1/*
2 *  fs/eventpoll.c (Efficient event retrieval implementation)
3 *  Copyright (C) 2001,...,2009	 Davide Libenzi
4 *
5 *  This program is free software; you can redistribute it and/or modify
6 *  it under the terms of the GNU General Public License as published by
7 *  the Free Software Foundation; either version 2 of the License, or
8 *  (at your option) any later version.
9 *
10 *  Davide Libenzi <davidel@xmailserver.org>
11 *
12 */
13
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/sched.h>
17#include <linux/fs.h>
18#include <linux/file.h>
19#include <linux/signal.h>
20#include <linux/errno.h>
21#include <linux/mm.h>
22#include <linux/slab.h>
23#include <linux/poll.h>
24#include <linux/string.h>
25#include <linux/list.h>
26#include <linux/hash.h>
27#include <linux/spinlock.h>
28#include <linux/syscalls.h>
29#include <linux/rbtree.h>
30#include <linux/wait.h>
31#include <linux/eventpoll.h>
32#include <linux/mount.h>
33#include <linux/bitops.h>
34#include <linux/mutex.h>
35#include <linux/anon_inodes.h>
36#include <linux/device.h>
37#include <asm/uaccess.h>
38#include <asm/io.h>
39#include <asm/mman.h>
40#include <linux/atomic.h>
41#include <linux/proc_fs.h>
42#include <linux/seq_file.h>
43#include <linux/compat.h>
44#include <linux/rculist.h>
45
46/*
47 * LOCKING:
48 * There are three level of locking required by epoll :
49 *
50 * 1) epmutex (mutex)
51 * 2) ep->mtx (mutex)
52 * 3) ep->lock (spinlock)
53 *
54 * The acquire order is the one listed above, from 1 to 3.
55 * We need a spinlock (ep->lock) because we manipulate objects
56 * from inside the poll callback, that might be triggered from
57 * a wake_up() that in turn might be called from IRQ context.
58 * So we can't sleep inside the poll callback and hence we need
59 * a spinlock. During the event transfer loop (from kernel to
60 * user space) we could end up sleeping due a copy_to_user(), so
61 * we need a lock that will allow us to sleep. This lock is a
62 * mutex (ep->mtx). It is acquired during the event transfer loop,
63 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
64 * Then we also need a global mutex to serialize eventpoll_release_file()
65 * and ep_free().
66 * This mutex is acquired by ep_free() during the epoll file
67 * cleanup path and it is also acquired by eventpoll_release_file()
68 * if a file has been pushed inside an epoll set and it is then
69 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
70 * It is also acquired when inserting an epoll fd onto another epoll
71 * fd. We do this so that we walk the epoll tree and ensure that this
72 * insertion does not create a cycle of epoll file descriptors, which
73 * could lead to deadlock. We need a global mutex to prevent two
74 * simultaneous inserts (A into B and B into A) from racing and
75 * constructing a cycle without either insert observing that it is
76 * going to.
77 * It is necessary to acquire multiple "ep->mtx"es at once in the
78 * case when one epoll fd is added to another. In this case, we
79 * always acquire the locks in the order of nesting (i.e. after
80 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
81 * before e2->mtx). Since we disallow cycles of epoll file
82 * descriptors, this ensures that the mutexes are well-ordered. In
83 * order to communicate this nesting to lockdep, when walking a tree
84 * of epoll file descriptors, we use the current recursion depth as
85 * the lockdep subkey.
86 * It is possible to drop the "ep->mtx" and to use the global
87 * mutex "epmutex" (together with "ep->lock") to have it working,
88 * but having "ep->mtx" will make the interface more scalable.
89 * Events that require holding "epmutex" are very rare, while for
90 * normal operations the epoll private "ep->mtx" will guarantee
91 * a better scalability.
92 */
93
94/* Epoll private bits inside the event mask */
95#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET)
96
97/* Maximum number of nesting allowed inside epoll sets */
98#define EP_MAX_NESTS 4
99
100#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
101
102#define EP_UNACTIVE_PTR ((void *) -1L)
103
104#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
105
106struct epoll_filefd {
107	struct file *file;
108	int fd;
109} __packed;
110
111/*
112 * Structure used to track possible nested calls, for too deep recursions
113 * and loop cycles.
114 */
115struct nested_call_node {
116	struct list_head llink;
117	void *cookie;
118	void *ctx;
119};
120
121/*
122 * This structure is used as collector for nested calls, to check for
123 * maximum recursion dept and loop cycles.
124 */
125struct nested_calls {
126	struct list_head tasks_call_list;
127	spinlock_t lock;
128};
129
130/*
131 * Each file descriptor added to the eventpoll interface will
132 * have an entry of this type linked to the "rbr" RB tree.
133 * Avoid increasing the size of this struct, there can be many thousands
134 * of these on a server and we do not want this to take another cache line.
135 */
136struct epitem {
137	union {
138		/* RB tree node links this structure to the eventpoll RB tree */
139		struct rb_node rbn;
140		/* Used to free the struct epitem */
141		struct rcu_head rcu;
142	};
143
144	/* List header used to link this structure to the eventpoll ready list */
145	struct list_head rdllink;
146
147	/*
148	 * Works together "struct eventpoll"->ovflist in keeping the
149	 * single linked chain of items.
150	 */
151	struct epitem *next;
152
153	/* The file descriptor information this item refers to */
154	struct epoll_filefd ffd;
155
156	/* Number of active wait queue attached to poll operations */
157	int nwait;
158
159	/* List containing poll wait queues */
160	struct list_head pwqlist;
161
162	/* The "container" of this item */
163	struct eventpoll *ep;
164
165	/* List header used to link this item to the "struct file" items list */
166	struct list_head fllink;
167
168	/* wakeup_source used when EPOLLWAKEUP is set */
169	struct wakeup_source __rcu *ws;
170
171	/* The structure that describe the interested events and the source fd */
172	struct epoll_event event;
173};
174
175/*
176 * This structure is stored inside the "private_data" member of the file
177 * structure and represents the main data structure for the eventpoll
178 * interface.
179 */
180struct eventpoll {
181	/* Protect the access to this structure */
182	spinlock_t lock;
183
184	/*
185	 * This mutex is used to ensure that files are not removed
186	 * while epoll is using them. This is held during the event
187	 * collection loop, the file cleanup path, the epoll file exit
188	 * code and the ctl operations.
189	 */
190	struct mutex mtx;
191
192	/* Wait queue used by sys_epoll_wait() */
193	wait_queue_head_t wq;
194
195	/* Wait queue used by file->poll() */
196	wait_queue_head_t poll_wait;
197
198	/* List of ready file descriptors */
199	struct list_head rdllist;
200
201	/* RB tree root used to store monitored fd structs */
202	struct rb_root rbr;
203
204	/*
205	 * This is a single linked list that chains all the "struct epitem" that
206	 * happened while transferring ready events to userspace w/out
207	 * holding ->lock.
208	 */
209	struct epitem *ovflist;
210
211	/* wakeup_source used when ep_scan_ready_list is running */
212	struct wakeup_source *ws;
213
214	/* The user that created the eventpoll descriptor */
215	struct user_struct *user;
216
217	struct file *file;
218
219	/* used to optimize loop detection check */
220	int visited;
221	struct list_head visited_list_link;
222};
223
224/* Wait structure used by the poll hooks */
225struct eppoll_entry {
226	/* List header used to link this structure to the "struct epitem" */
227	struct list_head llink;
228
229	/* The "base" pointer is set to the container "struct epitem" */
230	struct epitem *base;
231
232	/*
233	 * Wait queue item that will be linked to the target file wait
234	 * queue head.
235	 */
236	wait_queue_t wait;
237
238	/* The wait queue head that linked the "wait" wait queue item */
239	wait_queue_head_t *whead;
240};
241
242/* Wrapper struct used by poll queueing */
243struct ep_pqueue {
244	poll_table pt;
245	struct epitem *epi;
246};
247
248/* Used by the ep_send_events() function as callback private data */
249struct ep_send_events_data {
250	int maxevents;
251	struct epoll_event __user *events;
252};
253
254/*
255 * Configuration options available inside /proc/sys/fs/epoll/
256 */
257/* Maximum number of epoll watched descriptors, per user */
258static long max_user_watches __read_mostly;
259
260/*
261 * This mutex is used to serialize ep_free() and eventpoll_release_file().
