1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
21#include <linux/fsnotify.h>
22#include <linux/slab.h>
23#include <linux/init.h>
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/export.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
34#include <linux/fs_struct.h>
35#include <linux/hardirq.h>
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
38#include <linux/prefetch.h>
39#include <linux/ratelimit.h>
40#include <linux/list_lru.h>
41#include <linux/kasan.h>
42
43#include "internal.h"
44#include "mount.h"
45
46/*
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 *   - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 *   - the dcache hash table
52 * s_anon bl list spinlock protects:
53 *   - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 *   - the dcache lru lists and counters
56 * d_lock protects:
57 *   - d_flags
58 *   - d_name
59 *   - d_lru
60 *   - d_count
61 *   - d_unhashed()
62 *   - d_parent and d_subdirs
63 *   - childrens' d_child and d_parent
64 *   - d_u.d_alias, d_inode
65 *
66 * Ordering:
67 * dentry->d_inode->i_lock
68 *   dentry->d_lock
69 *     dentry->d_sb->s_dentry_lru_lock
70 *     dcache_hash_bucket lock
71 *     s_anon lock
72 *
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 *   ...
76 *     dentry->d_parent->d_lock
77 *       dentry->d_lock
78 *
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 *   dentry1->d_lock
82 *     dentry2->d_lock
83 */
84int sysctl_vfs_cache_pressure __read_mostly = 100;
85EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
87__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88
89EXPORT_SYMBOL(rename_lock);
90
91static struct kmem_cache *dentry_cache __read_mostly;
92
93/*
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
97 *
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
100 */
101
102static unsigned int d_hash_mask __read_mostly;
103static unsigned int d_hash_shift __read_mostly;
104
105static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
107static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108					unsigned int hash)
109{
110	hash += (unsigned long) parent / L1_CACHE_BYTES;
111	return dentry_hashtable + hash_32(hash, d_hash_shift);
112}
113
114/* Statistics gathering. */
115struct dentry_stat_t dentry_stat = {
116	.age_limit = 45,
117};
118
119static DEFINE_PER_CPU(long, nr_dentry);
120static DEFINE_PER_CPU(long, nr_dentry_unused);
121
122#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123
124/*
125 * Here we resort to our own counters instead of using generic per-cpu counters
126 * for consistency with what the vfs inode code does. We are expected to harvest
127 * better code and performance by having our own specialized counters.
128 *
129 * Please note that the loop is done over all possible CPUs, not over all online
130 * CPUs. The reason for this is that we don't want to play games with CPUs going
131 * on and off. If one of them goes off, we will just keep their counters.
132 *
133 * glommer: See cffbc8a for details, and if you ever intend to change this,
134 * please update all vfs counters to match.
135 */
136static long get_nr_dentry(void)
137{
138	int i;
139	long sum = 0;
140	for_each_possible_cpu(i)
141		sum += per_cpu(nr_dentry, i);
142	return sum < 0 ? 0 : sum;
143}
144
145static long get_nr_dentry_unused(void)
146{
147	int i;
148	long sum = 0;
149	for_each_possible_cpu(i)
150		sum += per_cpu(nr_dentry_unused, i);
151	return sum < 0 ? 0 : sum;
152}
153
154int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
155		   size_t *lenp, loff_t *ppos)
156{
157	dentry_stat.nr_dentry = get_nr_dentry();
158	dentry_stat.nr_unused = get_nr_dentry_unused();
159	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
160}
161#endif
162
163/*
164 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
165 * The strings are both count bytes long, and count is non-zero.
166 */
167#ifdef CONFIG_DCACHE_WORD_ACCESS
168
169#include <asm/word-at-a-time.h>
170/*
171 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
172 * aligned allocation for this particular component. We don't
173 * strictly need the load_unaligned_zeropad() safety, but it
174 * doesn't hurt either.
175 *
176 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
177 * need the careful unaligned handling.
178 */
179static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180{
181	unsigned long a,b,mask;
182
183	for (;;) {
184		a = *(unsigned long *)cs;
185		b = load_unaligned_zeropad(ct);
186		if (tcount < sizeof(unsigned long))
187			break;
188		if (unlikely(a != b))
189			return 1;
190		cs += sizeof(unsigned long);
191		ct += sizeof(unsigned long);
192		tcount -= sizeof(unsigned long);
193		if (!tcount)
194			return 0;
195	}
196	mask = bytemask_from_count(tcount);
197	return unlikely(!!((a ^ b) & mask));
198}
199
200#else
201
202static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
203{
204	do {
205		if (*cs != *ct)
206			return 1;
207		cs++;
208		ct++;
209		tcount--;
210	} while (tcount);
211	return 0;
212}
213
214#endif
215
216static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
217{
218	const unsigned char *cs;
219	/*
220	 * Be careful about RCU walk racing with rename:
221	 * use ACCESS_ONCE to fetch the name pointer.
222	 *
223	 * NOTE! Even if a rename will mean that the length
224	 * was not loaded atomically, we don't care. The
225	 * RCU walk will check the sequence count eventually,
226	 * and catch it. And we won't overrun the buffer,
227	 * because we're reading the name pointer atomically,
228	 * and a dentry name is guaranteed to be properly
229	 * terminated with a NUL byte.
230	 *
231	 * End result: even if 'len' is wrong, we'll exit
232	 * early because the data cannot match (there can
233	 * be no NUL in the ct/tcount data)
234	 */
235	cs = ACCESS_ONCE(dentry->d_name.name);
236	smp_read_barrier_depends();
237	return dentry_string_cmp(cs, ct, tcount);
238}
239
240struct external_name {
241	union {
242		atomic_t count;
243		struct rcu_head head;
244	} u;
245	unsigned char name[];
246};
247
248static inline struct external_name *external_name(struct dentry *dentry)
249{
250	return container_of(dentry->d_name.name, struct external_name, name[0]);
251}
252
253static void __d_free(struct rcu_head *head)
254{
255	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256
257	kmem_cache_free(dentry_cache, dentry);
258}
259
260static void __d_free_external(struct rcu_head *head)
261{
262	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
263	kfree(external_name(dentry));
264	kmem_cache_free(dentry_cache, dentry);
265}
266
267static inline int dname_external(const struct dentry *dentry)
268{
269	return dentry->d_name.name != dentry->d_iname;
270}
271
272static inline void __d_set_inode_and_type(struct dentry *dentry,
273					  struct inode *inode,
274					  unsigned type_flags)
275{
276	unsigned flags;
277
278	dentry->d_inode = inode;
279	flags = READ_ONCE(dentry->d_flags);
280	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
281	flags |= type_flags;
282	WRITE_ONCE(dentry->d_flags, flags);
283}
284
285static inline void __d_clear_type_and_inode(struct dentry *dentry)
286{
287	unsigned flags = READ_ONCE(dentry->d_flags);
288
289	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
290	WRITE_ONCE(dentry->d_flags, flags);
291	dentry->d_inode = NULL;
292}
293
294static void dentry_free(struct dentry *dentry)
295{
296	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
297	if (unlikely(dname_external(dentry))) {
298		struct external_name *p = external_name(dentry);
299		if (likely(atomic_dec_and_test(&p->u.count))) {
300			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
301			return;
302		}
303	}
304	/* if dentry was never visible to RCU, immediate free is OK */
305	if (!(dentry->d_flags & DCACHE_RCUACCESS))
306		__d_free(&dentry->d_u.d_rcu);
307	else
308		call_rcu(&dentry->d_u.d_rcu, __d_free);
309}
310
311/**
312 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
313 * @dentry: the target dentry
314 * After this call, in-progress rcu-walk path lookup will fail. This
315 * should be called after unhashing, and after changing d_inode (if
316 * the dentry has not already been unhashed).
317 */
318static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
319{
320	lockdep_assert_held(&dentry->d_lock);
321	/* Go through am invalidation barrier */
322	write_seqcount_invalidate(&dentry->d_seq);
323}
324
325/*
326 * Release the dentry's inode, using the filesystem
327 * d_iput() operation if defined. Dentry has no refcount
328 * and is unhashed.
329 */
330static void dentry_iput(struct dentry * dentry)
331	__releases(dentry->d_lock)
332	__releases(dentry->d_inode->i_lock)
333{
334	struct inode *inode = dentry->d_inode;
335	if (inode) {
336		__d_clear_type_and_inode(dentry);
337		hlist_del_init(&dentry->d_u.d_alias);
338		spin_unlock(&dentry->d_lock);
339		spin_unlock(&inode->i_lock);
340		if (!inode->i_nlink)
341			fsnotify_inoderemove(inode);
342		if (dentry->d_op && dentry->d_op->d_iput)
343			dentry->d_op->d_iput(dentry, inode);
344		else
345			iput(inode);
346	} else {
347		spin_unlock(&dentry->d_lock);
348	}
349}
350
351/*
352 * Release the dentry's inode, using the filesystem
353 * d_iput() operation if defined. dentry remains in-use.
354 */
355static void dentry_unlink_inode(struct dentry * dentry)
356	__releases(dentry->d_lock)
357	__releases(dentry->d_inode->i_lock)
358{
359	struct inode *inode = dentry->d_inode;
360
361	raw_write_seqcount_begin(&dentry->d_seq);
362	__d_clear_type_and_inode(dentry);
363	hlist_del_init(&dentry->d_u.d_alias);
364	raw_write_seqcount_end(&dentry->d_seq);
365	spin_unlock(&dentry->d_lock);
366	spin_unlock(&inode->i_lock);
367	if (!inode->i_nlink)
368		fsnotify_inoderemove(inode);
369	if (dentry->d_op && dentry->d_op->d_iput)
370		dentry->d_op->d_iput(dentry, inode);
371	else
372		iput(inode);
373}
374
375/*
376 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
377 * is in use - which includes both the "real" per-superblock
378 * LRU list _and_ the DCACHE_SHRINK_LIST use.
379 *
380 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
381 * on the shrink list (ie not on the superblock LRU list).
382 *
383 * The per-cpu "nr_dentry_unused" counters are updated with
384 * the DCACHE_LRU_LIST bit.
385 *
386 * These helper functions make sure we always follow the
387 * rules. d_lock must be held by the caller.
388 */
389#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
390static void d_lru_add(struct dentry *dentry)
391{
392	D_FLAG_VERIFY(dentry, 0);
393	dentry->d_flags |= DCACHE_LRU_LIST;
394	this_cpu_inc(nr_dentry_unused);
395	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
396}
397
398static void d_lru_del(struct dentry *dentry)
399{
400	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
401	dentry->d_flags &= ~DCACHE_LRU_LIST;
402	this_cpu_dec(nr_dentry_unused);
403	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
404}
405
406static void d_shrink_del(struct dentry *dentry)
407{
408	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
409	list_del_init(&dentry->d_lru);
410	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
411	this_cpu_dec(nr_dentry_unused);
412}
413
414static void d_shrink_add(struct dentry *dentry, struct list_head *list)
415{
416	D_FLAG_VERIFY(dentry, 0);
417	list_add(&dentry->d_lru, list);
418	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
419	this_cpu_inc(nr_dentry_unused);
420}
421
422/*
423 * These can only be called under the global LRU lock, ie during the
424 * callback for freeing the LRU list. "isolate" removes it from the
425 * LRU lists entirely, while shrink_move moves it to the indicated
426 * private list.
427 */
428static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
429{
430	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
431	dentry->d_flags &= ~DCACHE_LRU_LIST;
432	this_cpu_dec(nr_dentry_unused);
433	list_lru_isolate(lru, &dentry->d_lru);
434}
435
436static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
437			      struct list_head *list)
438{
439	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
440	dentry->d_flags |= DCACHE_SHRINK_LIST;
441	list_lru_isolate_move(lru, &dentry->d_lru, list);
442}
443
444/*
445 * dentry_lru_(add|del)_list) must be called with d_lock held.
446 */
447static void dentry_lru_add(struct dentry *dentry)
448{
449	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
450		d_lru_add(dentry);
451}
452
453/**
454 * d_drop - drop a dentry
455 * @dentry: dentry to drop
456 *
457 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
458 * be found through a VFS lookup any more. Note that this is different from
459 * deleting the dentry - d_delete will try to mark the dentry negative if
460 * possible, giving a successful _negative_ lookup, while d_drop will
461 * just make the cache lookup fail.
462 *
463 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
464 * reason (NFS timeouts or autofs deletes).
465 *
466 * __d_drop requires dentry->d_lock.
467 */
468void __d_drop(struct dentry *dentry)
469{
470	if (!d_unhashed(dentry)) {
471		struct hlist_bl_head *b;
472		/*
473		 * Hashed dentries are normally on the dentry hashtable,
474		 * with the exception of those newly allocated by
475		 * d_obtain_alias, which are always IS_ROOT:
476		 */
477		if (unlikely(IS_ROOT(dentry)))
478			b = &dentry->d_sb->s_anon;
479		else
480			b = d_hash(dentry->d_parent, dentry->d_name.hash);
481
482		hlist_bl_lock(b);
483		__hlist_bl_del(&dentry->d_hash);
484		dentry->d_hash.pprev = NULL;
485		hlist_bl_unlock(b);
486		dentry_rcuwalk_invalidate(dentry);
487	}
488}
489EXPORT_SYMBOL(__d_drop);
490
491void d_drop(struct dentry *dentry)
492{
493	spin_lock(&dentry->d_lock);
494	__d_drop(dentry);
495	spin_unlock(&dentry->d_lock);
496}
497EXPORT_SYMBOL(d_drop);
498
499static void __dentry_kill(struct dentry *dentry)
500{
501	struct dentry *parent = NULL;
502	bool can_free = true;
503	if (!IS_ROOT(dentry))
504		parent = dentry->d_parent;
505
506	/*
507	 * The dentry is now unrecoverably dead to the world.
