	if (transaction) {
1948 		tid_t tid = transaction->t_tid;
1949 
1950 		write_unlock(&journal->j_state_lock);
1951 		jbd2_log_wait_commit(journal, tid);
1952 	} else {
1953 		write_unlock(&journal->j_state_lock);
1954 	}
1955 
1956 	/* ...and flush everything in the log out to disk. */
1957 	spin_lock(&journal->j_list_lock);
1958 	while (!err && journal->j_checkpoint_transactions != NULL) {
1959 		spin_unlock(&journal->j_list_lock);
1960 		mutex_lock(&journal->j_checkpoint_mutex);
1961 		err = jbd2_log_do_checkpoint(journal);
1962 		mutex_unlock(&journal->j_checkpoint_mutex);
1963 		spin_lock(&journal->j_list_lock);
1964 	}
1965 	spin_unlock(&journal->j_list_lock);
1966 
1967 	if (is_journal_aborted(journal))
1968 		return -EIO;
1969 
1970 	mutex_lock(&journal->j_checkpoint_mutex);
1971 	if (!err) {
1972 		err = jbd2_cleanup_journal_tail(journal);
1973 		if (err < 0) {
1974 			mutex_unlock(&journal->j_checkpoint_mutex);
1975 			goto out;
1976 		}
1977 		err = 0;
1978 	}
1979 
1980 	/* Finally, mark the journal as really needing no recovery.
1981 	 * This sets s_start==0 in the underlying superblock, which is
1982 	 * the magic code for a fully-recovered superblock.  Any future
1983 	 * commits of data to the journal will restore the current
1984 	 * s_start value. */
1985 	jbd2_mark_journal_empty(journal, WRITE_FUA);
1986 	mutex_unlock(&journal->j_checkpoint_mutex);
1987 	write_lock(&journal->j_state_lock);
1988 	J_ASSERT(!journal->j_running_transaction);
1989 	J_ASSERT(!journal->j_committing_transaction);
1990 	J_ASSERT(!journal->j_checkpoint_transactions);
1991 	J_ASSERT(journal->j_head == journal->j_tail);
1992 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1993 	write_unlock(&journal->j_state_lock);
1994 out:
1995 	return err;
1996 }
1997 
1998 /**
1999  * int jbd2_journal_wipe() - Wipe journal contents
2000  * @journal: Journal to act on.
2001  * @write: flag (see below)
2002  *
2003  * Wipe out all of the contents of a journal, safely.  This will produce
2004  * a warning if the journal contains any valid recovery information.
2005  * Must be called between journal_init_*() and jbd2_journal_load().
2006  *
2007  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2008  * we merely suppress recovery.
2009  */
2010 
jbd2_journal_wipe(journal_t * journal,int write)2011 int jbd2_journal_wipe(journal_t *journal, int write)
2012 {
2013 	int err = 0;
2014 
2015 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2016 
2017 	err = load_superblock(journal);
2018 	if (err)
2019 		return err;
2020 
2021 	if (!journal->j_tail)
2022 		goto no_recovery;
2023 
2024 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2025 		write ? "Clearing" : "Ignoring");
2026 
2027 	err = jbd2_journal_skip_recovery(journal);
2028 	if (write) {
2029 		/* Lock to make assertions happy... */
2030 		mutex_lock(&journal->j_checkpoint_mutex);
2031 		jbd2_mark_journal_empty(journal, WRITE_FUA);
2032 		mutex_unlock(&journal->j_checkpoint_mutex);
2033 	}
2034 
2035  no_recovery:
2036 	return err;
2037 }
2038 
2039 /*
2040  * Journal abort has very specific semantics, which we describe
2041  * for journal abort.
2042  *
2043  * Two internal functions, which provide abort to the jbd layer
2044  * itself are here.
2045  */
2046 
2047 /*
2048  * Quick version for internal journal use (doesn't lock the journal).
2049  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2050  * and don't attempt to make any other journal updates.
