1/*
2 *  linux/fs/buffer.c
3 *
4 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
27#include <linux/capability.h>
28#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
32#include <linux/export.h>
33#include <linux/backing-dev.h>
34#include <linux/writeback.h>
35#include <linux/hash.h>
36#include <linux/suspend.h>
37#include <linux/buffer_head.h>
38#include <linux/task_io_accounting_ops.h>
39#include <linux/bio.h>
40#include <linux/notifier.h>
41#include <linux/cpu.h>
42#include <linux/bitops.h>
43#include <linux/mpage.h>
44#include <linux/bit_spinlock.h>
45#include <trace/events/block.h>
46
47static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
48static int submit_bh_wbc(int rw, struct buffer_head *bh,
49			 unsigned long bio_flags,
50			 struct writeback_control *wbc);
51
52#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
53
54void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
55{
56	bh->b_end_io = handler;
57	bh->b_private = private;
58}
59EXPORT_SYMBOL(init_buffer);
60
61inline void touch_buffer(struct buffer_head *bh)
62{
63	trace_block_touch_buffer(bh);
64	mark_page_accessed(bh->b_page);
65}
66EXPORT_SYMBOL(touch_buffer);
67
68void __lock_buffer(struct buffer_head *bh)
69{
70	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71}
72EXPORT_SYMBOL(__lock_buffer);
73
74void unlock_buffer(struct buffer_head *bh)
75{
76	clear_bit_unlock(BH_Lock, &bh->b_state);
77	smp_mb__after_atomic();
78	wake_up_bit(&bh->b_state, BH_Lock);
79}
80EXPORT_SYMBOL(unlock_buffer);
81
82/*
83 * Returns if the page has dirty or writeback buffers. If all the buffers
84 * are unlocked and clean then the PageDirty information is stale. If
85 * any of the pages are locked, it is assumed they are locked for IO.
86 */
87void buffer_check_dirty_writeback(struct page *page,
88				     bool *dirty, bool *writeback)
89{
90	struct buffer_head *head, *bh;
91	*dirty = false;
92	*writeback = false;
93
94	BUG_ON(!PageLocked(page));
95
96	if (!page_has_buffers(page))
97		return;
98
99	if (PageWriteback(page))
100		*writeback = true;
101
102	head = page_buffers(page);
103	bh = head;
104	do {
105		if (buffer_locked(bh))
106			*writeback = true;
107
108		if (buffer_dirty(bh))
109			*dirty = true;
110
111		bh = bh->b_this_page;
112	} while (bh != head);
113}
114EXPORT_SYMBOL(buffer_check_dirty_writeback);
115
116/*
117 * Block until a buffer comes unlocked.  This doesn't stop it
118 * from becoming locked again - you have to lock it yourself
119 * if you want to preserve its state.
120 */
121void __wait_on_buffer(struct buffer_head * bh)
122{
123	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124}
125EXPORT_SYMBOL(__wait_on_buffer);
126
127static void
128__clear_page_buffers(struct page *page)
129{
130	ClearPagePrivate(page);
131	set_page_private(page, 0);
132	page_cache_release(page);
133}
134
135static void buffer_io_error(struct buffer_head *bh, char *msg)
136{
137	char b[BDEVNAME_SIZE];
138
139	if (!test_bit(BH_Quiet, &bh->b_state))
140		printk_ratelimited(KERN_ERR
141			"Buffer I/O error on dev %s, logical block %llu%s\n",
142			bdevname(bh->b_bdev, b),
143			(unsigned long long)bh->b_blocknr, msg);
144}
145
146/*
147 * End-of-IO handler helper function which does not touch the bh after
148 * unlocking it.
149 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
150 * a race there is benign: unlock_buffer() only use the bh's address for
151 * hashing after unlocking the buffer, so it doesn't actually touch the bh
152 * itself.
153 */
154static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
155{
156	if (uptodate) {
157		set_buffer_uptodate(bh);
158	} else {
159		/* This happens, due to failed READA attempts. */
160		clear_buffer_uptodate(bh);
161	}
162	unlock_buffer(bh);
163}
164
165/*
166 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
167 * unlock the buffer. This is what ll_rw_block uses too.
168 */
169void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
170{
171	__end_buffer_read_notouch(bh, uptodate);
172	put_bh(bh);
173}
174EXPORT_SYMBOL(end_buffer_read_sync);
175
176void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
177{
178	if (uptodate) {
179		set_buffer_uptodate(bh);
180	} else {
181		buffer_io_error(bh, ", lost sync page write");
182		set_buffer_write_io_error(bh);
183		clear_buffer_uptodate(bh);
184	}
185	unlock_buffer(bh);
186	put_bh(bh);
187}
188EXPORT_SYMBOL(end_buffer_write_sync);
189
190/*
191 * Various filesystems appear to want __find_get_block to be non-blocking.
192 * But it's the page lock which protects the buffers.  To get around this,
193 * we get exclusion from try_to_free_buffers with the blockdev mapping's
194 * private_lock.
195 *
196 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
197 * may be quite high.  This code could TryLock the page, and if that
198 * succeeds, there is no need to take private_lock. (But if
199 * private_lock is contended then so is mapping->tree_lock).
200 */
201static struct buffer_head *
202__find_get_block_slow(struct block_device *bdev, sector_t block)
203{
204	struct inode *bd_inode = bdev->bd_inode;
205	struct address_space *bd_mapping = bd_inode->i_mapping;
206	struct buffer_head *ret = NULL;
207	pgoff_t index;
208	struct buffer_head *bh;
209	struct buffer_head *head;
210	struct page *page;
211	int all_mapped = 1;
212
213	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
214	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
215	if (!page)
216		goto out;
217
218	spin_lock(&bd_mapping->private_lock);
219	if (!page_has_buffers(page))
220		goto out_unlock;
221	head = page_buffers(page);
222	bh = head;
223	do {
224		if (!buffer_mapped(bh))
225			all_mapped = 0;
226		else if (bh->b_blocknr == block) {
227			ret = bh;
228			get_bh(bh);
229			goto out_unlock;
230		}
231		bh = bh->b_this_page;
232	} while (bh != head);
233
234	/* we might be here because some of the buffers on this page are
235	 * not mapped.  This is due to various races between
236	 * file io on the block device and getblk.  It gets dealt with
237	 * elsewhere, don't buffer_error if we had some unmapped buffers
238	 */
239	if (all_mapped) {
240		char b[BDEVNAME_SIZE];
241
242		printk("__find_get_block_slow() failed. "
243			"block=%llu, b_blocknr=%llu\n",
244			(unsigned long long)block,
245			(unsigned long long)bh->b_blocknr);
246		printk("b_state=0x%08lx, b_size=%zu\n",
247			bh->b_state, bh->b_size);
248		printk("device %s blocksize: %d\n", bdevname(bdev, b),
249			1 << bd_inode->i_blkbits);
250	}
251out_unlock:
252	spin_unlock(&bd_mapping->private_lock);
253	page_cache_release(page);
254out:
255	return ret;
256}
257
258/*
259 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
260 */
261static void free_more_memory(void)
262{
263	struct zone *zone;
264	int nid;
265
266	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
267	yield();
268
269	for_each_online_node(nid) {
270		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
271						gfp_zone(GFP_NOFS), NULL,
272						&zone);
273		if (zone)
274			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
275						GFP_NOFS, NULL);
276	}
277}
278
279/*
280 * I/O completion handler for block_read_full_page() - pages
281 * which come unlocked at the end of I/O.
282 */
283static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
284{
285	unsigned long flags;
286	struct buffer_head *first;
287	struct buffer_head *tmp;
288	struct page *page;
289	int page_uptodate = 1;
290
291	BUG_ON(!buffer_async_read(bh));
292
293	page = bh->b_page;
294	if (uptodate) {
295		set_buffer_uptodate(bh);
296	} else {
297		clear_buffer_uptodate(bh);
298		buffer_io_error(bh, ", async page read");
299		SetPageError(page);
300	}
301
302	/*
303	 * Be _very_ careful from here on. Bad things can happen if
304	 * two buffer heads end IO at almost the same time and both
305	 * decide that the page is now completely done.
306	 */
307	first = page_buffers(page);
308	local_irq_save(flags);
309	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
310	clear_buffer_async_read(bh);
311	unlock_buffer(bh);
312	tmp = bh;
313	do {
314		if (!buffer_uptodate(tmp))
315			page_uptodate = 0;
316		if (buffer_async_read(tmp)) {
317			BUG_ON(!buffer_locked(tmp));
318			goto still_busy;
319		}
320		tmp = tmp->b_this_page;
321	} while (tmp != bh);
322	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
323	local_irq_restore(flags);
324
325	/*
326	 * If none of the buffers had errors and they are all
327	 * uptodate then we can set the page uptodate.
328	 */
329	if (page_uptodate && !PageError(page))
330		SetPageUptodate(page);
331	unlock_page(page);
332	return;
333
334still_busy:
335	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
336	local_irq_restore(flags);
337	return;
338}
339
340/*
341 * Completion handler for block_write_full_page() - pages which are unlocked
342 * during I/O, and which have PageWriteback cleared upon I/O completion.
343 */
344void end_buffer_async_write(struct buffer_head *bh, int uptodate)
345{
346	unsigned long flags;
347	struct buffer_head *first;
348	struct buffer_head *tmp;
349	struct page *page;
350
351	BUG_ON(!buffer_async_write(bh));
352
353	page = bh->b_page;
354	if (uptodate) {
355		set_buffer_uptodate(bh);
356	} else {
357		buffer_io_error(bh, ", lost async page write");
358		set_bit(AS_EIO, &page->mapping->flags);
359		set_buffer_write_io_error(bh);
360		clear_buffer_uptodate(bh);
361		SetPageError(page);
362	}
363
364	first = page_buffers(page);
365	local_irq_save(flags);
366	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
367
368	clear_buffer_async_write(bh);
369	unlock_buffer(bh);
370	tmp = bh->b_this_page;
371	while (tmp != bh) {
372		if (buffer_async_write(tmp)) {
373			BUG_ON(!buffer_locked(tmp));
374			goto still_busy;
375		}
376		tmp = tmp->b_this_page;
377	}
378	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
379	local_irq_restore(flags);
380	end_page_writeback(page);
381	return;
382
383still_busy:
384	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
385	local_irq_restore(flags);
386	return;
387}
388EXPORT_SYMBOL(end_buffer_async_write);
389
390/*
391 * If a page's buffers are under async readin (end_buffer_async_read
392 * completion) then there is a possibility that another thread of
393 * control could lock one of the buffers after it has completed
394 * but while some of the other buffers have not completed.  This
395 * locked buffer would confuse end_buffer_async_read() into not unlocking
396 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
397 * that this buffer is not under async I/O.
398 *
399 * The page comes unlocked when it has no locked buffer_async buffers
400 * left.
401 *
402 * PageLocked prevents anyone starting new async I/O reads any of
403 * the buffers.
404 *
405 * PageWriteback is used to prevent simultaneous writeout of the same
406 * page.
407 *
408 * PageLocked prevents anyone from starting writeback of a page which is
409 * under read I/O (PageWriteback is only ever set against a locked page).
410 */
411static void mark_buffer_async_read(struct buffer_head *bh)
412{
413	bh->b_end_io = end_buffer_async_read;
414	set_buffer_async_read(bh);
415}
416
417static void mark_buffer_async_write_endio(struct buffer_head *bh,
418					  bh_end_io_t *handler)
419{
420	bh->b_end_io = handler;
421	set_buffer_async_write(bh);
422}
423
424void mark_buffer_async_write(struct buffer_head *bh)
425{
426	mark_buffer_async_write_endio(bh, end_buffer_async_write);
427}
428EXPORT_SYMBOL(mark_buffer_async_write);
429
430
431/*
432 * fs/buffer.c contains helper functions for buffer-backed address space's
433 * fsync functions.  A common requirement for buffer-based filesystems is
434 * that certain data from the backing blockdev needs to be written out for
435 * a successful fsync().  For example, ext2 indirect blocks need to be
436 * written back and waited upon before fsync() returns.
437 *
438 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
439 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
440 * management of a list of dependent buffers at ->i_mapping->private_list.
441 *
442 * Locking is a little subtle: try_to_free_buffers() will remove buffers
443 * from their controlling inode's queue when they are being freed.  But
444 * try_to_free_buffers() will be operating against the *blockdev* mapping
445 * at the time, not against the S_ISREG file which depends on those buffers.
446 * So the locking for private_list is via the private_lock in the address_space
447 * which backs the buffers.  Which is different from the address_space
448 * against which the buffers are listed.  So for a particular address_space,
449 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
450 * mapping->private_list will always be protected by the backing blockdev's
451 * ->private_lock.
452 *
453 * Which introduces a requirement: all buffers on an address_space's
454 * ->private_list must be from the same address_space: the blockdev's.
455 *
456 * address_spaces which do not place buffers at ->private_list via these
457 * utility functions are free to use private_lock and private_list for
458 * whatever they want.  The only requirement is that list_empty(private_list)
459 * be true at clear_inode() time.
460 *
461 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
462 * filesystems should do that.  invalidate_inode_buffers() should just go
463 * BUG_ON(!list_empty).
464 *
465 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
466 * take an address_space, not an inode.  And it should be called
467 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
468 * queued up.