508	 */
509	lockref_mark_dead(&dentry->d_lockref);
510
511	/*
512	 * inform the fs via d_prune that this dentry is about to be
513	 * unhashed and destroyed.
514	 */
515	if (dentry->d_flags & DCACHE_OP_PRUNE)
516		dentry->d_op->d_prune(dentry);
517
518	if (dentry->d_flags & DCACHE_LRU_LIST) {
519		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
520			d_lru_del(dentry);
521	}
522	/* if it was on the hash then remove it */
523	__d_drop(dentry);
524	__list_del_entry(&dentry->d_child);
525	/*
526	 * Inform d_walk() that we are no longer attached to the
527	 * dentry tree
528	 */
529	dentry->d_flags |= DCACHE_DENTRY_KILLED;
530	if (parent)
531		spin_unlock(&parent->d_lock);
532	dentry_iput(dentry);
533	/*
534	 * dentry_iput drops the locks, at which point nobody (except
535	 * transient RCU lookups) can reach this dentry.
536	 */
537	BUG_ON(dentry->d_lockref.count > 0);
538	this_cpu_dec(nr_dentry);
539	if (dentry->d_op && dentry->d_op->d_release)
540		dentry->d_op->d_release(dentry);
541
542	spin_lock(&dentry->d_lock);
543	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
544		dentry->d_flags |= DCACHE_MAY_FREE;
545		can_free = false;
546	}
547	spin_unlock(&dentry->d_lock);
548	if (likely(can_free))
549		dentry_free(dentry);
550}
551
552/*
553 * Finish off a dentry we've decided to kill.
554 * dentry->d_lock must be held, returns with it unlocked.
555 * If ref is non-zero, then decrement the refcount too.
556 * Returns dentry requiring refcount drop, or NULL if we're done.
557 */
558static struct dentry *dentry_kill(struct dentry *dentry)
559	__releases(dentry->d_lock)
560{
561	struct inode *inode = dentry->d_inode;
562	struct dentry *parent = NULL;
563
564	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
565		goto failed;
566
567	if (!IS_ROOT(dentry)) {
568		parent = dentry->d_parent;
569		if (unlikely(!spin_trylock(&parent->d_lock))) {
570			if (inode)
571				spin_unlock(&inode->i_lock);
572			goto failed;
573		}
574	}
575
576	__dentry_kill(dentry);
577	return parent;
578
579failed:
580	spin_unlock(&dentry->d_lock);
581	cpu_relax();
582	return dentry; /* try again with same dentry */
583}
584
585static inline struct dentry *lock_parent(struct dentry *dentry)
586{
587	struct dentry *parent = dentry->d_parent;
588	if (IS_ROOT(dentry))
589		return NULL;
590	if (unlikely(dentry->d_lockref.count < 0))
591		return NULL;
592	if (likely(spin_trylock(&parent->d_lock)))
593		return parent;
594	rcu_read_lock();
595	spin_unlock(&dentry->d_lock);
596again:
597	parent = ACCESS_ONCE(dentry->d_parent);
598	spin_lock(&parent->d_lock);
599	/*
600	 * We can't blindly lock dentry until we are sure
601	 * that we won't violate the locking order.
602	 * Any changes of dentry->d_parent must have
603	 * been done with parent->d_lock held, so
604	 * spin_lock() above is enough of a barrier
605	 * for checking if it's still our child.
606	 */
607	if (unlikely(parent != dentry->d_parent)) {
608		spin_unlock(&parent->d_lock);
609		goto again;
610	}
611	rcu_read_unlock();
612	if (parent != dentry)
613		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
614	else
615		parent = NULL;
616	return parent;
617}
618
619/*
620 * Try to do a lockless dput(), and return whether that was successful.
621 *
622 * If unsuccessful, we return false, having already taken the dentry lock.
623 *
624 * The caller needs to hold the RCU read lock, so that the dentry is
625 * guaranteed to stay around even if the refcount goes down to zero!
626 */
627static inline bool fast_dput(struct dentry *dentry)
628{
629	int ret;
630	unsigned int d_flags;
631
632	/*
633	 * If we have a d_op->d_delete() operation, we sould not
634	 * let the dentry count go to zero, so use "put_or_lock".
635	 */
636	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
637		return lockref_put_or_lock(&dentry->d_lockref);
638
639	/*
640	 * .. otherwise, we can try to just decrement the
641	 * lockref optimistically.
642	 */
643	ret = lockref_put_return(&dentry->d_lockref);
644
645	/*
646	 * If the lockref_put_return() failed due to the lock being held
647	 * by somebody else, the fast path has failed. We will need to
648	 * get the lock, and then check the count again.
649	 */
650	if (unlikely(ret < 0)) {
651		spin_lock(&dentry->d_lock);
652		if (dentry->d_lockref.count > 1) {
653			dentry->d_lockref.count--;
654			spin_unlock(&dentry->d_lock);
655			return 1;
656		}
657		return 0;
658	}
659
660	/*
661	 * If we weren't the last ref, we're done.
662	 */
663	if (ret)
664		return 1;
665
666	/*
667	 * Careful, careful. The reference count went down
668	 * to zero, but we don't hold the dentry lock, so
669	 * somebody else could get it again, and do another
670	 * dput(), and we need to not race with that.
671	 *
672	 * However, there is a very special and common case
673	 * where we don't care, because there is nothing to
674	 * do: the dentry is still hashed, it does not have
675	 * a 'delete' op, and it's referenced and already on
676	 * the LRU list.
677	 *
678	 * NOTE! Since we aren't locked, these values are
679	 * not "stable". However, it is sufficient that at
680	 * some point after we dropped the reference the
681	 * dentry was hashed and the flags had the proper
682	 * value. Other dentry users may have re-gotten
683	 * a reference to the dentry and change that, but
684	 * our work is done - we can leave the dentry
685	 * around with a zero refcount.
686	 */
687	smp_rmb();
688	d_flags = ACCESS_ONCE(dentry->d_flags);
689	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
690
691	/* Nothing to do? Dropping the reference was all we needed? */
692	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
693		return 1;
694
695	/*
696	 * Not the fast normal case? Get the lock. We've already decremented
697	 * the refcount, but we'll need to re-check the situation after
698	 * getting the lock.
699	 */
700	spin_lock(&dentry->d_lock);
701
702	/*
703	 * Did somebody else grab a reference to it in the meantime, and
704	 * we're no longer the last user after all? Alternatively, somebody
705	 * else could have killed it and marked it dead. Either way, we
706	 * don't need to do anything else.
707	 */
708	if (dentry->d_lockref.count) {
709		spin_unlock(&dentry->d_lock);
710		return 1;
711	}
712
713	/*
714	 * Re-get the reference we optimistically dropped. We hold the
715	 * lock, and we just tested that it was zero, so we can just
716	 * set it to 1.
717	 */
718	dentry->d_lockref.count = 1;
719	return 0;
720}
721
722
723/*
724 * This is dput
725 *
726 * This is complicated by the fact that we do not want to put
727 * dentries that are no longer on any hash chain on the unused
728 * list: we'd much rather just get rid of them immediately.
729 *
730 * However, that implies that we have to traverse the dentry
731 * tree upwards to the parents which might _also_ now be
732 * scheduled for deletion (it may have been only waiting for
733 * its last child to go away).
734 *
735 * This tail recursion is done by hand as we don't want to depend
736 * on the compiler to always get this right (gcc generally doesn't).
737 * Real recursion would eat up our stack space.
738 */
739
740/*
741 * dput - release a dentry
742 * @dentry: dentry to release
743 *
744 * Release a dentry. This will drop the usage count and if appropriate
745 * call the dentry unlink method as well as removing it from the queues and
746 * releasing its resources. If the parent dentries were scheduled for release
747 * they too may now get deleted.
748 */
749void dput(struct dentry *dentry)
750{
751	if (unlikely(!dentry))
752		return;
753
754repeat:
755	rcu_read_lock();
756	if (likely(fast_dput(dentry))) {
757		rcu_read_unlock();
758		return;
759	}
760
761	/* Slow case: now with the dentry lock held */
762	rcu_read_unlock();
763
764	/* Unreachable? Get rid of it */
765	if (unlikely(d_unhashed(dentry)))
766		goto kill_it;
767
768	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
769		goto kill_it;
770
771	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
772		if (dentry->d_op->d_delete(dentry))
773			goto kill_it;
774	}
775
776	if (!(dentry->d_flags & DCACHE_REFERENCED))
777		dentry->d_flags |= DCACHE_REFERENCED;
778	dentry_lru_add(dentry);
779
780	dentry->d_lockref.count--;
781	spin_unlock(&dentry->d_lock);
782	return;
783
784kill_it:
785	dentry = dentry_kill(dentry);
786	if (dentry)
787		goto repeat;
788}
789EXPORT_SYMBOL(dput);
790
791
792/* This must be called with d_lock held */
793static inline void __dget_dlock(struct dentry *dentry)
794{
795	dentry->d_lockref.count++;
796}
797
798static inline void __dget(struct dentry *dentry)
799{
800	lockref_get(&dentry->d_lockref);
801}
802
803struct dentry *dget_parent(struct dentry *dentry)
804{
805	int gotref;
806	struct dentry *ret;
807
808	/*
809	 * Do optimistic parent lookup without any
810	 * locking.
811	 */
812	rcu_read_lock();
813	ret = ACCESS_ONCE(dentry->d_parent);
814	gotref = lockref_get_not_zero(&ret->d_lockref);
815	rcu_read_unlock();
816	if (likely(gotref)) {
817		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
818			return ret;
819		dput(ret);
820	}
821
822repeat:
823	/*
824	 * Don't need rcu_dereference because we re-check it was correct under
825	 * the lock.
826	 */
827	rcu_read_lock();
828	ret = dentry->d_parent;
829	spin_lock(&ret->d_lock);
830	if (unlikely(ret != dentry->d_parent)) {
831		spin_unlock(&ret->d_lock);
832		rcu_read_unlock();
833		goto repeat;
834	}
835	rcu_read_unlock();
836	BUG_ON(!ret->d_lockref.count);
837	ret->d_lockref.count++;
838	spin_unlock(&ret->d_lock);
839	return ret;
840}
841EXPORT_SYMBOL(dget_parent);
842
843/**
844 * d_find_alias - grab a hashed alias of inode
845 * @inode: inode in question
846 *
847 * If inode has a hashed alias, or is a directory and has any alias,
848 * acquire the reference to alias and return it. Otherwise return NULL.
849 * Notice that if inode is a directory there can be only one alias and
850 * it can be unhashed only if it has no children, or if it is the root
851 * of a filesystem, or if the directory was renamed and d_revalidate
852 * was the first vfs operation to notice.
853 *
854 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
855 * any other hashed alias over that one.
856 */
857static struct dentry *__d_find_alias(struct inode *inode)
858{
859	struct dentry *alias, *discon_alias;
860
861again:
862	discon_alias = NULL;
863	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
864		spin_lock(&alias->d_lock);
865 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
866			if (IS_ROOT(alias) &&
867			    (alias->d_flags & DCACHE_DISCONNECTED)) {
868				discon_alias = alias;
869			} else {
870				__dget_dlock(alias);
871				spin_unlock(&alias->d_lock);
872				return alias;
873			}
874		}
875		spin_unlock(&alias->d_lock);
876	}
877	if (discon_alias) {
878		alias = discon_alias;
879		spin_lock(&alias->d_lock);
880		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
881			__dget_dlock(alias);
882			spin_unlock(&alias->d_lock);
883			return alias;
884		}
885		spin_unlock(&alias->d_lock);
886		goto again;
887	}
888	return NULL;
889}
890
891struct dentry *d_find_alias(struct inode *inode)
892{
893	struct dentry *de = NULL;
894
895	if (!hlist_empty(&inode->i_dentry)) {
896		spin_lock(&inode->i_lock);
897		de = __d_find_alias(inode);
898		spin_unlock(&inode->i_lock);
899	}
900	return de;
901}
902EXPORT_SYMBOL(d_find_alias);
903
904/*
905 *	Try to kill dentries associated with this inode.
906 * WARNING: you must own a reference to inode.
