1/*
2 * Copyright (C) 2012 Fusion-io  All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19#include <linux/sched.h>
20#include <linux/wait.h>
21#include <linux/bio.h>
22#include <linux/slab.h>
23#include <linux/buffer_head.h>
24#include <linux/blkdev.h>
25#include <linux/random.h>
26#include <linux/iocontext.h>
27#include <linux/capability.h>
28#include <linux/ratelimit.h>
29#include <linux/kthread.h>
30#include <linux/raid/pq.h>
31#include <linux/hash.h>
32#include <linux/list_sort.h>
33#include <linux/raid/xor.h>
34#include <linux/vmalloc.h>
35#include <asm/div64.h>
36#include "ctree.h"
37#include "extent_map.h"
38#include "disk-io.h"
39#include "transaction.h"
40#include "print-tree.h"
41#include "volumes.h"
42#include "raid56.h"
43#include "async-thread.h"
44#include "check-integrity.h"
45#include "rcu-string.h"
46
47/* set when additional merges to this rbio are not allowed */
48#define RBIO_RMW_LOCKED_BIT	1
49
50/*
51 * set when this rbio is sitting in the hash, but it is just a cache
52 * of past RMW
53 */
54#define RBIO_CACHE_BIT		2
55
56/*
57 * set when it is safe to trust the stripe_pages for caching
58 */
59#define RBIO_CACHE_READY_BIT	3
60
61#define RBIO_CACHE_SIZE 1024
62
63enum btrfs_rbio_ops {
64	BTRFS_RBIO_WRITE,
65	BTRFS_RBIO_READ_REBUILD,
66	BTRFS_RBIO_PARITY_SCRUB,
67	BTRFS_RBIO_REBUILD_MISSING,
68};
69
70struct btrfs_raid_bio {
71	struct btrfs_fs_info *fs_info;
72	struct btrfs_bio *bbio;
73
74	/* while we're doing rmw on a stripe
75	 * we put it into a hash table so we can
76	 * lock the stripe and merge more rbios
77	 * into it.
78	 */
79	struct list_head hash_list;
80
81	/*
82	 * LRU list for the stripe cache
83	 */
84	struct list_head stripe_cache;
85
86	/*
87	 * for scheduling work in the helper threads
88	 */
89	struct btrfs_work work;
90
91	/*
92	 * bio list and bio_list_lock are used
93	 * to add more bios into the stripe
94	 * in hopes of avoiding the full rmw
95	 */
96	struct bio_list bio_list;
97	spinlock_t bio_list_lock;
98
99	/* also protected by the bio_list_lock, the
100	 * plug list is used by the plugging code
101	 * to collect partial bios while plugged.  The
102	 * stripe locking code also uses it to hand off
103	 * the stripe lock to the next pending IO
104	 */
105	struct list_head plug_list;
106
107	/*
108	 * flags that tell us if it is safe to
109	 * merge with this bio
110	 */
111	unsigned long flags;
112
113	/* size of each individual stripe on disk */
114	int stripe_len;
115
116	/* number of data stripes (no p/q) */
117	int nr_data;
118
119	int real_stripes;
120
121	int stripe_npages;
122	/*
123	 * set if we're doing a parity rebuild
124	 * for a read from higher up, which is handled
125	 * differently from a parity rebuild as part of
126	 * rmw
127	 */
128	enum btrfs_rbio_ops operation;
129
130	/* first bad stripe */
131	int faila;
132
133	/* second bad stripe (for raid6 use) */
134	int failb;
135
136	int scrubp;
137	/*
138	 * number of pages needed to represent the full
139	 * stripe
140	 */
141	int nr_pages;
142
143	/*
144	 * size of all the bios in the bio_list.  This
145	 * helps us decide if the rbio maps to a full
146	 * stripe or not
147	 */
148	int bio_list_bytes;
149
150	int generic_bio_cnt;
151
152	atomic_t refs;
153
154	atomic_t stripes_pending;
155
156	atomic_t error;
157	/*
158	 * these are two arrays of pointers.  We allocate the
159	 * rbio big enough to hold them both and setup their
160	 * locations when the rbio is allocated
161	 */
162
163	/* pointers to pages that we allocated for
164	 * reading/writing stripes directly from the disk (including P/Q)
165	 */
166	struct page **stripe_pages;
167
168	/*
169	 * pointers to the pages in the bio_list.  Stored
170	 * here for faster lookup
171	 */
172	struct page **bio_pages;
173
174	/*
175	 * bitmap to record which horizontal stripe has data
176	 */
177	unsigned long *dbitmap;
178};
179
180static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182static void rmw_work(struct btrfs_work *work);
183static void read_rebuild_work(struct btrfs_work *work);
184static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191
192static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193					 int need_check);
194static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195
196/*
197 * the stripe hash table is used for locking, and to collect
198 * bios in hopes of making a full stripe
199 */
200int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201{
202	struct btrfs_stripe_hash_table *table;
203	struct btrfs_stripe_hash_table *x;
204	struct btrfs_stripe_hash *cur;
205	struct btrfs_stripe_hash *h;
206	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207	int i;
208	int table_size;
209
210	if (info->stripe_hash_table)
211		return 0;
212
213	/*
214	 * The table is large, starting with order 4 and can go as high as
215	 * order 7 in case lock debugging is turned on.
216	 *
217	 * Try harder to allocate and fallback to vmalloc to lower the chance
218	 * of a failing mount.
219	 */
220	table_size = sizeof(*table) + sizeof(*h) * num_entries;
221	table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
222	if (!table) {
223		table = vzalloc(table_size);
224		if (!table)
225			return -ENOMEM;
226	}
227
228	spin_lock_init(&table->cache_lock);
229	INIT_LIST_HEAD(&table->stripe_cache);
230
231	h = table->table;
232
233	for (i = 0; i < num_entries; i++) {
234		cur = h + i;
235		INIT_LIST_HEAD(&cur->hash_list);
236		spin_lock_init(&cur->lock);
237		init_waitqueue_head(&cur->wait);
238	}
239
240	x = cmpxchg(&info->stripe_hash_table, NULL, table);
241	if (x)
242		kvfree(x);
243	return 0;
244}
245
246/*
247 * caching an rbio means to copy anything from the
248 * bio_pages array into the stripe_pages array.  We
249 * use the page uptodate bit in the stripe cache array
250 * to indicate if it has valid data
251 *
252 * once the caching is done, we set the cache ready
253 * bit.
254 */
255static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
256{
257	int i;
258	char *s;
259	char *d;
260	int ret;
261
262	ret = alloc_rbio_pages(rbio);
263	if (ret)
264		return;
265
266	for (i = 0; i < rbio->nr_pages; i++) {
267		if (!rbio->bio_pages[i])
268			continue;
269
270		s = kmap(rbio->bio_pages[i]);
271		d = kmap(rbio->stripe_pages[i]);
272
273		memcpy(d, s, PAGE_CACHE_SIZE);
274
275		kunmap(rbio->bio_pages[i]);
276		kunmap(rbio->stripe_pages[i]);
277		SetPageUptodate(rbio->stripe_pages[i]);
278	}
279	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
280}
281
282/*
283 * we hash on the first logical address of the stripe
284 */
285static int rbio_bucket(struct btrfs_raid_bio *rbio)
286{
287	u64 num = rbio->bbio->raid_map[0];
288
289	/*
290	 * we shift down quite a bit.  We're using byte
291	 * addressing, and most of the lower bits are zeros.
292	 * This tends to upset hash_64, and it consistently
293	 * returns just one or two different values.
294	 *
295	 * shifting off the lower bits fixes things.
296	 */
297	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
298}
299
300/*
301 * stealing an rbio means taking all the uptodate pages from the stripe
302 * array in the source rbio and putting them into the destination rbio
303 */
304static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
305{
306	int i;
307	struct page *s;
308	struct page *d;
309
310	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
311		return;
312
313	for (i = 0; i < dest->nr_pages; i++) {
314		s = src->stripe_pages[i];
315		if (!s || !PageUptodate(s)) {
316			continue;
317		}
318
319		d = dest->stripe_pages[i];
320		if (d)
321			__free_page(d);
322
323		dest->stripe_pages[i] = s;
324		src->stripe_pages[i] = NULL;
325	}
326}
327
328/*
329 * merging means we take the bio_list from the victim and
330 * splice it into the destination.  The victim should
331 * be discarded afterwards.
332 *
333 * must be called with dest->rbio_list_lock held
334 */
335static void merge_rbio(struct btrfs_raid_bio *dest,
336		       struct btrfs_raid_bio *victim)
337{
338	bio_list_merge(&dest->bio_list, &victim->bio_list);
339	dest->bio_list_bytes += victim->bio_list_bytes;
340	dest->generic_bio_cnt += victim->generic_bio_cnt;
341	bio_list_init(&victim->bio_list);
342}
343
344/*
345 * used to prune items that are in the cache.  The caller
346 * must hold the hash table lock.
347 */
348static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
349{
350	int bucket = rbio_bucket(rbio);
351	struct btrfs_stripe_hash_table *table;
352	struct btrfs_stripe_hash *h;
353	int freeit = 0;
354
355	/*
356	 * check the bit again under the hash table lock.
357	 */
358	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
359		return;
360
361	table = rbio->fs_info->stripe_hash_table;
362	h = table->table + bucket;
363
364	/* hold the lock for the bucket because we may be
365	 * removing it from the hash table
366	 */
367	spin_lock(&h->lock);
368
369	/*
370	 * hold the lock for the bio list because we need
371	 * to make sure the bio list is empty
372	 */
373	spin_lock(&rbio->bio_list_lock);
374
375	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
376		list_del_init(&rbio->stripe_cache);
377		table->cache_size -= 1;
378		freeit = 1;
379
380		/* if the bio list isn't empty, this rbio is
381		 * still involved in an IO.  We take it out
382		 * of the cache list, and drop the ref that
383		 * was held for the list.