469 *
470 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
471 * list if it is already on a list.  Because if the buffer is on a list,
472 * it *must* already be on the right one.  If not, the filesystem is being
473 * silly.  This will save a ton of locking.  But first we have to ensure
474 * that buffers are taken *off* the old inode's list when they are freed
475 * (presumably in truncate).  That requires careful auditing of all
476 * filesystems (do it inside bforget()).  It could also be done by bringing
477 * b_inode back.
478 */
479
480/*
481 * The buffer's backing address_space's private_lock must be held
482 */
483static void __remove_assoc_queue(struct buffer_head *bh)
484{
485	list_del_init(&bh->b_assoc_buffers);
486	WARN_ON(!bh->b_assoc_map);
487	if (buffer_write_io_error(bh))
488		set_bit(AS_EIO, &bh->b_assoc_map->flags);
489	bh->b_assoc_map = NULL;
490}
491
492int inode_has_buffers(struct inode *inode)
493{
494	return !list_empty(&inode->i_data.private_list);
495}
496
497/*
498 * osync is designed to support O_SYNC io.  It waits synchronously for
499 * all already-submitted IO to complete, but does not queue any new
500 * writes to the disk.
501 *
502 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
503 * you dirty the buffers, and then use osync_inode_buffers to wait for
504 * completion.  Any other dirty buffers which are not yet queued for
505 * write will not be flushed to disk by the osync.
506 */
507static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
508{
509	struct buffer_head *bh;
510	struct list_head *p;
511	int err = 0;
512
513	spin_lock(lock);
514repeat:
515	list_for_each_prev(p, list) {
516		bh = BH_ENTRY(p);
517		if (buffer_locked(bh)) {
518			get_bh(bh);
519			spin_unlock(lock);
520			wait_on_buffer(bh);
521			if (!buffer_uptodate(bh))
522				err = -EIO;
523			brelse(bh);
524			spin_lock(lock);
525			goto repeat;
526		}
527	}
528	spin_unlock(lock);
529	return err;
530}
531
532static void do_thaw_one(struct super_block *sb, void *unused)
533{
534	char b[BDEVNAME_SIZE];
535	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
536		printk(KERN_WARNING "Emergency Thaw on %s\n",
537		       bdevname(sb->s_bdev, b));
538}
539
540static void do_thaw_all(struct work_struct *work)
541{
542	iterate_supers(do_thaw_one, NULL);
543	kfree(work);
544	printk(KERN_WARNING "Emergency Thaw complete\n");
545}
546
547/**
548 * emergency_thaw_all -- forcibly thaw every frozen filesystem
549 *
550 * Used for emergency unfreeze of all filesystems via SysRq
551 */
552void emergency_thaw_all(void)
553{
554	struct work_struct *work;
555
556	work = kmalloc(sizeof(*work), GFP_ATOMIC);
557	if (work) {
558		INIT_WORK(work, do_thaw_all);
559		schedule_work(work);
560	}
561}
562
563/**
564 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
565 * @mapping: the mapping which wants those buffers written
566 *
567 * Starts I/O against the buffers at mapping->private_list, and waits upon
568 * that I/O.
569 *
570 * Basically, this is a convenience function for fsync().
571 * @mapping is a file or directory which needs those buffers to be written for
572 * a successful fsync().
573 */
574int sync_mapping_buffers(struct address_space *mapping)
575{
576	struct address_space *buffer_mapping = mapping->private_data;
577
578	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
579		return 0;
580
581	return fsync_buffers_list(&buffer_mapping->private_lock,
582					&mapping->private_list);
583}
584EXPORT_SYMBOL(sync_mapping_buffers);
585
586/*
587 * Called when we've recently written block `bblock', and it is known that
588 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
589 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
590 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
591 */
592void write_boundary_block(struct block_device *bdev,
593			sector_t bblock, unsigned blocksize)
594{
595	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
596	if (bh) {
597		if (buffer_dirty(bh))
598			ll_rw_block(WRITE, 1, &bh);
599		put_bh(bh);
600	}
601}
602
603void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
604{
605	struct address_space *mapping = inode->i_mapping;
606	struct address_space *buffer_mapping = bh->b_page->mapping;
607
608	mark_buffer_dirty(bh);
609	if (!mapping->private_data) {
610		mapping->private_data = buffer_mapping;
611	} else {
612		BUG_ON(mapping->private_data != buffer_mapping);
613	}
614	if (!bh->b_assoc_map) {
615		spin_lock(&buffer_mapping->private_lock);
616		list_move_tail(&bh->b_assoc_buffers,
617				&mapping->private_list);
618		bh->b_assoc_map = mapping;
619		spin_unlock(&buffer_mapping->private_lock);
620	}
621}
622EXPORT_SYMBOL(mark_buffer_dirty_inode);
623
624/*
625 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
626 * dirty.
627 *
628 * If warn is true, then emit a warning if the page is not uptodate and has
629 * not been truncated.
630 *
631 * The caller must hold mem_cgroup_begin_page_stat() lock.
632 */
633static void __set_page_dirty(struct page *page, struct address_space *mapping,
634			     struct mem_cgroup *memcg, int warn)
635{
636	unsigned long flags;
637
638	spin_lock_irqsave(&mapping->tree_lock, flags);
639	if (page->mapping) {	/* Race with truncate? */
640		WARN_ON_ONCE(warn && !PageUptodate(page));
641		account_page_dirtied(page, mapping, memcg);
642		radix_tree_tag_set(&mapping->page_tree,
643				page_index(page), PAGECACHE_TAG_DIRTY);
644	}
645	spin_unlock_irqrestore(&mapping->tree_lock, flags);
646}
647
648/*
649 * Add a page to the dirty page list.
650 *
651 * It is a sad fact of life that this function is called from several places
652 * deeply under spinlocking.  It may not sleep.
653 *
654 * If the page has buffers, the uptodate buffers are set dirty, to preserve
655 * dirty-state coherency between the page and the buffers.  It the page does
656 * not have buffers then when they are later attached they will all be set
657 * dirty.
658 *
659 * The buffers are dirtied before the page is dirtied.  There's a small race
660 * window in which a writepage caller may see the page cleanness but not the
661 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
662 * before the buffers, a concurrent writepage caller could clear the page dirty
663 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
664 * page on the dirty page list.
665 *
666 * We use private_lock to lock against try_to_free_buffers while using the
667 * page's buffer list.  Also use this to protect against clean buffers being
668 * added to the page after it was set dirty.
669 *
670 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
671 * address_space though.
672 */
673int __set_page_dirty_buffers(struct page *page)
674{
675	int newly_dirty;
676	struct mem_cgroup *memcg;
677	struct address_space *mapping = page_mapping(page);
678
679	if (unlikely(!mapping))
680		return !TestSetPageDirty(page);
681
682	spin_lock(&mapping->private_lock);
683	if (page_has_buffers(page)) {
684		struct buffer_head *head = page_buffers(page);
685		struct buffer_head *bh = head;
686
687		do {
688			set_buffer_dirty(bh);
689			bh = bh->b_this_page;
690		} while (bh != head);
691	}
692	/*
693	 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with
694	 * per-memcg dirty page counters.
695	 */
696	memcg = mem_cgroup_begin_page_stat(page);
697	newly_dirty = !TestSetPageDirty(page);
698	spin_unlock(&mapping->private_lock);
699
700	if (newly_dirty)
701		__set_page_dirty(page, mapping, memcg, 1);
702
703	mem_cgroup_end_page_stat(memcg);
704
705	if (newly_dirty)
706		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
707
708	return newly_dirty;
709}
710EXPORT_SYMBOL(__set_page_dirty_buffers);
711
712/*
713 * Write out and wait upon a list of buffers.
714 *
715 * We have conflicting pressures: we want to make sure that all
716 * initially dirty buffers get waited on, but that any subsequently
717 * dirtied buffers don't.  After all, we don't want fsync to last
718 * forever if somebody is actively writing to the file.
719 *
720 * Do this in two main stages: first we copy dirty buffers to a
721 * temporary inode list, queueing the writes as we go.  Then we clean
722 * up, waiting for those writes to complete.
723 *
724 * During this second stage, any subsequent updates to the file may end
725 * up refiling the buffer on the original inode's dirty list again, so
726 * there is a chance we will end up with a buffer queued for write but
727 * not yet completed on that list.  So, as a final cleanup we go through
728 * the osync code to catch these locked, dirty buffers without requeuing
729 * any newly dirty buffers for write.
730 */
731static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
732{
733	struct buffer_head *bh;
734	struct list_head tmp;
735	struct address_space *mapping;
736	int err = 0, err2;
737	struct blk_plug plug;
738
739	INIT_LIST_HEAD(&tmp);
740	blk_start_plug(&plug);
741
742	spin_lock(lock);
743	while (!list_empty(list)) {
744		bh = BH_ENTRY(list->next);
745		mapping = bh->b_assoc_map;
746		__remove_assoc_queue(bh);
747		/* Avoid race with mark_buffer_dirty_inode() which does
748		 * a lockless check and we rely on seeing the dirty bit */
749		smp_mb();
750		if (buffer_dirty(bh) || buffer_locked(bh)) {
751			list_add(&bh->b_assoc_buffers, &tmp);
752			bh->b_assoc_map = mapping;
753			if (buffer_dirty(bh)) {
754				get_bh(bh);
755				spin_unlock(lock);
756				/*
757				 * Ensure any pending I/O completes so that
758				 * write_dirty_buffer() actually writes the
759				 * current contents - it is a noop if I/O is
760				 * still in flight on potentially older
761				 * contents.
762				 */
763				write_dirty_buffer(bh, WRITE_SYNC);
764
765				/*
766				 * Kick off IO for the previous mapping. Note
767				 * that we will not run the very last mapping,
768				 * wait_on_buffer() will do that for us
769				 * through sync_buffer().
770				 */
771				brelse(bh);
772				spin_lock(lock);
773			}
774		}
775	}
776
777	spin_unlock(lock);
778	blk_finish_plug(&plug);
779	spin_lock(lock);
780
781	while (!list_empty(&tmp)) {
782		bh = BH_ENTRY(tmp.prev);
783		get_bh(bh);
784		mapping = bh->b_assoc_map;
785		__remove_assoc_queue(bh);
786		/* Avoid race with mark_buffer_dirty_inode() which does
787		 * a lockless check and we rely on seeing the dirty bit */
788		smp_mb();
789		if (buffer_dirty(bh)) {
790			list_add(&bh->b_assoc_buffers,
791				 &mapping->private_list);
792			bh->b_assoc_map = mapping;
793		}
794		spin_unlock(lock);
795		wait_on_buffer(bh);
796		if (!buffer_uptodate(bh))
797			err = -EIO;
798		brelse(bh);
799		spin_lock(lock);
800	}
801
802	spin_unlock(lock);
803	err2 = osync_buffers_list(lock, list);
804	if (err)
805		return err;
806	else
807		return err2;
808}
809
810/*
811 * Invalidate any and all dirty buffers on a given inode.  We are
812 * probably unmounting the fs, but that doesn't mean we have already
813 * done a sync().  Just drop the buffers from the inode list.
814 *
815 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
816 * assumes that all the buffers are against the blockdev.  Not true
817 * for reiserfs.
818 */
819void invalidate_inode_buffers(struct inode *inode)
820{
821	if (inode_has_buffers(inode)) {
822		struct address_space *mapping = &inode->i_data;
823		struct list_head *list = &mapping->private_list;
824		struct address_space *buffer_mapping = mapping->private_data;
825
826		spin_lock(&buffer_mapping->private_lock);
827		while (!list_empty(list))
828			__remove_assoc_queue(BH_ENTRY(list->next));
829		spin_unlock(&buffer_mapping->private_lock);
830	}
831}
832EXPORT_SYMBOL(invalidate_inode_buffers);
833
834/*
835 * Remove any clean buffers from the inode's buffer list.  This is called
836 * when we're trying to free the inode itself.  Those buffers can pin it.
837 *
838 * Returns true if all buffers were removed.
839 */
840int remove_inode_buffers(struct inode *inode)
841{
842	int ret = 1;
843
844	if (inode_has_buffers(inode)) {
845		struct address_space *mapping = &inode->i_data;
846		struct list_head *list = &mapping->private_list;
847		struct address_space *buffer_mapping = mapping->private_data;
848
849		spin_lock(&buffer_mapping->private_lock);
850		while (!list_empty(list)) {
851			struct buffer_head *bh = BH_ENTRY(list->next);
852			if (buffer_dirty(bh)) {
853				ret = 0;
854				break;
855			}
856			__remove_assoc_queue(bh);
857		}
858		spin_unlock(&buffer_mapping->private_lock);
859	}
860	return ret;
861}
862
863/*
864 * Create the appropriate buffers when given a page for data area and
865 * the size of each buffer.. Use the bh->b_this_page linked list to
866 * follow the buffers created.  Return NULL if unable to create more
867 * buffers.
868 *
869 * The retry flag is used to differentiate async IO (paging, swapping)
870 * which may not fail from ordinary buffer allocations.