262 */
263static DEFINE_MUTEX(epmutex);
264
265/* Used to check for epoll file descriptor inclusion loops */
266static struct nested_calls poll_loop_ncalls;
267
268/* Used for safe wake up implementation */
269static struct nested_calls poll_safewake_ncalls;
270
271/* Used to call file's f_op->poll() under the nested calls boundaries */
272static struct nested_calls poll_readywalk_ncalls;
273
274/* Slab cache used to allocate "struct epitem" */
275static struct kmem_cache *epi_cache __read_mostly;
276
277/* Slab cache used to allocate "struct eppoll_entry" */
278static struct kmem_cache *pwq_cache __read_mostly;
279
280/* Visited nodes during ep_loop_check(), so we can unset them when we finish */
281static LIST_HEAD(visited_list);
282
283/*
284 * List of files with newly added links, where we may need to limit the number
285 * of emanating paths. Protected by the epmutex.
286 */
287static LIST_HEAD(tfile_check_list);
288
289#ifdef CONFIG_SYSCTL
290
291#include <linux/sysctl.h>
292
293static long zero;
294static long long_max = LONG_MAX;
295
296struct ctl_table epoll_table[] = {
297	{
298		.procname	= "max_user_watches",
299		.data		= &max_user_watches,
300		.maxlen		= sizeof(max_user_watches),
301		.mode		= 0644,
302		.proc_handler	= proc_doulongvec_minmax,
303		.extra1		= &zero,
304		.extra2		= &long_max,
305	},
306	{ }
307};
308#endif /* CONFIG_SYSCTL */
309
310static const struct file_operations eventpoll_fops;
311
312static inline int is_file_epoll(struct file *f)
313{
314	return f->f_op == &eventpoll_fops;
315}
316
317/* Setup the structure that is used as key for the RB tree */
318static inline void ep_set_ffd(struct epoll_filefd *ffd,
319			      struct file *file, int fd)
320{
321	ffd->file = file;
322	ffd->fd = fd;
323}
324
325/* Compare RB tree keys */
326static inline int ep_cmp_ffd(struct epoll_filefd *p1,
327			     struct epoll_filefd *p2)
328{
329	return (p1->file > p2->file ? +1:
330	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
331}
332
333/* Tells us if the item is currently linked */
334static inline int ep_is_linked(struct list_head *p)
335{
336	return !list_empty(p);
337}
338
339static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
340{
341	return container_of(p, struct eppoll_entry, wait);
342}
343
344/* Get the "struct epitem" from a wait queue pointer */
345static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
346{
347	return container_of(p, struct eppoll_entry, wait)->base;
348}
349
350/* Get the "struct epitem" from an epoll queue wrapper */
351static inline struct epitem *ep_item_from_epqueue(poll_table *p)
352{
353	return container_of(p, struct ep_pqueue, pt)->epi;
354}
355
356/* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
357static inline int ep_op_has_event(int op)
358{
359	return op != EPOLL_CTL_DEL;
360}
361
362/* Initialize the poll safe wake up structure */
363static void ep_nested_calls_init(struct nested_calls *ncalls)
364{
365	INIT_LIST_HEAD(&ncalls->tasks_call_list);
366	spin_lock_init(&ncalls->lock);
367}
368
369/**
370 * ep_events_available - Checks if ready events might be available.
371 *
372 * @ep: Pointer to the eventpoll context.
373 *
374 * Returns: Returns a value different than zero if ready events are available,
375 *          or zero otherwise.
376 */
377static inline int ep_events_available(struct eventpoll *ep)
378{
379	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
380}
381
382/**
383 * ep_call_nested - Perform a bound (possibly) nested call, by checking
384 *                  that the recursion limit is not exceeded, and that
385 *                  the same nested call (by the meaning of same cookie) is
386 *                  no re-entered.
387 *
388 * @ncalls: Pointer to the nested_calls structure to be used for this call.
389 * @max_nests: Maximum number of allowed nesting calls.
390 * @nproc: Nested call core function pointer.
391 * @priv: Opaque data to be passed to the @nproc callback.
392 * @cookie: Cookie to be used to identify this nested call.
393 * @ctx: This instance context.
394 *
395 * Returns: Returns the code returned by the @nproc callback, or -1 if
396 *          the maximum recursion limit has been exceeded.
397 */
398static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
399			  int (*nproc)(void *, void *, int), void *priv,
400			  void *cookie, void *ctx)
401{
402	int error, call_nests = 0;
403	unsigned long flags;
404	struct list_head *lsthead = &ncalls->tasks_call_list;
405	struct nested_call_node *tncur;
406	struct nested_call_node tnode;
407
408	spin_lock_irqsave(&ncalls->lock, flags);
409
410	/*
411	 * Try to see if the current task is already inside this wakeup call.
412	 * We use a list here, since the population inside this set is always
413	 * very much limited.
414	 */
415	list_for_each_entry(tncur, lsthead, llink) {
416		if (tncur->ctx == ctx &&
417		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
418			/*
419			 * Ops ... loop detected or maximum nest level reached.
420			 * We abort this wake by breaking the cycle itself.
421			 */
422			error = -1;
423			goto out_unlock;
424		}
425	}
426
427	/* Add the current task and cookie to the list */
428	tnode.ctx = ctx;
429	tnode.cookie = cookie;
430	list_add(&tnode.llink, lsthead);
431
432	spin_unlock_irqrestore(&ncalls->lock, flags);
433
434	/* Call the nested function */
435	error = (*nproc)(priv, cookie, call_nests);
436
437	/* Remove the current task from the list */
438	spin_lock_irqsave(&ncalls->lock, flags);
439	list_del(&tnode.llink);
440out_unlock:
441	spin_unlock_irqrestore(&ncalls->lock, flags);
442
443	return error;
444}
445
446/*
447 * As described in commit 0ccf831cb lockdep: annotate epoll
448 * the use of wait queues used by epoll is done in a very controlled
449 * manner. Wake ups can nest inside each other, but are never done
450 * with the same locking. For example:
451 *
452 *   dfd = socket(...);
453 *   efd1 = epoll_create();
454 *   efd2 = epoll_create();
455 *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
456 *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
457 *
458 * When a packet arrives to the device underneath "dfd", the net code will
459 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
460 * callback wakeup entry on that queue, and the wake_up() performed by the
461 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
462 * (efd1) notices that it may have some event ready, so it needs to wake up
463 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
464 * that ends up in another wake_up(), after having checked about the
465 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
466 * avoid stack blasting.
467 *
468 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
469 * this special case of epoll.
470 */
471#ifdef CONFIG_DEBUG_LOCK_ALLOC
472static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
473				     unsigned long events, int subclass)
474{
475	unsigned long flags;
476
477	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
478	wake_up_locked_poll(wqueue, events);
479	spin_unlock_irqrestore(&wqueue->lock, flags);
480}
481#else
482static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
483				     unsigned long events, int subclass)
484{
485	wake_up_poll(wqueue, events);
486}
487#endif
488
489static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
490{
491	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
492			  1 + call_nests);
493	return 0;
494}
495
496/*
497 * Perform a safe wake up of the poll wait list. The problem is that
498 * with the new callback'd wake up system, it is possible that the
499 * poll callback is reentered from inside the call to wake_up() done
500 * on the poll wait queue head. The rule is that we cannot reenter the
501 * wake up code from the same task more than EP_MAX_NESTS times,
502 * and we cannot reenter the same wait queue head at all. This will
503 * enable to have a hierarchy of epoll file descriptor of no more than
504 * EP_MAX_NESTS deep.
505 */
506static void ep_poll_safewake(wait_queue_head_t *wq)
507{
508	int this_cpu = get_cpu();
509
510	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
511		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
512
513	put_cpu();
514}
515
516static void ep_remove_wait_queue(struct eppoll_entry *pwq)
517{
518	wait_queue_head_t *whead;
519
520	rcu_read_lock();
521	/* If it is cleared by POLLFREE, it should be rcu-safe */
522	whead = rcu_dereference(pwq->whead);
523	if (whead)
524		remove_wait_queue(whead, &pwq->wait);
525	rcu_read_unlock();
526}
527
528/*
529 * This function unregisters poll callbacks from the associated file
530 * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
531 * ep_free).
