1/*
2 * linux/fs/jbd2/journal.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates.  This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
18 *
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
23 */
24
25#include <linux/module.h>
26#include <linux/time.h>
27#include <linux/fs.h>
28#include <linux/jbd2.h>
29#include <linux/errno.h>
30#include <linux/slab.h>
31#include <linux/init.h>
32#include <linux/mm.h>
33#include <linux/freezer.h>
34#include <linux/pagemap.h>
35#include <linux/kthread.h>
36#include <linux/poison.h>
37#include <linux/proc_fs.h>
38#include <linux/seq_file.h>
39#include <linux/math64.h>
40#include <linux/hash.h>
41#include <linux/log2.h>
42#include <linux/vmalloc.h>
43#include <linux/backing-dev.h>
44#include <linux/bitops.h>
45#include <linux/ratelimit.h>
46
47#define CREATE_TRACE_POINTS
48#include <trace/events/jbd2.h>
49
50#include <asm/uaccess.h>
51#include <asm/page.h>
52
53#ifdef CONFIG_JBD2_DEBUG
54ushort jbd2_journal_enable_debug __read_mostly;
55EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59#endif
60
61EXPORT_SYMBOL(jbd2_journal_extend);
62EXPORT_SYMBOL(jbd2_journal_stop);
63EXPORT_SYMBOL(jbd2_journal_lock_updates);
64EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65EXPORT_SYMBOL(jbd2_journal_get_write_access);
66EXPORT_SYMBOL(jbd2_journal_get_create_access);
67EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68EXPORT_SYMBOL(jbd2_journal_set_triggers);
69EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70EXPORT_SYMBOL(jbd2_journal_forget);
71#if 0
72EXPORT_SYMBOL(journal_sync_buffer);
73#endif
74EXPORT_SYMBOL(jbd2_journal_flush);
75EXPORT_SYMBOL(jbd2_journal_revoke);
76
77EXPORT_SYMBOL(jbd2_journal_init_dev);
78EXPORT_SYMBOL(jbd2_journal_init_inode);
79EXPORT_SYMBOL(jbd2_journal_check_used_features);
80EXPORT_SYMBOL(jbd2_journal_check_available_features);
81EXPORT_SYMBOL(jbd2_journal_set_features);
82EXPORT_SYMBOL(jbd2_journal_load);
83EXPORT_SYMBOL(jbd2_journal_destroy);
84EXPORT_SYMBOL(jbd2_journal_abort);
85EXPORT_SYMBOL(jbd2_journal_errno);
86EXPORT_SYMBOL(jbd2_journal_ack_err);
87EXPORT_SYMBOL(jbd2_journal_clear_err);
88EXPORT_SYMBOL(jbd2_log_wait_commit);
89EXPORT_SYMBOL(jbd2_log_start_commit);
90EXPORT_SYMBOL(jbd2_journal_start_commit);
91EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92EXPORT_SYMBOL(jbd2_journal_wipe);
93EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96EXPORT_SYMBOL(jbd2_journal_force_commit);
97EXPORT_SYMBOL(jbd2_journal_file_inode);
98EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101EXPORT_SYMBOL(jbd2_inode_cache);
102
103static void __journal_abort_soft (journal_t *journal, int errno);
104static int jbd2_journal_create_slab(size_t slab_size);
105
106#ifdef CONFIG_JBD2_DEBUG
107void __jbd2_debug(int level, const char *file, const char *func,
108		  unsigned int line, const char *fmt, ...)
109{
110	struct va_format vaf;
111	va_list args;
112
113	if (level > jbd2_journal_enable_debug)
114		return;
115	va_start(args, fmt);
116	vaf.fmt = fmt;
117	vaf.va = &args;
118	printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
119	va_end(args);
120}
121EXPORT_SYMBOL(__jbd2_debug);
122#endif
123
124/* Checksumming functions */
125static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
126{
127	if (!jbd2_journal_has_csum_v2or3_feature(j))
128		return 1;
129
130	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
131}
132
133static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
134{
135	__u32 csum;
136	__be32 old_csum;
137
138	old_csum = sb->s_checksum;
139	sb->s_checksum = 0;
140	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
141	sb->s_checksum = old_csum;
142
143	return cpu_to_be32(csum);
144}
145
146static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
147{
148	if (!jbd2_journal_has_csum_v2or3(j))
149		return 1;
150
151	return sb->s_checksum == jbd2_superblock_csum(j, sb);
152}
153
154static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
155{
156	if (!jbd2_journal_has_csum_v2or3(j))
157		return;
158
159	sb->s_checksum = jbd2_superblock_csum(j, sb);
160}
161
162/*
163 * Helper function used to manage commit timeouts
164 */
165
166static void commit_timeout(unsigned long __data)
167{
168	struct task_struct * p = (struct task_struct *) __data;
169
170	wake_up_process(p);
171}
172
173/*
174 * kjournald2: The main thread function used to manage a logging device
175 * journal.
176 *
177 * This kernel thread is responsible for two things:
178 *
179 * 1) COMMIT:  Every so often we need to commit the current state of the
180 *    filesystem to disk.  The journal thread is responsible for writing
181 *    all of the metadata buffers to disk.
182 *
183 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
184 *    of the data in that part of the log has been rewritten elsewhere on
185 *    the disk.  Flushing these old buffers to reclaim space in the log is
186 *    known as checkpointing, and this thread is responsible for that job.
187 */
188
189static int kjournald2(void *arg)
190{
191	journal_t *journal = arg;
192	transaction_t *transaction;
193
194	/*
195	 * Set up an interval timer which can be used to trigger a commit wakeup
196	 * after the commit interval expires
197	 */
198	setup_timer(&journal->j_commit_timer, commit_timeout,
199			(unsigned long)current);
200
201	set_freezable();
202
203	/* Record that the journal thread is running */
204	journal->j_task = current;
205	wake_up(&journal->j_wait_done_commit);
206
207	/*
208	 * And now, wait forever for commit wakeup events.
209	 */
210	write_lock(&journal->j_state_lock);
211
212loop:
213	if (journal->j_flags & JBD2_UNMOUNT)
214		goto end_loop;
215
216	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
217		journal->j_commit_sequence, journal->j_commit_request);
218
219	if (journal->j_commit_sequence != journal->j_commit_request) {
220		jbd_debug(1, "OK, requests differ\n");
221		write_unlock(&journal->j_state_lock);
222		del_timer_sync(&journal->j_commit_timer);
223		jbd2_journal_commit_transaction(journal);
224		write_lock(&journal->j_state_lock);
225		goto loop;
226	}
227
228	wake_up(&journal->j_wait_done_commit);
229	if (freezing(current)) {
230		/*
231		 * The simpler the better. Flushing journal isn't a
232		 * good idea, because that depends on threads that may
233		 * be already stopped.
234		 */
235		jbd_debug(1, "Now suspending kjournald2\n");
236		write_unlock(&journal->j_state_lock);
237		try_to_freeze();
238		write_lock(&journal->j_state_lock);
239	} else {
240		/*
241		 * We assume on resume that commits are already there,
242		 * so we don't sleep
243		 */
244		DEFINE_WAIT(wait);
245		int should_sleep = 1;
246
247		prepare_to_wait(&journal->j_wait_commit, &wait,
248				TASK_INTERRUPTIBLE);
249		if (journal->j_commit_sequence != journal->j_commit_request)
250			should_sleep = 0;
251		transaction = journal->j_running_transaction;
252		if (transaction && time_after_eq(jiffies,
253						transaction->t_expires))
254			should_sleep = 0;
255		if (journal->j_flags & JBD2_UNMOUNT)
256			should_sleep = 0;
257		if (should_sleep) {
258			write_unlock(&journal->j_state_lock);
259			schedule();
260			write_lock(&journal->j_state_lock);
261		}
262		finish_wait(&journal->j_wait_commit, &wait);
263	}
264
265	jbd_debug(1, "kjournald2 wakes\n");
266
267	/*
268	 * Were we woken up by a commit wakeup event?
269	 */
270	transaction = journal->j_running_transaction;
271	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
272		journal->j_commit_request = transaction->t_tid;
273		jbd_debug(1, "woke because of timeout\n");
274	}
275	goto loop;
276
277end_loop:
278	write_unlock(&journal->j_state_lock);
279	del_timer_sync(&journal->j_commit_timer);
280	journal->j_task = NULL;
281	wake_up(&journal->j_wait_done_commit);
282	jbd_debug(1, "Journal thread exiting.\n");
283	return 0;
284}
285
286static int jbd2_journal_start_thread(journal_t *journal)
287{
288	struct task_struct *t;
289
290	t = kthread_run(kjournald2, journal, "jbd2/%s",
291			journal->j_devname);
292	if (IS_ERR(t))
293		return PTR_ERR(t);
294
295	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
296	return 0;
297}
298
299static void journal_kill_thread(journal_t *journal)
300{
301	write_lock(&journal->j_state_lock);
302	journal->j_flags |= JBD2_UNMOUNT;
303
304	while (journal->j_task) {
305		write_unlock(&journal->j_state_lock);
306		wake_up(&journal->j_wait_commit);
307		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
308		write_lock(&journal->j_state_lock);
309	}
310	write_unlock(&journal->j_state_lock);
311}
312
313/*
314 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
315 *
316 * Writes a metadata buffer to a given disk block.  The actual IO is not
317 * performed but a new buffer_head is constructed which labels the data
318 * to be written with the correct destination disk block.
319 *
320 * Any magic-number escaping which needs to be done will cause a
321 * copy-out here.  If the buffer happens to start with the
322 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
323 * magic number is only written to the log for descripter blocks.  In
324 * this case, we copy the data and replace the first word with 0, and we
325 * return a result code which indicates that this buffer needs to be
326 * marked as an escaped buffer in the corresponding log descriptor
327 * block.  The missing word can then be restored when the block is read
328 * during recovery.
329 *
330 * If the source buffer has already been modified by a new transaction
331 * since we took the last commit snapshot, we use the frozen copy of
332 * that data for IO. If we end up using the existing buffer_head's data
333 * for the write, then we have to make sure nobody modifies it while the
334 * IO is in progress. do_get_write_access() handles this.
335 *
336 * The function returns a pointer to the buffer_head to be used for IO.