871 */
872struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
873		int retry)
874{
875	struct buffer_head *bh, *head;
876	long offset;
877
878try_again:
879	head = NULL;
880	offset = PAGE_SIZE;
881	while ((offset -= size) >= 0) {
882		bh = alloc_buffer_head(GFP_NOFS);
883		if (!bh)
884			goto no_grow;
885
886		bh->b_this_page = head;
887		bh->b_blocknr = -1;
888		head = bh;
889
890		bh->b_size = size;
891
892		/* Link the buffer to its page */
893		set_bh_page(bh, page, offset);
894	}
895	return head;
896/*
897 * In case anything failed, we just free everything we got.
898 */
899no_grow:
900	if (head) {
901		do {
902			bh = head;
903			head = head->b_this_page;
904			free_buffer_head(bh);
905		} while (head);
906	}
907
908	/*
909	 * Return failure for non-async IO requests.  Async IO requests
910	 * are not allowed to fail, so we have to wait until buffer heads
911	 * become available.  But we don't want tasks sleeping with
912	 * partially complete buffers, so all were released above.
913	 */
914	if (!retry)
915		return NULL;
916
917	/* We're _really_ low on memory. Now we just
918	 * wait for old buffer heads to become free due to
919	 * finishing IO.  Since this is an async request and
920	 * the reserve list is empty, we're sure there are
921	 * async buffer heads in use.
922	 */
923	free_more_memory();
924	goto try_again;
925}
926EXPORT_SYMBOL_GPL(alloc_page_buffers);
927
928static inline void
929link_dev_buffers(struct page *page, struct buffer_head *head)
930{
931	struct buffer_head *bh, *tail;
932
933	bh = head;
934	do {
935		tail = bh;
936		bh = bh->b_this_page;
937	} while (bh);
938	tail->b_this_page = head;
939	attach_page_buffers(page, head);
940}
941
942static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
943{
944	sector_t retval = ~((sector_t)0);
945	loff_t sz = i_size_read(bdev->bd_inode);
946
947	if (sz) {
948		unsigned int sizebits = blksize_bits(size);
949		retval = (sz >> sizebits);
950	}
951	return retval;
952}
953
954/*
955 * Initialise the state of a blockdev page's buffers.
956 */
957static sector_t
958init_page_buffers(struct page *page, struct block_device *bdev,
959			sector_t block, int size)
960{
961	struct buffer_head *head = page_buffers(page);
962	struct buffer_head *bh = head;
963	int uptodate = PageUptodate(page);
964	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
965
966	do {
967		if (!buffer_mapped(bh)) {
968			init_buffer(bh, NULL, NULL);
969			bh->b_bdev = bdev;
970			bh->b_blocknr = block;
971			if (uptodate)
972				set_buffer_uptodate(bh);
973			if (block < end_block)
974				set_buffer_mapped(bh);
975		}
976		block++;
977		bh = bh->b_this_page;
978	} while (bh != head);
979
980	/*
981	 * Caller needs to validate requested block against end of device.
982	 */
983	return end_block;
984}
985
986/*
987 * Create the page-cache page that contains the requested block.
988 *
989 * This is used purely for blockdev mappings.
990 */
991static int
992grow_dev_page(struct block_device *bdev, sector_t block,
993	      pgoff_t index, int size, int sizebits, gfp_t gfp)
994{
995	struct inode *inode = bdev->bd_inode;
996	struct page *page;
997	struct buffer_head *bh;
998	sector_t end_block;
999	int ret = 0;		/* Will call free_more_memory() */
1000	gfp_t gfp_mask;
1001
1002	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
1003
1004	/*
1005	 * XXX: __getblk_slow() can not really deal with failure and
1006	 * will endlessly loop on improvised global reclaim.  Prefer
1007	 * looping in the allocator rather than here, at least that
1008	 * code knows what it's doing.
1009	 */
1010	gfp_mask |= __GFP_NOFAIL;
1011
1012	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1013	if (!page)
1014		return ret;
1015
1016	BUG_ON(!PageLocked(page));
1017
1018	if (page_has_buffers(page)) {
1019		bh = page_buffers(page);
1020		if (bh->b_size == size) {
1021			end_block = init_page_buffers(page, bdev,
1022						(sector_t)index << sizebits,
1023						size);
1024			goto done;
1025		}
1026		if (!try_to_free_buffers(page))
1027			goto failed;
1028	}
1029
1030	/*
1031	 * Allocate some buffers for this page
1032	 */
1033	bh = alloc_page_buffers(page, size, 0);
1034	if (!bh)
1035		goto failed;
1036
1037	/*
1038	 * Link the page to the buffers and initialise them.  Take the
1039	 * lock to be atomic wrt __find_get_block(), which does not
1040	 * run under the page lock.
1041	 */
1042	spin_lock(&inode->i_mapping->private_lock);
1043	link_dev_buffers(page, bh);
1044	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1045			size);
1046	spin_unlock(&inode->i_mapping->private_lock);
1047done:
1048	ret = (block < end_block) ? 1 : -ENXIO;
1049failed:
1050	unlock_page(page);
1051	page_cache_release(page);
1052	return ret;
1053}
1054
1055/*
1056 * Create buffers for the specified block device block's page.  If
1057 * that page was dirty, the buffers are set dirty also.
1058 */
1059static int
1060grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1061{
1062	pgoff_t index;
1063	int sizebits;
1064
1065	sizebits = -1;
1066	do {
1067		sizebits++;
1068	} while ((size << sizebits) < PAGE_SIZE);
1069
1070	index = block >> sizebits;
1071
1072	/*
1073	 * Check for a block which wants to lie outside our maximum possible
1074	 * pagecache index.  (this comparison is done using sector_t types).
1075	 */
1076	if (unlikely(index != block >> sizebits)) {
1077		char b[BDEVNAME_SIZE];
1078
1079		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1080			"device %s\n",
1081			__func__, (unsigned long long)block,
1082			bdevname(bdev, b));
1083		return -EIO;
1084	}
1085
1086	/* Create a page with the proper size buffers.. */
1087	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1088}
1089
1090struct buffer_head *
1091__getblk_slow(struct block_device *bdev, sector_t block,
1092	     unsigned size, gfp_t gfp)
1093{
1094	/* Size must be multiple of hard sectorsize */
1095	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1096			(size < 512 || size > PAGE_SIZE))) {
1097		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1098					size);
1099		printk(KERN_ERR "logical block size: %d\n",
1100					bdev_logical_block_size(bdev));
1101
1102		dump_stack();
1103		return NULL;
1104	}
1105
1106	for (;;) {
1107		struct buffer_head *bh;
1108		int ret;
1109
1110		bh = __find_get_block(bdev, block, size);
1111		if (bh)
1112			return bh;
1113
1114		ret = grow_buffers(bdev, block, size, gfp);
1115		if (ret < 0)
1116			return NULL;
1117		if (ret == 0)
1118			free_more_memory();
1119	}
1120}
1121EXPORT_SYMBOL(__getblk_slow);
1122
1123/*
1124 * The relationship between dirty buffers and dirty pages:
1125 *
1126 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1127 * the page is tagged dirty in its radix tree.
1128 *
1129 * At all times, the dirtiness of the buffers represents the dirtiness of
1130 * subsections of the page.  If the page has buffers, the page dirty bit is
1131 * merely a hint about the true dirty state.
1132 *
1133 * When a page is set dirty in its entirety, all its buffers are marked dirty
1134 * (if the page has buffers).
1135 *
1136 * When a buffer is marked dirty, its page is dirtied, but the page's other
1137 * buffers are not.
1138 *
1139 * Also.  When blockdev buffers are explicitly read with bread(), they
1140 * individually become uptodate.  But their backing page remains not
1141 * uptodate - even if all of its buffers are uptodate.  A subsequent
1142 * block_read_full_page() against that page will discover all the uptodate
1143 * buffers, will set the page uptodate and will perform no I/O.
1144 */
1145
1146/**
1147 * mark_buffer_dirty - mark a buffer_head as needing writeout
1148 * @bh: the buffer_head to mark dirty
1149 *
1150 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1151 * backing page dirty, then tag the page as dirty in its address_space's radix
1152 * tree and then attach the address_space's inode to its superblock's dirty
1153 * inode list.
1154 *
1155 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1156 * mapping->tree_lock and mapping->host->i_lock.
1157 */
1158void mark_buffer_dirty(struct buffer_head *bh)
1159{
1160	WARN_ON_ONCE(!buffer_uptodate(bh));
1161
1162	trace_block_dirty_buffer(bh);
1163
1164	/*
1165	 * Very *carefully* optimize the it-is-already-dirty case.
1166	 *
1167	 * Don't let the final "is it dirty" escape to before we
1168	 * perhaps modified the buffer.
1169	 */
1170	if (buffer_dirty(bh)) {
1171		smp_mb();
1172		if (buffer_dirty(bh))
1173			return;
1174	}
1175
1176	if (!test_set_buffer_dirty(bh)) {
1177		struct page *page = bh->b_page;
1178		struct address_space *mapping = NULL;
1179		struct mem_cgroup *memcg;
1180
1181		memcg = mem_cgroup_begin_page_stat(page);
1182		if (!TestSetPageDirty(page)) {
1183			mapping = page_mapping(page);
1184			if (mapping)
1185				__set_page_dirty(page, mapping, memcg, 0);
1186		}
1187		mem_cgroup_end_page_stat(memcg);
1188		if (mapping)
1189			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1190	}
1191}
1192EXPORT_SYMBOL(mark_buffer_dirty);
1193
1194/*
1195 * Decrement a buffer_head's reference count.  If all buffers against a page
1196 * have zero reference count, are clean and unlocked, and if the page is clean
1197 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1198 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1199 * a page but it ends up not being freed, and buffers may later be reattached).
1200 */
1201void __brelse(struct buffer_head * buf)
1202{
1203	if (atomic_read(&buf->b_count)) {
1204		put_bh(buf);
1205		return;
1206	}
1207	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1208}
1209EXPORT_SYMBOL(__brelse);
1210
1211/*
1212 * bforget() is like brelse(), except it discards any
1213 * potentially dirty data.
1214 */
1215void __bforget(struct buffer_head *bh)
1216{
1217	clear_buffer_dirty(bh);
1218	if (bh->b_assoc_map) {
1219		struct address_space *buffer_mapping = bh->b_page->mapping;
1220
1221		spin_lock(&buffer_mapping->private_lock);
1222		list_del_init(&bh->b_assoc_buffers);
1223		bh->b_assoc_map = NULL;
1224		spin_unlock(&buffer_mapping->private_lock);
1225	}
1226	__brelse(bh);
1227}
1228EXPORT_SYMBOL(__bforget);
1229
1230static struct buffer_head *__bread_slow(struct buffer_head *bh)
1231{
1232	lock_buffer(bh);
1233	if (buffer_uptodate(bh)) {
1234		unlock_buffer(bh);
1235		return bh;
1236	} else {
1237		get_bh(bh);
1238		bh->b_end_io = end_buffer_read_sync;
1239		submit_bh(READ, bh);
1240		wait_on_buffer(bh);
1241		if (buffer_uptodate(bh))
1242			return bh;
1243	}
1244	brelse(bh);
1245	return NULL;
1246}
1247
1248/*
1249 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1250 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1251 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1252 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1253 * CPU's LRUs at the same time.
1254 *
1255 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1256 * sb_find_get_block().
1257 *
1258 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1259 * a local interrupt disable for that.
1260 */
1261
1262#define BH_LRU_SIZE	16
1263
1264struct bh_lru {
1265	struct buffer_head *bhs[BH_LRU_SIZE];
1266};
1267
1268static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1269
1270#ifdef CONFIG_SMP
1271#define bh_lru_lock()	local_irq_disable()
1272#define bh_lru_unlock()	local_irq_enable()
1273#else
1274#define bh_lru_lock()	preempt_disable()
1275#define bh_lru_unlock()	preempt_enable()
1276#endif
1277
1278static inline void check_irqs_on(void)
1279{
1280#ifdef irqs_disabled
1281	BUG_ON(irqs_disabled());
1282#endif
1283}
1284
1285/*
1286 * The LRU management algorithm is dopey-but-simple.  Sorry.
1287 */
1288static void bh_lru_install(struct buffer_head *bh)
1289{
1290	struct buffer_head *evictee = NULL;
1291
1292	check_irqs_on();
1293	bh_lru_lock();
1294	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1295		struct buffer_head *bhs[BH_LRU_SIZE];
1296		int in;
1297		int out = 0;
1298
1299		get_bh(bh);
1300		bhs[out++] = bh;
1301		for (in = 0; in < BH_LRU_SIZE; in++) {
1302			struct buffer_head *bh2 =
1303				__this_cpu_read(bh_lrus.bhs[in]);
1304
1305			if (bh2 == bh) {
1306				__brelse(bh2);
1307			} else {
1308				if (out >= BH_LRU_SIZE) {
1309					BUG_ON(evictee != NULL);
1310					evictee = bh2;
1311				} else {
1312					bhs[out++] = bh2;
1313				}
1314			}
1315		}
1316		while (out < BH_LRU_SIZE)
1317			bhs[out++] = NULL;
1318		memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1319	}
1320	bh_lru_unlock();
1321
1322	if (evictee)
1323		__brelse(evictee);
1324}
1325
1326/*
1327 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1328 */
1329static struct buffer_head *
1330lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1331{
1332	struct buffer_head *ret = NULL;
1333	unsigned int i;
1334
1335	check_irqs_on();
1336	bh_lru_lock();
1337	for (i = 0; i < BH_LRU_SIZE; i++) {
1338		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1339
1340		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1341		    bh->b_size == size) {
1342			if (i) {
1343				while (i) {
1344					__this_cpu_write(bh_lrus.bhs[i],
1345						__this_cpu_read(bh_lrus.bhs[i - 1]));
1346					i--;
1347				}
1348				__this_cpu_write(bh_lrus.bhs[0], bh);
1349			}
1350			get_bh(bh);
1351			ret = bh;
1352			break;
1353		}
1354	}
1355	bh_lru_unlock();
1356	return ret;
1357}
1358
1359/*
1360 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1361 * it in the LRU and mark it as accessed.  If it is not present then return
1362 * NULL
1363 */
1364struct buffer_head *
1365__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1366{
1367	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1368
1369	if (bh == NULL) {
1370		/* __find_get_block_slow will mark the page accessed */
1371		bh = __find_get_block_slow(bdev, block);
1372		if (bh)
1373			bh_lru_install(bh);
1374	} else
1375		touch_buffer(bh);
1376
1377	return bh;
1378}
1379EXPORT_SYMBOL(__find_get_block);
1380
1381/*
1382 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1383 * which corresponds to the passed block_device, block and size. The
1384 * returned buffer has its reference count incremented.
