1/*
2 * Copyright (C) 2012 Alexander Block.  All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/bsearch.h>
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/sort.h>
23#include <linux/mount.h>
24#include <linux/xattr.h>
25#include <linux/posix_acl_xattr.h>
26#include <linux/radix-tree.h>
27#include <linux/vmalloc.h>
28#include <linux/string.h>
29
30#include "send.h"
31#include "backref.h"
32#include "hash.h"
33#include "locking.h"
34#include "disk-io.h"
35#include "btrfs_inode.h"
36#include "transaction.h"
37
38static int g_verbose = 0;
39
40#define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41
42/*
43 * A fs_path is a helper to dynamically build path names with unknown size.
44 * It reallocates the internal buffer on demand.
45 * It allows fast adding of path elements on the right side (normal path) and
46 * fast adding to the left side (reversed path). A reversed path can also be
47 * unreversed if needed.
48 */
49struct fs_path {
50	union {
51		struct {
52			char *start;
53			char *end;
54
55			char *buf;
56			unsigned short buf_len:15;
57			unsigned short reversed:1;
58			char inline_buf[];
59		};
60		/*
61		 * Average path length does not exceed 200 bytes, we'll have
62		 * better packing in the slab and higher chance to satisfy
63		 * a allocation later during send.
64		 */
65		char pad[256];
66	};
67};
68#define FS_PATH_INLINE_SIZE \
69	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
70
71
72/* reused for each extent */
73struct clone_root {
74	struct btrfs_root *root;
75	u64 ino;
76	u64 offset;
77
78	u64 found_refs;
79};
80
81#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
83
84struct send_ctx {
85	struct file *send_filp;
86	loff_t send_off;
87	char *send_buf;
88	u32 send_size;
89	u32 send_max_size;
90	u64 total_send_size;
91	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
92	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
93
94	struct btrfs_root *send_root;
95	struct btrfs_root *parent_root;
96	struct clone_root *clone_roots;
97	int clone_roots_cnt;
98
99	/* current state of the compare_tree call */
100	struct btrfs_path *left_path;
101	struct btrfs_path *right_path;
102	struct btrfs_key *cmp_key;
103
104	/*
105	 * infos of the currently processed inode. In case of deleted inodes,
106	 * these are the values from the deleted inode.
107	 */
108	u64 cur_ino;
109	u64 cur_inode_gen;
110	int cur_inode_new;
111	int cur_inode_new_gen;
112	int cur_inode_deleted;
113	u64 cur_inode_size;
114	u64 cur_inode_mode;
115	u64 cur_inode_rdev;
116	u64 cur_inode_last_extent;
117
118	u64 send_progress;
119
120	struct list_head new_refs;
121	struct list_head deleted_refs;
122
123	struct radix_tree_root name_cache;
124	struct list_head name_cache_list;
125	int name_cache_size;
126
127	struct file_ra_state ra;
128
129	char *read_buf;
130
131	/*
132	 * We process inodes by their increasing order, so if before an
133	 * incremental send we reverse the parent/child relationship of
134	 * directories such that a directory with a lower inode number was
135	 * the parent of a directory with a higher inode number, and the one
136	 * becoming the new parent got renamed too, we can't rename/move the
137	 * directory with lower inode number when we finish processing it - we
138	 * must process the directory with higher inode number first, then
139	 * rename/move it and then rename/move the directory with lower inode
140	 * number. Example follows.
141	 *
142	 * Tree state when the first send was performed:
143	 *
144	 * .
145	 * |-- a                   (ino 257)
146	 *     |-- b               (ino 258)
147	 *         |
148	 *         |
149	 *         |-- c           (ino 259)
150	 *         |   |-- d       (ino 260)
151	 *         |
152	 *         |-- c2          (ino 261)
153	 *
154	 * Tree state when the second (incremental) send is performed:
155	 *
156	 * .
157	 * |-- a                   (ino 257)
158	 *     |-- b               (ino 258)
159	 *         |-- c2          (ino 261)
160	 *             |-- d2      (ino 260)
161	 *                 |-- cc  (ino 259)
162	 *
163	 * The sequence of steps that lead to the second state was:
164	 *
165	 * mv /a/b/c/d /a/b/c2/d2
166	 * mv /a/b/c /a/b/c2/d2/cc
167	 *
168	 * "c" has lower inode number, but we can't move it (2nd mv operation)
169	 * before we move "d", which has higher inode number.
170	 *
171	 * So we just memorize which move/rename operations must be performed
172	 * later when their respective parent is processed and moved/renamed.
173	 */
174
175	/* Indexed by parent directory inode number. */
176	struct rb_root pending_dir_moves;
177
178	/*
179	 * Reverse index, indexed by the inode number of a directory that
180	 * is waiting for the move/rename of its immediate parent before its
181	 * own move/rename can be performed.
182	 */
183	struct rb_root waiting_dir_moves;
184
185	/*
186	 * A directory that is going to be rm'ed might have a child directory
187	 * which is in the pending directory moves index above. In this case,
188	 * the directory can only be removed after the move/rename of its child
189	 * is performed. Example:
190	 *
191	 * Parent snapshot:
192	 *
193	 * .                        (ino 256)
194	 * |-- a/                   (ino 257)
195	 *     |-- b/               (ino 258)
196	 *         |-- c/           (ino 259)
197	 *         |   |-- x/       (ino 260)
198	 *         |
199	 *         |-- y/           (ino 261)
200	 *
201	 * Send snapshot:
202	 *
203	 * .                        (ino 256)
204	 * |-- a/                   (ino 257)
205	 *     |-- b/               (ino 258)
206	 *         |-- YY/          (ino 261)
207	 *              |-- x/      (ino 260)
208	 *
209	 * Sequence of steps that lead to the send snapshot:
210	 * rm -f /a/b/c/foo.txt
211	 * mv /a/b/y /a/b/YY
212	 * mv /a/b/c/x /a/b/YY
213	 * rmdir /a/b/c
214	 *
215	 * When the child is processed, its move/rename is delayed until its
216	 * parent is processed (as explained above), but all other operations
217	 * like update utimes, chown, chgrp, etc, are performed and the paths
218	 * that it uses for those operations must use the orphanized name of
219	 * its parent (the directory we're going to rm later), so we need to
220	 * memorize that name.
221	 *
222	 * Indexed by the inode number of the directory to be deleted.
223	 */
224	struct rb_root orphan_dirs;
225};
226
227struct pending_dir_move {
228	struct rb_node node;
229	struct list_head list;
230	u64 parent_ino;
231	u64 ino;
232	u64 gen;
233	bool is_orphan;
234	struct list_head update_refs;
235};
236
237struct waiting_dir_move {
238	struct rb_node node;
239	u64 ino;
240	/*
241	 * There might be some directory that could not be removed because it
242	 * was waiting for this directory inode to be moved first. Therefore
243	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
244	 */
245	u64 rmdir_ino;
246	bool orphanized;
247};
248
249struct orphan_dir_info {
250	struct rb_node node;
251	u64 ino;
252	u64 gen;
253};
254
255struct name_cache_entry {
256	struct list_head list;
257	/*
258	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
259	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
260	 * more then one inum would fall into the same entry, we use radix_list
261	 * to store the additional entries. radix_list is also used to store
262	 * entries where two entries have the same inum but different
263	 * generations.
264	 */
265	struct list_head radix_list;
266	u64 ino;
267	u64 gen;
268	u64 parent_ino;
269	u64 parent_gen;
270	int ret;
271	int need_later_update;
272	int name_len;
273	char name[];
274};
275
276static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
277
278static struct waiting_dir_move *
279get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
280
281static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
282
283static int need_send_hole(struct send_ctx *sctx)
284{
285	return (sctx->parent_root && !sctx->cur_inode_new &&
286		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
287		S_ISREG(sctx->cur_inode_mode));
288}
289
290static void fs_path_reset(struct fs_path *p)
291{
292	if (p->reversed) {
293		p->start = p->buf + p->buf_len - 1;
294		p->end = p->start;
295		*p->start = 0;
296	} else {
297		p->start = p->buf;
298		p->end = p->start;
299		*p->start = 0;
300	}
301}
302
303static struct fs_path *fs_path_alloc(void)
304{
305	struct fs_path *p;
306
307	p = kmalloc(sizeof(*p), GFP_NOFS);
308	if (!p)
309		return NULL;
310	p->reversed = 0;
311	p->buf = p->inline_buf;
312	p->buf_len = FS_PATH_INLINE_SIZE;
313	fs_path_reset(p);
314	return p;
315}
316
317static struct fs_path *fs_path_alloc_reversed(void)
318{
319	struct fs_path *p;
320
321	p = fs_path_alloc();
322	if (!p)
323		return NULL;
324	p->reversed = 1;
325	fs_path_reset(p);
326	return p;
327}
328
329static void fs_path_free(struct fs_path *p)
330{
331	if (!p)
332		return;
333	if (p->buf != p->inline_buf)
334		kfree(p->buf);
335	kfree(p);
336}
337
338static int fs_path_len(struct fs_path *p)
339{
340	return p->end - p->start;
341}
342
343static int fs_path_ensure_buf(struct fs_path *p, int len)
344{
345	char *tmp_buf;
346	int path_len;
347	int old_buf_len;
348
349	len++;
350
351	if (p->buf_len >= len)
352		return 0;
353
354	if (len > PATH_MAX) {
355		WARN_ON(1);
356		return -ENOMEM;
357	}
358
359	path_len = p->end - p->start;
360	old_buf_len = p->buf_len;
361
362	/*
363	 * First time the inline_buf does not suffice
364	 */
365	if (p->buf == p->inline_buf) {
366		tmp_buf = kmalloc(len, GFP_NOFS);
367		if (tmp_buf)
368			memcpy(tmp_buf, p->buf, old_buf_len);
369	} else {
370		tmp_buf = krealloc(p->buf, len, GFP_NOFS);
371	}
372	if (!tmp_buf)
373		return -ENOMEM;
374	p->buf = tmp_buf;
375	/*
376	 * The real size of the buffer is bigger, this will let the fast path
377	 * happen most of the time
378	 */
379	p->buf_len = ksize(p->buf);
380
381	if (p->reversed) {
382		tmp_buf = p->buf + old_buf_len - path_len - 1;
383		p->end = p->buf + p->buf_len - 1;
384		p->start = p->end - path_len;
385		memmove(p->start, tmp_buf, path_len + 1);
386	} else {
387		p->start = p->buf;
388		p->end = p->start + path_len;
389	}
390	return 0;
391}
392
393static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
394				   char **prepared)
395{
396	int ret;
397	int new_len;
398
399	new_len = p->end - p->start + name_len;
400	if (p->start != p->end)
401		new_len++;
402	ret = fs_path_ensure_buf(p, new_len);
403	if (ret < 0)
404		goto out;
405
406	if (p->reversed) {
407		if (p->start != p->end)
408			*--p->start = '/';
409		p->start -= name_len;
410		*prepared = p->start;
411	} else {
412		if (p->start != p->end)
413			*p->end++ = '/';
414		*prepared = p->end;
415		p->end += name_len;
416		*p->end = 0;
417	}
418
419out:
420	return ret;
421}
422
423static int fs_path_add(struct fs_path *p, const char *name, int name_len)
424{
425	int ret;
426	char *prepared;
427
428	ret = fs_path_prepare_for_add(p, name_len, &prepared);
429	if (ret < 0)
430		goto out;
431	memcpy(prepared, name, name_len);
432
433out:
434	return ret;
435}
436
437static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
438{
439	int ret;
440	char *prepared;
441
442	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
443	if (ret < 0)
444		goto out;
445	memcpy(prepared, p2->start, p2->end - p2->start);
446
447out:
448	return ret;
449}
450
451static int fs_path_add_from_extent_buffer(struct fs_path *p,
452					  struct extent_buffer *eb,
453					  unsigned long off, int len)
454{
455	int ret;
456	char *prepared;
457
458	ret = fs_path_prepare_for_add(p, len, &prepared);
459	if (ret < 0)
460		goto out;
461
462	read_extent_buffer(eb, prepared, off, len);
463
464out:
465	return ret;
466}
467
468static int fs_path_copy(struct fs_path *p, struct fs_path *from)
469{
470	int ret;
471
472	p->reversed = from->reversed;
473	fs_path_reset(p);
474
475	ret = fs_path_add_path(p, from);
476
477	return ret;
478}
479
480
481static void fs_path_unreverse(struct fs_path *p)
482{
483	char *tmp;
484	int len;
485
486	if (!p->reversed)
487		return;
488
489	tmp = p->start;
490	len = p->end - p->start;
491	p->start = p->buf;
492	p->end = p->start + len;
493	memmove(p->start, tmp, len + 1);
494	p->reversed = 0;
495}
496
497static struct btrfs_path *alloc_path_for_send(void)
498{
499	struct btrfs_path *path;
500
501	path = btrfs_alloc_path();
502	if (!path)
503		return NULL;
504	path->search_commit_root = 1;
505	path->skip_locking = 1;
506	path->need_commit_sem = 1;
507	return path;
508}
509
510static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
511{
512	int ret;
513	mm_segment_t old_fs;
514	u32 pos = 0;
515
516	old_fs = get_fs();
517	set_fs(KERNEL_DS);
518
519	while (pos < len) {
520		ret = vfs_write(filp, (__force const char __user *)buf + pos,
521				len - pos, off);
522		/* TODO handle that correctly */
523		/*if (ret == -ERESTARTSYS) {
524			continue;
525		}*/
526		if (ret < 0)
527			goto out;
528		if (ret == 0) {
529			ret = -EIO;
530			goto out;
531		}
532		pos += ret;
533	}
534
535	ret = 0;
536
537out:
538	set_fs(old_fs);
539	return ret;
540}
541
542static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
543{
544	struct btrfs_tlv_header *hdr;
545	int total_len = sizeof(*hdr) + len;
546	int left = sctx->send_max_size - sctx->send_size;
547
548	if (unlikely(left < total_len))
549		return -EOVERFLOW;
550
551	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
552	hdr->tlv_type = cpu_to_le16(attr);
553	hdr->tlv_len = cpu_to_le16(len);
554	memcpy(hdr + 1, data, len);
555	sctx->send_size += total_len;
556
557	return 0;
558}
559
560#define TLV_PUT_DEFINE_INT(bits) \
561	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
562			u##bits attr, u##bits value)			\
563	{								\
564		__le##bits __tmp = cpu_to_le##bits(value);		\
565		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
566	}
567
568TLV_PUT_DEFINE_INT(64)
569
570static int tlv_put_string(struct send_ctx *sctx, u16 attr,
571			  const char *str, int len)
572{
573	if (len == -1)
574		len = strlen(str);
575	return tlv_put(sctx, attr, str, len);
576}
577
578static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
579			const u8 *uuid)
580{
581	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
582}
583
584static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
585				  struct extent_buffer *eb,
586				  struct btrfs_timespec *ts)
587{
588	struct btrfs_timespec bts;
589	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
590	return tlv_put(sctx, attr, &bts, sizeof(bts));
591}
592
593
594#define TLV_PUT(sctx, attrtype, attrlen, data) \
595	do { \
596		ret = tlv_put(sctx, attrtype, attrlen, data); \
597		if (ret < 0) \
598			goto tlv_put_failure; \
599	} while (0)
600
601#define TLV_PUT_INT(sctx, attrtype, bits, value) \
602	do { \
603		ret = tlv_put_u##bits(sctx, attrtype, value); \
604		if (ret < 0) \
605			goto tlv_put_failure; \
606	} while (0)
607
608#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
609#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
610#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
611#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
612#define TLV_PUT_STRING(sctx, attrtype, str, len) \
613	do { \
614		ret = tlv_put_string(sctx, attrtype, str, len); \
615		if (ret < 0) \
616			goto tlv_put_failure; \
617	} while (0)
618#define TLV_PUT_PATH(sctx, attrtype, p) \
619	do { \
620		ret = tlv_put_string(sctx, attrtype, p->start, \
621			p->end - p->start); \
622		if (ret < 0) \
623			goto tlv_put_failure; \
624	} while(0)
625#define TLV_PUT_UUID(sctx, attrtype, uuid) \
626	do { \
627		ret = tlv_put_uuid(sctx, attrtype, uuid); \
628		if (ret < 0) \
629			goto tlv_put_failure; \
630	} while (0)
631#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
632	do { \
633		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
634		if (ret < 0) \
635			goto tlv_put_failure; \
636	} while (0)
637
638static int send_header(struct send_ctx *sctx)
639{
640	struct btrfs_stream_header hdr;
641
642	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
643	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
644
645	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
646					&sctx->send_off);
647}
648
649/*
650 * For each command/item we want to send to userspace, we call this function.
651 */
652static int begin_cmd(struct send_ctx *sctx, int cmd)
653{
654	struct btrfs_cmd_header *hdr;
655
656	if (WARN_ON(!sctx->send_buf))
657		return -EINVAL;
658
659	BUG_ON(sctx->send_size);
660
661	sctx->send_size += sizeof(*hdr);
662	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
663	hdr->cmd = cpu_to_le16(cmd);
664
665	return 0;
666}
667
668static int send_cmd(struct send_ctx *sctx)
669{
670	int ret;
671	struct btrfs_cmd_header *hdr;
672	u32 crc;
673
674	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
675	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
676	hdr->crc = 0;
677
678	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
679	hdr->crc = cpu_to_le32(crc);
680
681	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
682					&sctx->send_off);
683
684	sctx->total_send_size += sctx->send_size;
685	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
686	sctx->send_size = 0;
687
688	return ret;
689}
690
691/*
692 * Sends a move instruction to user space
693 */
694static int send_rename(struct send_ctx *sctx,
695		     struct fs_path *from, struct fs_path *to)
696{
697	int ret;
698
699verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
700
701	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
702	if (ret < 0)
703		goto out;
704
705	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
706	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
707
708	ret = send_cmd(sctx);
709
710tlv_put_failure:
711out:
712	return ret;
713}
714
715/*
716 * Sends a link instruction to user space
717 */
718static int send_link(struct send_ctx *sctx,
719		     struct fs_path *path, struct fs_path *lnk)
720{
721	int ret;
722
723verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
724
725	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
726	if (ret < 0)
727		goto out;
728
729	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
730	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
731
732	ret = send_cmd(sctx);
733
734tlv_put_failure:
735out:
736	return ret;
737}
738
739/*
740 * Sends an unlink instruction to user space
741 */
742static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
743{
744	int ret;
745
746verbose_printk("btrfs: send_unlink %s\n", path->start);
747
748	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
749	if (ret < 0)
750		goto out;
751
752	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
753
754	ret = send_cmd(sctx);
755
756tlv_put_failure:
757out:
758	return ret;
759}
760
761/*
762 * Sends a rmdir instruction to user space
763 */
764static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
765{
766	int ret;
767
768verbose_printk("btrfs: send_rmdir %s\n", path->start);
769
770	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
771	if (ret < 0)
772		goto out;
773
774	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
775
776	ret = send_cmd(sctx);
777
778tlv_put_failure:
779out:
780	return ret;
781}
782
783/*
784 * Helper function to retrieve some fields from an inode item.
785 */
786static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
787			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
788			  u64 *gid, u64 *rdev)
789{
790	int ret;
791	struct btrfs_inode_item *ii;
792	struct btrfs_key key;
793
794	key.objectid = ino;
795	key.type = BTRFS_INODE_ITEM_KEY;
796	key.offset = 0;
797	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
798	if (ret) {
799		if (ret > 0)
800			ret = -ENOENT;
801		return ret;
802	}
803
804	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
805			struct btrfs_inode_item);
806	if (size)
807		*size = btrfs_inode_size(path->nodes[0], ii);
808	if (gen)
809		*gen = btrfs_inode_generation(path->nodes[0], ii);
810	if (mode)
811		*mode = btrfs_inode_mode(path->nodes[0], ii);
812	if (uid)
813		*uid = btrfs_inode_uid(path->nodes[0], ii);
814	if (gid)
815		*gid = btrfs_inode_gid(path->nodes[0], ii);
816	if (rdev)
817		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
818
819	return ret;
820}
821
822static int get_inode_info(struct btrfs_root *root,
823			  u64 ino, u64 *size, u64 *gen,
824			  u64 *mode, u64 *uid, u64 *gid,
825			  u64 *rdev)
826{
827	struct btrfs_path *path;
828	int ret;
829
830	path = alloc_path_for_send();
831	if (!path)
832		return -ENOMEM;
833	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
834			       rdev);
835	btrfs_free_path(path);
836	return ret;
837}
838
839typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
840				   struct fs_path *p,
841				   void *ctx);
842
843/*
844 * Helper function to iterate the entries in ONE btrfs_inode_ref or
845 * btrfs_inode_extref.
846 * The iterate callback may return a non zero value to stop iteration. This can
847 * be a negative value for error codes or 1 to simply stop it.
848 *
849 * path must point to the INODE_REF or INODE_EXTREF when called.