337 *
338 *
339 * Return value:
340 *  <0: Error
341 * >=0: Finished OK
342 *
343 * On success:
344 * Bit 0 set == escape performed on the data
345 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
346 */
347
348int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
349				  struct journal_head  *jh_in,
350				  struct buffer_head **bh_out,
351				  sector_t blocknr)
352{
353	int need_copy_out = 0;
354	int done_copy_out = 0;
355	int do_escape = 0;
356	char *mapped_data;
357	struct buffer_head *new_bh;
358	struct page *new_page;
359	unsigned int new_offset;
360	struct buffer_head *bh_in = jh2bh(jh_in);
361	journal_t *journal = transaction->t_journal;
362
363	/*
364	 * The buffer really shouldn't be locked: only the current committing
365	 * transaction is allowed to write it, so nobody else is allowed
366	 * to do any IO.
367	 *
368	 * akpm: except if we're journalling data, and write() output is
369	 * also part of a shared mapping, and another thread has
370	 * decided to launch a writepage() against this buffer.
371	 */
372	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
373
374	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
375
376	/* keep subsequent assertions sane */
377	atomic_set(&new_bh->b_count, 1);
378
379	jbd_lock_bh_state(bh_in);
380repeat:
381	/*
382	 * If a new transaction has already done a buffer copy-out, then
383	 * we use that version of the data for the commit.
384	 */
385	if (jh_in->b_frozen_data) {
386		done_copy_out = 1;
387		new_page = virt_to_page(jh_in->b_frozen_data);
388		new_offset = offset_in_page(jh_in->b_frozen_data);
389	} else {
390		new_page = jh2bh(jh_in)->b_page;
391		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
392	}
393
394	mapped_data = kmap_atomic(new_page);
395	/*
396	 * Fire data frozen trigger if data already wasn't frozen.  Do this
397	 * before checking for escaping, as the trigger may modify the magic
398	 * offset.  If a copy-out happens afterwards, it will have the correct
399	 * data in the buffer.
400	 */
401	if (!done_copy_out)
402		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
403					   jh_in->b_triggers);
404
405	/*
406	 * Check for escaping
407	 */
408	if (*((__be32 *)(mapped_data + new_offset)) ==
409				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
410		need_copy_out = 1;
411		do_escape = 1;
412	}
413	kunmap_atomic(mapped_data);
414
415	/*
416	 * Do we need to do a data copy?
417	 */
418	if (need_copy_out && !done_copy_out) {
419		char *tmp;
420
421		jbd_unlock_bh_state(bh_in);
422		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
423		if (!tmp) {
424			brelse(new_bh);
425			return -ENOMEM;
426		}
427		jbd_lock_bh_state(bh_in);
428		if (jh_in->b_frozen_data) {
429			jbd2_free(tmp, bh_in->b_size);
430			goto repeat;
431		}
432
433		jh_in->b_frozen_data = tmp;
434		mapped_data = kmap_atomic(new_page);
435		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
436		kunmap_atomic(mapped_data);
437
438		new_page = virt_to_page(tmp);
439		new_offset = offset_in_page(tmp);
440		done_copy_out = 1;
441
442		/*
443		 * This isn't strictly necessary, as we're using frozen
444		 * data for the escaping, but it keeps consistency with
445		 * b_frozen_data usage.
446		 */
447		jh_in->b_frozen_triggers = jh_in->b_triggers;
448	}
449
450	/*
451	 * Did we need to do an escaping?  Now we've done all the
452	 * copying, we can finally do so.
453	 */
454	if (do_escape) {
455		mapped_data = kmap_atomic(new_page);
456		*((unsigned int *)(mapped_data + new_offset)) = 0;
457		kunmap_atomic(mapped_data);
458	}
459
460	set_bh_page(new_bh, new_page, new_offset);
461	new_bh->b_size = bh_in->b_size;
462	new_bh->b_bdev = journal->j_dev;
463	new_bh->b_blocknr = blocknr;
464	new_bh->b_private = bh_in;
465	set_buffer_mapped(new_bh);
466	set_buffer_dirty(new_bh);
467
468	*bh_out = new_bh;
469
470	/*
471	 * The to-be-written buffer needs to get moved to the io queue,
472	 * and the original buffer whose contents we are shadowing or
473	 * copying is moved to the transaction's shadow queue.
474	 */
475	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
476	spin_lock(&journal->j_list_lock);
477	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
478	spin_unlock(&journal->j_list_lock);
479	set_buffer_shadow(bh_in);
480	jbd_unlock_bh_state(bh_in);
481
482	return do_escape | (done_copy_out << 1);
483}
484
485/*
486 * Allocation code for the journal file.  Manage the space left in the
487 * journal, so that we can begin checkpointing when appropriate.
488 */
489
490/*
491 * Called with j_state_lock locked for writing.
492 * Returns true if a transaction commit was started.
493 */
494int __jbd2_log_start_commit(journal_t *journal, tid_t target)
495{
496	/* Return if the txn has already requested to be committed */
497	if (journal->j_commit_request == target)
498		return 0;
499
500	/*
501	 * The only transaction we can possibly wait upon is the
502	 * currently running transaction (if it exists).  Otherwise,
503	 * the target tid must be an old one.
504	 */
505	if (journal->j_running_transaction &&
506	    journal->j_running_transaction->t_tid == target) {
507		/*
508		 * We want a new commit: OK, mark the request and wakeup the
509		 * commit thread.  We do _not_ do the commit ourselves.
510		 */
511
512		journal->j_commit_request = target;
513		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
514			  journal->j_commit_request,
515			  journal->j_commit_sequence);
516		journal->j_running_transaction->t_requested = jiffies;
517		wake_up(&journal->j_wait_commit);
518		return 1;
519	} else if (!tid_geq(journal->j_commit_request, target))
520		/* This should never happen, but if it does, preserve
521		   the evidence before kjournald goes into a loop and
522		   increments j_commit_sequence beyond all recognition. */
523		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
524			  journal->j_commit_request,
525			  journal->j_commit_sequence,
526			  target, journal->j_running_transaction ?
527			  journal->j_running_transaction->t_tid : 0);
528	return 0;
529}
530
531int jbd2_log_start_commit(journal_t *journal, tid_t tid)
532{
533	int ret;
534
535	write_lock(&journal->j_state_lock);
536	ret = __jbd2_log_start_commit(journal, tid);
537	write_unlock(&journal->j_state_lock);
538	return ret;
539}
540
541/*
542 * Force and wait any uncommitted transactions.  We can only force the running
543 * transaction if we don't have an active handle, otherwise, we will deadlock.
544 * Returns: <0 in case of error,
545 *           0 if nothing to commit,
546 *           1 if transaction was successfully committed.
547 */
548static int __jbd2_journal_force_commit(journal_t *journal)
549{
550	transaction_t *transaction = NULL;
551	tid_t tid;
552	int need_to_start = 0, ret = 0;
553
554	read_lock(&journal->j_state_lock);
555	if (journal->j_running_transaction && !current->journal_info) {
556		transaction = journal->j_running_transaction;
557		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
558			need_to_start = 1;
559	} else if (journal->j_committing_transaction)
560		transaction = journal->j_committing_transaction;
561
562	if (!transaction) {
563		/* Nothing to commit */
564		read_unlock(&journal->j_state_lock);
565		return 0;
566	}
567	tid = transaction->t_tid;
568	read_unlock(&journal->j_state_lock);
569	if (need_to_start)
570		jbd2_log_start_commit(journal, tid);
571	ret = jbd2_log_wait_commit(journal, tid);
572	if (!ret)
573		ret = 1;
574
575	return ret;
576}
577
578/**
579 * Force and wait upon a commit if the calling process is not within
580 * transaction.  This is used for forcing out undo-protected data which contains
581 * bitmaps, when the fs is running out of space.
582 *
583 * @journal: journal to force
584 * Returns true if progress was made.
585 */
586int jbd2_journal_force_commit_nested(journal_t *journal)
587{
588	int ret;
589
590	ret = __jbd2_journal_force_commit(journal);
591	return ret > 0;
592}
593
594/**
595 * int journal_force_commit() - force any uncommitted transactions
596 * @journal: journal to force
597 *
598 * Caller want unconditional commit. We can only force the running transaction
599 * if we don't have an active handle, otherwise, we will deadlock.
600 */
601int jbd2_journal_force_commit(journal_t *journal)
602{
603	int ret;
604
605	J_ASSERT(!current->journal_info);
606	ret = __jbd2_journal_force_commit(journal);
607	if (ret > 0)
608		ret = 0;
609	return ret;
610}
611
612/*
613 * Start a commit of the current running transaction (if any).  Returns true
614 * if a transaction is going to be committed (or is currently already
615 * committing), and fills its tid in at *ptid
616 */
617int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
618{
619	int ret = 0;
620
621	write_lock(&journal->j_state_lock);
622	if (journal->j_running_transaction) {
623		tid_t tid = journal->j_running_transaction->t_tid;
624
625		__jbd2_log_start_commit(journal, tid);
626		/* There's a running transaction and we've just made sure
627		 * it's commit has been scheduled. */
628		if (ptid)
629			*ptid = tid;
630		ret = 1;
631	} else if (journal->j_committing_transaction) {
632		/*
633		 * If commit has been started, then we have to wait for
634		 * completion of that transaction.
635		 */
636		if (ptid)
637			*ptid = journal->j_committing_transaction->t_tid;
638		ret = 1;
639	}
640	write_unlock(&journal->j_state_lock);
641	return ret;
642}
643
644/*
645 * Return 1 if a given transaction has not yet sent barrier request
646 * connected with a transaction commit. If 0 is returned, transaction
647 * may or may not have sent the barrier. Used to avoid sending barrier
648 * twice in common cases.
649 */
650int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
651{
652	int ret = 0;
653	transaction_t *commit_trans;
654
655	if (!(journal->j_flags & JBD2_BARRIER))
656		return 0;
657	read_lock(&journal->j_state_lock);
658	/* Transaction already committed? */
659	if (tid_geq(journal->j_commit_sequence, tid))
660		goto out;
661	commit_trans = journal->j_committing_transaction;
662	if (!commit_trans || commit_trans->t_tid != tid) {
663		ret = 1;
664		goto out;
665	}
666	/*
667	 * Transaction is being committed and we already proceeded to
668	 * submitting a flush to fs partition?
669	 */
670	if (journal->j_fs_dev != journal->j_dev) {
671		if (!commit_trans->t_need_data_flush ||
672		    commit_trans->t_state >= T_COMMIT_DFLUSH)
673			goto out;
674	} else {
675		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
676			goto out;
677	}
678	ret = 1;
679out:
680	read_unlock(&journal->j_state_lock);
681	return ret;
682}
683EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
684
685/*
686 * Wait for a specified commit to complete.