384		 *
385		 * If the bio_list was empty, we also remove
386		 * the rbio from the hash_table, and drop
387		 * the corresponding ref
388		 */
389		if (bio_list_empty(&rbio->bio_list)) {
390			if (!list_empty(&rbio->hash_list)) {
391				list_del_init(&rbio->hash_list);
392				atomic_dec(&rbio->refs);
393				BUG_ON(!list_empty(&rbio->plug_list));
394			}
395		}
396	}
397
398	spin_unlock(&rbio->bio_list_lock);
399	spin_unlock(&h->lock);
400
401	if (freeit)
402		__free_raid_bio(rbio);
403}
404
405/*
406 * prune a given rbio from the cache
407 */
408static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
409{
410	struct btrfs_stripe_hash_table *table;
411	unsigned long flags;
412
413	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
414		return;
415
416	table = rbio->fs_info->stripe_hash_table;
417
418	spin_lock_irqsave(&table->cache_lock, flags);
419	__remove_rbio_from_cache(rbio);
420	spin_unlock_irqrestore(&table->cache_lock, flags);
421}
422
423/*
424 * remove everything in the cache
425 */
426static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
427{
428	struct btrfs_stripe_hash_table *table;
429	unsigned long flags;
430	struct btrfs_raid_bio *rbio;
431
432	table = info->stripe_hash_table;
433
434	spin_lock_irqsave(&table->cache_lock, flags);
435	while (!list_empty(&table->stripe_cache)) {
436		rbio = list_entry(table->stripe_cache.next,
437				  struct btrfs_raid_bio,
438				  stripe_cache);
439		__remove_rbio_from_cache(rbio);
440	}
441	spin_unlock_irqrestore(&table->cache_lock, flags);
442}
443
444/*
445 * remove all cached entries and free the hash table
446 * used by unmount
447 */
448void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
449{
450	if (!info->stripe_hash_table)
451		return;
452	btrfs_clear_rbio_cache(info);
453	kvfree(info->stripe_hash_table);
454	info->stripe_hash_table = NULL;
455}
456
457/*
458 * insert an rbio into the stripe cache.  It
459 * must have already been prepared by calling
460 * cache_rbio_pages
461 *
462 * If this rbio was already cached, it gets
463 * moved to the front of the lru.
464 *
465 * If the size of the rbio cache is too big, we
466 * prune an item.
467 */
468static void cache_rbio(struct btrfs_raid_bio *rbio)
469{
470	struct btrfs_stripe_hash_table *table;
471	unsigned long flags;
472
473	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
474		return;
475
476	table = rbio->fs_info->stripe_hash_table;
477
478	spin_lock_irqsave(&table->cache_lock, flags);
479	spin_lock(&rbio->bio_list_lock);
480
481	/* bump our ref if we were not in the list before */
482	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
483		atomic_inc(&rbio->refs);
484
485	if (!list_empty(&rbio->stripe_cache)){
486		list_move(&rbio->stripe_cache, &table->stripe_cache);
487	} else {
488		list_add(&rbio->stripe_cache, &table->stripe_cache);
489		table->cache_size += 1;
490	}
491
492	spin_unlock(&rbio->bio_list_lock);
493
494	if (table->cache_size > RBIO_CACHE_SIZE) {
495		struct btrfs_raid_bio *found;
496
497		found = list_entry(table->stripe_cache.prev,
498				  struct btrfs_raid_bio,
499				  stripe_cache);
500
501		if (found != rbio)
502			__remove_rbio_from_cache(found);
503	}
504
505	spin_unlock_irqrestore(&table->cache_lock, flags);
506	return;
507}
508
509/*
510 * helper function to run the xor_blocks api.  It is only
511 * able to do MAX_XOR_BLOCKS at a time, so we need to
512 * loop through.
513 */
514static void run_xor(void **pages, int src_cnt, ssize_t len)
515{
516	int src_off = 0;
517	int xor_src_cnt = 0;
518	void *dest = pages[src_cnt];
519
520	while(src_cnt > 0) {
521		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
522		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
523
524		src_cnt -= xor_src_cnt;
525		src_off += xor_src_cnt;
526	}
527}
528
529/*
530 * returns true if the bio list inside this rbio
531 * covers an entire stripe (no rmw required).
532 * Must be called with the bio list lock held, or
533 * at a time when you know it is impossible to add
534 * new bios into the list
535 */
536static int __rbio_is_full(struct btrfs_raid_bio *rbio)
537{
538	unsigned long size = rbio->bio_list_bytes;
539	int ret = 1;
540
541	if (size != rbio->nr_data * rbio->stripe_len)
542		ret = 0;
543
544	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
545	return ret;
546}
547
548static int rbio_is_full(struct btrfs_raid_bio *rbio)
549{
550	unsigned long flags;
551	int ret;
552
553	spin_lock_irqsave(&rbio->bio_list_lock, flags);
554	ret = __rbio_is_full(rbio);
555	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
556	return ret;
557}
558
559/*
560 * returns 1 if it is safe to merge two rbios together.
561 * The merging is safe if the two rbios correspond to
562 * the same stripe and if they are both going in the same
563 * direction (read vs write), and if neither one is
564 * locked for final IO
565 *
566 * The caller is responsible for locking such that
567 * rmw_locked is safe to test
568 */
569static int rbio_can_merge(struct btrfs_raid_bio *last,
570			  struct btrfs_raid_bio *cur)
571{
572	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
573	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
574		return 0;
575
576	/*
577	 * we can't merge with cached rbios, since the
578	 * idea is that when we merge the destination
579	 * rbio is going to run our IO for us.  We can
580	 * steal from cached rbio's though, other functions
581	 * handle that.
582	 */
583	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
584	    test_bit(RBIO_CACHE_BIT, &cur->flags))
585		return 0;
586
587	if (last->bbio->raid_map[0] !=
588	    cur->bbio->raid_map[0])
589		return 0;
590
591	/* we can't merge with different operations */
592	if (last->operation != cur->operation)
593		return 0;
594	/*
595	 * We've need read the full stripe from the drive.
596	 * check and repair the parity and write the new results.
597	 *
598	 * We're not allowed to add any new bios to the
599	 * bio list here, anyone else that wants to
600	 * change this stripe needs to do their own rmw.
601	 */
602	if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
603	    cur->operation == BTRFS_RBIO_PARITY_SCRUB)
604		return 0;
605
606	if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
607	    cur->operation == BTRFS_RBIO_REBUILD_MISSING)
608		return 0;
609
610	return 1;
611}
612
613/*
614 * helper to index into the pstripe
615 */
616static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
617{
618	index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
619	return rbio->stripe_pages[index];
620}
621
622/*
623 * helper to index into the qstripe, returns null
624 * if there is no qstripe
625 */
626static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
627{
628	if (rbio->nr_data + 1 == rbio->real_stripes)
629		return NULL;
630
631	index += ((rbio->nr_data + 1) * rbio->stripe_len) >>
632		PAGE_CACHE_SHIFT;
633	return rbio->stripe_pages[index];
634}
635
636/*
637 * The first stripe in the table for a logical address
638 * has the lock.  rbios are added in one of three ways:
639 *
640 * 1) Nobody has the stripe locked yet.  The rbio is given
641 * the lock and 0 is returned.  The caller must start the IO
642 * themselves.
643 *
644 * 2) Someone has the stripe locked, but we're able to merge
645 * with the lock owner.  The rbio is freed and the IO will
646 * start automatically along with the existing rbio.  1 is returned.
647 *
648 * 3) Someone has the stripe locked, but we're not able to merge.
649 * The rbio is added to the lock owner's plug list, or merged into
650 * an rbio already on the plug list.  When the lock owner unlocks,
651 * the next rbio on the list is run and the IO is started automatically.
652 * 1 is returned
653 *
654 * If we return 0, the caller still owns the rbio and must continue with
655 * IO submission.  If we return 1, the caller must assume the rbio has
656 * already been freed.
657 */
658static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
659{
660	int bucket = rbio_bucket(rbio);
661	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
662	struct btrfs_raid_bio *cur;
663	struct btrfs_raid_bio *pending;
664	unsigned long flags;
665	DEFINE_WAIT(wait);
666	struct btrfs_raid_bio *freeit = NULL;
667	struct btrfs_raid_bio *cache_drop = NULL;
668	int ret = 0;
669	int walk = 0;
670
671	spin_lock_irqsave(&h->lock, flags);
672	list_for_each_entry(cur, &h->hash_list, hash_list) {
673		walk++;
674		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
675			spin_lock(&cur->bio_list_lock);
676
677			/* can we steal this cached rbio's pages? */
678			if (bio_list_empty(&cur->bio_list) &&
679			    list_empty(&cur->plug_list) &&
680			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
681			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
682				list_del_init(&cur->hash_list);
683				atomic_dec(&cur->refs);
684
685				steal_rbio(cur, rbio);
686				cache_drop = cur;
687				spin_unlock(&cur->bio_list_lock);
688
689				goto lockit;
690			}
691
692			/* can we merge into the lock owner? */
693			if (rbio_can_merge(cur, rbio)) {
694				merge_rbio(cur, rbio);
695				spin_unlock(&cur->bio_list_lock);
696				freeit = rbio;
697				ret = 1;
698				goto out;
699			}
700
701
702			/*
703			 * we couldn't merge with the running
704			 * rbio, see if we can merge with the
705			 * pending ones.  We don't have to
706			 * check for rmw_locked because there
707			 * is no way they are inside finish_rmw
708			 * right now
709			 */
710			list_for_each_entry(pending, &cur->plug_list,
711					    plug_list) {
712				if (rbio_can_merge(pending, rbio)) {
713					merge_rbio(pending, rbio);
714					spin_unlock(&cur->bio_list_lock);
715					freeit = rbio;
716					ret = 1;
717					goto out;
718				}
719			}
720
721			/* no merging, put us on the tail of the plug list,
722			 * our rbio will be started with the currently
723			 * running rbio unlocks
724			 */
725			list_add_tail(&rbio->plug_list, &cur->plug_list);
726			spin_unlock(&cur->bio_list_lock);
727			ret = 1;
728			goto out;
729		}
730	}
731lockit:
732	atomic_inc(&rbio->refs);
733	list_add(&rbio->hash_list, &h->hash_list);
734out:
735	spin_unlock_irqrestore(&h->lock, flags);
736	if (cache_drop)
737		remove_rbio_from_cache(cache_drop);
738	if (freeit)
739		__free_raid_bio(freeit);
740	return ret;
741}
742
743/*
744 * called as rmw or parity rebuild is completed.  If the plug list has more
745 * rbios waiting for this stripe, the next one on the list will be started
746 */
747static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
748{
749	int bucket;
750	struct btrfs_stripe_hash *h;
751	unsigned long flags;
752	int keep_cache = 0;
753
754	bucket = rbio_bucket(rbio);
755	h = rbio->fs_info->stripe_hash_table->table + bucket;
756
757	if (list_empty(&rbio->plug_list))
758		cache_rbio(rbio);
759
760	spin_lock_irqsave(&h->lock, flags);
761	spin_lock(&rbio->bio_list_lock);
762
763	if (!list_empty(&rbio->hash_list)) {
764		/*
765		 * if we're still cached and there is no other IO
766		 * to perform, just leave this rbio here for others
767		 * to steal from later
768		 */
769		if (list_empty(&rbio->plug_list) &&
770		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
771			keep_cache = 1;
772			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
773			BUG_ON(!bio_list_empty(&rbio->bio_list));
774			goto done;
775		}
776
777		list_del_init(&rbio->hash_list);
778		atomic_dec(&rbio->refs);
779
780		/*
781		 * we use the plug list to hold all the rbios
782		 * waiting for the chance to lock this stripe.
