1/* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9/* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17#include <linux/syscalls.h> 18#include <linux/string.h> 19#include <linux/mm.h> 20#include <linux/fs.h> 21#include <linux/fsnotify.h> 22#include <linux/slab.h> 23#include <linux/init.h> 24#include <linux/hash.h> 25#include <linux/cache.h> 26#include <linux/export.h> 27#include <linux/mount.h> 28#include <linux/file.h> 29#include <asm/uaccess.h> 30#include <linux/security.h> 31#include <linux/seqlock.h> 32#include <linux/swap.h> 33#include <linux/bootmem.h> 34#include <linux/fs_struct.h> 35#include <linux/hardirq.h> 36#include <linux/bit_spinlock.h> 37#include <linux/rculist_bl.h> 38#include <linux/prefetch.h> 39#include <linux/ratelimit.h> 40#include <linux/list_lru.h> 41#include <linux/kasan.h> 42 43#include "internal.h" 44#include "mount.h" 45 46/* 47 * Usage: 48 * dcache->d_inode->i_lock protects: 49 * - i_dentry, d_u.d_alias, d_inode of aliases 50 * dcache_hash_bucket lock protects: 51 * - the dcache hash table 52 * s_anon bl list spinlock protects: 53 * - the s_anon list (see __d_drop) 54 * dentry->d_sb->s_dentry_lru_lock protects: 55 * - the dcache lru lists and counters 56 * d_lock protects: 57 * - d_flags 58 * - d_name 59 * - d_lru 60 * - d_count 61 * - d_unhashed() 62 * - d_parent and d_subdirs 63 * - childrens' d_child and d_parent 64 * - d_u.d_alias, d_inode 65 * 66 * Ordering: 67 * dentry->d_inode->i_lock 68 * dentry->d_lock 69 * dentry->d_sb->s_dentry_lru_lock 70 * dcache_hash_bucket lock 71 * s_anon lock 72 * 73 * If there is an ancestor relationship: 74 * dentry->d_parent->...->d_parent->d_lock 75 * ... 76 * dentry->d_parent->d_lock 77 * dentry->d_lock 78 * 79 * If no ancestor relationship: 80 * if (dentry1 < dentry2) 81 * dentry1->d_lock 82 * dentry2->d_lock 83 */ 84int sysctl_vfs_cache_pressure __read_mostly = 100; 85EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 86 87__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 88 89EXPORT_SYMBOL(rename_lock); 90 91static struct kmem_cache *dentry_cache __read_mostly; 92 93/* 94 * This is the single most critical data structure when it comes 95 * to the dcache: the hashtable for lookups. Somebody should try 96 * to make this good - I've just made it work. 97 * 98 * This hash-function tries to avoid losing too many bits of hash 99 * information, yet avoid using a prime hash-size or similar. 100 */ 101 102static unsigned int d_hash_mask __read_mostly; 103static unsigned int d_hash_shift __read_mostly; 104 105static struct hlist_bl_head *dentry_hashtable __read_mostly; 106 107static inline struct hlist_bl_head *d_hash(const struct dentry *parent, 108 unsigned int hash) 109{ 110 hash += (unsigned long) parent / L1_CACHE_BYTES; 111 return dentry_hashtable + hash_32(hash, d_hash_shift); 112} 113 114/* Statistics gathering. */ 115struct dentry_stat_t dentry_stat = { 116 .age_limit = 45, 117}; 118 119static DEFINE_PER_CPU(long, nr_dentry); 120static DEFINE_PER_CPU(long, nr_dentry_unused); 121 122#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 123 124/* 125 * Here we resort to our own counters instead of using generic per-cpu counters 126 * for consistency with what the vfs inode code does. We are expected to harvest 127 * better code and performance by having our own specialized counters. 128 * 129 * Please note that the loop is done over all possible CPUs, not over all online 130 * CPUs. The reason for this is that we don't want to play games with CPUs going 131 * on and off. If one of them goes off, we will just keep their counters. 132 * 133 * glommer: See cffbc8a for details, and if you ever intend to change this, 134 * please update all vfs counters to match. 135 */ 136static long get_nr_dentry(void) 137{ 138 int i; 139 long sum = 0; 140 for_each_possible_cpu(i) 141 sum += per_cpu(nr_dentry, i); 142 return sum < 0 ? 0 : sum; 143} 144 145static long get_nr_dentry_unused(void) 146{ 147 int i; 148 long sum = 0; 149 for_each_possible_cpu(i) 150 sum += per_cpu(nr_dentry_unused, i); 151 return sum < 0 ? 0 : sum; 152} 153 154int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 155 size_t *lenp, loff_t *ppos) 156{ 157 dentry_stat.nr_dentry = get_nr_dentry(); 158 dentry_stat.nr_unused = get_nr_dentry_unused(); 159 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 160} 161#endif 162 163/* 164 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 165 * The strings are both count bytes long, and count is non-zero. 166 */ 167#ifdef CONFIG_DCACHE_WORD_ACCESS 168 169#include <asm/word-at-a-time.h> 170/* 171 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 172 * aligned allocation for this particular component. We don't 173 * strictly need the load_unaligned_zeropad() safety, but it 174 * doesn't hurt either. 175 * 176 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 177 * need the careful unaligned handling. 178 */ 179static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 180{ 181 unsigned long a,b,mask; 182 183 for (;;) { 184 a = *(unsigned long *)cs; 185 b = load_unaligned_zeropad(ct); 186 if (tcount < sizeof(unsigned long)) 187 break; 188 if (unlikely(a != b)) 189 return 1; 190 cs += sizeof(unsigned long); 191 ct += sizeof(unsigned long); 192 tcount -= sizeof(unsigned long); 193 if (!tcount) 194 return 0; 195 } 196 mask = bytemask_from_count(tcount); 197 return unlikely(!!((a ^ b) & mask)); 198} 199 200#else 201 202static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 203{ 204 do { 205 if (*cs != *ct) 206 return 1; 207 cs++; 208 ct++; 209 tcount--; 210 } while (tcount); 211 return 0; 212} 213 214#endif 215 216static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 217{ 218 const unsigned char *cs; 219 /* 220 * Be careful about RCU walk racing with rename: 221 * use ACCESS_ONCE to fetch the name pointer. 222 * 223 * NOTE! Even if a rename will mean that the length 224 * was not loaded atomically, we don't care. The 225 * RCU walk will check the sequence count eventually, 226 * and catch it. And we won't overrun the buffer, 227 * because we're reading the name pointer atomically, 228 * and a dentry name is guaranteed to be properly 229 * terminated with a NUL byte. 230 * 231 * End result: even if 'len' is wrong, we'll exit 232 * early because the data cannot match (there can 233 * be no NUL in the ct/tcount data) 234 */ 235 cs = ACCESS_ONCE(dentry->d_name.name); 236 smp_read_barrier_depends(); 237 return dentry_string_cmp(cs, ct, tcount); 238} 239 240struct external_name { 241 union { 242 atomic_t count; 243 struct rcu_head head; 244 } u; 245 unsigned char name[]; 246}; 247 248static inline struct external_name *external_name(struct dentry *dentry) 249{ 250 return container_of(dentry->d_name.name, struct external_name, name[0]); 251} 252 253static void __d_free(struct rcu_head *head) 254{ 255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 256 257 kmem_cache_free(dentry_cache, dentry); 258} 259 260static void __d_free_external(struct rcu_head *head) 261{ 262 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 263 kfree(external_name(dentry)); 264 kmem_cache_free(dentry_cache, dentry); 265} 266 267static inline int dname_external(const struct dentry *dentry) 268{ 269 return dentry->d_name.name != dentry->d_iname; 270} 271 272static inline void __d_set_inode_and_type(struct dentry *dentry, 273 struct inode *inode, 274 unsigned type_flags) 275{ 276 unsigned flags; 277 278 dentry->d_inode = inode; 279 flags = READ_ONCE(dentry->d_flags); 280 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 281 flags |= type_flags; 282 WRITE_ONCE(dentry->d_flags, flags); 283} 284 285static inline void __d_clear_type_and_inode(struct dentry *dentry) 286{ 287 unsigned flags = READ_ONCE(dentry->d_flags); 288 289 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 290 WRITE_ONCE(dentry->d_flags, flags); 291 dentry->d_inode = NULL; 292} 293 294static void dentry_free(struct dentry *dentry) 295{ 296 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 297 if (unlikely(dname_external(dentry))) { 298 struct external_name *p = external_name(dentry); 299 if (likely(atomic_dec_and_test(&p->u.count))) { 300 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 301 return; 302 } 303 } 304 /* if dentry was never visible to RCU, immediate free is OK */ 305 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 306 __d_free(&dentry->d_u.d_rcu); 307 else 308 call_rcu(&dentry->d_u.d_rcu, __d_free); 309} 310 311/** 312 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups 313 * @dentry: the target dentry 314 * After this call, in-progress rcu-walk path lookup will fail. This 315 * should be called after unhashing, and after changing d_inode (if 316 * the dentry has not already been unhashed). 317 */ 318static inline void dentry_rcuwalk_invalidate(struct dentry *dentry) 319{ 320 lockdep_assert_held(&dentry->d_lock); 321 /* Go through am invalidation barrier */ 322 write_seqcount_invalidate(&dentry->d_seq); 323} 324 325/* 326 * Release the dentry's inode, using the filesystem 327 * d_iput() operation if defined. Dentry has no refcount 328 * and is unhashed. 329 */ 330static void dentry_iput(struct dentry * dentry) 331 __releases(dentry->d_lock) 332 __releases(dentry->d_inode->i_lock) 333{ 334 struct inode *inode = dentry->d_inode; 335 if (inode) { 336 __d_clear_type_and_inode(dentry); 337 hlist_del_init(&dentry->d_u.d_alias); 338 spin_unlock(&dentry->d_lock); 339 spin_unlock(&inode->i_lock); 340 if (!inode->i_nlink) 341 fsnotify_inoderemove(inode); 342 if (dentry->d_op && dentry->d_op->d_iput) 343 dentry->d_op->d_iput(dentry, inode); 344 else 345 iput(inode); 346 } else { 347 spin_unlock(&dentry->d_lock); 348 } 349} 350 351/* 352 * Release the dentry's inode, using the filesystem 353 * d_iput() operation if defined. dentry remains in-use. 354 */ 355static void dentry_unlink_inode(struct dentry * dentry) 356 __releases(dentry->d_lock) 357 __releases(dentry->d_inode->i_lock) 358{ 359 struct inode *inode = dentry->d_inode; 360 361 raw_write_seqcount_begin(&dentry->d_seq); 362 __d_clear_type_and_inode(dentry); 363 hlist_del_init(&dentry->d_u.d_alias); 364 raw_write_seqcount_end(&dentry->d_seq); 365 spin_unlock(&dentry->d_lock); 366 spin_unlock(&inode->i_lock); 367 if (!inode->i_nlink) 368 fsnotify_inoderemove(inode); 369 if (dentry->d_op && dentry->d_op->d_iput) 370 dentry->d_op->d_iput(dentry, inode); 371 else 372 iput(inode); 373} 374 375/* 376 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 377 * is in use - which includes both the "real" per-superblock 378 * LRU list _and_ the DCACHE_SHRINK_LIST use. 379 * 380 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 381 * on the shrink list (ie not on the superblock LRU list). 382 * 383 * The per-cpu "nr_dentry_unused" counters are updated with 384 * the DCACHE_LRU_LIST bit. 385 * 386 * These helper functions make sure we always follow the 387 * rules. d_lock must be held by the caller. 388 */ 389#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 390static void d_lru_add(struct dentry *dentry) 391{ 392 D_FLAG_VERIFY(dentry, 0); 393 dentry->d_flags |= DCACHE_LRU_LIST; 394 this_cpu_inc(nr_dentry_unused); 395 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 396} 397 398static void d_lru_del(struct dentry *dentry) 399{ 400 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 401 dentry->d_flags &= ~DCACHE_LRU_LIST; 402 this_cpu_dec(nr_dentry_unused); 403 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 404} 405 406static void d_shrink_del(struct dentry *dentry) 407{ 408 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 409 list_del_init(&dentry->d_lru); 410 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 411 this_cpu_dec(nr_dentry_unused); 412} 413 414static void d_shrink_add(struct dentry *dentry, struct list_head *list) 415{ 416 D_FLAG_VERIFY(dentry, 0); 417 list_add(&dentry->d_lru, list); 418 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 419 this_cpu_inc(nr_dentry_unused); 420} 421 422/* 423 * These can only be called under the global LRU lock, ie during the 424 * callback for freeing the LRU list. "isolate" removes it from the 425 * LRU lists entirely, while shrink_move moves it to the indicated 426 * private list. 427 */ 428static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 429{ 430 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 431 dentry->d_flags &= ~DCACHE_LRU_LIST; 432 this_cpu_dec(nr_dentry_unused); 433 list_lru_isolate(lru, &dentry->d_lru); 434} 435 436static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 437 struct list_head *list) 438{ 439 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 440 dentry->d_flags |= DCACHE_SHRINK_LIST; 441 list_lru_isolate_move(lru, &dentry->d_lru, list); 442} 443 444/* 445 * dentry_lru_(add|del)_list) must be called with d_lock held. 446 */ 447static void dentry_lru_add(struct dentry *dentry) 448{ 449 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 450 d_lru_add(dentry); 451} 452 453/** 454 * d_drop - drop a dentry 455 * @dentry: dentry to drop 456 * 457 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 458 * be found through a VFS lookup any more. Note that this is different from 459 * deleting the dentry - d_delete will try to mark the dentry negative if 460 * possible, giving a successful _negative_ lookup, while d_drop will 461 * just make the cache lookup fail. 462 * 463 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 464 * reason (NFS timeouts or autofs deletes). 