2051  */
__jbd2_journal_abort_hard(journal_t * journal)2052 void __jbd2_journal_abort_hard(journal_t *journal)
2053 {
2054 	transaction_t *transaction;
2055 
2056 	if (journal->j_flags & JBD2_ABORT)
2057 		return;
2058 
2059 	printk(KERN_ERR "Aborting journal on device %s.\n",
2060 	       journal->j_devname);
2061 
2062 	write_lock(&journal->j_state_lock);
2063 	journal->j_flags |= JBD2_ABORT;
2064 	transaction = journal->j_running_transaction;
2065 	if (transaction)
2066 		__jbd2_log_start_commit(journal, transaction->t_tid);
2067 	write_unlock(&journal->j_state_lock);
2068 }
2069 
2070 /* Soft abort: record the abort error status in the journal superblock,
2071  * but don't do any other IO. */
__journal_abort_soft(journal_t * journal,int errno)2072 static void __journal_abort_soft (journal_t *journal, int errno)
2073 {
2074 	if (journal->j_flags & JBD2_ABORT)
2075 		return;
2076 
2077 	if (!journal->j_errno)
2078 		journal->j_errno = errno;
2079 
2080 	__jbd2_journal_abort_hard(journal);
2081 
2082 	if (errno) {
2083 		jbd2_journal_update_sb_errno(journal);
2084 		write_lock(&journal->j_state_lock);
2085 		journal->j_flags |= JBD2_REC_ERR;
2086 		write_unlock(&journal->j_state_lock);
2087 	}
2088 }
2089 
2090 /**
2091  * void jbd2_journal_abort () - Shutdown the journal immediately.
2092  * @journal: the journal to shutdown.
2093  * @errno:   an error number to record in the journal indicating
2094  *           the reason for the shutdown.
2095  *
2096  * Perform a complete, immediate shutdown of the ENTIRE
2097  * journal (not of a single transaction).  This operation cannot be
2098  * undone without closing and reopening the journal.
2099  *
2100  * The jbd2_journal_abort function is intended to support higher level error
2101  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2102  * mode.
2103  *
2104  * Journal abort has very specific semantics.  Any existing dirty,
2105  * unjournaled buffers in the main filesystem will still be written to
2106  * disk by bdflush, but the journaling mechanism will be suspended
2107  * immediately and no further transaction commits will be honoured.
2108  *
2109  * Any dirty, journaled buffers will be written back to disk without
2110  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2111  * filesystem, but we _do_ attempt to leave as much data as possible
2112  * behind for fsck to use for cleanup.
2113  *
2114  * Any attempt to get a new transaction handle on a journal which is in
2115  * ABORT state will just result in an -EROFS error return.  A
2116  * jbd2_journal_stop on an existing handle will return -EIO if we have
2117  * entered abort state during the update.
2118  *
2119  * Recursive transactions are not disturbed by journal abort until the
2120  * final jbd2_journal_stop, which will receive the -EIO error.
2121  *
2122  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2123  * which will be recorded (if possible) in the journal superblock.  This
2124  * allows a client to record failure conditions in the middle of a
2125  * transaction without having to complete the transaction to record the
2126  * failure to disk.  ext3_error, for example, now uses this
2127  * functionality.
2128  *
2129  * Errors which originate from within the journaling layer will NOT
2130  * supply an errno; a null errno implies that absolutely no further
2131  * writes are done to the journal (unless there are any already in
2132  * progress).
2133  *
2134  */
2135 
jbd2_journal_abort(journal_t * journal,int errno)2136 void jbd2_journal_abort(journal_t *journal, int errno)
2137 {
2138 	__journal_abort_soft(journal, errno);
2139 }
2140 
2141 /**
2142  * int jbd2_journal_errno () - returns the journal's error state.
2143  * @journal: journal to examine.
2144  *
2145  * This is the errno number set with jbd2_journal_abort(), the last
2146  * time the journal was mounted - if the journal was stopped
2147  * without calling abort this will be 0.
2148  *
2149  * If the journal has been aborted on this mount time -EROFS will
2150  * be returned.
2151  */
jbd2_journal_errno(journal_t * journal)2152 int jbd2_journal_errno(journal_t *journal)
2153 {
2154 	int err;
2155 
2156 	read_lock(&journal->j_state_lock);
2157 	if (journal->j_flags & JBD2_ABORT)
2158 		err = -EROFS;
2159 	else
2160 		err = journal->j_errno;
2161 	read_unlock(&journal->j_state_lock);
2162 	return err;
2163 }
2164 
2165 /**
2166  * int jbd2_journal_clear_err () - clears the journal's error state
2167  * @journal: journal to act on.
2168  *
2169  * An error must be cleared or acked to take a FS out of readonly
2170  * mode.
2171  */
jbd2_journal_clear_err(journal_t * journal)2172 int jbd2_journal_clear_err(journal_t *journal)
2173 {
2174 	int err = 0;
2175 
2176 	write_lock(&journal->j_state_lock);
2177 	if (journal->j_flags & JBD2_ABORT)
2178 		err = -EROFS;
2179 	else
2180 		journal->j_errno = 0;
2181 	write_unlock(&journal->j_state_lock);
2182 	return err;
2183 }
2184 
2185 /**
2186  * void jbd2_journal_ack_err() - Ack journal err.