1385 *
1386 * __getblk_gfp() will lock up the machine if grow_dev_page's
1387 * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1388 */
1389struct buffer_head *
1390__getblk_gfp(struct block_device *bdev, sector_t block,
1391	     unsigned size, gfp_t gfp)
1392{
1393	struct buffer_head *bh = __find_get_block(bdev, block, size);
1394
1395	might_sleep();
1396	if (bh == NULL)
1397		bh = __getblk_slow(bdev, block, size, gfp);
1398	return bh;
1399}
1400EXPORT_SYMBOL(__getblk_gfp);
1401
1402/*
1403 * Do async read-ahead on a buffer..
1404 */
1405void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1406{
1407	struct buffer_head *bh = __getblk(bdev, block, size);
1408	if (likely(bh)) {
1409		ll_rw_block(READA, 1, &bh);
1410		brelse(bh);
1411	}
1412}
1413EXPORT_SYMBOL(__breadahead);
1414
1415/**
1416 *  __bread_gfp() - reads a specified block and returns the bh
1417 *  @bdev: the block_device to read from
1418 *  @block: number of block
1419 *  @size: size (in bytes) to read
1420 *  @gfp: page allocation flag
1421 *
1422 *  Reads a specified block, and returns buffer head that contains it.
1423 *  The page cache can be allocated from non-movable area
1424 *  not to prevent page migration if you set gfp to zero.
1425 *  It returns NULL if the block was unreadable.
1426 */
1427struct buffer_head *
1428__bread_gfp(struct block_device *bdev, sector_t block,
1429		   unsigned size, gfp_t gfp)
1430{
1431	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1432
1433	if (likely(bh) && !buffer_uptodate(bh))
1434		bh = __bread_slow(bh);
1435	return bh;
1436}
1437EXPORT_SYMBOL(__bread_gfp);
1438
1439/*
1440 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1441 * This doesn't race because it runs in each cpu either in irq
1442 * or with preempt disabled.
1443 */
1444static void invalidate_bh_lru(void *arg)
1445{
1446	struct bh_lru *b = &get_cpu_var(bh_lrus);
1447	int i;
1448
1449	for (i = 0; i < BH_LRU_SIZE; i++) {
1450		brelse(b->bhs[i]);
1451		b->bhs[i] = NULL;
1452	}
1453	put_cpu_var(bh_lrus);
1454}
1455
1456static bool has_bh_in_lru(int cpu, void *dummy)
1457{
1458	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1459	int i;
1460
1461	for (i = 0; i < BH_LRU_SIZE; i++) {
1462		if (b->bhs[i])
1463			return 1;
1464	}
1465
1466	return 0;
1467}
1468
1469void invalidate_bh_lrus(void)
1470{
1471	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1472}
1473EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1474
1475void set_bh_page(struct buffer_head *bh,
1476		struct page *page, unsigned long offset)
1477{
1478	bh->b_page = page;
1479	BUG_ON(offset >= PAGE_SIZE);
1480	if (PageHighMem(page))
1481		/*
1482		 * This catches illegal uses and preserves the offset:
1483		 */
1484		bh->b_data = (char *)(0 + offset);
1485	else
1486		bh->b_data = page_address(page) + offset;
1487}
1488EXPORT_SYMBOL(set_bh_page);
1489
1490/*
1491 * Called when truncating a buffer on a page completely.
1492 */
1493
1494/* Bits that are cleared during an invalidate */
1495#define BUFFER_FLAGS_DISCARD \
1496	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1497	 1 << BH_Delay | 1 << BH_Unwritten)
1498
1499static void discard_buffer(struct buffer_head * bh)
1500{
1501	unsigned long b_state, b_state_old;
1502
1503	lock_buffer(bh);
1504	clear_buffer_dirty(bh);
1505	bh->b_bdev = NULL;
1506	b_state = bh->b_state;
1507	for (;;) {
1508		b_state_old = cmpxchg(&bh->b_state, b_state,
1509				      (b_state & ~BUFFER_FLAGS_DISCARD));
1510		if (b_state_old == b_state)
1511			break;
1512		b_state = b_state_old;
1513	}
1514	unlock_buffer(bh);
1515}
1516
1517/**
1518 * block_invalidatepage - invalidate part or all of a buffer-backed page
1519 *
1520 * @page: the page which is affected
1521 * @offset: start of the range to invalidate
1522 * @length: length of the range to invalidate
1523 *
1524 * block_invalidatepage() is called when all or part of the page has become
1525 * invalidated by a truncate operation.
1526 *
1527 * block_invalidatepage() does not have to release all buffers, but it must
1528 * ensure that no dirty buffer is left outside @offset and that no I/O
1529 * is underway against any of the blocks which are outside the truncation
1530 * point.  Because the caller is about to free (and possibly reuse) those
1531 * blocks on-disk.
1532 */
1533void block_invalidatepage(struct page *page, unsigned int offset,
1534			  unsigned int length)
1535{
1536	struct buffer_head *head, *bh, *next;
1537	unsigned int curr_off = 0;
1538	unsigned int stop = length + offset;
1539
1540	BUG_ON(!PageLocked(page));
1541	if (!page_has_buffers(page))
1542		goto out;
1543
1544	/*
1545	 * Check for overflow
1546	 */
1547	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1548
1549	head = page_buffers(page);
1550	bh = head;
1551	do {
1552		unsigned int next_off = curr_off + bh->b_size;
1553		next = bh->b_this_page;
1554
1555		/*
1556		 * Are we still fully in range ?
1557		 */
1558		if (next_off > stop)
1559			goto out;
1560
1561		/*
1562		 * is this block fully invalidated?
1563		 */
1564		if (offset <= curr_off)
1565			discard_buffer(bh);
1566		curr_off = next_off;
1567		bh = next;
1568	} while (bh != head);
1569
1570	/*
1571	 * We release buffers only if the entire page is being invalidated.
1572	 * The get_block cached value has been unconditionally invalidated,
1573	 * so real IO is not possible anymore.
1574	 */
1575	if (offset == 0)
1576		try_to_release_page(page, 0);
1577out:
1578	return;
1579}
1580EXPORT_SYMBOL(block_invalidatepage);
1581
1582
1583/*
1584 * We attach and possibly dirty the buffers atomically wrt
1585 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1586 * is already excluded via the page lock.
1587 */
1588void create_empty_buffers(struct page *page,
1589			unsigned long blocksize, unsigned long b_state)
1590{
1591	struct buffer_head *bh, *head, *tail;
1592
1593	head = alloc_page_buffers(page, blocksize, 1);
1594	bh = head;
1595	do {
1596		bh->b_state |= b_state;
1597		tail = bh;
1598		bh = bh->b_this_page;
1599	} while (bh);
1600	tail->b_this_page = head;
1601
1602	spin_lock(&page->mapping->private_lock);
1603	if (PageUptodate(page) || PageDirty(page)) {
1604		bh = head;
1605		do {
1606			if (PageDirty(page))
1607				set_buffer_dirty(bh);
1608			if (PageUptodate(page))
1609				set_buffer_uptodate(bh);
1610			bh = bh->b_this_page;
1611		} while (bh != head);
1612	}
1613	attach_page_buffers(page, head);
1614	spin_unlock(&page->mapping->private_lock);
1615}
1616EXPORT_SYMBOL(create_empty_buffers);
1617
1618/*
1619 * We are taking a block for data and we don't want any output from any
1620 * buffer-cache aliases starting from return from that function and
1621 * until the moment when something will explicitly mark the buffer
1622 * dirty (hopefully that will not happen until we will free that block ;-)
1623 * We don't even need to mark it not-uptodate - nobody can expect
1624 * anything from a newly allocated buffer anyway. We used to used
1625 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1626 * don't want to mark the alias unmapped, for example - it would confuse
1627 * anyone who might pick it with bread() afterwards...
1628 *
1629 * Also..  Note that bforget() doesn't lock the buffer.  So there can
1630 * be writeout I/O going on against recently-freed buffers.  We don't
1631 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1632 * only if we really need to.  That happens here.
1633 */
1634void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1635{
1636	struct buffer_head *old_bh;
1637
1638	might_sleep();
1639
1640	old_bh = __find_get_block_slow(bdev, block);
1641	if (old_bh) {
1642		clear_buffer_dirty(old_bh);
1643		wait_on_buffer(old_bh);
1644		clear_buffer_req(old_bh);
1645		__brelse(old_bh);
1646	}
1647}
1648EXPORT_SYMBOL(unmap_underlying_metadata);
1649
1650/*
1651 * Size is a power-of-two in the range 512..PAGE_SIZE,
1652 * and the case we care about most is PAGE_SIZE.
1653 *
1654 * So this *could* possibly be written with those
1655 * constraints in mind (relevant mostly if some
1656 * architecture has a slow bit-scan instruction)
1657 */
1658static inline int block_size_bits(unsigned int blocksize)
1659{
1660	return ilog2(blocksize);
1661}
1662
1663static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1664{
1665	BUG_ON(!PageLocked(page));
1666
1667	if (!page_has_buffers(page))
1668		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1669	return page_buffers(page);
1670}
1671
1672/*
1673 * NOTE! All mapped/uptodate combinations are valid:
1674 *
1675 *	Mapped	Uptodate	Meaning
1676 *
1677 *	No	No		"unknown" - must do get_block()
1678 *	No	Yes		"hole" - zero-filled
1679 *	Yes	No		"allocated" - allocated on disk, not read in
1680 *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1681 *
1682 * "Dirty" is valid only with the last case (mapped+uptodate).
1683 */
1684
1685/*
1686 * While block_write_full_page is writing back the dirty buffers under
1687 * the page lock, whoever dirtied the buffers may decide to clean them
1688 * again at any time.  We handle that by only looking at the buffer
1689 * state inside lock_buffer().
1690 *
1691 * If block_write_full_page() is called for regular writeback
1692 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1693 * locked buffer.   This only can happen if someone has written the buffer
1694 * directly, with submit_bh().  At the address_space level PageWriteback
1695 * prevents this contention from occurring.
1696 *
1697 * If block_write_full_page() is called with wbc->sync_mode ==
1698 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1699 * causes the writes to be flagged as synchronous writes.
1700 */
1701static int __block_write_full_page(struct inode *inode, struct page *page,
1702			get_block_t *get_block, struct writeback_control *wbc,
1703			bh_end_io_t *handler)
1704{
1705	int err;
1706	sector_t block;
1707	sector_t last_block;
1708	struct buffer_head *bh, *head;
1709	unsigned int blocksize, bbits;
1710	int nr_underway = 0;
1711	int write_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
1712
1713	head = create_page_buffers(page, inode,
1714					(1 << BH_Dirty)|(1 << BH_Uptodate));
1715
1716	/*
1717	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1718	 * here, and the (potentially unmapped) buffers may become dirty at
1719	 * any time.  If a buffer becomes dirty here after we've inspected it
1720	 * then we just miss that fact, and the page stays dirty.
1721	 *
1722	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1723	 * handle that here by just cleaning them.
1724	 */
1725
1726	bh = head;
1727	blocksize = bh->b_size;
1728	bbits = block_size_bits(blocksize);
1729
1730	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1731	last_block = (i_size_read(inode) - 1) >> bbits;
1732
1733	/*
1734	 * Get all the dirty buffers mapped to disk addresses and
1735	 * handle any aliases from the underlying blockdev's mapping.
1736	 */
1737	do {
1738		if (block > last_block) {
1739			/*
1740			 * mapped buffers outside i_size will occur, because
1741			 * this page can be outside i_size when there is a
1742			 * truncate in progress.