465 * 466 * __d_drop requires dentry->d_lock. 467 */ 468void __d_drop(struct dentry *dentry) 469{ 470 if (!d_unhashed(dentry)) { 471 struct hlist_bl_head *b; 472 /* 473 * Hashed dentries are normally on the dentry hashtable, 474 * with the exception of those newly allocated by 475 * d_obtain_alias, which are always IS_ROOT: 476 */ 477 if (unlikely(IS_ROOT(dentry))) 478 b = &dentry->d_sb->s_anon; 479 else 480 b = d_hash(dentry->d_parent, dentry->d_name.hash); 481 482 hlist_bl_lock(b); 483 __hlist_bl_del(&dentry->d_hash); 484 dentry->d_hash.pprev = NULL; 485 hlist_bl_unlock(b); 486 dentry_rcuwalk_invalidate(dentry); 487 } 488} 489EXPORT_SYMBOL(__d_drop); 490 491void d_drop(struct dentry *dentry) 492{ 493 spin_lock(&dentry->d_lock); 494 __d_drop(dentry); 495 spin_unlock(&dentry->d_lock); 496} 497EXPORT_SYMBOL(d_drop); 498 499static void __dentry_kill(struct dentry *dentry) 500{ 501 struct dentry *parent = NULL; 502 bool can_free = true; 503 if (!IS_ROOT(dentry)) 504 parent = dentry->d_parent; 505 506 /* 507 * The dentry is now unrecoverably dead to the world. 508 */ 509 lockref_mark_dead(&dentry->d_lockref); 510 511 /* 512 * inform the fs via d_prune that this dentry is about to be 513 * unhashed and destroyed. 514 */ 515 if (dentry->d_flags & DCACHE_OP_PRUNE) 516 dentry->d_op->d_prune(dentry); 517 518 if (dentry->d_flags & DCACHE_LRU_LIST) { 519 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 520 d_lru_del(dentry); 521 } 522 /* if it was on the hash then remove it */ 523 __d_drop(dentry); 524 __list_del_entry(&dentry->d_child); 525 /* 526 * Inform d_walk() that we are no longer attached to the 527 * dentry tree 528 */ 529 dentry->d_flags |= DCACHE_DENTRY_KILLED; 530 if (parent) 531 spin_unlock(&parent->d_lock); 532 dentry_iput(dentry); 533 /* 534 * dentry_iput drops the locks, at which point nobody (except 535 * transient RCU lookups) can reach this dentry. 536 */ 537 BUG_ON(dentry->d_lockref.count > 0); 538 this_cpu_dec(nr_dentry); 539 if (dentry->d_op && dentry->d_op->d_release) 540 dentry->d_op->d_release(dentry); 541 542 spin_lock(&dentry->d_lock); 543 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 544 dentry->d_flags |= DCACHE_MAY_FREE; 545 can_free = false; 546 } 547 spin_unlock(&dentry->d_lock); 548 if (likely(can_free)) 549 dentry_free(dentry); 550} 551 552/* 553 * Finish off a dentry we've decided to kill. 554 * dentry->d_lock must be held, returns with it unlocked. 555 * If ref is non-zero, then decrement the refcount too. 556 * Returns dentry requiring refcount drop, or NULL if we're done. 557 */ 558static struct dentry *dentry_kill(struct dentry *dentry) 559 __releases(dentry->d_lock) 560{ 561 struct inode *inode = dentry->d_inode; 562 struct dentry *parent = NULL; 563 564 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 565 goto failed; 566 567 if (!IS_ROOT(dentry)) { 568 parent = dentry->d_parent; 569 if (unlikely(!spin_trylock(&parent->d_lock))) { 570 if (inode) 571 spin_unlock(&inode->i_lock); 572 goto failed; 573 } 574 } 575 576 __dentry_kill(dentry); 577 return parent; 578 579failed: 580 spin_unlock(&dentry->d_lock); 581 cpu_relax(); 582 return dentry; /* try again with same dentry */ 583} 584 585static inline struct dentry *lock_parent(struct dentry *dentry) 586{ 587 struct dentry *parent = dentry->d_parent; 588 if (IS_ROOT(dentry)) 589 return NULL; 590 if (unlikely(dentry->d_lockref.count < 0)) 591 return NULL; 592 if (likely(spin_trylock(&parent->d_lock))) 593 return parent; 594 rcu_read_lock(); 595 spin_unlock(&dentry->d_lock); 596again: 597 parent = ACCESS_ONCE(dentry->d_parent); 598 spin_lock(&parent->d_lock); 599 /* 600 * We can't blindly lock dentry until we are sure 601 * that we won't violate the locking order. 602 * Any changes of dentry->d_parent must have 603 * been done with parent->d_lock held, so 604 * spin_lock() above is enough of a barrier 605 * for checking if it's still our child. 606 */ 607 if (unlikely(parent != dentry->d_parent)) { 608 spin_unlock(&parent->d_lock); 609 goto again; 610 } 611 rcu_read_unlock(); 612 if (parent != dentry) 613 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 614 else 615 parent = NULL; 616 return parent; 617} 618 619/* 620 * Try to do a lockless dput(), and return whether that was successful. 621 * 622 * If unsuccessful, we return false, having already taken the dentry lock. 623 * 624 * The caller needs to hold the RCU read lock, so that the dentry is 625 * guaranteed to stay around even if the refcount goes down to zero! 626 */ 627static inline bool fast_dput(struct dentry *dentry) 628{ 629 int ret; 630 unsigned int d_flags; 631 632 /* 633 * If we have a d_op->d_delete() operation, we sould not 634 * let the dentry count go to zero, so use "put_or_lock". 635 */ 636 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 637 return lockref_put_or_lock(&dentry->d_lockref); 638 639 /* 640 * .. otherwise, we can try to just decrement the 641 * lockref optimistically. 642 */ 643 ret = lockref_put_return(&dentry->d_lockref); 644 645 /* 646 * If the lockref_put_return() failed due to the lock being held 647 * by somebody else, the fast path has failed. We will need to 648 * get the lock, and then check the count again. 649 */ 650 if (unlikely(ret < 0)) { 651 spin_lock(&dentry->d_lock); 652 if (dentry->d_lockref.count > 1) { 653 dentry->d_lockref.count--; 654 spin_unlock(&dentry->d_lock); 655 return 1; 656 } 657 return 0; 658 } 659 660 /* 661 * If we weren't the last ref, we're done. 662 */ 663 if (ret) 664 return 1; 665 666 /* 667 * Careful, careful. The reference count went down 668 * to zero, but we don't hold the dentry lock, so 669 * somebody else could get it again, and do another 670 * dput(), and we need to not race with that. 671 * 672 * However, there is a very special and common case 673 * where we don't care, because there is nothing to 674 * do: the dentry is still hashed, it does not have 675 * a 'delete' op, and it's referenced and already on 676 * the LRU list. 677 * 678 * NOTE! Since we aren't locked, these values are 679 * not "stable". However, it is sufficient that at 680 * some point after we dropped the reference the 681 * dentry was hashed and the flags had the proper 682 * value. Other dentry users may have re-gotten 683 * a reference to the dentry and change that, but 684 * our work is done - we can leave the dentry 685 * around with a zero refcount. 686 */ 687 smp_rmb(); 688 d_flags = ACCESS_ONCE(dentry->d_flags); 689 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 690 691 /* Nothing to do? Dropping the reference was all we needed? */ 692 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 693 return 1; 694 695 /* 696 * Not the fast normal case? Get the lock. We've already decremented 697 * the refcount, but we'll need to re-check the situation after 698 * getting the lock. 699 */ 700 spin_lock(&dentry->d_lock); 701 702 /* 703 * Did somebody else grab a reference to it in the meantime, and 704 * we're no longer the last user after all? Alternatively, somebody 705 * else could have killed it and marked it dead. Either way, we 706 * don't need to do anything else. 707 */ 708 if (dentry->d_lockref.count) { 709 spin_unlock(&dentry->d_lock); 710 return 1; 711 } 712 713 /* 714 * Re-get the reference we optimistically dropped. We hold the 715 * lock, and we just tested that it was zero, so we can just 716 * set it to 1. 717 */ 718 dentry->d_lockref.count = 1; 719 return 0; 720} 721 722 723/* 724 * This is dput 725 * 726 * This is complicated by the fact that we do not want to put 727 * dentries that are no longer on any hash chain on the unused 728 * list: we'd much rather just get rid of them immediately. 729 * 730 * However, that implies that we have to traverse the dentry 731 * tree upwards to the parents which might _also_ now be 732 * scheduled for deletion (it may have been only waiting for 733 * its last child to go away). 734 * 735 * This tail recursion is done by hand as we don't want to depend 736 * on the compiler to always get this right (gcc generally doesn't). 737 * Real recursion would eat up our stack space. 738 */ 739 740/* 741 * dput - release a dentry 742 * @dentry: dentry to release 743 * 744 * Release a dentry. This will drop the usage count and if appropriate 745 * call the dentry unlink method as well as removing it from the queues and 746 * releasing its resources. If the parent dentries were scheduled for release 747 * they too may now get deleted. 748 */ 749void dput(struct dentry *dentry) 750{ 751 if (unlikely(!dentry)) 752 return; 753 754repeat: 755 rcu_read_lock(); 756 if (likely(fast_dput(dentry))) { 757 rcu_read_unlock(); 758 return; 759 } 760 761 /* Slow case: now with the dentry lock held */ 762 rcu_read_unlock(); 763 764 /* Unreachable? Get rid of it */ 765 if (unlikely(d_unhashed(dentry))) 766 goto kill_it; 767 768 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 769 goto kill_it; 770 771 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 772 if (dentry->d_op->d_delete(dentry)) 773 goto kill_it; 774 } 775 776 if (!(dentry->d_flags & DCACHE_REFERENCED)) 777 dentry->d_flags |= DCACHE_REFERENCED; 778 dentry_lru_add(dentry); 779 780 dentry->d_lockref.count--; 781 spin_unlock(&dentry->d_lock); 782 return; 783 784kill_it: 785 dentry = dentry_kill(dentry); 786 if (dentry) 787 goto repeat; 788} 789EXPORT_SYMBOL(dput); 790 791 792/* This must be called with d_lock held */ 793static inline void __dget_dlock(struct dentry *dentry) 794{ 795 dentry->d_lockref.count++; 796} 797 798static inline void __dget(struct dentry *dentry) 799{ 800 lockref_get(&dentry->d_lockref); 801} 802 803struct dentry *dget_parent(struct dentry *dentry) 804{ 805 int gotref; 806 struct dentry *ret; 807 808 /* 809 * Do optimistic parent lookup without any 810 * locking. 811 */ 812 rcu_read_lock(); 813 ret = ACCESS_ONCE(dentry->d_parent); 814 gotref = lockref_get_not_zero(&ret->d_lockref); 815 rcu_read_unlock(); 816 if (likely(gotref)) { 817 if (likely(ret == ACCESS_ONCE(dentry->d_parent))) 818 return ret; 819 dput(ret); 820 } 821 822repeat: 823 /* 824 * Don't need rcu_dereference because we re-check it was correct under 825 * the lock. 826 */ 827 rcu_read_lock(); 828 ret = dentry->d_parent; 829 spin_lock(&ret->d_lock); 830 if (unlikely(ret != dentry->d_parent)) { 831 spin_unlock(&ret->d_lock); 832 rcu_read_unlock(); 833 goto repeat; 834 } 835 rcu_read_unlock(); 836 BUG_ON(!ret->d_lockref.count); 837 ret->d_lockref.count++; 838 spin_unlock(&ret->d_lock); 839 return ret; 840} 841EXPORT_SYMBOL(dget_parent); 842 843/** 844 * d_find_alias - grab a hashed alias of inode 845 * @inode: inode in question 846 * 847 * If inode has a hashed alias, or is a directory and has any alias, 848 * acquire the reference to alias and return it. Otherwise return NULL. 849 * Notice that if inode is a directory there can be only one alias and 850 * it can be unhashed only if it has no children, or if it is the root 851 * of a filesystem, or if the directory was renamed and d_revalidate 852 * was the first vfs operation to notice. 