687 * The caller may not hold the journal lock.
688 */
689int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
690{
691	int err = 0;
692
693	read_lock(&journal->j_state_lock);
694#ifdef CONFIG_JBD2_DEBUG
695	if (!tid_geq(journal->j_commit_request, tid)) {
696		printk(KERN_ERR
697		       "%s: error: j_commit_request=%d, tid=%d\n",
698		       __func__, journal->j_commit_request, tid);
699	}
700#endif
701	while (tid_gt(tid, journal->j_commit_sequence)) {
702		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
703				  tid, journal->j_commit_sequence);
704		read_unlock(&journal->j_state_lock);
705		wake_up(&journal->j_wait_commit);
706		wait_event(journal->j_wait_done_commit,
707				!tid_gt(tid, journal->j_commit_sequence));
708		read_lock(&journal->j_state_lock);
709	}
710	read_unlock(&journal->j_state_lock);
711
712	if (unlikely(is_journal_aborted(journal)))
713		err = -EIO;
714	return err;
715}
716
717/*
718 * When this function returns the transaction corresponding to tid
719 * will be completed.  If the transaction has currently running, start
720 * committing that transaction before waiting for it to complete.  If
721 * the transaction id is stale, it is by definition already completed,
722 * so just return SUCCESS.
723 */
724int jbd2_complete_transaction(journal_t *journal, tid_t tid)
725{
726	int	need_to_wait = 1;
727
728	read_lock(&journal->j_state_lock);
729	if (journal->j_running_transaction &&
730	    journal->j_running_transaction->t_tid == tid) {
731		if (journal->j_commit_request != tid) {
732			/* transaction not yet started, so request it */
733			read_unlock(&journal->j_state_lock);
734			jbd2_log_start_commit(journal, tid);
735			goto wait_commit;
736		}
737	} else if (!(journal->j_committing_transaction &&
738		     journal->j_committing_transaction->t_tid == tid))
739		need_to_wait = 0;
740	read_unlock(&journal->j_state_lock);
741	if (!need_to_wait)
742		return 0;
743wait_commit:
744	return jbd2_log_wait_commit(journal, tid);
745}
746EXPORT_SYMBOL(jbd2_complete_transaction);
747
748/*
749 * Log buffer allocation routines:
750 */
751
752int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
753{
754	unsigned long blocknr;
755
756	write_lock(&journal->j_state_lock);
757	J_ASSERT(journal->j_free > 1);
758
759	blocknr = journal->j_head;
760	journal->j_head++;
761	journal->j_free--;
762	if (journal->j_head == journal->j_last)
763		journal->j_head = journal->j_first;
764	write_unlock(&journal->j_state_lock);
765	return jbd2_journal_bmap(journal, blocknr, retp);
766}
767
768/*
769 * Conversion of logical to physical block numbers for the journal
770 *
771 * On external journals the journal blocks are identity-mapped, so
772 * this is a no-op.  If needed, we can use j_blk_offset - everything is
773 * ready.
774 */
775int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
776		 unsigned long long *retp)
777{
778	int err = 0;
779	unsigned long long ret;
780
781	if (journal->j_inode) {
782		ret = bmap(journal->j_inode, blocknr);
783		if (ret)
784			*retp = ret;
785		else {
786			printk(KERN_ALERT "%s: journal block not found "
787					"at offset %lu on %s\n",
788			       __func__, blocknr, journal->j_devname);
789			err = -EIO;
790			__journal_abort_soft(journal, err);
791		}
792	} else {
793		*retp = blocknr; /* +journal->j_blk_offset */
794	}
795	return err;
796}
797
798/*
799 * We play buffer_head aliasing tricks to write data/metadata blocks to
800 * the journal without copying their contents, but for journal
801 * descriptor blocks we do need to generate bona fide buffers.
802 *
803 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
804 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
805 * But we don't bother doing that, so there will be coherency problems with
806 * mmaps of blockdevs which hold live JBD-controlled filesystems.
807 */
808struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
809{
810	struct buffer_head *bh;
811	unsigned long long blocknr;
812	int err;
813
814	err = jbd2_journal_next_log_block(journal, &blocknr);
815
816	if (err)
817		return NULL;
818
819	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
820	if (!bh)
821		return NULL;
822	lock_buffer(bh);
823	memset(bh->b_data, 0, journal->j_blocksize);
824	set_buffer_uptodate(bh);
825	unlock_buffer(bh);
826	BUFFER_TRACE(bh, "return this buffer");
827	return bh;
828}
829
830/*
831 * Return tid of the oldest transaction in the journal and block in the journal
832 * where the transaction starts.
833 *
834 * If the journal is now empty, return which will be the next transaction ID
835 * we will write and where will that transaction start.
836 *
837 * The return value is 0 if journal tail cannot be pushed any further, 1 if
838 * it can.
839 */
840int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
841			      unsigned long *block)
842{
843	transaction_t *transaction;
844	int ret;
845
846	read_lock(&journal->j_state_lock);
847	spin_lock(&journal->j_list_lock);
848	transaction = journal->j_checkpoint_transactions;
849	if (transaction) {
850		*tid = transaction->t_tid;
851		*block = transaction->t_log_start;
852	} else if ((transaction = journal->j_committing_transaction) != NULL) {
853		*tid = transaction->t_tid;
854		*block = transaction->t_log_start;
855	} else if ((transaction = journal->j_running_transaction) != NULL) {
856		*tid = transaction->t_tid;
857		*block = journal->j_head;
858	} else {
859		*tid = journal->j_transaction_sequence;
860		*block = journal->j_head;
861	}
862	ret = tid_gt(*tid, journal->j_tail_sequence);
863	spin_unlock(&journal->j_list_lock);
864	read_unlock(&journal->j_state_lock);
865
866	return ret;
867}
868
869/*
870 * Update information in journal structure and in on disk journal superblock
871 * about log tail. This function does not check whether information passed in
872 * really pushes log tail further. It's responsibility of the caller to make
873 * sure provided log tail information is valid (e.g. by holding
874 * j_checkpoint_mutex all the time between computing log tail and calling this
875 * function as is the case with jbd2_cleanup_journal_tail()).
876 *
877 * Requires j_checkpoint_mutex
878 */
879int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
880{
881	unsigned long freed;
882	int ret;
883
884	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
885
886	/*
887	 * We cannot afford for write to remain in drive's caches since as
888	 * soon as we update j_tail, next transaction can start reusing journal
889	 * space and if we lose sb update during power failure we'd replay
890	 * old transaction with possibly newly overwritten data.
891	 */
892	ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
893	if (ret)
894		goto out;
895
896	write_lock(&journal->j_state_lock);
897	freed = block - journal->j_tail;
898	if (block < journal->j_tail)
899		freed += journal->j_last - journal->j_first;
900
901	trace_jbd2_update_log_tail(journal, tid, block, freed);
902	jbd_debug(1,
903		  "Cleaning journal tail from %d to %d (offset %lu), "
904		  "freeing %lu\n",
905		  journal->j_tail_sequence, tid, block, freed);
906
907	journal->j_free += freed;
908	journal->j_tail_sequence = tid;
909	journal->j_tail = block;
910	write_unlock(&journal->j_state_lock);
911
912out:
913	return ret;
914}
915
916/*
917 * This is a variaon of __jbd2_update_log_tail which checks for validity of
918 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
919 * with other threads updating log tail.