1743			 */
1744			/*
1745			 * The buffer was zeroed by block_write_full_page()
1746			 */
1747			clear_buffer_dirty(bh);
1748			set_buffer_uptodate(bh);
1749		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1750			   buffer_dirty(bh)) {
1751			WARN_ON(bh->b_size != blocksize);
1752			err = get_block(inode, block, bh, 1);
1753			if (err)
1754				goto recover;
1755			clear_buffer_delay(bh);
1756			if (buffer_new(bh)) {
1757				/* blockdev mappings never come here */
1758				clear_buffer_new(bh);
1759				unmap_underlying_metadata(bh->b_bdev,
1760							bh->b_blocknr);
1761			}
1762		}
1763		bh = bh->b_this_page;
1764		block++;
1765	} while (bh != head);
1766
1767	do {
1768		if (!buffer_mapped(bh))
1769			continue;
1770		/*
1771		 * If it's a fully non-blocking write attempt and we cannot
1772		 * lock the buffer then redirty the page.  Note that this can
1773		 * potentially cause a busy-wait loop from writeback threads
1774		 * and kswapd activity, but those code paths have their own
1775		 * higher-level throttling.
1776		 */
1777		if (wbc->sync_mode != WB_SYNC_NONE) {
1778			lock_buffer(bh);
1779		} else if (!trylock_buffer(bh)) {
1780			redirty_page_for_writepage(wbc, page);
1781			continue;
1782		}
1783		if (test_clear_buffer_dirty(bh)) {
1784			mark_buffer_async_write_endio(bh, handler);
1785		} else {
1786			unlock_buffer(bh);
1787		}
1788	} while ((bh = bh->b_this_page) != head);
1789
1790	/*
1791	 * The page and its buffers are protected by PageWriteback(), so we can
1792	 * drop the bh refcounts early.
1793	 */
1794	BUG_ON(PageWriteback(page));
1795	set_page_writeback(page);
1796
1797	do {
1798		struct buffer_head *next = bh->b_this_page;
1799		if (buffer_async_write(bh)) {
1800			submit_bh_wbc(write_op, bh, 0, wbc);
1801			nr_underway++;
1802		}
1803		bh = next;
1804	} while (bh != head);
1805	unlock_page(page);
1806
1807	err = 0;
1808done:
1809	if (nr_underway == 0) {
1810		/*
1811		 * The page was marked dirty, but the buffers were
1812		 * clean.  Someone wrote them back by hand with
1813		 * ll_rw_block/submit_bh.  A rare case.
1814		 */
1815		end_page_writeback(page);
1816
1817		/*
1818		 * The page and buffer_heads can be released at any time from
1819		 * here on.
1820		 */
1821	}
1822	return err;
1823
1824recover:
1825	/*
1826	 * ENOSPC, or some other error.  We may already have added some
1827	 * blocks to the file, so we need to write these out to avoid
1828	 * exposing stale data.
1829	 * The page is currently locked and not marked for writeback
1830	 */
1831	bh = head;
1832	/* Recovery: lock and submit the mapped buffers */
1833	do {
1834		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1835		    !buffer_delay(bh)) {
1836			lock_buffer(bh);
1837			mark_buffer_async_write_endio(bh, handler);
1838		} else {
1839			/*
1840			 * The buffer may have been set dirty during
1841			 * attachment to a dirty page.
1842			 */
1843			clear_buffer_dirty(bh);
1844		}
1845	} while ((bh = bh->b_this_page) != head);
1846	SetPageError(page);
1847	BUG_ON(PageWriteback(page));
1848	mapping_set_error(page->mapping, err);
1849	set_page_writeback(page);
1850	do {
1851		struct buffer_head *next = bh->b_this_page;
1852		if (buffer_async_write(bh)) {
1853			clear_buffer_dirty(bh);
1854			submit_bh_wbc(write_op, bh, 0, wbc);
1855			nr_underway++;
1856		}
1857		bh = next;
1858	} while (bh != head);
1859	unlock_page(page);
1860	goto done;
1861}
1862
1863/*
1864 * If a page has any new buffers, zero them out here, and mark them uptodate
1865 * and dirty so they'll be written out (in order to prevent uninitialised
1866 * block data from leaking). And clear the new bit.
1867 */
1868void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1869{
1870	unsigned int block_start, block_end;
1871	struct buffer_head *head, *bh;
1872
1873	BUG_ON(!PageLocked(page));
1874	if (!page_has_buffers(page))
1875		return;
1876
1877	bh = head = page_buffers(page);
1878	block_start = 0;
1879	do {
1880		block_end = block_start + bh->b_size;
1881
1882		if (buffer_new(bh)) {
1883			if (block_end > from && block_start < to) {
1884				if (!PageUptodate(page)) {
1885					unsigned start, size;
1886
1887					start = max(from, block_start);
1888					size = min(to, block_end) - start;
1889
1890					zero_user(page, start, size);
1891					set_buffer_uptodate(bh);
1892				}
1893
1894				clear_buffer_new(bh);
1895				mark_buffer_dirty(bh);
1896			}
1897		}
1898
1899		block_start = block_end;
1900		bh = bh->b_this_page;
1901	} while (bh != head);
1902}
1903EXPORT_SYMBOL(page_zero_new_buffers);
1904
1905int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1906		get_block_t *get_block)
1907{
1908	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1909	unsigned to = from + len;
1910	struct inode *inode = page->mapping->host;
1911	unsigned block_start, block_end;
1912	sector_t block;
1913	int err = 0;
1914	unsigned blocksize, bbits;
1915	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1916
1917	BUG_ON(!PageLocked(page));
1918	BUG_ON(from > PAGE_CACHE_SIZE);
1919	BUG_ON(to > PAGE_CACHE_SIZE);
1920	BUG_ON(from > to);
1921
1922	head = create_page_buffers(page, inode, 0);
1923	blocksize = head->b_size;
1924	bbits = block_size_bits(blocksize);
1925
1926	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1927
1928	for(bh = head, block_start = 0; bh != head || !block_start;
1929	    block++, block_start=block_end, bh = bh->b_this_page) {
1930		block_end = block_start + blocksize;
1931		if (block_end <= from || block_start >= to) {
1932			if (PageUptodate(page)) {
1933				if (!buffer_uptodate(bh))
1934					set_buffer_uptodate(bh);
1935			}
1936			continue;
1937		}
1938		if (buffer_new(bh))
1939			clear_buffer_new(bh);
1940		if (!buffer_mapped(bh)) {
1941			WARN_ON(bh->b_size != blocksize);
1942			err = get_block(inode, block, bh, 1);
1943			if (err)
1944				break;
1945			if (buffer_new(bh)) {
1946				unmap_underlying_metadata(bh->b_bdev,
1947							bh->b_blocknr);
1948				if (PageUptodate(page)) {
1949					clear_buffer_new(bh);
1950					set_buffer_uptodate(bh);
1951					mark_buffer_dirty(bh);
1952					continue;
1953				}
1954				if (block_end > to || block_start < from)
1955					zero_user_segments(page,
1956						to, block_end,
1957						block_start, from);
1958				continue;
1959			}
1960		}
1961		if (PageUptodate(page)) {
1962			if (!buffer_uptodate(bh))
1963				set_buffer_uptodate(bh);
1964			continue;
1965		}
1966		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1967		    !buffer_unwritten(bh) &&
1968		     (block_start < from || block_end > to)) {
1969			ll_rw_block(READ, 1, &bh);
1970			*wait_bh++=bh;
1971		}
1972	}
1973	/*
1974	 * If we issued read requests - let them complete.
1975	 */
1976	while(wait_bh > wait) {
1977		wait_on_buffer(*--wait_bh);
1978		if (!buffer_uptodate(*wait_bh))
1979			err = -EIO;
1980	}
1981	if (unlikely(err))
1982		page_zero_new_buffers(page, from, to);
1983	return err;
1984}
1985EXPORT_SYMBOL(__block_write_begin);
1986
1987static int __block_commit_write(struct inode *inode, struct page *page,
1988		unsigned from, unsigned to)
1989{
1990	unsigned block_start, block_end;
1991	int partial = 0;
1992	unsigned blocksize;
1993	struct buffer_head *bh, *head;
1994
1995	bh = head = page_buffers(page);
1996	blocksize = bh->b_size;
1997
1998	block_start = 0;
1999	do {
2000		block_end = block_start + blocksize;
2001		if (block_end <= from || block_start >= to) {
2002			if (!buffer_uptodate(bh))
2003				partial = 1;
2004		} else {
2005			set_buffer_uptodate(bh);
2006			mark_buffer_dirty(bh);
2007		}
2008		clear_buffer_new(bh);
2009
2010		block_start = block_end;
2011		bh = bh->b_this_page;
2012	} while (bh != head);
2013
2014	/*
2015	 * If this is a partial write which happened to make all buffers
2016	 * uptodate then we can optimize away a bogus readpage() for
2017	 * the next read(). Here we 'discover' whether the page went
2018	 * uptodate as a result of this (potentially partial) write.
2019	 */
2020	if (!partial)
2021		SetPageUptodate(page);
2022	return 0;
2023}
2024
2025/*
2026 * block_write_begin takes care of the basic task of block allocation and
2027 * bringing partial write blocks uptodate first.
2028 *
2029 * The filesystem needs to handle block truncation upon failure.
2030 */
2031int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2032		unsigned flags, struct page **pagep, get_block_t *get_block)
2033{
2034	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2035	struct page *page;
2036	int status;
2037
2038	page = grab_cache_page_write_begin(mapping, index, flags);
2039	if (!page)
2040		return -ENOMEM;
2041
2042	status = __block_write_begin(page, pos, len, get_block);
2043	if (unlikely(status)) {
2044		unlock_page(page);
2045		page_cache_release(page);
2046		page = NULL;
2047	}
2048
2049	*pagep = page;
2050	return status;
2051}
2052EXPORT_SYMBOL(block_write_begin);
2053
2054int block_write_end(struct file *file, struct address_space *mapping,
2055			loff_t pos, unsigned len, unsigned copied,
2056			struct page *page, void *fsdata)
2057{
2058	struct inode *inode = mapping->host;
2059	unsigned start;
2060
2061	start = pos & (PAGE_CACHE_SIZE - 1);
2062
2063	if (unlikely(copied < len)) {
2064		/*
2065		 * The buffers that were written will now be uptodate, so we
2066		 * don't have to worry about a readpage reading them and
2067		 * overwriting a partial write. However if we have encountered
2068		 * a short write and only partially written into a buffer, it
2069		 * will not be marked uptodate, so a readpage might come in and
2070		 * destroy our partial write.
2071		 *
2072		 * Do the simplest thing, and just treat any short write to a
2073		 * non uptodate page as a zero-length write, and force the
2074		 * caller to redo the whole thing.
2075		 */
2076		if (!PageUptodate(page))
2077			copied = 0;
2078
2079		page_zero_new_buffers(page, start+copied, start+len);
2080	}
2081	flush_dcache_page(page);
2082
2083	/* This could be a short (even 0-length) commit */
2084	__block_commit_write(inode, page, start, start+copied);
2085
2086	return copied;
2087}
2088EXPORT_SYMBOL(block_write_end);
2089
2090int generic_write_end(struct file *file, struct address_space *mapping,
2091			loff_t pos, unsigned len, unsigned copied,
2092			struct page *page, void *fsdata)
2093{
2094	struct inode *inode = mapping->host;
2095	loff_t old_size = inode->i_size;
2096	int i_size_changed = 0;
2097
2098	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2099
2100	/*
2101	 * No need to use i_size_read() here, the i_size
2102	 * cannot change under us because we hold i_mutex.
2103	 *
2104	 * But it's important to update i_size while still holding page lock:
2105	 * page writeout could otherwise come in and zero beyond i_size.
2106	 */
2107	if (pos+copied > inode->i_size) {
2108		i_size_write(inode, pos+copied);
2109		i_size_changed = 1;
2110	}
2111
2112	unlock_page(page);
2113	page_cache_release(page);
2114
2115	if (old_size < pos)
2116		pagecache_isize_extended(inode, old_size, pos);
2117	/*
2118	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2119	 * makes the holding time of page lock longer. Second, it forces lock
2120	 * ordering of page lock and transaction start for journaling
2121	 * filesystems.
2122	 */
2123	if (i_size_changed)
2124		mark_inode_dirty(inode);
2125
2126	return copied;
2127}
2128EXPORT_SYMBOL(generic_write_end);
2129
2130/*
2131 * block_is_partially_uptodate checks whether buffers within a page are
2132 * uptodate or not.
2133 *
2134 * Returns true if all buffers which correspond to a file portion
2135 * we want to read are uptodate.
2136 */
2137int block_is_partially_uptodate(struct page *page, unsigned long from,
2138					unsigned long count)
2139{
2140	unsigned block_start, block_end, blocksize;
2141	unsigned to;
2142	struct buffer_head *bh, *head;
2143	int ret = 1;
2144
2145	if (!page_has_buffers(page))
2146		return 0;
2147
2148	head = page_buffers(page);
2149	blocksize = head->b_size;
2150	to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2151	to = from + to;
2152	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2153		return 0;
2154
2155	bh = head;
2156	block_start = 0;
2157	do {
2158		block_end = block_start + blocksize;
2159		if (block_end > from && block_start < to) {
2160			if (!buffer_uptodate(bh)) {
2161				ret = 0;
2162				break;
2163			}
2164			if (block_end >= to)
2165				break;
2166		}
2167		block_start = block_end;
2168		bh = bh->b_this_page;
2169	} while (bh != head);
2170
2171	return ret;
2172}
2173EXPORT_SYMBOL(block_is_partially_uptodate);
2174
2175/*
2176 * Generic "read page" function for block devices that have the normal
2177 * get_block functionality. This is most of the block device filesystems.