2187  * @journal: journal to act on.
2188  *
2189  * An error must be cleared or acked to take a FS out of readonly
2190  * mode.
2191  */
jbd2_journal_ack_err(journal_t * journal)2192 void jbd2_journal_ack_err(journal_t *journal)
2193 {
2194 	write_lock(&journal->j_state_lock);
2195 	if (journal->j_errno)
2196 		journal->j_flags |= JBD2_ACK_ERR;
2197 	write_unlock(&journal->j_state_lock);
2198 }
2199 
jbd2_journal_blocks_per_page(struct inode * inode)2200 int jbd2_journal_blocks_per_page(struct inode *inode)
2201 {
2202 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2203 }
2204 
2205 /*
2206  * helper functions to deal with 32 or 64bit block numbers.
2207  */
journal_tag_bytes(journal_t * journal)2208 size_t journal_tag_bytes(journal_t *journal)
2209 {
2210 	size_t sz;
2211 
2212 	if (jbd2_has_feature_csum3(journal))
2213 		return sizeof(journal_block_tag3_t);
2214 
2215 	sz = sizeof(journal_block_tag_t);
2216 
2217 	if (jbd2_has_feature_csum2(journal))
2218 		sz += sizeof(__u16);
2219 
2220 	if (jbd2_has_feature_64bit(journal))
2221 		return sz;
2222 	else
2223 		return sz - sizeof(__u32);
2224 }
2225 
2226 /*
2227  * JBD memory management
2228  *
2229  * These functions are used to allocate block-sized chunks of memory
2230  * used for making copies of buffer_head data.  Very often it will be
2231  * page-sized chunks of data, but sometimes it will be in
2232  * sub-page-size chunks.  (For example, 16k pages on Power systems
2233  * with a 4k block file system.)  For blocks smaller than a page, we
2234  * use a SLAB allocator.  There are slab caches for each block size,
2235  * which are allocated at mount time, if necessary, and we only free
2236  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2237  * this reason we don't need to a mutex to protect access to
2238  * jbd2_slab[] allocating or releasing memory; only in
2239  * jbd2_journal_create_slab().
2240  */
2241 #define JBD2_MAX_SLABS 8
2242 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2243 
2244 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2245 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2246 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2247 };
2248 
2249 
jbd2_journal_destroy_slabs(void)2250 static void jbd2_journal_destroy_slabs(void)
2251 {
2252 	int i;
2253 
2254 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2255 		if (jbd2_slab[i])
2256 			kmem_cache_destroy(jbd2_slab[i]);
2257 		jbd2_slab[i] = NULL;
2258 	}
2259 }
2260 
jbd2_journal_create_slab(size_t size)2261 static int jbd2_journal_create_slab(size_t size)
2262 {
2263 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2264 	int i = order_base_2(size) - 10;
2265 	size_t slab_size;
2266 
2267 	if (size == PAGE_SIZE)
2268 		return 0;
2269 
2270 	if (i >= JBD2_MAX_SLABS)
2271 		return -EINVAL;
2272 
2273 	if (unlikely(i < 0))
2274 		i = 0;
2275 	mutex_lock(&jbd2_slab_create_mutex);
2276 	if (jbd2_slab[i]) {
2277 		mutex_unlock(&jbd2_slab_create_mutex);
2278 		return 0;	/* Already created */
2279 	}
2280 
2281 	slab_size = 1 << (i+10);
2282 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2283 					 slab_size, 0, NULL);
2284 	mutex_unlock(&jbd2_slab_create_mutex);
2285 	if (!jbd2_slab[i]) {
2286 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2287 		return -ENOMEM;
2288 	}
2289 	return 0;
2290 }
2291 
get_slab(size_t size)2292 static struct kmem_cache *get_slab(size_t size)
2293 {
2294 	int i = order_base_2(size) - 10;
2295 
2296 	BUG_ON(i >= JBD2_MAX_SLABS);
2297 	if (unlikely(i < 0))
2298 		i = 0;
2299 	BUG_ON(jbd2_slab[i] == NULL);
2300 	return jbd2_slab[i];
2301 }
2302 
jbd2_alloc(size_t size,gfp_t flags)2303 void *jbd2_alloc(size_t size, gfp_t flags)
2304 {
2305 	void *ptr;
2306 
2307 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2308 
2309 	flags |= __GFP_REPEAT;
2310 	if (size == PAGE_SIZE)
2311 		ptr = (void *)__get_free_pages(flags, 0);
2312 	else if (size > PAGE_SIZE) {
2313 		int order = get_order(size);