850 */
851static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
852			     struct btrfs_key *found_key, int resolve,
853			     iterate_inode_ref_t iterate, void *ctx)
854{
855	struct extent_buffer *eb = path->nodes[0];
856	struct btrfs_item *item;
857	struct btrfs_inode_ref *iref;
858	struct btrfs_inode_extref *extref;
859	struct btrfs_path *tmp_path;
860	struct fs_path *p;
861	u32 cur = 0;
862	u32 total;
863	int slot = path->slots[0];
864	u32 name_len;
865	char *start;
866	int ret = 0;
867	int num = 0;
868	int index;
869	u64 dir;
870	unsigned long name_off;
871	unsigned long elem_size;
872	unsigned long ptr;
873
874	p = fs_path_alloc_reversed();
875	if (!p)
876		return -ENOMEM;
877
878	tmp_path = alloc_path_for_send();
879	if (!tmp_path) {
880		fs_path_free(p);
881		return -ENOMEM;
882	}
883
884
885	if (found_key->type == BTRFS_INODE_REF_KEY) {
886		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
887						    struct btrfs_inode_ref);
888		item = btrfs_item_nr(slot);
889		total = btrfs_item_size(eb, item);
890		elem_size = sizeof(*iref);
891	} else {
892		ptr = btrfs_item_ptr_offset(eb, slot);
893		total = btrfs_item_size_nr(eb, slot);
894		elem_size = sizeof(*extref);
895	}
896
897	while (cur < total) {
898		fs_path_reset(p);
899
900		if (found_key->type == BTRFS_INODE_REF_KEY) {
901			iref = (struct btrfs_inode_ref *)(ptr + cur);
902			name_len = btrfs_inode_ref_name_len(eb, iref);
903			name_off = (unsigned long)(iref + 1);
904			index = btrfs_inode_ref_index(eb, iref);
905			dir = found_key->offset;
906		} else {
907			extref = (struct btrfs_inode_extref *)(ptr + cur);
908			name_len = btrfs_inode_extref_name_len(eb, extref);
909			name_off = (unsigned long)&extref->name;
910			index = btrfs_inode_extref_index(eb, extref);
911			dir = btrfs_inode_extref_parent(eb, extref);
912		}
913
914		if (resolve) {
915			start = btrfs_ref_to_path(root, tmp_path, name_len,
916						  name_off, eb, dir,
917						  p->buf, p->buf_len);
918			if (IS_ERR(start)) {
919				ret = PTR_ERR(start);
920				goto out;
921			}
922			if (start < p->buf) {
923				/* overflow , try again with larger buffer */
924				ret = fs_path_ensure_buf(p,
925						p->buf_len + p->buf - start);
926				if (ret < 0)
927					goto out;
928				start = btrfs_ref_to_path(root, tmp_path,
929							  name_len, name_off,
930							  eb, dir,
931							  p->buf, p->buf_len);
932				if (IS_ERR(start)) {
933					ret = PTR_ERR(start);
934					goto out;
935				}
936				BUG_ON(start < p->buf);
937			}
938			p->start = start;
939		} else {
940			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
941							     name_len);
942			if (ret < 0)
943				goto out;
944		}
945
946		cur += elem_size + name_len;
947		ret = iterate(num, dir, index, p, ctx);
948		if (ret)
949			goto out;
950		num++;
951	}
952
953out:
954	btrfs_free_path(tmp_path);
955	fs_path_free(p);
956	return ret;
957}
958
959typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
960				  const char *name, int name_len,
961				  const char *data, int data_len,
962				  u8 type, void *ctx);
963
964/*
965 * Helper function to iterate the entries in ONE btrfs_dir_item.
966 * The iterate callback may return a non zero value to stop iteration. This can
967 * be a negative value for error codes or 1 to simply stop it.
968 *
969 * path must point to the dir item when called.
970 */
971static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
972			    struct btrfs_key *found_key,
973			    iterate_dir_item_t iterate, void *ctx)
974{
975	int ret = 0;
976	struct extent_buffer *eb;
977	struct btrfs_item *item;
978	struct btrfs_dir_item *di;
979	struct btrfs_key di_key;
980	char *buf = NULL;
981	int buf_len;
982	u32 name_len;
983	u32 data_len;
984	u32 cur;
985	u32 len;
986	u32 total;
987	int slot;
988	int num;
989	u8 type;
990
991	/*
992	 * Start with a small buffer (1 page). If later we end up needing more
993	 * space, which can happen for xattrs on a fs with a leaf size greater
994	 * then the page size, attempt to increase the buffer. Typically xattr
995	 * values are small.
996	 */
997	buf_len = PATH_MAX;
998	buf = kmalloc(buf_len, GFP_NOFS);
999	if (!buf) {
1000		ret = -ENOMEM;
1001		goto out;
1002	}
1003
1004	eb = path->nodes[0];
1005	slot = path->slots[0];
1006	item = btrfs_item_nr(slot);
1007	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1008	cur = 0;
1009	len = 0;
1010	total = btrfs_item_size(eb, item);
1011
1012	num = 0;
1013	while (cur < total) {
1014		name_len = btrfs_dir_name_len(eb, di);
1015		data_len = btrfs_dir_data_len(eb, di);
1016		type = btrfs_dir_type(eb, di);
1017		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1018
1019		if (type == BTRFS_FT_XATTR) {
1020			if (name_len > XATTR_NAME_MAX) {
1021				ret = -ENAMETOOLONG;
1022				goto out;
1023			}
1024			if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1025				ret = -E2BIG;
1026				goto out;
1027			}
1028		} else {
1029			/*
1030			 * Path too long
1031			 */
1032			if (name_len + data_len > PATH_MAX) {
1033				ret = -ENAMETOOLONG;
1034				goto out;
1035			}
1036		}
1037
1038		if (name_len + data_len > buf_len) {
1039			buf_len = name_len + data_len;
1040			if (is_vmalloc_addr(buf)) {
1041				vfree(buf);
1042				buf = NULL;
1043			} else {
1044				char *tmp = krealloc(buf, buf_len,
1045						     GFP_NOFS | __GFP_NOWARN);
1046
1047				if (!tmp)
1048					kfree(buf);
1049				buf = tmp;
1050			}
1051			if (!buf) {
1052				buf = vmalloc(buf_len);
1053				if (!buf) {
1054					ret = -ENOMEM;
1055					goto out;
1056				}
1057			}
1058		}
1059
1060		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1061				name_len + data_len);
1062
1063		len = sizeof(*di) + name_len + data_len;
1064		di = (struct btrfs_dir_item *)((char *)di + len);
1065		cur += len;
1066
1067		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1068				data_len, type, ctx);
1069		if (ret < 0)
1070			goto out;
1071		if (ret) {
1072			ret = 0;
1073			goto out;
1074		}
1075
1076		num++;
1077	}
1078
1079out:
1080	kvfree(buf);
1081	return ret;
1082}
1083
1084static int __copy_first_ref(int num, u64 dir, int index,
1085			    struct fs_path *p, void *ctx)
1086{
1087	int ret;
1088	struct fs_path *pt = ctx;
1089
1090	ret = fs_path_copy(pt, p);
1091	if (ret < 0)
1092		return ret;
1093
1094	/* we want the first only */
1095	return 1;
1096}
1097
1098/*
1099 * Retrieve the first path of an inode. If an inode has more then one
1100 * ref/hardlink, this is ignored.
1101 */
1102static int get_inode_path(struct btrfs_root *root,
1103			  u64 ino, struct fs_path *path)
1104{
1105	int ret;
1106	struct btrfs_key key, found_key;
1107	struct btrfs_path *p;
1108
1109	p = alloc_path_for_send();
1110	if (!p)
1111		return -ENOMEM;
1112
1113	fs_path_reset(path);
1114
1115	key.objectid = ino;
1116	key.type = BTRFS_INODE_REF_KEY;
1117	key.offset = 0;
1118
1119	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1120	if (ret < 0)
1121		goto out;
1122	if (ret) {
1123		ret = 1;
1124		goto out;
1125	}
1126	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1127	if (found_key.objectid != ino ||
1128	    (found_key.type != BTRFS_INODE_REF_KEY &&
1129	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1130		ret = -ENOENT;
1131		goto out;
1132	}
1133
1134	ret = iterate_inode_ref(root, p, &found_key, 1,
1135				__copy_first_ref, path);
1136	if (ret < 0)
1137		goto out;
1138	ret = 0;
1139
1140out:
1141	btrfs_free_path(p);
1142	return ret;
1143}
1144
1145struct backref_ctx {
1146	struct send_ctx *sctx;
1147
1148	struct btrfs_path *path;
1149	/* number of total found references */
1150	u64 found;
1151
1152	/*
1153	 * used for clones found in send_root. clones found behind cur_objectid
1154	 * and cur_offset are not considered as allowed clones.
1155	 */
1156	u64 cur_objectid;
1157	u64 cur_offset;
1158
1159	/* may be truncated in case it's the last extent in a file */
1160	u64 extent_len;
1161
1162	/* data offset in the file extent item */
1163	u64 data_offset;
1164
1165	/* Just to check for bugs in backref resolving */
1166	int found_itself;
1167};
1168
1169static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1170{
1171	u64 root = (u64)(uintptr_t)key;
1172	struct clone_root *cr = (struct clone_root *)elt;
1173
1174	if (root < cr->root->objectid)
1175		return -1;
1176	if (root > cr->root->objectid)
1177		return 1;
1178	return 0;
1179}
1180
1181static int __clone_root_cmp_sort(const void *e1, const void *e2)
1182{
1183	struct clone_root *cr1 = (struct clone_root *)e1;
1184	struct clone_root *cr2 = (struct clone_root *)e2;
1185
1186	if (cr1->root->objectid < cr2->root->objectid)
1187		return -1;
1188	if (cr1->root->objectid > cr2->root->objectid)
1189		return 1;
1190	return 0;
1191}
1192
1193/*
1194 * Called for every backref that is found for the current extent.
1195 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1196 */
1197static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1198{
1199	struct backref_ctx *bctx = ctx_;
1200	struct clone_root *found;
1201	int ret;
1202	u64 i_size;
1203
1204	/* First check if the root is in the list of accepted clone sources */
1205	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1206			bctx->sctx->clone_roots_cnt,
1207			sizeof(struct clone_root),
1208			__clone_root_cmp_bsearch);
1209	if (!found)
1210		return 0;
1211
1212	if (found->root == bctx->sctx->send_root &&
1213	    ino == bctx->cur_objectid &&
1214	    offset == bctx->cur_offset) {
1215		bctx->found_itself = 1;
1216	}
1217
1218	/*
1219	 * There are inodes that have extents that lie behind its i_size. Don't
1220	 * accept clones from these extents.
1221	 */
1222	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1223			       NULL, NULL, NULL);
1224	btrfs_release_path(bctx->path);
1225	if (ret < 0)
1226		return ret;
1227
1228	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1229		return 0;
1230
1231	/*
1232	 * Make sure we don't consider clones from send_root that are
1233	 * behind the current inode/offset.
1234	 */
1235	if (found->root == bctx->sctx->send_root) {
1236		/*
1237		 * TODO for the moment we don't accept clones from the inode
1238		 * that is currently send. We may change this when
1239		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1240		 * file.
1241		 */
1242		if (ino >= bctx->cur_objectid)
1243			return 0;
1244#if 0
1245		if (ino > bctx->cur_objectid)
1246			return 0;
1247		if (offset + bctx->extent_len > bctx->cur_offset)
1248			return 0;
1249#endif
1250	}
1251
1252	bctx->found++;
1253	found->found_refs++;
1254	if (ino < found->ino) {
1255		found->ino = ino;
1256		found->offset = offset;
1257	} else if (found->ino == ino) {
1258		/*
1259		 * same extent found more then once in the same file.
1260		 */
1261		if (found->offset > offset + bctx->extent_len)
1262			found->offset = offset;
1263	}
1264
1265	return 0;
1266}
1267
1268/*
1269 * Given an inode, offset and extent item, it finds a good clone for a clone
1270 * instruction. Returns -ENOENT when none could be found. The function makes
1271 * sure that the returned clone is usable at the point where sending is at the
1272 * moment. This means, that no clones are accepted which lie behind the current
1273 * inode+offset.
1274 *
1275 * path must point to the extent item when called.
1276 */
1277static int find_extent_clone(struct send_ctx *sctx,
1278			     struct btrfs_path *path,
1279			     u64 ino, u64 data_offset,
1280			     u64 ino_size,
1281			     struct clone_root **found)
1282{
1283	int ret;
1284	int extent_type;
1285	u64 logical;
1286	u64 disk_byte;
1287	u64 num_bytes;
1288	u64 extent_item_pos;
1289	u64 flags = 0;
1290	struct btrfs_file_extent_item *fi;
1291	struct extent_buffer *eb = path->nodes[0];
1292	struct backref_ctx *backref_ctx = NULL;
1293	struct clone_root *cur_clone_root;
1294	struct btrfs_key found_key;
1295	struct btrfs_path *tmp_path;
1296	int compressed;
1297	u32 i;
1298
1299	tmp_path = alloc_path_for_send();
1300	if (!tmp_path)
1301		return -ENOMEM;
1302
1303	/* We only use this path under the commit sem */
1304	tmp_path->need_commit_sem = 0;
1305
1306	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1307	if (!backref_ctx) {
1308		ret = -ENOMEM;
1309		goto out;
1310	}
1311
1312	backref_ctx->path = tmp_path;
1313
1314	if (data_offset >= ino_size) {
1315		/*
1316		 * There may be extents that lie behind the file's size.
1317		 * I at least had this in combination with snapshotting while
1318		 * writing large files.
1319		 */
1320		ret = 0;
1321		goto out;
1322	}
1323
1324	fi = btrfs_item_ptr(eb, path->slots[0],
1325			struct btrfs_file_extent_item);
1326	extent_type = btrfs_file_extent_type(eb, fi);
1327	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1328		ret = -ENOENT;
1329		goto out;
1330	}
1331	compressed = btrfs_file_extent_compression(eb, fi);
1332
1333	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1334	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1335	if (disk_byte == 0) {
1336		ret = -ENOENT;
1337		goto out;
1338	}
1339	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1340
1341	down_read(&sctx->send_root->fs_info->commit_root_sem);
1342	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1343				  &found_key, &flags);
1344	up_read(&sctx->send_root->fs_info->commit_root_sem);
1345	btrfs_release_path(tmp_path);
1346
1347	if (ret < 0)
1348		goto out;
1349	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1350		ret = -EIO;
1351		goto out;
1352	}
1353
1354	/*
1355	 * Setup the clone roots.
1356	 */
1357	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1358		cur_clone_root = sctx->clone_roots + i;
1359		cur_clone_root->ino = (u64)-1;
1360		cur_clone_root->offset = 0;
1361		cur_clone_root->found_refs = 0;
1362	}
1363
1364	backref_ctx->sctx = sctx;
1365	backref_ctx->found = 0;
1366	backref_ctx->cur_objectid = ino;
1367	backref_ctx->cur_offset = data_offset;
1368	backref_ctx->found_itself = 0;
1369	backref_ctx->extent_len = num_bytes;
1370	/*
1371	 * For non-compressed extents iterate_extent_inodes() gives us extent
1372	 * offsets that already take into account the data offset, but not for
1373	 * compressed extents, since the offset is logical and not relative to
1374	 * the physical extent locations. We must take this into account to
1375	 * avoid sending clone offsets that go beyond the source file's size,
1376	 * which would result in the clone ioctl failing with -EINVAL on the
1377	 * receiving end.
1378	 */
1379	if (compressed == BTRFS_COMPRESS_NONE)
1380		backref_ctx->data_offset = 0;
1381	else
1382		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1383
1384	/*
1385	 * The last extent of a file may be too large due to page alignment.
1386	 * We need to adjust extent_len in this case so that the checks in
1387	 * __iterate_backrefs work.
1388	 */
1389	if (data_offset + num_bytes >= ino_size)
1390		backref_ctx->extent_len = ino_size - data_offset;
1391
1392	/*
1393	 * Now collect all backrefs.
1394	 */
1395	if (compressed == BTRFS_COMPRESS_NONE)
1396		extent_item_pos = logical - found_key.objectid;
1397	else
1398		extent_item_pos = 0;
1399	ret = iterate_extent_inodes(sctx->send_root->fs_info,
1400					found_key.objectid, extent_item_pos, 1,
1401					__iterate_backrefs, backref_ctx);
1402
1403	if (ret < 0)
1404		goto out;
1405
1406	if (!backref_ctx->found_itself) {
1407		/* found a bug in backref code? */
1408		ret = -EIO;
1409		btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1410				"send_root. inode=%llu, offset=%llu, "
1411				"disk_byte=%llu found extent=%llu",
1412				ino, data_offset, disk_byte, found_key.objectid);
1413		goto out;
1414	}
1415
1416verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1417		"ino=%llu, "
1418		"num_bytes=%llu, logical=%llu\n",
1419		data_offset, ino, num_bytes, logical);
1420
1421	if (!backref_ctx->found)
1422		verbose_printk("btrfs:    no clones found\n");
1423
1424	cur_clone_root = NULL;
1425	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1426		if (sctx->clone_roots[i].found_refs) {
1427			if (!cur_clone_root)
1428				cur_clone_root = sctx->clone_roots + i;
1429			else if (sctx->clone_roots[i].root == sctx->send_root)
1430				/* prefer clones from send_root over others */
1431				cur_clone_root = sctx->clone_roots + i;
1432		}
1433
1434	}
1435
1436	if (cur_clone_root) {
1437		*found = cur_clone_root;
1438		ret = 0;
1439	} else {
1440		ret = -ENOENT;
1441	}
1442
1443out:
1444	btrfs_free_path(tmp_path);
1445	kfree(backref_ctx);
1446	return ret;
1447}
1448
1449static int read_symlink(struct btrfs_root *root,
1450			u64 ino,
1451			struct fs_path *dest)
1452{
1453	int ret;
1454	struct btrfs_path *path;
1455	struct btrfs_key key;
1456	struct btrfs_file_extent_item *ei;
1457	u8 type;
1458	u8 compression;
1459	unsigned long off;
1460	int len;
1461
1462	path = alloc_path_for_send();
1463	if (!path)
1464		return -ENOMEM;
1465
1466	key.objectid = ino;
1467	key.type = BTRFS_EXTENT_DATA_KEY;
1468	key.offset = 0;
1469	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1470	if (ret < 0)
1471		goto out;
1472	if (ret) {
1473		/*
1474		 * An empty symlink inode. Can happen in rare error paths when
1475		 * creating a symlink (transaction committed before the inode
1476		 * eviction handler removed the symlink inode items and a crash
1477		 * happened in between or the subvol was snapshoted in between).
1478		 * Print an informative message to dmesg/syslog so that the user
1479		 * can delete the symlink.
1480		 */
1481		btrfs_err(root->fs_info,
1482			  "Found empty symlink inode %llu at root %llu",
1483			  ino, root->root_key.objectid);
1484		ret = -EIO;
1485		goto out;
1486	}
1487
1488	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1489			struct btrfs_file_extent_item);
1490	type = btrfs_file_extent_type(path->nodes[0], ei);
1491	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1492	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1493	BUG_ON(compression);
1494
1495	off = btrfs_file_extent_inline_start(ei);
1496	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1497
1498	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1499
1500out:
1501	btrfs_free_path(path);
1502	return ret;
1503}
1504
1505/*
1506 * Helper function to generate a file name that is unique in the root of
1507 * send_root and parent_root. This is used to generate names for orphan inodes.
1508 */
1509static int gen_unique_name(struct send_ctx *sctx,
1510			   u64 ino, u64 gen,
1511			   struct fs_path *dest)
1512{
1513	int ret = 0;
1514	struct btrfs_path *path;
1515	struct btrfs_dir_item *di;
1516	char tmp[64];
1517	int len;
1518	u64 idx = 0;
1519
1520	path = alloc_path_for_send();
1521	if (!path)
1522		return -ENOMEM;
1523
1524	while (1) {
1525		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1526				ino, gen, idx);
1527		ASSERT(len < sizeof(tmp));
1528
1529		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1530				path, BTRFS_FIRST_FREE_OBJECTID,
1531				tmp, strlen(tmp), 0);
1532		btrfs_release_path(path);
1533		if (IS_ERR(di)) {
1534			ret = PTR_ERR(di);
1535			goto out;
1536		}
1537		if (di) {
1538			/* not unique, try again */
1539			idx++;
1540			continue;
1541		}
1542
1543		if (!sctx->parent_root) {
1544			/* unique */
1545			ret = 0;
1546			break;
1547		}
1548
1549		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1550				path, BTRFS_FIRST_FREE_OBJECTID,
1551				tmp, strlen(tmp), 0);
1552		btrfs_release_path(path);
1553		if (IS_ERR(di)) {
1554			ret = PTR_ERR(di);
1555			goto out;
1556		}
1557		if (di) {
1558			/* not unique, try again */
1559			idx++;
1560			continue;
1561		}
1562		/* unique */
1563		break;
1564	}
1565
1566	ret = fs_path_add(dest, tmp, strlen(tmp));
1567
1568out:
1569	btrfs_free_path(path);
1570	return ret;
1571}
1572
1573enum inode_state {
1574	inode_state_no_change,
1575	inode_state_will_create,
1576	inode_state_did_create,
1577	inode_state_will_delete,
1578	inode_state_did_delete,
1579};
1580
1581static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1582{
1583	int ret;
1584	int left_ret;
1585	int right_ret;
1586	u64 left_gen;
1587	u64 right_gen;
1588
1589	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1590			NULL, NULL);
1591	if (ret < 0 && ret != -ENOENT)
1592		goto out;
1593	left_ret = ret;
1594
1595	if (!sctx->parent_root) {
1596		right_ret = -ENOENT;
1597	} else {
1598		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1599				NULL, NULL, NULL, NULL);
1600		if (ret < 0 && ret != -ENOENT)
1601			goto out;
1602		right_ret = ret;
1603	}
1604
1605	if (!left_ret && !right_ret) {
1606		if (left_gen == gen && right_gen == gen) {
1607			ret = inode_state_no_change;
1608		} else if (left_gen == gen) {
1609			if (ino < sctx->send_progress)
1610				ret = inode_state_did_create;
1611			else
1612				ret = inode_state_will_create;
1613		} else if (right_gen == gen) {
1614			if (ino < sctx->send_progress)
1615				ret = inode_state_did_delete;
1616			else
1617				ret = inode_state_will_delete;
1618		} else  {
1619			ret = -ENOENT;
1620		}
1621	} else if (!left_ret) {
1622		if (left_gen == gen) {
1623			if (ino < sctx->send_progress)
1624				ret = inode_state_did_create;
1625			else
1626				ret = inode_state_will_create;
1627		} else {
1628			ret = -ENOENT;
1629		}
1630	} else if (!right_ret) {
1631		if (right_gen == gen) {
1632			if (ino < sctx->send_progress)
1633				ret = inode_state_did_delete;
1634			else
1635				ret = inode_state_will_delete;
1636		} else {
1637			ret = -ENOENT;
1638		}
1639	} else {
1640		ret = -ENOENT;
1641	}
1642
1643out:
1644	return ret;
1645}
1646
1647static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1648{
1649	int ret;
1650
1651	ret = get_cur_inode_state(sctx, ino, gen);
1652	if (ret < 0)
1653		goto out;
1654
1655	if (ret == inode_state_no_change ||
1656	    ret == inode_state_did_create ||
1657	    ret == inode_state_will_delete)
1658		ret = 1;
1659	else
1660		ret = 0;
1661
1662out:
1663	return ret;
1664}
1665
1666/*
1667 * Helper function to lookup a dir item in a dir.