907 */
908void d_prune_aliases(struct inode *inode)
909{
910	struct dentry *dentry;
911restart:
912	spin_lock(&inode->i_lock);
913	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
914		spin_lock(&dentry->d_lock);
915		if (!dentry->d_lockref.count) {
916			struct dentry *parent = lock_parent(dentry);
917			if (likely(!dentry->d_lockref.count)) {
918				__dentry_kill(dentry);
919				dput(parent);
920				goto restart;
921			}
922			if (parent)
923				spin_unlock(&parent->d_lock);
924		}
925		spin_unlock(&dentry->d_lock);
926	}
927	spin_unlock(&inode->i_lock);
928}
929EXPORT_SYMBOL(d_prune_aliases);
930
931static void shrink_dentry_list(struct list_head *list)
932{
933	struct dentry *dentry, *parent;
934
935	while (!list_empty(list)) {
936		struct inode *inode;
937		dentry = list_entry(list->prev, struct dentry, d_lru);
938		spin_lock(&dentry->d_lock);
939		parent = lock_parent(dentry);
940
941		/*
942		 * The dispose list is isolated and dentries are not accounted
943		 * to the LRU here, so we can simply remove it from the list
944		 * here regardless of whether it is referenced or not.
945		 */
946		d_shrink_del(dentry);
947
948		/*
949		 * We found an inuse dentry which was not removed from
950		 * the LRU because of laziness during lookup. Do not free it.
951		 */
952		if (dentry->d_lockref.count > 0) {
953			spin_unlock(&dentry->d_lock);
954			if (parent)
955				spin_unlock(&parent->d_lock);
956			continue;
957		}
958
959
960		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
961			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
962			spin_unlock(&dentry->d_lock);
963			if (parent)
964				spin_unlock(&parent->d_lock);
965			if (can_free)
966				dentry_free(dentry);
967			continue;
968		}
969
970		inode = dentry->d_inode;
971		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
972			d_shrink_add(dentry, list);
973			spin_unlock(&dentry->d_lock);
974			if (parent)
975				spin_unlock(&parent->d_lock);
976			continue;
977		}
978
979		__dentry_kill(dentry);
980
981		/*
982		 * We need to prune ancestors too. This is necessary to prevent
983		 * quadratic behavior of shrink_dcache_parent(), but is also
984		 * expected to be beneficial in reducing dentry cache
985		 * fragmentation.
986		 */
987		dentry = parent;
988		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
989			parent = lock_parent(dentry);
990			if (dentry->d_lockref.count != 1) {
991				dentry->d_lockref.count--;
992				spin_unlock(&dentry->d_lock);
993				if (parent)
994					spin_unlock(&parent->d_lock);
995				break;
996			}
997			inode = dentry->d_inode;	/* can't be NULL */
998			if (unlikely(!spin_trylock(&inode->i_lock))) {
999				spin_unlock(&dentry->d_lock);
1000				if (parent)
1001					spin_unlock(&parent->d_lock);
1002				cpu_relax();
1003				continue;
1004			}
1005			__dentry_kill(dentry);
1006			dentry = parent;
1007		}
1008	}
1009}
1010
1011static enum lru_status dentry_lru_isolate(struct list_head *item,
1012		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1013{
1014	struct list_head *freeable = arg;
1015	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1016
1017
1018	/*
1019	 * we are inverting the lru lock/dentry->d_lock here,
1020	 * so use a trylock. If we fail to get the lock, just skip
1021	 * it
1022	 */
1023	if (!spin_trylock(&dentry->d_lock))
1024		return LRU_SKIP;
1025
1026	/*
1027	 * Referenced dentries are still in use. If they have active
1028	 * counts, just remove them from the LRU. Otherwise give them
1029	 * another pass through the LRU.
1030	 */
1031	if (dentry->d_lockref.count) {
1032		d_lru_isolate(lru, dentry);
1033		spin_unlock(&dentry->d_lock);
1034		return LRU_REMOVED;
1035	}
1036
1037	if (dentry->d_flags & DCACHE_REFERENCED) {
1038		dentry->d_flags &= ~DCACHE_REFERENCED;
1039		spin_unlock(&dentry->d_lock);
1040
1041		/*
1042		 * The list move itself will be made by the common LRU code. At
1043		 * this point, we've dropped the dentry->d_lock but keep the
1044		 * lru lock. This is safe to do, since every list movement is
1045		 * protected by the lru lock even if both locks are held.
1046		 *
1047		 * This is guaranteed by the fact that all LRU management
1048		 * functions are intermediated by the LRU API calls like
1049		 * list_lru_add and list_lru_del. List movement in this file
1050		 * only ever occur through this functions or through callbacks
1051		 * like this one, that are called from the LRU API.
1052		 *
1053		 * The only exceptions to this are functions like
1054		 * shrink_dentry_list, and code that first checks for the
1055		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1056		 * operating only with stack provided lists after they are
1057		 * properly isolated from the main list.  It is thus, always a
1058		 * local access.
1059		 */
1060		return LRU_ROTATE;
1061	}
1062
1063	d_lru_shrink_move(lru, dentry, freeable);
1064	spin_unlock(&dentry->d_lock);
1065
1066	return LRU_REMOVED;
1067}
1068
1069/**
1070 * prune_dcache_sb - shrink the dcache
1071 * @sb: superblock
1072 * @sc: shrink control, passed to list_lru_shrink_walk()
1073 *
1074 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1075 * is done when we need more memory and called from the superblock shrinker
1076 * function.
1077 *
1078 * This function may fail to free any resources if all the dentries are in
1079 * use.
1080 */
1081long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1082{
1083	LIST_HEAD(dispose);
1084	long freed;
1085
1086	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1087				     dentry_lru_isolate, &dispose);
1088	shrink_dentry_list(&dispose);
1089	return freed;
1090}
1091
1092static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1093		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1094{
1095	struct list_head *freeable = arg;
1096	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1097
1098	/*
1099	 * we are inverting the lru lock/dentry->d_lock here,
1100	 * so use a trylock. If we fail to get the lock, just skip
1101	 * it
1102	 */
1103	if (!spin_trylock(&dentry->d_lock))
1104		return LRU_SKIP;
1105
1106	d_lru_shrink_move(lru, dentry, freeable);
1107	spin_unlock(&dentry->d_lock);
1108
1109	return LRU_REMOVED;
1110}
1111
1112
1113/**
1114 * shrink_dcache_sb - shrink dcache for a superblock
1115 * @sb: superblock
1116 *
1117 * Shrink the dcache for the specified super block. This is used to free
1118 * the dcache before unmounting a file system.
1119 */
1120void shrink_dcache_sb(struct super_block *sb)
1121{
1122	long freed;
1123
1124	do {
1125		LIST_HEAD(dispose);
1126
1127		freed = list_lru_walk(&sb->s_dentry_lru,
1128			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1129
1130		this_cpu_sub(nr_dentry_unused, freed);
1131		shrink_dentry_list(&dispose);
1132	} while (freed > 0);
1133}
1134EXPORT_SYMBOL(shrink_dcache_sb);
1135
1136/**
1137 * enum d_walk_ret - action to talke during tree walk
1138 * @D_WALK_CONTINUE:	contrinue walk
1139 * @D_WALK_QUIT:	quit walk
1140 * @D_WALK_NORETRY:	quit when retry is needed
1141 * @D_WALK_SKIP:	skip this dentry and its children
1142 */
1143enum d_walk_ret {
1144	D_WALK_CONTINUE,
1145	D_WALK_QUIT,
1146	D_WALK_NORETRY,
1147	D_WALK_SKIP,
1148};
1149
1150/**
1151 * d_walk - walk the dentry tree
1152 * @parent:	start of walk
1153 * @data:	data passed to @enter() and @finish()
1154 * @enter:	callback when first entering the dentry
1155 * @finish:	callback when successfully finished the walk
1156 *
1157 * The @enter() and @finish() callbacks are called with d_lock held.
1158 */
1159static void d_walk(struct dentry *parent, void *data,
1160		   enum d_walk_ret (*enter)(void *, struct dentry *),
1161		   void (*finish)(void *))
1162{
1163	struct dentry *this_parent;
1164	struct list_head *next;
1165	unsigned seq = 0;
1166	enum d_walk_ret ret;
1167	bool retry = true;
1168
1169again:
1170	read_seqbegin_or_lock(&rename_lock, &seq);
1171	this_parent = parent;
1172	spin_lock(&this_parent->d_lock);
1173
1174	ret = enter(data, this_parent);
1175	switch (ret) {
1176	case D_WALK_CONTINUE:
1177		break;
1178	case D_WALK_QUIT:
1179	case D_WALK_SKIP:
1180		goto out_unlock;
1181	case D_WALK_NORETRY:
1182		retry = false;
1183		break;
1184	}
1185repeat:
1186	next = this_parent->d_subdirs.next;
1187resume:
1188	while (next != &this_parent->d_subdirs) {
1189		struct list_head *tmp = next;
1190		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1191		next = tmp->next;
1192
1193		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1194
1195		ret = enter(data, dentry);
1196		switch (ret) {
1197		case D_WALK_CONTINUE:
1198			break;
1199		case D_WALK_QUIT:
1200			spin_unlock(&dentry->d_lock);
1201			goto out_unlock;
1202		case D_WALK_NORETRY:
1203			retry = false;
1204			break;
1205		case D_WALK_SKIP:
1206			spin_unlock(&dentry->d_lock);
1207			continue;
1208		}
1209
1210		if (!list_empty(&dentry->d_subdirs)) {
1211			spin_unlock(&this_parent->d_lock);
1212			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1213			this_parent = dentry;
1214			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1215			goto repeat;
1216		}
1217		spin_unlock(&dentry->d_lock);
1218	}
1219	/*
1220	 * All done at this level ... ascend and resume the search.
1221	 */
1222	rcu_read_lock();
1223ascend:
1224	if (this_parent != parent) {
1225		struct dentry *child = this_parent;
1226		this_parent = child->d_parent;
1227
1228		spin_unlock(&child->d_lock);
1229		spin_lock(&this_parent->d_lock);
1230
1231		/* might go back up the wrong parent if we have had a rename. */
1232		if (need_seqretry(&rename_lock, seq))
1233			goto rename_retry;
1234		/* go into the first sibling still alive */
1235		do {
1236			next = child->d_child.next;
1237			if (next == &this_parent->d_subdirs)
1238				goto ascend;
1239			child = list_entry(next, struct dentry, d_child);
1240		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1241		rcu_read_unlock();
1242		goto resume;
1243	}
1244	if (need_seqretry(&rename_lock, seq))
1245		goto rename_retry;
1246	rcu_read_unlock();
1247	if (finish)
1248		finish(data);
1249
1250out_unlock:
1251	spin_unlock(&this_parent->d_lock);
1252	done_seqretry(&rename_lock, seq);
1253	return;
1254
1255rename_retry:
1256	spin_unlock(&this_parent->d_lock);
1257	rcu_read_unlock();
1258	BUG_ON(seq & 1);
1259	if (!retry)
1260		return;
1261	seq = 1;
1262	goto again;
1263}
1264
1265/*
1266 * Search for at least 1 mount point in the dentry's subdirs.
1267 * We descend to the next level whenever the d_subdirs
1268 * list is non-empty and continue searching.
1269 */
1270
1271static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1272{
1273	int *ret = data;
1274	if (d_mountpoint(dentry)) {
1275		*ret = 1;
1276		return D_WALK_QUIT;
1277	}
1278	return D_WALK_CONTINUE;
1279}
1280
1281/**
1282 * have_submounts - check for mounts over a dentry
1283 * @parent: dentry to check.
1284 *
1285 * Return true if the parent or its subdirectories contain
1286 * a mount point
1287 */
1288int have_submounts(struct dentry *parent)
1289{
1290	int ret = 0;
1291
1292	d_walk(parent, &ret, check_mount, NULL);
1293
1294	return ret;
1295}
1296EXPORT_SYMBOL(have_submounts);
1297
1298/*
1299 * Called by mount code to set a mountpoint and check if the mountpoint is
1300 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1301 * subtree can become unreachable).
1302 *
1303 * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1304 * this reason take rename_lock and d_lock on dentry and ancestors.
1305 */
1306int d_set_mounted(struct dentry *dentry)
1307{
1308	struct dentry *p;
1309	int ret = -ENOENT;
1310	write_seqlock(&rename_lock);
1311	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1312		/* Need exclusion wrt. d_invalidate() */
1313		spin_lock(&p->d_lock);
1314		if (unlikely(d_unhashed(p))) {
1315			spin_unlock(&p->d_lock);
1316			goto out;
1317		}
1318		spin_unlock(&p->d_lock);
1319	}
1320	spin_lock(&dentry->d_lock);
1321	if (!d_unlinked(dentry)) {
1322		dentry->d_flags |= DCACHE_MOUNTED;
1323		ret = 0;
1324	}
1325 	spin_unlock(&dentry->d_lock);
1326out:
1327	write_sequnlock(&rename_lock);
1328	return ret;
1329}
1330
1331/*
1332 * Search the dentry child list of the specified parent,
1333 * and move any unused dentries to the end of the unused
1334 * list for prune_dcache(). We descend to the next level
1335 * whenever the d_subdirs list is non-empty and continue
1336 * searching.
1337 *
1338 * It returns zero iff there are no unused children,
1339 * otherwise  it returns the number of children moved to
1340 * the end of the unused list. This may not be the total
1341 * number of unused children, because select_parent can
1342 * drop the lock and return early due to latency
1343 * constraints.