853 * 854 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 855 * any other hashed alias over that one. 856 */ 857static struct dentry *__d_find_alias(struct inode *inode) 858{ 859 struct dentry *alias, *discon_alias; 860 861again: 862 discon_alias = NULL; 863 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 864 spin_lock(&alias->d_lock); 865 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 866 if (IS_ROOT(alias) && 867 (alias->d_flags & DCACHE_DISCONNECTED)) { 868 discon_alias = alias; 869 } else { 870 __dget_dlock(alias); 871 spin_unlock(&alias->d_lock); 872 return alias; 873 } 874 } 875 spin_unlock(&alias->d_lock); 876 } 877 if (discon_alias) { 878 alias = discon_alias; 879 spin_lock(&alias->d_lock); 880 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 881 __dget_dlock(alias); 882 spin_unlock(&alias->d_lock); 883 return alias; 884 } 885 spin_unlock(&alias->d_lock); 886 goto again; 887 } 888 return NULL; 889} 890 891struct dentry *d_find_alias(struct inode *inode) 892{ 893 struct dentry *de = NULL; 894 895 if (!hlist_empty(&inode->i_dentry)) { 896 spin_lock(&inode->i_lock); 897 de = __d_find_alias(inode); 898 spin_unlock(&inode->i_lock); 899 } 900 return de; 901} 902EXPORT_SYMBOL(d_find_alias); 903 904/* 905 * Try to kill dentries associated with this inode. 906 * WARNING: you must own a reference to inode. 907 */ 908void d_prune_aliases(struct inode *inode) 909{ 910 struct dentry *dentry; 911restart: 912 spin_lock(&inode->i_lock); 913 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 914 spin_lock(&dentry->d_lock); 915 if (!dentry->d_lockref.count) { 916 struct dentry *parent = lock_parent(dentry); 917 if (likely(!dentry->d_lockref.count)) { 918 __dentry_kill(dentry); 919 dput(parent); 920 goto restart; 921 } 922 if (parent) 923 spin_unlock(&parent->d_lock); 924 } 925 spin_unlock(&dentry->d_lock); 926 } 927 spin_unlock(&inode->i_lock); 928} 929EXPORT_SYMBOL(d_prune_aliases); 930 931static void shrink_dentry_list(struct list_head *list) 932{ 933 struct dentry *dentry, *parent; 934 935 while (!list_empty(list)) { 936 struct inode *inode; 937 dentry = list_entry(list->prev, struct dentry, d_lru); 938 spin_lock(&dentry->d_lock); 939 parent = lock_parent(dentry); 940 941 /* 942 * The dispose list is isolated and dentries are not accounted 943 * to the LRU here, so we can simply remove it from the list 944 * here regardless of whether it is referenced or not. 945 */ 946 d_shrink_del(dentry); 947 948 /* 949 * We found an inuse dentry which was not removed from 950 * the LRU because of laziness during lookup. Do not free it. 951 */ 952 if (dentry->d_lockref.count > 0) { 953 spin_unlock(&dentry->d_lock); 954 if (parent) 955 spin_unlock(&parent->d_lock); 956 continue; 957 } 958 959 960 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) { 961 bool can_free = dentry->d_flags & DCACHE_MAY_FREE; 962 spin_unlock(&dentry->d_lock); 963 if (parent) 964 spin_unlock(&parent->d_lock); 965 if (can_free) 966 dentry_free(dentry); 967 continue; 968 } 969 970 inode = dentry->d_inode; 971 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 972 d_shrink_add(dentry, list); 973 spin_unlock(&dentry->d_lock); 974 if (parent) 975 spin_unlock(&parent->d_lock); 976 continue; 977 } 978 979 __dentry_kill(dentry); 980 981 /* 982 * We need to prune ancestors too. This is necessary to prevent 983 * quadratic behavior of shrink_dcache_parent(), but is also 984 * expected to be beneficial in reducing dentry cache 985 * fragmentation. 986 */ 987 dentry = parent; 988 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) { 989 parent = lock_parent(dentry); 990 if (dentry->d_lockref.count != 1) { 991 dentry->d_lockref.count--; 992 spin_unlock(&dentry->d_lock); 993 if (parent) 994 spin_unlock(&parent->d_lock); 995 break; 996 } 997 inode = dentry->d_inode; /* can't be NULL */ 998 if (unlikely(!spin_trylock(&inode->i_lock))) { 999 spin_unlock(&dentry->d_lock); 1000 if (parent) 1001 spin_unlock(&parent->d_lock); 1002 cpu_relax(); 1003 continue; 1004 } 1005 __dentry_kill(dentry); 1006 dentry = parent; 1007 } 1008 } 1009} 1010 1011static enum lru_status dentry_lru_isolate(struct list_head *item, 1012 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1013{ 1014 struct list_head *freeable = arg; 1015 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1016 1017 1018 /* 1019 * we are inverting the lru lock/dentry->d_lock here, 1020 * so use a trylock. If we fail to get the lock, just skip 1021 * it 1022 */ 1023 if (!spin_trylock(&dentry->d_lock)) 1024 return LRU_SKIP; 1025 1026 /* 1027 * Referenced dentries are still in use. If they have active 1028 * counts, just remove them from the LRU. Otherwise give them 1029 * another pass through the LRU. 1030 */ 1031 if (dentry->d_lockref.count) { 1032 d_lru_isolate(lru, dentry); 1033 spin_unlock(&dentry->d_lock); 1034 return LRU_REMOVED; 1035 } 1036 1037 if (dentry->d_flags & DCACHE_REFERENCED) { 1038 dentry->d_flags &= ~DCACHE_REFERENCED; 1039 spin_unlock(&dentry->d_lock); 1040 1041 /* 1042 * The list move itself will be made by the common LRU code. At 1043 * this point, we've dropped the dentry->d_lock but keep the 1044 * lru lock. This is safe to do, since every list movement is 1045 * protected by the lru lock even if both locks are held. 1046 * 1047 * This is guaranteed by the fact that all LRU management 1048 * functions are intermediated by the LRU API calls like 1049 * list_lru_add and list_lru_del. List movement in this file 1050 * only ever occur through this functions or through callbacks 1051 * like this one, that are called from the LRU API. 1052 * 1053 * The only exceptions to this are functions like 1054 * shrink_dentry_list, and code that first checks for the 1055 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1056 * operating only with stack provided lists after they are 1057 * properly isolated from the main list. It is thus, always a 1058 * local access. 1059 */ 1060 return LRU_ROTATE; 1061 } 1062 1063 d_lru_shrink_move(lru, dentry, freeable); 1064 spin_unlock(&dentry->d_lock); 1065 1066 return LRU_REMOVED; 1067} 1068 1069/** 1070 * prune_dcache_sb - shrink the dcache 1071 * @sb: superblock 1072 * @sc: shrink control, passed to list_lru_shrink_walk() 1073 * 1074 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1075 * is done when we need more memory and called from the superblock shrinker 1076 * function. 1077 * 1078 * This function may fail to free any resources if all the dentries are in 1079 * use. 1080 */ 1081long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1082{ 1083 LIST_HEAD(dispose); 1084 long freed; 1085 1086 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1087 dentry_lru_isolate, &dispose); 1088 shrink_dentry_list(&dispose); 1089 return freed; 1090} 1091 1092static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1093 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1094{ 1095 struct list_head *freeable = arg; 1096 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1097 1098 /* 1099 * we are inverting the lru lock/dentry->d_lock here, 1100 * so use a trylock. If we fail to get the lock, just skip 1101 * it 1102 */ 1103 if (!spin_trylock(&dentry->d_lock)) 1104 return LRU_SKIP; 1105 1106 d_lru_shrink_move(lru, dentry, freeable); 1107 spin_unlock(&dentry->d_lock); 1108 1109 return LRU_REMOVED; 1110} 1111 1112 1113/** 1114 * shrink_dcache_sb - shrink dcache for a superblock 1115 * @sb: superblock 1116 * 1117 * Shrink the dcache for the specified super block. This is used to free 1118 * the dcache before unmounting a file system. 1119 */ 1120void shrink_dcache_sb(struct super_block *sb) 1121{ 1122 long freed; 1123 1124 do { 1125 LIST_HEAD(dispose); 1126 1127 freed = list_lru_walk(&sb->s_dentry_lru, 1128 dentry_lru_isolate_shrink, &dispose, UINT_MAX); 1129 1130 this_cpu_sub(nr_dentry_unused, freed); 1131 shrink_dentry_list(&dispose); 1132 } while (freed > 0); 1133} 1134EXPORT_SYMBOL(shrink_dcache_sb); 1135 1136/** 1137 * enum d_walk_ret - action to talke during tree walk 1138 * @D_WALK_CONTINUE: contrinue walk 1139 * @D_WALK_QUIT: quit walk 1140 * @D_WALK_NORETRY: quit when retry is needed 1141 * @D_WALK_SKIP: skip this dentry and its children 1142 */ 1143enum d_walk_ret { 1144 D_WALK_CONTINUE, 1145 D_WALK_QUIT, 1146 D_WALK_NORETRY, 1147 D_WALK_SKIP, 1148}; 1149 1150/** 1151 * d_walk - walk the dentry tree 1152 * @parent: start of walk 1153 * @data: data passed to @enter() and @finish() 1154 * @enter: callback when first entering the dentry 1155 * @finish: callback when successfully finished the walk 1156 * 1157 * The @enter() and @finish() callbacks are called with d_lock held. 1158 */ 1159static void d_walk(struct dentry *parent, void *data, 1160 enum d_walk_ret (*enter)(void *, struct dentry *), 1161 void (*finish)(void *)) 1162{ 1163 struct dentry *this_parent; 1164 struct list_head *next; 1165 unsigned seq = 0; 1166 enum d_walk_ret ret; 1167 bool retry = true; 1168 1169again: 1170 read_seqbegin_or_lock(&rename_lock, &seq); 1171 this_parent = parent; 1172 spin_lock(&this_parent->d_lock); 1173 1174 ret = enter(data, this_parent); 1175 switch (ret) { 1176 case D_WALK_CONTINUE: 1177 break; 1178 case D_WALK_QUIT: 1179 case D_WALK_SKIP: 1180 goto out_unlock; 1181 case D_WALK_NORETRY: 1182 retry = false; 1183 break; 1184 } 1185repeat: 1186 next = this_parent->d_subdirs.next; 1187resume: 1188 while (next != &this_parent->d_subdirs) { 1189 struct list_head *tmp = next; 1190 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1191 next = tmp->next; 1192 1193 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1194 1195 ret = enter(data, dentry); 1196 switch (ret) { 1197 case D_WALK_CONTINUE: 1198 break; 1199 case D_WALK_QUIT: 1200 spin_unlock(&dentry->d_lock); 1201 goto out_unlock; 1202 case D_WALK_NORETRY: 1203 retry = false; 1204 break; 1205 case D_WALK_SKIP: 1206 spin_unlock(&dentry->d_lock); 1207 continue; 1208 } 1209 1210 if (!list_empty(&dentry->d_subdirs)) { 1211 spin_unlock(&this_parent->d_lock); 1212 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1213 this_parent = dentry; 1214 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1215 goto repeat; 1216 } 1217 spin_unlock(&dentry->d_lock); 1218 } 1219 /* 1220 * All done at this level ... ascend and resume the search. 1221 */ 1222 rcu_read_lock(); 1223ascend: 1224 if (this_parent != parent) { 1225 struct dentry *child = this_parent; 1226 this_parent = child->d_parent; 1227 1228 spin_unlock(&child->d_lock); 1229 spin_lock(&this_parent->d_lock); 1230 1231 /* might go back up the wrong parent if we have had a rename. */ 1232 if (need_seqretry(&rename_lock, seq)) 1233 goto rename_retry; 1234 /* go into the first sibling still alive */ 1235 do { 1236 next = child->d_child.next; 1237 if (next == &this_parent->d_subdirs) 1238 goto ascend; 1239 child = list_entry(next, struct dentry, d_child); 1240 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1241 rcu_read_unlock(); 1242 goto resume; 1243 } 1244 if (need_seqretry(&rename_lock, seq)) 1245 goto rename_retry; 1246 rcu_read_unlock(); 1247 if (finish) 1248 finish(data); 1249 1250out_unlock: 1251 spin_unlock(&this_parent->d_lock); 1252 done_seqretry(&rename_lock, seq); 1253 return; 1254 1255rename_retry: 1256 spin_unlock(&this_parent->d_lock); 1257 rcu_read_unlock(); 1258 BUG_ON(seq & 1); 1259 if (!retry) 1260 return; 1261 seq = 1; 1262 goto again; 1263} 1264 1265/* 1266 * Search for at least 1 mount point in the dentry's subdirs. 1267 * We descend to the next level whenever the d_subdirs 1268 * list is non-empty and continue searching. 1269 */ 1270 1271static enum d_walk_ret check_mount(void *data, struct dentry *dentry) 1272{ 1273 int *ret = data; 1274 if (d_mountpoint(dentry)) { 1275 *ret = 1; 1276 return D_WALK_QUIT; 1277 } 1278 return D_WALK_CONTINUE; 1279} 1280 1281/** 1282 * have_submounts - check for mounts over a dentry 1283 * @parent: dentry to check. 1284 * 1285 * Return true if the parent or its subdirectories contain 1286 * a mount point 1287 */ 1288int have_submounts(struct dentry *parent) 1289{ 1290 int ret = 0; 1291 1292 d_walk(parent, &ret, check_mount, NULL); 1293 1294 return ret; 1295} 1296EXPORT_SYMBOL(have_submounts); 1297 1298/* 1299 * Called by mount code to set a mountpoint and check if the mountpoint is 1300 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1301 * subtree can become unreachable). 1302 * 1303 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1304 * this reason take rename_lock and d_lock on dentry and ancestors. 1305 */ 1306int d_set_mounted(struct dentry *dentry) 1307{ 1308 struct dentry *p; 1309 int ret = -ENOENT; 1310 write_seqlock(&rename_lock); 1311 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1312 /* Need exclusion wrt. d_invalidate() */ 1313 spin_lock(&p->d_lock); 1314 if (unlikely(d_unhashed(p))) { 1315 spin_unlock(&p->d_lock); 1316 goto out; 1317 } 1318 spin_unlock(&p->d_lock); 1319 } 1320 spin_lock(&dentry->d_lock); 1321 if (!d_unlinked(dentry)) { 1322 dentry->d_flags |= DCACHE_MOUNTED; 1323 ret = 0; 1324 } 1325 spin_unlock(&dentry->d_lock); 1326out: 1327 write_sequnlock(&rename_lock); 1328 return ret; 1329} 1330 1331/* 1332 * Search the dentry child list of the specified parent, 1333 * and move any unused dentries to the end of the unused 1334 * list for prune_dcache(). We descend to the next level 1335 * whenever the d_subdirs list is non-empty and continue 1336 * searching. 