1/*
2 *  linux/fs/hpfs/hpfs.h
3 *
4 *  HPFS structures by Chris Smith, 1993
5 *
6 *  a little bit modified by Mikulas Patocka, 1998-1999
7 */
8
9/* The paper
10
11     Duncan, Roy
12     Design goals and implementation of the new High Performance File System
13     Microsoft Systems Journal  Sept 1989  v4 n5 p1(13)
14
15   describes what HPFS looked like when it was new, and it is the source
16   of most of the information given here.  The rest is conjecture.
17
18   For definitive information on the Duncan paper, see it, not this file.
19   For definitive information on HPFS, ask somebody else -- this is guesswork.
20   There are certain to be many mistakes. */
21
22#if !defined(__LITTLE_ENDIAN) && !defined(__BIG_ENDIAN)
23#error unknown endian
24#endif
25
26/* Notation */
27
28typedef u32 secno;			/* sector number, partition relative */
29
30typedef secno dnode_secno;		/* sector number of a dnode */
31typedef secno fnode_secno;		/* sector number of an fnode */
32typedef secno anode_secno;		/* sector number of an anode */
33
34typedef u32 time32_t;		/* 32-bit time_t type */
35
36/* sector 0 */
37
38/* The boot block is very like a FAT boot block, except that the
39   29h signature byte is 28h instead, and the ID string is "HPFS". */
40
41#define BB_MAGIC 0xaa55
42
43struct hpfs_boot_block
44{
45  u8 jmp[3];
46  u8 oem_id[8];
47  u8 bytes_per_sector[2];	/* 512 */
48  u8 sectors_per_cluster;
49  u8 n_reserved_sectors[2];
50  u8 n_fats;
51  u8 n_rootdir_entries[2];
52  u8 n_sectors_s[2];
53  u8 media_byte;
54  __le16 sectors_per_fat;
55  __le16 sectors_per_track;
56  __le16 heads_per_cyl;
57  __le32 n_hidden_sectors;
58  __le32 n_sectors_l;		/* size of partition */
59  u8 drive_number;
60  u8 mbz;
61  u8 sig_28h;			/* 28h */
62  u8 vol_serno[4];
63  u8 vol_label[11];
64  u8 sig_hpfs[8];		/* "HPFS    " */
65  u8 pad[448];
66  __le16 magic;			/* aa55 */
67};
68
69
70/* sector 16 */
71
72/* The super block has the pointer to the root directory. */
73
74#define SB_MAGIC 0xf995e849
75
76struct hpfs_super_block
77{
78  __le32 magic;				/* f995 e849 */
79  __le32 magic1;			/* fa53 e9c5, more magic? */
80  u8 version;				/* version of a filesystem  usually 2 */
81  u8 funcversion;			/* functional version - oldest version
82  					   of filesystem that can understand
83					   this disk */
84  __le16 zero;				/* 0 */
85  __le32 root;				/* fnode of root directory */
86  __le32 n_sectors;			/* size of filesystem */
87  __le32 n_badblocks;			/* number of bad blocks */
88  __le32 bitmaps;			/* pointers to free space bit maps */
89  __le32 zero1;				/* 0 */
90  __le32 badblocks;			/* bad block list */
91  __le32 zero3;				/* 0 */
92  __le32 last_chkdsk;			/* date last checked, 0 if never */
93  __le32 last_optimize;			/* date last optimized, 0 if never */
94  __le32 n_dir_band;			/* number of sectors in dir band */
95  __le32 dir_band_start;			/* first sector in dir band */
96  __le32 dir_band_end;			/* last sector in dir band */
97  __le32 dir_band_bitmap;		/* free space map, 1 dnode per bit */
98  u8 volume_name[32];			/* not used */
99  __le32 user_id_table;			/* 8 preallocated sectors - user id */
100  u32 zero6[103];			/* 0 */
101};
102
103
104/* sector 17 */
105
106/* The spare block has pointers to spare sectors.  */
107
108#define SP_MAGIC 0xf9911849
109
110struct hpfs_spare_block
111{
112  __le32 magic;				/* f991 1849 */
113  __le32 magic1;				/* fa52 29c5, more magic? */
114
115#ifdef __LITTLE_ENDIAN
116  u8 dirty: 1;				/* 0 clean, 1 "improperly stopped" */
117  u8 sparedir_used: 1;			/* spare dirblks used */
118  u8 hotfixes_used: 1;			/* hotfixes used */
119  u8 bad_sector: 1;			/* bad sector, corrupted disk (???) */
120  u8 bad_bitmap: 1;			/* bad bitmap */
121  u8 fast: 1;				/* partition was fast formatted */
122  u8 old_wrote: 1;			/* old version wrote to partion */
123  u8 old_wrote_1: 1;			/* old version wrote to partion (?) */
124#else
125  u8 old_wrote_1: 1;			/* old version wrote to partion (?) */
126  u8 old_wrote: 1;			/* old version wrote to partion */
127  u8 fast: 1;				/* partition was fast formatted */
128  u8 bad_bitmap: 1;			/* bad bitmap */