1344 */
1345
1346struct select_data {
1347	struct dentry *start;
1348	struct list_head dispose;
1349	int found;
1350};
1351
1352static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1353{
1354	struct select_data *data = _data;
1355	enum d_walk_ret ret = D_WALK_CONTINUE;
1356
1357	if (data->start == dentry)
1358		goto out;
1359
1360	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1361		data->found++;
1362	} else {
1363		if (dentry->d_flags & DCACHE_LRU_LIST)
1364			d_lru_del(dentry);
1365		if (!dentry->d_lockref.count) {
1366			d_shrink_add(dentry, &data->dispose);
1367			data->found++;
1368		}
1369	}
1370	/*
1371	 * We can return to the caller if we have found some (this
1372	 * ensures forward progress). We'll be coming back to find
1373	 * the rest.
1374	 */
1375	if (!list_empty(&data->dispose))
1376		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1377out:
1378	return ret;
1379}
1380
1381/**
1382 * shrink_dcache_parent - prune dcache
1383 * @parent: parent of entries to prune
1384 *
1385 * Prune the dcache to remove unused children of the parent dentry.
1386 */
1387void shrink_dcache_parent(struct dentry *parent)
1388{
1389	for (;;) {
1390		struct select_data data;
1391
1392		INIT_LIST_HEAD(&data.dispose);
1393		data.start = parent;
1394		data.found = 0;
1395
1396		d_walk(parent, &data, select_collect, NULL);
1397		if (!data.found)
1398			break;
1399
1400		shrink_dentry_list(&data.dispose);
1401		cond_resched();
1402	}
1403}
1404EXPORT_SYMBOL(shrink_dcache_parent);
1405
1406static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1407{
1408	/* it has busy descendents; complain about those instead */
1409	if (!list_empty(&dentry->d_subdirs))
1410		return D_WALK_CONTINUE;
1411
1412	/* root with refcount 1 is fine */
1413	if (dentry == _data && dentry->d_lockref.count == 1)
1414		return D_WALK_CONTINUE;
1415
1416	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1417			" still in use (%d) [unmount of %s %s]\n",
1418		       dentry,
1419		       dentry->d_inode ?
1420		       dentry->d_inode->i_ino : 0UL,
1421		       dentry,
1422		       dentry->d_lockref.count,
1423		       dentry->d_sb->s_type->name,
1424		       dentry->d_sb->s_id);
1425	WARN_ON(1);
1426	return D_WALK_CONTINUE;
1427}
1428
1429static void do_one_tree(struct dentry *dentry)
1430{
1431	shrink_dcache_parent(dentry);
1432	d_walk(dentry, dentry, umount_check, NULL);
1433	d_drop(dentry);
1434	dput(dentry);
1435}
1436
1437/*
1438 * destroy the dentries attached to a superblock on unmounting
1439 */
1440void shrink_dcache_for_umount(struct super_block *sb)
1441{
1442	struct dentry *dentry;
1443
1444	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1445
1446	dentry = sb->s_root;
1447	sb->s_root = NULL;
1448	do_one_tree(dentry);
1449
1450	while (!hlist_bl_empty(&sb->s_anon)) {
1451		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1452		do_one_tree(dentry);
1453	}
1454}
1455
1456struct detach_data {
1457	struct select_data select;
1458	struct dentry *mountpoint;
1459};
1460static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1461{
1462	struct detach_data *data = _data;
1463
1464	if (d_mountpoint(dentry)) {
1465		__dget_dlock(dentry);
1466		data->mountpoint = dentry;
1467		return D_WALK_QUIT;
1468	}
1469
1470	return select_collect(&data->select, dentry);
1471}
1472
1473static void check_and_drop(void *_data)
1474{
1475	struct detach_data *data = _data;
1476
1477	if (!data->mountpoint && !data->select.found)
1478		__d_drop(data->select.start);
1479}
1480
1481/**
1482 * d_invalidate - detach submounts, prune dcache, and drop
1483 * @dentry: dentry to invalidate (aka detach, prune and drop)
1484 *
1485 * no dcache lock.
1486 *
1487 * The final d_drop is done as an atomic operation relative to
1488 * rename_lock ensuring there are no races with d_set_mounted.  This
1489 * ensures there are no unhashed dentries on the path to a mountpoint.
1490 */
1491void d_invalidate(struct dentry *dentry)
1492{
1493	/*
1494	 * If it's already been dropped, return OK.
1495	 */
1496	spin_lock(&dentry->d_lock);
1497	if (d_unhashed(dentry)) {
1498		spin_unlock(&dentry->d_lock);
1499		return;
1500	}
1501	spin_unlock(&dentry->d_lock);
1502
1503	/* Negative dentries can be dropped without further checks */
1504	if (!dentry->d_inode) {
1505		d_drop(dentry);
1506		return;
1507	}
1508
1509	for (;;) {
1510		struct detach_data data;
1511
1512		data.mountpoint = NULL;
1513		INIT_LIST_HEAD(&data.select.dispose);
1514		data.select.start = dentry;
1515		data.select.found = 0;
1516
1517		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1518
1519		if (data.select.found)
1520			shrink_dentry_list(&data.select.dispose);
1521
1522		if (data.mountpoint) {
1523			detach_mounts(data.mountpoint);
1524			dput(data.mountpoint);
1525		}
1526
1527		if (!data.mountpoint && !data.select.found)
1528			break;
1529
1530		cond_resched();
1531	}
1532}
1533EXPORT_SYMBOL(d_invalidate);
1534
1535/**
1536 * __d_alloc	-	allocate a dcache entry
1537 * @sb: filesystem it will belong to
1538 * @name: qstr of the name
1539 *
1540 * Allocates a dentry. It returns %NULL if there is insufficient memory
1541 * available. On a success the dentry is returned. The name passed in is
1542 * copied and the copy passed in may be reused after this call.
1543 */
1544
1545struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1546{
1547	struct dentry *dentry;
1548	char *dname;
1549
1550	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1551	if (!dentry)
1552		return NULL;
1553
1554	/*
1555	 * We guarantee that the inline name is always NUL-terminated.
1556	 * This way the memcpy() done by the name switching in rename
1557	 * will still always have a NUL at the end, even if we might
1558	 * be overwriting an internal NUL character
1559	 */
1560	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1561	if (name->len > DNAME_INLINE_LEN-1) {
1562		size_t size = offsetof(struct external_name, name[1]);
1563		struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1564		if (!p) {
1565			kmem_cache_free(dentry_cache, dentry);
1566			return NULL;
1567		}
1568		atomic_set(&p->u.count, 1);
1569		dname = p->name;
1570		if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1571			kasan_unpoison_shadow(dname,
1572				round_up(name->len + 1,	sizeof(unsigned long)));
1573	} else  {
1574		dname = dentry->d_iname;
1575	}
1576
1577	dentry->d_name.len = name->len;
1578	dentry->d_name.hash = name->hash;
1579	memcpy(dname, name->name, name->len);
1580	dname[name->len] = 0;
1581
1582	/* Make sure we always see the terminating NUL character */
1583	smp_wmb();
1584	dentry->d_name.name = dname;
1585
1586	dentry->d_lockref.count = 1;
1587	dentry->d_flags = 0;
1588	spin_lock_init(&dentry->d_lock);
1589	seqcount_init(&dentry->d_seq);
1590	dentry->d_inode = NULL;
1591	dentry->d_parent = dentry;
1592	dentry->d_sb = sb;
1593	dentry->d_op = NULL;
1594	dentry->d_fsdata = NULL;
1595	INIT_HLIST_BL_NODE(&dentry->d_hash);
1596	INIT_LIST_HEAD(&dentry->d_lru);
1597	INIT_LIST_HEAD(&dentry->d_subdirs);
1598	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1599	INIT_LIST_HEAD(&dentry->d_child);
1600	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1601
1602	this_cpu_inc(nr_dentry);
1603
1604	return dentry;
1605}
1606
1607/**
1608 * d_alloc	-	allocate a dcache entry
1609 * @parent: parent of entry to allocate
1610 * @name: qstr of the name
1611 *
1612 * Allocates a dentry. It returns %NULL if there is insufficient memory
1613 * available. On a success the dentry is returned. The name passed in is
1614 * copied and the copy passed in may be reused after this call.
1615 */
1616struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1617{
1618	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1619	if (!dentry)
1620		return NULL;
1621	dentry->d_flags |= DCACHE_RCUACCESS;
1622	spin_lock(&parent->d_lock);
1623	/*
1624	 * don't need child lock because it is not subject
1625	 * to concurrency here
1626	 */
1627	__dget_dlock(parent);
1628	dentry->d_parent = parent;
1629	list_add(&dentry->d_child, &parent->d_subdirs);
1630	spin_unlock(&parent->d_lock);
1631
1632	return dentry;
1633}
1634EXPORT_SYMBOL(d_alloc);
1635
1636/**
1637 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1638 * @sb: the superblock
1639 * @name: qstr of the name
1640 *
1641 * For a filesystem that just pins its dentries in memory and never
1642 * performs lookups at all, return an unhashed IS_ROOT dentry.
1643 */
1644struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1645{
1646	return __d_alloc(sb, name);
1647}
1648EXPORT_SYMBOL(d_alloc_pseudo);
1649
1650struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1651{
1652	struct qstr q;
1653
1654	q.name = name;
1655	q.len = strlen(name);
1656	q.hash = full_name_hash(q.name, q.len);
1657	return d_alloc(parent, &q);
1658}
1659EXPORT_SYMBOL(d_alloc_name);
1660
1661void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1662{
1663	WARN_ON_ONCE(dentry->d_op);
1664	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1665				DCACHE_OP_COMPARE	|
1666				DCACHE_OP_REVALIDATE	|
1667				DCACHE_OP_WEAK_REVALIDATE	|
1668				DCACHE_OP_DELETE	|
1669				DCACHE_OP_SELECT_INODE	|
1670				DCACHE_OP_REAL));
1671	dentry->d_op = op;
1672	if (!op)
1673		return;
1674	if (op->d_hash)
1675		dentry->d_flags |= DCACHE_OP_HASH;
1676	if (op->d_compare)
1677		dentry->d_flags |= DCACHE_OP_COMPARE;
1678	if (op->d_revalidate)
1679		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1680	if (op->d_weak_revalidate)
1681		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1682	if (op->d_delete)
1683		dentry->d_flags |= DCACHE_OP_DELETE;
1684	if (op->d_prune)
1685		dentry->d_flags |= DCACHE_OP_PRUNE;
1686	if (op->d_select_inode)
1687		dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1688	if (op->d_real)
1689		dentry->d_flags |= DCACHE_OP_REAL;
1690
1691}
1692EXPORT_SYMBOL(d_set_d_op);
1693
1694
1695/*
1696 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1697 * @dentry - The dentry to mark
1698 *
1699 * Mark a dentry as falling through to the lower layer (as set with
1700 * d_pin_lower()).  This flag may be recorded on the medium.
1701 */
1702void d_set_fallthru(struct dentry *dentry)
1703{
1704	spin_lock(&dentry->d_lock);
1705	dentry->d_flags |= DCACHE_FALLTHRU;
1706	spin_unlock(&dentry->d_lock);
1707}
1708EXPORT_SYMBOL(d_set_fallthru);
1709
1710static unsigned d_flags_for_inode(struct inode *inode)
1711{
1712	unsigned add_flags = DCACHE_REGULAR_TYPE;
1713
1714	if (!inode)
1715		return DCACHE_MISS_TYPE;
1716
1717	if (S_ISDIR(inode->i_mode)) {
1718		add_flags = DCACHE_DIRECTORY_TYPE;
1719		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1720			if (unlikely(!inode->i_op->lookup))
1721				add_flags = DCACHE_AUTODIR_TYPE;
1722			else
1723				inode->i_opflags |= IOP_LOOKUP;
1724		}
1725		goto type_determined;
1726	}
1727
1728	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1729		if (unlikely(inode->i_op->follow_link)) {
1730			add_flags = DCACHE_SYMLINK_TYPE;
1731			goto type_determined;
1732		}
1733		inode->i_opflags |= IOP_NOFOLLOW;
1734	}
1735
1736	if (unlikely(!S_ISREG(inode->i_mode)))
1737		add_flags = DCACHE_SPECIAL_TYPE;
1738
1739type_determined:
1740	if (unlikely(IS_AUTOMOUNT(inode)))
1741		add_flags |= DCACHE_NEED_AUTOMOUNT;
1742	return add_flags;
1743}
1744
1745static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1746{
1747	unsigned add_flags = d_flags_for_inode(inode);
1748
1749	spin_lock(&dentry->d_lock);
1750	if (inode)
1751		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1752	raw_write_seqcount_begin(&dentry->d_seq);
1753	__d_set_inode_and_type(dentry, inode, add_flags);
1754	raw_write_seqcount_end(&dentry->d_seq);
1755	spin_unlock(&dentry->d_lock);
1756	fsnotify_d_instantiate(dentry, inode);
1757}
1758
1759/**
1760 * d_instantiate - fill in inode information for a dentry
1761 * @entry: dentry to complete
1762 * @inode: inode to attach to this dentry
1763 *
1764 * Fill in inode information in the entry.
1765 *
1766 * This turns negative dentries into productive full members
1767 * of society.