1668 */
1669static int lookup_dir_item_inode(struct btrfs_root *root,
1670				 u64 dir, const char *name, int name_len,
1671				 u64 *found_inode,
1672				 u8 *found_type)
1673{
1674	int ret = 0;
1675	struct btrfs_dir_item *di;
1676	struct btrfs_key key;
1677	struct btrfs_path *path;
1678
1679	path = alloc_path_for_send();
1680	if (!path)
1681		return -ENOMEM;
1682
1683	di = btrfs_lookup_dir_item(NULL, root, path,
1684			dir, name, name_len, 0);
1685	if (!di) {
1686		ret = -ENOENT;
1687		goto out;
1688	}
1689	if (IS_ERR(di)) {
1690		ret = PTR_ERR(di);
1691		goto out;
1692	}
1693	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1694	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1695		ret = -ENOENT;
1696		goto out;
1697	}
1698	*found_inode = key.objectid;
1699	*found_type = btrfs_dir_type(path->nodes[0], di);
1700
1701out:
1702	btrfs_free_path(path);
1703	return ret;
1704}
1705
1706/*
1707 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1708 * generation of the parent dir and the name of the dir entry.
1709 */
1710static int get_first_ref(struct btrfs_root *root, u64 ino,
1711			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1712{
1713	int ret;
1714	struct btrfs_key key;
1715	struct btrfs_key found_key;
1716	struct btrfs_path *path;
1717	int len;
1718	u64 parent_dir;
1719
1720	path = alloc_path_for_send();
1721	if (!path)
1722		return -ENOMEM;
1723
1724	key.objectid = ino;
1725	key.type = BTRFS_INODE_REF_KEY;
1726	key.offset = 0;
1727
1728	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1729	if (ret < 0)
1730		goto out;
1731	if (!ret)
1732		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1733				path->slots[0]);
1734	if (ret || found_key.objectid != ino ||
1735	    (found_key.type != BTRFS_INODE_REF_KEY &&
1736	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1737		ret = -ENOENT;
1738		goto out;
1739	}
1740
1741	if (found_key.type == BTRFS_INODE_REF_KEY) {
1742		struct btrfs_inode_ref *iref;
1743		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1744				      struct btrfs_inode_ref);
1745		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1746		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1747						     (unsigned long)(iref + 1),
1748						     len);
1749		parent_dir = found_key.offset;
1750	} else {
1751		struct btrfs_inode_extref *extref;
1752		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1753					struct btrfs_inode_extref);
1754		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1755		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1756					(unsigned long)&extref->name, len);
1757		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1758	}
1759	if (ret < 0)
1760		goto out;
1761	btrfs_release_path(path);
1762
1763	if (dir_gen) {
1764		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1765				     NULL, NULL, NULL);
1766		if (ret < 0)
1767			goto out;
1768	}
1769
1770	*dir = parent_dir;
1771
1772out:
1773	btrfs_free_path(path);
1774	return ret;
1775}
1776
1777static int is_first_ref(struct btrfs_root *root,
1778			u64 ino, u64 dir,
1779			const char *name, int name_len)
1780{
1781	int ret;
1782	struct fs_path *tmp_name;
1783	u64 tmp_dir;
1784
1785	tmp_name = fs_path_alloc();
1786	if (!tmp_name)
1787		return -ENOMEM;
1788
1789	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1790	if (ret < 0)
1791		goto out;
1792
1793	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1794		ret = 0;
1795		goto out;
1796	}
1797
1798	ret = !memcmp(tmp_name->start, name, name_len);
1799
1800out:
1801	fs_path_free(tmp_name);
1802	return ret;
1803}
1804
1805/*
1806 * Used by process_recorded_refs to determine if a new ref would overwrite an
1807 * already existing ref. In case it detects an overwrite, it returns the
1808 * inode/gen in who_ino/who_gen.
1809 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1810 * to make sure later references to the overwritten inode are possible.
1811 * Orphanizing is however only required for the first ref of an inode.
1812 * process_recorded_refs does an additional is_first_ref check to see if
1813 * orphanizing is really required.
1814 */
1815static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1816			      const char *name, int name_len,
1817			      u64 *who_ino, u64 *who_gen)
1818{
1819	int ret = 0;
1820	u64 gen;
1821	u64 other_inode = 0;
1822	u8 other_type = 0;
1823
1824	if (!sctx->parent_root)
1825		goto out;
1826
1827	ret = is_inode_existent(sctx, dir, dir_gen);
1828	if (ret <= 0)
1829		goto out;
1830
1831	/*
1832	 * If we have a parent root we need to verify that the parent dir was
1833	 * not delted and then re-created, if it was then we have no overwrite
1834	 * and we can just unlink this entry.
1835	 */
1836	if (sctx->parent_root) {
1837		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1838				     NULL, NULL, NULL);
1839		if (ret < 0 && ret != -ENOENT)
1840			goto out;
1841		if (ret) {
1842			ret = 0;
1843			goto out;
1844		}
1845		if (gen != dir_gen)
1846			goto out;
1847	}
1848
1849	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1850			&other_inode, &other_type);
1851	if (ret < 0 && ret != -ENOENT)
1852		goto out;
1853	if (ret) {
1854		ret = 0;
1855		goto out;
1856	}
1857
1858	/*
1859	 * Check if the overwritten ref was already processed. If yes, the ref
1860	 * was already unlinked/moved, so we can safely assume that we will not
1861	 * overwrite anything at this point in time.
1862	 */
1863	if (other_inode > sctx->send_progress) {
1864		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1865				who_gen, NULL, NULL, NULL, NULL);
1866		if (ret < 0)
1867			goto out;
1868
1869		ret = 1;
1870		*who_ino = other_inode;
1871	} else {
1872		ret = 0;
1873	}
1874
1875out:
1876	return ret;
1877}
1878
1879/*
1880 * Checks if the ref was overwritten by an already processed inode. This is
1881 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1882 * thus the orphan name needs be used.
1883 * process_recorded_refs also uses it to avoid unlinking of refs that were
1884 * overwritten.
1885 */
1886static int did_overwrite_ref(struct send_ctx *sctx,
1887			    u64 dir, u64 dir_gen,
1888			    u64 ino, u64 ino_gen,
1889			    const char *name, int name_len)
1890{
1891	int ret = 0;
1892	u64 gen;
1893	u64 ow_inode;
1894	u8 other_type;
1895
1896	if (!sctx->parent_root)
1897		goto out;
1898
1899	ret = is_inode_existent(sctx, dir, dir_gen);
1900	if (ret <= 0)
1901		goto out;
1902
1903	/* check if the ref was overwritten by another ref */
1904	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1905			&ow_inode, &other_type);
1906	if (ret < 0 && ret != -ENOENT)
1907		goto out;
1908	if (ret) {
1909		/* was never and will never be overwritten */
1910		ret = 0;
1911		goto out;
1912	}
1913
1914	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1915			NULL, NULL);
1916	if (ret < 0)
1917		goto out;
1918
1919	if (ow_inode == ino && gen == ino_gen) {
1920		ret = 0;
1921		goto out;
1922	}
1923
1924	/*
1925	 * We know that it is or will be overwritten. Check this now.
1926	 * The current inode being processed might have been the one that caused
1927	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1928	 * the current inode being processed.
1929	 */
1930	if ((ow_inode < sctx->send_progress) ||
1931	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1932	     gen == sctx->cur_inode_gen))
1933		ret = 1;
1934	else
1935		ret = 0;
1936
1937out:
1938	return ret;
1939}
1940
1941/*
1942 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1943 * that got overwritten. This is used by process_recorded_refs to determine
1944 * if it has to use the path as returned by get_cur_path or the orphan name.
1945 */
1946static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1947{
1948	int ret = 0;
1949	struct fs_path *name = NULL;
1950	u64 dir;
1951	u64 dir_gen;
1952
1953	if (!sctx->parent_root)
1954		goto out;
1955
1956	name = fs_path_alloc();
1957	if (!name)
1958		return -ENOMEM;
1959
1960	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1961	if (ret < 0)
1962		goto out;
1963
1964	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1965			name->start, fs_path_len(name));
1966
1967out:
1968	fs_path_free(name);
1969	return ret;
1970}
1971
1972/*
1973 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1974 * so we need to do some special handling in case we have clashes. This function
1975 * takes care of this with the help of name_cache_entry::radix_list.
1976 * In case of error, nce is kfreed.
1977 */
1978static int name_cache_insert(struct send_ctx *sctx,
1979			     struct name_cache_entry *nce)
1980{
1981	int ret = 0;
1982	struct list_head *nce_head;
1983
1984	nce_head = radix_tree_lookup(&sctx->name_cache,
1985			(unsigned long)nce->ino);
1986	if (!nce_head) {
1987		nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1988		if (!nce_head) {
1989			kfree(nce);
1990			return -ENOMEM;
1991		}
1992		INIT_LIST_HEAD(nce_head);
1993
1994		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1995		if (ret < 0) {
1996			kfree(nce_head);
1997			kfree(nce);
1998			return ret;
1999		}
2000	}
2001	list_add_tail(&nce->radix_list, nce_head);
2002	list_add_tail(&nce->list, &sctx->name_cache_list);
2003	sctx->name_cache_size++;
2004
2005	return ret;
2006}
2007
2008static void name_cache_delete(struct send_ctx *sctx,
2009			      struct name_cache_entry *nce)
2010{
2011	struct list_head *nce_head;
2012
2013	nce_head = radix_tree_lookup(&sctx->name_cache,
2014			(unsigned long)nce->ino);
2015	if (!nce_head) {
2016		btrfs_err(sctx->send_root->fs_info,
2017	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2018			nce->ino, sctx->name_cache_size);
2019	}
2020
2021	list_del(&nce->radix_list);
2022	list_del(&nce->list);
2023	sctx->name_cache_size--;
2024
2025	/*
2026	 * We may not get to the final release of nce_head if the lookup fails
2027	 */
2028	if (nce_head && list_empty(nce_head)) {
2029		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2030		kfree(nce_head);
2031	}
2032}
2033
2034static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2035						    u64 ino, u64 gen)
2036{
2037	struct list_head *nce_head;
2038	struct name_cache_entry *cur;
2039
2040	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2041	if (!nce_head)
2042		return NULL;
2043
2044	list_for_each_entry(cur, nce_head, radix_list) {
2045		if (cur->ino == ino && cur->gen == gen)
2046			return cur;
2047	}
2048	return NULL;
2049}
2050
2051/*
2052 * Removes the entry from the list and adds it back to the end. This marks the
2053 * entry as recently used so that name_cache_clean_unused does not remove it.
2054 */
2055static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2056{
2057	list_del(&nce->list);
2058	list_add_tail(&nce->list, &sctx->name_cache_list);
2059}
2060
2061/*
2062 * Remove some entries from the beginning of name_cache_list.
2063 */
2064static void name_cache_clean_unused(struct send_ctx *sctx)
2065{
2066	struct name_cache_entry *nce;
2067
2068	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2069		return;
2070
2071	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2072		nce = list_entry(sctx->name_cache_list.next,
2073				struct name_cache_entry, list);
2074		name_cache_delete(sctx, nce);
2075		kfree(nce);
2076	}
2077}
2078
2079static void name_cache_free(struct send_ctx *sctx)
2080{
2081	struct name_cache_entry *nce;
2082
2083	while (!list_empty(&sctx->name_cache_list)) {
2084		nce = list_entry(sctx->name_cache_list.next,
2085				struct name_cache_entry, list);
2086		name_cache_delete(sctx, nce);
2087		kfree(nce);
2088	}
2089}
2090
2091/*
2092 * Used by get_cur_path for each ref up to the root.
2093 * Returns 0 if it succeeded.
2094 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2095 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2096 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2097 * Returns <0 in case of error.
2098 */
2099static int __get_cur_name_and_parent(struct send_ctx *sctx,
2100				     u64 ino, u64 gen,
2101				     u64 *parent_ino,
2102				     u64 *parent_gen,
2103				     struct fs_path *dest)
2104{
2105	int ret;
2106	int nce_ret;
2107	struct name_cache_entry *nce = NULL;
2108
2109	/*
2110	 * First check if we already did a call to this function with the same
2111	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2112	 * return the cached result.
2113	 */
2114	nce = name_cache_search(sctx, ino, gen);
2115	if (nce) {
2116		if (ino < sctx->send_progress && nce->need_later_update) {
2117			name_cache_delete(sctx, nce);
2118			kfree(nce);
2119			nce = NULL;
2120		} else {
2121			name_cache_used(sctx, nce);
2122			*parent_ino = nce->parent_ino;
2123			*parent_gen = nce->parent_gen;
2124			ret = fs_path_add(dest, nce->name, nce->name_len);
2125			if (ret < 0)
2126				goto out;
2127			ret = nce->ret;
2128			goto out;
2129		}
2130	}
2131
2132	/*
2133	 * If the inode is not existent yet, add the orphan name and return 1.
2134	 * This should only happen for the parent dir that we determine in
2135	 * __record_new_ref
2136	 */
2137	ret = is_inode_existent(sctx, ino, gen);
2138	if (ret < 0)
2139		goto out;
2140
2141	if (!ret) {
2142		ret = gen_unique_name(sctx, ino, gen, dest);
2143		if (ret < 0)
2144			goto out;
2145		ret = 1;
2146		goto out_cache;
2147	}
2148
2149	/*
2150	 * Depending on whether the inode was already processed or not, use
2151	 * send_root or parent_root for ref lookup.
2152	 */
2153	if (ino < sctx->send_progress)
2154		ret = get_first_ref(sctx->send_root, ino,
2155				    parent_ino, parent_gen, dest);
2156	else
2157		ret = get_first_ref(sctx->parent_root, ino,
2158				    parent_ino, parent_gen, dest);
2159	if (ret < 0)
2160		goto out;
2161
2162	/*
2163	 * Check if the ref was overwritten by an inode's ref that was processed
2164	 * earlier. If yes, treat as orphan and return 1.
2165	 */
2166	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2167			dest->start, dest->end - dest->start);
2168	if (ret < 0)
2169		goto out;
2170	if (ret) {
2171		fs_path_reset(dest);
2172		ret = gen_unique_name(sctx, ino, gen, dest);
2173		if (ret < 0)
2174			goto out;
2175		ret = 1;
2176	}
2177
2178out_cache:
2179	/*
2180	 * Store the result of the lookup in the name cache.
2181	 */
2182	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2183	if (!nce) {
2184		ret = -ENOMEM;
2185		goto out;
2186	}
2187
2188	nce->ino = ino;
2189	nce->gen = gen;
2190	nce->parent_ino = *parent_ino;
2191	nce->parent_gen = *parent_gen;
2192	nce->name_len = fs_path_len(dest);
2193	nce->ret = ret;
2194	strcpy(nce->name, dest->start);
2195
2196	if (ino < sctx->send_progress)
2197		nce->need_later_update = 0;
2198	else
2199		nce->need_later_update = 1;
2200
2201	nce_ret = name_cache_insert(sctx, nce);
2202	if (nce_ret < 0)
2203		ret = nce_ret;
2204	name_cache_clean_unused(sctx);
2205
2206out:
2207	return ret;
2208}
2209
2210/*
2211 * Magic happens here. This function returns the first ref to an inode as it
2212 * would look like while receiving the stream at this point in time.
2213 * We walk the path up to the root. For every inode in between, we check if it
2214 * was already processed/sent. If yes, we continue with the parent as found
2215 * in send_root. If not, we continue with the parent as found in parent_root.
2216 * If we encounter an inode that was deleted at this point in time, we use the
2217 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2218 * that were not created yet and overwritten inodes/refs.
2219 *
2220 * When do we have have orphan inodes:
2221 * 1. When an inode is freshly created and thus no valid refs are available yet
2222 * 2. When a directory lost all it's refs (deleted) but still has dir items
2223 *    inside which were not processed yet (pending for move/delete). If anyone
2224 *    tried to get the path to the dir items, it would get a path inside that
2225 *    orphan directory.
2226 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2227 *    of an unprocessed inode. If in that case the first ref would be
2228 *    overwritten, the overwritten inode gets "orphanized". Later when we
2229 *    process this overwritten inode, it is restored at a new place by moving
2230 *    the orphan inode.
2231 *
2232 * sctx->send_progress tells this function at which point in time receiving
2233 * would be.
2234 */
2235static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2236			struct fs_path *dest)
2237{
2238	int ret = 0;
2239	struct fs_path *name = NULL;
2240	u64 parent_inode = 0;
2241	u64 parent_gen = 0;
2242	int stop = 0;
2243
2244	name = fs_path_alloc();
2245	if (!name) {
2246		ret = -ENOMEM;
2247		goto out;
2248	}
2249
2250	dest->reversed = 1;
2251	fs_path_reset(dest);
2252
2253	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2254		struct waiting_dir_move *wdm;
2255
2256		fs_path_reset(name);
2257
2258		if (is_waiting_for_rm(sctx, ino)) {
2259			ret = gen_unique_name(sctx, ino, gen, name);
2260			if (ret < 0)
2261				goto out;
2262			ret = fs_path_add_path(dest, name);
2263			break;
2264		}
2265
2266		wdm = get_waiting_dir_move(sctx, ino);
2267		if (wdm && wdm->orphanized) {
2268			ret = gen_unique_name(sctx, ino, gen, name);
2269			stop = 1;
2270		} else if (wdm) {
2271			ret = get_first_ref(sctx->parent_root, ino,
2272					    &parent_inode, &parent_gen, name);
2273		} else {
2274			ret = __get_cur_name_and_parent(sctx, ino, gen,
2275							&parent_inode,
2276							&parent_gen, name);
2277			if (ret)
2278				stop = 1;
2279		}
2280
2281		if (ret < 0)
2282			goto out;
2283
2284		ret = fs_path_add_path(dest, name);
2285		if (ret < 0)
2286			goto out;
2287
2288		ino = parent_inode;
2289		gen = parent_gen;
2290	}
2291
2292out:
2293	fs_path_free(name);
2294	if (!ret)
2295		fs_path_unreverse(dest);
2296	return ret;
2297}
2298
2299/*
2300 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2301 */
2302static int send_subvol_begin(struct send_ctx *sctx)
2303{
2304	int ret;
2305	struct btrfs_root *send_root = sctx->send_root;
2306	struct btrfs_root *parent_root = sctx->parent_root;
2307	struct btrfs_path *path;
2308	struct btrfs_key key;
2309	struct btrfs_root_ref *ref;
2310	struct extent_buffer *leaf;
2311	char *name = NULL;
2312	int namelen;
2313
2314	path = btrfs_alloc_path();
2315	if (!path)
2316		return -ENOMEM;
2317
2318	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2319	if (!name) {
2320		btrfs_free_path(path);
2321		return -ENOMEM;
2322	}
2323
2324	key.objectid = send_root->objectid;
2325	key.type = BTRFS_ROOT_BACKREF_KEY;
2326	key.offset = 0;
2327
2328	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2329				&key, path, 1, 0);
2330	if (ret < 0)
2331		goto out;
2332	if (ret) {
2333		ret = -ENOENT;
2334		goto out;
2335	}
2336
2337	leaf = path->nodes[0];
2338	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2339	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2340	    key.objectid != send_root->objectid) {
2341		ret = -ENOENT;
2342		goto out;
2343	}
2344	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2345	namelen = btrfs_root_ref_name_len(leaf, ref);
2346	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2347	btrfs_release_path(path);
2348
2349	if (parent_root) {
2350		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2351		if (ret < 0)
2352			goto out;
2353	} else {
2354		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2355		if (ret < 0)
2356			goto out;
2357	}
2358
2359	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2360
2361	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2362		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2363			    sctx->send_root->root_item.received_uuid);
2364	else
2365		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2366			    sctx->send_root->root_item.uuid);
2367
2368	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2369		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2370	if (parent_root) {
2371		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2372			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2373				     parent_root->root_item.received_uuid);
2374		else
2375			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2376				     parent_root->root_item.uuid);
2377		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2378			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2379	}
2380
2381	ret = send_cmd(sctx);
2382
2383tlv_put_failure:
2384out:
2385	btrfs_free_path(path);
2386	kfree(name);
2387	return ret;
2388}
2389
2390static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2391{
2392	int ret = 0;
2393	struct fs_path *p;
2394
2395verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2396
2397	p = fs_path_alloc();
2398	if (!p)
2399		return -ENOMEM;
2400
2401	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2402	if (ret < 0)
2403		goto out;
2404
2405	ret = get_cur_path(sctx, ino, gen, p);
2406	if (ret < 0)
2407		goto out;
2408	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2409	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2410
2411	ret = send_cmd(sctx);
2412
2413tlv_put_failure:
2414out:
2415	fs_path_free(p);
2416	return ret;
2417}
2418
2419static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2420{
2421	int ret = 0;
2422	struct fs_path *p;
2423
2424verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2425
2426	p = fs_path_alloc();
2427	if (!p)
2428		return -ENOMEM;
2429
2430	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2431	if (ret < 0)
2432		goto out;
2433
2434	ret = get_cur_path(sctx, ino, gen, p);
2435	if (ret < 0)
2436		goto out;
2437	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2438	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2439
2440	ret = send_cmd(sctx);
2441
2442tlv_put_failure:
2443out:
2444	fs_path_free(p);
2445	return ret;
2446}
2447
2448static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2449{
2450	int ret = 0;
2451	struct fs_path *p;
2452
2453verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2454
2455	p = fs_path_alloc();
2456	if (!p)
2457		return -ENOMEM;
2458
2459	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2460	if (ret < 0)
2461		goto out;
2462
2463	ret = get_cur_path(sctx, ino, gen, p);
2464	if (ret < 0)
2465		goto out;
2466	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2467	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2468	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2469
2470	ret = send_cmd(sctx);
2471
2472tlv_put_failure:
2473out:
2474	fs_path_free(p);
2475	return ret;
2476}
2477
2478static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2479{
2480	int ret = 0;
2481	struct fs_path *p = NULL;
2482	struct btrfs_inode_item *ii;
2483	struct btrfs_path *path = NULL;
2484	struct extent_buffer *eb;
2485	struct btrfs_key key;
2486	int slot;
2487
2488verbose_printk("btrfs: send_utimes %llu\n", ino);
2489
2490	p = fs_path_alloc();
2491	if (!p)
2492		return -ENOMEM;
2493
2494	path = alloc_path_for_send();
2495	if (!path) {
2496		ret = -ENOMEM;
2497		goto out;
2498	}
2499
2500	key.objectid = ino;
2501	key.type = BTRFS_INODE_ITEM_KEY;
2502	key.offset = 0;
2503	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2504	if (ret < 0)
2505		goto out;
2506
2507	eb = path->nodes[0];
2508	slot = path->slots[0];
2509	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2510
2511	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2512	if (ret < 0)
2513		goto out;
2514
2515	ret = get_cur_path(sctx, ino, gen, p);
2516	if (ret < 0)
2517		goto out;
2518	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2519	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2520	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2521	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2522	/* TODO Add otime support when the otime patches get into upstream */
2523
2524	ret = send_cmd(sctx);
2525
2526tlv_put_failure:
2527out:
2528	fs_path_free(p);
2529	btrfs_free_path(path);
2530	return ret;
2531}
2532
2533/*
2534 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2535 * a valid path yet because we did not process the refs yet. So, the inode
2536 * is created as orphan.