129  u8 bad_sector: 1;			/* bad sector, corrupted disk (???) */
130  u8 hotfixes_used: 1;			/* hotfixes used */
131  u8 sparedir_used: 1;			/* spare dirblks used */
132  u8 dirty: 1;				/* 0 clean, 1 "improperly stopped" */
133#endif
134
135#ifdef __LITTLE_ENDIAN
136  u8 install_dasd_limits: 1;		/* HPFS386 flags */
137  u8 resynch_dasd_limits: 1;
138  u8 dasd_limits_operational: 1;
139  u8 multimedia_active: 1;
140  u8 dce_acls_active: 1;
141  u8 dasd_limits_dirty: 1;
142  u8 flag67: 2;
143#else
144  u8 flag67: 2;
145  u8 dasd_limits_dirty: 1;
146  u8 dce_acls_active: 1;
147  u8 multimedia_active: 1;
148  u8 dasd_limits_operational: 1;
149  u8 resynch_dasd_limits: 1;
150  u8 install_dasd_limits: 1;		/* HPFS386 flags */
151#endif
152
153  u8 mm_contlgulty;
154  u8 unused;
155
156  __le32 hotfix_map;			/* info about remapped bad sectors */
157  __le32 n_spares_used;			/* number of hotfixes */
158  __le32 n_spares;			/* number of spares in hotfix map */
159  __le32 n_dnode_spares_free;		/* spare dnodes unused */
160  __le32 n_dnode_spares;		/* length of spare_dnodes[] list,
161					   follows in this block*/
162  __le32 code_page_dir;			/* code page directory block */
163  __le32 n_code_pages;			/* number of code pages */
164  __le32 super_crc;			/* on HPFS386 and LAN Server this is
165  					   checksum of superblock, on normal
166					   OS/2 unused */
167  __le32 spare_crc;			/* on HPFS386 checksum of spareblock */
168  __le32 zero1[15];			/* unused */
169  __le32 spare_dnodes[100];		/* emergency free dnode list */
170  __le32 zero2[1];			/* room for more? */
171};
172
173/* The bad block list is 4 sectors long.  The first word must be zero,
174   the remaining words give n_badblocks bad block numbers.
175   I bet you can see it coming... */
176
177#define BAD_MAGIC 0
178
179/* The hotfix map is 4 sectors long.  It looks like
180
181       secno from[n_spares];
182       secno to[n_spares];
183
184   The to[] list is initialized to point to n_spares preallocated empty
185   sectors.  The from[] list contains the sector numbers of bad blocks
186   which have been remapped to corresponding sectors in the to[] list.
187   n_spares_used gives the length of the from[] list. */
188
189
190/* Sectors 18 and 19 are preallocated and unused.
191   Maybe they're spares for 16 and 17, but simple substitution fails. */
192
193
194/* The code page info pointed to by the spare block consists of an index
195   block and blocks containing uppercasing tables.  I don't know what
196   these are for (CHKDSK, maybe?) -- OS/2 does not seem to use them
197   itself.  Linux doesn't use them either. */
198
199/* block pointed to by spareblock->code_page_dir */
200
201#define CP_DIR_MAGIC 0x494521f7
202
203struct code_page_directory
204{
205  __le32 magic;				/* 4945 21f7 */
206  __le32 n_code_pages;			/* number of pointers following */
207  __le32 zero1[2];
208  struct {
209    __le16 ix;				/* index */
210    __le16 code_page_number;		/* code page number */
211    __le32 bounds;			/* matches corresponding word
212					   in data block */
213    __le32 code_page_data;		/* sector number of a code_page_data
214					   containing c.p. array */
215    __le16 index;			/* index in c.p. array in that sector*/
216    __le16 unknown;			/* some unknown value; usually 0;
217    					   2 in Japanese version */
218  } array[31];				/* unknown length */
219};
220
221/* blocks pointed to by code_page_directory */
222
223#define CP_DATA_MAGIC 0x894521f7
224
225struct code_page_data
226{
227  __le32 magic;				/* 8945 21f7 */
228  __le32 n_used;			/* # elements used in c_p_data[] */
229  __le32 bounds[3];			/* looks a bit like
230					     (beg1,end1), (beg2,end2)
231					   one byte each */
232  __le16 offs[3];			/* offsets from start of sector
233					   to start of c_p_data[ix] */
234  struct {
235    __le16 ix;				/* index */
236    __le16 code_page_number;		/* code page number */
237    __le16 unknown;			/* the same as in cp directory */
238    u8 map[128];			/* upcase table for chars 80..ff */
239    __le16 zero2;
240  } code_page[3];
241  u8 incognita[78];
242};
243
244
245/* Free space bitmaps are 4 sectors long, which is 16384 bits.