783		 * hand the lock over to one of them.
784		 */
785		if (!list_empty(&rbio->plug_list)) {
786			struct btrfs_raid_bio *next;
787			struct list_head *head = rbio->plug_list.next;
788
789			next = list_entry(head, struct btrfs_raid_bio,
790					  plug_list);
791
792			list_del_init(&rbio->plug_list);
793
794			list_add(&next->hash_list, &h->hash_list);
795			atomic_inc(&next->refs);
796			spin_unlock(&rbio->bio_list_lock);
797			spin_unlock_irqrestore(&h->lock, flags);
798
799			if (next->operation == BTRFS_RBIO_READ_REBUILD)
800				async_read_rebuild(next);
801			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
802				steal_rbio(rbio, next);
803				async_read_rebuild(next);
804			} else if (next->operation == BTRFS_RBIO_WRITE) {
805				steal_rbio(rbio, next);
806				async_rmw_stripe(next);
807			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
808				steal_rbio(rbio, next);
809				async_scrub_parity(next);
810			}
811
812			goto done_nolock;
813			/*
814			 * The barrier for this waitqueue_active is not needed,
815			 * we're protected by h->lock and can't miss a wakeup.
816			 */
817		} else if (waitqueue_active(&h->wait)) {
818			spin_unlock(&rbio->bio_list_lock);
819			spin_unlock_irqrestore(&h->lock, flags);
820			wake_up(&h->wait);
821			goto done_nolock;
822		}
823	}
824done:
825	spin_unlock(&rbio->bio_list_lock);
826	spin_unlock_irqrestore(&h->lock, flags);
827
828done_nolock:
829	if (!keep_cache)
830		remove_rbio_from_cache(rbio);
831}
832
833static void __free_raid_bio(struct btrfs_raid_bio *rbio)
834{
835	int i;
836
837	WARN_ON(atomic_read(&rbio->refs) < 0);
838	if (!atomic_dec_and_test(&rbio->refs))
839		return;
840
841	WARN_ON(!list_empty(&rbio->stripe_cache));
842	WARN_ON(!list_empty(&rbio->hash_list));
843	WARN_ON(!bio_list_empty(&rbio->bio_list));
844
845	for (i = 0; i < rbio->nr_pages; i++) {
846		if (rbio->stripe_pages[i]) {
847			__free_page(rbio->stripe_pages[i]);
848			rbio->stripe_pages[i] = NULL;
849		}
850	}
851
852	btrfs_put_bbio(rbio->bbio);
853	kfree(rbio);
854}
855
856static void free_raid_bio(struct btrfs_raid_bio *rbio)
857{
858	unlock_stripe(rbio);
859	__free_raid_bio(rbio);
860}
861
862/*
863 * this frees the rbio and runs through all the bios in the
864 * bio_list and calls end_io on them
865 */
866static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
867{
868	struct bio *cur = bio_list_get(&rbio->bio_list);
869	struct bio *next;
870
871	if (rbio->generic_bio_cnt)
872		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
873
874	free_raid_bio(rbio);
875
876	while (cur) {
877		next = cur->bi_next;
878		cur->bi_next = NULL;
879		cur->bi_error = err;
880		bio_endio(cur);
881		cur = next;
882	}
883}
884
885/*
886 * end io function used by finish_rmw.  When we finally
887 * get here, we've written a full stripe
888 */
889static void raid_write_end_io(struct bio *bio)
890{
891	struct btrfs_raid_bio *rbio = bio->bi_private;
892	int err = bio->bi_error;
893
894	if (err)
895		fail_bio_stripe(rbio, bio);
896
897	bio_put(bio);
898
899	if (!atomic_dec_and_test(&rbio->stripes_pending))
900		return;
901
902	err = 0;
903
904	/* OK, we have read all the stripes we need to. */
905	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
906		err = -EIO;
907
908	rbio_orig_end_io(rbio, err);
909	return;
910}
911
912/*
913 * the read/modify/write code wants to use the original bio for
914 * any pages it included, and then use the rbio for everything
915 * else.  This function decides if a given index (stripe number)
916 * and page number in that stripe fall inside the original bio
917 * or the rbio.
918 *
919 * if you set bio_list_only, you'll get a NULL back for any ranges
920 * that are outside the bio_list
921 *
922 * This doesn't take any refs on anything, you get a bare page pointer
923 * and the caller must bump refs as required.
924 *
925 * You must call index_rbio_pages once before you can trust
926 * the answers from this function.
927 */
928static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
929				 int index, int pagenr, int bio_list_only)
930{
931	int chunk_page;
932	struct page *p = NULL;
933
934	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
935
936	spin_lock_irq(&rbio->bio_list_lock);
937	p = rbio->bio_pages[chunk_page];
938	spin_unlock_irq(&rbio->bio_list_lock);
939
940	if (p || bio_list_only)
941		return p;
942
943	return rbio->stripe_pages[chunk_page];
944}
945
946/*
947 * number of pages we need for the entire stripe across all the
948 * drives
949 */
950static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
951{
952	unsigned long nr = stripe_len * nr_stripes;
953	return DIV_ROUND_UP(nr, PAGE_CACHE_SIZE);
954}
955
956/*
957 * allocation and initial setup for the btrfs_raid_bio.  Not
958 * this does not allocate any pages for rbio->pages.
959 */
960static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
961			  struct btrfs_bio *bbio, u64 stripe_len)
962{
963	struct btrfs_raid_bio *rbio;
964	int nr_data = 0;
965	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
966	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
967	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
968	void *p;
969
970	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
971		       DIV_ROUND_UP(stripe_npages, BITS_PER_LONG / 8),
972			GFP_NOFS);
973	if (!rbio)
974		return ERR_PTR(-ENOMEM);
975
976	bio_list_init(&rbio->bio_list);
977	INIT_LIST_HEAD(&rbio->plug_list);
978	spin_lock_init(&rbio->bio_list_lock);
979	INIT_LIST_HEAD(&rbio->stripe_cache);
980	INIT_LIST_HEAD(&rbio->hash_list);
981	rbio->bbio = bbio;
982	rbio->fs_info = root->fs_info;
983	rbio->stripe_len = stripe_len;
984	rbio->nr_pages = num_pages;
985	rbio->real_stripes = real_stripes;
986	rbio->stripe_npages = stripe_npages;
987	rbio->faila = -1;
988	rbio->failb = -1;
989	atomic_set(&rbio->refs, 1);
990	atomic_set(&rbio->error, 0);
991	atomic_set(&rbio->stripes_pending, 0);
992
993	/*
994	 * the stripe_pages and bio_pages array point to the extra
995	 * memory we allocated past the end of the rbio
996	 */
997	p = rbio + 1;
998	rbio->stripe_pages = p;
999	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1000	rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1001
1002	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1003		nr_data = real_stripes - 1;
1004	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1005		nr_data = real_stripes - 2;
1006	else
1007		BUG();
1008
1009	rbio->nr_data = nr_data;
1010	return rbio;
1011}
1012
1013/* allocate pages for all the stripes in the bio, including parity */
1014static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1015{
1016	int i;
1017	struct page *page;
1018
1019	for (i = 0; i < rbio->nr_pages; i++) {
1020		if (rbio->stripe_pages[i])
1021			continue;
1022		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1023		if (!page)
1024			return -ENOMEM;
1025		rbio->stripe_pages[i] = page;
1026		ClearPageUptodate(page);
1027	}
1028	return 0;
1029}
1030
1031/* allocate pages for just the p/q stripes */
1032static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1033{
1034	int i;
1035	struct page *page;
1036
1037	i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
1038
1039	for (; i < rbio->nr_pages; i++) {
1040		if (rbio->stripe_pages[i])
1041			continue;
1042		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1043		if (!page)
1044			return -ENOMEM;
1045		rbio->stripe_pages[i] = page;
1046	}
1047	return 0;
1048}
1049
1050/*
1051 * add a single page from a specific stripe into our list of bios for IO
1052 * this will try to merge into existing bios if possible, and returns
1053 * zero if all went well.