2537 */
2538static int send_create_inode(struct send_ctx *sctx, u64 ino)
2539{
2540	int ret = 0;
2541	struct fs_path *p;
2542	int cmd;
2543	u64 gen;
2544	u64 mode;
2545	u64 rdev;
2546
2547verbose_printk("btrfs: send_create_inode %llu\n", ino);
2548
2549	p = fs_path_alloc();
2550	if (!p)
2551		return -ENOMEM;
2552
2553	if (ino != sctx->cur_ino) {
2554		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2555				     NULL, NULL, &rdev);
2556		if (ret < 0)
2557			goto out;
2558	} else {
2559		gen = sctx->cur_inode_gen;
2560		mode = sctx->cur_inode_mode;
2561		rdev = sctx->cur_inode_rdev;
2562	}
2563
2564	if (S_ISREG(mode)) {
2565		cmd = BTRFS_SEND_C_MKFILE;
2566	} else if (S_ISDIR(mode)) {
2567		cmd = BTRFS_SEND_C_MKDIR;
2568	} else if (S_ISLNK(mode)) {
2569		cmd = BTRFS_SEND_C_SYMLINK;
2570	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2571		cmd = BTRFS_SEND_C_MKNOD;
2572	} else if (S_ISFIFO(mode)) {
2573		cmd = BTRFS_SEND_C_MKFIFO;
2574	} else if (S_ISSOCK(mode)) {
2575		cmd = BTRFS_SEND_C_MKSOCK;
2576	} else {
2577		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2578				(int)(mode & S_IFMT));
2579		ret = -ENOTSUPP;
2580		goto out;
2581	}
2582
2583	ret = begin_cmd(sctx, cmd);
2584	if (ret < 0)
2585		goto out;
2586
2587	ret = gen_unique_name(sctx, ino, gen, p);
2588	if (ret < 0)
2589		goto out;
2590
2591	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2592	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2593
2594	if (S_ISLNK(mode)) {
2595		fs_path_reset(p);
2596		ret = read_symlink(sctx->send_root, ino, p);
2597		if (ret < 0)
2598			goto out;
2599		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2600	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2601		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2602		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2603		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2604	}
2605
2606	ret = send_cmd(sctx);
2607	if (ret < 0)
2608		goto out;
2609
2610
2611tlv_put_failure:
2612out:
2613	fs_path_free(p);
2614	return ret;
2615}
2616
2617/*
2618 * We need some special handling for inodes that get processed before the parent
2619 * directory got created. See process_recorded_refs for details.
2620 * This function does the check if we already created the dir out of order.
2621 */
2622static int did_create_dir(struct send_ctx *sctx, u64 dir)
2623{
2624	int ret = 0;
2625	struct btrfs_path *path = NULL;
2626	struct btrfs_key key;
2627	struct btrfs_key found_key;
2628	struct btrfs_key di_key;
2629	struct extent_buffer *eb;
2630	struct btrfs_dir_item *di;
2631	int slot;
2632
2633	path = alloc_path_for_send();
2634	if (!path) {
2635		ret = -ENOMEM;
2636		goto out;
2637	}
2638
2639	key.objectid = dir;
2640	key.type = BTRFS_DIR_INDEX_KEY;
2641	key.offset = 0;
2642	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2643	if (ret < 0)
2644		goto out;
2645
2646	while (1) {
2647		eb = path->nodes[0];
2648		slot = path->slots[0];
2649		if (slot >= btrfs_header_nritems(eb)) {
2650			ret = btrfs_next_leaf(sctx->send_root, path);
2651			if (ret < 0) {
2652				goto out;
2653			} else if (ret > 0) {
2654				ret = 0;
2655				break;
2656			}
2657			continue;
2658		}
2659
2660		btrfs_item_key_to_cpu(eb, &found_key, slot);
2661		if (found_key.objectid != key.objectid ||
2662		    found_key.type != key.type) {
2663			ret = 0;
2664			goto out;
2665		}
2666
2667		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2668		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2669
2670		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2671		    di_key.objectid < sctx->send_progress) {
2672			ret = 1;
2673			goto out;
2674		}
2675
2676		path->slots[0]++;
2677	}
2678
2679out:
2680	btrfs_free_path(path);
2681	return ret;
2682}
2683
2684/*
2685 * Only creates the inode if it is:
2686 * 1. Not a directory
2687 * 2. Or a directory which was not created already due to out of order
2688 *    directories. See did_create_dir and process_recorded_refs for details.
2689 */
2690static int send_create_inode_if_needed(struct send_ctx *sctx)
2691{
2692	int ret;
2693
2694	if (S_ISDIR(sctx->cur_inode_mode)) {
2695		ret = did_create_dir(sctx, sctx->cur_ino);
2696		if (ret < 0)
2697			goto out;
2698		if (ret) {
2699			ret = 0;
2700			goto out;
2701		}
2702	}
2703
2704	ret = send_create_inode(sctx, sctx->cur_ino);
2705	if (ret < 0)
2706		goto out;
2707
2708out:
2709	return ret;
2710}
2711
2712struct recorded_ref {
2713	struct list_head list;
2714	char *dir_path;
2715	char *name;
2716	struct fs_path *full_path;
2717	u64 dir;
2718	u64 dir_gen;
2719	int dir_path_len;
2720	int name_len;
2721};
2722
2723/*
2724 * We need to process new refs before deleted refs, but compare_tree gives us
2725 * everything mixed. So we first record all refs and later process them.
2726 * This function is a helper to record one ref.
2727 */
2728static int __record_ref(struct list_head *head, u64 dir,
2729		      u64 dir_gen, struct fs_path *path)
2730{
2731	struct recorded_ref *ref;
2732
2733	ref = kmalloc(sizeof(*ref), GFP_NOFS);
2734	if (!ref)
2735		return -ENOMEM;
2736
2737	ref->dir = dir;
2738	ref->dir_gen = dir_gen;
2739	ref->full_path = path;
2740
2741	ref->name = (char *)kbasename(ref->full_path->start);
2742	ref->name_len = ref->full_path->end - ref->name;
2743	ref->dir_path = ref->full_path->start;
2744	if (ref->name == ref->full_path->start)
2745		ref->dir_path_len = 0;
2746	else
2747		ref->dir_path_len = ref->full_path->end -
2748				ref->full_path->start - 1 - ref->name_len;
2749
2750	list_add_tail(&ref->list, head);
2751	return 0;
2752}
2753
2754static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2755{
2756	struct recorded_ref *new;
2757
2758	new = kmalloc(sizeof(*ref), GFP_NOFS);
2759	if (!new)
2760		return -ENOMEM;
2761
2762	new->dir = ref->dir;
2763	new->dir_gen = ref->dir_gen;
2764	new->full_path = NULL;
2765	INIT_LIST_HEAD(&new->list);
2766	list_add_tail(&new->list, list);
2767	return 0;
2768}
2769
2770static void __free_recorded_refs(struct list_head *head)
2771{
2772	struct recorded_ref *cur;
2773
2774	while (!list_empty(head)) {
2775		cur = list_entry(head->next, struct recorded_ref, list);
2776		fs_path_free(cur->full_path);
2777		list_del(&cur->list);
2778		kfree(cur);
2779	}
2780}
2781
2782static void free_recorded_refs(struct send_ctx *sctx)
2783{
2784	__free_recorded_refs(&sctx->new_refs);
2785	__free_recorded_refs(&sctx->deleted_refs);
2786}
2787
2788/*
2789 * Renames/moves a file/dir to its orphan name. Used when the first
2790 * ref of an unprocessed inode gets overwritten and for all non empty
2791 * directories.
2792 */
2793static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2794			  struct fs_path *path)
2795{
2796	int ret;
2797	struct fs_path *orphan;
2798
2799	orphan = fs_path_alloc();
2800	if (!orphan)
2801		return -ENOMEM;
2802
2803	ret = gen_unique_name(sctx, ino, gen, orphan);
2804	if (ret < 0)
2805		goto out;
2806
2807	ret = send_rename(sctx, path, orphan);
2808
2809out:
2810	fs_path_free(orphan);
2811	return ret;
2812}
2813
2814static struct orphan_dir_info *
2815add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2816{
2817	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2818	struct rb_node *parent = NULL;
2819	struct orphan_dir_info *entry, *odi;
2820
2821	odi = kmalloc(sizeof(*odi), GFP_NOFS);
2822	if (!odi)
2823		return ERR_PTR(-ENOMEM);
2824	odi->ino = dir_ino;
2825	odi->gen = 0;
2826
2827	while (*p) {
2828		parent = *p;
2829		entry = rb_entry(parent, struct orphan_dir_info, node);
2830		if (dir_ino < entry->ino) {
2831			p = &(*p)->rb_left;
2832		} else if (dir_ino > entry->ino) {
2833			p = &(*p)->rb_right;
2834		} else {
2835			kfree(odi);
2836			return entry;
2837		}
2838	}
2839
2840	rb_link_node(&odi->node, parent, p);
2841	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2842	return odi;
2843}
2844
2845static struct orphan_dir_info *
2846get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2847{
2848	struct rb_node *n = sctx->orphan_dirs.rb_node;
2849	struct orphan_dir_info *entry;
2850
2851	while (n) {
2852		entry = rb_entry(n, struct orphan_dir_info, node);
2853		if (dir_ino < entry->ino)
2854			n = n->rb_left;
2855		else if (dir_ino > entry->ino)
2856			n = n->rb_right;
2857		else
2858			return entry;
2859	}
2860	return NULL;
2861}
2862
2863static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2864{
2865	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2866
2867	return odi != NULL;
2868}
2869
2870static void free_orphan_dir_info(struct send_ctx *sctx,
2871				 struct orphan_dir_info *odi)
2872{
2873	if (!odi)
2874		return;
2875	rb_erase(&odi->node, &sctx->orphan_dirs);
2876	kfree(odi);
2877}
2878
2879/*
2880 * Returns 1 if a directory can be removed at this point in time.
2881 * We check this by iterating all dir items and checking if the inode behind
2882 * the dir item was already processed.
2883 */
2884static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2885		     u64 send_progress)
2886{
2887	int ret = 0;
2888	struct btrfs_root *root = sctx->parent_root;
2889	struct btrfs_path *path;
2890	struct btrfs_key key;
2891	struct btrfs_key found_key;
2892	struct btrfs_key loc;
2893	struct btrfs_dir_item *di;
2894
2895	/*
2896	 * Don't try to rmdir the top/root subvolume dir.
2897	 */
2898	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2899		return 0;
2900
2901	path = alloc_path_for_send();
2902	if (!path)
2903		return -ENOMEM;
2904
2905	key.objectid = dir;
2906	key.type = BTRFS_DIR_INDEX_KEY;
2907	key.offset = 0;
2908	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2909	if (ret < 0)
2910		goto out;
2911
2912	while (1) {
2913		struct waiting_dir_move *dm;
2914
2915		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2916			ret = btrfs_next_leaf(root, path);
2917			if (ret < 0)
2918				goto out;
2919			else if (ret > 0)
2920				break;
2921			continue;
2922		}
2923		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2924				      path->slots[0]);
2925		if (found_key.objectid != key.objectid ||
2926		    found_key.type != key.type)
2927			break;
2928
2929		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2930				struct btrfs_dir_item);
2931		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2932
2933		dm = get_waiting_dir_move(sctx, loc.objectid);
2934		if (dm) {
2935			struct orphan_dir_info *odi;
2936
2937			odi = add_orphan_dir_info(sctx, dir);
2938			if (IS_ERR(odi)) {
2939				ret = PTR_ERR(odi);
2940				goto out;
2941			}
2942			odi->gen = dir_gen;
2943			dm->rmdir_ino = dir;
2944			ret = 0;
2945			goto out;
2946		}
2947
2948		if (loc.objectid > send_progress) {
2949			ret = 0;
2950			goto out;
2951		}
2952
2953		path->slots[0]++;
2954	}
2955
2956	ret = 1;
2957
2958out:
2959	btrfs_free_path(path);
2960	return ret;
2961}
2962
2963static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2964{
2965	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2966
2967	return entry != NULL;
2968}
2969
2970static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
2971{
2972	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2973	struct rb_node *parent = NULL;
2974	struct waiting_dir_move *entry, *dm;
2975
2976	dm = kmalloc(sizeof(*dm), GFP_NOFS);
2977	if (!dm)
2978		return -ENOMEM;
2979	dm->ino = ino;
2980	dm->rmdir_ino = 0;
2981	dm->orphanized = orphanized;
2982
2983	while (*p) {
2984		parent = *p;
2985		entry = rb_entry(parent, struct waiting_dir_move, node);
2986		if (ino < entry->ino) {
2987			p = &(*p)->rb_left;
2988		} else if (ino > entry->ino) {
2989			p = &(*p)->rb_right;
2990		} else {
2991			kfree(dm);
2992			return -EEXIST;
2993		}
2994	}
2995
2996	rb_link_node(&dm->node, parent, p);
2997	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2998	return 0;
2999}
3000
3001static struct waiting_dir_move *
3002get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3003{
3004	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3005	struct waiting_dir_move *entry;
3006
3007	while (n) {
3008		entry = rb_entry(n, struct waiting_dir_move, node);
3009		if (ino < entry->ino)
3010			n = n->rb_left;
3011		else if (ino > entry->ino)
3012			n = n->rb_right;
3013		else
3014			return entry;
3015	}
3016	return NULL;
3017}
3018
3019static void free_waiting_dir_move(struct send_ctx *sctx,
3020				  struct waiting_dir_move *dm)
3021{
3022	if (!dm)
3023		return;
3024	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3025	kfree(dm);
3026}
3027
3028static int add_pending_dir_move(struct send_ctx *sctx,
3029				u64 ino,
3030				u64 ino_gen,
3031				u64 parent_ino,
3032				struct list_head *new_refs,
3033				struct list_head *deleted_refs,
3034				const bool is_orphan)
3035{
3036	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3037	struct rb_node *parent = NULL;
3038	struct pending_dir_move *entry = NULL, *pm;
3039	struct recorded_ref *cur;
3040	int exists = 0;
3041	int ret;
3042
3043	pm = kmalloc(sizeof(*pm), GFP_NOFS);
3044	if (!pm)
3045		return -ENOMEM;
3046	pm->parent_ino = parent_ino;
3047	pm->ino = ino;
3048	pm->gen = ino_gen;
3049	pm->is_orphan = is_orphan;
3050	INIT_LIST_HEAD(&pm->list);
3051	INIT_LIST_HEAD(&pm->update_refs);
3052	RB_CLEAR_NODE(&pm->node);
3053
3054	while (*p) {
3055		parent = *p;
3056		entry = rb_entry(parent, struct pending_dir_move, node);
3057		if (parent_ino < entry->parent_ino) {
3058			p = &(*p)->rb_left;
3059		} else if (parent_ino > entry->parent_ino) {
3060			p = &(*p)->rb_right;
3061		} else {
3062			exists = 1;
3063			break;
3064		}
3065	}
3066
3067	list_for_each_entry(cur, deleted_refs, list) {
3068		ret = dup_ref(cur, &pm->update_refs);
3069		if (ret < 0)
3070			goto out;
3071	}
3072	list_for_each_entry(cur, new_refs, list) {
3073		ret = dup_ref(cur, &pm->update_refs);
3074		if (ret < 0)
3075			goto out;
3076	}
3077
3078	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3079	if (ret)
3080		goto out;
3081
3082	if (exists) {
3083		list_add_tail(&pm->list, &entry->list);
3084	} else {
3085		rb_link_node(&pm->node, parent, p);
3086		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3087	}
3088	ret = 0;
3089out:
3090	if (ret) {
3091		__free_recorded_refs(&pm->update_refs);
3092		kfree(pm);
3093	}
3094	return ret;
3095}
3096
3097static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3098						      u64 parent_ino)
3099{
3100	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3101	struct pending_dir_move *entry;
3102
3103	while (n) {
3104		entry = rb_entry(n, struct pending_dir_move, node);
3105		if (parent_ino < entry->parent_ino)
3106			n = n->rb_left;
3107		else if (parent_ino > entry->parent_ino)
3108			n = n->rb_right;
3109		else
3110			return entry;
3111	}
3112	return NULL;
3113}
3114
3115static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3116{
3117	struct fs_path *from_path = NULL;
3118	struct fs_path *to_path = NULL;
3119	struct fs_path *name = NULL;
3120	u64 orig_progress = sctx->send_progress;
3121	struct recorded_ref *cur;
3122	u64 parent_ino, parent_gen;
3123	struct waiting_dir_move *dm = NULL;
3124	u64 rmdir_ino = 0;
3125	int ret;
3126
3127	name = fs_path_alloc();
3128	from_path = fs_path_alloc();
3129	if (!name || !from_path) {
3130		ret = -ENOMEM;
3131		goto out;
3132	}
3133
3134	dm = get_waiting_dir_move(sctx, pm->ino);
3135	ASSERT(dm);
3136	rmdir_ino = dm->rmdir_ino;
3137	free_waiting_dir_move(sctx, dm);
3138
3139	if (pm->is_orphan) {
3140		ret = gen_unique_name(sctx, pm->ino,
3141				      pm->gen, from_path);
3142	} else {
3143		ret = get_first_ref(sctx->parent_root, pm->ino,
3144				    &parent_ino, &parent_gen, name);
3145		if (ret < 0)
3146			goto out;
3147		ret = get_cur_path(sctx, parent_ino, parent_gen,
3148				   from_path);
3149		if (ret < 0)
3150			goto out;
3151		ret = fs_path_add_path(from_path, name);
3152	}
3153	if (ret < 0)
3154		goto out;
3155
3156	sctx->send_progress = sctx->cur_ino + 1;
3157	fs_path_reset(name);
3158	to_path = name;
3159	name = NULL;
3160	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3161	if (ret < 0)
3162		goto out;
3163
3164	ret = send_rename(sctx, from_path, to_path);
3165	if (ret < 0)
3166		goto out;
3167
3168	if (rmdir_ino) {
3169		struct orphan_dir_info *odi;
3170
3171		odi = get_orphan_dir_info(sctx, rmdir_ino);
3172		if (!odi) {
3173			/* already deleted */
3174			goto finish;
3175		}
3176		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3177		if (ret < 0)
3178			goto out;
3179		if (!ret)
3180			goto finish;
3181
3182		name = fs_path_alloc();
3183		if (!name) {
3184			ret = -ENOMEM;
3185			goto out;
3186		}
3187		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3188		if (ret < 0)
3189			goto out;
3190		ret = send_rmdir(sctx, name);
3191		if (ret < 0)
3192			goto out;
3193		free_orphan_dir_info(sctx, odi);
3194	}
3195
3196finish:
3197	ret = send_utimes(sctx, pm->ino, pm->gen);
3198	if (ret < 0)
3199		goto out;
3200
3201	/*
3202	 * After rename/move, need to update the utimes of both new parent(s)
3203	 * and old parent(s).