532 */
533static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
534{
535	struct list_head *lsthead = &epi->pwqlist;
536	struct eppoll_entry *pwq;
537
538	while (!list_empty(lsthead)) {
539		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
540
541		list_del(&pwq->llink);
542		ep_remove_wait_queue(pwq);
543		kmem_cache_free(pwq_cache, pwq);
544	}
545}
546
547/* call only when ep->mtx is held */
548static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
549{
550	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
551}
552
553/* call only when ep->mtx is held */
554static inline void ep_pm_stay_awake(struct epitem *epi)
555{
556	struct wakeup_source *ws = ep_wakeup_source(epi);
557
558	if (ws)
559		__pm_stay_awake(ws);
560}
561
562static inline bool ep_has_wakeup_source(struct epitem *epi)
563{
564	return rcu_access_pointer(epi->ws) ? true : false;
565}
566
567/* call when ep->mtx cannot be held (ep_poll_callback) */
568static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
569{
570	struct wakeup_source *ws;
571
572	rcu_read_lock();
573	ws = rcu_dereference(epi->ws);
574	if (ws)
575		__pm_stay_awake(ws);
576	rcu_read_unlock();
577}
578
579/**
580 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
581 *                      the scan code, to call f_op->poll(). Also allows for
582 *                      O(NumReady) performance.
583 *
584 * @ep: Pointer to the epoll private data structure.
585 * @sproc: Pointer to the scan callback.
586 * @priv: Private opaque data passed to the @sproc callback.
587 * @depth: The current depth of recursive f_op->poll calls.
588 * @ep_locked: caller already holds ep->mtx
589 *
590 * Returns: The same integer error code returned by the @sproc callback.
591 */
592static int ep_scan_ready_list(struct eventpoll *ep,
593			      int (*sproc)(struct eventpoll *,
594					   struct list_head *, void *),
595			      void *priv, int depth, bool ep_locked)
596{
597	int error, pwake = 0;
598	unsigned long flags;
599	struct epitem *epi, *nepi;
600	LIST_HEAD(txlist);
601
602	/*
603	 * We need to lock this because we could be hit by
604	 * eventpoll_release_file() and epoll_ctl().
605	 */
606
607	if (!ep_locked)
608		mutex_lock_nested(&ep->mtx, depth);
609
610	/*
611	 * Steal the ready list, and re-init the original one to the
612	 * empty list. Also, set ep->ovflist to NULL so that events
613	 * happening while looping w/out locks, are not lost. We cannot
614	 * have the poll callback to queue directly on ep->rdllist,
615	 * because we want the "sproc" callback to be able to do it
616	 * in a lockless way.
617	 */
618	spin_lock_irqsave(&ep->lock, flags);
619	list_splice_init(&ep->rdllist, &txlist);
620	ep->ovflist = NULL;
621	spin_unlock_irqrestore(&ep->lock, flags);
622
623	/*
624	 * Now call the callback function.
625	 */
626	error = (*sproc)(ep, &txlist, priv);
627
628	spin_lock_irqsave(&ep->lock, flags);
629	/*
630	 * During the time we spent inside the "sproc" callback, some
631	 * other events might have been queued by the poll callback.
632	 * We re-insert them inside the main ready-list here.
633	 */
634	for (nepi = ep->ovflist; (epi = nepi) != NULL;
635	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
636		/*
637		 * We need to check if the item is already in the list.
638		 * During the "sproc" callback execution time, items are
639		 * queued into ->ovflist but the "txlist" might already
640		 * contain them, and the list_splice() below takes care of them.
641		 */
642		if (!ep_is_linked(&epi->rdllink)) {
643			list_add_tail(&epi->rdllink, &ep->rdllist);
644			ep_pm_stay_awake(epi);
645		}
646	}
647	/*
648	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
649	 * releasing the lock, events will be queued in the normal way inside
650	 * ep->rdllist.
651	 */
652	ep->ovflist = EP_UNACTIVE_PTR;
653
654	/*
655	 * Quickly re-inject items left on "txlist".
656	 */
657	list_splice(&txlist, &ep->rdllist);
658	__pm_relax(ep->ws);
659
660	if (!list_empty(&ep->rdllist)) {
661		/*
662		 * Wake up (if active) both the eventpoll wait list and
663		 * the ->poll() wait list (delayed after we release the lock).
664		 */
665		if (waitqueue_active(&ep->wq))
666			wake_up_locked(&ep->wq);
667		if (waitqueue_active(&ep->poll_wait))
668			pwake++;
669	}
670	spin_unlock_irqrestore(&ep->lock, flags);
671
672	if (!ep_locked)
673		mutex_unlock(&ep->mtx);
674
675	/* We have to call this outside the lock */
676	if (pwake)
677		ep_poll_safewake(&ep->poll_wait);
678
679	return error;
680}
681
682static void epi_rcu_free(struct rcu_head *head)
683{
684	struct epitem *epi = container_of(head, struct epitem, rcu);
685	kmem_cache_free(epi_cache, epi);
686}
687
688/*
689 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
690 * all the associated resources. Must be called with "mtx" held.
691 */
692static int ep_remove(struct eventpoll *ep, struct epitem *epi)
693{
694	unsigned long flags;
695	struct file *file = epi->ffd.file;
696
697	/*
698	 * Removes poll wait queue hooks. We _have_ to do this without holding
699	 * the "ep->lock" otherwise a deadlock might occur. This because of the
700	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
701	 * queue head lock when unregistering the wait queue. The wakeup callback
702	 * will run by holding the wait queue head lock and will call our callback
703	 * that will try to get "ep->lock".
704	 */
705	ep_unregister_pollwait(ep, epi);
706
707	/* Remove the current item from the list of epoll hooks */
708	spin_lock(&file->f_lock);
709	list_del_rcu(&epi->fllink);
710	spin_unlock(&file->f_lock);
711
712	rb_erase(&epi->rbn, &ep->rbr);
713
714	spin_lock_irqsave(&ep->lock, flags);
715	if (ep_is_linked(&epi->rdllink))
716		list_del_init(&epi->rdllink);
717	spin_unlock_irqrestore(&ep->lock, flags);
718
719	wakeup_source_unregister(ep_wakeup_source(epi));
720	/*
721	 * At this point it is safe to free the eventpoll item. Use the union
722	 * field epi->rcu, since we are trying to minimize the size of
723	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
724	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
725	 * use of the rbn field.
726	 */
727	call_rcu(&epi->rcu, epi_rcu_free);
728
729	atomic_long_dec(&ep->user->epoll_watches);
730
731	return 0;
732}
733
734static void ep_free(struct eventpoll *ep)
735{
736	struct rb_node *rbp;
737	struct epitem *epi;
738
739	/* We need to release all tasks waiting for these file */
740	if (waitqueue_active(&ep->poll_wait))
741		ep_poll_safewake(&ep->poll_wait);
742
743	/*
744	 * We need to lock this because we could be hit by
745	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
746	 * We do not need to hold "ep->mtx" here because the epoll file
747	 * is on the way to be removed and no one has references to it
748	 * anymore. The only hit might come from eventpoll_release_file() but
749	 * holding "epmutex" is sufficient here.
750	 */
751	mutex_lock(&epmutex);
752
753	/*
754	 * Walks through the whole tree by unregistering poll callbacks.
755	 */
756	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
757		epi = rb_entry(rbp, struct epitem, rbn);
758
759		ep_unregister_pollwait(ep, epi);
760		cond_resched();
761	}
762
763	/*
764	 * Walks through the whole tree by freeing each "struct epitem". At this
765	 * point we are sure no poll callbacks will be lingering around, and also by
766	 * holding "epmutex" we can be sure that no file cleanup code will hit
767	 * us during this operation. So we can avoid the lock on "ep->lock".
768	 * We do not need to lock ep->mtx, either, we only do it to prevent
769	 * a lockdep warning.
770	 */
771	mutex_lock(&ep->mtx);
772	while ((rbp = rb_first(&ep->rbr)) != NULL) {
773		epi = rb_entry(rbp, struct epitem, rbn);
774		ep_remove(ep, epi);
775		cond_resched();
776	}
777	mutex_unlock(&ep->mtx);
778
779	mutex_unlock(&epmutex);
780	mutex_destroy(&ep->mtx);
781	free_uid(ep->user);
782	wakeup_source_unregister(ep->ws);
783	kfree(ep);
784}
785
786static int ep_eventpoll_release(struct inode *inode, struct file *file)
787{
788	struct eventpoll *ep = file->private_data;
789
790	if (ep)
791		ep_free(ep);
792
793	return 0;
794}
795
796static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
797{
798	pt->_key = epi->event.events;
799
800	return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
801}
802
803static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
804			       void *priv)
805{
806	struct epitem *epi, *tmp;
807	poll_table pt;
808
809	init_poll_funcptr(&pt, NULL);
810
811	list_for_each_entry_safe(epi, tmp, head, rdllink) {
812		if (ep_item_poll(epi, &pt))
813			return POLLIN | POLLRDNORM;
814		else {
815			/*
816			 * Item has been dropped into the ready list by the poll
817			 * callback, but it's not actually ready, as far as
818			 * caller requested events goes. We can remove it here.