1054 */
1055static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1056			    struct bio_list *bio_list,
1057			    struct page *page,
1058			    int stripe_nr,
1059			    unsigned long page_index,
1060			    unsigned long bio_max_len)
1061{
1062	struct bio *last = bio_list->tail;
1063	u64 last_end = 0;
1064	int ret;
1065	struct bio *bio;
1066	struct btrfs_bio_stripe *stripe;
1067	u64 disk_start;
1068
1069	stripe = &rbio->bbio->stripes[stripe_nr];
1070	disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT);
1071
1072	/* if the device is missing, just fail this stripe */
1073	if (!stripe->dev->bdev)
1074		return fail_rbio_index(rbio, stripe_nr);
1075
1076	/* see if we can add this page onto our existing bio */
1077	if (last) {
1078		last_end = (u64)last->bi_iter.bi_sector << 9;
1079		last_end += last->bi_iter.bi_size;
1080
1081		/*
1082		 * we can't merge these if they are from different
1083		 * devices or if they are not contiguous
1084		 */
1085		if (last_end == disk_start && stripe->dev->bdev &&
1086		    !last->bi_error &&
1087		    last->bi_bdev == stripe->dev->bdev) {
1088			ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0);
1089			if (ret == PAGE_CACHE_SIZE)
1090				return 0;
1091		}
1092	}
1093
1094	/* put a new bio on the list */
1095	bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1096	if (!bio)
1097		return -ENOMEM;
1098
1099	bio->bi_iter.bi_size = 0;
1100	bio->bi_bdev = stripe->dev->bdev;
1101	bio->bi_iter.bi_sector = disk_start >> 9;
1102
1103	bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
1104	bio_list_add(bio_list, bio);
1105	return 0;
1106}
1107
1108/*
1109 * while we're doing the read/modify/write cycle, we could
1110 * have errors in reading pages off the disk.  This checks
1111 * for errors and if we're not able to read the page it'll
1112 * trigger parity reconstruction.  The rmw will be finished
1113 * after we've reconstructed the failed stripes
1114 */
1115static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1116{
1117	if (rbio->faila >= 0 || rbio->failb >= 0) {
1118		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1119		__raid56_parity_recover(rbio);
1120	} else {
1121		finish_rmw(rbio);
1122	}
1123}
1124
1125/*
1126 * these are just the pages from the rbio array, not from anything
1127 * the FS sent down to us
1128 */
1129static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page)
1130{
1131	int index;
1132	index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT);
1133	index += page;
1134	return rbio->stripe_pages[index];
1135}
1136
1137/*
1138 * helper function to walk our bio list and populate the bio_pages array with
1139 * the result.  This seems expensive, but it is faster than constantly
1140 * searching through the bio list as we setup the IO in finish_rmw or stripe
1141 * reconstruction.
1142 *
1143 * This must be called before you trust the answers from page_in_rbio
1144 */
1145static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1146{
1147	struct bio *bio;
1148	u64 start;
1149	unsigned long stripe_offset;
1150	unsigned long page_index;
1151	struct page *p;
1152	int i;
1153
1154	spin_lock_irq(&rbio->bio_list_lock);
1155	bio_list_for_each(bio, &rbio->bio_list) {
1156		start = (u64)bio->bi_iter.bi_sector << 9;
1157		stripe_offset = start - rbio->bbio->raid_map[0];
1158		page_index = stripe_offset >> PAGE_CACHE_SHIFT;
1159
1160		for (i = 0; i < bio->bi_vcnt; i++) {
1161			p = bio->bi_io_vec[i].bv_page;
1162			rbio->bio_pages[page_index + i] = p;
1163		}
1164	}
1165	spin_unlock_irq(&rbio->bio_list_lock);
1166}
1167
1168/*
1169 * this is called from one of two situations.  We either
1170 * have a full stripe from the higher layers, or we've read all
1171 * the missing bits off disk.
1172 *
1173 * This will calculate the parity and then send down any
1174 * changed blocks.
1175 */
1176static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1177{
1178	struct btrfs_bio *bbio = rbio->bbio;
1179	void *pointers[rbio->real_stripes];
1180	int stripe_len = rbio->stripe_len;
1181	int nr_data = rbio->nr_data;
1182	int stripe;
1183	int pagenr;
1184	int p_stripe = -1;
1185	int q_stripe = -1;
1186	struct bio_list bio_list;
1187	struct bio *bio;
1188	int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT;
1189	int ret;
1190
1191	bio_list_init(&bio_list);
1192
1193	if (rbio->real_stripes - rbio->nr_data == 1) {
1194		p_stripe = rbio->real_stripes - 1;
1195	} else if (rbio->real_stripes - rbio->nr_data == 2) {
1196		p_stripe = rbio->real_stripes - 2;
1197		q_stripe = rbio->real_stripes - 1;
1198	} else {
1199		BUG();
1200	}
1201
1202	/* at this point we either have a full stripe,
1203	 * or we've read the full stripe from the drive.
1204	 * recalculate the parity and write the new results.
1205	 *
1206	 * We're not allowed to add any new bios to the
1207	 * bio list here, anyone else that wants to
1208	 * change this stripe needs to do their own rmw.
1209	 */
1210	spin_lock_irq(&rbio->bio_list_lock);
1211	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1212	spin_unlock_irq(&rbio->bio_list_lock);
1213
1214	atomic_set(&rbio->error, 0);
1215
1216	/*
1217	 * now that we've set rmw_locked, run through the
1218	 * bio list one last time and map the page pointers
1219	 *
1220	 * We don't cache full rbios because we're assuming
1221	 * the higher layers are unlikely to use this area of
1222	 * the disk again soon.  If they do use it again,
1223	 * hopefully they will send another full bio.
1224	 */
1225	index_rbio_pages(rbio);
1226	if (!rbio_is_full(rbio))
1227		cache_rbio_pages(rbio);
1228	else
1229		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1230
1231	for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1232		struct page *p;
1233		/* first collect one page from each data stripe */
1234		for (stripe = 0; stripe < nr_data; stripe++) {
1235			p = page_in_rbio(rbio, stripe, pagenr, 0);
1236			pointers[stripe] = kmap(p);
1237		}
1238
1239		/* then add the parity stripe */
1240		p = rbio_pstripe_page(rbio, pagenr);
1241		SetPageUptodate(p);
1242		pointers[stripe++] = kmap(p);
1243
1244		if (q_stripe != -1) {
1245
1246			/*
1247			 * raid6, add the qstripe and call the
1248			 * library function to fill in our p/q
1249			 */
1250			p = rbio_qstripe_page(rbio, pagenr);
1251			SetPageUptodate(p);
1252			pointers[stripe++] = kmap(p);
1253
1254			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1255						pointers);
1256		} else {
1257			/* raid5 */
1258			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1259			run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
1260		}
1261
1262
1263		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1264			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1265	}
1266
1267	/*
1268	 * time to start writing.  Make bios for everything from the
1269	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1270	 * everything else.
1271	 */
1272	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1273		for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1274			struct page *page;
1275			if (stripe < rbio->nr_data) {
1276				page = page_in_rbio(rbio, stripe, pagenr, 1);
1277				if (!page)
1278					continue;
1279			} else {
1280			       page = rbio_stripe_page(rbio, stripe, pagenr);
1281			}
1282
1283			ret = rbio_add_io_page(rbio, &bio_list,
1284				       page, stripe, pagenr, rbio->stripe_len);
1285			if (ret)
1286				goto cleanup;
1287		}
1288	}
1289
1290	if (likely(!bbio->num_tgtdevs))
1291		goto write_data;
1292
1293	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1294		if (!bbio->tgtdev_map[stripe])
1295			continue;
1296
1297		for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1298			struct page *page;
1299			if (stripe < rbio->nr_data) {
1300				page = page_in_rbio(rbio, stripe, pagenr, 1);
1301				if (!page)
1302					continue;
1303			} else {
1304			       page = rbio_stripe_page(rbio, stripe, pagenr);
1305			}
1306
1307			ret = rbio_add_io_page(rbio, &bio_list, page,
1308					       rbio->bbio->tgtdev_map[stripe],
1309					       pagenr, rbio->stripe_len);
1310			if (ret)
1311				goto cleanup;
1312		}
1313	}
1314
1315write_data:
1316	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1317	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1318
1319	while (1) {
1320		bio = bio_list_pop(&bio_list);
1321		if (!bio)
1322			break;
1323
1324		bio->bi_private = rbio;
1325		bio->bi_end_io = raid_write_end_io;
1326		submit_bio(WRITE, bio);
1327	}
1328	return;
1329
1330cleanup:
1331	rbio_orig_end_io(rbio, -EIO);
1332}
1333
1334/*
1335 * helper to find the stripe number for a given bio.  Used to figure out which
1336 * stripe has failed.  This expects the bio to correspond to a physical disk,
1337 * so it looks up based on physical sector numbers.
1338 */
1339static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1340			   struct bio *bio)
1341{
1342	u64 physical = bio->bi_iter.bi_sector;
1343	u64 stripe_start;
1344	int i;
1345	struct btrfs_bio_stripe *stripe;
1346
1347	physical <<= 9;
1348
1349	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1350		stripe = &rbio->bbio->stripes[i];
1351		stripe_start = stripe->physical;
1352		if (physical >= stripe_start &&
1353		    physical < stripe_start + rbio->stripe_len &&
1354		    bio->bi_bdev == stripe->dev->bdev) {
1355			return i;
1356		}
1357	}
1358	return -1;
1359}
1360
1361/*
1362 * helper to find the stripe number for a given
1363 * bio (before mapping).  Used to figure out which stripe has
1364 * failed.  This looks up based on logical block numbers.