1337 * 1338 * It returns zero iff there are no unused children, 1339 * otherwise it returns the number of children moved to 1340 * the end of the unused list. This may not be the total 1341 * number of unused children, because select_parent can 1342 * drop the lock and return early due to latency 1343 * constraints. 1344 */ 1345 1346struct select_data { 1347 struct dentry *start; 1348 struct list_head dispose; 1349 int found; 1350}; 1351 1352static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1353{ 1354 struct select_data *data = _data; 1355 enum d_walk_ret ret = D_WALK_CONTINUE; 1356 1357 if (data->start == dentry) 1358 goto out; 1359 1360 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1361 data->found++; 1362 } else { 1363 if (dentry->d_flags & DCACHE_LRU_LIST) 1364 d_lru_del(dentry); 1365 if (!dentry->d_lockref.count) { 1366 d_shrink_add(dentry, &data->dispose); 1367 data->found++; 1368 } 1369 } 1370 /* 1371 * We can return to the caller if we have found some (this 1372 * ensures forward progress). We'll be coming back to find 1373 * the rest. 1374 */ 1375 if (!list_empty(&data->dispose)) 1376 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1377out: 1378 return ret; 1379} 1380 1381/** 1382 * shrink_dcache_parent - prune dcache 1383 * @parent: parent of entries to prune 1384 * 1385 * Prune the dcache to remove unused children of the parent dentry. 1386 */ 1387void shrink_dcache_parent(struct dentry *parent) 1388{ 1389 for (;;) { 1390 struct select_data data; 1391 1392 INIT_LIST_HEAD(&data.dispose); 1393 data.start = parent; 1394 data.found = 0; 1395 1396 d_walk(parent, &data, select_collect, NULL); 1397 if (!data.found) 1398 break; 1399 1400 shrink_dentry_list(&data.dispose); 1401 cond_resched(); 1402 } 1403} 1404EXPORT_SYMBOL(shrink_dcache_parent); 1405 1406static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1407{ 1408 /* it has busy descendents; complain about those instead */ 1409 if (!list_empty(&dentry->d_subdirs)) 1410 return D_WALK_CONTINUE; 1411 1412 /* root with refcount 1 is fine */ 1413 if (dentry == _data && dentry->d_lockref.count == 1) 1414 return D_WALK_CONTINUE; 1415 1416 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1417 " still in use (%d) [unmount of %s %s]\n", 1418 dentry, 1419 dentry->d_inode ? 1420 dentry->d_inode->i_ino : 0UL, 1421 dentry, 1422 dentry->d_lockref.count, 1423 dentry->d_sb->s_type->name, 1424 dentry->d_sb->s_id); 1425 WARN_ON(1); 1426 return D_WALK_CONTINUE; 1427} 1428 1429static void do_one_tree(struct dentry *dentry) 1430{ 1431 shrink_dcache_parent(dentry); 1432 d_walk(dentry, dentry, umount_check, NULL); 1433 d_drop(dentry); 1434 dput(dentry); 1435} 1436 1437/* 1438 * destroy the dentries attached to a superblock on unmounting 1439 */ 1440void shrink_dcache_for_umount(struct super_block *sb) 1441{ 1442 struct dentry *dentry; 1443 1444 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1445 1446 dentry = sb->s_root; 1447 sb->s_root = NULL; 1448 do_one_tree(dentry); 1449 1450 while (!hlist_bl_empty(&sb->s_anon)) { 1451 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash)); 1452 do_one_tree(dentry); 1453 } 1454} 1455 1456struct detach_data { 1457 struct select_data select; 1458 struct dentry *mountpoint; 1459}; 1460static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry) 1461{ 1462 struct detach_data *data = _data; 1463 1464 if (d_mountpoint(dentry)) { 1465 __dget_dlock(dentry); 1466 data->mountpoint = dentry; 1467 return D_WALK_QUIT; 1468 } 1469 1470 return select_collect(&data->select, dentry); 1471} 1472 1473static void check_and_drop(void *_data) 1474{ 1475 struct detach_data *data = _data; 1476 1477 if (!data->mountpoint && !data->select.found) 1478 __d_drop(data->select.start); 1479} 1480 1481/** 1482 * d_invalidate - detach submounts, prune dcache, and drop 1483 * @dentry: dentry to invalidate (aka detach, prune and drop) 1484 * 1485 * no dcache lock. 1486 * 1487 * The final d_drop is done as an atomic operation relative to 1488 * rename_lock ensuring there are no races with d_set_mounted. This 1489 * ensures there are no unhashed dentries on the path to a mountpoint. 1490 */ 1491void d_invalidate(struct dentry *dentry) 1492{ 1493 /* 1494 * If it's already been dropped, return OK. 1495 */ 1496 spin_lock(&dentry->d_lock); 1497 if (d_unhashed(dentry)) { 1498 spin_unlock(&dentry->d_lock); 1499 return; 1500 } 1501 spin_unlock(&dentry->d_lock); 1502 1503 /* Negative dentries can be dropped without further checks */ 1504 if (!dentry->d_inode) { 1505 d_drop(dentry); 1506 return; 1507 } 1508 1509 for (;;) { 1510 struct detach_data data; 1511 1512 data.mountpoint = NULL; 1513 INIT_LIST_HEAD(&data.select.dispose); 1514 data.select.start = dentry; 1515 data.select.found = 0; 1516 1517 d_walk(dentry, &data, detach_and_collect, check_and_drop); 1518 1519 if (data.select.found) 1520 shrink_dentry_list(&data.select.dispose); 1521 1522 if (data.mountpoint) { 1523 detach_mounts(data.mountpoint); 1524 dput(data.mountpoint); 1525 } 1526 1527 if (!data.mountpoint && !data.select.found) 1528 break; 1529 1530 cond_resched(); 1531 } 1532} 1533EXPORT_SYMBOL(d_invalidate); 1534 1535/** 1536 * __d_alloc - allocate a dcache entry 1537 * @sb: filesystem it will belong to 1538 * @name: qstr of the name 1539 * 1540 * Allocates a dentry. It returns %NULL if there is insufficient memory 1541 * available. On a success the dentry is returned. The name passed in is 1542 * copied and the copy passed in may be reused after this call. 1543 */ 1544 1545struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1546{ 1547 struct dentry *dentry; 1548 char *dname; 1549 1550 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1551 if (!dentry) 1552 return NULL; 1553 1554 /* 1555 * We guarantee that the inline name is always NUL-terminated. 1556 * This way the memcpy() done by the name switching in rename 1557 * will still always have a NUL at the end, even if we might 1558 * be overwriting an internal NUL character 1559 */ 1560 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1561 if (name->len > DNAME_INLINE_LEN-1) { 1562 size_t size = offsetof(struct external_name, name[1]); 1563 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL); 1564 if (!p) { 1565 kmem_cache_free(dentry_cache, dentry); 1566 return NULL; 1567 } 1568 atomic_set(&p->u.count, 1); 1569 dname = p->name; 1570 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS)) 1571 kasan_unpoison_shadow(dname, 1572 round_up(name->len + 1, sizeof(unsigned long))); 1573 } else { 1574 dname = dentry->d_iname; 1575 } 1576 1577 dentry->d_name.len = name->len; 1578 dentry->d_name.hash = name->hash; 1579 memcpy(dname, name->name, name->len); 1580 dname[name->len] = 0; 1581 1582 /* Make sure we always see the terminating NUL character */ 1583 smp_wmb(); 1584 dentry->d_name.name = dname; 1585 1586 dentry->d_lockref.count = 1; 1587 dentry->d_flags = 0; 1588 spin_lock_init(&dentry->d_lock); 1589 seqcount_init(&dentry->d_seq); 1590 dentry->d_inode = NULL; 1591 dentry->d_parent = dentry; 1592 dentry->d_sb = sb; 1593 dentry->d_op = NULL; 1594 dentry->d_fsdata = NULL; 1595 INIT_HLIST_BL_NODE(&dentry->d_hash); 1596 INIT_LIST_HEAD(&dentry->d_lru); 1597 INIT_LIST_HEAD(&dentry->d_subdirs); 1598 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1599 INIT_LIST_HEAD(&dentry->d_child); 1600 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1601 1602 this_cpu_inc(nr_dentry); 1603 1604 return dentry; 1605} 1606 1607/** 1608 * d_alloc - allocate a dcache entry 1609 * @parent: parent of entry to allocate 1610 * @name: qstr of the name 1611 * 1612 * Allocates a dentry. It returns %NULL if there is insufficient memory 1613 * available. On a success the dentry is returned. The name passed in is 1614 * copied and the copy passed in may be reused after this call. 1615 */ 1616struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1617{ 1618 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1619 if (!dentry) 1620 return NULL; 1621 dentry->d_flags |= DCACHE_RCUACCESS; 1622 spin_lock(&parent->d_lock); 1623 /* 1624 * don't need child lock because it is not subject 1625 * to concurrency here 1626 */ 1627 __dget_dlock(parent); 1628 dentry->d_parent = parent; 1629 list_add(&dentry->d_child, &parent->d_subdirs); 1630 spin_unlock(&parent->d_lock); 1631 1632 return dentry; 1633} 1634EXPORT_SYMBOL(d_alloc); 1635 1636/** 1637 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1638 * @sb: the superblock 1639 * @name: qstr of the name 1640 * 1641 * For a filesystem that just pins its dentries in memory and never 1642 * performs lookups at all, return an unhashed IS_ROOT dentry. 1643 */ 1644struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1645{ 1646 return __d_alloc(sb, name); 1647} 1648EXPORT_SYMBOL(d_alloc_pseudo); 1649 1650struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1651{ 1652 struct qstr q; 1653 1654 q.name = name; 1655 q.len = strlen(name); 1656 q.hash = full_name_hash(q.name, q.len); 1657 return d_alloc(parent, &q); 1658} 1659EXPORT_SYMBOL(d_alloc_name); 1660 1661void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1662{ 1663 WARN_ON_ONCE(dentry->d_op); 1664 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1665 DCACHE_OP_COMPARE | 1666 DCACHE_OP_REVALIDATE | 1667 DCACHE_OP_WEAK_REVALIDATE | 1668 DCACHE_OP_DELETE | 1669 DCACHE_OP_SELECT_INODE | 1670 DCACHE_OP_REAL)); 1671 dentry->d_op = op; 1672 if (!op) 1673 return; 1674 if (op->d_hash) 1675 dentry->d_flags |= DCACHE_OP_HASH; 1676 if (op->d_compare) 1677 dentry->d_flags |= DCACHE_OP_COMPARE; 1678 if (op->d_revalidate) 1679 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1680 if (op->d_weak_revalidate) 1681 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1682 if (op->d_delete) 1683 dentry->d_flags |= DCACHE_OP_DELETE; 1684 if (op->d_prune) 1685 dentry->d_flags |= DCACHE_OP_PRUNE; 1686 if (op->d_select_inode) 1687 dentry->d_flags |= DCACHE_OP_SELECT_INODE; 1688 if (op->d_real) 1689 dentry->d_flags |= DCACHE_OP_REAL; 1690 1691} 1692EXPORT_SYMBOL(d_set_d_op); 1693 1694 1695/* 1696 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1697 * @dentry - The dentry to mark 1698 * 1699 * Mark a dentry as falling through to the lower layer (as set with 1700 * d_pin_lower()). This flag may be recorded on the medium. 1701 */ 1702void d_set_fallthru(struct dentry *dentry) 1703{ 1704 spin_lock(&dentry->d_lock); 1705 dentry->d_flags |= DCACHE_FALLTHRU; 1706 spin_unlock(&dentry->d_lock); 1707} 1708EXPORT_SYMBOL(d_set_fallthru); 1709 1710static unsigned d_flags_for_inode(struct inode *inode) 1711{ 1712 unsigned add_flags = DCACHE_REGULAR_TYPE; 1713 1714 if (!inode) 1715 return DCACHE_MISS_TYPE; 1716 1717 if (S_ISDIR(inode->i_mode)) { 1718 add_flags = DCACHE_DIRECTORY_TYPE; 1719 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1720 if (unlikely(!inode->i_op->lookup)) 1721 add_flags = DCACHE_AUTODIR_TYPE; 1722 else 1723 inode->i_opflags |= IOP_LOOKUP; 1724 } 1725 goto type_determined; 1726 } 1727 1728 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1729 if (unlikely(inode->i_op->follow_link)) { 1730 add_flags = DCACHE_SYMLINK_TYPE; 1731 goto type_determined; 1732 } 1733 inode->i_opflags |= IOP_NOFOLLOW; 1734 } 1735 1736 if (unlikely(!S_ISREG(inode->i_mode))) 1737 add_flags = DCACHE_SPECIAL_TYPE; 1738 1739type_determined: 1740 if (unlikely(IS_AUTOMOUNT(inode))) 1741 add_flags |= DCACHE_NEED_AUTOMOUNT; 1742 return add_flags; 1743} 1744 1745static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1746{ 1747 unsigned add_flags = d_flags_for_inode(inode); 1748 1749 spin_lock(&dentry->d_lock); 1750 if (inode) 1751 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1752 raw_write_seqcount_begin(&dentry->d_seq); 1753 __d_set_inode_and_type(dentry, inode, add_flags); 1754 raw_write_seqcount_end(&dentry->d_seq); 1755 spin_unlock(&dentry->d_lock); 1756 fsnotify_d_instantiate(dentry, inode); 1757} 1758 1759/** 1760 * d_instantiate - fill in inode information for a dentry 1761 * @entry: dentry to complete 1762 * @inode: inode to attach to this dentry 1763 * 1764 * Fill in inode information in the entry. 1765 * 1766 * This turns negative dentries into productive full members 1767 * of society. 1768 * 1769 * NOTE! This assumes that the inode count has been incremented 1770 * (or otherwise set) by the caller to indicate that it is now 1771 * in use by the dcache. 