2178 * Reads the page asynchronously --- the unlock_buffer() and
2179 * set/clear_buffer_uptodate() functions propagate buffer state into the
2180 * page struct once IO has completed.
2181 */
2182int block_read_full_page(struct page *page, get_block_t *get_block)
2183{
2184	struct inode *inode = page->mapping->host;
2185	sector_t iblock, lblock;
2186	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2187	unsigned int blocksize, bbits;
2188	int nr, i;
2189	int fully_mapped = 1;
2190
2191	head = create_page_buffers(page, inode, 0);
2192	blocksize = head->b_size;
2193	bbits = block_size_bits(blocksize);
2194
2195	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2196	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2197	bh = head;
2198	nr = 0;
2199	i = 0;
2200
2201	do {
2202		if (buffer_uptodate(bh))
2203			continue;
2204
2205		if (!buffer_mapped(bh)) {
2206			int err = 0;
2207
2208			fully_mapped = 0;
2209			if (iblock < lblock) {
2210				WARN_ON(bh->b_size != blocksize);
2211				err = get_block(inode, iblock, bh, 0);
2212				if (err)
2213					SetPageError(page);
2214			}
2215			if (!buffer_mapped(bh)) {
2216				zero_user(page, i * blocksize, blocksize);
2217				if (!err)
2218					set_buffer_uptodate(bh);
2219				continue;
2220			}
2221			/*
2222			 * get_block() might have updated the buffer
2223			 * synchronously
2224			 */
2225			if (buffer_uptodate(bh))
2226				continue;
2227		}
2228		arr[nr++] = bh;
2229	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2230
2231	if (fully_mapped)
2232		SetPageMappedToDisk(page);
2233
2234	if (!nr) {
2235		/*
2236		 * All buffers are uptodate - we can set the page uptodate
2237		 * as well. But not if get_block() returned an error.
2238		 */
2239		if (!PageError(page))
2240			SetPageUptodate(page);
2241		unlock_page(page);
2242		return 0;
2243	}
2244
2245	/* Stage two: lock the buffers */
2246	for (i = 0; i < nr; i++) {
2247		bh = arr[i];
2248		lock_buffer(bh);
2249		mark_buffer_async_read(bh);
2250	}
2251
2252	/*
2253	 * Stage 3: start the IO.  Check for uptodateness
2254	 * inside the buffer lock in case another process reading
2255	 * the underlying blockdev brought it uptodate (the sct fix).
2256	 */
2257	for (i = 0; i < nr; i++) {
2258		bh = arr[i];
2259		if (buffer_uptodate(bh))
2260			end_buffer_async_read(bh, 1);
2261		else
2262			submit_bh(READ, bh);
2263	}
2264	return 0;
2265}
2266EXPORT_SYMBOL(block_read_full_page);
2267
2268/* utility function for filesystems that need to do work on expanding
2269 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2270 * deal with the hole.
2271 */
2272int generic_cont_expand_simple(struct inode *inode, loff_t size)
2273{
2274	struct address_space *mapping = inode->i_mapping;
2275	struct page *page;
2276	void *fsdata;
2277	int err;
2278
2279	err = inode_newsize_ok(inode, size);
2280	if (err)
2281		goto out;
2282
2283	err = pagecache_write_begin(NULL, mapping, size, 0,
2284				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2285				&page, &fsdata);
2286	if (err)
2287		goto out;
2288
2289	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2290	BUG_ON(err > 0);
2291
2292out:
2293	return err;
2294}
2295EXPORT_SYMBOL(generic_cont_expand_simple);
2296
2297static int cont_expand_zero(struct file *file, struct address_space *mapping,
2298			    loff_t pos, loff_t *bytes)
2299{
2300	struct inode *inode = mapping->host;
2301	unsigned blocksize = 1 << inode->i_blkbits;
2302	struct page *page;
2303	void *fsdata;
2304	pgoff_t index, curidx;
2305	loff_t curpos;
2306	unsigned zerofrom, offset, len;
2307	int err = 0;
2308
2309	index = pos >> PAGE_CACHE_SHIFT;
2310	offset = pos & ~PAGE_CACHE_MASK;
2311
2312	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2313		zerofrom = curpos & ~PAGE_CACHE_MASK;
2314		if (zerofrom & (blocksize-1)) {
2315			*bytes |= (blocksize-1);
2316			(*bytes)++;
2317		}
2318		len = PAGE_CACHE_SIZE - zerofrom;
2319
2320		err = pagecache_write_begin(file, mapping, curpos, len,
2321						AOP_FLAG_UNINTERRUPTIBLE,
2322						&page, &fsdata);
2323		if (err)
2324			goto out;
2325		zero_user(page, zerofrom, len);
2326		err = pagecache_write_end(file, mapping, curpos, len, len,
2327						page, fsdata);
2328		if (err < 0)
2329			goto out;
2330		BUG_ON(err != len);
2331		err = 0;
2332
2333		balance_dirty_pages_ratelimited(mapping);
2334
2335		if (unlikely(fatal_signal_pending(current))) {
2336			err = -EINTR;
2337			goto out;
2338		}
2339	}
2340
2341	/* page covers the boundary, find the boundary offset */
2342	if (index == curidx) {
2343		zerofrom = curpos & ~PAGE_CACHE_MASK;
2344		/* if we will expand the thing last block will be filled */
2345		if (offset <= zerofrom) {
2346			goto out;
2347		}
2348		if (zerofrom & (blocksize-1)) {
2349			*bytes |= (blocksize-1);
2350			(*bytes)++;
2351		}
2352		len = offset - zerofrom;
2353
2354		err = pagecache_write_begin(file, mapping, curpos, len,
2355						AOP_FLAG_UNINTERRUPTIBLE,
2356						&page, &fsdata);
2357		if (err)
2358			goto out;
2359		zero_user(page, zerofrom, len);
2360		err = pagecache_write_end(file, mapping, curpos, len, len,
2361						page, fsdata);
2362		if (err < 0)
2363			goto out;
2364		BUG_ON(err != len);
2365		err = 0;
2366	}
2367out:
2368	return err;
2369}
2370
2371/*
2372 * For moronic filesystems that do not allow holes in file.
2373 * We may have to extend the file.
2374 */
2375int cont_write_begin(struct file *file, struct address_space *mapping,
2376			loff_t pos, unsigned len, unsigned flags,
2377			struct page **pagep, void **fsdata,
2378			get_block_t *get_block, loff_t *bytes)
2379{
2380	struct inode *inode = mapping->host;
2381	unsigned blocksize = 1 << inode->i_blkbits;
2382	unsigned zerofrom;
2383	int err;
2384
2385	err = cont_expand_zero(file, mapping, pos, bytes);
2386	if (err)
2387		return err;
2388
2389	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2390	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2391		*bytes |= (blocksize-1);
2392		(*bytes)++;
2393	}
2394
2395	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2396}
2397EXPORT_SYMBOL(cont_write_begin);
2398
2399int block_commit_write(struct page *page, unsigned from, unsigned to)
2400{
2401	struct inode *inode = page->mapping->host;
2402	__block_commit_write(inode,page,from,to);
2403	return 0;
2404}
2405EXPORT_SYMBOL(block_commit_write);
2406
2407/*
2408 * block_page_mkwrite() is not allowed to change the file size as it gets
2409 * called from a page fault handler when a page is first dirtied. Hence we must
2410 * be careful to check for EOF conditions here. We set the page up correctly
2411 * for a written page which means we get ENOSPC checking when writing into
2412 * holes and correct delalloc and unwritten extent mapping on filesystems that
2413 * support these features.
2414 *
2415 * We are not allowed to take the i_mutex here so we have to play games to
2416 * protect against truncate races as the page could now be beyond EOF.  Because
2417 * truncate writes the inode size before removing pages, once we have the
2418 * page lock we can determine safely if the page is beyond EOF. If it is not
2419 * beyond EOF, then the page is guaranteed safe against truncation until we
2420 * unlock the page.
2421 *
2422 * Direct callers of this function should protect against filesystem freezing
2423 * using sb_start_pagefault() - sb_end_pagefault() functions.
2424 */
2425int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2426			 get_block_t get_block)
2427{
2428	struct page *page = vmf->page;
2429	struct inode *inode = file_inode(vma->vm_file);
2430	unsigned long end;
2431	loff_t size;
2432	int ret;
2433
2434	lock_page(page);
2435	size = i_size_read(inode);
2436	if ((page->mapping != inode->i_mapping) ||
2437	    (page_offset(page) > size)) {
2438		/* We overload EFAULT to mean page got truncated */
2439		ret = -EFAULT;
2440		goto out_unlock;
2441	}
2442
2443	/* page is wholly or partially inside EOF */
2444	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2445		end = size & ~PAGE_CACHE_MASK;
2446	else
2447		end = PAGE_CACHE_SIZE;
2448
2449	ret = __block_write_begin(page, 0, end, get_block);
2450	if (!ret)
2451		ret = block_commit_write(page, 0, end);
2452
2453	if (unlikely(ret < 0))
2454		goto out_unlock;
2455	set_page_dirty(page);
2456	wait_for_stable_page(page);
2457	return 0;
2458out_unlock:
2459	unlock_page(page);
2460	return ret;
2461}
2462EXPORT_SYMBOL(block_page_mkwrite);
2463
2464/*
2465 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2466 * immediately, while under the page lock.  So it needs a special end_io
2467 * handler which does not touch the bh after unlocking it.
2468 */
2469static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2470{
2471	__end_buffer_read_notouch(bh, uptodate);
2472}
2473
2474/*
2475 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2476 * the page (converting it to circular linked list and taking care of page
2477 * dirty races).
2478 */
2479static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2480{
2481	struct buffer_head *bh;
2482
2483	BUG_ON(!PageLocked(page));
2484
2485	spin_lock(&page->mapping->private_lock);
2486	bh = head;
2487	do {
2488		if (PageDirty(page))
2489			set_buffer_dirty(bh);
2490		if (!bh->b_this_page)
2491			bh->b_this_page = head;
2492		bh = bh->b_this_page;
2493	} while (bh != head);
2494	attach_page_buffers(page, head);
2495	spin_unlock(&page->mapping->private_lock);
2496}
2497
2498/*
2499 * On entry, the page is fully not uptodate.
2500 * On exit the page is fully uptodate in the areas outside (from,to)
2501 * The filesystem needs to handle block truncation upon failure.
2502 */
2503int nobh_write_begin(struct address_space *mapping,
2504			loff_t pos, unsigned len, unsigned flags,
2505			struct page **pagep, void **fsdata,
2506			get_block_t *get_block)
2507{
2508	struct inode *inode = mapping->host;
2509	const unsigned blkbits = inode->i_blkbits;
2510	const unsigned blocksize = 1 << blkbits;
2511	struct buffer_head *head, *bh;
2512	struct page *page;
2513	pgoff_t index;
2514	unsigned from, to;
2515	unsigned block_in_page;
2516	unsigned block_start, block_end;
2517	sector_t block_in_file;
2518	int nr_reads = 0;
2519	int ret = 0;
2520	int is_mapped_to_disk = 1;
2521
2522	index = pos >> PAGE_CACHE_SHIFT;
2523	from = pos & (PAGE_CACHE_SIZE - 1);
2524	to = from + len;
2525
2526	page = grab_cache_page_write_begin(mapping, index, flags);
2527	if (!page)
2528		return -ENOMEM;
2529	*pagep = page;
2530	*fsdata = NULL;
2531
2532	if (page_has_buffers(page)) {
2533		ret = __block_write_begin(page, pos, len, get_block);
2534		if (unlikely(ret))
2535			goto out_release;
2536		return ret;
2537	}
2538
2539	if (PageMappedToDisk(page))
2540		return 0;
2541
2542	/*
2543	 * Allocate buffers so that we can keep track of state, and potentially
2544	 * attach them to the page if an error occurs. In the common case of
2545	 * no error, they will just be freed again without ever being attached
2546	 * to the page (which is all OK, because we're under the page lock).
2547	 *
2548	 * Be careful: the buffer linked list is a NULL terminated one, rather
2549	 * than the circular one we're used to.
2550	 */
2551	head = alloc_page_buffers(page, blocksize, 0);
2552	if (!head) {
2553		ret = -ENOMEM;
2554		goto out_release;
2555	}
2556
2557	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2558
2559	/*
2560	 * We loop across all blocks in the page, whether or not they are
2561	 * part of the affected region.  This is so we can discover if the
2562	 * page is fully mapped-to-disk.
2563	 */
2564	for (block_start = 0, block_in_page = 0, bh = head;
2565		  block_start < PAGE_CACHE_SIZE;
2566		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2567		int create;
2568
2569		block_end = block_start + blocksize;
2570		bh->b_state = 0;
2571		create = 1;
2572		if (block_start >= to)
2573			create = 0;
2574		ret = get_block(inode, block_in_file + block_in_page,
2575					bh, create);
2576		if (ret)
2577			goto failed;
2578		if (!buffer_mapped(bh))
2579			is_mapped_to_disk = 0;
2580		if (buffer_new(bh))
2581			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2582		if (PageUptodate(page)) {
2583			set_buffer_uptodate(bh);
2584			continue;
2585		}
2586		if (buffer_new(bh) || !buffer_mapped(bh)) {
2587			zero_user_segments(page, block_start, from,
2588							to, block_end);
2589			continue;
2590		}
2591		if (buffer_uptodate(bh))
2592			continue;	/* reiserfs does this */
2593		if (block_start < from || block_end > to) {
2594			lock_buffer(bh);
2595			bh->b_end_io = end_buffer_read_nobh;
2596			submit_bh(READ, bh);
2597			nr_reads++;
2598		}
2599	}
2600
2601	if (nr_reads) {
2602		/*
2603		 * The page is locked, so these buffers are protected from
2604		 * any VM or truncate activity.  Hence we don't need to care
2605		 * for the buffer_head refcounts.