1365 */
1366static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1367				   struct bio *bio)
1368{
1369	u64 logical = bio->bi_iter.bi_sector;
1370	u64 stripe_start;
1371	int i;
1372
1373	logical <<= 9;
1374
1375	for (i = 0; i < rbio->nr_data; i++) {
1376		stripe_start = rbio->bbio->raid_map[i];
1377		if (logical >= stripe_start &&
1378		    logical < stripe_start + rbio->stripe_len) {
1379			return i;
1380		}
1381	}
1382	return -1;
1383}
1384
1385/*
1386 * returns -EIO if we had too many failures
1387 */
1388static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1389{
1390	unsigned long flags;
1391	int ret = 0;
1392
1393	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1394
1395	/* we already know this stripe is bad, move on */
1396	if (rbio->faila == failed || rbio->failb == failed)
1397		goto out;
1398
1399	if (rbio->faila == -1) {
1400		/* first failure on this rbio */
1401		rbio->faila = failed;
1402		atomic_inc(&rbio->error);
1403	} else if (rbio->failb == -1) {
1404		/* second failure on this rbio */
1405		rbio->failb = failed;
1406		atomic_inc(&rbio->error);
1407	} else {
1408		ret = -EIO;
1409	}
1410out:
1411	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1412
1413	return ret;
1414}
1415
1416/*
1417 * helper to fail a stripe based on a physical disk
1418 * bio.
1419 */
1420static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1421			   struct bio *bio)
1422{
1423	int failed = find_bio_stripe(rbio, bio);
1424
1425	if (failed < 0)
1426		return -EIO;
1427
1428	return fail_rbio_index(rbio, failed);
1429}
1430
1431/*
1432 * this sets each page in the bio uptodate.  It should only be used on private
1433 * rbio pages, nothing that comes in from the higher layers
1434 */
1435static void set_bio_pages_uptodate(struct bio *bio)
1436{
1437	int i;
1438	struct page *p;
1439
1440	for (i = 0; i < bio->bi_vcnt; i++) {
1441		p = bio->bi_io_vec[i].bv_page;
1442		SetPageUptodate(p);
1443	}
1444}
1445
1446/*
1447 * end io for the read phase of the rmw cycle.  All the bios here are physical
1448 * stripe bios we've read from the disk so we can recalculate the parity of the
1449 * stripe.
1450 *
1451 * This will usually kick off finish_rmw once all the bios are read in, but it
1452 * may trigger parity reconstruction if we had any errors along the way
1453 */
1454static void raid_rmw_end_io(struct bio *bio)
1455{
1456	struct btrfs_raid_bio *rbio = bio->bi_private;
1457
1458	if (bio->bi_error)
1459		fail_bio_stripe(rbio, bio);
1460	else
1461		set_bio_pages_uptodate(bio);
1462
1463	bio_put(bio);
1464
1465	if (!atomic_dec_and_test(&rbio->stripes_pending))
1466		return;
1467
1468	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1469		goto cleanup;
1470
1471	/*
1472	 * this will normally call finish_rmw to start our write
1473	 * but if there are any failed stripes we'll reconstruct
1474	 * from parity first
1475	 */
1476	validate_rbio_for_rmw(rbio);
1477	return;
1478
1479cleanup:
1480
1481	rbio_orig_end_io(rbio, -EIO);
1482}
1483
1484static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1485{
1486	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1487			rmw_work, NULL, NULL);
1488
1489	btrfs_queue_work(rbio->fs_info->rmw_workers,
1490			 &rbio->work);
1491}
1492
1493static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1494{
1495	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1496			read_rebuild_work, NULL, NULL);
1497
1498	btrfs_queue_work(rbio->fs_info->rmw_workers,
1499			 &rbio->work);
1500}
1501
1502/*
1503 * the stripe must be locked by the caller.  It will
1504 * unlock after all the writes are done
1505 */
1506static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1507{
1508	int bios_to_read = 0;
1509	struct bio_list bio_list;
1510	int ret;
1511	int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
1512	int pagenr;
1513	int stripe;
1514	struct bio *bio;
1515
1516	bio_list_init(&bio_list);
1517
1518	ret = alloc_rbio_pages(rbio);
1519	if (ret)
1520		goto cleanup;
1521
1522	index_rbio_pages(rbio);
1523
1524	atomic_set(&rbio->error, 0);
1525	/*
1526	 * build a list of bios to read all the missing parts of this
1527	 * stripe
1528	 */
1529	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1530		for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1531			struct page *page;
1532			/*
1533			 * we want to find all the pages missing from
1534			 * the rbio and read them from the disk.  If
1535			 * page_in_rbio finds a page in the bio list
1536			 * we don't need to read it off the stripe.
1537			 */
1538			page = page_in_rbio(rbio, stripe, pagenr, 1);
1539			if (page)
1540				continue;
1541
1542			page = rbio_stripe_page(rbio, stripe, pagenr);
1543			/*
1544			 * the bio cache may have handed us an uptodate
1545			 * page.  If so, be happy and use it
1546			 */
1547			if (PageUptodate(page))
1548				continue;
1549
1550			ret = rbio_add_io_page(rbio, &bio_list, page,
1551				       stripe, pagenr, rbio->stripe_len);
1552			if (ret)
1553				goto cleanup;
1554		}
1555	}
1556
1557	bios_to_read = bio_list_size(&bio_list);
1558	if (!bios_to_read) {
1559		/*
1560		 * this can happen if others have merged with
1561		 * us, it means there is nothing left to read.
1562		 * But if there are missing devices it may not be
1563		 * safe to do the full stripe write yet.
1564		 */
1565		goto finish;
1566	}
1567
1568	/*
1569	 * the bbio may be freed once we submit the last bio.  Make sure
1570	 * not to touch it after that
1571	 */
1572	atomic_set(&rbio->stripes_pending, bios_to_read);
1573	while (1) {
1574		bio = bio_list_pop(&bio_list);
1575		if (!bio)
1576			break;
1577
1578		bio->bi_private = rbio;
1579		bio->bi_end_io = raid_rmw_end_io;
1580
1581		btrfs_bio_wq_end_io(rbio->fs_info, bio,
1582				    BTRFS_WQ_ENDIO_RAID56);
1583
1584		submit_bio(READ, bio);
1585	}
1586	/* the actual write will happen once the reads are done */
1587	return 0;
1588
1589cleanup:
1590	rbio_orig_end_io(rbio, -EIO);
1591	return -EIO;
1592
1593finish:
1594	validate_rbio_for_rmw(rbio);
1595	return 0;
1596}
1597
1598/*
1599 * if the upper layers pass in a full stripe, we thank them by only allocating
1600 * enough pages to hold the parity, and sending it all down quickly.
1601 */
1602static int full_stripe_write(struct btrfs_raid_bio *rbio)
1603{
1604	int ret;
1605
1606	ret = alloc_rbio_parity_pages(rbio);
1607	if (ret) {
1608		__free_raid_bio(rbio);
1609		return ret;
1610	}
1611
1612	ret = lock_stripe_add(rbio);
1613	if (ret == 0)
1614		finish_rmw(rbio);
1615	return 0;
1616}
1617
1618/*
1619 * partial stripe writes get handed over to async helpers.
1620 * We're really hoping to merge a few more writes into this
1621 * rbio before calculating new parity
1622 */
1623static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1624{
1625	int ret;
1626
1627	ret = lock_stripe_add(rbio);
1628	if (ret == 0)
1629		async_rmw_stripe(rbio);
1630	return 0;
1631}
1632
1633/*
1634 * sometimes while we were reading from the drive to
1635 * recalculate parity, enough new bios come into create
1636 * a full stripe.  So we do a check here to see if we can
1637 * go directly to finish_rmw
1638 */
1639static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1640{
1641	/* head off into rmw land if we don't have a full stripe */
1642	if (!rbio_is_full(rbio))
1643		return partial_stripe_write(rbio);
1644	return full_stripe_write(rbio);
1645}
1646
1647/*
1648 * We use plugging call backs to collect full stripes.
1649 * Any time we get a partial stripe write while plugged
1650 * we collect it into a list.  When the unplug comes down,
1651 * we sort the list by logical block number and merge
1652 * everything we can into the same rbios
1653 */
1654struct btrfs_plug_cb {
1655	struct blk_plug_cb cb;
1656	struct btrfs_fs_info *info;
1657	struct list_head rbio_list;
1658	struct btrfs_work work;
1659};
1660
1661/*
1662 * rbios on the plug list are sorted for easier merging.
1663 */
1664static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1665{
1666	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1667						 plug_list);
1668	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1669						 plug_list);
1670	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1671	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1672
1673	if (a_sector < b_sector)
1674		return -1;
1675	if (a_sector > b_sector)
1676		return 1;
1677	return 0;
1678}
1679
1680static void run_plug(struct btrfs_plug_cb *plug)
1681{
1682	struct btrfs_raid_bio *cur;
1683	struct btrfs_raid_bio *last = NULL;
1684
1685	/*
1686	 * sort our plug list then try to merge
1687	 * everything we can in hopes of creating full
1688	 * stripes.
1689	 */
1690	list_sort(NULL, &plug->rbio_list, plug_cmp);
1691	while (!list_empty(&plug->rbio_list)) {
1692		cur = list_entry(plug->rbio_list.next,
1693				 struct btrfs_raid_bio, plug_list);
1694		list_del_init(&cur->plug_list);
1695
1696		if (rbio_is_full(cur)) {
1697			/* we have a full stripe, send it down */
1698			full_stripe_write(cur);
1699			continue;
1700		}
1701		if (last) {
1702			if (rbio_can_merge(last, cur)) {
1703				merge_rbio(last, cur);
1704				__free_raid_bio(cur);
1705				continue;
1706
1707			}
1708			__raid56_parity_write(last);
1709		}
1710		last = cur;
1711	}
1712	if (last) {
1713		__raid56_parity_write(last);
1714	}
1715	kfree(plug);
1716}
1717
1718/*
1719 * if the unplug comes from schedule, we have to push the
1720 * work off to a helper thread
1721 */
1722static void unplug_work(struct btrfs_work *work)
1723{
1724	struct btrfs_plug_cb *plug;
1725	plug = container_of(work, struct btrfs_plug_cb, work);
1726	run_plug(plug);
1727}
1728
1729static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1730{
1731	struct btrfs_plug_cb *plug;
1732	plug = container_of(cb, struct btrfs_plug_cb, cb);
1733
1734	if (from_schedule) {
1735		btrfs_init_work(&plug->work, btrfs_rmw_helper,
1736				unplug_work, NULL, NULL);
1737		btrfs_queue_work(plug->info->rmw_workers,
1738				 &plug->work);
1739		return;
1740	}
1741	run_plug(plug);
1742}
1743
1744/*
1745 * our main entry point for writes from the rest of the FS.