3204	 */
3205	list_for_each_entry(cur, &pm->update_refs, list) {
3206		if (cur->dir == rmdir_ino)
3207			continue;
3208		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3209		if (ret < 0)
3210			goto out;
3211	}
3212
3213out:
3214	fs_path_free(name);
3215	fs_path_free(from_path);
3216	fs_path_free(to_path);
3217	sctx->send_progress = orig_progress;
3218
3219	return ret;
3220}
3221
3222static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3223{
3224	if (!list_empty(&m->list))
3225		list_del(&m->list);
3226	if (!RB_EMPTY_NODE(&m->node))
3227		rb_erase(&m->node, &sctx->pending_dir_moves);
3228	__free_recorded_refs(&m->update_refs);
3229	kfree(m);
3230}
3231
3232static void tail_append_pending_moves(struct pending_dir_move *moves,
3233				      struct list_head *stack)
3234{
3235	if (list_empty(&moves->list)) {
3236		list_add_tail(&moves->list, stack);
3237	} else {
3238		LIST_HEAD(list);
3239		list_splice_init(&moves->list, &list);
3240		list_add_tail(&moves->list, stack);
3241		list_splice_tail(&list, stack);
3242	}
3243}
3244
3245static int apply_children_dir_moves(struct send_ctx *sctx)
3246{
3247	struct pending_dir_move *pm;
3248	struct list_head stack;
3249	u64 parent_ino = sctx->cur_ino;
3250	int ret = 0;
3251
3252	pm = get_pending_dir_moves(sctx, parent_ino);
3253	if (!pm)
3254		return 0;
3255
3256	INIT_LIST_HEAD(&stack);
3257	tail_append_pending_moves(pm, &stack);
3258
3259	while (!list_empty(&stack)) {
3260		pm = list_first_entry(&stack, struct pending_dir_move, list);
3261		parent_ino = pm->ino;
3262		ret = apply_dir_move(sctx, pm);
3263		free_pending_move(sctx, pm);
3264		if (ret)
3265			goto out;
3266		pm = get_pending_dir_moves(sctx, parent_ino);
3267		if (pm)
3268			tail_append_pending_moves(pm, &stack);
3269	}
3270	return 0;
3271
3272out:
3273	while (!list_empty(&stack)) {
3274		pm = list_first_entry(&stack, struct pending_dir_move, list);
3275		free_pending_move(sctx, pm);
3276	}
3277	return ret;
3278}
3279
3280/*
3281 * We might need to delay a directory rename even when no ancestor directory
3282 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3283 * renamed. This happens when we rename a directory to the old name (the name
3284 * in the parent root) of some other unrelated directory that got its rename
3285 * delayed due to some ancestor with higher number that got renamed.
3286 *
3287 * Example:
3288 *
3289 * Parent snapshot:
3290 * .                                       (ino 256)
3291 * |---- a/                                (ino 257)
3292 * |     |---- file                        (ino 260)
3293 * |
3294 * |---- b/                                (ino 258)
3295 * |---- c/                                (ino 259)
3296 *
3297 * Send snapshot:
3298 * .                                       (ino 256)
3299 * |---- a/                                (ino 258)
3300 * |---- x/                                (ino 259)
3301 *       |---- y/                          (ino 257)
3302 *             |----- file                 (ino 260)
3303 *
3304 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3305 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3306 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3307 * must issue is:
3308 *
3309 * 1 - rename 259 from 'c' to 'x'
3310 * 2 - rename 257 from 'a' to 'x/y'
3311 * 3 - rename 258 from 'b' to 'a'
3312 *
3313 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3314 * be done right away and < 0 on error.
3315 */
3316static int wait_for_dest_dir_move(struct send_ctx *sctx,
3317				  struct recorded_ref *parent_ref,
3318				  const bool is_orphan)
3319{
3320	struct btrfs_path *path;
3321	struct btrfs_key key;
3322	struct btrfs_key di_key;
3323	struct btrfs_dir_item *di;
3324	u64 left_gen;
3325	u64 right_gen;
3326	int ret = 0;
3327
3328	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3329		return 0;
3330
3331	path = alloc_path_for_send();
3332	if (!path)
3333		return -ENOMEM;
3334
3335	key.objectid = parent_ref->dir;
3336	key.type = BTRFS_DIR_ITEM_KEY;
3337	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3338
3339	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3340	if (ret < 0) {
3341		goto out;
3342	} else if (ret > 0) {
3343		ret = 0;
3344		goto out;
3345	}
3346
3347	di = btrfs_match_dir_item_name(sctx->parent_root, path,
3348				       parent_ref->name, parent_ref->name_len);
3349	if (!di) {
3350		ret = 0;
3351		goto out;
3352	}
3353	/*
3354	 * di_key.objectid has the number of the inode that has a dentry in the
3355	 * parent directory with the same name that sctx->cur_ino is being
3356	 * renamed to. We need to check if that inode is in the send root as
3357	 * well and if it is currently marked as an inode with a pending rename,
3358	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3359	 * that it happens after that other inode is renamed.
3360	 */
3361	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3362	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3363		ret = 0;
3364		goto out;
3365	}
3366
3367	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3368			     &left_gen, NULL, NULL, NULL, NULL);
3369	if (ret < 0)
3370		goto out;
3371	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3372			     &right_gen, NULL, NULL, NULL, NULL);
3373	if (ret < 0) {
3374		if (ret == -ENOENT)
3375			ret = 0;
3376		goto out;
3377	}
3378
3379	/* Different inode, no need to delay the rename of sctx->cur_ino */
3380	if (right_gen != left_gen) {
3381		ret = 0;
3382		goto out;
3383	}
3384
3385	if (is_waiting_for_move(sctx, di_key.objectid)) {
3386		ret = add_pending_dir_move(sctx,
3387					   sctx->cur_ino,
3388					   sctx->cur_inode_gen,
3389					   di_key.objectid,
3390					   &sctx->new_refs,
3391					   &sctx->deleted_refs,
3392					   is_orphan);
3393		if (!ret)
3394			ret = 1;
3395	}
3396out:
3397	btrfs_free_path(path);
3398	return ret;
3399}
3400
3401/*
3402 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3403 * Return 1 if true, 0 if false and < 0 on error.
3404 */
3405static int is_ancestor(struct btrfs_root *root,
3406		       const u64 ino1,
3407		       const u64 ino1_gen,
3408		       const u64 ino2,
3409		       struct fs_path *fs_path)
3410{
3411	u64 ino = ino2;
3412
3413	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3414		int ret;
3415		u64 parent;
3416		u64 parent_gen;
3417
3418		fs_path_reset(fs_path);
3419		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3420		if (ret < 0) {
3421			if (ret == -ENOENT && ino == ino2)
3422				ret = 0;
3423			return ret;
3424		}
3425		if (parent == ino1)
3426			return parent_gen == ino1_gen ? 1 : 0;
3427		ino = parent;
3428	}
3429	return 0;
3430}
3431
3432static int wait_for_parent_move(struct send_ctx *sctx,
3433				struct recorded_ref *parent_ref,
3434				const bool is_orphan)
3435{
3436	int ret = 0;
3437	u64 ino = parent_ref->dir;
3438	u64 parent_ino_before, parent_ino_after;
3439	struct fs_path *path_before = NULL;
3440	struct fs_path *path_after = NULL;
3441	int len1, len2;
3442
3443	path_after = fs_path_alloc();
3444	path_before = fs_path_alloc();
3445	if (!path_after || !path_before) {
3446		ret = -ENOMEM;
3447		goto out;
3448	}
3449
3450	/*
3451	 * Our current directory inode may not yet be renamed/moved because some
3452	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3453	 * such ancestor exists and make sure our own rename/move happens after
3454	 * that ancestor is processed to avoid path build infinite loops (done
3455	 * at get_cur_path()).
3456	 */
3457	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3458		if (is_waiting_for_move(sctx, ino)) {
3459			/*
3460			 * If the current inode is an ancestor of ino in the
3461			 * parent root, we need to delay the rename of the
3462			 * current inode, otherwise don't delayed the rename
3463			 * because we can end up with a circular dependency
3464			 * of renames, resulting in some directories never
3465			 * getting the respective rename operations issued in
3466			 * the send stream or getting into infinite path build
3467			 * loops.
3468			 */
3469			ret = is_ancestor(sctx->parent_root,
3470					  sctx->cur_ino, sctx->cur_inode_gen,
3471					  ino, path_before);
3472			break;
3473		}
3474
3475		fs_path_reset(path_before);
3476		fs_path_reset(path_after);
3477
3478		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3479				    NULL, path_after);
3480		if (ret < 0)
3481			goto out;
3482		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3483				    NULL, path_before);
3484		if (ret < 0 && ret != -ENOENT) {
3485			goto out;
3486		} else if (ret == -ENOENT) {
3487			ret = 0;
3488			break;
3489		}
3490
3491		len1 = fs_path_len(path_before);
3492		len2 = fs_path_len(path_after);
3493		if (ino > sctx->cur_ino &&
3494		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3495		     memcmp(path_before->start, path_after->start, len1))) {
3496			ret = 1;
3497			break;
3498		}
3499		ino = parent_ino_after;
3500	}
3501
3502out:
3503	fs_path_free(path_before);
3504	fs_path_free(path_after);
3505
3506	if (ret == 1) {
3507		ret = add_pending_dir_move(sctx,
3508					   sctx->cur_ino,
3509					   sctx->cur_inode_gen,
3510					   ino,
3511					   &sctx->new_refs,
3512					   &sctx->deleted_refs,
3513					   is_orphan);
3514		if (!ret)
3515			ret = 1;
3516	}
3517
3518	return ret;
3519}
3520
3521/*
3522 * This does all the move/link/unlink/rmdir magic.
3523 */
3524static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3525{
3526	int ret = 0;
3527	struct recorded_ref *cur;
3528	struct recorded_ref *cur2;
3529	struct list_head check_dirs;
3530	struct fs_path *valid_path = NULL;
3531	u64 ow_inode = 0;
3532	u64 ow_gen;
3533	int did_overwrite = 0;
3534	int is_orphan = 0;
3535	u64 last_dir_ino_rm = 0;
3536	bool can_rename = true;
3537
3538verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3539
3540	/*
3541	 * This should never happen as the root dir always has the same ref
3542	 * which is always '..'
3543	 */
3544	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3545	INIT_LIST_HEAD(&check_dirs);
3546
3547	valid_path = fs_path_alloc();
3548	if (!valid_path) {
3549		ret = -ENOMEM;
3550		goto out;
3551	}
3552
3553	/*
3554	 * First, check if the first ref of the current inode was overwritten
3555	 * before. If yes, we know that the current inode was already orphanized
3556	 * and thus use the orphan name. If not, we can use get_cur_path to
3557	 * get the path of the first ref as it would like while receiving at
3558	 * this point in time.
3559	 * New inodes are always orphan at the beginning, so force to use the
3560	 * orphan name in this case.
3561	 * The first ref is stored in valid_path and will be updated if it
3562	 * gets moved around.
3563	 */
3564	if (!sctx->cur_inode_new) {
3565		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3566				sctx->cur_inode_gen);
3567		if (ret < 0)
3568			goto out;
3569		if (ret)
3570			did_overwrite = 1;
3571	}
3572	if (sctx->cur_inode_new || did_overwrite) {
3573		ret = gen_unique_name(sctx, sctx->cur_ino,
3574				sctx->cur_inode_gen, valid_path);
3575		if (ret < 0)
3576			goto out;
3577		is_orphan = 1;
3578	} else {
3579		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3580				valid_path);
3581		if (ret < 0)
3582			goto out;
3583	}
3584
3585	list_for_each_entry(cur, &sctx->new_refs, list) {
3586		/*
3587		 * We may have refs where the parent directory does not exist
3588		 * yet. This happens if the parent directories inum is higher
3589		 * the the current inum. To handle this case, we create the
3590		 * parent directory out of order. But we need to check if this
3591		 * did already happen before due to other refs in the same dir.
3592		 */
3593		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3594		if (ret < 0)
3595			goto out;
3596		if (ret == inode_state_will_create) {
3597			ret = 0;
3598			/*
3599			 * First check if any of the current inodes refs did
3600			 * already create the dir.
3601			 */
3602			list_for_each_entry(cur2, &sctx->new_refs, list) {
3603				if (cur == cur2)
3604					break;
3605				if (cur2->dir == cur->dir) {
3606					ret = 1;
3607					break;
3608				}
3609			}
3610
3611			/*
3612			 * If that did not happen, check if a previous inode
3613			 * did already create the dir.
3614			 */
3615			if (!ret)
3616				ret = did_create_dir(sctx, cur->dir);
3617			if (ret < 0)
3618				goto out;
3619			if (!ret) {
3620				ret = send_create_inode(sctx, cur->dir);
3621				if (ret < 0)
3622					goto out;
3623			}
3624		}
3625
3626		/*
3627		 * Check if this new ref would overwrite the first ref of
3628		 * another unprocessed inode. If yes, orphanize the
3629		 * overwritten inode. If we find an overwritten ref that is
3630		 * not the first ref, simply unlink it.
3631		 */
3632		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3633				cur->name, cur->name_len,
3634				&ow_inode, &ow_gen);
3635		if (ret < 0)
3636			goto out;
3637		if (ret) {
3638			ret = is_first_ref(sctx->parent_root,
3639					   ow_inode, cur->dir, cur->name,
3640					   cur->name_len);
3641			if (ret < 0)
3642				goto out;
3643			if (ret) {
3644				struct name_cache_entry *nce;
3645
3646				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3647						cur->full_path);
3648				if (ret < 0)
3649					goto out;
3650				/*
3651				 * Make sure we clear our orphanized inode's
3652				 * name from the name cache. This is because the
3653				 * inode ow_inode might be an ancestor of some
3654				 * other inode that will be orphanized as well
3655				 * later and has an inode number greater than
3656				 * sctx->send_progress. We need to prevent
3657				 * future name lookups from using the old name
3658				 * and get instead the orphan name.
3659				 */
3660				nce = name_cache_search(sctx, ow_inode, ow_gen);
3661				if (nce) {
3662					name_cache_delete(sctx, nce);
3663					kfree(nce);
3664				}
3665			} else {
3666				ret = send_unlink(sctx, cur->full_path);
3667				if (ret < 0)
3668					goto out;
3669			}
3670		}
3671
3672		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3673			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3674			if (ret < 0)
3675				goto out;
3676			if (ret == 1) {
3677				can_rename = false;
3678				*pending_move = 1;
3679			}
3680		}
3681
3682		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3683		    can_rename) {
3684			ret = wait_for_parent_move(sctx, cur, is_orphan);
3685			if (ret < 0)
3686				goto out;
3687			if (ret == 1) {
3688				can_rename = false;
3689				*pending_move = 1;
3690			}
3691		}
3692
3693		/*
3694		 * link/move the ref to the new place. If we have an orphan
3695		 * inode, move it and update valid_path. If not, link or move
3696		 * it depending on the inode mode.
3697		 */
3698		if (is_orphan && can_rename) {
3699			ret = send_rename(sctx, valid_path, cur->full_path);
3700			if (ret < 0)
3701				goto out;
3702			is_orphan = 0;
3703			ret = fs_path_copy(valid_path, cur->full_path);
3704			if (ret < 0)
3705				goto out;
3706		} else if (can_rename) {
3707			if (S_ISDIR(sctx->cur_inode_mode)) {
3708				/*
3709				 * Dirs can't be linked, so move it. For moved
3710				 * dirs, we always have one new and one deleted
3711				 * ref. The deleted ref is ignored later.
3712				 */
3713				ret = send_rename(sctx, valid_path,
3714						  cur->full_path);
3715				if (!ret)
3716					ret = fs_path_copy(valid_path,
3717							   cur->full_path);
3718				if (ret < 0)
3719					goto out;
3720			} else {
3721				ret = send_link(sctx, cur->full_path,
3722						valid_path);
3723				if (ret < 0)
3724					goto out;
3725			}
3726		}
3727		ret = dup_ref(cur, &check_dirs);
3728		if (ret < 0)
3729			goto out;
3730	}
3731
3732	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3733		/*
3734		 * Check if we can already rmdir the directory. If not,
3735		 * orphanize it. For every dir item inside that gets deleted
3736		 * later, we do this check again and rmdir it then if possible.
3737		 * See the use of check_dirs for more details.
3738		 */
3739		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3740				sctx->cur_ino);
3741		if (ret < 0)
3742			goto out;
3743		if (ret) {
3744			ret = send_rmdir(sctx, valid_path);
3745			if (ret < 0)
3746				goto out;
3747		} else if (!is_orphan) {
3748			ret = orphanize_inode(sctx, sctx->cur_ino,
3749					sctx->cur_inode_gen, valid_path);
3750			if (ret < 0)
3751				goto out;
3752			is_orphan = 1;
3753		}
3754
3755		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3756			ret = dup_ref(cur, &check_dirs);
3757			if (ret < 0)
3758				goto out;
3759		}
3760	} else if (S_ISDIR(sctx->cur_inode_mode) &&
3761		   !list_empty(&sctx->deleted_refs)) {
3762		/*
3763		 * We have a moved dir. Add the old parent to check_dirs
3764		 */
3765		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3766				list);
3767		ret = dup_ref(cur, &check_dirs);
3768		if (ret < 0)
3769			goto out;
3770	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
3771		/*
3772		 * We have a non dir inode. Go through all deleted refs and
3773		 * unlink them if they were not already overwritten by other
3774		 * inodes.
3775		 */
3776		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3777			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3778					sctx->cur_ino, sctx->cur_inode_gen,
3779					cur->name, cur->name_len);
3780			if (ret < 0)
3781				goto out;
3782			if (!ret) {
3783				ret = send_unlink(sctx, cur->full_path);
3784				if (ret < 0)
3785					goto out;
3786			}
3787			ret = dup_ref(cur, &check_dirs);
3788			if (ret < 0)
3789				goto out;
3790		}
3791		/*
3792		 * If the inode is still orphan, unlink the orphan. This may
3793		 * happen when a previous inode did overwrite the first ref
3794		 * of this inode and no new refs were added for the current
3795		 * inode. Unlinking does not mean that the inode is deleted in
3796		 * all cases. There may still be links to this inode in other
3797		 * places.
3798		 */
3799		if (is_orphan) {
3800			ret = send_unlink(sctx, valid_path);
3801			if (ret < 0)
3802				goto out;
3803		}
3804	}
3805
3806	/*
3807	 * We did collect all parent dirs where cur_inode was once located. We
3808	 * now go through all these dirs and check if they are pending for
3809	 * deletion and if it's finally possible to perform the rmdir now.
3810	 * We also update the inode stats of the parent dirs here.
3811	 */
3812	list_for_each_entry(cur, &check_dirs, list) {
3813		/*
3814		 * In case we had refs into dirs that were not processed yet,
3815		 * we don't need to do the utime and rmdir logic for these dirs.
3816		 * The dir will be processed later.
3817		 */
3818		if (cur->dir > sctx->cur_ino)
3819			continue;
3820
3821		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3822		if (ret < 0)
3823			goto out;
3824
3825		if (ret == inode_state_did_create ||
3826		    ret == inode_state_no_change) {
3827			/* TODO delayed utimes */
3828			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3829			if (ret < 0)
3830				goto out;
3831		} else if (ret == inode_state_did_delete &&
3832			   cur->dir != last_dir_ino_rm) {
3833			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3834					sctx->cur_ino);
3835			if (ret < 0)
3836				goto out;
3837			if (ret) {
3838				ret = get_cur_path(sctx, cur->dir,
3839						   cur->dir_gen, valid_path);
3840				if (ret < 0)
3841					goto out;
3842				ret = send_rmdir(sctx, valid_path);
3843				if (ret < 0)
3844					goto out;
3845				last_dir_ino_rm = cur->dir;
3846			}
3847		}
3848	}
3849
3850	ret = 0;
3851
3852out:
3853	__free_recorded_refs(&check_dirs);
3854	free_recorded_refs(sctx);
3855	fs_path_free(valid_path);
3856	return ret;
3857}
3858
3859static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3860		      struct fs_path *name, void *ctx, struct list_head *refs)
3861{
3862	int ret = 0;
3863	struct send_ctx *sctx = ctx;
3864	struct fs_path *p;
3865	u64 gen;
3866
3867	p = fs_path_alloc();
3868	if (!p)
3869		return -ENOMEM;
3870
3871	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3872			NULL, NULL);
3873	if (ret < 0)
3874		goto out;
3875
3876	ret = get_cur_path(sctx, dir, gen, p);
3877	if (ret < 0)
3878		goto out;
3879	ret = fs_path_add_path(p, name);
3880	if (ret < 0)
3881		goto out;
3882
3883	ret = __record_ref(refs, dir, gen, p);
3884
3885out:
3886	if (ret)
3887		fs_path_free(p);
3888	return ret;
3889}
3890
3891static int __record_new_ref(int num, u64 dir, int index,
3892			    struct fs_path *name,
3893			    void *ctx)
3894{
3895	struct send_ctx *sctx = ctx;
3896	return record_ref(sctx->send_root, num, dir, index, name,
3897			  ctx, &sctx->new_refs);
3898}
3899
3900
3901static int __record_deleted_ref(int num, u64 dir, int index,
3902				struct fs_path *name,
3903				void *ctx)
3904{
3905	struct send_ctx *sctx = ctx;
3906	return record_ref(sctx->parent_root, num, dir, index, name,
3907			  ctx, &sctx->deleted_refs);
3908}
3909
3910static int record_new_ref(struct send_ctx *sctx)
3911{
3912	int ret;
3913
3914	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3915				sctx->cmp_key, 0, __record_new_ref, sctx);
3916	if (ret < 0)
3917		goto out;
3918	ret = 0;
3919
3920out:
3921	return ret;
3922}
3923
3924static int record_deleted_ref(struct send_ctx *sctx)
3925{
3926	int ret;
3927
3928	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3929				sctx->cmp_key, 0, __record_deleted_ref, sctx);
3930	if (ret < 0)
3931		goto out;
3932	ret = 0;
3933
3934out:
3935	return ret;
3936}
3937
3938struct find_ref_ctx {
3939	u64 dir;
3940	u64 dir_gen;
3941	struct btrfs_root *root;
3942	struct fs_path *name;
3943	int found_idx;
3944};
3945
3946static int __find_iref(int num, u64 dir, int index,
3947		       struct fs_path *name,
3948		       void *ctx_)
3949{
3950	struct find_ref_ctx *ctx = ctx_;
3951	u64 dir_gen;
3952	int ret;
3953
3954	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3955	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3956		/*
3957		 * To avoid doing extra lookups we'll only do this if everything
3958		 * else matches.