920 */
921void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
922{
923	mutex_lock(&journal->j_checkpoint_mutex);
924	if (tid_gt(tid, journal->j_tail_sequence))
925		__jbd2_update_log_tail(journal, tid, block);
926	mutex_unlock(&journal->j_checkpoint_mutex);
927}
928
929struct jbd2_stats_proc_session {
930	journal_t *journal;
931	struct transaction_stats_s *stats;
932	int start;
933	int max;
934};
935
936static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
937{
938	return *pos ? NULL : SEQ_START_TOKEN;
939}
940
941static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
942{
943	return NULL;
944}
945
946static int jbd2_seq_info_show(struct seq_file *seq, void *v)
947{
948	struct jbd2_stats_proc_session *s = seq->private;
949
950	if (v != SEQ_START_TOKEN)
951		return 0;
952	seq_printf(seq, "%lu transactions (%lu requested), "
953		   "each up to %u blocks\n",
954		   s->stats->ts_tid, s->stats->ts_requested,
955		   s->journal->j_max_transaction_buffers);
956	if (s->stats->ts_tid == 0)
957		return 0;
958	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
959	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
960	seq_printf(seq, "  %ums request delay\n",
961	    (s->stats->ts_requested == 0) ? 0 :
962	    jiffies_to_msecs(s->stats->run.rs_request_delay /
963			     s->stats->ts_requested));
964	seq_printf(seq, "  %ums running transaction\n",
965	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
966	seq_printf(seq, "  %ums transaction was being locked\n",
967	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
968	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
969	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
970	seq_printf(seq, "  %ums logging transaction\n",
971	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
972	seq_printf(seq, "  %lluus average transaction commit time\n",
973		   div_u64(s->journal->j_average_commit_time, 1000));
974	seq_printf(seq, "  %lu handles per transaction\n",
975	    s->stats->run.rs_handle_count / s->stats->ts_tid);
976	seq_printf(seq, "  %lu blocks per transaction\n",
977	    s->stats->run.rs_blocks / s->stats->ts_tid);
978	seq_printf(seq, "  %lu logged blocks per transaction\n",
979	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
980	return 0;
981}
982
983static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
984{
985}
986
987static const struct seq_operations jbd2_seq_info_ops = {
988	.start  = jbd2_seq_info_start,
989	.next   = jbd2_seq_info_next,
990	.stop   = jbd2_seq_info_stop,
991	.show   = jbd2_seq_info_show,
992};
993
994static int jbd2_seq_info_open(struct inode *inode, struct file *file)
995{
996	journal_t *journal = PDE_DATA(inode);
997	struct jbd2_stats_proc_session *s;
998	int rc, size;
999
1000	s = kmalloc(sizeof(*s), GFP_KERNEL);
1001	if (s == NULL)
1002		return -ENOMEM;
1003	size = sizeof(struct transaction_stats_s);
1004	s->stats = kmalloc(size, GFP_KERNEL);
1005	if (s->stats == NULL) {
1006		kfree(s);
1007		return -ENOMEM;
1008	}
1009	spin_lock(&journal->j_history_lock);
1010	memcpy(s->stats, &journal->j_stats, size);
1011	s->journal = journal;
1012	spin_unlock(&journal->j_history_lock);
1013
1014	rc = seq_open(file, &jbd2_seq_info_ops);
1015	if (rc == 0) {
1016		struct seq_file *m = file->private_data;
1017		m->private = s;
1018	} else {
1019		kfree(s->stats);
1020		kfree(s);
1021	}
1022	return rc;
1023
1024}
1025
1026static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1027{
1028	struct seq_file *seq = file->private_data;
1029	struct jbd2_stats_proc_session *s = seq->private;
1030	kfree(s->stats);
1031	kfree(s);
1032	return seq_release(inode, file);
1033}
1034
1035static const struct file_operations jbd2_seq_info_fops = {
1036	.owner		= THIS_MODULE,
1037	.open           = jbd2_seq_info_open,
1038	.read           = seq_read,
1039	.llseek         = seq_lseek,
1040	.release        = jbd2_seq_info_release,
1041};
1042
1043static struct proc_dir_entry *proc_jbd2_stats;
1044
1045static void jbd2_stats_proc_init(journal_t *journal)
1046{
1047	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1048	if (journal->j_proc_entry) {
1049		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1050				 &jbd2_seq_info_fops, journal);
1051	}
1052}
1053
1054static void jbd2_stats_proc_exit(journal_t *journal)
1055{
1056	remove_proc_entry("info", journal->j_proc_entry);
1057	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1058}
1059
1060/*
1061 * Management for journal control blocks: functions to create and
1062 * destroy journal_t structures, and to initialise and read existing
1063 * journal blocks from disk.  */
1064
1065/* First: create and setup a journal_t object in memory.  We initialise
1066 * very few fields yet: that has to wait until we have created the
1067 * journal structures from from scratch, or loaded them from disk. */
1068
1069static journal_t * journal_init_common (void)
1070{
1071	journal_t *journal;
1072	int err;
1073
1074	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1075	if (!journal)
1076		return NULL;
1077
1078	init_waitqueue_head(&journal->j_wait_transaction_locked);
1079	init_waitqueue_head(&journal->j_wait_done_commit);
1080	init_waitqueue_head(&journal->j_wait_commit);
1081	init_waitqueue_head(&journal->j_wait_updates);
1082	init_waitqueue_head(&journal->j_wait_reserved);
1083	mutex_init(&journal->j_barrier);
1084	mutex_init(&journal->j_checkpoint_mutex);
1085	spin_lock_init(&journal->j_revoke_lock);
1086	spin_lock_init(&journal->j_list_lock);
1087	rwlock_init(&journal->j_state_lock);
1088
1089	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1090	journal->j_min_batch_time = 0;
1091	journal->j_max_batch_time = 15000; /* 15ms */
1092	atomic_set(&journal->j_reserved_credits, 0);
1093
1094	/* The journal is marked for error until we succeed with recovery! */
1095	journal->j_flags = JBD2_ABORT;
1096
1097	/* Set up a default-sized revoke table for the new mount. */
1098	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1099	if (err) {
1100		kfree(journal);
1101		return NULL;
1102	}
1103
1104	spin_lock_init(&journal->j_history_lock);
1105
1106	return journal;
1107}
1108
1109/* jbd2_journal_init_dev and jbd2_journal_init_inode:
1110 *
1111 * Create a journal structure assigned some fixed set of disk blocks to
1112 * the journal.  We don't actually touch those disk blocks yet, but we
1113 * need to set up all of the mapping information to tell the journaling
1114 * system where the journal blocks are.
1115 *
1116 */
1117
1118/**
1119 *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1120 *  @bdev: Block device on which to create the journal
1121 *  @fs_dev: Device which hold journalled filesystem for this journal.
1122 *  @start: Block nr Start of journal.
1123 *  @len:  Length of the journal in blocks.
1124 *  @blocksize: blocksize of journalling device
1125 *
1126 *  Returns: a newly created journal_t *
1127 *
1128 *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1129 *  range of blocks on an arbitrary block device.
1130 *
1131 */
1132journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1133			struct block_device *fs_dev,
1134			unsigned long long start, int len, int blocksize)
1135{
1136	journal_t *journal = journal_init_common();
1137	struct buffer_head *bh;
1138	int n;
1139
1140	if (!journal)
1141		return NULL;
1142
1143	/* journal descriptor can store up to n blocks -bzzz */
1144	journal->j_blocksize = blocksize;
1145	journal->j_dev = bdev;
1146	journal->j_fs_dev = fs_dev;
1147	journal->j_blk_offset = start;
1148	journal->j_maxlen = len;
1149	bdevname(journal->j_dev, journal->j_devname);
1150	strreplace(journal->j_devname, '/', '!');
1151	jbd2_stats_proc_init(journal);
1152	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1153	journal->j_wbufsize = n;
1154	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1155	if (!journal->j_wbuf) {
1156		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1157			__func__);
1158		goto out_err;
1159	}
1160
1161	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1162	if (!bh) {
1163		printk(KERN_ERR
1164		       "%s: Cannot get buffer for journal superblock\n",
1165		       __func__);
1166		goto out_err;
1167	}
1168	journal->j_sb_buffer = bh;
1169	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1170
1171	return journal;
1172out_err:
1173	kfree(journal->j_wbuf);
1174	jbd2_stats_proc_exit(journal);
1175	kfree(journal);
1176	return NULL;
1177}
1178
1179/**
1180 *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1181 *  @inode: An inode to create the journal in
1182 *
1183 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1184 * the journal.  The inode must exist already, must support bmap() and
1185 * must have all data blocks preallocated.
1186 */
1187journal_t * jbd2_journal_init_inode (struct inode *inode)
1188{
1189	struct buffer_head *bh;
1190	journal_t *journal = journal_init_common();
1191	char *p;
1192	int err;
1193	int n;
1194	unsigned long long blocknr;
1195
1196	if (!journal)
1197		return NULL;
1198
1199	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1200	journal->j_inode = inode;
1201	bdevname(journal->j_dev, journal->j_devname);
1202	p = strreplace(journal->j_devname, '/', '!');
1203	sprintf(p, "-%lu", journal->j_inode->i_ino);
1204	jbd_debug(1,
1205		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1206		  journal, inode->i_sb->s_id, inode->i_ino,
1207		  (long long) inode->i_size,
1208		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1209
1210	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1211	journal->j_blocksize = inode->i_sb->s_blocksize;
1212	jbd2_stats_proc_init(journal);
1213
1214	/* journal descriptor can store up to n blocks -bzzz */
1215	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1216	journal->j_wbufsize = n;
1217	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1218	if (!journal->j_wbuf) {
1219		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1220			__func__);
1221		goto out_err;
1222	}
1223
1224	err = jbd2_journal_bmap(journal, 0, &blocknr);
1225	/* If that failed, give up */
1226	if (err) {
1227		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1228		       __func__);
1229		goto out_err;
1230	}
1231
1232	bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize);
1233	if (!bh) {
1234		printk(KERN_ERR
1235		       "%s: Cannot get buffer for journal superblock\n",
1236		       __func__);
1237		goto out_err;
1238	}
1239	journal->j_sb_buffer = bh;
1240	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1241
1242	return journal;
1243out_err:
1244	kfree(journal->j_wbuf);
1245	jbd2_stats_proc_exit(journal);
1246	kfree(journal);
1247	return NULL;
1248}
1249
1250/*
1251 * If the journal init or create aborts, we need to mark the journal
1252 * superblock as being NULL to prevent the journal destroy from writing
1253 * back a bogus superblock.
1254 */
1255static void journal_fail_superblock (journal_t *journal)
1256{
1257	struct buffer_head *bh = journal->j_sb_buffer;
1258	brelse(bh);
1259	journal->j_sb_buffer = NULL;
1260}
1261
1262/*
1263 * Given a journal_t structure, initialise the various fields for
1264 * startup of a new journaling session.  We use this both when creating
1265 * a journal, and after recovering an old journal to reset it for
1266 * subsequent use.
1267 */
1268
1269static int journal_reset(journal_t *journal)
1270{
1271	journal_superblock_t *sb = journal->j_superblock;
1272	unsigned long long first, last;
1273
1274	first = be32_to_cpu(sb->s_first);
1275	last = be32_to_cpu(sb->s_maxlen);
1276	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1277		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1278		       first, last);
1279		journal_fail_superblock(journal);
1280		return -EINVAL;
1281	}
1282
1283	journal->j_first = first;
1284	journal->j_last = last;
1285
1286	journal->j_head = first;
1287	journal->j_tail = first;
1288	journal->j_free = last - first;
1289
1290	journal->j_tail_sequence = journal->j_transaction_sequence;
1291	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1292	journal->j_commit_request = journal->j_commit_sequence;
1293
1294	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1295
1296	/*
1297	 * As a special case, if the on-disk copy is already marked as needing
1298	 * no recovery (s_start == 0), then we can safely defer the superblock
1299	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1300	 * attempting a write to a potential-readonly device.
1301	 */
1302	if (sb->s_start == 0) {
1303		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1304			"(start %ld, seq %d, errno %d)\n",
1305			journal->j_tail, journal->j_tail_sequence,
1306			journal->j_errno);
1307		journal->j_flags |= JBD2_FLUSHED;
1308	} else {
1309		/* Lock here to make assertions happy... */
1310		mutex_lock(&journal->j_checkpoint_mutex);
1311		/*
1312		 * Update log tail information. We use WRITE_FUA since new
1313		 * transaction will start reusing journal space and so we
1314		 * must make sure information about current log tail is on
1315		 * disk before that.
1316		 */
1317		jbd2_journal_update_sb_log_tail(journal,
1318						journal->j_tail_sequence,
1319						journal->j_tail,
1320						WRITE_FUA);
1321		mutex_unlock(&journal->j_checkpoint_mutex);
1322	}
1323	return jbd2_journal_start_thread(journal);
1324}
1325
1326static int jbd2_write_superblock(journal_t *journal, int write_op)
1327{
1328	struct buffer_head *bh = journal->j_sb_buffer;
1329	journal_superblock_t *sb = journal->j_superblock;
1330	int ret;
1331
1332	trace_jbd2_write_superblock(journal, write_op);
1333	if (!(journal->j_flags & JBD2_BARRIER))
1334		write_op &= ~(REQ_FUA | REQ_FLUSH);
1335	lock_buffer(bh);
1336	if (buffer_write_io_error(bh)) {
1337		/*
1338		 * Oh, dear.  A previous attempt to write the journal
1339		 * superblock failed.  This could happen because the
1340		 * USB device was yanked out.  Or it could happen to
1341		 * be a transient write error and maybe the block will
1342		 * be remapped.  Nothing we can do but to retry the
1343		 * write and hope for the best.