819			 */
820			__pm_relax(ep_wakeup_source(epi));
821			list_del_init(&epi->rdllink);
822		}
823	}
824
825	return 0;
826}
827
828static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
829				 poll_table *pt);
830
831struct readyevents_arg {
832	struct eventpoll *ep;
833	bool locked;
834};
835
836static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
837{
838	struct readyevents_arg *arg = priv;
839
840	return ep_scan_ready_list(arg->ep, ep_read_events_proc, NULL,
841				  call_nests + 1, arg->locked);
842}
843
844static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
845{
846	int pollflags;
847	struct eventpoll *ep = file->private_data;
848	struct readyevents_arg arg;
849
850	/*
851	 * During ep_insert() we already hold the ep->mtx for the tfile.
852	 * Prevent re-aquisition.
853	 */
854	arg.locked = wait && (wait->_qproc == ep_ptable_queue_proc);
855	arg.ep = ep;
856
857	/* Insert inside our poll wait queue */
858	poll_wait(file, &ep->poll_wait, wait);
859
860	/*
861	 * Proceed to find out if wanted events are really available inside
862	 * the ready list. This need to be done under ep_call_nested()
863	 * supervision, since the call to f_op->poll() done on listed files
864	 * could re-enter here.
865	 */
866	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
867				   ep_poll_readyevents_proc, &arg, ep, current);
868
869	return pollflags != -1 ? pollflags : 0;
870}
871
872#ifdef CONFIG_PROC_FS
873static void ep_show_fdinfo(struct seq_file *m, struct file *f)
874{
875	struct eventpoll *ep = f->private_data;
876	struct rb_node *rbp;
877
878	mutex_lock(&ep->mtx);
879	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
880		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
881
882		seq_printf(m, "tfd: %8d events: %8x data: %16llx\n",
883			   epi->ffd.fd, epi->event.events,
884			   (long long)epi->event.data);
885		if (seq_has_overflowed(m))
886			break;
887	}
888	mutex_unlock(&ep->mtx);
889}
890#endif
891
892/* File callbacks that implement the eventpoll file behaviour */
893static const struct file_operations eventpoll_fops = {
894#ifdef CONFIG_PROC_FS
895	.show_fdinfo	= ep_show_fdinfo,
896#endif
897	.release	= ep_eventpoll_release,
898	.poll		= ep_eventpoll_poll,
899	.llseek		= noop_llseek,
900};
901
902/*
903 * This is called from eventpoll_release() to unlink files from the eventpoll
904 * interface. We need to have this facility to cleanup correctly files that are
905 * closed without being removed from the eventpoll interface.
906 */
907void eventpoll_release_file(struct file *file)
908{
909	struct eventpoll *ep;
910	struct epitem *epi, *next;
911
912	/*
913	 * We don't want to get "file->f_lock" because it is not
914	 * necessary. It is not necessary because we're in the "struct file"
915	 * cleanup path, and this means that no one is using this file anymore.
916	 * So, for example, epoll_ctl() cannot hit here since if we reach this
917	 * point, the file counter already went to zero and fget() would fail.
918	 * The only hit might come from ep_free() but by holding the mutex
919	 * will correctly serialize the operation. We do need to acquire
920	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
921	 * from anywhere but ep_free().
922	 *
923	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
924	 */
925	mutex_lock(&epmutex);
926	list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
927		ep = epi->ep;
928		mutex_lock_nested(&ep->mtx, 0);
929		ep_remove(ep, epi);
930		mutex_unlock(&ep->mtx);
931	}
932	mutex_unlock(&epmutex);
933}
934
935static int ep_alloc(struct eventpoll **pep)
936{
937	int error;
938	struct user_struct *user;
939	struct eventpoll *ep;
940
941	user = get_current_user();
942	error = -ENOMEM;
943	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
944	if (unlikely(!ep))
945		goto free_uid;
946
947	spin_lock_init(&ep->lock);
948	mutex_init(&ep->mtx);
949	init_waitqueue_head(&ep->wq);
950	init_waitqueue_head(&ep->poll_wait);
951	INIT_LIST_HEAD(&ep->rdllist);
952	ep->rbr = RB_ROOT;
953	ep->ovflist = EP_UNACTIVE_PTR;
954	ep->user = user;
955
956	*pep = ep;
957
958	return 0;
959
960free_uid:
961	free_uid(user);
962	return error;
963}
964
965/*
966 * Search the file inside the eventpoll tree. The RB tree operations
967 * are protected by the "mtx" mutex, and ep_find() must be called with
968 * "mtx" held.
969 */
970static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
971{
972	int kcmp;
973	struct rb_node *rbp;
974	struct epitem *epi, *epir = NULL;
975	struct epoll_filefd ffd;
976
977	ep_set_ffd(&ffd, file, fd);
978	for (rbp = ep->rbr.rb_node; rbp; ) {
979		epi = rb_entry(rbp, struct epitem, rbn);
980		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
981		if (kcmp > 0)
982			rbp = rbp->rb_right;
983		else if (kcmp < 0)
984			rbp = rbp->rb_left;
985		else {
986			epir = epi;
987			break;
988		}
989	}
990
991	return epir;
992}
993
994/*
995 * This is the callback that is passed to the wait queue wakeup
996 * mechanism. It is called by the stored file descriptors when they
997 * have events to report.
998 */
999static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
1000{
1001	int pwake = 0;
1002	unsigned long flags;
1003	struct epitem *epi = ep_item_from_wait(wait);
1004	struct eventpoll *ep = epi->ep;
1005
1006	if ((unsigned long)key & POLLFREE) {
1007		ep_pwq_from_wait(wait)->whead = NULL;
1008		/*
1009		 * whead = NULL above can race with ep_remove_wait_queue()
1010		 * which can do another remove_wait_queue() after us, so we
1011		 * can't use __remove_wait_queue(). whead->lock is held by
1012		 * the caller.
1013		 */
1014		list_del_init(&wait->task_list);
1015	}
1016
1017	spin_lock_irqsave(&ep->lock, flags);
1018
1019	/*
1020	 * If the event mask does not contain any poll(2) event, we consider the
1021	 * descriptor to be disabled. This condition is likely the effect of the
1022	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1023	 * until the next EPOLL_CTL_MOD will be issued.
1024	 */
1025	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1026		goto out_unlock;
1027
1028	/*
1029	 * Check the events coming with the callback. At this stage, not
1030	 * every device reports the events in the "key" parameter of the
1031	 * callback. We need to be able to handle both cases here, hence the
1032	 * test for "key" != NULL before the event match test.
1033	 */
1034	if (key && !((unsigned long) key & epi->event.events))
1035		goto out_unlock;
1036
1037	/*
1038	 * If we are transferring events to userspace, we can hold no locks
1039	 * (because we're accessing user memory, and because of linux f_op->poll()
1040	 * semantics). All the events that happen during that period of time are
1041	 * chained in ep->ovflist and requeued later on.
1042	 */
1043	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1044		if (epi->next == EP_UNACTIVE_PTR) {
1045			epi->next = ep->ovflist;
1046			ep->ovflist = epi;
1047			if (epi->ws) {
1048				/*
1049				 * Activate ep->ws since epi->ws may get
1050				 * deactivated at any time.
1051				 */
1052				__pm_stay_awake(ep->ws);
1053			}
1054
1055		}
1056		goto out_unlock;
1057	}
1058
1059	/* If this file is already in the ready list we exit soon */
1060	if (!ep_is_linked(&epi->rdllink)) {
1061		list_add_tail(&epi->rdllink, &ep->rdllist);
1062		ep_pm_stay_awake_rcu(epi);
1063	}
1064
1065	/*
1066	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1067	 * wait list.
1068	 */
1069	if (waitqueue_active(&ep->wq))
1070		wake_up_locked(&ep->wq);
1071	if (waitqueue_active(&ep->poll_wait))
1072		pwake++;
1073
1074out_unlock:
1075	spin_unlock_irqrestore(&ep->lock, flags);
1076
1077	/* We have to call this outside the lock */
1078	if (pwake)
1079		ep_poll_safewake(&ep->poll_wait);
1080
1081	return 1;
1082}
1083
1084/*
1085 * This is the callback that is used to add our wait queue to the
1086 * target file wakeup lists.