3959		 */
3960		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3961				     NULL, NULL, NULL);
3962		if (ret)
3963			return ret;
3964		if (dir_gen != ctx->dir_gen)
3965			return 0;
3966		ctx->found_idx = num;
3967		return 1;
3968	}
3969	return 0;
3970}
3971
3972static int find_iref(struct btrfs_root *root,
3973		     struct btrfs_path *path,
3974		     struct btrfs_key *key,
3975		     u64 dir, u64 dir_gen, struct fs_path *name)
3976{
3977	int ret;
3978	struct find_ref_ctx ctx;
3979
3980	ctx.dir = dir;
3981	ctx.name = name;
3982	ctx.dir_gen = dir_gen;
3983	ctx.found_idx = -1;
3984	ctx.root = root;
3985
3986	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3987	if (ret < 0)
3988		return ret;
3989
3990	if (ctx.found_idx == -1)
3991		return -ENOENT;
3992
3993	return ctx.found_idx;
3994}
3995
3996static int __record_changed_new_ref(int num, u64 dir, int index,
3997				    struct fs_path *name,
3998				    void *ctx)
3999{
4000	u64 dir_gen;
4001	int ret;
4002	struct send_ctx *sctx = ctx;
4003
4004	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4005			     NULL, NULL, NULL);
4006	if (ret)
4007		return ret;
4008
4009	ret = find_iref(sctx->parent_root, sctx->right_path,
4010			sctx->cmp_key, dir, dir_gen, name);
4011	if (ret == -ENOENT)
4012		ret = __record_new_ref(num, dir, index, name, sctx);
4013	else if (ret > 0)
4014		ret = 0;
4015
4016	return ret;
4017}
4018
4019static int __record_changed_deleted_ref(int num, u64 dir, int index,
4020					struct fs_path *name,
4021					void *ctx)
4022{
4023	u64 dir_gen;
4024	int ret;
4025	struct send_ctx *sctx = ctx;
4026
4027	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4028			     NULL, NULL, NULL);
4029	if (ret)
4030		return ret;
4031
4032	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4033			dir, dir_gen, name);
4034	if (ret == -ENOENT)
4035		ret = __record_deleted_ref(num, dir, index, name, sctx);
4036	else if (ret > 0)
4037		ret = 0;
4038
4039	return ret;
4040}
4041
4042static int record_changed_ref(struct send_ctx *sctx)
4043{
4044	int ret = 0;
4045
4046	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4047			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4048	if (ret < 0)
4049		goto out;
4050	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4051			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4052	if (ret < 0)
4053		goto out;
4054	ret = 0;
4055
4056out:
4057	return ret;
4058}
4059
4060/*
4061 * Record and process all refs at once. Needed when an inode changes the
4062 * generation number, which means that it was deleted and recreated.
4063 */
4064static int process_all_refs(struct send_ctx *sctx,
4065			    enum btrfs_compare_tree_result cmd)
4066{
4067	int ret;
4068	struct btrfs_root *root;
4069	struct btrfs_path *path;
4070	struct btrfs_key key;
4071	struct btrfs_key found_key;
4072	struct extent_buffer *eb;
4073	int slot;
4074	iterate_inode_ref_t cb;
4075	int pending_move = 0;
4076
4077	path = alloc_path_for_send();
4078	if (!path)
4079		return -ENOMEM;
4080
4081	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4082		root = sctx->send_root;
4083		cb = __record_new_ref;
4084	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4085		root = sctx->parent_root;
4086		cb = __record_deleted_ref;
4087	} else {
4088		btrfs_err(sctx->send_root->fs_info,
4089				"Wrong command %d in process_all_refs", cmd);
4090		ret = -EINVAL;
4091		goto out;
4092	}
4093
4094	key.objectid = sctx->cmp_key->objectid;
4095	key.type = BTRFS_INODE_REF_KEY;
4096	key.offset = 0;
4097	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4098	if (ret < 0)
4099		goto out;
4100
4101	while (1) {
4102		eb = path->nodes[0];
4103		slot = path->slots[0];
4104		if (slot >= btrfs_header_nritems(eb)) {
4105			ret = btrfs_next_leaf(root, path);
4106			if (ret < 0)
4107				goto out;
4108			else if (ret > 0)
4109				break;
4110			continue;
4111		}
4112
4113		btrfs_item_key_to_cpu(eb, &found_key, slot);
4114
4115		if (found_key.objectid != key.objectid ||
4116		    (found_key.type != BTRFS_INODE_REF_KEY &&
4117		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4118			break;
4119
4120		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4121		if (ret < 0)
4122			goto out;
4123
4124		path->slots[0]++;
4125	}
4126	btrfs_release_path(path);
4127
4128	ret = process_recorded_refs(sctx, &pending_move);
4129	/* Only applicable to an incremental send. */
4130	ASSERT(pending_move == 0);
4131
4132out:
4133	btrfs_free_path(path);
4134	return ret;
4135}
4136
4137static int send_set_xattr(struct send_ctx *sctx,
4138			  struct fs_path *path,
4139			  const char *name, int name_len,
4140			  const char *data, int data_len)
4141{
4142	int ret = 0;
4143
4144	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4145	if (ret < 0)
4146		goto out;
4147
4148	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4149	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4150	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4151
4152	ret = send_cmd(sctx);
4153
4154tlv_put_failure:
4155out:
4156	return ret;
4157}
4158
4159static int send_remove_xattr(struct send_ctx *sctx,
4160			  struct fs_path *path,
4161			  const char *name, int name_len)
4162{
4163	int ret = 0;
4164
4165	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4166	if (ret < 0)
4167		goto out;
4168
4169	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4170	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4171
4172	ret = send_cmd(sctx);
4173
4174tlv_put_failure:
4175out:
4176	return ret;
4177}
4178
4179static int __process_new_xattr(int num, struct btrfs_key *di_key,
4180			       const char *name, int name_len,
4181			       const char *data, int data_len,
4182			       u8 type, void *ctx)
4183{
4184	int ret;
4185	struct send_ctx *sctx = ctx;
4186	struct fs_path *p;
4187	posix_acl_xattr_header dummy_acl;
4188
4189	p = fs_path_alloc();
4190	if (!p)
4191		return -ENOMEM;
4192
4193	/*
4194	 * This hack is needed because empty acl's are stored as zero byte
4195	 * data in xattrs. Problem with that is, that receiving these zero byte
4196	 * acl's will fail later. To fix this, we send a dummy acl list that
4197	 * only contains the version number and no entries.
4198	 */
4199	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4200	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4201		if (data_len == 0) {
4202			dummy_acl.a_version =
4203					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4204			data = (char *)&dummy_acl;
4205			data_len = sizeof(dummy_acl);
4206		}
4207	}
4208
4209	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4210	if (ret < 0)
4211		goto out;
4212
4213	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4214
4215out:
4216	fs_path_free(p);
4217	return ret;
4218}
4219
4220static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4221				   const char *name, int name_len,
4222				   const char *data, int data_len,
4223				   u8 type, void *ctx)
4224{
4225	int ret;
4226	struct send_ctx *sctx = ctx;
4227	struct fs_path *p;
4228
4229	p = fs_path_alloc();
4230	if (!p)
4231		return -ENOMEM;
4232
4233	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4234	if (ret < 0)
4235		goto out;
4236
4237	ret = send_remove_xattr(sctx, p, name, name_len);
4238
4239out:
4240	fs_path_free(p);
4241	return ret;
4242}
4243
4244static int process_new_xattr(struct send_ctx *sctx)
4245{
4246	int ret = 0;
4247
4248	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4249			       sctx->cmp_key, __process_new_xattr, sctx);
4250
4251	return ret;
4252}
4253
4254static int process_deleted_xattr(struct send_ctx *sctx)
4255{
4256	int ret;
4257
4258	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4259			       sctx->cmp_key, __process_deleted_xattr, sctx);
4260
4261	return ret;
4262}
4263
4264struct find_xattr_ctx {
4265	const char *name;
4266	int name_len;
4267	int found_idx;
4268	char *found_data;
4269	int found_data_len;
4270};
4271
4272static int __find_xattr(int num, struct btrfs_key *di_key,
4273			const char *name, int name_len,
4274			const char *data, int data_len,
4275			u8 type, void *vctx)
4276{
4277	struct find_xattr_ctx *ctx = vctx;
4278
4279	if (name_len == ctx->name_len &&
4280	    strncmp(name, ctx->name, name_len) == 0) {
4281		ctx->found_idx = num;
4282		ctx->found_data_len = data_len;
4283		ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
4284		if (!ctx->found_data)
4285			return -ENOMEM;
4286		return 1;
4287	}
4288	return 0;
4289}
4290
4291static int find_xattr(struct btrfs_root *root,
4292		      struct btrfs_path *path,
4293		      struct btrfs_key *key,
4294		      const char *name, int name_len,
4295		      char **data, int *data_len)
4296{
4297	int ret;
4298	struct find_xattr_ctx ctx;
4299
4300	ctx.name = name;
4301	ctx.name_len = name_len;
4302	ctx.found_idx = -1;
4303	ctx.found_data = NULL;
4304	ctx.found_data_len = 0;
4305
4306	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4307	if (ret < 0)
4308		return ret;
4309
4310	if (ctx.found_idx == -1)
4311		return -ENOENT;
4312	if (data) {
4313		*data = ctx.found_data;
4314		*data_len = ctx.found_data_len;
4315	} else {
4316		kfree(ctx.found_data);
4317	}
4318	return ctx.found_idx;
4319}
4320
4321
4322static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4323				       const char *name, int name_len,
4324				       const char *data, int data_len,
4325				       u8 type, void *ctx)
4326{
4327	int ret;
4328	struct send_ctx *sctx = ctx;
4329	char *found_data = NULL;
4330	int found_data_len  = 0;
4331
4332	ret = find_xattr(sctx->parent_root, sctx->right_path,
4333			 sctx->cmp_key, name, name_len, &found_data,
4334			 &found_data_len);
4335	if (ret == -ENOENT) {
4336		ret = __process_new_xattr(num, di_key, name, name_len, data,
4337				data_len, type, ctx);
4338	} else if (ret >= 0) {
4339		if (data_len != found_data_len ||
4340		    memcmp(data, found_data, data_len)) {
4341			ret = __process_new_xattr(num, di_key, name, name_len,
4342					data, data_len, type, ctx);
4343		} else {
4344			ret = 0;
4345		}
4346	}
4347
4348	kfree(found_data);
4349	return ret;
4350}
4351
4352static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4353					   const char *name, int name_len,
4354					   const char *data, int data_len,
4355					   u8 type, void *ctx)
4356{
4357	int ret;
4358	struct send_ctx *sctx = ctx;
4359
4360	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4361			 name, name_len, NULL, NULL);
4362	if (ret == -ENOENT)
4363		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4364				data_len, type, ctx);
4365	else if (ret >= 0)
4366		ret = 0;
4367
4368	return ret;
4369}
4370
4371static int process_changed_xattr(struct send_ctx *sctx)
4372{
4373	int ret = 0;
4374
4375	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4376			sctx->cmp_key, __process_changed_new_xattr, sctx);
4377	if (ret < 0)
4378		goto out;
4379	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4380			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4381
4382out:
4383	return ret;
4384}
4385
4386static int process_all_new_xattrs(struct send_ctx *sctx)
4387{
4388	int ret;
4389	struct btrfs_root *root;
4390	struct btrfs_path *path;
4391	struct btrfs_key key;
4392	struct btrfs_key found_key;
4393	struct extent_buffer *eb;
4394	int slot;
4395
4396	path = alloc_path_for_send();
4397	if (!path)
4398		return -ENOMEM;
4399
4400	root = sctx->send_root;
4401
4402	key.objectid = sctx->cmp_key->objectid;
4403	key.type = BTRFS_XATTR_ITEM_KEY;
4404	key.offset = 0;
4405	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4406	if (ret < 0)
4407		goto out;
4408
4409	while (1) {
4410		eb = path->nodes[0];
4411		slot = path->slots[0];
4412		if (slot >= btrfs_header_nritems(eb)) {
4413			ret = btrfs_next_leaf(root, path);
4414			if (ret < 0) {
4415				goto out;
4416			} else if (ret > 0) {
4417				ret = 0;
4418				break;
4419			}
4420			continue;
4421		}
4422
4423		btrfs_item_key_to_cpu(eb, &found_key, slot);
4424		if (found_key.objectid != key.objectid ||
4425		    found_key.type != key.type) {
4426			ret = 0;
4427			goto out;
4428		}
4429
4430		ret = iterate_dir_item(root, path, &found_key,
4431				       __process_new_xattr, sctx);
4432		if (ret < 0)
4433			goto out;
4434
4435		path->slots[0]++;
4436	}
4437
4438out:
4439	btrfs_free_path(path);
4440	return ret;
4441}
4442
4443static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4444{
4445	struct btrfs_root *root = sctx->send_root;
4446	struct btrfs_fs_info *fs_info = root->fs_info;
4447	struct inode *inode;
4448	struct page *page;
4449	char *addr;
4450	struct btrfs_key key;
4451	pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4452	pgoff_t last_index;
4453	unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4454	ssize_t ret = 0;
4455
4456	key.objectid = sctx->cur_ino;
4457	key.type = BTRFS_INODE_ITEM_KEY;
4458	key.offset = 0;
4459
4460	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4461	if (IS_ERR(inode))
4462		return PTR_ERR(inode);
4463
4464	if (offset + len > i_size_read(inode)) {
4465		if (offset > i_size_read(inode))
4466			len = 0;
4467		else
4468			len = offset - i_size_read(inode);
4469	}
4470	if (len == 0)
4471		goto out;
4472
4473	last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4474
4475	/* initial readahead */
4476	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4477	file_ra_state_init(&sctx->ra, inode->i_mapping);
4478	btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4479		       last_index - index + 1);
4480
4481	while (index <= last_index) {
4482		unsigned cur_len = min_t(unsigned, len,
4483					 PAGE_CACHE_SIZE - pg_offset);
4484		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4485		if (!page) {
4486			ret = -ENOMEM;
4487			break;
4488		}
4489
4490		if (!PageUptodate(page)) {
4491			btrfs_readpage(NULL, page);
4492			lock_page(page);
4493			if (!PageUptodate(page)) {
4494				unlock_page(page);
4495				page_cache_release(page);
4496				ret = -EIO;
4497				break;
4498			}
4499		}
4500
4501		addr = kmap(page);
4502		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4503		kunmap(page);
4504		unlock_page(page);
4505		page_cache_release(page);
4506		index++;
4507		pg_offset = 0;
4508		len -= cur_len;
4509		ret += cur_len;
4510	}
4511out:
4512	iput(inode);
4513	return ret;
4514}
4515
4516/*
4517 * Read some bytes from the current inode/file and send a write command to
4518 * user space.
4519 */
4520static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4521{
4522	int ret = 0;
4523	struct fs_path *p;
4524	ssize_t num_read = 0;
4525
4526	p = fs_path_alloc();
4527	if (!p)
4528		return -ENOMEM;
4529
4530verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4531
4532	num_read = fill_read_buf(sctx, offset, len);
4533	if (num_read <= 0) {
4534		if (num_read < 0)
4535			ret = num_read;
4536		goto out;
4537	}
4538
4539	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4540	if (ret < 0)
4541		goto out;
4542
4543	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4544	if (ret < 0)
4545		goto out;
4546
4547	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4548	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4549	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4550
4551	ret = send_cmd(sctx);
4552
4553tlv_put_failure:
4554out:
4555	fs_path_free(p);
4556	if (ret < 0)
4557		return ret;
4558	return num_read;
4559}
4560
4561/*
4562 * Send a clone command to user space.
4563 */
4564static int send_clone(struct send_ctx *sctx,
4565		      u64 offset, u32 len,
4566		      struct clone_root *clone_root)
4567{
4568	int ret = 0;
4569	struct fs_path *p;
4570	u64 gen;
4571
4572verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4573	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4574		clone_root->root->objectid, clone_root->ino,
4575		clone_root->offset);
4576
4577	p = fs_path_alloc();
4578	if (!p)
4579		return -ENOMEM;
4580
4581	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4582	if (ret < 0)
4583		goto out;
4584
4585	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4586	if (ret < 0)
4587		goto out;
4588
4589	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4590	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4591	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4592
4593	if (clone_root->root == sctx->send_root) {
4594		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4595				&gen, NULL, NULL, NULL, NULL);
4596		if (ret < 0)
4597			goto out;
4598		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4599	} else {
4600		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4601	}
4602	if (ret < 0)
4603		goto out;
4604
4605	/*
4606	 * If the parent we're using has a received_uuid set then use that as
4607	 * our clone source as that is what we will look for when doing a
4608	 * receive.
4609	 *
4610	 * This covers the case that we create a snapshot off of a received
4611	 * subvolume and then use that as the parent and try to receive on a
4612	 * different host.
4613	 */
4614	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4615		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4616			     clone_root->root->root_item.received_uuid);
4617	else
4618		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4619			     clone_root->root->root_item.uuid);
4620	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4621		    le64_to_cpu(clone_root->root->root_item.ctransid));
4622	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4623	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4624			clone_root->offset);
4625
4626	ret = send_cmd(sctx);
4627
4628tlv_put_failure:
4629out:
4630	fs_path_free(p);
4631	return ret;
4632}
4633
4634/*
4635 * Send an update extent command to user space.
4636 */
4637static int send_update_extent(struct send_ctx *sctx,
4638			      u64 offset, u32 len)
4639{
4640	int ret = 0;
4641	struct fs_path *p;
4642
4643	p = fs_path_alloc();
4644	if (!p)
4645		return -ENOMEM;
4646
4647	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4648	if (ret < 0)
4649		goto out;
4650
4651	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4652	if (ret < 0)
4653		goto out;
4654
4655	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4656	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4657	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4658
4659	ret = send_cmd(sctx);
4660
4661tlv_put_failure:
4662out:
4663	fs_path_free(p);
4664	return ret;
4665}
4666
4667static int send_hole(struct send_ctx *sctx, u64 end)
4668{
4669	struct fs_path *p = NULL;
4670	u64 offset = sctx->cur_inode_last_extent;
4671	u64 len;
4672	int ret = 0;
4673
4674	p = fs_path_alloc();
4675	if (!p)
4676		return -ENOMEM;
4677	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4678	if (ret < 0)
4679		goto tlv_put_failure;
4680	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4681	while (offset < end) {
4682		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4683
4684		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4685		if (ret < 0)
4686			break;
4687		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4688		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4689		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4690		ret = send_cmd(sctx);
4691		if (ret < 0)
4692			break;
4693		offset += len;
4694	}
4695tlv_put_failure:
4696	fs_path_free(p);
4697	return ret;
4698}
4699
4700static int send_extent_data(struct send_ctx *sctx,
4701			    const u64 offset,
4702			    const u64 len)
4703{
4704	u64 sent = 0;
4705
4706	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4707		return send_update_extent(sctx, offset, len);
4708
4709	while (sent < len) {
4710		u64 size = len - sent;
4711		int ret;
4712
4713		if (size > BTRFS_SEND_READ_SIZE)
4714			size = BTRFS_SEND_READ_SIZE;
4715		ret = send_write(sctx, offset + sent, size);
4716		if (ret < 0)
4717			return ret;
4718		if (!ret)
4719			break;
4720		sent += ret;
4721	}
4722	return 0;
4723}
4724
4725static int clone_range(struct send_ctx *sctx,
4726		       struct clone_root *clone_root,
4727		       const u64 disk_byte,
4728		       u64 data_offset,
4729		       u64 offset,
4730		       u64 len)
4731{
4732	struct btrfs_path *path;
4733	struct btrfs_key key;
4734	int ret;
4735
4736	path = alloc_path_for_send();
4737	if (!path)
4738		return -ENOMEM;
4739
4740	/*
4741	 * We can't send a clone operation for the entire range if we find
4742	 * extent items in the respective range in the source file that
4743	 * refer to different extents or if we find holes.
4744	 * So check for that and do a mix of clone and regular write/copy
4745	 * operations if needed.
4746	 *
4747	 * Example:
4748	 *
4749	 * mkfs.btrfs -f /dev/sda
4750	 * mount /dev/sda /mnt
4751	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4752	 * cp --reflink=always /mnt/foo /mnt/bar
4753	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4754	 * btrfs subvolume snapshot -r /mnt /mnt/snap
4755	 *
4756	 * If when we send the snapshot and we are processing file bar (which
4757	 * has a higher inode number than foo) we blindly send a clone operation
4758	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4759	 * a file bar that matches the content of file foo - iow, doesn't match
4760	 * the content from bar in the original filesystem.
4761	 */
4762	key.objectid = clone_root->ino;
4763	key.type = BTRFS_EXTENT_DATA_KEY;
4764	key.offset = clone_root->offset;
4765	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
4766	if (ret < 0)
4767		goto out;
4768	if (ret > 0 && path->slots[0] > 0) {
4769		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4770		if (key.objectid == clone_root->ino &&
4771		    key.type == BTRFS_EXTENT_DATA_KEY)
4772			path->slots[0]--;
4773	}
4774
4775	while (true) {
4776		struct extent_buffer *leaf = path->nodes[0];
4777		int slot = path->slots[0];
4778		struct btrfs_file_extent_item *ei;
4779		u8 type;
4780		u64 ext_len;
4781		u64 clone_len;
4782
4783		if (slot >= btrfs_header_nritems(leaf)) {
4784			ret = btrfs_next_leaf(clone_root->root, path);
4785			if (ret < 0)
4786				goto out;
4787			else if (ret > 0)
4788				break;
4789			continue;
4790		}
4791
4792		btrfs_item_key_to_cpu(leaf, &key, slot);
4793
4794		/*
4795		 * We might have an implicit trailing hole (NO_HOLES feature
4796		 * enabled). We deal with it after leaving this loop.