1344		 */
1345		printk(KERN_ERR "JBD2: previous I/O error detected "
1346		       "for journal superblock update for %s.\n",
1347		       journal->j_devname);
1348		clear_buffer_write_io_error(bh);
1349		set_buffer_uptodate(bh);
1350	}
1351	jbd2_superblock_csum_set(journal, sb);
1352	get_bh(bh);
1353	bh->b_end_io = end_buffer_write_sync;
1354	ret = submit_bh(write_op, bh);
1355	wait_on_buffer(bh);
1356	if (buffer_write_io_error(bh)) {
1357		clear_buffer_write_io_error(bh);
1358		set_buffer_uptodate(bh);
1359		ret = -EIO;
1360	}
1361	if (ret) {
1362		printk(KERN_ERR "JBD2: Error %d detected when updating "
1363		       "journal superblock for %s.\n", ret,
1364		       journal->j_devname);
1365		jbd2_journal_abort(journal, ret);
1366	}
1367
1368	return ret;
1369}
1370
1371/**
1372 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1373 * @journal: The journal to update.
1374 * @tail_tid: TID of the new transaction at the tail of the log
1375 * @tail_block: The first block of the transaction at the tail of the log
1376 * @write_op: With which operation should we write the journal sb
1377 *
1378 * Update a journal's superblock information about log tail and write it to
1379 * disk, waiting for the IO to complete.
1380 */
1381int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1382				     unsigned long tail_block, int write_op)
1383{
1384	journal_superblock_t *sb = journal->j_superblock;
1385	int ret;
1386
1387	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1388	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1389		  tail_block, tail_tid);
1390
1391	sb->s_sequence = cpu_to_be32(tail_tid);
1392	sb->s_start    = cpu_to_be32(tail_block);
1393
1394	ret = jbd2_write_superblock(journal, write_op);
1395	if (ret)
1396		goto out;
1397
1398	/* Log is no longer empty */
1399	write_lock(&journal->j_state_lock);
1400	WARN_ON(!sb->s_sequence);
1401	journal->j_flags &= ~JBD2_FLUSHED;
1402	write_unlock(&journal->j_state_lock);
1403
1404out:
1405	return ret;
1406}
1407
1408/**
1409 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1410 * @journal: The journal to update.
1411 * @write_op: With which operation should we write the journal sb
1412 *
1413 * Update a journal's dynamic superblock fields to show that journal is empty.
1414 * Write updated superblock to disk waiting for IO to complete.
1415 */
1416static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1417{
1418	journal_superblock_t *sb = journal->j_superblock;
1419
1420	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1421	read_lock(&journal->j_state_lock);
1422	/* Is it already empty? */
1423	if (sb->s_start == 0) {
1424		read_unlock(&journal->j_state_lock);
1425		return;
1426	}
1427	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1428		  journal->j_tail_sequence);
1429
1430	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1431	sb->s_start    = cpu_to_be32(0);
1432	read_unlock(&journal->j_state_lock);
1433
1434	jbd2_write_superblock(journal, write_op);
1435
1436	/* Log is no longer empty */
1437	write_lock(&journal->j_state_lock);
1438	journal->j_flags |= JBD2_FLUSHED;
1439	write_unlock(&journal->j_state_lock);
1440}
1441
1442
1443/**
1444 * jbd2_journal_update_sb_errno() - Update error in the journal.
1445 * @journal: The journal to update.
1446 *
1447 * Update a journal's errno.  Write updated superblock to disk waiting for IO
1448 * to complete.
1449 */
1450void jbd2_journal_update_sb_errno(journal_t *journal)
1451{
1452	journal_superblock_t *sb = journal->j_superblock;
1453
1454	read_lock(&journal->j_state_lock);
1455	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1456		  journal->j_errno);
1457	sb->s_errno    = cpu_to_be32(journal->j_errno);
1458	read_unlock(&journal->j_state_lock);
1459
1460	jbd2_write_superblock(journal, WRITE_FUA);
1461}
1462EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1463
1464/*
1465 * Read the superblock for a given journal, performing initial
1466 * validation of the format.
1467 */
1468static int journal_get_superblock(journal_t *journal)
1469{
1470	struct buffer_head *bh;
1471	journal_superblock_t *sb;
1472	int err = -EIO;
1473
1474	bh = journal->j_sb_buffer;
1475
1476	J_ASSERT(bh != NULL);
1477	if (!buffer_uptodate(bh)) {
1478		ll_rw_block(READ, 1, &bh);
1479		wait_on_buffer(bh);
1480		if (!buffer_uptodate(bh)) {
1481			printk(KERN_ERR
1482				"JBD2: IO error reading journal superblock\n");
1483			goto out;
1484		}
1485	}
1486
1487	if (buffer_verified(bh))
1488		return 0;
1489
1490	sb = journal->j_superblock;
1491
1492	err = -EINVAL;
1493
1494	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1495	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1496		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1497		goto out;
1498	}
1499
1500	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1501	case JBD2_SUPERBLOCK_V1:
1502		journal->j_format_version = 1;
1503		break;
1504	case JBD2_SUPERBLOCK_V2:
1505		journal->j_format_version = 2;
1506		break;
1507	default:
1508		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1509		goto out;
1510	}
1511
1512	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1513		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1514	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1515		printk(KERN_WARNING "JBD2: journal file too short\n");
1516		goto out;
1517	}
1518
1519	if (be32_to_cpu(sb->s_first) == 0 ||
1520	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1521		printk(KERN_WARNING
1522			"JBD2: Invalid start block of journal: %u\n",
1523			be32_to_cpu(sb->s_first));
1524		goto out;
1525	}
1526
1527	if (jbd2_has_feature_csum2(journal) &&
1528	    jbd2_has_feature_csum3(journal)) {
1529		/* Can't have checksum v2 and v3 at the same time! */
1530		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1531		       "at the same time!\n");
1532		goto out;
1533	}
1534
1535	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1536	    jbd2_has_feature_checksum(journal)) {
1537		/* Can't have checksum v1 and v2 on at the same time! */
1538		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1539		       "at the same time!\n");
1540		goto out;
1541	}
1542
1543	if (!jbd2_verify_csum_type(journal, sb)) {
1544		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1545		goto out;
1546	}
1547
1548	/* Load the checksum driver */
1549	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1550		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1551		if (IS_ERR(journal->j_chksum_driver)) {
1552			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1553			err = PTR_ERR(journal->j_chksum_driver);
1554			journal->j_chksum_driver = NULL;
1555			goto out;
1556		}
1557	}
1558
1559	/* Check superblock checksum */
1560	if (!jbd2_superblock_csum_verify(journal, sb)) {
1561		printk(KERN_ERR "JBD2: journal checksum error\n");
1562		err = -EFSBADCRC;
1563		goto out;
1564	}
1565
1566	/* Precompute checksum seed for all metadata */
1567	if (jbd2_journal_has_csum_v2or3(journal))
1568		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1569						   sizeof(sb->s_uuid));
1570
1571	set_buffer_verified(bh);
1572
1573	return 0;
1574
1575out:
1576	journal_fail_superblock(journal);
1577	return err;
1578}
1579
1580/*
1581 * Load the on-disk journal superblock and read the key fields into the
1582 * journal_t.
1583 */
1584
1585static int load_superblock(journal_t *journal)
1586{
1587	int err;
1588	journal_superblock_t *sb;
1589
1590	err = journal_get_superblock(journal);
1591	if (err)
1592		return err;
1593
1594	sb = journal->j_superblock;
1595
1596	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1597	journal->j_tail = be32_to_cpu(sb->s_start);
1598	journal->j_first = be32_to_cpu(sb->s_first);
1599	journal->j_last = be32_to_cpu(sb->s_maxlen);
1600	journal->j_errno = be32_to_cpu(sb->s_errno);
1601
1602	return 0;
1603}
1604
1605
1606/**
1607 * int jbd2_journal_load() - Read journal from disk.
1608 * @journal: Journal to act on.
1609 *
1610 * Given a journal_t structure which tells us which disk blocks contain
1611 * a journal, read the journal from disk to initialise the in-memory
1612 * structures.
1613 */
1614int jbd2_journal_load(journal_t *journal)
1615{
1616	int err;
1617	journal_superblock_t *sb;
1618
1619	err = load_superblock(journal);
1620	if (err)
1621		return err;
1622
1623	sb = journal->j_superblock;
1624	/* If this is a V2 superblock, then we have to check the
1625	 * features flags on it. */
1626
1627	if (journal->j_format_version >= 2) {
1628		if ((sb->s_feature_ro_compat &
1629		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1630		    (sb->s_feature_incompat &
1631		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1632			printk(KERN_WARNING
1633				"JBD2: Unrecognised features on journal\n");
1634			return -EINVAL;
1635		}
1636	}
1637
1638	/*
1639	 * Create a slab for this blocksize
1640	 */
1641	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1642	if (err)
1643		return err;
1644
1645	/* Let the recovery code check whether it needs to recover any
1646	 * data from the journal. */
1647	if (jbd2_journal_recover(journal))
1648		goto recovery_error;
1649
1650	if (journal->j_failed_commit) {
1651		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1652		       "is corrupt.\n", journal->j_failed_commit,
1653		       journal->j_devname);
1654		return -EFSCORRUPTED;
1655	}
1656
1657	/* OK, we've finished with the dynamic journal bits:
1658	 * reinitialise the dynamic contents of the superblock in memory
1659	 * and reset them on disk. */
1660	if (journal_reset(journal))
1661		goto recovery_error;
1662
1663	journal->j_flags &= ~JBD2_ABORT;
1664	journal->j_flags |= JBD2_LOADED;
1665	return 0;
1666
1667recovery_error:
1668	printk(KERN_WARNING "JBD2: recovery failed\n");
1669	return -EIO;
1670}
1671
1672/**
1673 * void jbd2_journal_destroy() - Release a journal_t structure.
1674 * @journal: Journal to act on.
1675 *
1676 * Release a journal_t structure once it is no longer in use by the
1677 * journaled object.
1678 * Return <0 if we couldn't clean up the journal.