1087 */
1088static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1089				 poll_table *pt)
1090{
1091	struct epitem *epi = ep_item_from_epqueue(pt);
1092	struct eppoll_entry *pwq;
1093
1094	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1095		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1096		pwq->whead = whead;
1097		pwq->base = epi;
1098		add_wait_queue(whead, &pwq->wait);
1099		list_add_tail(&pwq->llink, &epi->pwqlist);
1100		epi->nwait++;
1101	} else {
1102		/* We have to signal that an error occurred */
1103		epi->nwait = -1;
1104	}
1105}
1106
1107static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1108{
1109	int kcmp;
1110	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1111	struct epitem *epic;
1112
1113	while (*p) {
1114		parent = *p;
1115		epic = rb_entry(parent, struct epitem, rbn);
1116		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1117		if (kcmp > 0)
1118			p = &parent->rb_right;
1119		else
1120			p = &parent->rb_left;
1121	}
1122	rb_link_node(&epi->rbn, parent, p);
1123	rb_insert_color(&epi->rbn, &ep->rbr);
1124}
1125
1126
1127
1128#define PATH_ARR_SIZE 5
1129/*
1130 * These are the number paths of length 1 to 5, that we are allowing to emanate
1131 * from a single file of interest. For example, we allow 1000 paths of length
1132 * 1, to emanate from each file of interest. This essentially represents the
1133 * potential wakeup paths, which need to be limited in order to avoid massive
1134 * uncontrolled wakeup storms. The common use case should be a single ep which
1135 * is connected to n file sources. In this case each file source has 1 path
1136 * of length 1. Thus, the numbers below should be more than sufficient. These
1137 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1138 * and delete can't add additional paths. Protected by the epmutex.
1139 */
1140static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1141static int path_count[PATH_ARR_SIZE];
1142
1143static int path_count_inc(int nests)
1144{
1145	/* Allow an arbitrary number of depth 1 paths */
1146	if (nests == 0)
1147		return 0;
1148
1149	if (++path_count[nests] > path_limits[nests])
1150		return -1;
1151	return 0;
1152}
1153
1154static void path_count_init(void)
1155{
1156	int i;
1157
1158	for (i = 0; i < PATH_ARR_SIZE; i++)
1159		path_count[i] = 0;
1160}
1161
1162static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1163{
1164	int error = 0;
1165	struct file *file = priv;
1166	struct file *child_file;
1167	struct epitem *epi;
1168
1169	/* CTL_DEL can remove links here, but that can't increase our count */
1170	rcu_read_lock();
1171	list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1172		child_file = epi->ep->file;
1173		if (is_file_epoll(child_file)) {
1174			if (list_empty(&child_file->f_ep_links)) {
1175				if (path_count_inc(call_nests)) {
1176					error = -1;
1177					break;
1178				}
1179			} else {
1180				error = ep_call_nested(&poll_loop_ncalls,
1181							EP_MAX_NESTS,
1182							reverse_path_check_proc,
1183							child_file, child_file,
1184							current);
1185			}
1186			if (error != 0)
1187				break;
1188		} else {
1189			printk(KERN_ERR "reverse_path_check_proc: "
1190				"file is not an ep!\n");
1191		}
1192	}
1193	rcu_read_unlock();
1194	return error;
1195}
1196
1197/**
1198 * reverse_path_check - The tfile_check_list is list of file *, which have
1199 *                      links that are proposed to be newly added. We need to
1200 *                      make sure that those added links don't add too many
1201 *                      paths such that we will spend all our time waking up
1202 *                      eventpoll objects.
1203 *
1204 * Returns: Returns zero if the proposed links don't create too many paths,
1205 *	    -1 otherwise.
1206 */
1207static int reverse_path_check(void)
1208{
1209	int error = 0;
1210	struct file *current_file;
1211
1212	/* let's call this for all tfiles */
1213	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1214		path_count_init();
1215		error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1216					reverse_path_check_proc, current_file,
1217					current_file, current);
1218		if (error)
1219			break;
1220	}
1221	return error;
1222}
1223
1224static int ep_create_wakeup_source(struct epitem *epi)
1225{
1226	const char *name;
1227	struct wakeup_source *ws;
1228
1229	if (!epi->ep->ws) {
1230		epi->ep->ws = wakeup_source_register("eventpoll");
1231		if (!epi->ep->ws)
1232			return -ENOMEM;
1233	}
1234
1235	name = epi->ffd.file->f_path.dentry->d_name.name;
1236	ws = wakeup_source_register(name);
1237
1238	if (!ws)
1239		return -ENOMEM;
1240	rcu_assign_pointer(epi->ws, ws);
1241
1242	return 0;
1243}
1244
1245/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1246static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1247{
1248	struct wakeup_source *ws = ep_wakeup_source(epi);
1249
1250	RCU_INIT_POINTER(epi->ws, NULL);
1251
1252	/*
1253	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1254	 * used internally by wakeup_source_remove, too (called by
1255	 * wakeup_source_unregister), so we cannot use call_rcu
1256	 */
1257	synchronize_rcu();
1258	wakeup_source_unregister(ws);
1259}
1260
1261/*
1262 * Must be called with "mtx" held.
1263 */
1264static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1265		     struct file *tfile, int fd, int full_check)
1266{
1267	int error, revents, pwake = 0;
1268	unsigned long flags;
1269	long user_watches;
1270	struct epitem *epi;
1271	struct ep_pqueue epq;
1272
1273	user_watches = atomic_long_read(&ep->user->epoll_watches);
1274	if (unlikely(user_watches >= max_user_watches))
1275		return -ENOSPC;
1276	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1277		return -ENOMEM;
1278
1279	/* Item initialization follow here ... */
1280	INIT_LIST_HEAD(&epi->rdllink);
1281	INIT_LIST_HEAD(&epi->fllink);
1282	INIT_LIST_HEAD(&epi->pwqlist);
1283	epi->ep = ep;
1284	ep_set_ffd(&epi->ffd, tfile, fd);
1285	epi->event = *event;
1286	epi->nwait = 0;
1287	epi->next = EP_UNACTIVE_PTR;
1288	if (epi->event.events & EPOLLWAKEUP) {
1289		error = ep_create_wakeup_source(epi);
1290		if (error)
1291			goto error_create_wakeup_source;
1292	} else {
1293		RCU_INIT_POINTER(epi->ws, NULL);
1294	}
1295
1296	/* Initialize the poll table using the queue callback */
1297	epq.epi = epi;
1298	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1299
1300	/*
1301	 * Attach the item to the poll hooks and get current event bits.
1302	 * We can safely use the file* here because its usage count has
1303	 * been increased by the caller of this function. Note that after
1304	 * this operation completes, the poll callback can start hitting
1305	 * the new item.
1306	 */
1307	revents = ep_item_poll(epi, &epq.pt);
1308
1309	/*
1310	 * We have to check if something went wrong during the poll wait queue
1311	 * install process. Namely an allocation for a wait queue failed due
1312	 * high memory pressure.
1313	 */
1314	error = -ENOMEM;
1315	if (epi->nwait < 0)
1316		goto error_unregister;
1317
1318	/* Add the current item to the list of active epoll hook for this file */
1319	spin_lock(&tfile->f_lock);
1320	list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1321	spin_unlock(&tfile->f_lock);
1322
1323	/*
1324	 * Add the current item to the RB tree. All RB tree operations are
1325	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1326	 */
1327	ep_rbtree_insert(ep, epi);
1328
1329	/* now check if we've created too many backpaths */
1330	error = -EINVAL;
1331	if (full_check && reverse_path_check())
1332		goto error_remove_epi;
1333
1334	/* We have to drop the new item inside our item list to keep track of it */
1335	spin_lock_irqsave(&ep->lock, flags);
1336
1337	/* If the file is already "ready" we drop it inside the ready list */
1338	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1339		list_add_tail(&epi->rdllink, &ep->rdllist);
1340		ep_pm_stay_awake(epi);
1341
1342		/* Notify waiting tasks that events are available */
1343		if (waitqueue_active(&ep->wq))
1344			wake_up_locked(&ep->wq);
1345		if (waitqueue_active(&ep->poll_wait))
1346			pwake++;
1347	}
1348
1349	spin_unlock_irqrestore(&ep->lock, flags);
1350
1351	atomic_long_inc(&ep->user->epoll_watches);
1352
1353	/* We have to call this outside the lock */
1354	if (pwake)
1355		ep_poll_safewake(&ep->poll_wait);
1356
1357	return 0;
1358
1359error_remove_epi:
1360	spin_lock(&tfile->f_lock);
1361	list_del_rcu(&epi->fllink);
1362	spin_unlock(&tfile->f_lock);
1363
1364	rb_erase(&epi->rbn, &ep->rbr);
1365
1366error_unregister:
1367	ep_unregister_pollwait(ep, epi);
1368
1369	/*
1370	 * We need to do this because an event could have been arrived on some
1371	 * allocated wait queue. Note that we don't care about the ep->ovflist
1372	 * list, since that is used/cleaned only inside a section bound by "mtx".