2606		 */
2607		for (bh = head; bh; bh = bh->b_this_page) {
2608			wait_on_buffer(bh);
2609			if (!buffer_uptodate(bh))
2610				ret = -EIO;
2611		}
2612		if (ret)
2613			goto failed;
2614	}
2615
2616	if (is_mapped_to_disk)
2617		SetPageMappedToDisk(page);
2618
2619	*fsdata = head; /* to be released by nobh_write_end */
2620
2621	return 0;
2622
2623failed:
2624	BUG_ON(!ret);
2625	/*
2626	 * Error recovery is a bit difficult. We need to zero out blocks that
2627	 * were newly allocated, and dirty them to ensure they get written out.
2628	 * Buffers need to be attached to the page at this point, otherwise
2629	 * the handling of potential IO errors during writeout would be hard
2630	 * (could try doing synchronous writeout, but what if that fails too?)
2631	 */
2632	attach_nobh_buffers(page, head);
2633	page_zero_new_buffers(page, from, to);
2634
2635out_release:
2636	unlock_page(page);
2637	page_cache_release(page);
2638	*pagep = NULL;
2639
2640	return ret;
2641}
2642EXPORT_SYMBOL(nobh_write_begin);
2643
2644int nobh_write_end(struct file *file, struct address_space *mapping,
2645			loff_t pos, unsigned len, unsigned copied,
2646			struct page *page, void *fsdata)
2647{
2648	struct inode *inode = page->mapping->host;
2649	struct buffer_head *head = fsdata;
2650	struct buffer_head *bh;
2651	BUG_ON(fsdata != NULL && page_has_buffers(page));
2652
2653	if (unlikely(copied < len) && head)
2654		attach_nobh_buffers(page, head);
2655	if (page_has_buffers(page))
2656		return generic_write_end(file, mapping, pos, len,
2657					copied, page, fsdata);
2658
2659	SetPageUptodate(page);
2660	set_page_dirty(page);
2661	if (pos+copied > inode->i_size) {
2662		i_size_write(inode, pos+copied);
2663		mark_inode_dirty(inode);
2664	}
2665
2666	unlock_page(page);
2667	page_cache_release(page);
2668
2669	while (head) {
2670		bh = head;
2671		head = head->b_this_page;
2672		free_buffer_head(bh);
2673	}
2674
2675	return copied;
2676}
2677EXPORT_SYMBOL(nobh_write_end);
2678
2679/*
2680 * nobh_writepage() - based on block_full_write_page() except
2681 * that it tries to operate without attaching bufferheads to
2682 * the page.
2683 */
2684int nobh_writepage(struct page *page, get_block_t *get_block,
2685			struct writeback_control *wbc)
2686{
2687	struct inode * const inode = page->mapping->host;
2688	loff_t i_size = i_size_read(inode);
2689	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2690	unsigned offset;
2691	int ret;
2692
2693	/* Is the page fully inside i_size? */
2694	if (page->index < end_index)
2695		goto out;
2696
2697	/* Is the page fully outside i_size? (truncate in progress) */
2698	offset = i_size & (PAGE_CACHE_SIZE-1);
2699	if (page->index >= end_index+1 || !offset) {
2700		/*
2701		 * The page may have dirty, unmapped buffers.  For example,
2702		 * they may have been added in ext3_writepage().  Make them
2703		 * freeable here, so the page does not leak.
2704		 */
2705#if 0
2706		/* Not really sure about this  - do we need this ? */
2707		if (page->mapping->a_ops->invalidatepage)
2708			page->mapping->a_ops->invalidatepage(page, offset);
2709#endif
2710		unlock_page(page);
2711		return 0; /* don't care */
2712	}
2713
2714	/*
2715	 * The page straddles i_size.  It must be zeroed out on each and every
2716	 * writepage invocation because it may be mmapped.  "A file is mapped
2717	 * in multiples of the page size.  For a file that is not a multiple of
2718	 * the  page size, the remaining memory is zeroed when mapped, and
2719	 * writes to that region are not written out to the file."
2720	 */
2721	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2722out:
2723	ret = mpage_writepage(page, get_block, wbc);
2724	if (ret == -EAGAIN)
2725		ret = __block_write_full_page(inode, page, get_block, wbc,
2726					      end_buffer_async_write);
2727	return ret;
2728}
2729EXPORT_SYMBOL(nobh_writepage);
2730
2731int nobh_truncate_page(struct address_space *mapping,
2732			loff_t from, get_block_t *get_block)
2733{
2734	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2735	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2736	unsigned blocksize;
2737	sector_t iblock;
2738	unsigned length, pos;
2739	struct inode *inode = mapping->host;
2740	struct page *page;
2741	struct buffer_head map_bh;
2742	int err;
2743
2744	blocksize = 1 << inode->i_blkbits;
2745	length = offset & (blocksize - 1);
2746
2747	/* Block boundary? Nothing to do */
2748	if (!length)
2749		return 0;
2750
2751	length = blocksize - length;
2752	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2753
2754	page = grab_cache_page(mapping, index);
2755	err = -ENOMEM;
2756	if (!page)
2757		goto out;
2758
2759	if (page_has_buffers(page)) {
2760has_buffers:
2761		unlock_page(page);
2762		page_cache_release(page);
2763		return block_truncate_page(mapping, from, get_block);
2764	}
2765
2766	/* Find the buffer that contains "offset" */
2767	pos = blocksize;
2768	while (offset >= pos) {
2769		iblock++;
2770		pos += blocksize;
2771	}
2772
2773	map_bh.b_size = blocksize;
2774	map_bh.b_state = 0;
2775	err = get_block(inode, iblock, &map_bh, 0);
2776	if (err)
2777		goto unlock;
2778	/* unmapped? It's a hole - nothing to do */
2779	if (!buffer_mapped(&map_bh))
2780		goto unlock;
2781
2782	/* Ok, it's mapped. Make sure it's up-to-date */
2783	if (!PageUptodate(page)) {
2784		err = mapping->a_ops->readpage(NULL, page);
2785		if (err) {
2786			page_cache_release(page);
2787			goto out;
2788		}
2789		lock_page(page);
2790		if (!PageUptodate(page)) {
2791			err = -EIO;
2792			goto unlock;
2793		}
2794		if (page_has_buffers(page))
2795			goto has_buffers;
2796	}
2797	zero_user(page, offset, length);
2798	set_page_dirty(page);
2799	err = 0;
2800
2801unlock:
2802	unlock_page(page);
2803	page_cache_release(page);
2804out:
2805	return err;
2806}
2807EXPORT_SYMBOL(nobh_truncate_page);
2808
2809int block_truncate_page(struct address_space *mapping,
2810			loff_t from, get_block_t *get_block)
2811{
2812	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2813	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2814	unsigned blocksize;
2815	sector_t iblock;
2816	unsigned length, pos;
2817	struct inode *inode = mapping->host;
2818	struct page *page;
2819	struct buffer_head *bh;
2820	int err;
2821
2822	blocksize = 1 << inode->i_blkbits;
2823	length = offset & (blocksize - 1);
2824
2825	/* Block boundary? Nothing to do */
2826	if (!length)
2827		return 0;
2828
2829	length = blocksize - length;
2830	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2831
2832	page = grab_cache_page(mapping, index);
2833	err = -ENOMEM;
2834	if (!page)
2835		goto out;
2836
2837	if (!page_has_buffers(page))
2838		create_empty_buffers(page, blocksize, 0);
2839
2840	/* Find the buffer that contains "offset" */
2841	bh = page_buffers(page);
2842	pos = blocksize;
2843	while (offset >= pos) {
2844		bh = bh->b_this_page;
2845		iblock++;
2846		pos += blocksize;
2847	}
2848
2849	err = 0;
2850	if (!buffer_mapped(bh)) {
2851		WARN_ON(bh->b_size != blocksize);
2852		err = get_block(inode, iblock, bh, 0);
2853		if (err)
2854			goto unlock;
2855		/* unmapped? It's a hole - nothing to do */
2856		if (!buffer_mapped(bh))
2857			goto unlock;
2858	}
2859
2860	/* Ok, it's mapped. Make sure it's up-to-date */
2861	if (PageUptodate(page))
2862		set_buffer_uptodate(bh);
2863
2864	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2865		err = -EIO;
2866		ll_rw_block(READ, 1, &bh);
2867		wait_on_buffer(bh);
2868		/* Uhhuh. Read error. Complain and punt. */
2869		if (!buffer_uptodate(bh))
2870			goto unlock;
2871	}
2872
2873	zero_user(page, offset, length);
2874	mark_buffer_dirty(bh);
2875	err = 0;
2876
2877unlock:
2878	unlock_page(page);
2879	page_cache_release(page);
2880out:
2881	return err;
2882}
2883EXPORT_SYMBOL(block_truncate_page);
2884
2885/*
2886 * The generic ->writepage function for buffer-backed address_spaces
2887 */
2888int block_write_full_page(struct page *page, get_block_t *get_block,
2889			struct writeback_control *wbc)
2890{
2891	struct inode * const inode = page->mapping->host;
2892	loff_t i_size = i_size_read(inode);
2893	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2894	unsigned offset;
2895
2896	/* Is the page fully inside i_size? */
2897	if (page->index < end_index)
2898		return __block_write_full_page(inode, page, get_block, wbc,
2899					       end_buffer_async_write);
2900
2901	/* Is the page fully outside i_size? (truncate in progress) */
2902	offset = i_size & (PAGE_CACHE_SIZE-1);
2903	if (page->index >= end_index+1 || !offset) {
2904		/*
2905		 * The page may have dirty, unmapped buffers.  For example,
2906		 * they may have been added in ext3_writepage().  Make them
2907		 * freeable here, so the page does not leak.
2908		 */
2909		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2910		unlock_page(page);
2911		return 0; /* don't care */
2912	}
2913
2914	/*
2915	 * The page straddles i_size.  It must be zeroed out on each and every
2916	 * writepage invocation because it may be mmapped.  "A file is mapped
2917	 * in multiples of the page size.  For a file that is not a multiple of
2918	 * the  page size, the remaining memory is zeroed when mapped, and
2919	 * writes to that region are not written out to the file."
2920	 */
2921	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2922	return __block_write_full_page(inode, page, get_block, wbc,
2923							end_buffer_async_write);
2924}
2925EXPORT_SYMBOL(block_write_full_page);
2926
2927sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2928			    get_block_t *get_block)
2929{
2930	struct buffer_head tmp;
2931	struct inode *inode = mapping->host;
2932	tmp.b_state = 0;
2933	tmp.b_blocknr = 0;
2934	tmp.b_size = 1 << inode->i_blkbits;
2935	get_block(inode, block, &tmp, 0);
2936	return tmp.b_blocknr;
2937}
2938EXPORT_SYMBOL(generic_block_bmap);
2939
2940static void end_bio_bh_io_sync(struct bio *bio)
2941{
2942	struct buffer_head *bh = bio->bi_private;
2943
2944	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2945		set_bit(BH_Quiet, &bh->b_state);
2946
2947	bh->b_end_io(bh, !bio->bi_error);
2948	bio_put(bio);
2949}
2950
2951/*
2952 * This allows us to do IO even on the odd last sectors
2953 * of a device, even if the block size is some multiple
2954 * of the physical sector size.
2955 *
2956 * We'll just truncate the bio to the size of the device,
2957 * and clear the end of the buffer head manually.
2958 *
2959 * Truly out-of-range accesses will turn into actual IO
2960 * errors, this only handles the "we need to be able to
2961 * do IO at the final sector" case.
2962 */
2963void guard_bio_eod(int rw, struct bio *bio)
2964{
2965	sector_t maxsector;
2966	struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
2967	unsigned truncated_bytes;
2968
2969	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2970	if (!maxsector)
2971		return;
2972
2973	/*
2974	 * If the *whole* IO is past the end of the device,
2975	 * let it through, and the IO layer will turn it into
2976	 * an EIO.
