1/* 2 * linux/fs/file_table.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) 6 */ 7 8#include <linux/string.h> 9#include <linux/slab.h> 10#include <linux/file.h> 11#include <linux/fdtable.h> 12#include <linux/init.h> 13#include <linux/module.h> 14#include <linux/fs.h> 15#include <linux/security.h> 16#include <linux/eventpoll.h> 17#include <linux/rcupdate.h> 18#include <linux/mount.h> 19#include <linux/capability.h> 20#include <linux/cdev.h> 21#include <linux/fsnotify.h> 22#include <linux/sysctl.h> 23#include <linux/percpu_counter.h> 24#include <linux/percpu.h> 25#include <linux/hardirq.h> 26#include <linux/task_work.h> 27#include <linux/ima.h> 28#include <linux/swap.h> 29 30#include <linux/atomic.h> 31 32#include "internal.h" 33 34/* sysctl tunables... */ 35struct files_stat_struct files_stat = { 36 .max_files = NR_FILE 37}; 38 39/* SLAB cache for file structures */ 40static struct kmem_cache *filp_cachep __read_mostly; 41 42static struct percpu_counter nr_files __cacheline_aligned_in_smp; 43 44static void file_free_rcu(struct rcu_head *head) 45{ 46 struct file *f = container_of(head, struct file, f_u.fu_rcuhead); 47 48 put_cred(f->f_cred); 49 kmem_cache_free(filp_cachep, f); 50} 51 52static inline void file_free(struct file *f) 53{ 54 percpu_counter_dec(&nr_files); 55 call_rcu(&f->f_u.fu_rcuhead, file_free_rcu); 56} 57 58/* 59 * Return the total number of open files in the system 60 */ 61static long get_nr_files(void) 62{ 63 return percpu_counter_read_positive(&nr_files); 64} 65 66/* 67 * Return the maximum number of open files in the system 68 */ 69unsigned long get_max_files(void) 70{ 71 return files_stat.max_files; 72} 73EXPORT_SYMBOL_GPL(get_max_files); 74 75/* 76 * Handle nr_files sysctl 77 */ 78#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 79int proc_nr_files(struct ctl_table *table, int write, 80 void __user *buffer, size_t *lenp, loff_t *ppos) 81{ 82 files_stat.nr_files = get_nr_files(); 83 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 84} 85#else 86int proc_nr_files(struct ctl_table *table, int write, 87 void __user *buffer, size_t *lenp, loff_t *ppos) 88{ 89 return -ENOSYS; 90} 91#endif 92 93/* Find an unused file structure and return a pointer to it. 94 * Returns an error pointer if some error happend e.g. we over file 95 * structures limit, run out of memory or operation is not permitted. 96 * 97 * Be very careful using this. You are responsible for 98 * getting write access to any mount that you might assign 99 * to this filp, if it is opened for write. If this is not 100 * done, you will imbalance int the mount's writer count 101 * and a warning at __fput() time. 102 */ 103struct file *get_empty_filp(void) 104{ 105 const struct cred *cred = current_cred(); 106 static long old_max; 107 struct file *f; 108 int error; 109 110 /* 111 * Privileged users can go above max_files 112 */ 113 if (get_nr_files() >= files_stat.max_files && !capable(CAP_SYS_ADMIN)) { 114 /* 115 * percpu_counters are inaccurate. Do an expensive check before 116 * we go and fail. 117 */ 118 if (percpu_counter_sum_positive(&nr_files) >= files_stat.max_files) 119 goto over; 120 } 121 122 f = kmem_cache_zalloc(filp_cachep, GFP_KERNEL); 123 if (unlikely(!f)) 124 return ERR_PTR(-ENOMEM); 125 126 percpu_counter_inc(&nr_files); 127 f->f_cred = get_cred(cred); 128 error = security_file_alloc(f); 129 if (unlikely(error)) { 130 file_free(f); 131 return ERR_PTR(error); 132 } 133 134 atomic_long_set(&f->f_count, 1); 135 rwlock_init(&f->f_owner.lock); 136 spin_lock_init(&f->f_lock); 137 mutex_init(&f->f_pos_lock); 138 eventpoll_init_file(f); 139 /* f->f_version: 0 */ 140 return f; 141 142over: 143 /* Ran out of filps - report that */ 144 if (get_nr_files() > old_max) { 145 pr_info("VFS: file-max limit %lu reached\n", get_max_files()); 146 old_max = get_nr_files(); 147 } 148 return ERR_PTR(-ENFILE); 149} 150 151/** 152 * alloc_file - allocate and initialize a 'struct file' 153 * 154 * @path: the (dentry, vfsmount) pair for the new file 155 * @mode: the mode with which the new file will be opened 156 * @fop: the 'struct file_operations' for the new file 157 */ 158struct file *alloc_file(struct path *path, fmode_t mode, 159 const struct file_operations *fop) 160{ 161 struct file *file; 162 163 file = get_empty_filp(); 164 if (IS_ERR(file)) 165 return file; 166 167 file->f_path = *path; 168 file->f_inode = path->dentry->d_inode; 169 file->f_mapping = path->dentry->d_inode->i_mapping; 170 if ((mode & FMODE_READ) && 171 likely(fop->read || fop->read_iter)) 172 mode |= FMODE_CAN_READ; 173 if ((mode & FMODE_WRITE) && 174 likely(fop->write || fop->write_iter)) 175 mode |= FMODE_CAN_WRITE; 176 file->f_mode = mode; 177 file->f_op = fop; 178 if ((mode & (FMODE_READ | FMODE_WRITE)) == FMODE_READ) 179 i_readcount_inc(path->dentry->d_inode); 180 return file; 181} 182EXPORT_SYMBOL(alloc_file); 183 184/* the real guts of fput() - releasing the last reference to file 185 */ 186static void __fput(struct file *file) 187{ 188 struct dentry *dentry = file->f_path.dentry; 189 struct vfsmount *mnt = file->f_path.mnt; 190 struct inode *inode = file->f_inode; 191 192 might_sleep(); 193 194 fsnotify_close(file); 195 /* 196 * The function eventpoll_release() should be the first called 197 * in the file cleanup chain. 