1373	 * And ep_insert() is called with "mtx" held.
1374	 */
1375	spin_lock_irqsave(&ep->lock, flags);
1376	if (ep_is_linked(&epi->rdllink))
1377		list_del_init(&epi->rdllink);
1378	spin_unlock_irqrestore(&ep->lock, flags);
1379
1380	wakeup_source_unregister(ep_wakeup_source(epi));
1381
1382error_create_wakeup_source:
1383	kmem_cache_free(epi_cache, epi);
1384
1385	return error;
1386}
1387
1388/*
1389 * Modify the interest event mask by dropping an event if the new mask
1390 * has a match in the current file status. Must be called with "mtx" held.
1391 */
1392static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1393{
1394	int pwake = 0;
1395	unsigned int revents;
1396	poll_table pt;
1397
1398	init_poll_funcptr(&pt, NULL);
1399
1400	/*
1401	 * Set the new event interest mask before calling f_op->poll();
1402	 * otherwise we might miss an event that happens between the
1403	 * f_op->poll() call and the new event set registering.
1404	 */
1405	epi->event.events = event->events; /* need barrier below */
1406	epi->event.data = event->data; /* protected by mtx */
1407	if (epi->event.events & EPOLLWAKEUP) {
1408		if (!ep_has_wakeup_source(epi))
1409			ep_create_wakeup_source(epi);
1410	} else if (ep_has_wakeup_source(epi)) {
1411		ep_destroy_wakeup_source(epi);
1412	}
1413
1414	/*
1415	 * The following barrier has two effects:
1416	 *
1417	 * 1) Flush epi changes above to other CPUs.  This ensures
1418	 *    we do not miss events from ep_poll_callback if an
1419	 *    event occurs immediately after we call f_op->poll().
1420	 *    We need this because we did not take ep->lock while
1421	 *    changing epi above (but ep_poll_callback does take
1422	 *    ep->lock).
1423	 *
1424	 * 2) We also need to ensure we do not miss _past_ events
1425	 *    when calling f_op->poll().  This barrier also
1426	 *    pairs with the barrier in wq_has_sleeper (see
1427	 *    comments for wq_has_sleeper).
1428	 *
1429	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1430	 * (or both) will notice the readiness of an item.
1431	 */
1432	smp_mb();
1433
1434	/*
1435	 * Get current event bits. We can safely use the file* here because
1436	 * its usage count has been increased by the caller of this function.
1437	 */
1438	revents = ep_item_poll(epi, &pt);
1439
1440	/*
1441	 * If the item is "hot" and it is not registered inside the ready
1442	 * list, push it inside.
1443	 */
1444	if (revents & event->events) {
1445		spin_lock_irq(&ep->lock);
1446		if (!ep_is_linked(&epi->rdllink)) {
1447			list_add_tail(&epi->rdllink, &ep->rdllist);
1448			ep_pm_stay_awake(epi);
1449
1450			/* Notify waiting tasks that events are available */
1451			if (waitqueue_active(&ep->wq))
1452				wake_up_locked(&ep->wq);
1453			if (waitqueue_active(&ep->poll_wait))
1454				pwake++;
1455		}
1456		spin_unlock_irq(&ep->lock);
1457	}
1458
1459	/* We have to call this outside the lock */
1460	if (pwake)
1461		ep_poll_safewake(&ep->poll_wait);
1462
1463	return 0;
1464}
1465
1466static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1467			       void *priv)
1468{
1469	struct ep_send_events_data *esed = priv;
1470	int eventcnt;
1471	unsigned int revents;
1472	struct epitem *epi;
1473	struct epoll_event __user *uevent;
1474	struct wakeup_source *ws;
1475	poll_table pt;
1476
1477	init_poll_funcptr(&pt, NULL);
1478
1479	/*
1480	 * We can loop without lock because we are passed a task private list.
1481	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1482	 * holding "mtx" during this call.
1483	 */
1484	for (eventcnt = 0, uevent = esed->events;
1485	     !list_empty(head) && eventcnt < esed->maxevents;) {
1486		epi = list_first_entry(head, struct epitem, rdllink);
1487
1488		/*
1489		 * Activate ep->ws before deactivating epi->ws to prevent
1490		 * triggering auto-suspend here (in case we reactive epi->ws
1491		 * below).
1492		 *
1493		 * This could be rearranged to delay the deactivation of epi->ws
1494		 * instead, but then epi->ws would temporarily be out of sync
1495		 * with ep_is_linked().
1496		 */
1497		ws = ep_wakeup_source(epi);
1498		if (ws) {
1499			if (ws->active)
1500				__pm_stay_awake(ep->ws);
1501			__pm_relax(ws);
1502		}
1503
1504		list_del_init(&epi->rdllink);
1505
1506		revents = ep_item_poll(epi, &pt);
1507
1508		/*
1509		 * If the event mask intersect the caller-requested one,
1510		 * deliver the event to userspace. Again, ep_scan_ready_list()
1511		 * is holding "mtx", so no operations coming from userspace
1512		 * can change the item.
1513		 */
1514		if (revents) {
1515			if (__put_user(revents, &uevent->events) ||
1516			    __put_user(epi->event.data, &uevent->data)) {
1517				list_add(&epi->rdllink, head);
1518				ep_pm_stay_awake(epi);
1519				return eventcnt ? eventcnt : -EFAULT;
1520			}
1521			eventcnt++;
1522			uevent++;
1523			if (epi->event.events & EPOLLONESHOT)
1524				epi->event.events &= EP_PRIVATE_BITS;
1525			else if (!(epi->event.events & EPOLLET)) {
1526				/*
1527				 * If this file has been added with Level
1528				 * Trigger mode, we need to insert back inside
1529				 * the ready list, so that the next call to
1530				 * epoll_wait() will check again the events
1531				 * availability. At this point, no one can insert
1532				 * into ep->rdllist besides us. The epoll_ctl()
1533				 * callers are locked out by
1534				 * ep_scan_ready_list() holding "mtx" and the
1535				 * poll callback will queue them in ep->ovflist.
1536				 */
1537				list_add_tail(&epi->rdllink, &ep->rdllist);
1538				ep_pm_stay_awake(epi);
1539			}
1540		}
1541	}
1542
1543	return eventcnt;
1544}
1545
1546static int ep_send_events(struct eventpoll *ep,
1547			  struct epoll_event __user *events, int maxevents)
1548{
1549	struct ep_send_events_data esed;
1550
1551	esed.maxevents = maxevents;
1552	esed.events = events;
1553
1554	return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1555}
1556
1557static inline struct timespec ep_set_mstimeout(long ms)
1558{
1559	struct timespec now, ts = {
1560		.tv_sec = ms / MSEC_PER_SEC,
1561		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1562	};
1563
1564	ktime_get_ts(&now);
1565	return timespec_add_safe(now, ts);
1566}
1567
1568/**
1569 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1570 *           event buffer.
1571 *
1572 * @ep: Pointer to the eventpoll context.
1573 * @events: Pointer to the userspace buffer where the ready events should be
1574 *          stored.
1575 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1576 * @timeout: Maximum timeout for the ready events fetch operation, in
1577 *           milliseconds. If the @timeout is zero, the function will not block,
1578 *           while if the @timeout is less than zero, the function will block
1579 *           until at least one event has been retrieved (or an error
1580 *           occurred).
1581 *
1582 * Returns: Returns the number of ready events which have been fetched, or an
1583 *          error code, in case of error.
1584 */
1585static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1586		   int maxevents, long timeout)
1587{
1588	int res = 0, eavail, timed_out = 0;
1589	unsigned long flags;
1590	long slack = 0;
1591	wait_queue_t wait;
1592	ktime_t expires, *to = NULL;
1593
1594	if (timeout > 0) {
1595		struct timespec end_time = ep_set_mstimeout(timeout);
1596
1597		slack = select_estimate_accuracy(&end_time);
1598		to = &expires;
1599		*to = timespec_to_ktime(end_time);
1600	} else if (timeout == 0) {
1601		/*
1602		 * Avoid the unnecessary trip to the wait queue loop, if the
1603		 * caller specified a non blocking operation.