1746 */
1747int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
1748			struct btrfs_bio *bbio, u64 stripe_len)
1749{
1750	struct btrfs_raid_bio *rbio;
1751	struct btrfs_plug_cb *plug = NULL;
1752	struct blk_plug_cb *cb;
1753	int ret;
1754
1755	rbio = alloc_rbio(root, bbio, stripe_len);
1756	if (IS_ERR(rbio)) {
1757		btrfs_put_bbio(bbio);
1758		return PTR_ERR(rbio);
1759	}
1760	bio_list_add(&rbio->bio_list, bio);
1761	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1762	rbio->operation = BTRFS_RBIO_WRITE;
1763
1764	btrfs_bio_counter_inc_noblocked(root->fs_info);
1765	rbio->generic_bio_cnt = 1;
1766
1767	/*
1768	 * don't plug on full rbios, just get them out the door
1769	 * as quickly as we can
1770	 */
1771	if (rbio_is_full(rbio)) {
1772		ret = full_stripe_write(rbio);
1773		if (ret)
1774			btrfs_bio_counter_dec(root->fs_info);
1775		return ret;
1776	}
1777
1778	cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1779			       sizeof(*plug));
1780	if (cb) {
1781		plug = container_of(cb, struct btrfs_plug_cb, cb);
1782		if (!plug->info) {
1783			plug->info = root->fs_info;
1784			INIT_LIST_HEAD(&plug->rbio_list);
1785		}
1786		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1787		ret = 0;
1788	} else {
1789		ret = __raid56_parity_write(rbio);
1790		if (ret)
1791			btrfs_bio_counter_dec(root->fs_info);
1792	}
1793	return ret;
1794}
1795
1796/*
1797 * all parity reconstruction happens here.  We've read in everything
1798 * we can find from the drives and this does the heavy lifting of
1799 * sorting the good from the bad.
1800 */
1801static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1802{
1803	int pagenr, stripe;
1804	void **pointers;
1805	int faila = -1, failb = -1;
1806	int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
1807	struct page *page;
1808	int err;
1809	int i;
1810
1811	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1812	if (!pointers) {
1813		err = -ENOMEM;
1814		goto cleanup_io;
1815	}
1816
1817	faila = rbio->faila;
1818	failb = rbio->failb;
1819
1820	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1821	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1822		spin_lock_irq(&rbio->bio_list_lock);
1823		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1824		spin_unlock_irq(&rbio->bio_list_lock);
1825	}
1826
1827	index_rbio_pages(rbio);
1828
1829	for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1830		/*
1831		 * Now we just use bitmap to mark the horizontal stripes in
1832		 * which we have data when doing parity scrub.
1833		 */
1834		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1835		    !test_bit(pagenr, rbio->dbitmap))
1836			continue;
1837
1838		/* setup our array of pointers with pages
1839		 * from each stripe
1840		 */
1841		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1842			/*
1843			 * if we're rebuilding a read, we have to use
1844			 * pages from the bio list
1845			 */
1846			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1847			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1848			    (stripe == faila || stripe == failb)) {
1849				page = page_in_rbio(rbio, stripe, pagenr, 0);
1850			} else {
1851				page = rbio_stripe_page(rbio, stripe, pagenr);
1852			}
1853			pointers[stripe] = kmap(page);
1854		}
1855
1856		/* all raid6 handling here */
1857		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1858			/*
1859			 * single failure, rebuild from parity raid5
1860			 * style
1861			 */
1862			if (failb < 0) {
1863				if (faila == rbio->nr_data) {
1864					/*
1865					 * Just the P stripe has failed, without
1866					 * a bad data or Q stripe.
1867					 * TODO, we should redo the xor here.
1868					 */
1869					err = -EIO;
1870					goto cleanup;
1871				}
1872				/*
1873				 * a single failure in raid6 is rebuilt
1874				 * in the pstripe code below
1875				 */
1876				goto pstripe;
1877			}
1878
1879			/* make sure our ps and qs are in order */
1880			if (faila > failb) {
1881				int tmp = failb;
1882				failb = faila;
1883				faila = tmp;
1884			}
1885
1886			/* if the q stripe is failed, do a pstripe reconstruction
1887			 * from the xors.
1888			 * If both the q stripe and the P stripe are failed, we're
1889			 * here due to a crc mismatch and we can't give them the
1890			 * data they want
1891			 */
1892			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1893				if (rbio->bbio->raid_map[faila] ==
1894				    RAID5_P_STRIPE) {
1895					err = -EIO;
1896					goto cleanup;
1897				}
1898				/*
1899				 * otherwise we have one bad data stripe and
1900				 * a good P stripe.  raid5!
1901				 */
1902				goto pstripe;
1903			}
1904
1905			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1906				raid6_datap_recov(rbio->real_stripes,
1907						  PAGE_SIZE, faila, pointers);
1908			} else {
1909				raid6_2data_recov(rbio->real_stripes,
1910						  PAGE_SIZE, faila, failb,
1911						  pointers);
1912			}
1913		} else {
1914			void *p;
1915
1916			/* rebuild from P stripe here (raid5 or raid6) */
1917			BUG_ON(failb != -1);
1918pstripe:
1919			/* Copy parity block into failed block to start with */
1920			memcpy(pointers[faila],
1921			       pointers[rbio->nr_data],
1922			       PAGE_CACHE_SIZE);
1923
1924			/* rearrange the pointer array */
1925			p = pointers[faila];
1926			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1927				pointers[stripe] = pointers[stripe + 1];
1928			pointers[rbio->nr_data - 1] = p;
1929
1930			/* xor in the rest */
1931			run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE);
1932		}
1933		/* if we're doing this rebuild as part of an rmw, go through
1934		 * and set all of our private rbio pages in the
1935		 * failed stripes as uptodate.  This way finish_rmw will
1936		 * know they can be trusted.  If this was a read reconstruction,
1937		 * other endio functions will fiddle the uptodate bits
1938		 */
1939		if (rbio->operation == BTRFS_RBIO_WRITE) {
1940			for (i = 0;  i < nr_pages; i++) {
1941				if (faila != -1) {
1942					page = rbio_stripe_page(rbio, faila, i);
1943					SetPageUptodate(page);
1944				}
1945				if (failb != -1) {
1946					page = rbio_stripe_page(rbio, failb, i);
1947					SetPageUptodate(page);
1948				}
1949			}
1950		}
1951		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1952			/*
1953			 * if we're rebuilding a read, we have to use
1954			 * pages from the bio list
1955			 */
1956			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1957			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1958			    (stripe == faila || stripe == failb)) {
1959				page = page_in_rbio(rbio, stripe, pagenr, 0);
1960			} else {
1961				page = rbio_stripe_page(rbio, stripe, pagenr);
1962			}
1963			kunmap(page);
1964		}
1965	}
1966
1967	err = 0;
1968cleanup:
1969	kfree(pointers);
1970
1971cleanup_io:
1972	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1973		if (err == 0)
1974			cache_rbio_pages(rbio);
1975		else
1976			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1977
1978		rbio_orig_end_io(rbio, err);
1979	} else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1980		rbio_orig_end_io(rbio, err);
1981	} else if (err == 0) {
1982		rbio->faila = -1;
1983		rbio->failb = -1;
1984
1985		if (rbio->operation == BTRFS_RBIO_WRITE)
1986			finish_rmw(rbio);
1987		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1988			finish_parity_scrub(rbio, 0);
1989		else
1990			BUG();
1991	} else {
1992		rbio_orig_end_io(rbio, err);
1993	}
1994}
1995
1996/*
1997 * This is called only for stripes we've read from disk to
1998 * reconstruct the parity.
1999 */
2000static void raid_recover_end_io(struct bio *bio)
2001{
2002	struct btrfs_raid_bio *rbio = bio->bi_private;
2003
2004	/*
2005	 * we only read stripe pages off the disk, set them
2006	 * up to date if there were no errors
2007	 */
2008	if (bio->bi_error)
2009		fail_bio_stripe(rbio, bio);
2010	else
2011		set_bio_pages_uptodate(bio);
2012	bio_put(bio);
2013
2014	if (!atomic_dec_and_test(&rbio->stripes_pending))
2015		return;
2016
2017	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2018		rbio_orig_end_io(rbio, -EIO);
2019	else
2020		__raid_recover_end_io(rbio);
2021}
2022
2023/*
2024 * reads everything we need off the disk to reconstruct
2025 * the parity. endio handlers trigger final reconstruction
2026 * when the IO is done.
2027 *
2028 * This is used both for reads from the higher layers and for
2029 * parity construction required to finish a rmw cycle.
2030 */
2031static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2032{
2033	int bios_to_read = 0;
2034	struct bio_list bio_list;
2035	int ret;
2036	int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
2037	int pagenr;
2038	int stripe;
2039	struct bio *bio;
2040
2041	bio_list_init(&bio_list);
2042
2043	ret = alloc_rbio_pages(rbio);
2044	if (ret)
2045		goto cleanup;
2046
2047	atomic_set(&rbio->error, 0);
2048
2049	/*
2050	 * read everything that hasn't failed.  Thanks to the
2051	 * stripe cache, it is possible that some or all of these
2052	 * pages are going to be uptodate.