1768 *
1769 * NOTE! This assumes that the inode count has been incremented
1770 * (or otherwise set) by the caller to indicate that it is now
1771 * in use by the dcache.
1772 */
1773
1774void d_instantiate(struct dentry *entry, struct inode * inode)
1775{
1776	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1777	if (inode)
1778		spin_lock(&inode->i_lock);
1779	__d_instantiate(entry, inode);
1780	if (inode)
1781		spin_unlock(&inode->i_lock);
1782	security_d_instantiate(entry, inode);
1783}
1784EXPORT_SYMBOL(d_instantiate);
1785
1786/**
1787 * d_instantiate_unique - instantiate a non-aliased dentry
1788 * @entry: dentry to instantiate
1789 * @inode: inode to attach to this dentry
1790 *
1791 * Fill in inode information in the entry. On success, it returns NULL.
1792 * If an unhashed alias of "entry" already exists, then we return the
1793 * aliased dentry instead and drop one reference to inode.
1794 *
1795 * Note that in order to avoid conflicts with rename() etc, the caller
1796 * had better be holding the parent directory semaphore.
1797 *
1798 * This also assumes that the inode count has been incremented
1799 * (or otherwise set) by the caller to indicate that it is now
1800 * in use by the dcache.
1801 */
1802static struct dentry *__d_instantiate_unique(struct dentry *entry,
1803					     struct inode *inode)
1804{
1805	struct dentry *alias;
1806	int len = entry->d_name.len;
1807	const char *name = entry->d_name.name;
1808	unsigned int hash = entry->d_name.hash;
1809
1810	if (!inode) {
1811		__d_instantiate(entry, NULL);
1812		return NULL;
1813	}
1814
1815	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1816		/*
1817		 * Don't need alias->d_lock here, because aliases with
1818		 * d_parent == entry->d_parent are not subject to name or
1819		 * parent changes, because the parent inode i_mutex is held.
1820		 */
1821		if (alias->d_name.hash != hash)
1822			continue;
1823		if (alias->d_parent != entry->d_parent)
1824			continue;
1825		if (alias->d_name.len != len)
1826			continue;
1827		if (dentry_cmp(alias, name, len))
1828			continue;
1829		__dget(alias);
1830		return alias;
1831	}
1832
1833	__d_instantiate(entry, inode);
1834	return NULL;
1835}
1836
1837struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1838{
1839	struct dentry *result;
1840
1841	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1842
1843	if (inode)
1844		spin_lock(&inode->i_lock);
1845	result = __d_instantiate_unique(entry, inode);
1846	if (inode)
1847		spin_unlock(&inode->i_lock);
1848
1849	if (!result) {
1850		security_d_instantiate(entry, inode);
1851		return NULL;
1852	}
1853
1854	BUG_ON(!d_unhashed(result));
1855	iput(inode);
1856	return result;
1857}
1858
1859EXPORT_SYMBOL(d_instantiate_unique);
1860
1861/**
1862 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1863 * @entry: dentry to complete
1864 * @inode: inode to attach to this dentry
1865 *
1866 * Fill in inode information in the entry.  If a directory alias is found, then
1867 * return an error (and drop inode).  Together with d_materialise_unique() this
1868 * guarantees that a directory inode may never have more than one alias.
1869 */
1870int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1871{
1872	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1873
1874	spin_lock(&inode->i_lock);
1875	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1876		spin_unlock(&inode->i_lock);
1877		iput(inode);
1878		return -EBUSY;
1879	}
1880	__d_instantiate(entry, inode);
1881	spin_unlock(&inode->i_lock);
1882	security_d_instantiate(entry, inode);
1883
1884	return 0;
1885}
1886EXPORT_SYMBOL(d_instantiate_no_diralias);
1887
1888struct dentry *d_make_root(struct inode *root_inode)
1889{
1890	struct dentry *res = NULL;
1891
1892	if (root_inode) {
1893		static const struct qstr name = QSTR_INIT("/", 1);
1894
1895		res = __d_alloc(root_inode->i_sb, &name);
1896		if (res)
1897			d_instantiate(res, root_inode);
1898		else
1899			iput(root_inode);
1900	}
1901	return res;
1902}
1903EXPORT_SYMBOL(d_make_root);
1904
1905static struct dentry * __d_find_any_alias(struct inode *inode)
1906{
1907	struct dentry *alias;
1908
1909	if (hlist_empty(&inode->i_dentry))
1910		return NULL;
1911	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1912	__dget(alias);
1913	return alias;
1914}
1915
1916/**
1917 * d_find_any_alias - find any alias for a given inode
1918 * @inode: inode to find an alias for
1919 *
1920 * If any aliases exist for the given inode, take and return a
1921 * reference for one of them.  If no aliases exist, return %NULL.
1922 */
1923struct dentry *d_find_any_alias(struct inode *inode)
1924{
1925	struct dentry *de;
1926
1927	spin_lock(&inode->i_lock);
1928	de = __d_find_any_alias(inode);
1929	spin_unlock(&inode->i_lock);
1930	return de;
1931}
1932EXPORT_SYMBOL(d_find_any_alias);
1933
1934static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1935{
1936	static const struct qstr anonstring = QSTR_INIT("/", 1);
1937	struct dentry *tmp;
1938	struct dentry *res;
1939	unsigned add_flags;
1940
1941	if (!inode)
1942		return ERR_PTR(-ESTALE);
1943	if (IS_ERR(inode))
1944		return ERR_CAST(inode);
1945
1946	res = d_find_any_alias(inode);
1947	if (res)
1948		goto out_iput;
1949
1950	tmp = __d_alloc(inode->i_sb, &anonstring);
1951	if (!tmp) {
1952		res = ERR_PTR(-ENOMEM);
1953		goto out_iput;
1954	}
1955
1956	spin_lock(&inode->i_lock);
1957	res = __d_find_any_alias(inode);
1958	if (res) {
1959		spin_unlock(&inode->i_lock);
1960		dput(tmp);
1961		goto out_iput;
1962	}
1963
1964	/* attach a disconnected dentry */
1965	add_flags = d_flags_for_inode(inode);
1966
1967	if (disconnected)
1968		add_flags |= DCACHE_DISCONNECTED;
1969
1970	spin_lock(&tmp->d_lock);
1971	__d_set_inode_and_type(tmp, inode, add_flags);
1972	hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1973	hlist_bl_lock(&tmp->d_sb->s_anon);
1974	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1975	hlist_bl_unlock(&tmp->d_sb->s_anon);
1976	spin_unlock(&tmp->d_lock);
1977	spin_unlock(&inode->i_lock);
1978	security_d_instantiate(tmp, inode);
1979
1980	return tmp;
1981
1982 out_iput:
1983	if (res && !IS_ERR(res))
1984		security_d_instantiate(res, inode);
1985	iput(inode);
1986	return res;
1987}
1988
1989/**
1990 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1991 * @inode: inode to allocate the dentry for
1992 *
1993 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1994 * similar open by handle operations.  The returned dentry may be anonymous,
1995 * or may have a full name (if the inode was already in the cache).
1996 *
1997 * When called on a directory inode, we must ensure that the inode only ever
1998 * has one dentry.  If a dentry is found, that is returned instead of
1999 * allocating a new one.
2000 *
2001 * On successful return, the reference to the inode has been transferred
2002 * to the dentry.  In case of an error the reference on the inode is released.
2003 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2004 * be passed in and the error will be propagated to the return value,
2005 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2006 */
2007struct dentry *d_obtain_alias(struct inode *inode)
2008{
2009	return __d_obtain_alias(inode, 1);
2010}
2011EXPORT_SYMBOL(d_obtain_alias);
2012
2013/**
2014 * d_obtain_root - find or allocate a dentry for a given inode
2015 * @inode: inode to allocate the dentry for
2016 *
2017 * Obtain an IS_ROOT dentry for the root of a filesystem.
2018 *
2019 * We must ensure that directory inodes only ever have one dentry.  If a
2020 * dentry is found, that is returned instead of allocating a new one.
2021 *
2022 * On successful return, the reference to the inode has been transferred
2023 * to the dentry.  In case of an error the reference on the inode is
2024 * released.  A %NULL or IS_ERR inode may be passed in and will be the
2025 * error will be propagate to the return value, with a %NULL @inode
2026 * replaced by ERR_PTR(-ESTALE).
2027 */
2028struct dentry *d_obtain_root(struct inode *inode)
2029{
2030	return __d_obtain_alias(inode, 0);
2031}
2032EXPORT_SYMBOL(d_obtain_root);
2033
2034/**
2035 * d_add_ci - lookup or allocate new dentry with case-exact name
2036 * @inode:  the inode case-insensitive lookup has found
2037 * @dentry: the negative dentry that was passed to the parent's lookup func
2038 * @name:   the case-exact name to be associated with the returned dentry
2039 *
2040 * This is to avoid filling the dcache with case-insensitive names to the
2041 * same inode, only the actual correct case is stored in the dcache for
2042 * case-insensitive filesystems.
2043 *
2044 * For a case-insensitive lookup match and if the the case-exact dentry
2045 * already exists in in the dcache, use it and return it.
2046 *
2047 * If no entry exists with the exact case name, allocate new dentry with
2048 * the exact case, and return the spliced entry.
2049 */
2050struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2051			struct qstr *name)
2052{
2053	struct dentry *found;
2054	struct dentry *new;
2055
2056	/*
2057	 * First check if a dentry matching the name already exists,
2058	 * if not go ahead and create it now.
2059	 */
2060	found = d_hash_and_lookup(dentry->d_parent, name);
2061	if (!found) {
2062		new = d_alloc(dentry->d_parent, name);
2063		if (!new) {
2064			found = ERR_PTR(-ENOMEM);
2065		} else {
2066			found = d_splice_alias(inode, new);
2067			if (found) {
2068				dput(new);
2069				return found;
2070			}
2071			return new;
2072		}
2073	}
2074	iput(inode);
2075	return found;
2076}
2077EXPORT_SYMBOL(d_add_ci);
2078
2079/*
2080 * Do the slow-case of the dentry name compare.
2081 *
2082 * Unlike the dentry_cmp() function, we need to atomically
2083 * load the name and length information, so that the
2084 * filesystem can rely on them, and can use the 'name' and
2085 * 'len' information without worrying about walking off the
2086 * end of memory etc.
2087 *
2088 * Thus the read_seqcount_retry() and the "duplicate" info
2089 * in arguments (the low-level filesystem should not look
2090 * at the dentry inode or name contents directly, since
2091 * rename can change them while we're in RCU mode).
2092 */
2093enum slow_d_compare {
2094	D_COMP_OK,
2095	D_COMP_NOMATCH,
2096	D_COMP_SEQRETRY,
2097};
2098
2099static noinline enum slow_d_compare slow_dentry_cmp(
2100		const struct dentry *parent,
2101		struct dentry *dentry,
2102		unsigned int seq,
2103		const struct qstr *name)
2104{
2105	int tlen = dentry->d_name.len;
2106	const char *tname = dentry->d_name.name;
2107
2108	if (read_seqcount_retry(&dentry->d_seq, seq)) {
2109		cpu_relax();
2110		return D_COMP_SEQRETRY;
2111	}
2112	if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2113		return D_COMP_NOMATCH;
2114	return D_COMP_OK;
2115}
2116
2117/**
2118 * __d_lookup_rcu - search for a dentry (racy, store-free)
2119 * @parent: parent dentry
2120 * @name: qstr of name we wish to find
2121 * @seqp: returns d_seq value at the point where the dentry was found
2122 * Returns: dentry, or NULL
2123 *
2124 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2125 * resolution (store-free path walking) design described in
2126 * Documentation/filesystems/path-lookup.txt.
2127 *
2128 * This is not to be used outside core vfs.
2129 *
2130 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2131 * held, and rcu_read_lock held. The returned dentry must not be stored into
2132 * without taking d_lock and checking d_seq sequence count against @seq
2133 * returned here.
2134 *
2135 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2136 * function.
2137 *
2138 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2139 * the returned dentry, so long as its parent's seqlock is checked after the
2140 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2141 * is formed, giving integrity down the path walk.
2142 *
2143 * NOTE! The caller *has* to check the resulting dentry against the sequence
2144 * number we've returned before using any of the resulting dentry state!
2145 */
2146struct dentry *__d_lookup_rcu(const struct dentry *parent,
2147				const struct qstr *name,
2148				unsigned *seqp)
2149{
2150	u64 hashlen = name->hash_len;
2151	const unsigned char *str = name->name;
2152	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2153	struct hlist_bl_node *node;
2154	struct dentry *dentry;
2155
2156	/*
2157	 * Note: There is significant duplication with __d_lookup_rcu which is
2158	 * required to prevent single threaded performance regressions
2159	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2160	 * Keep the two functions in sync.
2161	 */
2162
2163	/*
2164	 * The hash list is protected using RCU.
2165	 *
2166	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2167	 * races with d_move().
2168	 *
2169	 * It is possible that concurrent renames can mess up our list
2170	 * walk here and result in missing our dentry, resulting in the
2171	 * false-negative result. d_lookup() protects against concurrent
2172	 * renames using rename_lock seqlock.
2173	 *
2174	 * See Documentation/filesystems/path-lookup.txt for more details.