1679 */
1680int jbd2_journal_destroy(journal_t *journal)
1681{
1682	int err = 0;
1683
1684	/* Wait for the commit thread to wake up and die. */
1685	journal_kill_thread(journal);
1686
1687	/* Force a final log commit */
1688	if (journal->j_running_transaction)
1689		jbd2_journal_commit_transaction(journal);
1690
1691	/* Force any old transactions to disk */
1692
1693	/* Totally anal locking here... */
1694	spin_lock(&journal->j_list_lock);
1695	while (journal->j_checkpoint_transactions != NULL) {
1696		spin_unlock(&journal->j_list_lock);
1697		mutex_lock(&journal->j_checkpoint_mutex);
1698		err = jbd2_log_do_checkpoint(journal);
1699		mutex_unlock(&journal->j_checkpoint_mutex);
1700		/*
1701		 * If checkpointing failed, just free the buffers to avoid
1702		 * looping forever
1703		 */
1704		if (err) {
1705			jbd2_journal_destroy_checkpoint(journal);
1706			spin_lock(&journal->j_list_lock);
1707			break;
1708		}
1709		spin_lock(&journal->j_list_lock);
1710	}
1711
1712	J_ASSERT(journal->j_running_transaction == NULL);
1713	J_ASSERT(journal->j_committing_transaction == NULL);
1714	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1715	spin_unlock(&journal->j_list_lock);
1716
1717	if (journal->j_sb_buffer) {
1718		if (!is_journal_aborted(journal)) {
1719			mutex_lock(&journal->j_checkpoint_mutex);
1720
1721			write_lock(&journal->j_state_lock);
1722			journal->j_tail_sequence =
1723				++journal->j_transaction_sequence;
1724			write_unlock(&journal->j_state_lock);
1725
1726			jbd2_mark_journal_empty(journal, WRITE_FLUSH_FUA);
1727			mutex_unlock(&journal->j_checkpoint_mutex);
1728		} else
1729			err = -EIO;
1730		brelse(journal->j_sb_buffer);
1731	}
1732
1733	if (journal->j_proc_entry)
1734		jbd2_stats_proc_exit(journal);
1735	iput(journal->j_inode);
1736	if (journal->j_revoke)
1737		jbd2_journal_destroy_revoke(journal);
1738	if (journal->j_chksum_driver)
1739		crypto_free_shash(journal->j_chksum_driver);
1740	kfree(journal->j_wbuf);
1741	kfree(journal);
1742
1743	return err;
1744}
1745
1746
1747/**
1748 *int jbd2_journal_check_used_features () - Check if features specified are used.
1749 * @journal: Journal to check.
1750 * @compat: bitmask of compatible features
1751 * @ro: bitmask of features that force read-only mount
1752 * @incompat: bitmask of incompatible features
1753 *
1754 * Check whether the journal uses all of a given set of
1755 * features.  Return true (non-zero) if it does.
1756 **/
1757
1758int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1759				 unsigned long ro, unsigned long incompat)
1760{
1761	journal_superblock_t *sb;
1762
1763	if (!compat && !ro && !incompat)
1764		return 1;
1765	/* Load journal superblock if it is not loaded yet. */
1766	if (journal->j_format_version == 0 &&
1767	    journal_get_superblock(journal) != 0)
1768		return 0;
1769	if (journal->j_format_version == 1)
1770		return 0;
1771
1772	sb = journal->j_superblock;
1773
1774	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1775	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1776	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1777		return 1;
1778
1779	return 0;
1780}
1781
1782/**
1783 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1784 * @journal: Journal to check.
1785 * @compat: bitmask of compatible features
1786 * @ro: bitmask of features that force read-only mount
1787 * @incompat: bitmask of incompatible features
1788 *
1789 * Check whether the journaling code supports the use of
1790 * all of a given set of features on this journal.  Return true
1791 * (non-zero) if it can. */
1792
1793int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1794				      unsigned long ro, unsigned long incompat)
1795{
1796	if (!compat && !ro && !incompat)
1797		return 1;
1798
1799	/* We can support any known requested features iff the
1800	 * superblock is in version 2.  Otherwise we fail to support any
1801	 * extended sb features. */
1802
1803	if (journal->j_format_version != 2)
1804		return 0;
1805
1806	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1807	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1808	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1809		return 1;
1810
1811	return 0;
1812}
1813
1814/**
1815 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1816 * @journal: Journal to act on.
1817 * @compat: bitmask of compatible features
1818 * @ro: bitmask of features that force read-only mount
1819 * @incompat: bitmask of incompatible features
1820 *
1821 * Mark a given journal feature as present on the
1822 * superblock.  Returns true if the requested features could be set.
1823 *
1824 */
1825
1826int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1827			  unsigned long ro, unsigned long incompat)
1828{
1829#define INCOMPAT_FEATURE_ON(f) \
1830		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1831#define COMPAT_FEATURE_ON(f) \
1832		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1833	journal_superblock_t *sb;
1834
1835	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1836		return 1;
1837
1838	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1839		return 0;
1840
1841	/* If enabling v2 checksums, turn on v3 instead */
1842	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1843		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1844		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1845	}
1846
1847	/* Asking for checksumming v3 and v1?  Only give them v3. */
1848	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1849	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1850		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1851
1852	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1853		  compat, ro, incompat);
1854
1855	sb = journal->j_superblock;
1856
1857	/* If enabling v3 checksums, update superblock */
1858	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1859		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1860		sb->s_feature_compat &=
1861			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1862
1863		/* Load the checksum driver */
1864		if (journal->j_chksum_driver == NULL) {
1865			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1866								      0, 0);
1867			if (IS_ERR(journal->j_chksum_driver)) {
1868				printk(KERN_ERR "JBD2: Cannot load crc32c "
1869				       "driver.\n");
1870				journal->j_chksum_driver = NULL;
1871				return 0;
1872			}
1873
1874			/* Precompute checksum seed for all metadata */
1875			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1876							   sb->s_uuid,
1877							   sizeof(sb->s_uuid));
1878		}
1879	}
1880
1881	/* If enabling v1 checksums, downgrade superblock */
1882	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1883		sb->s_feature_incompat &=
1884			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1885				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1886
1887	sb->s_feature_compat    |= cpu_to_be32(compat);
1888	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1889	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1890
1891	return 1;
1892#undef COMPAT_FEATURE_ON
1893#undef INCOMPAT_FEATURE_ON
1894}
1895
1896/*
1897 * jbd2_journal_clear_features () - Clear a given journal feature in the
1898 * 				    superblock
1899 * @journal: Journal to act on.
1900 * @compat: bitmask of compatible features
1901 * @ro: bitmask of features that force read-only mount
1902 * @incompat: bitmask of incompatible features
1903 *
1904 * Clear a given journal feature as present on the
1905 * superblock.
1906 */
1907void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1908				unsigned long ro, unsigned long incompat)
1909{
1910	journal_superblock_t *sb;
1911
1912	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1913		  compat, ro, incompat);
1914
1915	sb = journal->j_superblock;
1916
1917	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1918	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1919	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1920}
1921EXPORT_SYMBOL(jbd2_journal_clear_features);
1922
1923/**
1924 * int jbd2_journal_flush () - Flush journal
1925 * @journal: Journal to act on.
1926 *
1927 * Flush all data for a given journal to disk and empty the journal.
1928 * Filesystems can use this when remounting readonly to ensure that
1929 * recovery does not need to happen on remount.
1930 */
1931
1932int jbd2_journal_flush(journal_t *journal)
1933{
1934	int err = 0;
1935	transaction_t *transaction = NULL;
1936
1937	write_lock(&journal->j_state_lock);
1938
1939	/* Force everything buffered to the log... */
1940	if (journal->j_running_transaction) {
1941		transaction = journal->j_running_transaction;
1942		__jbd2_log_start_commit(journal, transaction->t_tid);
1943	} else if (journal->j_committing_transaction)
1944		transaction = journal->j_committing_transaction;
1945
1946	/* Wait for the log commit to complete... */
1947	if (transaction) {
1948		tid_t tid = transaction->t_tid;
1949
1950		write_unlock(&journal->j_state_lock);
1951		jbd2_log_wait_commit(journal, tid);
1952	} else {
1953		write_unlock(&journal->j_state_lock);
1954	}
1955
1956	/* ...and flush everything in the log out to disk. */
1957	spin_lock(&journal->j_list_lock);
1958	while (!err && journal->j_checkpoint_transactions != NULL) {
1959		spin_unlock(&journal->j_list_lock);
1960		mutex_lock(&journal->j_checkpoint_mutex);
1961		err = jbd2_log_do_checkpoint(journal);
1962		mutex_unlock(&journal->j_checkpoint_mutex);
1963		spin_lock(&journal->j_list_lock);
1964	}
1965	spin_unlock(&journal->j_list_lock);
1966
1967	if (is_journal_aborted(journal))
1968		return -EIO;
1969
1970	mutex_lock(&journal->j_checkpoint_mutex);
1971	if (!err) {
1972		err = jbd2_cleanup_journal_tail(journal);
1973		if (err < 0) {
1974			mutex_unlock(&journal->j_checkpoint_mutex);
1975			goto out;
1976		}
1977		err = 0;
1978	}
1979
1980	/* Finally, mark the journal as really needing no recovery.
1981	 * This sets s_start==0 in the underlying superblock, which is
1982	 * the magic code for a fully-recovered superblock.  Any future
1983	 * commits of data to the journal will restore the current
1984	 * s_start value. */
1985	jbd2_mark_journal_empty(journal, WRITE_FUA);
1986	mutex_unlock(&journal->j_checkpoint_mutex);
1987	write_lock(&journal->j_state_lock);
1988	J_ASSERT(!journal->j_running_transaction);
1989	J_ASSERT(!journal->j_committing_transaction);
1990	J_ASSERT(!journal->j_checkpoint_transactions);
1991	J_ASSERT(journal->j_head == journal->j_tail);
1992	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1993	write_unlock(&journal->j_state_lock);
1994out:
1995	return err;
1996}
1997
1998/**
1999 * int jbd2_journal_wipe() - Wipe journal contents
2000 * @journal: Journal to act on.
2001 * @write: flag (see below)
2002 *
2003 * Wipe out all of the contents of a journal, safely.  This will produce
2004 * a warning if the journal contains any valid recovery information.
2005 * Must be called between journal_init_*() and jbd2_journal_load().
2006 *
2007 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2008 * we merely suppress recovery.