1772 */ 1773 1774void d_instantiate(struct dentry *entry, struct inode * inode) 1775{ 1776 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1777 if (inode) 1778 spin_lock(&inode->i_lock); 1779 __d_instantiate(entry, inode); 1780 if (inode) 1781 spin_unlock(&inode->i_lock); 1782 security_d_instantiate(entry, inode); 1783} 1784EXPORT_SYMBOL(d_instantiate); 1785 1786/** 1787 * d_instantiate_unique - instantiate a non-aliased dentry 1788 * @entry: dentry to instantiate 1789 * @inode: inode to attach to this dentry 1790 * 1791 * Fill in inode information in the entry. On success, it returns NULL. 1792 * If an unhashed alias of "entry" already exists, then we return the 1793 * aliased dentry instead and drop one reference to inode. 1794 * 1795 * Note that in order to avoid conflicts with rename() etc, the caller 1796 * had better be holding the parent directory semaphore. 1797 * 1798 * This also assumes that the inode count has been incremented 1799 * (or otherwise set) by the caller to indicate that it is now 1800 * in use by the dcache. 1801 */ 1802static struct dentry *__d_instantiate_unique(struct dentry *entry, 1803 struct inode *inode) 1804{ 1805 struct dentry *alias; 1806 int len = entry->d_name.len; 1807 const char *name = entry->d_name.name; 1808 unsigned int hash = entry->d_name.hash; 1809 1810 if (!inode) { 1811 __d_instantiate(entry, NULL); 1812 return NULL; 1813 } 1814 1815 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1816 /* 1817 * Don't need alias->d_lock here, because aliases with 1818 * d_parent == entry->d_parent are not subject to name or 1819 * parent changes, because the parent inode i_mutex is held. 1820 */ 1821 if (alias->d_name.hash != hash) 1822 continue; 1823 if (alias->d_parent != entry->d_parent) 1824 continue; 1825 if (alias->d_name.len != len) 1826 continue; 1827 if (dentry_cmp(alias, name, len)) 1828 continue; 1829 __dget(alias); 1830 return alias; 1831 } 1832 1833 __d_instantiate(entry, inode); 1834 return NULL; 1835} 1836 1837struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) 1838{ 1839 struct dentry *result; 1840 1841 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1842 1843 if (inode) 1844 spin_lock(&inode->i_lock); 1845 result = __d_instantiate_unique(entry, inode); 1846 if (inode) 1847 spin_unlock(&inode->i_lock); 1848 1849 if (!result) { 1850 security_d_instantiate(entry, inode); 1851 return NULL; 1852 } 1853 1854 BUG_ON(!d_unhashed(result)); 1855 iput(inode); 1856 return result; 1857} 1858 1859EXPORT_SYMBOL(d_instantiate_unique); 1860 1861/** 1862 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1863 * @entry: dentry to complete 1864 * @inode: inode to attach to this dentry 1865 * 1866 * Fill in inode information in the entry. If a directory alias is found, then 1867 * return an error (and drop inode). Together with d_materialise_unique() this 1868 * guarantees that a directory inode may never have more than one alias. 1869 */ 1870int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1871{ 1872 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1873 1874 spin_lock(&inode->i_lock); 1875 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1876 spin_unlock(&inode->i_lock); 1877 iput(inode); 1878 return -EBUSY; 1879 } 1880 __d_instantiate(entry, inode); 1881 spin_unlock(&inode->i_lock); 1882 security_d_instantiate(entry, inode); 1883 1884 return 0; 1885} 1886EXPORT_SYMBOL(d_instantiate_no_diralias); 1887 1888struct dentry *d_make_root(struct inode *root_inode) 1889{ 1890 struct dentry *res = NULL; 1891 1892 if (root_inode) { 1893 static const struct qstr name = QSTR_INIT("/", 1); 1894 1895 res = __d_alloc(root_inode->i_sb, &name); 1896 if (res) 1897 d_instantiate(res, root_inode); 1898 else 1899 iput(root_inode); 1900 } 1901 return res; 1902} 1903EXPORT_SYMBOL(d_make_root); 1904 1905static struct dentry * __d_find_any_alias(struct inode *inode) 1906{ 1907 struct dentry *alias; 1908 1909 if (hlist_empty(&inode->i_dentry)) 1910 return NULL; 1911 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 1912 __dget(alias); 1913 return alias; 1914} 1915 1916/** 1917 * d_find_any_alias - find any alias for a given inode 1918 * @inode: inode to find an alias for 1919 * 1920 * If any aliases exist for the given inode, take and return a 1921 * reference for one of them. If no aliases exist, return %NULL. 1922 */ 1923struct dentry *d_find_any_alias(struct inode *inode) 1924{ 1925 struct dentry *de; 1926 1927 spin_lock(&inode->i_lock); 1928 de = __d_find_any_alias(inode); 1929 spin_unlock(&inode->i_lock); 1930 return de; 1931} 1932EXPORT_SYMBOL(d_find_any_alias); 1933 1934static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected) 1935{ 1936 static const struct qstr anonstring = QSTR_INIT("/", 1); 1937 struct dentry *tmp; 1938 struct dentry *res; 1939 unsigned add_flags; 1940 1941 if (!inode) 1942 return ERR_PTR(-ESTALE); 1943 if (IS_ERR(inode)) 1944 return ERR_CAST(inode); 1945 1946 res = d_find_any_alias(inode); 1947 if (res) 1948 goto out_iput; 1949 1950 tmp = __d_alloc(inode->i_sb, &anonstring); 1951 if (!tmp) { 1952 res = ERR_PTR(-ENOMEM); 1953 goto out_iput; 1954 } 1955 1956 spin_lock(&inode->i_lock); 1957 res = __d_find_any_alias(inode); 1958 if (res) { 1959 spin_unlock(&inode->i_lock); 1960 dput(tmp); 1961 goto out_iput; 1962 } 1963 1964 /* attach a disconnected dentry */ 1965 add_flags = d_flags_for_inode(inode); 1966 1967 if (disconnected) 1968 add_flags |= DCACHE_DISCONNECTED; 1969 1970 spin_lock(&tmp->d_lock); 1971 __d_set_inode_and_type(tmp, inode, add_flags); 1972 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry); 1973 hlist_bl_lock(&tmp->d_sb->s_anon); 1974 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1975 hlist_bl_unlock(&tmp->d_sb->s_anon); 1976 spin_unlock(&tmp->d_lock); 1977 spin_unlock(&inode->i_lock); 1978 security_d_instantiate(tmp, inode); 1979 1980 return tmp; 1981 1982 out_iput: 1983 if (res && !IS_ERR(res)) 1984 security_d_instantiate(res, inode); 1985 iput(inode); 1986 return res; 1987} 1988 1989/** 1990 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1991 * @inode: inode to allocate the dentry for 1992 * 1993 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1994 * similar open by handle operations. The returned dentry may be anonymous, 1995 * or may have a full name (if the inode was already in the cache). 1996 * 1997 * When called on a directory inode, we must ensure that the inode only ever 1998 * has one dentry. If a dentry is found, that is returned instead of 1999 * allocating a new one. 2000 * 2001 * On successful return, the reference to the inode has been transferred 2002 * to the dentry. In case of an error the reference on the inode is released. 2003 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2004 * be passed in and the error will be propagated to the return value, 2005 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2006 */ 2007struct dentry *d_obtain_alias(struct inode *inode) 2008{ 2009 return __d_obtain_alias(inode, 1); 2010} 2011EXPORT_SYMBOL(d_obtain_alias); 2012 2013/** 2014 * d_obtain_root - find or allocate a dentry for a given inode 2015 * @inode: inode to allocate the dentry for 2016 * 2017 * Obtain an IS_ROOT dentry for the root of a filesystem. 2018 * 2019 * We must ensure that directory inodes only ever have one dentry. If a 2020 * dentry is found, that is returned instead of allocating a new one. 2021 * 2022 * On successful return, the reference to the inode has been transferred 2023 * to the dentry. In case of an error the reference on the inode is 2024 * released. A %NULL or IS_ERR inode may be passed in and will be the 2025 * error will be propagate to the return value, with a %NULL @inode 2026 * replaced by ERR_PTR(-ESTALE). 2027 */ 2028struct dentry *d_obtain_root(struct inode *inode) 2029{ 2030 return __d_obtain_alias(inode, 0); 2031} 2032EXPORT_SYMBOL(d_obtain_root); 2033 2034/** 2035 * d_add_ci - lookup or allocate new dentry with case-exact name 2036 * @inode: the inode case-insensitive lookup has found 2037 * @dentry: the negative dentry that was passed to the parent's lookup func 2038 * @name: the case-exact name to be associated with the returned dentry 2039 * 2040 * This is to avoid filling the dcache with case-insensitive names to the 2041 * same inode, only the actual correct case is stored in the dcache for 2042 * case-insensitive filesystems. 2043 * 2044 * For a case-insensitive lookup match and if the the case-exact dentry 2045 * already exists in in the dcache, use it and return it. 2046 * 2047 * If no entry exists with the exact case name, allocate new dentry with 2048 * the exact case, and return the spliced entry. 2049 */ 2050struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2051 struct qstr *name) 2052{ 2053 struct dentry *found; 2054 struct dentry *new; 2055 2056 /* 2057 * First check if a dentry matching the name already exists, 2058 * if not go ahead and create it now. 2059 */ 2060 found = d_hash_and_lookup(dentry->d_parent, name); 2061 if (!found) { 2062 new = d_alloc(dentry->d_parent, name); 2063 if (!new) { 2064 found = ERR_PTR(-ENOMEM); 2065 } else { 2066 found = d_splice_alias(inode, new); 2067 if (found) { 2068 dput(new); 2069 return found; 2070 } 2071 return new; 2072 } 2073 } 2074 iput(inode); 2075 return found; 2076} 2077EXPORT_SYMBOL(d_add_ci); 2078 2079/* 2080 * Do the slow-case of the dentry name compare. 2081 * 2082 * Unlike the dentry_cmp() function, we need to atomically 2083 * load the name and length information, so that the 2084 * filesystem can rely on them, and can use the 'name' and 2085 * 'len' information without worrying about walking off the 2086 * end of memory etc. 2087 * 2088 * Thus the read_seqcount_retry() and the "duplicate" info 2089 * in arguments (the low-level filesystem should not look 2090 * at the dentry inode or name contents directly, since 2091 * rename can change them while we're in RCU mode). 2092 */ 2093enum slow_d_compare { 2094 D_COMP_OK, 2095 D_COMP_NOMATCH, 2096 D_COMP_SEQRETRY, 2097}; 2098 2099static noinline enum slow_d_compare slow_dentry_cmp( 2100 const struct dentry *parent, 2101 struct dentry *dentry, 2102 unsigned int seq, 2103 const struct qstr *name) 2104{ 2105 int tlen = dentry->d_name.len; 2106 const char *tname = dentry->d_name.name; 2107 2108 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2109 cpu_relax(); 2110 return D_COMP_SEQRETRY; 2111 } 2112 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2113 return D_COMP_NOMATCH; 2114 return D_COMP_OK; 2115} 2116 2117/** 2118 * __d_lookup_rcu - search for a dentry (racy, store-free) 2119 * @parent: parent dentry 2120 * @name: qstr of name we wish to find 2121 * @seqp: returns d_seq value at the point where the dentry was found 2122 * Returns: dentry, or NULL 2123 * 2124 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2125 * resolution (store-free path walking) design described in 2126 * Documentation/filesystems/path-lookup.txt. 2127 * 2128 * This is not to be used outside core vfs. 2129 * 2130 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2131 * held, and rcu_read_lock held. The returned dentry must not be stored into 2132 * without taking d_lock and checking d_seq sequence count against @seq 2133 * returned here. 2134 * 2135 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2136 * function. 2137 * 2138 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2139 * the returned dentry, so long as its parent's seqlock is checked after the 2140 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2141 * is formed, giving integrity down the path walk. 2142 * 2143 * NOTE! The caller *has* to check the resulting dentry against the sequence 2144 * number we've returned before using any of the resulting dentry state! 2145 */ 2146struct dentry *__d_lookup_rcu(const struct dentry *parent, 2147 const struct qstr *name, 2148 unsigned *seqp) 2149{ 2150 u64 hashlen = name->hash_len; 2151 const unsigned char *str = name->name; 2152 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen)); 2153 struct hlist_bl_node *node; 2154 struct dentry *dentry; 2155 2156 /* 2157 * Note: There is significant duplication with __d_lookup_rcu which is 2158 * required to prevent single threaded performance regressions 2159 * especially on architectures where smp_rmb (in seqcounts) are costly. 2160 * Keep the two functions in sync. 2161 */ 2162 2163 /* 2164 * The hash list is protected using RCU. 2165 * 2166 * Carefully use d_seq when comparing a candidate dentry, to avoid 2167 * races with d_move(). 