2314 
2315 		if (order < 3)
2316 			ptr = (void *)__get_free_pages(flags, order);
2317 		else
2318 			ptr = vmalloc(size);
2319 	} else
2320 		ptr = kmem_cache_alloc(get_slab(size), flags);
2321 
2322 	/* Check alignment; SLUB has gotten this wrong in the past,
2323 	 * and this can lead to user data corruption! */
2324 	BUG_ON(((unsigned long) ptr) & (size-1));
2325 
2326 	return ptr;
2327 }
2328 
jbd2_free(void * ptr,size_t size)2329 void jbd2_free(void *ptr, size_t size)
2330 {
2331 	if (size == PAGE_SIZE) {
2332 		free_pages((unsigned long)ptr, 0);
2333 		return;
2334 	}
2335 	if (size > PAGE_SIZE) {
2336 		int order = get_order(size);
2337 
2338 		if (order < 3)
2339 			free_pages((unsigned long)ptr, order);
2340 		else
2341 			vfree(ptr);
2342 		return;
2343 	}
2344 	kmem_cache_free(get_slab(size), ptr);
2345 };
2346 
2347 /*
2348  * Journal_head storage management
2349  */
2350 static struct kmem_cache *jbd2_journal_head_cache;
2351 #ifdef CONFIG_JBD2_DEBUG
2352 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2353 #endif
2354 
jbd2_journal_init_journal_head_cache(void)2355 static int jbd2_journal_init_journal_head_cache(void)
2356 {
2357 	int retval;
2358 
2359 	J_ASSERT(jbd2_journal_head_cache == NULL);
2360 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2361 				sizeof(struct journal_head),
2362 				0,		/* offset */
2363 				SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU,
2364 				NULL);		/* ctor */
2365 	retval = 0;
2366 	if (!jbd2_journal_head_cache) {
2367 		retval = -ENOMEM;
2368 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2369 	}
2370 	return retval;
2371 }
2372 
jbd2_journal_destroy_journal_head_cache(void)2373 static void jbd2_journal_destroy_journal_head_cache(void)
2374 {
2375 	if (jbd2_journal_head_cache) {
2376 		kmem_cache_destroy(jbd2_journal_head_cache);
2377 		jbd2_journal_head_cache = NULL;
2378 	}
2379 }
2380 
2381 /*
2382  * journal_head splicing and dicing
2383  */
journal_alloc_journal_head(void)2384 static struct journal_head *journal_alloc_journal_head(void)
2385 {
2386 	struct journal_head *ret;
2387 
2388 #ifdef CONFIG_JBD2_DEBUG
2389 	atomic_inc(&nr_journal_heads);
2390 #endif
2391 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2392 	if (!ret) {
2393 		jbd_debug(1, "out of memory for journal_head\n");
2394 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2395 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2396 				GFP_NOFS | __GFP_NOFAIL);
2397 	}
2398 	return ret;
2399 }
2400 
journal_free_journal_head(struct journal_head * jh)2401 static void journal_free_journal_head(struct journal_head *jh)
2402 {
2403 #ifdef CONFIG_JBD2_DEBUG
2404 	atomic_dec(&nr_journal_heads);
2405 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2406 #endif
2407 	kmem_cache_free(jbd2_journal_head_cache, jh);
2408 }
2409 
2410 /*
2411  * A journal_head is attached to a buffer_head whenever JBD has an
2412  * interest in the buffer.
2413  *
2414  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2415  * is set.  This bit is tested in core kernel code where we need to take
2416  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2417  * there.
2418  *
2419  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2420  *
2421  * When a buffer has its BH_JBD bit set it is immune from being released by
2422  * core kernel code, mainly via ->b_count.
2423  *
2424  * A journal_head is detached from its buffer_head when the journal_head's
2425  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2426  * transaction (b_cp_transaction) hold their references to b_jcount.
2427  *
2428  * Various places in the kernel want to attach a journal_head to a buffer_head
2429  * _before_ attaching the journal_head to a transaction.  To protect the
2430  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2431  * journal_head's b_jcount refcount by one.  The caller must call
2432  * jbd2_journal_put_journal_head() to undo this.