246   16384 sectors is 8 meg, and each 8 meg band has a 4-sector bitmap.
247   Bit order in the maps is little-endian.  0 means taken, 1 means free.
248
249   Bit map sectors are marked allocated in the bit maps, and so are sectors
250   off the end of the partition.
251
252   Band 0 is sectors 0-3fff, its map is in sectors 18-1b.
253   Band 1 is 4000-7fff, its map is in 7ffc-7fff.
254   Band 2 is 8000-ffff, its map is in 8000-8003.
255   The remaining bands have maps in their first (even) or last (odd) 4 sectors
256     -- if the last, partial, band is odd its map is in its last 4 sectors.
257
258   The bitmap locations are given in a table pointed to by the super block.
259   No doubt they aren't constrained to be at 18, 7ffc, 8000, ...; that is
260   just where they usually are.
261
262   The "directory band" is a bunch of sectors preallocated for dnodes.
263   It has a 4-sector free space bitmap of its own.  Each bit in the map
264   corresponds to one 4-sector dnode, bit 0 of the map corresponding to
265   the first 4 sectors of the directory band.  The entire band is marked
266   allocated in the main bitmap.   The super block gives the locations
267   of the directory band and its bitmap.  ("band" doesn't mean it is
268   8 meg long; it isn't.)  */
269
270
271/* dnode: directory.  4 sectors long */
272
273/* A directory is a tree of dnodes.  The fnode for a directory
274   contains one pointer, to the root dnode of the tree.  The fnode
275   never moves, the dnodes do the B-tree thing, splitting and merging
276   as files are added and removed.  */
277
278#define DNODE_MAGIC   0x77e40aae
279
280struct dnode {
281  __le32 magic;				/* 77e4 0aae */
282  __le32 first_free;			/* offset from start of dnode to
283					   first free dir entry */
284#ifdef __LITTLE_ENDIAN
285  u8 root_dnode: 1;			/* Is it root dnode? */
286  u8 increment_me: 7;			/* some kind of activity counter? */
287					/* Neither HPFS.IFS nor CHKDSK cares
288					   if you change this word */
289#else
290  u8 increment_me: 7;			/* some kind of activity counter? */
291					/* Neither HPFS.IFS nor CHKDSK cares
292					   if you change this word */
293  u8 root_dnode: 1;			/* Is it root dnode? */
294#endif
295  u8 increment_me2[3];
296  __le32 up;				/* (root dnode) directory's fnode
297					   (nonroot) parent dnode */
298  __le32 self;			/* pointer to this dnode */
299  u8 dirent[2028];			/* one or more dirents */
300};
301
302struct hpfs_dirent {
303  __le16 length;			/* offset to next dirent */
304
305#ifdef __LITTLE_ENDIAN
306  u8 first: 1;				/* set on phony ^A^A (".") entry */
307  u8 has_acl: 1;
308  u8 down: 1;				/* down pointer present (after name) */
309  u8 last: 1;				/* set on phony \377 entry */
310  u8 has_ea: 1;				/* entry has EA */
311  u8 has_xtd_perm: 1;			/* has extended perm list (???) */
312  u8 has_explicit_acl: 1;
313  u8 has_needea: 1;			/* ?? some EA has NEEDEA set
314					   I have no idea why this is
315					   interesting in a dir entry */
316#else
317  u8 has_needea: 1;			/* ?? some EA has NEEDEA set
318					   I have no idea why this is
319					   interesting in a dir entry */
320  u8 has_explicit_acl: 1;
321  u8 has_xtd_perm: 1;			/* has extended perm list (???) */
322  u8 has_ea: 1;				/* entry has EA */
323  u8 last: 1;				/* set on phony \377 entry */
324  u8 down: 1;				/* down pointer present (after name) */
325  u8 has_acl: 1;
326  u8 first: 1;				/* set on phony ^A^A (".") entry */
327#endif
328
329#ifdef __LITTLE_ENDIAN
330  u8 read_only: 1;			/* dos attrib */
331  u8 hidden: 1;				/* dos attrib */
332  u8 system: 1;				/* dos attrib */
333  u8 flag11: 1;				/* would be volume label dos attrib */
334  u8 directory: 1;			/* dos attrib */
335  u8 archive: 1;			/* dos attrib */
336  u8 not_8x3: 1;			/* name is not 8.3 */
337  u8 flag15: 1;
338#else
339  u8 flag15: 1;