2168 * 2169 * It is possible that concurrent renames can mess up our list 2170 * walk here and result in missing our dentry, resulting in the 2171 * false-negative result. d_lookup() protects against concurrent 2172 * renames using rename_lock seqlock. 2173 * 2174 * See Documentation/filesystems/path-lookup.txt for more details. 2175 */ 2176 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2177 unsigned seq; 2178 2179seqretry: 2180 /* 2181 * The dentry sequence count protects us from concurrent 2182 * renames, and thus protects parent and name fields. 2183 * 2184 * The caller must perform a seqcount check in order 2185 * to do anything useful with the returned dentry. 2186 * 2187 * NOTE! We do a "raw" seqcount_begin here. That means that 2188 * we don't wait for the sequence count to stabilize if it 2189 * is in the middle of a sequence change. If we do the slow 2190 * dentry compare, we will do seqretries until it is stable, 2191 * and if we end up with a successful lookup, we actually 2192 * want to exit RCU lookup anyway. 2193 */ 2194 seq = raw_seqcount_begin(&dentry->d_seq); 2195 if (dentry->d_parent != parent) 2196 continue; 2197 if (d_unhashed(dentry)) 2198 continue; 2199 2200 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2201 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2202 continue; 2203 *seqp = seq; 2204 switch (slow_dentry_cmp(parent, dentry, seq, name)) { 2205 case D_COMP_OK: 2206 return dentry; 2207 case D_COMP_NOMATCH: 2208 continue; 2209 default: 2210 goto seqretry; 2211 } 2212 } 2213 2214 if (dentry->d_name.hash_len != hashlen) 2215 continue; 2216 *seqp = seq; 2217 if (!dentry_cmp(dentry, str, hashlen_len(hashlen))) 2218 return dentry; 2219 } 2220 return NULL; 2221} 2222 2223/** 2224 * d_lookup - search for a dentry 2225 * @parent: parent dentry 2226 * @name: qstr of name we wish to find 2227 * Returns: dentry, or NULL 2228 * 2229 * d_lookup searches the children of the parent dentry for the name in 2230 * question. If the dentry is found its reference count is incremented and the 2231 * dentry is returned. The caller must use dput to free the entry when it has 2232 * finished using it. %NULL is returned if the dentry does not exist. 2233 */ 2234struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2235{ 2236 struct dentry *dentry; 2237 unsigned seq; 2238 2239 do { 2240 seq = read_seqbegin(&rename_lock); 2241 dentry = __d_lookup(parent, name); 2242 if (dentry) 2243 break; 2244 } while (read_seqretry(&rename_lock, seq)); 2245 return dentry; 2246} 2247EXPORT_SYMBOL(d_lookup); 2248 2249/** 2250 * __d_lookup - search for a dentry (racy) 2251 * @parent: parent dentry 2252 * @name: qstr of name we wish to find 2253 * Returns: dentry, or NULL 2254 * 2255 * __d_lookup is like d_lookup, however it may (rarely) return a 2256 * false-negative result due to unrelated rename activity. 2257 * 2258 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2259 * however it must be used carefully, eg. with a following d_lookup in 2260 * the case of failure. 2261 * 2262 * __d_lookup callers must be commented. 2263 */ 2264struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2265{ 2266 unsigned int len = name->len; 2267 unsigned int hash = name->hash; 2268 const unsigned char *str = name->name; 2269 struct hlist_bl_head *b = d_hash(parent, hash); 2270 struct hlist_bl_node *node; 2271 struct dentry *found = NULL; 2272 struct dentry *dentry; 2273 2274 /* 2275 * Note: There is significant duplication with __d_lookup_rcu which is 2276 * required to prevent single threaded performance regressions 2277 * especially on architectures where smp_rmb (in seqcounts) are costly. 2278 * Keep the two functions in sync. 2279 */ 2280 2281 /* 2282 * The hash list is protected using RCU. 2283 * 2284 * Take d_lock when comparing a candidate dentry, to avoid races 2285 * with d_move(). 2286 * 2287 * It is possible that concurrent renames can mess up our list 2288 * walk here and result in missing our dentry, resulting in the 2289 * false-negative result. d_lookup() protects against concurrent 2290 * renames using rename_lock seqlock. 2291 * 2292 * See Documentation/filesystems/path-lookup.txt for more details. 2293 */ 2294 rcu_read_lock(); 2295 2296 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2297 2298 if (dentry->d_name.hash != hash) 2299 continue; 2300 2301 spin_lock(&dentry->d_lock); 2302 if (dentry->d_parent != parent) 2303 goto next; 2304 if (d_unhashed(dentry)) 2305 goto next; 2306 2307 /* 2308 * It is safe to compare names since d_move() cannot 2309 * change the qstr (protected by d_lock). 2310 */ 2311 if (parent->d_flags & DCACHE_OP_COMPARE) { 2312 int tlen = dentry->d_name.len; 2313 const char *tname = dentry->d_name.name; 2314 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2315 goto next; 2316 } else { 2317 if (dentry->d_name.len != len) 2318 goto next; 2319 if (dentry_cmp(dentry, str, len)) 2320 goto next; 2321 } 2322 2323 dentry->d_lockref.count++; 2324 found = dentry; 2325 spin_unlock(&dentry->d_lock); 2326 break; 2327next: 2328 spin_unlock(&dentry->d_lock); 2329 } 2330 rcu_read_unlock(); 2331 2332 return found; 2333} 2334 2335/** 2336 * d_hash_and_lookup - hash the qstr then search for a dentry 2337 * @dir: Directory to search in 2338 * @name: qstr of name we wish to find 2339 * 2340 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2341 */ 2342struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2343{ 2344 /* 2345 * Check for a fs-specific hash function. Note that we must 2346 * calculate the standard hash first, as the d_op->d_hash() 2347 * routine may choose to leave the hash value unchanged. 2348 */ 2349 name->hash = full_name_hash(name->name, name->len); 2350 if (dir->d_flags & DCACHE_OP_HASH) { 2351 int err = dir->d_op->d_hash(dir, name); 2352 if (unlikely(err < 0)) 2353 return ERR_PTR(err); 2354 } 2355 return d_lookup(dir, name); 2356} 2357EXPORT_SYMBOL(d_hash_and_lookup); 2358 2359/* 2360 * When a file is deleted, we have two options: 2361 * - turn this dentry into a negative dentry 2362 * - unhash this dentry and free it. 2363 * 2364 * Usually, we want to just turn this into 2365 * a negative dentry, but if anybody else is 2366 * currently using the dentry or the inode 2367 * we can't do that and we fall back on removing 2368 * it from the hash queues and waiting for 2369 * it to be deleted later when it has no users 2370 */ 2371 2372/** 2373 * d_delete - delete a dentry 2374 * @dentry: The dentry to delete 2375 * 2376 * Turn the dentry into a negative dentry if possible, otherwise 2377 * remove it from the hash queues so it can be deleted later 2378 */ 2379 2380void d_delete(struct dentry * dentry) 2381{ 2382 struct inode *inode; 2383 int isdir = 0; 2384 /* 2385 * Are we the only user? 2386 */ 2387again: 2388 spin_lock(&dentry->d_lock); 2389 inode = dentry->d_inode; 2390 isdir = S_ISDIR(inode->i_mode); 2391 if (dentry->d_lockref.count == 1) { 2392 if (!spin_trylock(&inode->i_lock)) { 2393 spin_unlock(&dentry->d_lock); 2394 cpu_relax(); 2395 goto again; 2396 } 2397 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2398 dentry_unlink_inode(dentry); 2399 fsnotify_nameremove(dentry, isdir); 2400 return; 2401 } 2402 2403 if (!d_unhashed(dentry)) 2404 __d_drop(dentry); 2405 2406 spin_unlock(&dentry->d_lock); 2407 2408 fsnotify_nameremove(dentry, isdir); 2409} 2410EXPORT_SYMBOL(d_delete); 2411 2412static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) 2413{ 2414 BUG_ON(!d_unhashed(entry)); 2415 hlist_bl_lock(b); 2416 hlist_bl_add_head_rcu(&entry->d_hash, b); 2417 hlist_bl_unlock(b); 2418} 2419 2420static void _d_rehash(struct dentry * entry) 2421{ 2422 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 2423} 2424 2425/** 2426 * d_rehash - add an entry back to the hash 2427 * @entry: dentry to add to the hash 2428 * 2429 * Adds a dentry to the hash according to its name. 2430 */ 2431 2432void d_rehash(struct dentry * entry) 2433{ 2434 spin_lock(&entry->d_lock); 2435 _d_rehash(entry); 2436 spin_unlock(&entry->d_lock); 2437} 2438EXPORT_SYMBOL(d_rehash); 2439 2440/** 2441 * dentry_update_name_case - update case insensitive dentry with a new name 2442 * @dentry: dentry to be updated 2443 * @name: new name 2444 * 2445 * Update a case insensitive dentry with new case of name. 2446 * 2447 * dentry must have been returned by d_lookup with name @name. Old and new 2448 * name lengths must match (ie. no d_compare which allows mismatched name 2449 * lengths). 2450 * 2451 * Parent inode i_mutex must be held over d_lookup and into this call (to 2452 * keep renames and concurrent inserts, and readdir(2) away). 2453 */ 2454void dentry_update_name_case(struct dentry *dentry, struct qstr *name) 2455{ 2456 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex)); 2457 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2458 2459 spin_lock(&dentry->d_lock); 2460 write_seqcount_begin(&dentry->d_seq); 2461 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2462 write_seqcount_end(&dentry->d_seq); 2463 spin_unlock(&dentry->d_lock); 2464} 2465EXPORT_SYMBOL(dentry_update_name_case); 2466 2467static void swap_names(struct dentry *dentry, struct dentry *target) 2468{ 2469 if (unlikely(dname_external(target))) { 2470 if (unlikely(dname_external(dentry))) { 2471 /* 2472 * Both external: swap the pointers 2473 */ 2474 swap(target->d_name.name, dentry->d_name.name); 2475 } else { 2476 /* 2477 * dentry:internal, target:external. Steal target's 2478 * storage and make target internal. 2479 */ 2480 memcpy(target->d_iname, dentry->d_name.name, 2481 dentry->d_name.len + 1); 2482 dentry->d_name.name = target->d_name.name; 2483 target->d_name.name = target->d_iname; 2484 } 2485 } else { 2486 if (unlikely(dname_external(dentry))) { 2487 /* 2488 * dentry:external, target:internal. Give dentry's 2489 * storage to target and make dentry internal 2490 */ 2491 memcpy(dentry->d_iname, target->d_name.name, 2492 target->d_name.len + 1); 2493 target->d_name.name = dentry->d_name.name; 2494 dentry->d_name.name = dentry->d_iname; 2495 } else { 2496 /* 2497 * Both are internal. 2498 */ 2499 unsigned int i; 2500 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2501 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN); 2502 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN); 2503 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2504 swap(((long *) &dentry->d_iname)[i], 2505 ((long *) &target->d_iname)[i]); 2506 } 2507 } 2508 } 2509 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2510} 2511 2512static void copy_name(struct dentry *dentry, struct dentry *target) 2513{ 2514 struct external_name *old_name = NULL; 2515 if (unlikely(dname_external(dentry))) 2516 old_name = external_name(dentry); 2517 if (unlikely(dname_external(target))) { 2518 atomic_inc(&external_name(target)->u.count); 2519 dentry->d_name = target->d_name; 2520 } else { 2521 memcpy(dentry->d_iname, target->d_name.name, 2522 target->d_name.len + 1); 2523 dentry->d_name.name = dentry->d_iname; 2524 dentry->d_name.hash_len = target->d_name.hash_len; 2525 } 2526 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2527 kfree_rcu(old_name, u.head); 2528} 2529 2530static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2531{ 2532 /* 2533 * XXXX: do we really need to take target->d_lock? 2534 */ 2535 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2536 spin_lock(&target->d_parent->d_lock); 2537 else { 2538 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2539 spin_lock(&dentry->d_parent->d_lock); 2540 spin_lock_nested(&target->d_parent->d_lock, 2541 DENTRY_D_LOCK_NESTED); 2542 } else { 2543 spin_lock(&target->d_parent->d_lock); 2544 spin_lock_nested(&dentry->d_parent->d_lock, 2545 DENTRY_D_LOCK_NESTED); 2546 } 2547 } 2548 if (target < dentry) { 2549 spin_lock_nested(&target->d_lock, 2); 2550 spin_lock_nested(&dentry->d_lock, 3); 2551 } else { 2552 spin_lock_nested(&dentry->d_lock, 2); 2553 spin_lock_nested(&target->d_lock, 3); 2554 } 2555} 2556 2557static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target) 2558{ 2559 if (target->d_parent != dentry->d_parent) 2560 spin_unlock(&dentry->d_parent->d_lock); 2561 if (target->d_parent != target) 2562 spin_unlock(&target->d_parent->d_lock); 2563 spin_unlock(&target->d_lock); 2564 spin_unlock(&dentry->d_lock); 2565} 2566 2567/* 2568 * When switching names, the actual string doesn't strictly have to 2569 * be preserved in the target - because we're dropping the target 2570 * anyway. As such, we can just do a simple memcpy() to copy over 2571 * the new name before we switch, unless we are going to rehash 2572 * it. Note that if we *do* unhash the target, we are not allowed 2573 * to rehash it without giving it a new name/hash key - whether 2574 * we swap or overwrite the names here, resulting name won't match 2575 * the reality in filesystem; it's only there for d_path() purposes. 