2433  *
2434  * So the typical usage would be:
2435  *
2436  *	(Attach a journal_head if needed.  Increments b_jcount)
2437  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2438  *	...
2439  *      (Get another reference for transaction)
2440  *	jbd2_journal_grab_journal_head(bh);
2441  *	jh->b_transaction = xxx;
2442  *	(Put original reference)
2443  *	jbd2_journal_put_journal_head(jh);
2444  */
2445 
2446 /*
2447  * Give a buffer_head a journal_head.
2448  *
2449  * May sleep.
2450  */
jbd2_journal_add_journal_head(struct buffer_head * bh)2451 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2452 {
2453 	struct journal_head *jh;
2454 	struct journal_head *new_jh = NULL;
2455 
2456 repeat:
2457 	if (!buffer_jbd(bh))
2458 		new_jh = journal_alloc_journal_head();
2459 
2460 	jbd_lock_bh_journal_head(bh);
2461 	if (buffer_jbd(bh)) {
2462 		jh = bh2jh(bh);
2463 	} else {
2464 		J_ASSERT_BH(bh,
2465 			(atomic_read(&bh->b_count) > 0) ||
2466 			(bh->b_page && bh->b_page->mapping));
2467 
2468 		if (!new_jh) {
2469 			jbd_unlock_bh_journal_head(bh);
2470 			goto repeat;
2471 		}
2472 
2473 		jh = new_jh;
2474 		new_jh = NULL;		/* We consumed it */
2475 		set_buffer_jbd(bh);
2476 		bh->b_private = jh;
2477 		jh->b_bh = bh;
2478 		get_bh(bh);
2479 		BUFFER_TRACE(bh, "added journal_head");
2480 	}
2481 	jh->b_jcount++;
2482 	jbd_unlock_bh_journal_head(bh);
2483 	if (new_jh)
2484 		journal_free_journal_head(new_jh);
2485 	return bh->b_private;
2486 }
2487 
2488 /*
2489  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2490  * having a journal_head, return NULL
2491  */
jbd2_journal_grab_journal_head(struct buffer_head * bh)2492 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2493 {
2494 	struct journal_head *jh = NULL;
2495 
2496 	jbd_lock_bh_journal_head(bh);
2497 	if (buffer_jbd(bh)) {
2498 		jh = bh2jh(bh);
2499 		jh->b_jcount++;
2500 	}
2501 	jbd_unlock_bh_journal_head(bh);
2502 	return jh;
2503 }
2504 
__journal_remove_journal_head(struct buffer_head * bh)2505 static void __journal_remove_journal_head(struct buffer_head *bh)
2506 {
2507 	struct journal_head *jh = bh2jh(bh);
2508 
2509 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2510 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2511 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2512 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2513 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2514 	J_ASSERT_BH(bh, buffer_jbd(bh));
2515 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2516 	BUFFER_TRACE(bh, "remove journal_head");
2517 	if (jh->b_frozen_data) {
2518 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2519 		jbd2_free(jh->b_frozen_data, bh->b_size);
2520 	}
2521 	if (jh->b_committed_data) {
2522 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2523 		jbd2_free(jh->b_committed_data, bh->b_size);
2524 	}
2525 	bh->b_private = NULL;
2526 	jh->b_bh = NULL;	/* debug, really */
2527 	clear_buffer_jbd(bh);
2528 	journal_free_journal_head(jh);
2529 }
2530 
2531 /*
2532  * Drop a reference on the passed journal_head.  If it fell to zero then
2533  * release the journal_head from the buffer_head.
2534  */
jbd2_journal_put_journal_head(struct journal_head * jh)2535 void jbd2_journal_put_journal_head(struct journal_head *jh)
2536 {
2537 	struct buffer_head *bh = jh2bh(jh);
2538 
2539 	jbd_lock_bh_journal_head(bh);
2540 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2541 	--jh->b_jcount;
2542 	if (!jh->b_jcount) {
2543 		__journal_remove_journal_head(bh);
2544 		jbd_unlock_bh_journal_head(bh);
2545 		__brelse(bh);
2546 	} else
2547 		jbd_unlock_bh_journal_head(bh);
2548 }
2549 
2550 /*
2551  * Initialize jbd inode head
2552  */
jbd2_journal_init_jbd_inode(struct jbd2_inode * jinode,struct inode * inode)2553 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2554 {
2555 	jinode->i_transaction = NULL;
2556 	jinode->i_next_transaction = NULL;
2557 	jinode->i_vfs_inode = inode;
2558 	jinode->i_flags = 0;
2559 	INIT_LIST_HEAD(&jinode->i_list);
2560 }
2561 
2562 /*
2563  * Function to be called before we start removing inode from memory (i.e.,
2564  * clear_inode() is a fine place to be called from). It removes inode from
2565  * transaction's lists.