340  u8 not_8x3: 1;			/* name is not 8.3 */
341  u8 archive: 1;			/* dos attrib */
342  u8 directory: 1;			/* dos attrib */
343  u8 flag11: 1;				/* would be volume label dos attrib */
344  u8 system: 1;				/* dos attrib */
345  u8 hidden: 1;				/* dos attrib */
346  u8 read_only: 1;			/* dos attrib */
347#endif
348
349  __le32 fnode;				/* fnode giving allocation info */
350  __le32 write_date;			/* mtime */
351  __le32 file_size;			/* file length, bytes */
352  __le32 read_date;			/* atime */
353  __le32 creation_date;			/* ctime */
354  __le32 ea_size;			/* total EA length, bytes */
355  u8 no_of_acls;			/* number of ACL's (low 3 bits) */
356  u8 ix;				/* code page index (of filename), see
357					   struct code_page_data */
358  u8 namelen, name[1];			/* file name */
359  /* dnode_secno down;	  btree down pointer, if present,
360     			  follows name on next word boundary, or maybe it
361			  precedes next dirent, which is on a word boundary. */
362};
363
364
365/* B+ tree: allocation info in fnodes and anodes */
366
367/* dnodes point to fnodes which are responsible for listing the sectors
368   assigned to the file.  This is done with trees of (length,address)
369   pairs.  (Actually triples, of (length, file-address, disk-address)
370   which can represent holes.  Find out if HPFS does that.)
371   At any rate, fnodes contain a small tree; if subtrees are needed
372   they occupy essentially a full block in anodes.  A leaf-level tree node
373   has 3-word entries giving sector runs, a non-leaf node has 2-word
374   entries giving subtree pointers.  A flag in the header says which. */
375
376struct bplus_leaf_node
377{
378  __le32 file_secno;			/* first file sector in extent */
379  __le32 length;			/* length, sectors */
380  __le32 disk_secno;			/* first corresponding disk sector */
381};
382
383struct bplus_internal_node
384{
385  __le32 file_secno;			/* subtree maps sectors < this  */
386  __le32 down;				/* pointer to subtree */
387};
388
389enum {
390	BP_hbff = 1,
391	BP_fnode_parent = 0x20,
392	BP_binary_search = 0x40,
393	BP_internal = 0x80
394};
395struct bplus_header
396{
397  u8 flags;				/* bit 0 - high bit of first free entry offset
398					   bit 5 - we're pointed to by an fnode,
399					   the data btree or some ea or the
400					   main ea bootage pointer ea_secno
401					   bit 6 - suggest binary search (unused)
402					   bit 7 - 1 -> (internal) tree of anodes
403						   0 -> (leaf) list of extents */
404  u8 fill[3];
405  u8 n_free_nodes;			/* free nodes in following array */
406  u8 n_used_nodes;			/* used nodes in following array */
407  __le16 first_free;			/* offset from start of header to
408					   first free node in array */
409  union {
410    struct bplus_internal_node internal[0]; /* (internal) 2-word entries giving
411					       subtree pointers */
412    struct bplus_leaf_node external[0];	    /* (external) 3-word entries giving
413					       sector runs */
414  } u;
415};
416
417static inline bool bp_internal(struct bplus_header *bp)
418{
419	return bp->flags & BP_internal;
420}
421
422static inline bool bp_fnode_parent(struct bplus_header *bp)
423{
424	return bp->flags & BP_fnode_parent;
425}
426
427/* fnode: root of allocation b+ tree, and EA's */
428
429/* Every file and every directory has one fnode, pointed to by the directory
430   entry and pointing to the file's sectors or directory's root dnode.  EA's
431   are also stored here, and there are said to be ACL's somewhere here too. */
432
433#define FNODE_MAGIC 0xf7e40aae
434
435enum {FNODE_anode = cpu_to_le16(2), FNODE_dir = cpu_to_le16(256)};
436struct fnode
437{
438  __le32 magic;				/* f7e4 0aae */
439  __le32 zero1[2];			/* read history */
440  u8 len, name[15];			/* true length, truncated name */
441  __le32 up;				/* pointer to file's directory fnode */
442  __le32 acl_size_l;