2576 * Note that all of this is happening under rename_lock, so the 2577 * any hash lookup seeing it in the middle of manipulations will 2578 * be discarded anyway. So we do not care what happens to the hash 2579 * key in that case. 2580 */ 2581/* 2582 * __d_move - move a dentry 2583 * @dentry: entry to move 2584 * @target: new dentry 2585 * @exchange: exchange the two dentries 2586 * 2587 * Update the dcache to reflect the move of a file name. Negative 2588 * dcache entries should not be moved in this way. Caller must hold 2589 * rename_lock, the i_mutex of the source and target directories, 2590 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2591 */ 2592static void __d_move(struct dentry *dentry, struct dentry *target, 2593 bool exchange) 2594{ 2595 if (!dentry->d_inode) 2596 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2597 2598 BUG_ON(d_ancestor(dentry, target)); 2599 BUG_ON(d_ancestor(target, dentry)); 2600 2601 dentry_lock_for_move(dentry, target); 2602 2603 write_seqcount_begin(&dentry->d_seq); 2604 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2605 2606 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2607 2608 /* 2609 * Move the dentry to the target hash queue. Don't bother checking 2610 * for the same hash queue because of how unlikely it is. 2611 */ 2612 __d_drop(dentry); 2613 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); 2614 2615 /* 2616 * Unhash the target (d_delete() is not usable here). If exchanging 2617 * the two dentries, then rehash onto the other's hash queue. 2618 */ 2619 __d_drop(target); 2620 if (exchange) { 2621 __d_rehash(target, 2622 d_hash(dentry->d_parent, dentry->d_name.hash)); 2623 } 2624 2625 /* Switch the names.. */ 2626 if (exchange) 2627 swap_names(dentry, target); 2628 else 2629 copy_name(dentry, target); 2630 2631 /* ... and switch them in the tree */ 2632 if (IS_ROOT(dentry)) { 2633 /* splicing a tree */ 2634 dentry->d_flags |= DCACHE_RCUACCESS; 2635 dentry->d_parent = target->d_parent; 2636 target->d_parent = target; 2637 list_del_init(&target->d_child); 2638 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2639 } else { 2640 /* swapping two dentries */ 2641 swap(dentry->d_parent, target->d_parent); 2642 list_move(&target->d_child, &target->d_parent->d_subdirs); 2643 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2644 if (exchange) 2645 fsnotify_d_move(target); 2646 fsnotify_d_move(dentry); 2647 } 2648 2649 write_seqcount_end(&target->d_seq); 2650 write_seqcount_end(&dentry->d_seq); 2651 2652 dentry_unlock_for_move(dentry, target); 2653} 2654 2655/* 2656 * d_move - move a dentry 2657 * @dentry: entry to move 2658 * @target: new dentry 2659 * 2660 * Update the dcache to reflect the move of a file name. Negative 2661 * dcache entries should not be moved in this way. See the locking 2662 * requirements for __d_move. 2663 */ 2664void d_move(struct dentry *dentry, struct dentry *target) 2665{ 2666 write_seqlock(&rename_lock); 2667 __d_move(dentry, target, false); 2668 write_sequnlock(&rename_lock); 2669} 2670EXPORT_SYMBOL(d_move); 2671 2672/* 2673 * d_exchange - exchange two dentries 2674 * @dentry1: first dentry 2675 * @dentry2: second dentry 2676 */ 2677void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2678{ 2679 write_seqlock(&rename_lock); 2680 2681 WARN_ON(!dentry1->d_inode); 2682 WARN_ON(!dentry2->d_inode); 2683 WARN_ON(IS_ROOT(dentry1)); 2684 WARN_ON(IS_ROOT(dentry2)); 2685 2686 __d_move(dentry1, dentry2, true); 2687 2688 write_sequnlock(&rename_lock); 2689} 2690 2691/** 2692 * d_ancestor - search for an ancestor 2693 * @p1: ancestor dentry 2694 * @p2: child dentry 2695 * 2696 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2697 * an ancestor of p2, else NULL. 2698 */ 2699struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2700{ 2701 struct dentry *p; 2702 2703 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2704 if (p->d_parent == p1) 2705 return p; 2706 } 2707 return NULL; 2708} 2709 2710/* 2711 * This helper attempts to cope with remotely renamed directories 2712 * 2713 * It assumes that the caller is already holding 2714 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2715 * 2716 * Note: If ever the locking in lock_rename() changes, then please 2717 * remember to update this too... 2718 */ 2719static int __d_unalias(struct inode *inode, 2720 struct dentry *dentry, struct dentry *alias) 2721{ 2722 struct mutex *m1 = NULL, *m2 = NULL; 2723 int ret = -ESTALE; 2724 2725 /* If alias and dentry share a parent, then no extra locks required */ 2726 if (alias->d_parent == dentry->d_parent) 2727 goto out_unalias; 2728 2729 /* See lock_rename() */ 2730 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2731 goto out_err; 2732 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2733 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) 2734 goto out_err; 2735 m2 = &alias->d_parent->d_inode->i_mutex; 2736out_unalias: 2737 __d_move(alias, dentry, false); 2738 ret = 0; 2739out_err: 2740 if (m2) 2741 mutex_unlock(m2); 2742 if (m1) 2743 mutex_unlock(m1); 2744 return ret; 2745} 2746 2747/** 2748 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2749 * @inode: the inode which may have a disconnected dentry 2750 * @dentry: a negative dentry which we want to point to the inode. 2751 * 2752 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2753 * place of the given dentry and return it, else simply d_add the inode 2754 * to the dentry and return NULL. 2755 * 2756 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2757 * we should error out: directories can't have multiple aliases. 2758 * 2759 * This is needed in the lookup routine of any filesystem that is exportable 2760 * (via knfsd) so that we can build dcache paths to directories effectively. 2761 * 2762 * If a dentry was found and moved, then it is returned. Otherwise NULL 2763 * is returned. This matches the expected return value of ->lookup. 2764 * 2765 * Cluster filesystems may call this function with a negative, hashed dentry. 2766 * In that case, we know that the inode will be a regular file, and also this 2767 * will only occur during atomic_open. So we need to check for the dentry 2768 * being already hashed only in the final case. 2769 */ 2770struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2771{ 2772 if (IS_ERR(inode)) 2773 return ERR_CAST(inode); 2774 2775 BUG_ON(!d_unhashed(dentry)); 2776 2777 if (!inode) { 2778 __d_instantiate(dentry, NULL); 2779 goto out; 2780 } 2781 spin_lock(&inode->i_lock); 2782 if (S_ISDIR(inode->i_mode)) { 2783 struct dentry *new = __d_find_any_alias(inode); 2784 if (unlikely(new)) { 2785 /* The reference to new ensures it remains an alias */ 2786 spin_unlock(&inode->i_lock); 2787 write_seqlock(&rename_lock); 2788 if (unlikely(d_ancestor(new, dentry))) { 2789 write_sequnlock(&rename_lock); 2790 dput(new); 2791 new = ERR_PTR(-ELOOP); 2792 pr_warn_ratelimited( 2793 "VFS: Lookup of '%s' in %s %s" 2794 " would have caused loop\n", 2795 dentry->d_name.name, 2796 inode->i_sb->s_type->name, 2797 inode->i_sb->s_id); 2798 } else if (!IS_ROOT(new)) { 2799 int err = __d_unalias(inode, dentry, new); 2800 write_sequnlock(&rename_lock); 2801 if (err) { 2802 dput(new); 2803 new = ERR_PTR(err); 2804 } 2805 } else { 2806 __d_move(new, dentry, false); 2807 write_sequnlock(&rename_lock); 2808 security_d_instantiate(new, inode); 2809 } 2810 iput(inode); 2811 return new; 2812 } 2813 } 2814 /* already taking inode->i_lock, so d_add() by hand */ 2815 __d_instantiate(dentry, inode); 2816 spin_unlock(&inode->i_lock); 2817out: 2818 security_d_instantiate(dentry, inode); 2819 d_rehash(dentry); 2820 return NULL; 2821} 2822EXPORT_SYMBOL(d_splice_alias); 2823 2824static int prepend(char **buffer, int *buflen, const char *str, int namelen) 2825{ 2826 *buflen -= namelen; 2827 if (*buflen < 0) 2828 return -ENAMETOOLONG; 2829 *buffer -= namelen; 2830 memcpy(*buffer, str, namelen); 2831 return 0; 2832} 2833 2834/** 2835 * prepend_name - prepend a pathname in front of current buffer pointer 2836 * @buffer: buffer pointer 2837 * @buflen: allocated length of the buffer 2838 * @name: name string and length qstr structure 2839 * 2840 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to 2841 * make sure that either the old or the new name pointer and length are 2842 * fetched. However, there may be mismatch between length and pointer. 2843 * The length cannot be trusted, we need to copy it byte-by-byte until 2844 * the length is reached or a null byte is found. It also prepends "/" at 2845 * the beginning of the name. The sequence number check at the caller will 2846 * retry it again when a d_move() does happen. So any garbage in the buffer 2847 * due to mismatched pointer and length will be discarded. 2848 * 2849 * Data dependency barrier is needed to make sure that we see that terminating 2850 * NUL. Alpha strikes again, film at 11... 2851 */ 2852static int prepend_name(char **buffer, int *buflen, struct qstr *name) 2853{ 2854 const char *dname = ACCESS_ONCE(name->name); 2855 u32 dlen = ACCESS_ONCE(name->len); 2856 char *p; 2857 2858 smp_read_barrier_depends(); 2859 2860 *buflen -= dlen + 1; 2861 if (*buflen < 0) 2862 return -ENAMETOOLONG; 2863 p = *buffer -= dlen + 1; 2864 *p++ = '/'; 2865 while (dlen--) { 2866 char c = *dname++; 2867 if (!c) 2868 break; 2869 *p++ = c; 2870 } 2871 return 0; 2872} 2873 2874/** 2875 * prepend_path - Prepend path string to a buffer 2876 * @path: the dentry/vfsmount to report 2877 * @root: root vfsmnt/dentry 2878 * @buffer: pointer to the end of the buffer 2879 * @buflen: pointer to buffer length 2880 * 2881 * The function will first try to write out the pathname without taking any 2882 * lock other than the RCU read lock to make sure that dentries won't go away. 2883 * It only checks the sequence number of the global rename_lock as any change 2884 * in the dentry's d_seq will be preceded by changes in the rename_lock 2885 * sequence number. If the sequence number had been changed, it will restart 2886 * the whole pathname back-tracing sequence again by taking the rename_lock. 2887 * In this case, there is no need to take the RCU read lock as the recursive 2888 * parent pointer references will keep the dentry chain alive as long as no 2889 * rename operation is performed. 2890 */ 2891static int prepend_path(const struct path *path, 2892 const struct path *root, 2893 char **buffer, int *buflen) 2894{ 2895 struct dentry *dentry; 2896 struct vfsmount *vfsmnt; 2897 struct mount *mnt; 2898 int error = 0; 2899 unsigned seq, m_seq = 0; 2900 char *bptr; 2901 int blen; 2902 2903 rcu_read_lock(); 2904restart_mnt: 2905 read_seqbegin_or_lock(&mount_lock, &m_seq); 2906 seq = 0; 2907 rcu_read_lock(); 2908restart: 2909 bptr = *buffer; 2910 blen = *buflen; 2911 error = 0; 2912 dentry = path->dentry; 2913 vfsmnt = path->mnt; 2914 mnt = real_mount(vfsmnt); 2915 read_seqbegin_or_lock(&rename_lock, &seq); 2916 while (dentry != root->dentry || vfsmnt != root->mnt) { 2917 struct dentry * parent; 2918 2919 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 2920 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent); 2921 /* Escaped? */ 2922 if (dentry != vfsmnt->mnt_root) { 2923 bptr = *buffer; 2924 blen = *buflen; 2925 error = 3; 2926 break; 2927 } 2928 /* Global root? */ 2929 if (mnt != parent) { 2930 dentry = ACCESS_ONCE(mnt->mnt_mountpoint); 2931 mnt = parent; 2932 vfsmnt = &mnt->mnt; 2933 continue; 2934 } 2935 if (!error) 2936 error = is_mounted(vfsmnt) ? 1 : 2; 2937 break; 2938 } 2939 parent = dentry->d_parent; 2940 prefetch(parent); 2941 error = prepend_name(&bptr, &blen, &dentry->d_name); 2942 if (error) 2943 break; 2944 2945 dentry = parent; 2946 } 2947 if (!(seq & 1)) 2948 rcu_read_unlock(); 2949 if (need_seqretry(&rename_lock, seq)) { 2950 seq = 1; 2951 goto restart; 2952 } 2953 done_seqretry(&rename_lock, seq); 2954 2955 if (!(m_seq & 1)) 2956 rcu_read_unlock(); 2957 if (need_seqretry(&mount_lock, m_seq)) { 2958 m_seq = 1; 2959 goto restart_mnt; 2960 } 2961 done_seqretry(&mount_lock, m_seq); 2962 2963 if (error >= 0 && bptr == *buffer) { 2964 if (--blen < 0) 2965 error = -ENAMETOOLONG; 2966 else 2967 *--bptr = '/'; 2968 } 2969 *buffer = bptr; 2970 *buflen = blen; 2971 return error; 2972} 2973 2974/** 2975 * __d_path - return the path of a dentry 2976 * @path: the dentry/vfsmount to report 2977 * @root: root vfsmnt/dentry 2978 * @buf: buffer to return value in 2979 * @buflen: buffer length 2980 * 2981 * Convert a dentry into an ASCII path name. 2982 * 2983 * Returns a pointer into the buffer or an error code if the 2984 * path was too long. 2985 * 2986 * "buflen" should be positive. 