2175	 */
2176	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2177		unsigned seq;
2178
2179seqretry:
2180		/*
2181		 * The dentry sequence count protects us from concurrent
2182		 * renames, and thus protects parent and name fields.
2183		 *
2184		 * The caller must perform a seqcount check in order
2185		 * to do anything useful with the returned dentry.
2186		 *
2187		 * NOTE! We do a "raw" seqcount_begin here. That means that
2188		 * we don't wait for the sequence count to stabilize if it
2189		 * is in the middle of a sequence change. If we do the slow
2190		 * dentry compare, we will do seqretries until it is stable,
2191		 * and if we end up with a successful lookup, we actually
2192		 * want to exit RCU lookup anyway.
2193		 */
2194		seq = raw_seqcount_begin(&dentry->d_seq);
2195		if (dentry->d_parent != parent)
2196			continue;
2197		if (d_unhashed(dentry))
2198			continue;
2199
2200		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2201			if (dentry->d_name.hash != hashlen_hash(hashlen))
2202				continue;
2203			*seqp = seq;
2204			switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2205			case D_COMP_OK:
2206				return dentry;
2207			case D_COMP_NOMATCH:
2208				continue;
2209			default:
2210				goto seqretry;
2211			}
2212		}
2213
2214		if (dentry->d_name.hash_len != hashlen)
2215			continue;
2216		*seqp = seq;
2217		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2218			return dentry;
2219	}
2220	return NULL;
2221}
2222
2223/**
2224 * d_lookup - search for a dentry
2225 * @parent: parent dentry
2226 * @name: qstr of name we wish to find
2227 * Returns: dentry, or NULL
2228 *
2229 * d_lookup searches the children of the parent dentry for the name in
2230 * question. If the dentry is found its reference count is incremented and the
2231 * dentry is returned. The caller must use dput to free the entry when it has
2232 * finished using it. %NULL is returned if the dentry does not exist.
2233 */
2234struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2235{
2236	struct dentry *dentry;
2237	unsigned seq;
2238
2239	do {
2240		seq = read_seqbegin(&rename_lock);
2241		dentry = __d_lookup(parent, name);
2242		if (dentry)
2243			break;
2244	} while (read_seqretry(&rename_lock, seq));
2245	return dentry;
2246}
2247EXPORT_SYMBOL(d_lookup);
2248
2249/**
2250 * __d_lookup - search for a dentry (racy)
2251 * @parent: parent dentry
2252 * @name: qstr of name we wish to find
2253 * Returns: dentry, or NULL
2254 *
2255 * __d_lookup is like d_lookup, however it may (rarely) return a
2256 * false-negative result due to unrelated rename activity.
2257 *
2258 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2259 * however it must be used carefully, eg. with a following d_lookup in
2260 * the case of failure.
2261 *
2262 * __d_lookup callers must be commented.
2263 */
2264struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2265{
2266	unsigned int len = name->len;
2267	unsigned int hash = name->hash;
2268	const unsigned char *str = name->name;
2269	struct hlist_bl_head *b = d_hash(parent, hash);
2270	struct hlist_bl_node *node;
2271	struct dentry *found = NULL;
2272	struct dentry *dentry;
2273
2274	/*
2275	 * Note: There is significant duplication with __d_lookup_rcu which is
2276	 * required to prevent single threaded performance regressions
2277	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2278	 * Keep the two functions in sync.
2279	 */
2280
2281	/*
2282	 * The hash list is protected using RCU.
2283	 *
2284	 * Take d_lock when comparing a candidate dentry, to avoid races
2285	 * with d_move().
2286	 *
2287	 * It is possible that concurrent renames can mess up our list
2288	 * walk here and result in missing our dentry, resulting in the
2289	 * false-negative result. d_lookup() protects against concurrent
2290	 * renames using rename_lock seqlock.
2291	 *
2292	 * See Documentation/filesystems/path-lookup.txt for more details.
2293	 */
2294	rcu_read_lock();
2295
2296	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2297
2298		if (dentry->d_name.hash != hash)
2299			continue;
2300
2301		spin_lock(&dentry->d_lock);
2302		if (dentry->d_parent != parent)
2303			goto next;
2304		if (d_unhashed(dentry))
2305			goto next;
2306
2307		/*
2308		 * It is safe to compare names since d_move() cannot
2309		 * change the qstr (protected by d_lock).
2310		 */
2311		if (parent->d_flags & DCACHE_OP_COMPARE) {
2312			int tlen = dentry->d_name.len;
2313			const char *tname = dentry->d_name.name;
2314			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2315				goto next;
2316		} else {
2317			if (dentry->d_name.len != len)
2318				goto next;
2319			if (dentry_cmp(dentry, str, len))
2320				goto next;
2321		}
2322
2323		dentry->d_lockref.count++;
2324		found = dentry;
2325		spin_unlock(&dentry->d_lock);
2326		break;
2327next:
2328		spin_unlock(&dentry->d_lock);
2329 	}
2330 	rcu_read_unlock();
2331
2332 	return found;
2333}
2334
2335/**
2336 * d_hash_and_lookup - hash the qstr then search for a dentry
2337 * @dir: Directory to search in
2338 * @name: qstr of name we wish to find
2339 *
2340 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2341 */
2342struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2343{
2344	/*
2345	 * Check for a fs-specific hash function. Note that we must
2346	 * calculate the standard hash first, as the d_op->d_hash()
2347	 * routine may choose to leave the hash value unchanged.
2348	 */
2349	name->hash = full_name_hash(name->name, name->len);
2350	if (dir->d_flags & DCACHE_OP_HASH) {
2351		int err = dir->d_op->d_hash(dir, name);
2352		if (unlikely(err < 0))
2353			return ERR_PTR(err);
2354	}
2355	return d_lookup(dir, name);
2356}
2357EXPORT_SYMBOL(d_hash_and_lookup);
2358
2359/*
2360 * When a file is deleted, we have two options:
2361 * - turn this dentry into a negative dentry
2362 * - unhash this dentry and free it.
2363 *
2364 * Usually, we want to just turn this into
2365 * a negative dentry, but if anybody else is
2366 * currently using the dentry or the inode
2367 * we can't do that and we fall back on removing
2368 * it from the hash queues and waiting for
2369 * it to be deleted later when it has no users
2370 */
2371
2372/**
2373 * d_delete - delete a dentry
2374 * @dentry: The dentry to delete
2375 *
2376 * Turn the dentry into a negative dentry if possible, otherwise
2377 * remove it from the hash queues so it can be deleted later
2378 */
2379
2380void d_delete(struct dentry * dentry)
2381{
2382	struct inode *inode;
2383	int isdir = 0;
2384	/*
2385	 * Are we the only user?
2386	 */
2387again:
2388	spin_lock(&dentry->d_lock);
2389	inode = dentry->d_inode;
2390	isdir = S_ISDIR(inode->i_mode);
2391	if (dentry->d_lockref.count == 1) {
2392		if (!spin_trylock(&inode->i_lock)) {
2393			spin_unlock(&dentry->d_lock);
2394			cpu_relax();
2395			goto again;
2396		}
2397		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2398		dentry_unlink_inode(dentry);
2399		fsnotify_nameremove(dentry, isdir);
2400		return;
2401	}
2402
2403	if (!d_unhashed(dentry))
2404		__d_drop(dentry);
2405
2406	spin_unlock(&dentry->d_lock);
2407
2408	fsnotify_nameremove(dentry, isdir);
2409}
2410EXPORT_SYMBOL(d_delete);
2411
2412static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2413{
2414	BUG_ON(!d_unhashed(entry));
2415	hlist_bl_lock(b);
2416	hlist_bl_add_head_rcu(&entry->d_hash, b);
2417	hlist_bl_unlock(b);
2418}
2419
2420static void _d_rehash(struct dentry * entry)
2421{
2422	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2423}
2424
2425/**
2426 * d_rehash	- add an entry back to the hash
2427 * @entry: dentry to add to the hash
2428 *
2429 * Adds a dentry to the hash according to its name.
2430 */
2431
2432void d_rehash(struct dentry * entry)
2433{
2434	spin_lock(&entry->d_lock);
2435	_d_rehash(entry);
2436	spin_unlock(&entry->d_lock);
2437}
2438EXPORT_SYMBOL(d_rehash);
2439
2440/**
2441 * dentry_update_name_case - update case insensitive dentry with a new name
2442 * @dentry: dentry to be updated
2443 * @name: new name
2444 *
2445 * Update a case insensitive dentry with new case of name.
2446 *
2447 * dentry must have been returned by d_lookup with name @name. Old and new
2448 * name lengths must match (ie. no d_compare which allows mismatched name
2449 * lengths).
2450 *
2451 * Parent inode i_mutex must be held over d_lookup and into this call (to
2452 * keep renames and concurrent inserts, and readdir(2) away).
2453 */
2454void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2455{
2456	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2457	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2458
2459	spin_lock(&dentry->d_lock);
2460	write_seqcount_begin(&dentry->d_seq);
2461	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2462	write_seqcount_end(&dentry->d_seq);
2463	spin_unlock(&dentry->d_lock);
2464}
2465EXPORT_SYMBOL(dentry_update_name_case);
2466
2467static void swap_names(struct dentry *dentry, struct dentry *target)
2468{
2469	if (unlikely(dname_external(target))) {
2470		if (unlikely(dname_external(dentry))) {
2471			/*
2472			 * Both external: swap the pointers
2473			 */
2474			swap(target->d_name.name, dentry->d_name.name);
2475		} else {
2476			/*
2477			 * dentry:internal, target:external.  Steal target's
2478			 * storage and make target internal.
2479			 */
2480			memcpy(target->d_iname, dentry->d_name.name,
2481					dentry->d_name.len + 1);
2482			dentry->d_name.name = target->d_name.name;
2483			target->d_name.name = target->d_iname;
2484		}
2485	} else {
2486		if (unlikely(dname_external(dentry))) {
2487			/*
2488			 * dentry:external, target:internal.  Give dentry's
2489			 * storage to target and make dentry internal
2490			 */
2491			memcpy(dentry->d_iname, target->d_name.name,
2492					target->d_name.len + 1);
2493			target->d_name.name = dentry->d_name.name;
2494			dentry->d_name.name = dentry->d_iname;
2495		} else {
2496			/*
2497			 * Both are internal.
2498			 */
2499			unsigned int i;
2500			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2501			kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2502			kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2503			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2504				swap(((long *) &dentry->d_iname)[i],
2505				     ((long *) &target->d_iname)[i]);
2506			}
2507		}
2508	}
2509	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2510}
2511
2512static void copy_name(struct dentry *dentry, struct dentry *target)
2513{
2514	struct external_name *old_name = NULL;
2515	if (unlikely(dname_external(dentry)))
2516		old_name = external_name(dentry);
2517	if (unlikely(dname_external(target))) {
2518		atomic_inc(&external_name(target)->u.count);
2519		dentry->d_name = target->d_name;
2520	} else {
2521		memcpy(dentry->d_iname, target->d_name.name,
2522				target->d_name.len + 1);
2523		dentry->d_name.name = dentry->d_iname;
2524		dentry->d_name.hash_len = target->d_name.hash_len;
2525	}
2526	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2527		kfree_rcu(old_name, u.head);
2528}
2529
2530static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2531{
2532	/*
2533	 * XXXX: do we really need to take target->d_lock?
2534	 */
2535	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2536		spin_lock(&target->d_parent->d_lock);
2537	else {
2538		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2539			spin_lock(&dentry->d_parent->d_lock);
2540			spin_lock_nested(&target->d_parent->d_lock,
2541						DENTRY_D_LOCK_NESTED);
2542		} else {
2543			spin_lock(&target->d_parent->d_lock);
2544			spin_lock_nested(&dentry->d_parent->d_lock,
2545						DENTRY_D_LOCK_NESTED);
2546		}
2547	}
2548	if (target < dentry) {
2549		spin_lock_nested(&target->d_lock, 2);
2550		spin_lock_nested(&dentry->d_lock, 3);
2551	} else {
2552		spin_lock_nested(&dentry->d_lock, 2);
2553		spin_lock_nested(&target->d_lock, 3);
2554	}
2555}
2556
2557static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2558{
2559	if (target->d_parent != dentry->d_parent)
2560		spin_unlock(&dentry->d_parent->d_lock);
2561	if (target->d_parent != target)
2562		spin_unlock(&target->d_parent->d_lock);
2563	spin_unlock(&target->d_lock);
2564	spin_unlock(&dentry->d_lock);
2565}
2566
2567/*
2568 * When switching names, the actual string doesn't strictly have to
2569 * be preserved in the target - because we're dropping the target
2570 * anyway. As such, we can just do a simple memcpy() to copy over
2571 * the new name before we switch, unless we are going to rehash
2572 * it.  Note that if we *do* unhash the target, we are not allowed
2573 * to rehash it without giving it a new name/hash key - whether
2574 * we swap or overwrite the names here, resulting name won't match
2575 * the reality in filesystem; it's only there for d_path() purposes.
2576 * Note that all of this is happening under rename_lock, so the
2577 * any hash lookup seeing it in the middle of manipulations will
2578 * be discarded anyway.  So we do not care what happens to the hash
2579 * key in that case.