2009 */
2010
2011int jbd2_journal_wipe(journal_t *journal, int write)
2012{
2013	int err = 0;
2014
2015	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2016
2017	err = load_superblock(journal);
2018	if (err)
2019		return err;
2020
2021	if (!journal->j_tail)
2022		goto no_recovery;
2023
2024	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2025		write ? "Clearing" : "Ignoring");
2026
2027	err = jbd2_journal_skip_recovery(journal);
2028	if (write) {
2029		/* Lock to make assertions happy... */
2030		mutex_lock(&journal->j_checkpoint_mutex);
2031		jbd2_mark_journal_empty(journal, WRITE_FUA);
2032		mutex_unlock(&journal->j_checkpoint_mutex);
2033	}
2034
2035 no_recovery:
2036	return err;
2037}
2038
2039/*
2040 * Journal abort has very specific semantics, which we describe
2041 * for journal abort.
2042 *
2043 * Two internal functions, which provide abort to the jbd layer
2044 * itself are here.
2045 */
2046
2047/*
2048 * Quick version for internal journal use (doesn't lock the journal).
2049 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2050 * and don't attempt to make any other journal updates.
2051 */
2052void __jbd2_journal_abort_hard(journal_t *journal)
2053{
2054	transaction_t *transaction;
2055
2056	if (journal->j_flags & JBD2_ABORT)
2057		return;
2058
2059	printk(KERN_ERR "Aborting journal on device %s.\n",
2060	       journal->j_devname);
2061
2062	write_lock(&journal->j_state_lock);
2063	journal->j_flags |= JBD2_ABORT;
2064	transaction = journal->j_running_transaction;
2065	if (transaction)
2066		__jbd2_log_start_commit(journal, transaction->t_tid);
2067	write_unlock(&journal->j_state_lock);
2068}
2069
2070/* Soft abort: record the abort error status in the journal superblock,
2071 * but don't do any other IO. */
2072static void __journal_abort_soft (journal_t *journal, int errno)
2073{
2074	if (journal->j_flags & JBD2_ABORT)
2075		return;
2076
2077	if (!journal->j_errno)
2078		journal->j_errno = errno;
2079
2080	__jbd2_journal_abort_hard(journal);
2081
2082	if (errno) {
2083		jbd2_journal_update_sb_errno(journal);
2084		write_lock(&journal->j_state_lock);
2085		journal->j_flags |= JBD2_REC_ERR;
2086		write_unlock(&journal->j_state_lock);
2087	}
2088}
2089
2090/**
2091 * void jbd2_journal_abort () - Shutdown the journal immediately.
2092 * @journal: the journal to shutdown.
2093 * @errno:   an error number to record in the journal indicating
2094 *           the reason for the shutdown.
2095 *
2096 * Perform a complete, immediate shutdown of the ENTIRE
2097 * journal (not of a single transaction).  This operation cannot be
2098 * undone without closing and reopening the journal.
2099 *
2100 * The jbd2_journal_abort function is intended to support higher level error
2101 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2102 * mode.
2103 *
2104 * Journal abort has very specific semantics.  Any existing dirty,
2105 * unjournaled buffers in the main filesystem will still be written to
2106 * disk by bdflush, but the journaling mechanism will be suspended
2107 * immediately and no further transaction commits will be honoured.
2108 *
2109 * Any dirty, journaled buffers will be written back to disk without
2110 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2111 * filesystem, but we _do_ attempt to leave as much data as possible
2112 * behind for fsck to use for cleanup.
2113 *
2114 * Any attempt to get a new transaction handle on a journal which is in
2115 * ABORT state will just result in an -EROFS error return.  A
2116 * jbd2_journal_stop on an existing handle will return -EIO if we have
2117 * entered abort state during the update.
2118 *
2119 * Recursive transactions are not disturbed by journal abort until the
2120 * final jbd2_journal_stop, which will receive the -EIO error.
2121 *
2122 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2123 * which will be recorded (if possible) in the journal superblock.  This
2124 * allows a client to record failure conditions in the middle of a
2125 * transaction without having to complete the transaction to record the
2126 * failure to disk.  ext3_error, for example, now uses this
2127 * functionality.
2128 *
2129 * Errors which originate from within the journaling layer will NOT
2130 * supply an errno; a null errno implies that absolutely no further
2131 * writes are done to the journal (unless there are any already in
2132 * progress).
2133 *
2134 */
2135
2136void jbd2_journal_abort(journal_t *journal, int errno)
2137{
2138	__journal_abort_soft(journal, errno);
2139}
2140
2141/**
2142 * int jbd2_journal_errno () - returns the journal's error state.
2143 * @journal: journal to examine.
2144 *
2145 * This is the errno number set with jbd2_journal_abort(), the last
2146 * time the journal was mounted - if the journal was stopped
2147 * without calling abort this will be 0.
2148 *
2149 * If the journal has been aborted on this mount time -EROFS will
2150 * be returned.
2151 */
2152int jbd2_journal_errno(journal_t *journal)
2153{
2154	int err;
2155
2156	read_lock(&journal->j_state_lock);
2157	if (journal->j_flags & JBD2_ABORT)
2158		err = -EROFS;
2159	else
2160		err = journal->j_errno;
2161	read_unlock(&journal->j_state_lock);
2162	return err;
2163}
2164
2165/**
2166 * int jbd2_journal_clear_err () - clears the journal's error state
2167 * @journal: journal to act on.
2168 *
2169 * An error must be cleared or acked to take a FS out of readonly
2170 * mode.
2171 */
2172int jbd2_journal_clear_err(journal_t *journal)
2173{
2174	int err = 0;
2175
2176	write_lock(&journal->j_state_lock);
2177	if (journal->j_flags & JBD2_ABORT)
2178		err = -EROFS;
2179	else
2180		journal->j_errno = 0;
2181	write_unlock(&journal->j_state_lock);
2182	return err;
2183}
2184
2185/**
2186 * void jbd2_journal_ack_err() - Ack journal err.
2187 * @journal: journal to act on.
2188 *
2189 * An error must be cleared or acked to take a FS out of readonly
2190 * mode.
2191 */
2192void jbd2_journal_ack_err(journal_t *journal)
2193{
2194	write_lock(&journal->j_state_lock);
2195	if (journal->j_errno)
2196		journal->j_flags |= JBD2_ACK_ERR;
2197	write_unlock(&journal->j_state_lock);
2198}
2199
2200int jbd2_journal_blocks_per_page(struct inode *inode)
2201{
2202	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2203}
2204
2205/*
2206 * helper functions to deal with 32 or 64bit block numbers.
2207 */
2208size_t journal_tag_bytes(journal_t *journal)
2209{
2210	size_t sz;
2211
2212	if (jbd2_has_feature_csum3(journal))
2213		return sizeof(journal_block_tag3_t);
2214
2215	sz = sizeof(journal_block_tag_t);
2216
2217	if (jbd2_has_feature_csum2(journal))
2218		sz += sizeof(__u16);
2219
2220	if (jbd2_has_feature_64bit(journal))
2221		return sz;
2222	else
2223		return sz - sizeof(__u32);
2224}
2225
2226/*
2227 * JBD memory management
2228 *
2229 * These functions are used to allocate block-sized chunks of memory
2230 * used for making copies of buffer_head data.  Very often it will be
2231 * page-sized chunks of data, but sometimes it will be in
2232 * sub-page-size chunks.  (For example, 16k pages on Power systems
2233 * with a 4k block file system.)  For blocks smaller than a page, we
2234 * use a SLAB allocator.  There are slab caches for each block size,
2235 * which are allocated at mount time, if necessary, and we only free
2236 * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2237 * this reason we don't need to a mutex to protect access to
2238 * jbd2_slab[] allocating or releasing memory; only in
2239 * jbd2_journal_create_slab().
2240 */
2241#define JBD2_MAX_SLABS 8
2242static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2243
2244static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2245	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2246	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2247};
2248
2249
2250static void jbd2_journal_destroy_slabs(void)
2251{
2252	int i;
2253
2254	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2255		if (jbd2_slab[i])
2256			kmem_cache_destroy(jbd2_slab[i]);
2257		jbd2_slab[i] = NULL;
2258	}
2259}
2260
2261static int jbd2_journal_create_slab(size_t size)
2262{
2263	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2264	int i = order_base_2(size) - 10;
2265	size_t slab_size;
2266
2267	if (size == PAGE_SIZE)
2268		return 0;
2269
2270	if (i >= JBD2_MAX_SLABS)
2271		return -EINVAL;
2272
2273	if (unlikely(i < 0))
2274		i = 0;
2275	mutex_lock(&jbd2_slab_create_mutex);
2276	if (jbd2_slab[i]) {
2277		mutex_unlock(&jbd2_slab_create_mutex);
2278		return 0;	/* Already created */
2279	}
2280
2281	slab_size = 1 << (i+10);
2282	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2283					 slab_size, 0, NULL);
2284	mutex_unlock(&jbd2_slab_create_mutex);
2285	if (!jbd2_slab[i]) {
2286		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2287		return -ENOMEM;
2288	}
2289	return 0;
2290}
2291
2292static struct kmem_cache *get_slab(size_t size)
2293{
2294	int i = order_base_2(size) - 10;
2295
2296	BUG_ON(i >= JBD2_MAX_SLABS);
2297	if (unlikely(i < 0))
2298		i = 0;
2299	BUG_ON(jbd2_slab[i] == NULL);
2300	return jbd2_slab[i];
2301}
2302
2303void *jbd2_alloc(size_t size, gfp_t flags)
2304{
2305	void *ptr;
2306
2307	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2308
2309	flags |= __GFP_REPEAT;
2310	if (size == PAGE_SIZE)
2311		ptr = (void *)__get_free_pages(flags, 0);
2312	else if (size > PAGE_SIZE) {
2313		int order = get_order(size);
2314
2315		if (order < 3)
2316			ptr = (void *)__get_free_pages(flags, order);
2317		else
2318			ptr = vmalloc(size);
2319	} else
2320		ptr = kmem_cache_alloc(get_slab(size), flags);
2321
2322	/* Check alignment; SLUB has gotten this wrong in the past,
2323	 * and this can lead to user data corruption! */
2324	BUG_ON(((unsigned long) ptr) & (size-1));
2325
2326	return ptr;
2327}
2328
2329void jbd2_free(void *ptr, size_t size)
2330{
2331	if (size == PAGE_SIZE) {
2332		free_pages((unsigned long)ptr, 0);
2333		return;
2334	}
2335	if (size > PAGE_SIZE) {
2336		int order = get_order(size);
2337
2338		if (order < 3)
2339			free_pages((unsigned long)ptr, order);
2340		else
2341			vfree(ptr);
2342		return;
2343	}
2344	kmem_cache_free(get_slab(size), ptr);
2345};
2346
2347/*
2348 * Journal_head storage management
2349 */
2350static struct kmem_cache *jbd2_journal_head_cache;
2351#ifdef CONFIG_JBD2_DEBUG
2352static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2353#endif
2354
2355static int jbd2_journal_init_journal_head_cache(void)
2356{
2357	int retval;
2358
2359	J_ASSERT(jbd2_journal_head_cache == NULL);
2360	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2361				sizeof(struct journal_head),
2362				0,		/* offset */
2363				SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU,
2364				NULL);		/* ctor */
2365	retval = 0;
2366	if (!jbd2_journal_head_cache) {
2367		retval = -ENOMEM;
2368		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2369	}
2370	return retval;
2371}
2372
2373static void jbd2_journal_destroy_journal_head_cache(void)
2374{
2375	if (jbd2_journal_head_cache) {
2376		kmem_cache_destroy(jbd2_journal_head_cache);
2377		jbd2_journal_head_cache = NULL;
2378	}
2379}
2380
2381/*
2382 * journal_head splicing and dicing
2383 */
2384static struct journal_head *journal_alloc_journal_head(void)
2385{
2386	struct journal_head *ret;
2387
2388#ifdef CONFIG_JBD2_DEBUG
2389	atomic_inc(&nr_journal_heads);
2390#endif
2391	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2392	if (!ret) {
2393		jbd_debug(1, "out of memory for journal_head\n");
2394		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2395		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2396				GFP_NOFS | __GFP_NOFAIL);
2397	}
2398	return ret;
2399}
2400
2401static void journal_free_journal_head(struct journal_head *jh)
2402{
2403#ifdef CONFIG_JBD2_DEBUG
2404	atomic_dec(&nr_journal_heads);
2405	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2406#endif
2407	kmem_cache_free(jbd2_journal_head_cache, jh);
2408}
2409
2410/*
2411 * A journal_head is attached to a buffer_head whenever JBD has an
2412 * interest in the buffer.