2977	 */
2978	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2979		return;
2980
2981	maxsector -= bio->bi_iter.bi_sector;
2982	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
2983		return;
2984
2985	/* Uhhuh. We've got a bio that straddles the device size! */
2986	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
2987
2988	/* Truncate the bio.. */
2989	bio->bi_iter.bi_size -= truncated_bytes;
2990	bvec->bv_len -= truncated_bytes;
2991
2992	/* ..and clear the end of the buffer for reads */
2993	if ((rw & RW_MASK) == READ) {
2994		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
2995				truncated_bytes);
2996	}
2997}
2998
2999static int submit_bh_wbc(int rw, struct buffer_head *bh,
3000			 unsigned long bio_flags, struct writeback_control *wbc)
3001{
3002	struct bio *bio;
3003
3004	BUG_ON(!buffer_locked(bh));
3005	BUG_ON(!buffer_mapped(bh));
3006	BUG_ON(!bh->b_end_io);
3007	BUG_ON(buffer_delay(bh));
3008	BUG_ON(buffer_unwritten(bh));
3009
3010	/*
3011	 * Only clear out a write error when rewriting
3012	 */
3013	if (test_set_buffer_req(bh) && (rw & WRITE))
3014		clear_buffer_write_io_error(bh);
3015
3016	/*
3017	 * from here on down, it's all bio -- do the initial mapping,
3018	 * submit_bio -> generic_make_request may further map this bio around
3019	 */
3020	bio = bio_alloc(GFP_NOIO, 1);
3021
3022	if (wbc) {
3023		wbc_init_bio(wbc, bio);
3024		wbc_account_io(wbc, bh->b_page, bh->b_size);
3025	}
3026
3027	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3028	bio->bi_bdev = bh->b_bdev;
3029
3030	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3031	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3032
3033	bio->bi_end_io = end_bio_bh_io_sync;
3034	bio->bi_private = bh;
3035	bio->bi_flags |= bio_flags;
3036
3037	/* Take care of bh's that straddle the end of the device */
3038	guard_bio_eod(rw, bio);
3039
3040	if (buffer_meta(bh))
3041		rw |= REQ_META;
3042	if (buffer_prio(bh))
3043		rw |= REQ_PRIO;
3044
3045	submit_bio(rw, bio);
3046	return 0;
3047}
3048
3049int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3050{
3051	return submit_bh_wbc(rw, bh, bio_flags, NULL);
3052}
3053EXPORT_SYMBOL_GPL(_submit_bh);
3054
3055int submit_bh(int rw, struct buffer_head *bh)
3056{
3057	return submit_bh_wbc(rw, bh, 0, NULL);
3058}
3059EXPORT_SYMBOL(submit_bh);
3060
3061/**
3062 * ll_rw_block: low-level access to block devices (DEPRECATED)
3063 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3064 * @nr: number of &struct buffer_heads in the array
3065 * @bhs: array of pointers to &struct buffer_head
3066 *
3067 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3068 * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3069 * %READA option is described in the documentation for generic_make_request()
3070 * which ll_rw_block() calls.
3071 *
3072 * This function drops any buffer that it cannot get a lock on (with the
3073 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3074 * request, and any buffer that appears to be up-to-date when doing read
3075 * request.  Further it marks as clean buffers that are processed for
3076 * writing (the buffer cache won't assume that they are actually clean
3077 * until the buffer gets unlocked).
3078 *
3079 * ll_rw_block sets b_end_io to simple completion handler that marks
3080 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3081 * any waiters.
3082 *
3083 * All of the buffers must be for the same device, and must also be a
3084 * multiple of the current approved size for the device.
3085 */
3086void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3087{
3088	int i;
3089
3090	for (i = 0; i < nr; i++) {
3091		struct buffer_head *bh = bhs[i];
3092
3093		if (!trylock_buffer(bh))
3094			continue;
3095		if (rw == WRITE) {
3096			if (test_clear_buffer_dirty(bh)) {
3097				bh->b_end_io = end_buffer_write_sync;
3098				get_bh(bh);
3099				submit_bh(WRITE, bh);
3100				continue;
3101			}
3102		} else {
3103			if (!buffer_uptodate(bh)) {
3104				bh->b_end_io = end_buffer_read_sync;
3105				get_bh(bh);
3106				submit_bh(rw, bh);
3107				continue;
3108			}
3109		}
3110		unlock_buffer(bh);
3111	}
3112}
3113EXPORT_SYMBOL(ll_rw_block);
3114
3115void write_dirty_buffer(struct buffer_head *bh, int rw)
3116{
3117	lock_buffer(bh);
3118	if (!test_clear_buffer_dirty(bh)) {
3119		unlock_buffer(bh);
3120		return;
3121	}
3122	bh->b_end_io = end_buffer_write_sync;
3123	get_bh(bh);
3124	submit_bh(rw, bh);
3125}
3126EXPORT_SYMBOL(write_dirty_buffer);
3127
3128/*
3129 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3130 * and then start new I/O and then wait upon it.  The caller must have a ref on
3131 * the buffer_head.
3132 */
3133int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3134{
3135	int ret = 0;
3136
3137	WARN_ON(atomic_read(&bh->b_count) < 1);
3138	lock_buffer(bh);
3139	if (test_clear_buffer_dirty(bh)) {
3140		get_bh(bh);
3141		bh->b_end_io = end_buffer_write_sync;
3142		ret = submit_bh(rw, bh);
3143		wait_on_buffer(bh);
3144		if (!ret && !buffer_uptodate(bh))
3145			ret = -EIO;
3146	} else {
3147		unlock_buffer(bh);
3148	}
3149	return ret;
3150}
3151EXPORT_SYMBOL(__sync_dirty_buffer);
3152
3153int sync_dirty_buffer(struct buffer_head *bh)
3154{
3155	return __sync_dirty_buffer(bh, WRITE_SYNC);
3156}
3157EXPORT_SYMBOL(sync_dirty_buffer);
3158
3159/*
3160 * try_to_free_buffers() checks if all the buffers on this particular page
3161 * are unused, and releases them if so.
3162 *
3163 * Exclusion against try_to_free_buffers may be obtained by either
3164 * locking the page or by holding its mapping's private_lock.
3165 *
3166 * If the page is dirty but all the buffers are clean then we need to
3167 * be sure to mark the page clean as well.  This is because the page
3168 * may be against a block device, and a later reattachment of buffers
3169 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3170 * filesystem data on the same device.
3171 *
3172 * The same applies to regular filesystem pages: if all the buffers are
3173 * clean then we set the page clean and proceed.  To do that, we require
3174 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3175 * private_lock.
3176 *
3177 * try_to_free_buffers() is non-blocking.
3178 */
3179static inline int buffer_busy(struct buffer_head *bh)
3180{
3181	return atomic_read(&bh->b_count) |
3182		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3183}
3184
3185static int
3186drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3187{
3188	struct buffer_head *head = page_buffers(page);
3189	struct buffer_head *bh;
3190
3191	bh = head;
3192	do {
3193		if (buffer_write_io_error(bh) && page->mapping)
3194			set_bit(AS_EIO, &page->mapping->flags);
3195		if (buffer_busy(bh))
3196			goto failed;
3197		bh = bh->b_this_page;
3198	} while (bh != head);
3199
3200	do {
3201		struct buffer_head *next = bh->b_this_page;
3202
3203		if (bh->b_assoc_map)
3204			__remove_assoc_queue(bh);
3205		bh = next;
3206	} while (bh != head);
3207	*buffers_to_free = head;
3208	__clear_page_buffers(page);
3209	return 1;
3210failed:
3211	return 0;
3212}
3213
3214int try_to_free_buffers(struct page *page)
3215{
3216	struct address_space * const mapping = page->mapping;
3217	struct buffer_head *buffers_to_free = NULL;
3218	int ret = 0;
3219
3220	BUG_ON(!PageLocked(page));
3221	if (PageWriteback(page))
3222		return 0;
3223
3224	if (mapping == NULL) {		/* can this still happen? */
3225		ret = drop_buffers(page, &buffers_to_free);
3226		goto out;
3227	}
3228
3229	spin_lock(&mapping->private_lock);
3230	ret = drop_buffers(page, &buffers_to_free);
3231
3232	/*
3233	 * If the filesystem writes its buffers by hand (eg ext3)
3234	 * then we can have clean buffers against a dirty page.  We
3235	 * clean the page here; otherwise the VM will never notice
3236	 * that the filesystem did any IO at all.
3237	 *
3238	 * Also, during truncate, discard_buffer will have marked all
3239	 * the page's buffers clean.  We discover that here and clean
3240	 * the page also.
3241	 *
3242	 * private_lock must be held over this entire operation in order
3243	 * to synchronise against __set_page_dirty_buffers and prevent the
3244	 * dirty bit from being lost.
3245	 */
3246	if (ret)
3247		cancel_dirty_page(page);
3248	spin_unlock(&mapping->private_lock);
3249out:
3250	if (buffers_to_free) {
3251		struct buffer_head *bh = buffers_to_free;
3252
3253		do {
3254			struct buffer_head *next = bh->b_this_page;
3255			free_buffer_head(bh);
3256			bh = next;
3257		} while (bh != buffers_to_free);
3258	}
3259	return ret;
3260}
3261EXPORT_SYMBOL(try_to_free_buffers);
3262
3263/*
3264 * There are no bdflush tunables left.  But distributions are
3265 * still running obsolete flush daemons, so we terminate them here.
3266 *
3267 * Use of bdflush() is deprecated and will be removed in a future kernel.
3268 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3269 */
3270SYSCALL_DEFINE2(bdflush, int, func, long, data)
3271{
3272	static int msg_count;
3273
3274	if (!capable(CAP_SYS_ADMIN))
3275		return -EPERM;
3276
3277	if (msg_count < 5) {
3278		msg_count++;
3279		printk(KERN_INFO
3280			"warning: process `%s' used the obsolete bdflush"
3281			" system call\n", current->comm);
3282		printk(KERN_INFO "Fix your initscripts?\n");
3283	}
3284
3285	if (func == 1)
3286		do_exit(0);
3287	return 0;
3288}
3289
3290/*
3291 * Buffer-head allocation
3292 */
3293static struct kmem_cache *bh_cachep __read_mostly;
3294
3295/*
3296 * Once the number of bh's in the machine exceeds this level, we start
3297 * stripping them in writeback.
3298 */
3299static unsigned long max_buffer_heads;
3300
3301int buffer_heads_over_limit;
3302
3303struct bh_accounting {
3304	int nr;			/* Number of live bh's */
3305	int ratelimit;		/* Limit cacheline bouncing */
3306};
3307
3308static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3309
3310static void recalc_bh_state(void)
3311{
3312	int i;
3313	int tot = 0;
3314
3315	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3316		return;
3317	__this_cpu_write(bh_accounting.ratelimit, 0);
3318	for_each_online_cpu(i)
3319		tot += per_cpu(bh_accounting, i).nr;
3320	buffer_heads_over_limit = (tot > max_buffer_heads);
3321}
3322
3323struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3324{
3325	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3326	if (ret) {
3327		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3328		preempt_disable();
3329		__this_cpu_inc(bh_accounting.nr);
3330		recalc_bh_state();
3331		preempt_enable();
3332	}
3333	return ret;
3334}
3335EXPORT_SYMBOL(alloc_buffer_head);
3336
3337void free_buffer_head(struct buffer_head *bh)
3338{
3339	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3340	kmem_cache_free(bh_cachep, bh);
3341	preempt_disable();
3342	__this_cpu_dec(bh_accounting.nr);
3343	recalc_bh_state();
3344	preempt_enable();
3345}
3346EXPORT_SYMBOL(free_buffer_head);
3347
3348static void buffer_exit_cpu(int cpu)
3349{
3350	int i;
3351	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3352
3353	for (i = 0; i < BH_LRU_SIZE; i++) {
3354		brelse(b->bhs[i]);
3355		b->bhs[i] = NULL;
3356	}
3357	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3358	per_cpu(bh_accounting, cpu).nr = 0;
3359}
3360
3361static int buffer_cpu_notify(struct notifier_block *self,
3362			      unsigned long action, void *hcpu)
3363{
3364	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3365		buffer_exit_cpu((unsigned long)hcpu);
3366	return NOTIFY_OK;
3367}
3368
3369/**
3370 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3371 * @bh: struct buffer_head
3372 *
3373 * Return true if the buffer is up-to-date and false,
3374 * with the buffer locked, if not.
3375 */
3376int bh_uptodate_or_lock(struct buffer_head *bh)
3377{
3378	if (!buffer_uptodate(bh)) {
3379		lock_buffer(bh);
3380		if (!buffer_uptodate(bh))
3381			return 0;
3382		unlock_buffer(bh);
3383	}
3384	return 1;
3385}
3386EXPORT_SYMBOL(bh_uptodate_or_lock);
3387
3388/**
3389 * bh_submit_read - Submit a locked buffer for reading
3390 * @bh: struct buffer_head
3391 *
3392 * Returns zero on success and -EIO on error.
3393 */
3394int bh_submit_read(struct buffer_head *bh)
3395{
3396	BUG_ON(!buffer_locked(bh));
3397
3398	if (buffer_uptodate(bh)) {
3399		unlock_buffer(bh);
3400		return 0;
3401	}
3402
3403	get_bh(bh);
3404	bh->b_end_io = end_buffer_read_sync;
3405	submit_bh(READ, bh);
3406	wait_on_buffer(bh);
3407	if (buffer_uptodate(bh))
3408		return 0;
3409	return -EIO;
3410}
3411EXPORT_SYMBOL(bh_submit_read);
3412
3413void __init buffer_init(void)
3414{
3415	unsigned long nrpages;
3416
3417	bh_cachep = kmem_cache_create("buffer_head",
3418			sizeof(struct buffer_head), 0,
3419				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3420				SLAB_MEM_SPREAD),
3421				NULL);
3422
3423	/*
3424	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3425	 */
3426	nrpages = (nr_free_buffer_pages() * 10) / 100;
3427	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3428	hotcpu_notifier(buffer_cpu_notify, 0);
3429}
3430