443  __le32 acl_secno;
444  __le16 acl_size_s;
445  u8 acl_anode;
446  u8 zero2;				/* history bit count */
447  __le32 ea_size_l;			/* length of disk-resident ea's */
448  __le32 ea_secno;			/* first sector of disk-resident ea's*/
449  __le16 ea_size_s;			/* length of fnode-resident ea's */
450
451  __le16 flags;				/* bit 1 set -> ea_secno is an anode */
452					/* bit 8 set -> directory.  first & only extent
453					   points to dnode. */
454  struct bplus_header btree;		/* b+ tree, 8 extents or 12 subtrees */
455  union {
456    struct bplus_leaf_node external[8];
457    struct bplus_internal_node internal[12];
458  } u;
459
460  __le32 file_size;			/* file length, bytes */
461  __le32 n_needea;			/* number of EA's with NEEDEA set */
462  u8 user_id[16];			/* unused */
463  __le16 ea_offs;			/* offset from start of fnode
464					   to first fnode-resident ea */
465  u8 dasd_limit_treshhold;
466  u8 dasd_limit_delta;
467  __le32 dasd_limit;
468  __le32 dasd_usage;
469  u8 ea[316];				/* zero or more EA's, packed together
470					   with no alignment padding.
471					   (Do not use this name, get here
472					   via fnode + ea_offs. I think.) */
473};
474
475static inline bool fnode_in_anode(struct fnode *p)
476{
477	return (p->flags & FNODE_anode) != 0;
478}
479
480static inline bool fnode_is_dir(struct fnode *p)
481{
482	return (p->flags & FNODE_dir) != 0;
483}
484
485
486/* anode: 99.44% pure allocation tree */
487
488#define ANODE_MAGIC 0x37e40aae
489
490struct anode
491{
492  __le32 magic;				/* 37e4 0aae */
493  __le32 self;				/* pointer to this anode */
494  __le32 up;				/* parent anode or fnode */
495
496  struct bplus_header btree;		/* b+tree, 40 extents or 60 subtrees */
497  union {
498    struct bplus_leaf_node external[40];
499    struct bplus_internal_node internal[60];
500  } u;
501
502  __le32 fill[3];			/* unused */
503};
504
505
506/* extended attributes.
507
508   A file's EA info is stored as a list of (name,value) pairs.  It is
509   usually in the fnode, but (if it's large) it is moved to a single
510   sector run outside the fnode, or to multiple runs with an anode tree
511   that points to them.
512
513   The value of a single EA is stored along with the name, or (if large)
514   it is moved to a single sector run, or multiple runs pointed to by an
515   anode tree, pointed to by the value field of the (name,value) pair.
516
517   Flags in the EA tell whether the value is immediate, in a single sector
518   run, or in multiple runs.  Flags in the fnode tell whether the EA list
519   is immediate, in a single run, or in multiple runs. */
520
521enum {EA_indirect = 1, EA_anode = 2, EA_needea = 128 };
522struct extended_attribute
523{
524  u8 flags;				/* bit 0 set -> value gives sector number
525					   where real value starts */
526					/* bit 1 set -> sector is an anode
527					   that points to fragmented value */
528					/* bit 7 set -> required ea */
529  u8 namelen;				/* length of name, bytes */
530  u8 valuelen_lo;			/* length of value, bytes */
531  u8 valuelen_hi;			/* length of value, bytes */
532  u8 name[];
533  /*
534    u8 name[namelen];			ascii attrib name
535    u8 nul;				terminating '\0', not counted
536    u8 value[valuelen];			value, arbitrary
537      if this.flags & 1, valuelen is 8 and the value is
538        u32 length;			real length of value, bytes
539        secno secno;			sector address where it starts
540      if this.anode, the above sector number is the root of an anode tree
541        which points to the value.
542  */
543};
544
545static inline bool ea_indirect(struct extended_attribute *ea)
546{
547	return ea->flags & EA_indirect;
548}
549
550static inline bool ea_in_anode(struct extended_attribute *ea)
551{
552	return ea->flags & EA_anode;
553}
554
555/*
556   Local Variables:
557   comment-column: 40
558   End:
559*/
560