2580 */
2581/*
2582 * __d_move - move a dentry
2583 * @dentry: entry to move
2584 * @target: new dentry
2585 * @exchange: exchange the two dentries
2586 *
2587 * Update the dcache to reflect the move of a file name. Negative
2588 * dcache entries should not be moved in this way. Caller must hold
2589 * rename_lock, the i_mutex of the source and target directories,
2590 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2591 */
2592static void __d_move(struct dentry *dentry, struct dentry *target,
2593		     bool exchange)
2594{
2595	if (!dentry->d_inode)
2596		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2597
2598	BUG_ON(d_ancestor(dentry, target));
2599	BUG_ON(d_ancestor(target, dentry));
2600
2601	dentry_lock_for_move(dentry, target);
2602
2603	write_seqcount_begin(&dentry->d_seq);
2604	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2605
2606	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2607
2608	/*
2609	 * Move the dentry to the target hash queue. Don't bother checking
2610	 * for the same hash queue because of how unlikely it is.
2611	 */
2612	__d_drop(dentry);
2613	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2614
2615	/*
2616	 * Unhash the target (d_delete() is not usable here).  If exchanging
2617	 * the two dentries, then rehash onto the other's hash queue.
2618	 */
2619	__d_drop(target);
2620	if (exchange) {
2621		__d_rehash(target,
2622			   d_hash(dentry->d_parent, dentry->d_name.hash));
2623	}
2624
2625	/* Switch the names.. */
2626	if (exchange)
2627		swap_names(dentry, target);
2628	else
2629		copy_name(dentry, target);
2630
2631	/* ... and switch them in the tree */
2632	if (IS_ROOT(dentry)) {
2633		/* splicing a tree */
2634		dentry->d_flags |= DCACHE_RCUACCESS;
2635		dentry->d_parent = target->d_parent;
2636		target->d_parent = target;
2637		list_del_init(&target->d_child);
2638		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2639	} else {
2640		/* swapping two dentries */
2641		swap(dentry->d_parent, target->d_parent);
2642		list_move(&target->d_child, &target->d_parent->d_subdirs);
2643		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2644		if (exchange)
2645			fsnotify_d_move(target);
2646		fsnotify_d_move(dentry);
2647	}
2648
2649	write_seqcount_end(&target->d_seq);
2650	write_seqcount_end(&dentry->d_seq);
2651
2652	dentry_unlock_for_move(dentry, target);
2653}
2654
2655/*
2656 * d_move - move a dentry
2657 * @dentry: entry to move
2658 * @target: new dentry
2659 *
2660 * Update the dcache to reflect the move of a file name. Negative
2661 * dcache entries should not be moved in this way. See the locking
2662 * requirements for __d_move.
2663 */
2664void d_move(struct dentry *dentry, struct dentry *target)
2665{
2666	write_seqlock(&rename_lock);
2667	__d_move(dentry, target, false);
2668	write_sequnlock(&rename_lock);
2669}
2670EXPORT_SYMBOL(d_move);
2671
2672/*
2673 * d_exchange - exchange two dentries
2674 * @dentry1: first dentry
2675 * @dentry2: second dentry
2676 */
2677void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2678{
2679	write_seqlock(&rename_lock);
2680
2681	WARN_ON(!dentry1->d_inode);
2682	WARN_ON(!dentry2->d_inode);
2683	WARN_ON(IS_ROOT(dentry1));
2684	WARN_ON(IS_ROOT(dentry2));
2685
2686	__d_move(dentry1, dentry2, true);
2687
2688	write_sequnlock(&rename_lock);
2689}
2690
2691/**
2692 * d_ancestor - search for an ancestor
2693 * @p1: ancestor dentry
2694 * @p2: child dentry
2695 *
2696 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2697 * an ancestor of p2, else NULL.
2698 */
2699struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2700{
2701	struct dentry *p;
2702
2703	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2704		if (p->d_parent == p1)
2705			return p;
2706	}
2707	return NULL;
2708}
2709
2710/*
2711 * This helper attempts to cope with remotely renamed directories
2712 *
2713 * It assumes that the caller is already holding
2714 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2715 *
2716 * Note: If ever the locking in lock_rename() changes, then please
2717 * remember to update this too...
2718 */
2719static int __d_unalias(struct inode *inode,
2720		struct dentry *dentry, struct dentry *alias)
2721{
2722	struct mutex *m1 = NULL, *m2 = NULL;
2723	int ret = -ESTALE;
2724
2725	/* If alias and dentry share a parent, then no extra locks required */
2726	if (alias->d_parent == dentry->d_parent)
2727		goto out_unalias;
2728
2729	/* See lock_rename() */
2730	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2731		goto out_err;
2732	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2733	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2734		goto out_err;
2735	m2 = &alias->d_parent->d_inode->i_mutex;
2736out_unalias:
2737	__d_move(alias, dentry, false);
2738	ret = 0;
2739out_err:
2740	if (m2)
2741		mutex_unlock(m2);
2742	if (m1)
2743		mutex_unlock(m1);
2744	return ret;
2745}
2746
2747/**
2748 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2749 * @inode:  the inode which may have a disconnected dentry
2750 * @dentry: a negative dentry which we want to point to the inode.
2751 *
2752 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2753 * place of the given dentry and return it, else simply d_add the inode
2754 * to the dentry and return NULL.
2755 *
2756 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2757 * we should error out: directories can't have multiple aliases.
2758 *
2759 * This is needed in the lookup routine of any filesystem that is exportable
2760 * (via knfsd) so that we can build dcache paths to directories effectively.
2761 *
2762 * If a dentry was found and moved, then it is returned.  Otherwise NULL
2763 * is returned.  This matches the expected return value of ->lookup.
2764 *
2765 * Cluster filesystems may call this function with a negative, hashed dentry.
2766 * In that case, we know that the inode will be a regular file, and also this
2767 * will only occur during atomic_open. So we need to check for the dentry
2768 * being already hashed only in the final case.
2769 */
2770struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2771{
2772	if (IS_ERR(inode))
2773		return ERR_CAST(inode);
2774
2775	BUG_ON(!d_unhashed(dentry));
2776
2777	if (!inode) {
2778		__d_instantiate(dentry, NULL);
2779		goto out;
2780	}
2781	spin_lock(&inode->i_lock);
2782	if (S_ISDIR(inode->i_mode)) {
2783		struct dentry *new = __d_find_any_alias(inode);
2784		if (unlikely(new)) {
2785			/* The reference to new ensures it remains an alias */
2786			spin_unlock(&inode->i_lock);
2787			write_seqlock(&rename_lock);
2788			if (unlikely(d_ancestor(new, dentry))) {
2789				write_sequnlock(&rename_lock);
2790				dput(new);
2791				new = ERR_PTR(-ELOOP);
2792				pr_warn_ratelimited(
2793					"VFS: Lookup of '%s' in %s %s"
2794					" would have caused loop\n",
2795					dentry->d_name.name,
2796					inode->i_sb->s_type->name,
2797					inode->i_sb->s_id);
2798			} else if (!IS_ROOT(new)) {
2799				int err = __d_unalias(inode, dentry, new);
2800				write_sequnlock(&rename_lock);
2801				if (err) {
2802					dput(new);
2803					new = ERR_PTR(err);
2804				}
2805			} else {
2806				__d_move(new, dentry, false);
2807				write_sequnlock(&rename_lock);
2808				security_d_instantiate(new, inode);
2809			}
2810			iput(inode);
2811			return new;
2812		}
2813	}
2814	/* already taking inode->i_lock, so d_add() by hand */
2815	__d_instantiate(dentry, inode);
2816	spin_unlock(&inode->i_lock);
2817out:
2818	security_d_instantiate(dentry, inode);
2819	d_rehash(dentry);
2820	return NULL;
2821}
2822EXPORT_SYMBOL(d_splice_alias);
2823
2824static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2825{
2826	*buflen -= namelen;
2827	if (*buflen < 0)
2828		return -ENAMETOOLONG;
2829	*buffer -= namelen;
2830	memcpy(*buffer, str, namelen);
2831	return 0;
2832}
2833
2834/**
2835 * prepend_name - prepend a pathname in front of current buffer pointer
2836 * @buffer: buffer pointer
2837 * @buflen: allocated length of the buffer
2838 * @name:   name string and length qstr structure
2839 *
2840 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2841 * make sure that either the old or the new name pointer and length are
2842 * fetched. However, there may be mismatch between length and pointer.
2843 * The length cannot be trusted, we need to copy it byte-by-byte until
2844 * the length is reached or a null byte is found. It also prepends "/" at
2845 * the beginning of the name. The sequence number check at the caller will
2846 * retry it again when a d_move() does happen. So any garbage in the buffer
2847 * due to mismatched pointer and length will be discarded.
2848 *
2849 * Data dependency barrier is needed to make sure that we see that terminating
2850 * NUL.  Alpha strikes again, film at 11...
2851 */
2852static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2853{
2854	const char *dname = ACCESS_ONCE(name->name);
2855	u32 dlen = ACCESS_ONCE(name->len);
2856	char *p;
2857
2858	smp_read_barrier_depends();
2859
2860	*buflen -= dlen + 1;
2861	if (*buflen < 0)
2862		return -ENAMETOOLONG;
2863	p = *buffer -= dlen + 1;
2864	*p++ = '/';
2865	while (dlen--) {
2866		char c = *dname++;
2867		if (!c)
2868			break;
2869		*p++ = c;
2870	}
2871	return 0;
2872}
2873
2874/**
2875 * prepend_path - Prepend path string to a buffer
2876 * @path: the dentry/vfsmount to report
2877 * @root: root vfsmnt/dentry
2878 * @buffer: pointer to the end of the buffer
2879 * @buflen: pointer to buffer length
2880 *
2881 * The function will first try to write out the pathname without taking any
2882 * lock other than the RCU read lock to make sure that dentries won't go away.
2883 * It only checks the sequence number of the global rename_lock as any change
2884 * in the dentry's d_seq will be preceded by changes in the rename_lock
2885 * sequence number. If the sequence number had been changed, it will restart
2886 * the whole pathname back-tracing sequence again by taking the rename_lock.
2887 * In this case, there is no need to take the RCU read lock as the recursive
2888 * parent pointer references will keep the dentry chain alive as long as no
2889 * rename operation is performed.
2890 */
2891static int prepend_path(const struct path *path,
2892			const struct path *root,
2893			char **buffer, int *buflen)
2894{
2895	struct dentry *dentry;
2896	struct vfsmount *vfsmnt;
2897	struct mount *mnt;
2898	int error = 0;
2899	unsigned seq, m_seq = 0;
2900	char *bptr;
2901	int blen;
2902
2903	rcu_read_lock();
2904restart_mnt:
2905	read_seqbegin_or_lock(&mount_lock, &m_seq);
2906	seq = 0;
2907	rcu_read_lock();
2908restart:
2909	bptr = *buffer;
2910	blen = *buflen;
2911	error = 0;
2912	dentry = path->dentry;
2913	vfsmnt = path->mnt;
2914	mnt = real_mount(vfsmnt);
2915	read_seqbegin_or_lock(&rename_lock, &seq);
2916	while (dentry != root->dentry || vfsmnt != root->mnt) {
2917		struct dentry * parent;
2918
2919		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2920			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2921			/* Escaped? */
2922			if (dentry != vfsmnt->mnt_root) {
2923				bptr = *buffer;
2924				blen = *buflen;
2925				error = 3;
2926				break;
2927			}
2928			/* Global root? */
2929			if (mnt != parent) {
2930				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2931				mnt = parent;
2932				vfsmnt = &mnt->mnt;
2933				continue;
2934			}
2935			if (!error)
2936				error = is_mounted(vfsmnt) ? 1 : 2;
2937			break;
2938		}
2939		parent = dentry->d_parent;
2940		prefetch(parent);
2941		error = prepend_name(&bptr, &blen, &dentry->d_name);
2942		if (error)
2943			break;
2944
2945		dentry = parent;
2946	}
2947	if (!(seq & 1))
2948		rcu_read_unlock();
2949	if (need_seqretry(&rename_lock, seq)) {
2950		seq = 1;
2951		goto restart;
2952	}
2953	done_seqretry(&rename_lock, seq);
2954
2955	if (!(m_seq & 1))
2956		rcu_read_unlock();
2957	if (need_seqretry(&mount_lock, m_seq)) {
2958		m_seq = 1;
2959		goto restart_mnt;
2960	}
2961	done_seqretry(&mount_lock, m_seq);
2962
2963	if (error >= 0 && bptr == *buffer) {
2964		if (--blen < 0)
2965			error = -ENAMETOOLONG;
2966		else
2967			*--bptr = '/';
2968	}
2969	*buffer = bptr;
2970	*buflen = blen;
2971	return error;
2972}
2973
2974/**
2975 * __d_path - return the path of a dentry
2976 * @path: the dentry/vfsmount to report
2977 * @root: root vfsmnt/dentry
2978 * @buf: buffer to return value in
2979 * @buflen: buffer length
2980 *
2981 * Convert a dentry into an ASCII path name.
2982 *
2983 * Returns a pointer into the buffer or an error code if the
2984 * path was too long.
2985 *
2986 * "buflen" should be positive.