1604		 */
1605		timed_out = 1;
1606		spin_lock_irqsave(&ep->lock, flags);
1607		goto check_events;
1608	}
1609
1610fetch_events:
1611	spin_lock_irqsave(&ep->lock, flags);
1612
1613	if (!ep_events_available(ep)) {
1614		/*
1615		 * We don't have any available event to return to the caller.
1616		 * We need to sleep here, and we will be wake up by
1617		 * ep_poll_callback() when events will become available.
1618		 */
1619		init_waitqueue_entry(&wait, current);
1620		__add_wait_queue_exclusive(&ep->wq, &wait);
1621
1622		for (;;) {
1623			/*
1624			 * We don't want to sleep if the ep_poll_callback() sends us
1625			 * a wakeup in between. That's why we set the task state
1626			 * to TASK_INTERRUPTIBLE before doing the checks.
1627			 */
1628			set_current_state(TASK_INTERRUPTIBLE);
1629			if (ep_events_available(ep) || timed_out)
1630				break;
1631			if (signal_pending(current)) {
1632				res = -EINTR;
1633				break;
1634			}
1635
1636			spin_unlock_irqrestore(&ep->lock, flags);
1637			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1638				timed_out = 1;
1639
1640			spin_lock_irqsave(&ep->lock, flags);
1641		}
1642
1643		__remove_wait_queue(&ep->wq, &wait);
1644		__set_current_state(TASK_RUNNING);
1645	}
1646check_events:
1647	/* Is it worth to try to dig for events ? */
1648	eavail = ep_events_available(ep);
1649
1650	spin_unlock_irqrestore(&ep->lock, flags);
1651
1652	/*
1653	 * Try to transfer events to user space. In case we get 0 events and
1654	 * there's still timeout left over, we go trying again in search of
1655	 * more luck.
1656	 */
1657	if (!res && eavail &&
1658	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1659		goto fetch_events;
1660
1661	return res;
1662}
1663
1664/**
1665 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1666 *                      API, to verify that adding an epoll file inside another
1667 *                      epoll structure, does not violate the constraints, in
1668 *                      terms of closed loops, or too deep chains (which can
1669 *                      result in excessive stack usage).
1670 *
1671 * @priv: Pointer to the epoll file to be currently checked.
1672 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1673 *          data structure pointer.
1674 * @call_nests: Current dept of the @ep_call_nested() call stack.
1675 *
1676 * Returns: Returns zero if adding the epoll @file inside current epoll
1677 *          structure @ep does not violate the constraints, or -1 otherwise.
1678 */
1679static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1680{
1681	int error = 0;
1682	struct file *file = priv;
1683	struct eventpoll *ep = file->private_data;
1684	struct eventpoll *ep_tovisit;
1685	struct rb_node *rbp;
1686	struct epitem *epi;
1687
1688	mutex_lock_nested(&ep->mtx, call_nests + 1);
1689	ep->visited = 1;
1690	list_add(&ep->visited_list_link, &visited_list);
1691	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1692		epi = rb_entry(rbp, struct epitem, rbn);
1693		if (unlikely(is_file_epoll(epi->ffd.file))) {
1694			ep_tovisit = epi->ffd.file->private_data;
1695			if (ep_tovisit->visited)
1696				continue;
1697			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1698					ep_loop_check_proc, epi->ffd.file,
1699					ep_tovisit, current);
1700			if (error != 0)
1701				break;
1702		} else {
1703			/*
1704			 * If we've reached a file that is not associated with
1705			 * an ep, then we need to check if the newly added
1706			 * links are going to add too many wakeup paths. We do
1707			 * this by adding it to the tfile_check_list, if it's
1708			 * not already there, and calling reverse_path_check()
1709			 * during ep_insert().
1710			 */
1711			if (list_empty(&epi->ffd.file->f_tfile_llink))
1712				list_add(&epi->ffd.file->f_tfile_llink,
1713					 &tfile_check_list);
1714		}
1715	}
1716	mutex_unlock(&ep->mtx);
1717
1718	return error;
1719}
1720
1721/**
1722 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1723 *                 another epoll file (represented by @ep) does not create
1724 *                 closed loops or too deep chains.
1725 *
1726 * @ep: Pointer to the epoll private data structure.
1727 * @file: Pointer to the epoll file to be checked.
1728 *
1729 * Returns: Returns zero if adding the epoll @file inside current epoll
1730 *          structure @ep does not violate the constraints, or -1 otherwise.
1731 */
1732static int ep_loop_check(struct eventpoll *ep, struct file *file)
1733{
1734	int ret;
1735	struct eventpoll *ep_cur, *ep_next;
1736
1737	ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1738			      ep_loop_check_proc, file, ep, current);
1739	/* clear visited list */
1740	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1741							visited_list_link) {
1742		ep_cur->visited = 0;
1743		list_del(&ep_cur->visited_list_link);
1744	}
1745	return ret;
1746}
1747
1748static void clear_tfile_check_list(void)
1749{
1750	struct file *file;
1751
1752	/* first clear the tfile_check_list */
1753	while (!list_empty(&tfile_check_list)) {
1754		file = list_first_entry(&tfile_check_list, struct file,
1755					f_tfile_llink);
1756		list_del_init(&file->f_tfile_llink);
1757	}
1758	INIT_LIST_HEAD(&tfile_check_list);
1759}
1760
1761/*
1762 * Open an eventpoll file descriptor.
1763 */
1764SYSCALL_DEFINE1(epoll_create1, int, flags)
1765{
1766	int error, fd;
1767	struct eventpoll *ep = NULL;
1768	struct file *file;
1769
1770	/* Check the EPOLL_* constant for consistency.  */
1771	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1772
1773	if (flags & ~EPOLL_CLOEXEC)
1774		return -EINVAL;
1775	/*
1776	 * Create the internal data structure ("struct eventpoll").
1777	 */
1778	error = ep_alloc(&ep);
1779	if (error < 0)
1780		return error;
1781	/*
1782	 * Creates all the items needed to setup an eventpoll file. That is,
1783	 * a file structure and a free file descriptor.
1784	 */
1785	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1786	if (fd < 0) {
1787		error = fd;
1788		goto out_free_ep;
1789	}
1790	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1791				 O_RDWR | (flags & O_CLOEXEC));
1792	if (IS_ERR(file)) {
1793		error = PTR_ERR(file);
1794		goto out_free_fd;
1795	}
1796	ep->file = file;
1797	fd_install(fd, file);
1798	return fd;
1799
1800out_free_fd:
1801	put_unused_fd(fd);
1802out_free_ep:
1803	ep_free(ep);
1804	return error;
1805}
1806
1807SYSCALL_DEFINE1(epoll_create, int, size)
1808{
1809	if (size <= 0)
1810		return -EINVAL;
1811
1812	return sys_epoll_create1(0);
1813}
1814
1815/*
1816 * The following function implements the controller interface for
1817 * the eventpoll file that enables the insertion/removal/change of
1818 * file descriptors inside the interest set.
1819 */
1820SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1821		struct epoll_event __user *, event)
1822{
1823	int error;
1824	int full_check = 0;
1825	struct fd f, tf;
1826	struct eventpoll *ep;
1827	struct epitem *epi;
1828	struct epoll_event epds;
1829	struct eventpoll *tep = NULL;
1830
1831	error = -EFAULT;
1832	if (ep_op_has_event(op) &&
1833	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1834		goto error_return;
1835
1836	error = -EBADF;
1837	f = fdget(epfd);
1838	if (!f.file)
1839		goto error_return;
1840
1841	/* Get the "struct file *" for the target file */
1842	tf = fdget(fd);
1843	if (!tf.file)
1844		goto error_fput;
1845
1846	/* The target file descriptor must support poll */
1847	error = -EPERM;
1848	if (!tf.file->f_op->poll)
1849		goto error_tgt_fput;
1850
1851	/* Check if EPOLLWAKEUP is allowed */
1852	if (ep_op_has_event(op))
1853		ep_take_care_of_epollwakeup(&epds);
1854
1855	/*
1856	 * We have to check that the file structure underneath the file descriptor
1857	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1858	 * adding an epoll file descriptor inside itself.
1859	 */
1860	error = -EINVAL;
1861	if (f.file == tf.file || !is_file_epoll(f.file))
1862		goto error_tgt_fput;
1863
1864	/*
1865	 * At this point it is safe to assume that the "private_data" contains
1866	 * our own data structure.