2053	 */
2054	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2055		if (rbio->faila == stripe || rbio->failb == stripe) {
2056			atomic_inc(&rbio->error);
2057			continue;
2058		}
2059
2060		for (pagenr = 0; pagenr < nr_pages; pagenr++) {
2061			struct page *p;
2062
2063			/*
2064			 * the rmw code may have already read this
2065			 * page in
2066			 */
2067			p = rbio_stripe_page(rbio, stripe, pagenr);
2068			if (PageUptodate(p))
2069				continue;
2070
2071			ret = rbio_add_io_page(rbio, &bio_list,
2072				       rbio_stripe_page(rbio, stripe, pagenr),
2073				       stripe, pagenr, rbio->stripe_len);
2074			if (ret < 0)
2075				goto cleanup;
2076		}
2077	}
2078
2079	bios_to_read = bio_list_size(&bio_list);
2080	if (!bios_to_read) {
2081		/*
2082		 * we might have no bios to read just because the pages
2083		 * were up to date, or we might have no bios to read because
2084		 * the devices were gone.
2085		 */
2086		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2087			__raid_recover_end_io(rbio);
2088			goto out;
2089		} else {
2090			goto cleanup;
2091		}
2092	}
2093
2094	/*
2095	 * the bbio may be freed once we submit the last bio.  Make sure
2096	 * not to touch it after that
2097	 */
2098	atomic_set(&rbio->stripes_pending, bios_to_read);
2099	while (1) {
2100		bio = bio_list_pop(&bio_list);
2101		if (!bio)
2102			break;
2103
2104		bio->bi_private = rbio;
2105		bio->bi_end_io = raid_recover_end_io;
2106
2107		btrfs_bio_wq_end_io(rbio->fs_info, bio,
2108				    BTRFS_WQ_ENDIO_RAID56);
2109
2110		submit_bio(READ, bio);
2111	}
2112out:
2113	return 0;
2114
2115cleanup:
2116	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2117	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2118		rbio_orig_end_io(rbio, -EIO);
2119	return -EIO;
2120}
2121
2122/*
2123 * the main entry point for reads from the higher layers.  This
2124 * is really only called when the normal read path had a failure,
2125 * so we assume the bio they send down corresponds to a failed part
2126 * of the drive.
2127 */
2128int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
2129			  struct btrfs_bio *bbio, u64 stripe_len,
2130			  int mirror_num, int generic_io)
2131{
2132	struct btrfs_raid_bio *rbio;
2133	int ret;
2134
2135	rbio = alloc_rbio(root, bbio, stripe_len);
2136	if (IS_ERR(rbio)) {
2137		if (generic_io)
2138			btrfs_put_bbio(bbio);
2139		return PTR_ERR(rbio);
2140	}
2141
2142	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2143	bio_list_add(&rbio->bio_list, bio);
2144	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2145
2146	rbio->faila = find_logical_bio_stripe(rbio, bio);
2147	if (rbio->faila == -1) {
2148		BUG();
2149		if (generic_io)
2150			btrfs_put_bbio(bbio);
2151		kfree(rbio);
2152		return -EIO;
2153	}
2154
2155	if (generic_io) {
2156		btrfs_bio_counter_inc_noblocked(root->fs_info);
2157		rbio->generic_bio_cnt = 1;
2158	} else {
2159		btrfs_get_bbio(bbio);
2160	}
2161
2162	/*
2163	 * reconstruct from the q stripe if they are
2164	 * asking for mirror 3
2165	 */
2166	if (mirror_num == 3)
2167		rbio->failb = rbio->real_stripes - 2;
2168
2169	ret = lock_stripe_add(rbio);
2170
2171	/*
2172	 * __raid56_parity_recover will end the bio with
2173	 * any errors it hits.  We don't want to return
2174	 * its error value up the stack because our caller
2175	 * will end up calling bio_endio with any nonzero
2176	 * return
2177	 */
2178	if (ret == 0)
2179		__raid56_parity_recover(rbio);
2180	/*
2181	 * our rbio has been added to the list of
2182	 * rbios that will be handled after the
2183	 * currently lock owner is done
2184	 */
2185	return 0;
2186
2187}
2188
2189static void rmw_work(struct btrfs_work *work)
2190{
2191	struct btrfs_raid_bio *rbio;
2192
2193	rbio = container_of(work, struct btrfs_raid_bio, work);
2194	raid56_rmw_stripe(rbio);
2195}
2196
2197static void read_rebuild_work(struct btrfs_work *work)
2198{
2199	struct btrfs_raid_bio *rbio;
2200
2201	rbio = container_of(work, struct btrfs_raid_bio, work);
2202	__raid56_parity_recover(rbio);
2203}
2204
2205/*
2206 * The following code is used to scrub/replace the parity stripe
2207 *
2208 * Note: We need make sure all the pages that add into the scrub/replace
2209 * raid bio are correct and not be changed during the scrub/replace. That
2210 * is those pages just hold metadata or file data with checksum.
2211 */
2212
2213struct btrfs_raid_bio *
2214raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio,
2215			       struct btrfs_bio *bbio, u64 stripe_len,
2216			       struct btrfs_device *scrub_dev,
2217			       unsigned long *dbitmap, int stripe_nsectors)
2218{
2219	struct btrfs_raid_bio *rbio;
2220	int i;
2221
2222	rbio = alloc_rbio(root, bbio, stripe_len);
2223	if (IS_ERR(rbio))
2224		return NULL;
2225	bio_list_add(&rbio->bio_list, bio);
2226	/*
2227	 * This is a special bio which is used to hold the completion handler
2228	 * and make the scrub rbio is similar to the other types
2229	 */
2230	ASSERT(!bio->bi_iter.bi_size);
2231	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2232
2233	for (i = 0; i < rbio->real_stripes; i++) {
2234		if (bbio->stripes[i].dev == scrub_dev) {
2235			rbio->scrubp = i;
2236			break;
2237		}
2238	}
2239
2240	/* Now we just support the sectorsize equals to page size */
2241	ASSERT(root->sectorsize == PAGE_SIZE);
2242	ASSERT(rbio->stripe_npages == stripe_nsectors);
2243	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2244
2245	return rbio;
2246}
2247
2248/* Used for both parity scrub and missing. */
2249void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2250			    u64 logical)
2251{
2252	int stripe_offset;
2253	int index;
2254
2255	ASSERT(logical >= rbio->bbio->raid_map[0]);
2256	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2257				rbio->stripe_len * rbio->nr_data);
2258	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2259	index = stripe_offset >> PAGE_CACHE_SHIFT;
2260	rbio->bio_pages[index] = page;
2261}
2262
2263/*
2264 * We just scrub the parity that we have correct data on the same horizontal,
2265 * so we needn't allocate all pages for all the stripes.
2266 */
2267static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2268{
2269	int i;
2270	int bit;
2271	int index;
2272	struct page *page;
2273
2274	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2275		for (i = 0; i < rbio->real_stripes; i++) {
2276			index = i * rbio->stripe_npages + bit;
2277			if (rbio->stripe_pages[index])
2278				continue;
2279
2280			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2281			if (!page)
2282				return -ENOMEM;
2283			rbio->stripe_pages[index] = page;
2284			ClearPageUptodate(page);
2285		}
2286	}
2287	return 0;
2288}
2289
2290/*
2291 * end io function used by finish_rmw.  When we finally
2292 * get here, we've written a full stripe
2293 */
2294static void raid_write_parity_end_io(struct bio *bio)
2295{
2296	struct btrfs_raid_bio *rbio = bio->bi_private;
2297	int err = bio->bi_error;
2298
2299	if (bio->bi_error)
2300		fail_bio_stripe(rbio, bio);
2301
2302	bio_put(bio);
2303
2304	if (!atomic_dec_and_test(&rbio->stripes_pending))
2305		return;
2306
2307	err = 0;
2308
2309	if (atomic_read(&rbio->error))
2310		err = -EIO;
2311
2312	rbio_orig_end_io(rbio, err);
2313}
2314
2315static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2316					 int need_check)
2317{
2318	struct btrfs_bio *bbio = rbio->bbio;
2319	void *pointers[rbio->real_stripes];
2320	DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2321	int nr_data = rbio->nr_data;
2322	int stripe;
2323	int pagenr;
2324	int p_stripe = -1;
2325	int q_stripe = -1;
2326	struct page *p_page = NULL;
2327	struct page *q_page = NULL;
2328	struct bio_list bio_list;
2329	struct bio *bio;
2330	int is_replace = 0;
2331	int ret;
2332
2333	bio_list_init(&bio_list);
2334
2335	if (rbio->real_stripes - rbio->nr_data == 1) {
2336		p_stripe = rbio->real_stripes - 1;
2337	} else if (rbio->real_stripes - rbio->nr_data == 2) {
2338		p_stripe = rbio->real_stripes - 2;
2339		q_stripe = rbio->real_stripes - 1;
2340	} else {
2341		BUG();
2342	}
2343
2344	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2345		is_replace = 1;
2346		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2347	}
2348
2349	/*
2350	 * Because the higher layers(scrubber) are unlikely to
2351	 * use this area of the disk again soon, so don't cache
2352	 * it.
2353	 */
2354	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2355
2356	if (!need_check)
2357		goto writeback;
2358
2359	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2360	if (!p_page)
2361		goto cleanup;
2362	SetPageUptodate(p_page);
2363
2364	if (q_stripe != -1) {
2365		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2366		if (!q_page) {
2367			__free_page(p_page);
2368			goto cleanup;
2369		}
2370		SetPageUptodate(q_page);
2371	}
2372
2373	atomic_set(&rbio->error, 0);
2374
2375	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2376		struct page *p;
2377		void *parity;
2378		/* first collect one page from each data stripe */
2379		for (stripe = 0; stripe < nr_data; stripe++) {
2380			p = page_in_rbio(rbio, stripe, pagenr, 0);
2381			pointers[stripe] = kmap(p);
2382		}
2383
2384		/* then add the parity stripe */
2385		pointers[stripe++] = kmap(p_page);
2386
2387		if (q_stripe != -1) {
2388
2389			/*
2390			 * raid6, add the qstripe and call the
2391			 * library function to fill in our p/q
2392			 */
2393			pointers[stripe++] = kmap(q_page);
2394
2395			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2396						pointers);
2397		} else {
2398			/* raid5 */
2399			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2400			run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
2401		}
2402
2403		/* Check scrubbing pairty and repair it */
2404		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2405		parity = kmap(p);
2406		if (memcmp(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE))
2407			memcpy(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE);
2408		else
2409			/* Parity is right, needn't writeback */
2410			bitmap_clear(rbio->dbitmap, pagenr, 1);
2411		kunmap(p);
2412
2413		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2414			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2415	}
2416
2417	__free_page(p_page);
2418	if (q_page)
2419		__free_page(q_page);
2420
2421writeback:
2422	/*
2423	 * time to start writing.  Make bios for everything from the
2424	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2425	 * everything else.