2987 *
2988 * If the path is not reachable from the supplied root, return %NULL.
2989 */
2990char *__d_path(const struct path *path,
2991	       const struct path *root,
2992	       char *buf, int buflen)
2993{
2994	char *res = buf + buflen;
2995	int error;
2996
2997	prepend(&res, &buflen, "\0", 1);
2998	error = prepend_path(path, root, &res, &buflen);
2999
3000	if (error < 0)
3001		return ERR_PTR(error);
3002	if (error > 0)
3003		return NULL;
3004	return res;
3005}
3006
3007char *d_absolute_path(const struct path *path,
3008	       char *buf, int buflen)
3009{
3010	struct path root = {};
3011	char *res = buf + buflen;
3012	int error;
3013
3014	prepend(&res, &buflen, "\0", 1);
3015	error = prepend_path(path, &root, &res, &buflen);
3016
3017	if (error > 1)
3018		error = -EINVAL;
3019	if (error < 0)
3020		return ERR_PTR(error);
3021	return res;
3022}
3023
3024/*
3025 * same as __d_path but appends "(deleted)" for unlinked files.
3026 */
3027static int path_with_deleted(const struct path *path,
3028			     const struct path *root,
3029			     char **buf, int *buflen)
3030{
3031	prepend(buf, buflen, "\0", 1);
3032	if (d_unlinked(path->dentry)) {
3033		int error = prepend(buf, buflen, " (deleted)", 10);
3034		if (error)
3035			return error;
3036	}
3037
3038	return prepend_path(path, root, buf, buflen);
3039}
3040
3041static int prepend_unreachable(char **buffer, int *buflen)
3042{
3043	return prepend(buffer, buflen, "(unreachable)", 13);
3044}
3045
3046static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3047{
3048	unsigned seq;
3049
3050	do {
3051		seq = read_seqcount_begin(&fs->seq);
3052		*root = fs->root;
3053	} while (read_seqcount_retry(&fs->seq, seq));
3054}
3055
3056/**
3057 * d_path - return the path of a dentry
3058 * @path: path to report
3059 * @buf: buffer to return value in
3060 * @buflen: buffer length
3061 *
3062 * Convert a dentry into an ASCII path name. If the entry has been deleted
3063 * the string " (deleted)" is appended. Note that this is ambiguous.
3064 *
3065 * Returns a pointer into the buffer or an error code if the path was
3066 * too long. Note: Callers should use the returned pointer, not the passed
3067 * in buffer, to use the name! The implementation often starts at an offset
3068 * into the buffer, and may leave 0 bytes at the start.
3069 *
3070 * "buflen" should be positive.
3071 */
3072char *d_path(const struct path *path, char *buf, int buflen)
3073{
3074	char *res = buf + buflen;
3075	struct path root;
3076	int error;
3077
3078	/*
3079	 * We have various synthetic filesystems that never get mounted.  On
3080	 * these filesystems dentries are never used for lookup purposes, and
3081	 * thus don't need to be hashed.  They also don't need a name until a
3082	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3083	 * below allows us to generate a name for these objects on demand:
3084	 *
3085	 * Some pseudo inodes are mountable.  When they are mounted
3086	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3087	 * and instead have d_path return the mounted path.
3088	 */
3089	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3090	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3091		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3092
3093	rcu_read_lock();
3094	get_fs_root_rcu(current->fs, &root);
3095	error = path_with_deleted(path, &root, &res, &buflen);
3096	rcu_read_unlock();
3097
3098	if (error < 0)
3099		res = ERR_PTR(error);
3100	return res;
3101}
3102EXPORT_SYMBOL(d_path);
3103
3104/*
3105 * Helper function for dentry_operations.d_dname() members
3106 */
3107char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3108			const char *fmt, ...)
3109{
3110	va_list args;
3111	char temp[64];
3112	int sz;
3113
3114	va_start(args, fmt);
3115	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3116	va_end(args);
3117
3118	if (sz > sizeof(temp) || sz > buflen)
3119		return ERR_PTR(-ENAMETOOLONG);
3120
3121	buffer += buflen - sz;
3122	return memcpy(buffer, temp, sz);
3123}
3124
3125char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3126{
3127	char *end = buffer + buflen;
3128	/* these dentries are never renamed, so d_lock is not needed */
3129	if (prepend(&end, &buflen, " (deleted)", 11) ||
3130	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3131	    prepend(&end, &buflen, "/", 1))
3132		end = ERR_PTR(-ENAMETOOLONG);
3133	return end;
3134}
3135EXPORT_SYMBOL(simple_dname);
3136
3137/*
3138 * Write full pathname from the root of the filesystem into the buffer.
3139 */
3140static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3141{
3142	struct dentry *dentry;
3143	char *end, *retval;
3144	int len, seq = 0;
3145	int error = 0;
3146
3147	if (buflen < 2)
3148		goto Elong;
3149
3150	rcu_read_lock();
3151restart:
3152	dentry = d;
3153	end = buf + buflen;
3154	len = buflen;
3155	prepend(&end, &len, "\0", 1);
3156	/* Get '/' right */
3157	retval = end-1;
3158	*retval = '/';
3159	read_seqbegin_or_lock(&rename_lock, &seq);
3160	while (!IS_ROOT(dentry)) {
3161		struct dentry *parent = dentry->d_parent;
3162
3163		prefetch(parent);
3164		error = prepend_name(&end, &len, &dentry->d_name);
3165		if (error)
3166			break;
3167
3168		retval = end;
3169		dentry = parent;
3170	}
3171	if (!(seq & 1))
3172		rcu_read_unlock();
3173	if (need_seqretry(&rename_lock, seq)) {
3174		seq = 1;
3175		goto restart;
3176	}
3177	done_seqretry(&rename_lock, seq);
3178	if (error)
3179		goto Elong;
3180	return retval;
3181Elong:
3182	return ERR_PTR(-ENAMETOOLONG);
3183}
3184
3185char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3186{
3187	return __dentry_path(dentry, buf, buflen);
3188}
3189EXPORT_SYMBOL(dentry_path_raw);
3190
3191char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3192{
3193	char *p = NULL;
3194	char *retval;
3195
3196	if (d_unlinked(dentry)) {
3197		p = buf + buflen;
3198		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3199			goto Elong;
3200		buflen++;
3201	}
3202	retval = __dentry_path(dentry, buf, buflen);
3203	if (!IS_ERR(retval) && p)
3204		*p = '/';	/* restore '/' overriden with '\0' */
3205	return retval;
3206Elong:
3207	return ERR_PTR(-ENAMETOOLONG);
3208}
3209
3210static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3211				    struct path *pwd)
3212{
3213	unsigned seq;
3214
3215	do {
3216		seq = read_seqcount_begin(&fs->seq);
3217		*root = fs->root;
3218		*pwd = fs->pwd;
3219	} while (read_seqcount_retry(&fs->seq, seq));
3220}
3221
3222/*
3223 * NOTE! The user-level library version returns a
3224 * character pointer. The kernel system call just
3225 * returns the length of the buffer filled (which
3226 * includes the ending '\0' character), or a negative
3227 * error value. So libc would do something like
3228 *
3229 *	char *getcwd(char * buf, size_t size)
3230 *	{
3231 *		int retval;
3232 *
3233 *		retval = sys_getcwd(buf, size);
3234 *		if (retval >= 0)
3235 *			return buf;
3236 *		errno = -retval;
3237 *		return NULL;
3238 *	}
3239 */
3240SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3241{
3242	int error;
3243	struct path pwd, root;
3244	char *page = __getname();
3245
3246	if (!page)
3247		return -ENOMEM;
3248
3249	rcu_read_lock();
3250	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3251
3252	error = -ENOENT;
3253	if (!d_unlinked(pwd.dentry)) {
3254		unsigned long len;
3255		char *cwd = page + PATH_MAX;
3256		int buflen = PATH_MAX;
3257
3258		prepend(&cwd, &buflen, "\0", 1);
3259		error = prepend_path(&pwd, &root, &cwd, &buflen);
3260		rcu_read_unlock();
3261
3262		if (error < 0)
3263			goto out;
3264
3265		/* Unreachable from current root */
3266		if (error > 0) {
3267			error = prepend_unreachable(&cwd, &buflen);
3268			if (error)
3269				goto out;
3270		}
3271
3272		error = -ERANGE;
3273		len = PATH_MAX + page - cwd;
3274		if (len <= size) {
3275			error = len;
3276			if (copy_to_user(buf, cwd, len))
3277				error = -EFAULT;
3278		}
3279	} else {
3280		rcu_read_unlock();
3281	}
3282
3283out:
3284	__putname(page);
3285	return error;
3286}
3287
3288/*
3289 * Test whether new_dentry is a subdirectory of old_dentry.
3290 *
3291 * Trivially implemented using the dcache structure
3292 */
3293
3294/**
3295 * is_subdir - is new dentry a subdirectory of old_dentry
3296 * @new_dentry: new dentry
3297 * @old_dentry: old dentry
3298 *
3299 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3300 * Returns 0 otherwise.
3301 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3302 */
3303
3304int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3305{
3306	int result;
3307	unsigned seq;
3308
3309	if (new_dentry == old_dentry)
3310		return 1;
3311
3312	do {
3313		/* for restarting inner loop in case of seq retry */
3314		seq = read_seqbegin(&rename_lock);
3315		/*
3316		 * Need rcu_readlock to protect against the d_parent trashing
3317		 * due to d_move
3318		 */
3319		rcu_read_lock();
3320		if (d_ancestor(old_dentry, new_dentry))
3321			result = 1;
3322		else
3323			result = 0;
3324		rcu_read_unlock();
3325	} while (read_seqretry(&rename_lock, seq));
3326
3327	return result;
3328}
3329
3330static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3331{
3332	struct dentry *root = data;
3333	if (dentry != root) {
3334		if (d_unhashed(dentry) || !dentry->d_inode)
3335			return D_WALK_SKIP;
3336
3337		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3338			dentry->d_flags |= DCACHE_GENOCIDE;
3339			dentry->d_lockref.count--;
3340		}
3341	}
3342	return D_WALK_CONTINUE;
3343}
3344
3345void d_genocide(struct dentry *parent)
3346{
3347	d_walk(parent, parent, d_genocide_kill, NULL);
3348}
3349
3350void d_tmpfile(struct dentry *dentry, struct inode *inode)
3351{
3352	inode_dec_link_count(inode);
3353	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3354		!hlist_unhashed(&dentry->d_u.d_alias) ||
3355		!d_unlinked(dentry));
3356	spin_lock(&dentry->d_parent->d_lock);
3357	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3358	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3359				(unsigned long long)inode->i_ino);
3360	spin_unlock(&dentry->d_lock);
3361	spin_unlock(&dentry->d_parent->d_lock);
3362	d_instantiate(dentry, inode);
3363}
3364EXPORT_SYMBOL(d_tmpfile);
3365
3366static __initdata unsigned long dhash_entries;
3367static int __init set_dhash_entries(char *str)
3368{
3369	if (!str)
3370		return 0;
3371	dhash_entries = simple_strtoul(str, &str, 0);
3372	return 1;
3373}
3374__setup("dhash_entries=", set_dhash_entries);
3375
3376static void __init dcache_init_early(void)
3377{
3378	unsigned int loop;
3379
3380	/* If hashes are distributed across NUMA nodes, defer
3381	 * hash allocation until vmalloc space is available.
3382	 */
3383	if (hashdist)
3384		return;
3385
3386	dentry_hashtable =
3387		alloc_large_system_hash("Dentry cache",
3388					sizeof(struct hlist_bl_head),
3389					dhash_entries,
3390					13,
3391					HASH_EARLY,
3392					&d_hash_shift,
3393					&d_hash_mask,
3394					0,
3395					0);
3396
3397	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3398		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3399}
3400
3401static void __init dcache_init(void)
3402{
3403	unsigned int loop;
3404
3405	/*
3406	 * A constructor could be added for stable state like the lists,
3407	 * but it is probably not worth it because of the cache nature
3408	 * of the dcache.
3409	 */
3410	dentry_cache = KMEM_CACHE(dentry,
3411		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3412
3413	/* Hash may have been set up in dcache_init_early */
3414	if (!hashdist)
3415		return;
3416
3417	dentry_hashtable =
3418		alloc_large_system_hash("Dentry cache",
3419					sizeof(struct hlist_bl_head),
3420					dhash_entries,
3421					13,
3422					0,
3423					&d_hash_shift,
3424					&d_hash_mask,
3425					0,
3426					0);
3427
3428	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3429		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3430}
3431
3432/* SLAB cache for __getname() consumers */
3433struct kmem_cache *names_cachep __read_mostly;
3434EXPORT_SYMBOL(names_cachep);
3435
3436EXPORT_SYMBOL(d_genocide);
3437
3438void __init vfs_caches_init_early(void)
3439{
3440	dcache_init_early();
3441	inode_init_early();
3442}
3443
3444void __init vfs_caches_init(void)
3445{
3446	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3447			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3448
3449	dcache_init();
3450	inode_init();
3451	files_init();
3452	files_maxfiles_init();
3453	mnt_init();
3454	bdev_cache_init();
3455	chrdev_init();
3456}
3457