2987 * 2988 * If the path is not reachable from the supplied root, return %NULL. 2989 */ 2990char *__d_path(const struct path *path, 2991 const struct path *root, 2992 char *buf, int buflen) 2993{ 2994 char *res = buf + buflen; 2995 int error; 2996 2997 prepend(&res, &buflen, "\0", 1); 2998 error = prepend_path(path, root, &res, &buflen); 2999 3000 if (error < 0) 3001 return ERR_PTR(error); 3002 if (error > 0) 3003 return NULL; 3004 return res; 3005} 3006 3007char *d_absolute_path(const struct path *path, 3008 char *buf, int buflen) 3009{ 3010 struct path root = {}; 3011 char *res = buf + buflen; 3012 int error; 3013 3014 prepend(&res, &buflen, "\0", 1); 3015 error = prepend_path(path, &root, &res, &buflen); 3016 3017 if (error > 1) 3018 error = -EINVAL; 3019 if (error < 0) 3020 return ERR_PTR(error); 3021 return res; 3022} 3023 3024/* 3025 * same as __d_path but appends "(deleted)" for unlinked files. 3026 */ 3027static int path_with_deleted(const struct path *path, 3028 const struct path *root, 3029 char **buf, int *buflen) 3030{ 3031 prepend(buf, buflen, "\0", 1); 3032 if (d_unlinked(path->dentry)) { 3033 int error = prepend(buf, buflen, " (deleted)", 10); 3034 if (error) 3035 return error; 3036 } 3037 3038 return prepend_path(path, root, buf, buflen); 3039} 3040 3041static int prepend_unreachable(char **buffer, int *buflen) 3042{ 3043 return prepend(buffer, buflen, "(unreachable)", 13); 3044} 3045 3046static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) 3047{ 3048 unsigned seq; 3049 3050 do { 3051 seq = read_seqcount_begin(&fs->seq); 3052 *root = fs->root; 3053 } while (read_seqcount_retry(&fs->seq, seq)); 3054} 3055 3056/** 3057 * d_path - return the path of a dentry 3058 * @path: path to report 3059 * @buf: buffer to return value in 3060 * @buflen: buffer length 3061 * 3062 * Convert a dentry into an ASCII path name. If the entry has been deleted 3063 * the string " (deleted)" is appended. Note that this is ambiguous. 3064 * 3065 * Returns a pointer into the buffer or an error code if the path was 3066 * too long. Note: Callers should use the returned pointer, not the passed 3067 * in buffer, to use the name! The implementation often starts at an offset 3068 * into the buffer, and may leave 0 bytes at the start. 3069 * 3070 * "buflen" should be positive. 3071 */ 3072char *d_path(const struct path *path, char *buf, int buflen) 3073{ 3074 char *res = buf + buflen; 3075 struct path root; 3076 int error; 3077 3078 /* 3079 * We have various synthetic filesystems that never get mounted. On 3080 * these filesystems dentries are never used for lookup purposes, and 3081 * thus don't need to be hashed. They also don't need a name until a 3082 * user wants to identify the object in /proc/pid/fd/. The little hack 3083 * below allows us to generate a name for these objects on demand: 3084 * 3085 * Some pseudo inodes are mountable. When they are mounted 3086 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname 3087 * and instead have d_path return the mounted path. 3088 */ 3089 if (path->dentry->d_op && path->dentry->d_op->d_dname && 3090 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) 3091 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 3092 3093 rcu_read_lock(); 3094 get_fs_root_rcu(current->fs, &root); 3095 error = path_with_deleted(path, &root, &res, &buflen); 3096 rcu_read_unlock(); 3097 3098 if (error < 0) 3099 res = ERR_PTR(error); 3100 return res; 3101} 3102EXPORT_SYMBOL(d_path); 3103 3104/* 3105 * Helper function for dentry_operations.d_dname() members 3106 */ 3107char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 3108 const char *fmt, ...) 3109{ 3110 va_list args; 3111 char temp[64]; 3112 int sz; 3113 3114 va_start(args, fmt); 3115 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 3116 va_end(args); 3117 3118 if (sz > sizeof(temp) || sz > buflen) 3119 return ERR_PTR(-ENAMETOOLONG); 3120 3121 buffer += buflen - sz; 3122 return memcpy(buffer, temp, sz); 3123} 3124 3125char *simple_dname(struct dentry *dentry, char *buffer, int buflen) 3126{ 3127 char *end = buffer + buflen; 3128 /* these dentries are never renamed, so d_lock is not needed */ 3129 if (prepend(&end, &buflen, " (deleted)", 11) || 3130 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || 3131 prepend(&end, &buflen, "/", 1)) 3132 end = ERR_PTR(-ENAMETOOLONG); 3133 return end; 3134} 3135EXPORT_SYMBOL(simple_dname); 3136 3137/* 3138 * Write full pathname from the root of the filesystem into the buffer. 3139 */ 3140static char *__dentry_path(struct dentry *d, char *buf, int buflen) 3141{ 3142 struct dentry *dentry; 3143 char *end, *retval; 3144 int len, seq = 0; 3145 int error = 0; 3146 3147 if (buflen < 2) 3148 goto Elong; 3149 3150 rcu_read_lock(); 3151restart: 3152 dentry = d; 3153 end = buf + buflen; 3154 len = buflen; 3155 prepend(&end, &len, "\0", 1); 3156 /* Get '/' right */ 3157 retval = end-1; 3158 *retval = '/'; 3159 read_seqbegin_or_lock(&rename_lock, &seq); 3160 while (!IS_ROOT(dentry)) { 3161 struct dentry *parent = dentry->d_parent; 3162 3163 prefetch(parent); 3164 error = prepend_name(&end, &len, &dentry->d_name); 3165 if (error) 3166 break; 3167 3168 retval = end; 3169 dentry = parent; 3170 } 3171 if (!(seq & 1)) 3172 rcu_read_unlock(); 3173 if (need_seqretry(&rename_lock, seq)) { 3174 seq = 1; 3175 goto restart; 3176 } 3177 done_seqretry(&rename_lock, seq); 3178 if (error) 3179 goto Elong; 3180 return retval; 3181Elong: 3182 return ERR_PTR(-ENAMETOOLONG); 3183} 3184 3185char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 3186{ 3187 return __dentry_path(dentry, buf, buflen); 3188} 3189EXPORT_SYMBOL(dentry_path_raw); 3190 3191char *dentry_path(struct dentry *dentry, char *buf, int buflen) 3192{ 3193 char *p = NULL; 3194 char *retval; 3195 3196 if (d_unlinked(dentry)) { 3197 p = buf + buflen; 3198 if (prepend(&p, &buflen, "//deleted", 10) != 0) 3199 goto Elong; 3200 buflen++; 3201 } 3202 retval = __dentry_path(dentry, buf, buflen); 3203 if (!IS_ERR(retval) && p) 3204 *p = '/'; /* restore '/' overriden with '\0' */ 3205 return retval; 3206Elong: 3207 return ERR_PTR(-ENAMETOOLONG); 3208} 3209 3210static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, 3211 struct path *pwd) 3212{ 3213 unsigned seq; 3214 3215 do { 3216 seq = read_seqcount_begin(&fs->seq); 3217 *root = fs->root; 3218 *pwd = fs->pwd; 3219 } while (read_seqcount_retry(&fs->seq, seq)); 3220} 3221 3222/* 3223 * NOTE! The user-level library version returns a 3224 * character pointer. The kernel system call just 3225 * returns the length of the buffer filled (which 3226 * includes the ending '\0' character), or a negative 3227 * error value. So libc would do something like 3228 * 3229 * char *getcwd(char * buf, size_t size) 3230 * { 3231 * int retval; 3232 * 3233 * retval = sys_getcwd(buf, size); 3234 * if (retval >= 0) 3235 * return buf; 3236 * errno = -retval; 3237 * return NULL; 3238 * } 3239 */ 3240SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 3241{ 3242 int error; 3243 struct path pwd, root; 3244 char *page = __getname(); 3245 3246 if (!page) 3247 return -ENOMEM; 3248 3249 rcu_read_lock(); 3250 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); 3251 3252 error = -ENOENT; 3253 if (!d_unlinked(pwd.dentry)) { 3254 unsigned long len; 3255 char *cwd = page + PATH_MAX; 3256 int buflen = PATH_MAX; 3257 3258 prepend(&cwd, &buflen, "\0", 1); 3259 error = prepend_path(&pwd, &root, &cwd, &buflen); 3260 rcu_read_unlock(); 3261 3262 if (error < 0) 3263 goto out; 3264 3265 /* Unreachable from current root */ 3266 if (error > 0) { 3267 error = prepend_unreachable(&cwd, &buflen); 3268 if (error) 3269 goto out; 3270 } 3271 3272 error = -ERANGE; 3273 len = PATH_MAX + page - cwd; 3274 if (len <= size) { 3275 error = len; 3276 if (copy_to_user(buf, cwd, len)) 3277 error = -EFAULT; 3278 } 3279 } else { 3280 rcu_read_unlock(); 3281 } 3282 3283out: 3284 __putname(page); 3285 return error; 3286} 3287 3288/* 3289 * Test whether new_dentry is a subdirectory of old_dentry. 3290 * 3291 * Trivially implemented using the dcache structure 3292 */ 3293 3294/** 3295 * is_subdir - is new dentry a subdirectory of old_dentry 3296 * @new_dentry: new dentry 3297 * @old_dentry: old dentry 3298 * 3299 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). 3300 * Returns 0 otherwise. 3301 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3302 */ 3303 3304int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3305{ 3306 int result; 3307 unsigned seq; 3308 3309 if (new_dentry == old_dentry) 3310 return 1; 3311 3312 do { 3313 /* for restarting inner loop in case of seq retry */ 3314 seq = read_seqbegin(&rename_lock); 3315 /* 3316 * Need rcu_readlock to protect against the d_parent trashing 3317 * due to d_move 3318 */ 3319 rcu_read_lock(); 3320 if (d_ancestor(old_dentry, new_dentry)) 3321 result = 1; 3322 else 3323 result = 0; 3324 rcu_read_unlock(); 3325 } while (read_seqretry(&rename_lock, seq)); 3326 3327 return result; 3328} 3329 3330static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3331{ 3332 struct dentry *root = data; 3333 if (dentry != root) { 3334 if (d_unhashed(dentry) || !dentry->d_inode) 3335 return D_WALK_SKIP; 3336 3337 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3338 dentry->d_flags |= DCACHE_GENOCIDE; 3339 dentry->d_lockref.count--; 3340 } 3341 } 3342 return D_WALK_CONTINUE; 3343} 3344 3345void d_genocide(struct dentry *parent) 3346{ 3347 d_walk(parent, parent, d_genocide_kill, NULL); 3348} 3349 3350void d_tmpfile(struct dentry *dentry, struct inode *inode) 3351{ 3352 inode_dec_link_count(inode); 3353 BUG_ON(dentry->d_name.name != dentry->d_iname || 3354 !hlist_unhashed(&dentry->d_u.d_alias) || 3355 !d_unlinked(dentry)); 3356 spin_lock(&dentry->d_parent->d_lock); 3357 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3358 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3359 (unsigned long long)inode->i_ino); 3360 spin_unlock(&dentry->d_lock); 3361 spin_unlock(&dentry->d_parent->d_lock); 3362 d_instantiate(dentry, inode); 3363} 3364EXPORT_SYMBOL(d_tmpfile); 3365 3366static __initdata unsigned long dhash_entries; 3367static int __init set_dhash_entries(char *str) 3368{ 3369 if (!str) 3370 return 0; 3371 dhash_entries = simple_strtoul(str, &str, 0); 3372 return 1; 3373} 3374__setup("dhash_entries=", set_dhash_entries); 3375 3376static void __init dcache_init_early(void) 3377{ 3378 unsigned int loop; 3379 3380 /* If hashes are distributed across NUMA nodes, defer 3381 * hash allocation until vmalloc space is available. 3382 */ 3383 if (hashdist) 3384 return; 3385 3386 dentry_hashtable = 3387 alloc_large_system_hash("Dentry cache", 3388 sizeof(struct hlist_bl_head), 3389 dhash_entries, 3390 13, 3391 HASH_EARLY, 3392 &d_hash_shift, 3393 &d_hash_mask, 3394 0, 3395 0); 3396 3397 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3398 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3399} 3400 3401static void __init dcache_init(void) 3402{ 3403 unsigned int loop; 3404 3405 /* 3406 * A constructor could be added for stable state like the lists, 3407 * but it is probably not worth it because of the cache nature 3408 * of the dcache. 3409 */ 3410 dentry_cache = KMEM_CACHE(dentry, 3411 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); 3412 3413 /* Hash may have been set up in dcache_init_early */ 3414 if (!hashdist) 3415 return; 3416 3417 dentry_hashtable = 3418 alloc_large_system_hash("Dentry cache", 3419 sizeof(struct hlist_bl_head), 3420 dhash_entries, 3421 13, 3422 0, 3423 &d_hash_shift, 3424 &d_hash_mask, 3425 0, 3426 0); 3427 3428 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3429 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3430} 3431 3432/* SLAB cache for __getname() consumers */ 3433struct kmem_cache *names_cachep __read_mostly; 3434EXPORT_SYMBOL(names_cachep); 3435 3436EXPORT_SYMBOL(d_genocide); 3437 3438void __init vfs_caches_init_early(void) 3439{ 3440 dcache_init_early(); 3441 inode_init_early(); 3442} 3443 3444void __init vfs_caches_init(void) 3445{ 3446 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3447 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3448 3449 dcache_init(); 3450 inode_init(); 3451 files_init(); 3452 files_maxfiles_init(); 3453 mnt_init(); 3454 bdev_cache_init(); 3455 chrdev_init(); 3456} 3457