4797		 */
4798		if (key.objectid != clone_root->ino ||
4799		    key.type != BTRFS_EXTENT_DATA_KEY)
4800			break;
4801
4802		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4803		type = btrfs_file_extent_type(leaf, ei);
4804		if (type == BTRFS_FILE_EXTENT_INLINE) {
4805			ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
4806			ext_len = PAGE_CACHE_ALIGN(ext_len);
4807		} else {
4808			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
4809		}
4810
4811		if (key.offset + ext_len <= clone_root->offset)
4812			goto next;
4813
4814		if (key.offset > clone_root->offset) {
4815			/* Implicit hole, NO_HOLES feature enabled. */
4816			u64 hole_len = key.offset - clone_root->offset;
4817
4818			if (hole_len > len)
4819				hole_len = len;
4820			ret = send_extent_data(sctx, offset, hole_len);
4821			if (ret < 0)
4822				goto out;
4823
4824			len -= hole_len;
4825			if (len == 0)
4826				break;
4827			offset += hole_len;
4828			clone_root->offset += hole_len;
4829			data_offset += hole_len;
4830		}
4831
4832		if (key.offset >= clone_root->offset + len)
4833			break;
4834
4835		clone_len = min_t(u64, ext_len, len);
4836
4837		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
4838		    btrfs_file_extent_offset(leaf, ei) == data_offset)
4839			ret = send_clone(sctx, offset, clone_len, clone_root);
4840		else
4841			ret = send_extent_data(sctx, offset, clone_len);
4842
4843		if (ret < 0)
4844			goto out;
4845
4846		len -= clone_len;
4847		if (len == 0)
4848			break;
4849		offset += clone_len;
4850		clone_root->offset += clone_len;
4851		data_offset += clone_len;
4852next:
4853		path->slots[0]++;
4854	}
4855
4856	if (len > 0)
4857		ret = send_extent_data(sctx, offset, len);
4858	else
4859		ret = 0;
4860out:
4861	btrfs_free_path(path);
4862	return ret;
4863}
4864
4865static int send_write_or_clone(struct send_ctx *sctx,
4866			       struct btrfs_path *path,
4867			       struct btrfs_key *key,
4868			       struct clone_root *clone_root)
4869{
4870	int ret = 0;
4871	struct btrfs_file_extent_item *ei;
4872	u64 offset = key->offset;
4873	u64 len;
4874	u8 type;
4875	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4876
4877	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4878			struct btrfs_file_extent_item);
4879	type = btrfs_file_extent_type(path->nodes[0], ei);
4880	if (type == BTRFS_FILE_EXTENT_INLINE) {
4881		len = btrfs_file_extent_inline_len(path->nodes[0],
4882						   path->slots[0], ei);
4883		/*
4884		 * it is possible the inline item won't cover the whole page,
4885		 * but there may be items after this page.  Make
4886		 * sure to send the whole thing
4887		 */
4888		len = PAGE_CACHE_ALIGN(len);
4889	} else {
4890		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4891	}
4892
4893	if (offset + len > sctx->cur_inode_size)
4894		len = sctx->cur_inode_size - offset;
4895	if (len == 0) {
4896		ret = 0;
4897		goto out;
4898	}
4899
4900	if (clone_root && IS_ALIGNED(offset + len, bs)) {
4901		u64 disk_byte;
4902		u64 data_offset;
4903
4904		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
4905		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
4906		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
4907				  offset, len);
4908	} else {
4909		ret = send_extent_data(sctx, offset, len);
4910	}
4911out:
4912	return ret;
4913}
4914
4915static int is_extent_unchanged(struct send_ctx *sctx,
4916			       struct btrfs_path *left_path,
4917			       struct btrfs_key *ekey)
4918{
4919	int ret = 0;
4920	struct btrfs_key key;
4921	struct btrfs_path *path = NULL;
4922	struct extent_buffer *eb;
4923	int slot;
4924	struct btrfs_key found_key;
4925	struct btrfs_file_extent_item *ei;
4926	u64 left_disknr;
4927	u64 right_disknr;
4928	u64 left_offset;
4929	u64 right_offset;
4930	u64 left_offset_fixed;
4931	u64 left_len;
4932	u64 right_len;
4933	u64 left_gen;
4934	u64 right_gen;
4935	u8 left_type;
4936	u8 right_type;
4937
4938	path = alloc_path_for_send();
4939	if (!path)
4940		return -ENOMEM;
4941
4942	eb = left_path->nodes[0];
4943	slot = left_path->slots[0];
4944	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4945	left_type = btrfs_file_extent_type(eb, ei);
4946
4947	if (left_type != BTRFS_FILE_EXTENT_REG) {
4948		ret = 0;
4949		goto out;
4950	}
4951	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4952	left_len = btrfs_file_extent_num_bytes(eb, ei);
4953	left_offset = btrfs_file_extent_offset(eb, ei);
4954	left_gen = btrfs_file_extent_generation(eb, ei);
4955
4956	/*
4957	 * Following comments will refer to these graphics. L is the left
4958	 * extents which we are checking at the moment. 1-8 are the right
4959	 * extents that we iterate.
4960	 *
4961	 *       |-----L-----|
4962	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4963	 *
4964	 *       |-----L-----|
4965	 * |--1--|-2b-|...(same as above)
4966	 *
4967	 * Alternative situation. Happens on files where extents got split.
4968	 *       |-----L-----|
4969	 * |-----------7-----------|-6-|
4970	 *
4971	 * Alternative situation. Happens on files which got larger.
4972	 *       |-----L-----|
4973	 * |-8-|
4974	 * Nothing follows after 8.
4975	 */
4976
4977	key.objectid = ekey->objectid;
4978	key.type = BTRFS_EXTENT_DATA_KEY;
4979	key.offset = ekey->offset;
4980	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4981	if (ret < 0)
4982		goto out;
4983	if (ret) {
4984		ret = 0;
4985		goto out;
4986	}
4987
4988	/*
4989	 * Handle special case where the right side has no extents at all.
4990	 */
4991	eb = path->nodes[0];
4992	slot = path->slots[0];
4993	btrfs_item_key_to_cpu(eb, &found_key, slot);
4994	if (found_key.objectid != key.objectid ||
4995	    found_key.type != key.type) {
4996		/* If we're a hole then just pretend nothing changed */
4997		ret = (left_disknr) ? 0 : 1;
4998		goto out;
4999	}
5000
5001	/*
5002	 * We're now on 2a, 2b or 7.
5003	 */
5004	key = found_key;
5005	while (key.offset < ekey->offset + left_len) {
5006		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5007		right_type = btrfs_file_extent_type(eb, ei);
5008		if (right_type != BTRFS_FILE_EXTENT_REG) {
5009			ret = 0;
5010			goto out;
5011		}
5012
5013		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5014		right_len = btrfs_file_extent_num_bytes(eb, ei);
5015		right_offset = btrfs_file_extent_offset(eb, ei);
5016		right_gen = btrfs_file_extent_generation(eb, ei);
5017
5018		/*
5019		 * Are we at extent 8? If yes, we know the extent is changed.
5020		 * This may only happen on the first iteration.
5021		 */
5022		if (found_key.offset + right_len <= ekey->offset) {
5023			/* If we're a hole just pretend nothing changed */
5024			ret = (left_disknr) ? 0 : 1;
5025			goto out;
5026		}
5027
5028		left_offset_fixed = left_offset;
5029		if (key.offset < ekey->offset) {
5030			/* Fix the right offset for 2a and 7. */
5031			right_offset += ekey->offset - key.offset;
5032		} else {
5033			/* Fix the left offset for all behind 2a and 2b */
5034			left_offset_fixed += key.offset - ekey->offset;
5035		}
5036
5037		/*
5038		 * Check if we have the same extent.
5039		 */
5040		if (left_disknr != right_disknr ||
5041		    left_offset_fixed != right_offset ||
5042		    left_gen != right_gen) {
5043			ret = 0;
5044			goto out;
5045		}
5046
5047		/*
5048		 * Go to the next extent.
5049		 */
5050		ret = btrfs_next_item(sctx->parent_root, path);
5051		if (ret < 0)
5052			goto out;
5053		if (!ret) {
5054			eb = path->nodes[0];
5055			slot = path->slots[0];
5056			btrfs_item_key_to_cpu(eb, &found_key, slot);
5057		}
5058		if (ret || found_key.objectid != key.objectid ||
5059		    found_key.type != key.type) {
5060			key.offset += right_len;
5061			break;
5062		}
5063		if (found_key.offset != key.offset + right_len) {
5064			ret = 0;
5065			goto out;
5066		}
5067		key = found_key;
5068	}
5069
5070	/*
5071	 * We're now behind the left extent (treat as unchanged) or at the end
5072	 * of the right side (treat as changed).
5073	 */
5074	if (key.offset >= ekey->offset + left_len)
5075		ret = 1;
5076	else
5077		ret = 0;
5078
5079
5080out:
5081	btrfs_free_path(path);
5082	return ret;
5083}
5084
5085static int get_last_extent(struct send_ctx *sctx, u64 offset)
5086{
5087	struct btrfs_path *path;
5088	struct btrfs_root *root = sctx->send_root;
5089	struct btrfs_file_extent_item *fi;
5090	struct btrfs_key key;
5091	u64 extent_end;
5092	u8 type;
5093	int ret;
5094
5095	path = alloc_path_for_send();
5096	if (!path)
5097		return -ENOMEM;
5098
5099	sctx->cur_inode_last_extent = 0;
5100
5101	key.objectid = sctx->cur_ino;
5102	key.type = BTRFS_EXTENT_DATA_KEY;
5103	key.offset = offset;
5104	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5105	if (ret < 0)
5106		goto out;
5107	ret = 0;
5108	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5109	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5110		goto out;
5111
5112	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5113			    struct btrfs_file_extent_item);
5114	type = btrfs_file_extent_type(path->nodes[0], fi);
5115	if (type == BTRFS_FILE_EXTENT_INLINE) {
5116		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5117							path->slots[0], fi);
5118		extent_end = ALIGN(key.offset + size,
5119				   sctx->send_root->sectorsize);
5120	} else {
5121		extent_end = key.offset +
5122			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5123	}
5124	sctx->cur_inode_last_extent = extent_end;
5125out:
5126	btrfs_free_path(path);
5127	return ret;
5128}
5129
5130static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5131			   struct btrfs_key *key)
5132{
5133	struct btrfs_file_extent_item *fi;
5134	u64 extent_end;
5135	u8 type;
5136	int ret = 0;
5137
5138	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5139		return 0;
5140
5141	if (sctx->cur_inode_last_extent == (u64)-1) {
5142		ret = get_last_extent(sctx, key->offset - 1);
5143		if (ret)
5144			return ret;
5145	}
5146
5147	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5148			    struct btrfs_file_extent_item);
5149	type = btrfs_file_extent_type(path->nodes[0], fi);
5150	if (type == BTRFS_FILE_EXTENT_INLINE) {
5151		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5152							path->slots[0], fi);
5153		extent_end = ALIGN(key->offset + size,
5154				   sctx->send_root->sectorsize);
5155	} else {
5156		extent_end = key->offset +
5157			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5158	}
5159
5160	if (path->slots[0] == 0 &&
5161	    sctx->cur_inode_last_extent < key->offset) {
5162		/*
5163		 * We might have skipped entire leafs that contained only
5164		 * file extent items for our current inode. These leafs have
5165		 * a generation number smaller (older) than the one in the
5166		 * current leaf and the leaf our last extent came from, and
5167		 * are located between these 2 leafs.
5168		 */
5169		ret = get_last_extent(sctx, key->offset - 1);
5170		if (ret)
5171			return ret;
5172	}
5173
5174	if (sctx->cur_inode_last_extent < key->offset)
5175		ret = send_hole(sctx, key->offset);
5176	sctx->cur_inode_last_extent = extent_end;
5177	return ret;
5178}
5179
5180static int process_extent(struct send_ctx *sctx,
5181			  struct btrfs_path *path,
5182			  struct btrfs_key *key)
5183{
5184	struct clone_root *found_clone = NULL;
5185	int ret = 0;
5186
5187	if (S_ISLNK(sctx->cur_inode_mode))
5188		return 0;
5189
5190	if (sctx->parent_root && !sctx->cur_inode_new) {
5191		ret = is_extent_unchanged(sctx, path, key);
5192		if (ret < 0)
5193			goto out;
5194		if (ret) {
5195			ret = 0;
5196			goto out_hole;
5197		}
5198	} else {
5199		struct btrfs_file_extent_item *ei;
5200		u8 type;
5201
5202		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5203				    struct btrfs_file_extent_item);
5204		type = btrfs_file_extent_type(path->nodes[0], ei);
5205		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5206		    type == BTRFS_FILE_EXTENT_REG) {
5207			/*
5208			 * The send spec does not have a prealloc command yet,
5209			 * so just leave a hole for prealloc'ed extents until
5210			 * we have enough commands queued up to justify rev'ing
5211			 * the send spec.
5212			 */
5213			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5214				ret = 0;
5215				goto out;
5216			}
5217
5218			/* Have a hole, just skip it. */
5219			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5220				ret = 0;
5221				goto out;
5222			}
5223		}
5224	}
5225
5226	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5227			sctx->cur_inode_size, &found_clone);
5228	if (ret != -ENOENT && ret < 0)
5229		goto out;
5230
5231	ret = send_write_or_clone(sctx, path, key, found_clone);
5232	if (ret)
5233		goto out;
5234out_hole:
5235	ret = maybe_send_hole(sctx, path, key);
5236out:
5237	return ret;
5238}
5239
5240static int process_all_extents(struct send_ctx *sctx)
5241{
5242	int ret;
5243	struct btrfs_root *root;
5244	struct btrfs_path *path;
5245	struct btrfs_key key;
5246	struct btrfs_key found_key;
5247	struct extent_buffer *eb;
5248	int slot;
5249
5250	root = sctx->send_root;
5251	path = alloc_path_for_send();
5252	if (!path)
5253		return -ENOMEM;
5254
5255	key.objectid = sctx->cmp_key->objectid;
5256	key.type = BTRFS_EXTENT_DATA_KEY;
5257	key.offset = 0;
5258	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5259	if (ret < 0)
5260		goto out;
5261
5262	while (1) {
5263		eb = path->nodes[0];
5264		slot = path->slots[0];
5265
5266		if (slot >= btrfs_header_nritems(eb)) {
5267			ret = btrfs_next_leaf(root, path);
5268			if (ret < 0) {
5269				goto out;
5270			} else if (ret > 0) {
5271				ret = 0;
5272				break;
5273			}
5274			continue;
5275		}
5276
5277		btrfs_item_key_to_cpu(eb, &found_key, slot);
5278
5279		if (found_key.objectid != key.objectid ||
5280		    found_key.type != key.type) {
5281			ret = 0;
5282			goto out;
5283		}
5284
5285		ret = process_extent(sctx, path, &found_key);
5286		if (ret < 0)
5287			goto out;
5288
5289		path->slots[0]++;
5290	}
5291
5292out:
5293	btrfs_free_path(path);
5294	return ret;
5295}
5296
5297static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5298					   int *pending_move,
5299					   int *refs_processed)
5300{
5301	int ret = 0;
5302
5303	if (sctx->cur_ino == 0)
5304		goto out;
5305	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5306	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5307		goto out;
5308	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5309		goto out;
5310
5311	ret = process_recorded_refs(sctx, pending_move);
5312	if (ret < 0)
5313		goto out;
5314
5315	*refs_processed = 1;
5316out:
5317	return ret;
5318}
5319
5320static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5321{
5322	int ret = 0;
5323	u64 left_mode;
5324	u64 left_uid;
5325	u64 left_gid;
5326	u64 right_mode;
5327	u64 right_uid;
5328	u64 right_gid;
5329	int need_chmod = 0;
5330	int need_chown = 0;
5331	int pending_move = 0;
5332	int refs_processed = 0;
5333
5334	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5335					      &refs_processed);
5336	if (ret < 0)
5337		goto out;
5338
5339	/*
5340	 * We have processed the refs and thus need to advance send_progress.
5341	 * Now, calls to get_cur_xxx will take the updated refs of the current
5342	 * inode into account.
5343	 *
5344	 * On the other hand, if our current inode is a directory and couldn't
5345	 * be moved/renamed because its parent was renamed/moved too and it has
5346	 * a higher inode number, we can only move/rename our current inode
5347	 * after we moved/renamed its parent. Therefore in this case operate on
5348	 * the old path (pre move/rename) of our current inode, and the
5349	 * move/rename will be performed later.
5350	 */
5351	if (refs_processed && !pending_move)
5352		sctx->send_progress = sctx->cur_ino + 1;
5353
5354	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5355		goto out;
5356	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5357		goto out;
5358
5359	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5360			&left_mode, &left_uid, &left_gid, NULL);
5361	if (ret < 0)
5362		goto out;
5363
5364	if (!sctx->parent_root || sctx->cur_inode_new) {
5365		need_chown = 1;
5366		if (!S_ISLNK(sctx->cur_inode_mode))
5367			need_chmod = 1;
5368	} else {
5369		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5370				NULL, NULL, &right_mode, &right_uid,
5371				&right_gid, NULL);
5372		if (ret < 0)
5373			goto out;
5374
5375		if (left_uid != right_uid || left_gid != right_gid)
5376			need_chown = 1;
5377		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5378			need_chmod = 1;
5379	}
5380
5381	if (S_ISREG(sctx->cur_inode_mode)) {
5382		if (need_send_hole(sctx)) {
5383			if (sctx->cur_inode_last_extent == (u64)-1 ||
5384			    sctx->cur_inode_last_extent <
5385			    sctx->cur_inode_size) {
5386				ret = get_last_extent(sctx, (u64)-1);
5387				if (ret)
5388					goto out;
5389			}
5390			if (sctx->cur_inode_last_extent <
5391			    sctx->cur_inode_size) {
5392				ret = send_hole(sctx, sctx->cur_inode_size);
5393				if (ret)
5394					goto out;
5395			}
5396		}
5397		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5398				sctx->cur_inode_size);
5399		if (ret < 0)
5400			goto out;
5401	}
5402
5403	if (need_chown) {
5404		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5405				left_uid, left_gid);
5406		if (ret < 0)
5407			goto out;
5408	}
5409	if (need_chmod) {
5410		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5411				left_mode);
5412		if (ret < 0)
5413			goto out;
5414	}
5415
5416	/*
5417	 * If other directory inodes depended on our current directory
5418	 * inode's move/rename, now do their move/rename operations.
5419	 */
5420	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5421		ret = apply_children_dir_moves(sctx);
5422		if (ret)
5423			goto out;
5424		/*
5425		 * Need to send that every time, no matter if it actually
5426		 * changed between the two trees as we have done changes to
5427		 * the inode before. If our inode is a directory and it's
5428		 * waiting to be moved/renamed, we will send its utimes when
5429		 * it's moved/renamed, therefore we don't need to do it here.
5430		 */
5431		sctx->send_progress = sctx->cur_ino + 1;
5432		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5433		if (ret < 0)
5434			goto out;
5435	}
5436
5437out:
5438	return ret;
5439}
5440
5441static int changed_inode(struct send_ctx *sctx,
5442			 enum btrfs_compare_tree_result result)
5443{
5444	int ret = 0;
5445	struct btrfs_key *key = sctx->cmp_key;
5446	struct btrfs_inode_item *left_ii = NULL;
5447	struct btrfs_inode_item *right_ii = NULL;
5448	u64 left_gen = 0;
5449	u64 right_gen = 0;
5450
5451	sctx->cur_ino = key->objectid;
5452	sctx->cur_inode_new_gen = 0;
5453	sctx->cur_inode_last_extent = (u64)-1;
5454
5455	/*
5456	 * Set send_progress to current inode. This will tell all get_cur_xxx
5457	 * functions that the current inode's refs are not updated yet. Later,
5458	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5459	 */
5460	sctx->send_progress = sctx->cur_ino;
5461
5462	if (result == BTRFS_COMPARE_TREE_NEW ||
5463	    result == BTRFS_COMPARE_TREE_CHANGED) {
5464		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5465				sctx->left_path->slots[0],
5466				struct btrfs_inode_item);
5467		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5468				left_ii);
5469	} else {
5470		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5471				sctx->right_path->slots[0],
5472				struct btrfs_inode_item);
5473		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5474				right_ii);
5475	}
5476	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5477		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5478				sctx->right_path->slots[0],
5479				struct btrfs_inode_item);
5480
5481		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5482				right_ii);
5483
5484		/*
5485		 * The cur_ino = root dir case is special here. We can't treat
5486		 * the inode as deleted+reused because it would generate a
5487		 * stream that tries to delete/mkdir the root dir.
5488		 */
5489		if (left_gen != right_gen &&
5490		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5491			sctx->cur_inode_new_gen = 1;
5492	}
5493
5494	if (result == BTRFS_COMPARE_TREE_NEW) {
5495		sctx->cur_inode_gen = left_gen;
5496		sctx->cur_inode_new = 1;
5497		sctx->cur_inode_deleted = 0;
5498		sctx->cur_inode_size = btrfs_inode_size(
5499				sctx->left_path->nodes[0], left_ii);
5500		sctx->cur_inode_mode = btrfs_inode_mode(
5501				sctx->left_path->nodes[0], left_ii);
5502		sctx->cur_inode_rdev = btrfs_inode_rdev(
5503				sctx->left_path->nodes[0], left_ii);
5504		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5505			ret = send_create_inode_if_needed(sctx);
5506	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5507		sctx->cur_inode_gen = right_gen;
5508		sctx->cur_inode_new = 0;
5509		sctx->cur_inode_deleted = 1;
5510		sctx->cur_inode_size = btrfs_inode_size(
5511				sctx->right_path->nodes[0], right_ii);
5512		sctx->cur_inode_mode = btrfs_inode_mode(
5513				sctx->right_path->nodes[0], right_ii);
5514	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5515		/*
5516		 * We need to do some special handling in case the inode was
5517		 * reported as changed with a changed generation number. This
5518		 * means that the original inode was deleted and new inode
5519		 * reused the same inum. So we have to treat the old inode as
5520		 * deleted and the new one as new.
5521		 */
5522		if (sctx->cur_inode_new_gen) {
5523			/*
5524			 * First, process the inode as if it was deleted.
5525			 */
5526			sctx->cur_inode_gen = right_gen;
5527			sctx->cur_inode_new = 0;
5528			sctx->cur_inode_deleted = 1;
5529			sctx->cur_inode_size = btrfs_inode_size(
5530					sctx->right_path->nodes[0], right_ii);
5531			sctx->cur_inode_mode = btrfs_inode_mode(
5532					sctx->right_path->nodes[0], right_ii);
5533			ret = process_all_refs(sctx,
5534					BTRFS_COMPARE_TREE_DELETED);
5535			if (ret < 0)
5536				goto out;
5537
5538			/*
5539			 * Now process the inode as if it was new.