198 */ 199 eventpoll_release(file); 200 locks_remove_file(file); 201 202 if (unlikely(file->f_flags & FASYNC)) { 203 if (file->f_op->fasync) 204 file->f_op->fasync(-1, file, 0); 205 } 206 ima_file_free(file); 207 if (file->f_op->release) 208 file->f_op->release(inode, file); 209 security_file_free(file); 210 if (unlikely(S_ISCHR(inode->i_mode) && inode->i_cdev != NULL && 211 !(file->f_mode & FMODE_PATH))) { 212 cdev_put(inode->i_cdev); 213 } 214 fops_put(file->f_op); 215 put_pid(file->f_owner.pid); 216 if ((file->f_mode & (FMODE_READ | FMODE_WRITE)) == FMODE_READ) 217 i_readcount_dec(inode); 218 if (file->f_mode & FMODE_WRITER) { 219 put_write_access(inode); 220 __mnt_drop_write(mnt); 221 } 222 file->f_path.dentry = NULL; 223 file->f_path.mnt = NULL; 224 file->f_inode = NULL; 225 file_free(file); 226 dput(dentry); 227 mntput(mnt); 228} 229 230static LLIST_HEAD(delayed_fput_list); 231static void delayed_fput(struct work_struct *unused) 232{ 233 struct llist_node *node = llist_del_all(&delayed_fput_list); 234 struct llist_node *next; 235 236 for (; node; node = next) { 237 next = llist_next(node); 238 __fput(llist_entry(node, struct file, f_u.fu_llist)); 239 } 240} 241 242static void ____fput(struct callback_head *work) 243{ 244 __fput(container_of(work, struct file, f_u.fu_rcuhead)); 245} 246 247/* 248 * If kernel thread really needs to have the final fput() it has done 249 * to complete, call this. The only user right now is the boot - we 250 * *do* need to make sure our writes to binaries on initramfs has 251 * not left us with opened struct file waiting for __fput() - execve() 252 * won't work without that. Please, don't add more callers without 253 * very good reasons; in particular, never call that with locks 254 * held and never call that from a thread that might need to do 255 * some work on any kind of umount. 256 */ 257void flush_delayed_fput(void) 258{ 259 delayed_fput(NULL); 260} 261 262static DECLARE_DELAYED_WORK(delayed_fput_work, delayed_fput); 263 264void fput(struct file *file) 265{ 266 if (atomic_long_dec_and_test(&file->f_count)) { 267 struct task_struct *task = current; 268 269 if (likely(!in_interrupt() && !(task->flags & PF_KTHREAD))) { 270 init_task_work(&file->f_u.fu_rcuhead, ____fput); 271 if (!task_work_add(task, &file->f_u.fu_rcuhead, true)) 272 return; 273 /* 274 * After this task has run exit_task_work(), 275 * task_work_add() will fail. Fall through to delayed 276 * fput to avoid leaking *file. 277 */ 278 } 279 280 if (llist_add(&file->f_u.fu_llist, &delayed_fput_list)) 281 schedule_delayed_work(&delayed_fput_work, 1); 282 } 283} 284 285/* 286 * synchronous analog of fput(); for kernel threads that might be needed 287 * in some umount() (and thus can't use flush_delayed_fput() without 288 * risking deadlocks), need to wait for completion of __fput() and know 289 * for this specific struct file it won't involve anything that would 290 * need them. Use only if you really need it - at the very least, 291 * don't blindly convert fput() by kernel thread to that. 292 */ 293void __fput_sync(struct file *file) 294{ 295 if (atomic_long_dec_and_test(&file->f_count)) { 296 struct task_struct *task = current; 297 BUG_ON(!(task->flags & PF_KTHREAD)); 298 __fput(file); 299 } 300} 301 302EXPORT_SYMBOL(fput); 303 304void put_filp(struct file *file) 305{ 306 if (atomic_long_dec_and_test(&file->f_count)) { 307 security_file_free(file); 308 file_free(file); 309 } 310} 311 312void __init files_init(void) 313{ 314 filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0, 315 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 316 percpu_counter_init(&nr_files, 0, GFP_KERNEL); 317} 318 319/* 320 * One file with associated inode and dcache is very roughly 1K. Per default 321 * do not use more than 10% of our memory for files. 322 */ 323void __init files_maxfiles_init(void) 324{ 325 unsigned long n; 326 unsigned long memreserve = (totalram_pages - nr_free_pages()) * 3/2; 327 328 memreserve = min(memreserve, totalram_pages - 1); 329 n = ((totalram_pages - memreserve) * (PAGE_SIZE / 1024)) / 10; 330 331 files_stat.max_files = max_t(unsigned long, n, NR_FILE); 332} 333