2426	 */
2427	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2428		struct page *page;
2429
2430		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2431		ret = rbio_add_io_page(rbio, &bio_list,
2432			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2433		if (ret)
2434			goto cleanup;
2435	}
2436
2437	if (!is_replace)
2438		goto submit_write;
2439
2440	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2441		struct page *page;
2442
2443		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2444		ret = rbio_add_io_page(rbio, &bio_list, page,
2445				       bbio->tgtdev_map[rbio->scrubp],
2446				       pagenr, rbio->stripe_len);
2447		if (ret)
2448			goto cleanup;
2449	}
2450
2451submit_write:
2452	nr_data = bio_list_size(&bio_list);
2453	if (!nr_data) {
2454		/* Every parity is right */
2455		rbio_orig_end_io(rbio, 0);
2456		return;
2457	}
2458
2459	atomic_set(&rbio->stripes_pending, nr_data);
2460
2461	while (1) {
2462		bio = bio_list_pop(&bio_list);
2463		if (!bio)
2464			break;
2465
2466		bio->bi_private = rbio;
2467		bio->bi_end_io = raid_write_parity_end_io;
2468		submit_bio(WRITE, bio);
2469	}
2470	return;
2471
2472cleanup:
2473	rbio_orig_end_io(rbio, -EIO);
2474}
2475
2476static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2477{
2478	if (stripe >= 0 && stripe < rbio->nr_data)
2479		return 1;
2480	return 0;
2481}
2482
2483/*
2484 * While we're doing the parity check and repair, we could have errors
2485 * in reading pages off the disk.  This checks for errors and if we're
2486 * not able to read the page it'll trigger parity reconstruction.  The
2487 * parity scrub will be finished after we've reconstructed the failed
2488 * stripes
2489 */
2490static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2491{
2492	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2493		goto cleanup;
2494
2495	if (rbio->faila >= 0 || rbio->failb >= 0) {
2496		int dfail = 0, failp = -1;
2497
2498		if (is_data_stripe(rbio, rbio->faila))
2499			dfail++;
2500		else if (is_parity_stripe(rbio->faila))
2501			failp = rbio->faila;
2502
2503		if (is_data_stripe(rbio, rbio->failb))
2504			dfail++;
2505		else if (is_parity_stripe(rbio->failb))
2506			failp = rbio->failb;
2507
2508		/*
2509		 * Because we can not use a scrubbing parity to repair
2510		 * the data, so the capability of the repair is declined.
2511		 * (In the case of RAID5, we can not repair anything)
2512		 */
2513		if (dfail > rbio->bbio->max_errors - 1)
2514			goto cleanup;
2515
2516		/*
2517		 * If all data is good, only parity is correctly, just
2518		 * repair the parity.
2519		 */
2520		if (dfail == 0) {
2521			finish_parity_scrub(rbio, 0);
2522			return;
2523		}
2524
2525		/*
2526		 * Here means we got one corrupted data stripe and one
2527		 * corrupted parity on RAID6, if the corrupted parity
2528		 * is scrubbing parity, luckly, use the other one to repair
2529		 * the data, or we can not repair the data stripe.
2530		 */
2531		if (failp != rbio->scrubp)
2532			goto cleanup;
2533
2534		__raid_recover_end_io(rbio);
2535	} else {
2536		finish_parity_scrub(rbio, 1);
2537	}
2538	return;
2539
2540cleanup:
2541	rbio_orig_end_io(rbio, -EIO);
2542}
2543
2544/*
2545 * end io for the read phase of the rmw cycle.  All the bios here are physical
2546 * stripe bios we've read from the disk so we can recalculate the parity of the
2547 * stripe.
2548 *
2549 * This will usually kick off finish_rmw once all the bios are read in, but it
2550 * may trigger parity reconstruction if we had any errors along the way
2551 */
2552static void raid56_parity_scrub_end_io(struct bio *bio)
2553{
2554	struct btrfs_raid_bio *rbio = bio->bi_private;
2555
2556	if (bio->bi_error)
2557		fail_bio_stripe(rbio, bio);
2558	else
2559		set_bio_pages_uptodate(bio);
2560
2561	bio_put(bio);
2562
2563	if (!atomic_dec_and_test(&rbio->stripes_pending))
2564		return;
2565
2566	/*
2567	 * this will normally call finish_rmw to start our write
2568	 * but if there are any failed stripes we'll reconstruct
2569	 * from parity first
2570	 */
2571	validate_rbio_for_parity_scrub(rbio);
2572}
2573
2574static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2575{
2576	int bios_to_read = 0;
2577	struct bio_list bio_list;
2578	int ret;
2579	int pagenr;
2580	int stripe;
2581	struct bio *bio;
2582
2583	ret = alloc_rbio_essential_pages(rbio);
2584	if (ret)
2585		goto cleanup;
2586
2587	bio_list_init(&bio_list);
2588
2589	atomic_set(&rbio->error, 0);
2590	/*
2591	 * build a list of bios to read all the missing parts of this
2592	 * stripe
2593	 */
2594	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2595		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2596			struct page *page;
2597			/*
2598			 * we want to find all the pages missing from
2599			 * the rbio and read them from the disk.  If
2600			 * page_in_rbio finds a page in the bio list
2601			 * we don't need to read it off the stripe.
2602			 */
2603			page = page_in_rbio(rbio, stripe, pagenr, 1);
2604			if (page)
2605				continue;
2606
2607			page = rbio_stripe_page(rbio, stripe, pagenr);
2608			/*
2609			 * the bio cache may have handed us an uptodate
2610			 * page.  If so, be happy and use it
2611			 */
2612			if (PageUptodate(page))
2613				continue;
2614
2615			ret = rbio_add_io_page(rbio, &bio_list, page,
2616				       stripe, pagenr, rbio->stripe_len);
2617			if (ret)
2618				goto cleanup;
2619		}
2620	}
2621
2622	bios_to_read = bio_list_size(&bio_list);
2623	if (!bios_to_read) {
2624		/*
2625		 * this can happen if others have merged with
2626		 * us, it means there is nothing left to read.
2627		 * But if there are missing devices it may not be
2628		 * safe to do the full stripe write yet.
2629		 */
2630		goto finish;
2631	}
2632
2633	/*
2634	 * the bbio may be freed once we submit the last bio.  Make sure
2635	 * not to touch it after that
2636	 */
2637	atomic_set(&rbio->stripes_pending, bios_to_read);
2638	while (1) {
2639		bio = bio_list_pop(&bio_list);
2640		if (!bio)
2641			break;
2642
2643		bio->bi_private = rbio;
2644		bio->bi_end_io = raid56_parity_scrub_end_io;
2645
2646		btrfs_bio_wq_end_io(rbio->fs_info, bio,
2647				    BTRFS_WQ_ENDIO_RAID56);
2648
2649		submit_bio(READ, bio);
2650	}
2651	/* the actual write will happen once the reads are done */
2652	return;
2653
2654cleanup:
2655	rbio_orig_end_io(rbio, -EIO);
2656	return;
2657
2658finish:
2659	validate_rbio_for_parity_scrub(rbio);
2660}
2661
2662static void scrub_parity_work(struct btrfs_work *work)
2663{
2664	struct btrfs_raid_bio *rbio;
2665
2666	rbio = container_of(work, struct btrfs_raid_bio, work);
2667	raid56_parity_scrub_stripe(rbio);
2668}
2669
2670static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2671{
2672	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2673			scrub_parity_work, NULL, NULL);
2674
2675	btrfs_queue_work(rbio->fs_info->rmw_workers,
2676			 &rbio->work);
2677}
2678
2679void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2680{
2681	if (!lock_stripe_add(rbio))
2682		async_scrub_parity(rbio);
2683}
2684
2685/* The following code is used for dev replace of a missing RAID 5/6 device. */
2686
2687struct btrfs_raid_bio *
2688raid56_alloc_missing_rbio(struct btrfs_root *root, struct bio *bio,
2689			  struct btrfs_bio *bbio, u64 length)
2690{
2691	struct btrfs_raid_bio *rbio;
2692
2693	rbio = alloc_rbio(root, bbio, length);
2694	if (IS_ERR(rbio))
2695		return NULL;
2696
2697	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2698	bio_list_add(&rbio->bio_list, bio);
2699	/*
2700	 * This is a special bio which is used to hold the completion handler
2701	 * and make the scrub rbio is similar to the other types
2702	 */
2703	ASSERT(!bio->bi_iter.bi_size);
2704
2705	rbio->faila = find_logical_bio_stripe(rbio, bio);
2706	if (rbio->faila == -1) {
2707		BUG();
2708		kfree(rbio);
2709		return NULL;
2710	}
2711
2712	return rbio;
2713}
2714
2715static void missing_raid56_work(struct btrfs_work *work)
2716{
2717	struct btrfs_raid_bio *rbio;
2718
2719	rbio = container_of(work, struct btrfs_raid_bio, work);
2720	__raid56_parity_recover(rbio);
2721}
2722
2723static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2724{
2725	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2726			missing_raid56_work, NULL, NULL);
2727
2728	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2729}
2730
2731void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2732{
2733	if (!lock_stripe_add(rbio))
2734		async_missing_raid56(rbio);
2735}
2736