5540			 */
5541			sctx->cur_inode_gen = left_gen;
5542			sctx->cur_inode_new = 1;
5543			sctx->cur_inode_deleted = 0;
5544			sctx->cur_inode_size = btrfs_inode_size(
5545					sctx->left_path->nodes[0], left_ii);
5546			sctx->cur_inode_mode = btrfs_inode_mode(
5547					sctx->left_path->nodes[0], left_ii);
5548			sctx->cur_inode_rdev = btrfs_inode_rdev(
5549					sctx->left_path->nodes[0], left_ii);
5550			ret = send_create_inode_if_needed(sctx);
5551			if (ret < 0)
5552				goto out;
5553
5554			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5555			if (ret < 0)
5556				goto out;
5557			/*
5558			 * Advance send_progress now as we did not get into
5559			 * process_recorded_refs_if_needed in the new_gen case.
5560			 */
5561			sctx->send_progress = sctx->cur_ino + 1;
5562
5563			/*
5564			 * Now process all extents and xattrs of the inode as if
5565			 * they were all new.
5566			 */
5567			ret = process_all_extents(sctx);
5568			if (ret < 0)
5569				goto out;
5570			ret = process_all_new_xattrs(sctx);
5571			if (ret < 0)
5572				goto out;
5573		} else {
5574			sctx->cur_inode_gen = left_gen;
5575			sctx->cur_inode_new = 0;
5576			sctx->cur_inode_new_gen = 0;
5577			sctx->cur_inode_deleted = 0;
5578			sctx->cur_inode_size = btrfs_inode_size(
5579					sctx->left_path->nodes[0], left_ii);
5580			sctx->cur_inode_mode = btrfs_inode_mode(
5581					sctx->left_path->nodes[0], left_ii);
5582		}
5583	}
5584
5585out:
5586	return ret;
5587}
5588
5589/*
5590 * We have to process new refs before deleted refs, but compare_trees gives us
5591 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5592 * first and later process them in process_recorded_refs.
5593 * For the cur_inode_new_gen case, we skip recording completely because
5594 * changed_inode did already initiate processing of refs. The reason for this is
5595 * that in this case, compare_tree actually compares the refs of 2 different
5596 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5597 * refs of the right tree as deleted and all refs of the left tree as new.
5598 */
5599static int changed_ref(struct send_ctx *sctx,
5600		       enum btrfs_compare_tree_result result)
5601{
5602	int ret = 0;
5603
5604	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5605
5606	if (!sctx->cur_inode_new_gen &&
5607	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5608		if (result == BTRFS_COMPARE_TREE_NEW)
5609			ret = record_new_ref(sctx);
5610		else if (result == BTRFS_COMPARE_TREE_DELETED)
5611			ret = record_deleted_ref(sctx);
5612		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5613			ret = record_changed_ref(sctx);
5614	}
5615
5616	return ret;
5617}
5618
5619/*
5620 * Process new/deleted/changed xattrs. We skip processing in the
5621 * cur_inode_new_gen case because changed_inode did already initiate processing
5622 * of xattrs. The reason is the same as in changed_ref
5623 */
5624static int changed_xattr(struct send_ctx *sctx,
5625			 enum btrfs_compare_tree_result result)
5626{
5627	int ret = 0;
5628
5629	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5630
5631	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5632		if (result == BTRFS_COMPARE_TREE_NEW)
5633			ret = process_new_xattr(sctx);
5634		else if (result == BTRFS_COMPARE_TREE_DELETED)
5635			ret = process_deleted_xattr(sctx);
5636		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5637			ret = process_changed_xattr(sctx);
5638	}
5639
5640	return ret;
5641}
5642
5643/*
5644 * Process new/deleted/changed extents. We skip processing in the
5645 * cur_inode_new_gen case because changed_inode did already initiate processing
5646 * of extents. The reason is the same as in changed_ref
5647 */
5648static int changed_extent(struct send_ctx *sctx,
5649			  enum btrfs_compare_tree_result result)
5650{
5651	int ret = 0;
5652
5653	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5654
5655	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5656		if (result != BTRFS_COMPARE_TREE_DELETED)
5657			ret = process_extent(sctx, sctx->left_path,
5658					sctx->cmp_key);
5659	}
5660
5661	return ret;
5662}
5663
5664static int dir_changed(struct send_ctx *sctx, u64 dir)
5665{
5666	u64 orig_gen, new_gen;
5667	int ret;
5668
5669	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5670			     NULL, NULL);
5671	if (ret)
5672		return ret;
5673
5674	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5675			     NULL, NULL, NULL);
5676	if (ret)
5677		return ret;
5678
5679	return (orig_gen != new_gen) ? 1 : 0;
5680}
5681
5682static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5683			struct btrfs_key *key)
5684{
5685	struct btrfs_inode_extref *extref;
5686	struct extent_buffer *leaf;
5687	u64 dirid = 0, last_dirid = 0;
5688	unsigned long ptr;
5689	u32 item_size;
5690	u32 cur_offset = 0;
5691	int ref_name_len;
5692	int ret = 0;
5693
5694	/* Easy case, just check this one dirid */
5695	if (key->type == BTRFS_INODE_REF_KEY) {
5696		dirid = key->offset;
5697
5698		ret = dir_changed(sctx, dirid);
5699		goto out;
5700	}
5701
5702	leaf = path->nodes[0];
5703	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5704	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5705	while (cur_offset < item_size) {
5706		extref = (struct btrfs_inode_extref *)(ptr +
5707						       cur_offset);
5708		dirid = btrfs_inode_extref_parent(leaf, extref);
5709		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5710		cur_offset += ref_name_len + sizeof(*extref);
5711		if (dirid == last_dirid)
5712			continue;
5713		ret = dir_changed(sctx, dirid);
5714		if (ret)
5715			break;
5716		last_dirid = dirid;
5717	}
5718out:
5719	return ret;
5720}
5721
5722/*
5723 * Updates compare related fields in sctx and simply forwards to the actual
5724 * changed_xxx functions.
5725 */
5726static int changed_cb(struct btrfs_root *left_root,
5727		      struct btrfs_root *right_root,
5728		      struct btrfs_path *left_path,
5729		      struct btrfs_path *right_path,
5730		      struct btrfs_key *key,
5731		      enum btrfs_compare_tree_result result,
5732		      void *ctx)
5733{
5734	int ret = 0;
5735	struct send_ctx *sctx = ctx;
5736
5737	if (result == BTRFS_COMPARE_TREE_SAME) {
5738		if (key->type == BTRFS_INODE_REF_KEY ||
5739		    key->type == BTRFS_INODE_EXTREF_KEY) {
5740			ret = compare_refs(sctx, left_path, key);
5741			if (!ret)
5742				return 0;
5743			if (ret < 0)
5744				return ret;
5745		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5746			return maybe_send_hole(sctx, left_path, key);
5747		} else {
5748			return 0;
5749		}
5750		result = BTRFS_COMPARE_TREE_CHANGED;
5751		ret = 0;
5752	}
5753
5754	sctx->left_path = left_path;
5755	sctx->right_path = right_path;
5756	sctx->cmp_key = key;
5757
5758	ret = finish_inode_if_needed(sctx, 0);
5759	if (ret < 0)
5760		goto out;
5761
5762	/* Ignore non-FS objects */
5763	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5764	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5765		goto out;
5766
5767	if (key->type == BTRFS_INODE_ITEM_KEY)
5768		ret = changed_inode(sctx, result);
5769	else if (key->type == BTRFS_INODE_REF_KEY ||
5770		 key->type == BTRFS_INODE_EXTREF_KEY)
5771		ret = changed_ref(sctx, result);
5772	else if (key->type == BTRFS_XATTR_ITEM_KEY)
5773		ret = changed_xattr(sctx, result);
5774	else if (key->type == BTRFS_EXTENT_DATA_KEY)
5775		ret = changed_extent(sctx, result);
5776
5777out:
5778	return ret;
5779}
5780
5781static int full_send_tree(struct send_ctx *sctx)
5782{
5783	int ret;
5784	struct btrfs_root *send_root = sctx->send_root;
5785	struct btrfs_key key;
5786	struct btrfs_key found_key;
5787	struct btrfs_path *path;
5788	struct extent_buffer *eb;
5789	int slot;
5790
5791	path = alloc_path_for_send();
5792	if (!path)
5793		return -ENOMEM;
5794
5795	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5796	key.type = BTRFS_INODE_ITEM_KEY;
5797	key.offset = 0;
5798
5799	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5800	if (ret < 0)
5801		goto out;
5802	if (ret)
5803		goto out_finish;
5804
5805	while (1) {
5806		eb = path->nodes[0];
5807		slot = path->slots[0];
5808		btrfs_item_key_to_cpu(eb, &found_key, slot);
5809
5810		ret = changed_cb(send_root, NULL, path, NULL,
5811				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5812		if (ret < 0)
5813			goto out;
5814
5815		key.objectid = found_key.objectid;
5816		key.type = found_key.type;
5817		key.offset = found_key.offset + 1;
5818
5819		ret = btrfs_next_item(send_root, path);
5820		if (ret < 0)
5821			goto out;
5822		if (ret) {
5823			ret  = 0;
5824			break;
5825		}
5826	}
5827
5828out_finish:
5829	ret = finish_inode_if_needed(sctx, 1);
5830
5831out:
5832	btrfs_free_path(path);
5833	return ret;
5834}
5835
5836static int send_subvol(struct send_ctx *sctx)
5837{
5838	int ret;
5839
5840	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5841		ret = send_header(sctx);
5842		if (ret < 0)
5843			goto out;
5844	}
5845
5846	ret = send_subvol_begin(sctx);
5847	if (ret < 0)
5848		goto out;
5849
5850	if (sctx->parent_root) {
5851		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5852				changed_cb, sctx);
5853		if (ret < 0)
5854			goto out;
5855		ret = finish_inode_if_needed(sctx, 1);
5856		if (ret < 0)
5857			goto out;
5858	} else {
5859		ret = full_send_tree(sctx);
5860		if (ret < 0)
5861			goto out;
5862	}
5863
5864out:
5865	free_recorded_refs(sctx);
5866	return ret;
5867}
5868
5869/*
5870 * If orphan cleanup did remove any orphans from a root, it means the tree
5871 * was modified and therefore the commit root is not the same as the current
5872 * root anymore. This is a problem, because send uses the commit root and
5873 * therefore can see inode items that don't exist in the current root anymore,
5874 * and for example make calls to btrfs_iget, which will do tree lookups based
5875 * on the current root and not on the commit root. Those lookups will fail,
5876 * returning a -ESTALE error, and making send fail with that error. So make
5877 * sure a send does not see any orphans we have just removed, and that it will
5878 * see the same inodes regardless of whether a transaction commit happened
5879 * before it started (meaning that the commit root will be the same as the
5880 * current root) or not.
5881 */
5882static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5883{
5884	int i;
5885	struct btrfs_trans_handle *trans = NULL;
5886
5887again:
5888	if (sctx->parent_root &&
5889	    sctx->parent_root->node != sctx->parent_root->commit_root)
5890		goto commit_trans;
5891
5892	for (i = 0; i < sctx->clone_roots_cnt; i++)
5893		if (sctx->clone_roots[i].root->node !=
5894		    sctx->clone_roots[i].root->commit_root)
5895			goto commit_trans;
5896
5897	if (trans)
5898		return btrfs_end_transaction(trans, sctx->send_root);
5899
5900	return 0;
5901
5902commit_trans:
5903	/* Use any root, all fs roots will get their commit roots updated. */
5904	if (!trans) {
5905		trans = btrfs_join_transaction(sctx->send_root);
5906		if (IS_ERR(trans))
5907			return PTR_ERR(trans);
5908		goto again;
5909	}
5910
5911	return btrfs_commit_transaction(trans, sctx->send_root);
5912}
5913
5914static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5915{
5916	spin_lock(&root->root_item_lock);
5917	root->send_in_progress--;
5918	/*
5919	 * Not much left to do, we don't know why it's unbalanced and
5920	 * can't blindly reset it to 0.
5921	 */
5922	if (root->send_in_progress < 0)
5923		btrfs_err(root->fs_info,
5924			"send_in_progres unbalanced %d root %llu",
5925			root->send_in_progress, root->root_key.objectid);
5926	spin_unlock(&root->root_item_lock);
5927}
5928
5929long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5930{
5931	int ret = 0;
5932	struct btrfs_root *send_root;
5933	struct btrfs_root *clone_root;
5934	struct btrfs_fs_info *fs_info;
5935	struct btrfs_ioctl_send_args *arg = NULL;
5936	struct btrfs_key key;
5937	struct send_ctx *sctx = NULL;
5938	u32 i;
5939	u64 *clone_sources_tmp = NULL;
5940	int clone_sources_to_rollback = 0;
5941	int sort_clone_roots = 0;
5942	int index;
5943
5944	if (!capable(CAP_SYS_ADMIN))
5945		return -EPERM;
5946
5947	send_root = BTRFS_I(file_inode(mnt_file))->root;
5948	fs_info = send_root->fs_info;
5949
5950	/*
5951	 * The subvolume must remain read-only during send, protect against
5952	 * making it RW. This also protects against deletion.
5953	 */
5954	spin_lock(&send_root->root_item_lock);
5955	send_root->send_in_progress++;
5956	spin_unlock(&send_root->root_item_lock);
5957
5958	/*
5959	 * This is done when we lookup the root, it should already be complete
5960	 * by the time we get here.
5961	 */
5962	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5963
5964	/*
5965	 * Userspace tools do the checks and warn the user if it's
5966	 * not RO.
5967	 */
5968	if (!btrfs_root_readonly(send_root)) {
5969		ret = -EPERM;
5970		goto out;
5971	}
5972
5973	arg = memdup_user(arg_, sizeof(*arg));
5974	if (IS_ERR(arg)) {
5975		ret = PTR_ERR(arg);
5976		arg = NULL;
5977		goto out;
5978	}
5979
5980	if (!access_ok(VERIFY_READ, arg->clone_sources,
5981			sizeof(*arg->clone_sources) *
5982			arg->clone_sources_count)) {
5983		ret = -EFAULT;
5984		goto out;
5985	}
5986
5987	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5988		ret = -EINVAL;
5989		goto out;
5990	}
5991
5992	sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5993	if (!sctx) {
5994		ret = -ENOMEM;
5995		goto out;
5996	}
5997
5998	INIT_LIST_HEAD(&sctx->new_refs);
5999	INIT_LIST_HEAD(&sctx->deleted_refs);
6000	INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
6001	INIT_LIST_HEAD(&sctx->name_cache_list);
6002
6003	sctx->flags = arg->flags;
6004
6005	sctx->send_filp = fget(arg->send_fd);
6006	if (!sctx->send_filp) {
6007		ret = -EBADF;
6008		goto out;
6009	}
6010
6011	sctx->send_root = send_root;
6012	/*
6013	 * Unlikely but possible, if the subvolume is marked for deletion but
6014	 * is slow to remove the directory entry, send can still be started
6015	 */
6016	if (btrfs_root_dead(sctx->send_root)) {
6017		ret = -EPERM;
6018		goto out;
6019	}
6020
6021	sctx->clone_roots_cnt = arg->clone_sources_count;
6022
6023	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6024	sctx->send_buf = vmalloc(sctx->send_max_size);
6025	if (!sctx->send_buf) {
6026		ret = -ENOMEM;
6027		goto out;
6028	}
6029
6030	sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
6031	if (!sctx->read_buf) {
6032		ret = -ENOMEM;
6033		goto out;
6034	}
6035
6036	sctx->pending_dir_moves = RB_ROOT;
6037	sctx->waiting_dir_moves = RB_ROOT;
6038	sctx->orphan_dirs = RB_ROOT;
6039
6040	sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
6041			(arg->clone_sources_count + 1));
6042	if (!sctx->clone_roots) {
6043		ret = -ENOMEM;
6044		goto out;
6045	}
6046
6047	if (arg->clone_sources_count) {
6048		clone_sources_tmp = vmalloc(arg->clone_sources_count *
6049				sizeof(*arg->clone_sources));
6050		if (!clone_sources_tmp) {
6051			ret = -ENOMEM;
6052			goto out;
6053		}
6054
6055		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6056				arg->clone_sources_count *
6057				sizeof(*arg->clone_sources));
6058		if (ret) {
6059			ret = -EFAULT;
6060			goto out;
6061		}
6062
6063		for (i = 0; i < arg->clone_sources_count; i++) {
6064			key.objectid = clone_sources_tmp[i];
6065			key.type = BTRFS_ROOT_ITEM_KEY;
6066			key.offset = (u64)-1;
6067
6068			index = srcu_read_lock(&fs_info->subvol_srcu);
6069
6070			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6071			if (IS_ERR(clone_root)) {
6072				srcu_read_unlock(&fs_info->subvol_srcu, index);
6073				ret = PTR_ERR(clone_root);
6074				goto out;
6075			}
6076			spin_lock(&clone_root->root_item_lock);
6077			if (!btrfs_root_readonly(clone_root) ||
6078			    btrfs_root_dead(clone_root)) {
6079				spin_unlock(&clone_root->root_item_lock);
6080				srcu_read_unlock(&fs_info->subvol_srcu, index);
6081				ret = -EPERM;
6082				goto out;
6083			}
6084			clone_root->send_in_progress++;
6085			spin_unlock(&clone_root->root_item_lock);
6086			srcu_read_unlock(&fs_info->subvol_srcu, index);
6087
6088			sctx->clone_roots[i].root = clone_root;
6089			clone_sources_to_rollback = i + 1;
6090		}
6091		vfree(clone_sources_tmp);
6092		clone_sources_tmp = NULL;
6093	}
6094
6095	if (arg->parent_root) {
6096		key.objectid = arg->parent_root;
6097		key.type = BTRFS_ROOT_ITEM_KEY;
6098		key.offset = (u64)-1;
6099
6100		index = srcu_read_lock(&fs_info->subvol_srcu);
6101
6102		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6103		if (IS_ERR(sctx->parent_root)) {
6104			srcu_read_unlock(&fs_info->subvol_srcu, index);
6105			ret = PTR_ERR(sctx->parent_root);
6106			goto out;
6107		}
6108
6109		spin_lock(&sctx->parent_root->root_item_lock);
6110		sctx->parent_root->send_in_progress++;
6111		if (!btrfs_root_readonly(sctx->parent_root) ||
6112				btrfs_root_dead(sctx->parent_root)) {
6113			spin_unlock(&sctx->parent_root->root_item_lock);
6114			srcu_read_unlock(&fs_info->subvol_srcu, index);
6115			ret = -EPERM;
6116			goto out;
6117		}
6118		spin_unlock(&sctx->parent_root->root_item_lock);
6119
6120		srcu_read_unlock(&fs_info->subvol_srcu, index);
6121	}
6122
6123	/*
6124	 * Clones from send_root are allowed, but only if the clone source
6125	 * is behind the current send position. This is checked while searching
6126	 * for possible clone sources.
6127	 */
6128	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6129
6130	/* We do a bsearch later */
6131	sort(sctx->clone_roots, sctx->clone_roots_cnt,
6132			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6133			NULL);
6134	sort_clone_roots = 1;
6135
6136	ret = ensure_commit_roots_uptodate(sctx);
6137	if (ret)
6138		goto out;
6139
6140	current->journal_info = BTRFS_SEND_TRANS_STUB;
6141	ret = send_subvol(sctx);
6142	current->journal_info = NULL;
6143	if (ret < 0)
6144		goto out;
6145
6146	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6147		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6148		if (ret < 0)
6149			goto out;
6150		ret = send_cmd(sctx);
6151		if (ret < 0)
6152			goto out;
6153	}
6154
6155out:
6156	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6157	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6158		struct rb_node *n;
6159		struct pending_dir_move *pm;
6160
6161		n = rb_first(&sctx->pending_dir_moves);
6162		pm = rb_entry(n, struct pending_dir_move, node);
6163		while (!list_empty(&pm->list)) {
6164			struct pending_dir_move *pm2;
6165
6166			pm2 = list_first_entry(&pm->list,
6167					       struct pending_dir_move, list);
6168			free_pending_move(sctx, pm2);
6169		}
6170		free_pending_move(sctx, pm);
6171	}
6172
6173	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6174	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6175		struct rb_node *n;
6176		struct waiting_dir_move *dm;
6177
6178		n = rb_first(&sctx->waiting_dir_moves);
6179		dm = rb_entry(n, struct waiting_dir_move, node);
6180		rb_erase(&dm->node, &sctx->waiting_dir_moves);
6181		kfree(dm);
6182	}
6183
6184	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6185	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6186		struct rb_node *n;
6187		struct orphan_dir_info *odi;
6188
6189		n = rb_first(&sctx->orphan_dirs);
6190		odi = rb_entry(n, struct orphan_dir_info, node);
6191		free_orphan_dir_info(sctx, odi);
6192	}
6193
6194	if (sort_clone_roots) {
6195		for (i = 0; i < sctx->clone_roots_cnt; i++)
6196			btrfs_root_dec_send_in_progress(
6197					sctx->clone_roots[i].root);
6198	} else {
6199		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6200			btrfs_root_dec_send_in_progress(
6201					sctx->clone_roots[i].root);
6202
6203		btrfs_root_dec_send_in_progress(send_root);
6204	}
6205	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6206		btrfs_root_dec_send_in_progress(sctx->parent_root);
6207
6208	kfree(arg);
6209	vfree(clone_sources_tmp);
6210
6211	if (sctx) {
6212		if (sctx->send_filp)
6213			fput(sctx->send_filp);
6214
6215		vfree(sctx->clone_roots);
6216		vfree(sctx->send_buf);
6217		vfree(sctx->read_buf);
6218
6219		name_cache_free(sctx);
6220
6221		kfree(sctx);
6222	}
6223
6224	return ret;
6225}
6226