2566  */
jbd2_journal_release_jbd_inode(journal_t * journal,struct jbd2_inode * jinode)2567 void jbd2_journal_release_jbd_inode(journal_t *journal,
2568 				    struct jbd2_inode *jinode)
2569 {
2570 	if (!journal)
2571 		return;
2572 restart:
2573 	spin_lock(&journal->j_list_lock);
2574 	/* Is commit writing out inode - we have to wait */
2575 	if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2576 		wait_queue_head_t *wq;
2577 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2578 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2579 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2580 		spin_unlock(&journal->j_list_lock);
2581 		schedule();
2582 		finish_wait(wq, &wait.wait);
2583 		goto restart;
2584 	}
2585 
2586 	if (jinode->i_transaction) {
2587 		list_del(&jinode->i_list);
2588 		jinode->i_transaction = NULL;
2589 	}
2590 	spin_unlock(&journal->j_list_lock);
2591 }
2592 
2593 
2594 #ifdef CONFIG_PROC_FS
2595 
2596 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2597 
jbd2_create_jbd_stats_proc_entry(void)2598 static void __init jbd2_create_jbd_stats_proc_entry(void)
2599 {
2600 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2601 }
2602 
jbd2_remove_jbd_stats_proc_entry(void)2603 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2604 {
2605 	if (proc_jbd2_stats)
2606 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2607 }
2608 
2609 #else
2610 
2611 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2612 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2613 
2614 #endif
2615 
2616 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2617 
jbd2_journal_init_handle_cache(void)2618 static int __init jbd2_journal_init_handle_cache(void)
2619 {
2620 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2621 	if (jbd2_handle_cache == NULL) {
2622 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2623 		return -ENOMEM;
2624 	}
2625 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2626 	if (jbd2_inode_cache == NULL) {
2627 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2628 		kmem_cache_destroy(jbd2_handle_cache);
2629 		return -ENOMEM;
2630 	}
2631 	return 0;
2632 }
2633 
jbd2_journal_destroy_handle_cache(void)2634 static void jbd2_journal_destroy_handle_cache(void)
2635 {
2636 	if (jbd2_handle_cache)
2637 		kmem_cache_destroy(jbd2_handle_cache);
2638 	if (jbd2_inode_cache)
2639 		kmem_cache_destroy(jbd2_inode_cache);
2640 
2641 }
2642 
2643 /*
2644  * Module startup and shutdown
2645  */
2646 
journal_init_caches(void)2647 static int __init journal_init_caches(void)
2648 {
2649 	int ret;
2650 
2651 	ret = jbd2_journal_init_revoke_caches();
2652 	if (ret == 0)
2653 		ret = jbd2_journal_init_journal_head_cache();
2654 	if (ret == 0)
2655 		ret = jbd2_journal_init_handle_cache();
2656 	if (ret == 0)
2657 		ret = jbd2_journal_init_transaction_cache();
2658 	return ret;
2659 }
2660 
jbd2_journal_destroy_caches(void)2661 static void jbd2_journal_destroy_caches(void)
2662 {
2663 	jbd2_journal_destroy_revoke_caches();
2664 	jbd2_journal_destroy_journal_head_cache();
2665 	jbd2_journal_destroy_handle_cache();
2666 	jbd2_journal_destroy_transaction_cache();
2667 	jbd2_journal_destroy_slabs();
2668 }
2669 
journal_init(void)2670 static int __init journal_init(void)
2671 {
2672 	int ret;
2673 
2674 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2675 
2676 	ret = journal_init_caches();
2677 	if (ret == 0) {
2678 		jbd2_create_jbd_stats_proc_entry();
2679 	} else {
2680 		jbd2_journal_destroy_caches();
2681 	}
2682 	return ret;
2683 }
2684 
journal_exit(void)2685 static void __exit journal_exit(void)
2686 {
2687 #ifdef CONFIG_JBD2_DEBUG
2688 	int n = atomic_read(&nr_journal_heads);
2689 	if (n)
2690 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2691 #endif
2692 	jbd2_remove_jbd_stats_proc_entry();
2693 	jbd2_journal_destroy_caches();
2694 }
2695 
2696 MODULE_LICENSE("GPL");
2697 module_init(journal_init);
2698 module_exit(journal_exit);
2699 
2700