1867	 */
1868	ep = f.file->private_data;
1869
1870	/*
1871	 * When we insert an epoll file descriptor, inside another epoll file
1872	 * descriptor, there is the change of creating closed loops, which are
1873	 * better be handled here, than in more critical paths. While we are
1874	 * checking for loops we also determine the list of files reachable
1875	 * and hang them on the tfile_check_list, so we can check that we
1876	 * haven't created too many possible wakeup paths.
1877	 *
1878	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
1879	 * the epoll file descriptor is attaching directly to a wakeup source,
1880	 * unless the epoll file descriptor is nested. The purpose of taking the
1881	 * 'epmutex' on add is to prevent complex toplogies such as loops and
1882	 * deep wakeup paths from forming in parallel through multiple
1883	 * EPOLL_CTL_ADD operations.
1884	 */
1885	mutex_lock_nested(&ep->mtx, 0);
1886	if (op == EPOLL_CTL_ADD) {
1887		if (!list_empty(&f.file->f_ep_links) ||
1888						is_file_epoll(tf.file)) {
1889			full_check = 1;
1890			mutex_unlock(&ep->mtx);
1891			mutex_lock(&epmutex);
1892			if (is_file_epoll(tf.file)) {
1893				error = -ELOOP;
1894				if (ep_loop_check(ep, tf.file) != 0) {
1895					clear_tfile_check_list();
1896					goto error_tgt_fput;
1897				}
1898			} else
1899				list_add(&tf.file->f_tfile_llink,
1900							&tfile_check_list);
1901			mutex_lock_nested(&ep->mtx, 0);
1902			if (is_file_epoll(tf.file)) {
1903				tep = tf.file->private_data;
1904				mutex_lock_nested(&tep->mtx, 1);
1905			}
1906		}
1907	}
1908
1909	/*
1910	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1911	 * above, we can be sure to be able to use the item looked up by
1912	 * ep_find() till we release the mutex.
1913	 */
1914	epi = ep_find(ep, tf.file, fd);
1915
1916	error = -EINVAL;
1917	switch (op) {
1918	case EPOLL_CTL_ADD:
1919		if (!epi) {
1920			epds.events |= POLLERR | POLLHUP;
1921			error = ep_insert(ep, &epds, tf.file, fd, full_check);
1922		} else
1923			error = -EEXIST;
1924		if (full_check)
1925			clear_tfile_check_list();
1926		break;
1927	case EPOLL_CTL_DEL:
1928		if (epi)
1929			error = ep_remove(ep, epi);
1930		else
1931			error = -ENOENT;
1932		break;
1933	case EPOLL_CTL_MOD:
1934		if (epi) {
1935			epds.events |= POLLERR | POLLHUP;
1936			error = ep_modify(ep, epi, &epds);
1937		} else
1938			error = -ENOENT;
1939		break;
1940	}
1941	if (tep != NULL)
1942		mutex_unlock(&tep->mtx);
1943	mutex_unlock(&ep->mtx);
1944
1945error_tgt_fput:
1946	if (full_check)
1947		mutex_unlock(&epmutex);
1948
1949	fdput(tf);
1950error_fput:
1951	fdput(f);
1952error_return:
1953
1954	return error;
1955}
1956
1957/*
1958 * Implement the event wait interface for the eventpoll file. It is the kernel
1959 * part of the user space epoll_wait(2).
1960 */
1961SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1962		int, maxevents, int, timeout)
1963{
1964	int error;
1965	struct fd f;
1966	struct eventpoll *ep;
1967
1968	/* The maximum number of event must be greater than zero */
1969	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1970		return -EINVAL;
1971
1972	/* Verify that the area passed by the user is writeable */
1973	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
1974		return -EFAULT;
1975
1976	/* Get the "struct file *" for the eventpoll file */
1977	f = fdget(epfd);
1978	if (!f.file)
1979		return -EBADF;
1980
1981	/*
1982	 * We have to check that the file structure underneath the fd
1983	 * the user passed to us _is_ an eventpoll file.
1984	 */
1985	error = -EINVAL;
1986	if (!is_file_epoll(f.file))
1987		goto error_fput;
1988
1989	/*
1990	 * At this point it is safe to assume that the "private_data" contains
1991	 * our own data structure.
1992	 */
1993	ep = f.file->private_data;
1994
1995	/* Time to fish for events ... */
1996	error = ep_poll(ep, events, maxevents, timeout);
1997
1998error_fput:
1999	fdput(f);
2000	return error;
2001}
2002
2003/*
2004 * Implement the event wait interface for the eventpoll file. It is the kernel
2005 * part of the user space epoll_pwait(2).
2006 */
2007SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2008		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2009		size_t, sigsetsize)
2010{
2011	int error;
2012	sigset_t ksigmask, sigsaved;
2013
2014	/*
2015	 * If the caller wants a certain signal mask to be set during the wait,
2016	 * we apply it here.
2017	 */
2018	if (sigmask) {
2019		if (sigsetsize != sizeof(sigset_t))
2020			return -EINVAL;
2021		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2022			return -EFAULT;
2023		sigsaved = current->blocked;
2024		set_current_blocked(&ksigmask);
2025	}
2026
2027	error = sys_epoll_wait(epfd, events, maxevents, timeout);
2028
2029	/*
2030	 * If we changed the signal mask, we need to restore the original one.
2031	 * In case we've got a signal while waiting, we do not restore the
2032	 * signal mask yet, and we allow do_signal() to deliver the signal on
2033	 * the way back to userspace, before the signal mask is restored.
2034	 */
2035	if (sigmask) {
2036		if (error == -EINTR) {
2037			memcpy(&current->saved_sigmask, &sigsaved,
2038			       sizeof(sigsaved));
2039			set_restore_sigmask();
2040		} else
2041			set_current_blocked(&sigsaved);
2042	}
2043
2044	return error;
2045}
2046
2047#ifdef CONFIG_COMPAT
2048COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2049			struct epoll_event __user *, events,
2050			int, maxevents, int, timeout,
2051			const compat_sigset_t __user *, sigmask,
2052			compat_size_t, sigsetsize)
2053{
2054	long err;
2055	compat_sigset_t csigmask;
2056	sigset_t ksigmask, sigsaved;
2057
2058	/*
2059	 * If the caller wants a certain signal mask to be set during the wait,
2060	 * we apply it here.
2061	 */
2062	if (sigmask) {
2063		if (sigsetsize != sizeof(compat_sigset_t))
2064			return -EINVAL;
2065		if (copy_from_user(&csigmask, sigmask, sizeof(csigmask)))
2066			return -EFAULT;
2067		sigset_from_compat(&ksigmask, &csigmask);
2068		sigsaved = current->blocked;
2069		set_current_blocked(&ksigmask);
2070	}
2071
2072	err = sys_epoll_wait(epfd, events, maxevents, timeout);
2073
2074	/*
2075	 * If we changed the signal mask, we need to restore the original one.
2076	 * In case we've got a signal while waiting, we do not restore the
2077	 * signal mask yet, and we allow do_signal() to deliver the signal on
2078	 * the way back to userspace, before the signal mask is restored.
2079	 */
2080	if (sigmask) {
2081		if (err == -EINTR) {
2082			memcpy(&current->saved_sigmask, &sigsaved,
2083			       sizeof(sigsaved));
2084			set_restore_sigmask();
2085		} else
2086			set_current_blocked(&sigsaved);
2087	}
2088
2089	return err;
2090}
2091#endif
2092
2093static int __init eventpoll_init(void)
2094{
2095	struct sysinfo si;
2096
2097	si_meminfo(&si);
2098	/*
2099	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2100	 */
2101	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2102		EP_ITEM_COST;
2103	BUG_ON(max_user_watches < 0);
2104
2105	/*
2106	 * Initialize the structure used to perform epoll file descriptor
2107	 * inclusion loops checks.
2108	 */
2109	ep_nested_calls_init(&poll_loop_ncalls);
2110
2111	/* Initialize the structure used to perform safe poll wait head wake ups */
2112	ep_nested_calls_init(&poll_safewake_ncalls);
2113
2114	/* Initialize the structure used to perform file's f_op->poll() calls */
2115	ep_nested_calls_init(&poll_readywalk_ncalls);
2116
2117	/*
2118	 * We can have many thousands of epitems, so prevent this from
2119	 * using an extra cache line on 64-bit (and smaller) CPUs
2120	 */
2121	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2122
2123	/* Allocates slab cache used to allocate "struct epitem" items */
2124	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2125			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2126
2127	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2128	pwq_cache = kmem_cache_create("eventpoll_pwq",
2129			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2130
2131	return 0;
2132}
2133fs_initcall(eventpoll_init);
2134