2413 *
2414 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2415 * is set.  This bit is tested in core kernel code where we need to take
2416 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2417 * there.
2418 *
2419 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2420 *
2421 * When a buffer has its BH_JBD bit set it is immune from being released by
2422 * core kernel code, mainly via ->b_count.
2423 *
2424 * A journal_head is detached from its buffer_head when the journal_head's
2425 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2426 * transaction (b_cp_transaction) hold their references to b_jcount.
2427 *
2428 * Various places in the kernel want to attach a journal_head to a buffer_head
2429 * _before_ attaching the journal_head to a transaction.  To protect the
2430 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2431 * journal_head's b_jcount refcount by one.  The caller must call
2432 * jbd2_journal_put_journal_head() to undo this.
2433 *
2434 * So the typical usage would be:
2435 *
2436 *	(Attach a journal_head if needed.  Increments b_jcount)
2437 *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2438 *	...
2439 *      (Get another reference for transaction)
2440 *	jbd2_journal_grab_journal_head(bh);
2441 *	jh->b_transaction = xxx;
2442 *	(Put original reference)
2443 *	jbd2_journal_put_journal_head(jh);
2444 */
2445
2446/*
2447 * Give a buffer_head a journal_head.
2448 *
2449 * May sleep.
2450 */
2451struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2452{
2453	struct journal_head *jh;
2454	struct journal_head *new_jh = NULL;
2455
2456repeat:
2457	if (!buffer_jbd(bh))
2458		new_jh = journal_alloc_journal_head();
2459
2460	jbd_lock_bh_journal_head(bh);
2461	if (buffer_jbd(bh)) {
2462		jh = bh2jh(bh);
2463	} else {
2464		J_ASSERT_BH(bh,
2465			(atomic_read(&bh->b_count) > 0) ||
2466			(bh->b_page && bh->b_page->mapping));
2467
2468		if (!new_jh) {
2469			jbd_unlock_bh_journal_head(bh);
2470			goto repeat;
2471		}
2472
2473		jh = new_jh;
2474		new_jh = NULL;		/* We consumed it */
2475		set_buffer_jbd(bh);
2476		bh->b_private = jh;
2477		jh->b_bh = bh;
2478		get_bh(bh);
2479		BUFFER_TRACE(bh, "added journal_head");
2480	}
2481	jh->b_jcount++;
2482	jbd_unlock_bh_journal_head(bh);
2483	if (new_jh)
2484		journal_free_journal_head(new_jh);
2485	return bh->b_private;
2486}
2487
2488/*
2489 * Grab a ref against this buffer_head's journal_head.  If it ended up not
2490 * having a journal_head, return NULL
2491 */
2492struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2493{
2494	struct journal_head *jh = NULL;
2495
2496	jbd_lock_bh_journal_head(bh);
2497	if (buffer_jbd(bh)) {
2498		jh = bh2jh(bh);
2499		jh->b_jcount++;
2500	}
2501	jbd_unlock_bh_journal_head(bh);
2502	return jh;
2503}
2504
2505static void __journal_remove_journal_head(struct buffer_head *bh)
2506{
2507	struct journal_head *jh = bh2jh(bh);
2508
2509	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2510	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2511	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2512	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2513	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2514	J_ASSERT_BH(bh, buffer_jbd(bh));
2515	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2516	BUFFER_TRACE(bh, "remove journal_head");
2517	if (jh->b_frozen_data) {
2518		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2519		jbd2_free(jh->b_frozen_data, bh->b_size);
2520	}
2521	if (jh->b_committed_data) {
2522		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2523		jbd2_free(jh->b_committed_data, bh->b_size);
2524	}
2525	bh->b_private = NULL;
2526	jh->b_bh = NULL;	/* debug, really */
2527	clear_buffer_jbd(bh);
2528	journal_free_journal_head(jh);
2529}
2530
2531/*
2532 * Drop a reference on the passed journal_head.  If it fell to zero then
2533 * release the journal_head from the buffer_head.
2534 */
2535void jbd2_journal_put_journal_head(struct journal_head *jh)
2536{
2537	struct buffer_head *bh = jh2bh(jh);
2538
2539	jbd_lock_bh_journal_head(bh);
2540	J_ASSERT_JH(jh, jh->b_jcount > 0);
2541	--jh->b_jcount;
2542	if (!jh->b_jcount) {
2543		__journal_remove_journal_head(bh);
2544		jbd_unlock_bh_journal_head(bh);
2545		__brelse(bh);
2546	} else
2547		jbd_unlock_bh_journal_head(bh);
2548}
2549
2550/*
2551 * Initialize jbd inode head
2552 */
2553void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2554{
2555	jinode->i_transaction = NULL;
2556	jinode->i_next_transaction = NULL;
2557	jinode->i_vfs_inode = inode;
2558	jinode->i_flags = 0;
2559	INIT_LIST_HEAD(&jinode->i_list);
2560}
2561
2562/*
2563 * Function to be called before we start removing inode from memory (i.e.,
2564 * clear_inode() is a fine place to be called from). It removes inode from
2565 * transaction's lists.
2566 */
2567void jbd2_journal_release_jbd_inode(journal_t *journal,
2568				    struct jbd2_inode *jinode)
2569{
2570	if (!journal)
2571		return;
2572restart:
2573	spin_lock(&journal->j_list_lock);
2574	/* Is commit writing out inode - we have to wait */
2575	if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2576		wait_queue_head_t *wq;
2577		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2578		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2579		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2580		spin_unlock(&journal->j_list_lock);
2581		schedule();
2582		finish_wait(wq, &wait.wait);
2583		goto restart;
2584	}
2585
2586	if (jinode->i_transaction) {
2587		list_del(&jinode->i_list);
2588		jinode->i_transaction = NULL;
2589	}
2590	spin_unlock(&journal->j_list_lock);
2591}
2592
2593
2594#ifdef CONFIG_PROC_FS
2595
2596#define JBD2_STATS_PROC_NAME "fs/jbd2"
2597
2598static void __init jbd2_create_jbd_stats_proc_entry(void)
2599{
2600	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2601}
2602
2603static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2604{
2605	if (proc_jbd2_stats)
2606		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2607}
2608
2609#else
2610
2611#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2612#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2613
2614#endif
2615
2616struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2617
2618static int __init jbd2_journal_init_handle_cache(void)
2619{
2620	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2621	if (jbd2_handle_cache == NULL) {
2622		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2623		return -ENOMEM;
2624	}
2625	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2626	if (jbd2_inode_cache == NULL) {
2627		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2628		kmem_cache_destroy(jbd2_handle_cache);
2629		return -ENOMEM;
2630	}
2631	return 0;
2632}
2633
2634static void jbd2_journal_destroy_handle_cache(void)
2635{
2636	if (jbd2_handle_cache)
2637		kmem_cache_destroy(jbd2_handle_cache);
2638	if (jbd2_inode_cache)
2639		kmem_cache_destroy(jbd2_inode_cache);
2640
2641}
2642
2643/*
2644 * Module startup and shutdown
2645 */
2646
2647static int __init journal_init_caches(void)
2648{
2649	int ret;
2650
2651	ret = jbd2_journal_init_revoke_caches();
2652	if (ret == 0)
2653		ret = jbd2_journal_init_journal_head_cache();
2654	if (ret == 0)
2655		ret = jbd2_journal_init_handle_cache();
2656	if (ret == 0)
2657		ret = jbd2_journal_init_transaction_cache();
2658	return ret;
2659}
2660
2661static void jbd2_journal_destroy_caches(void)
2662{
2663	jbd2_journal_destroy_revoke_caches();
2664	jbd2_journal_destroy_journal_head_cache();
2665	jbd2_journal_destroy_handle_cache();
2666	jbd2_journal_destroy_transaction_cache();
2667	jbd2_journal_destroy_slabs();
2668}
2669
2670static int __init journal_init(void)
2671{
2672	int ret;
2673
2674	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2675
2676	ret = journal_init_caches();
2677	if (ret == 0) {
2678		jbd2_create_jbd_stats_proc_entry();
2679	} else {
2680		jbd2_journal_destroy_caches();
2681	}
2682	return ret;
2683}
2684
2685static void __exit journal_exit(void)
2686{
2687#ifdef CONFIG_JBD2_DEBUG
2688	int n = atomic_read(&nr_journal_heads);
2689	if (n)
2690		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2691#endif
2692	jbd2_remove_jbd_stats_proc_entry();
2693	jbd2_journal_destroy_caches();
2694}
2695
2696MODULE_LICENSE("GPL");
2697module_init(journal_init);
2698module_exit(journal_exit);
2699
2700