1/* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19#include <linux/fs.h> 20#include <linux/pagemap.h> 21#include <linux/highmem.h> 22#include <linux/time.h> 23#include <linux/init.h> 24#include <linux/string.h> 25#include <linux/backing-dev.h> 26#include <linux/mpage.h> 27#include <linux/falloc.h> 28#include <linux/swap.h> 29#include <linux/writeback.h> 30#include <linux/statfs.h> 31#include <linux/compat.h> 32#include <linux/slab.h> 33#include <linux/btrfs.h> 34#include <linux/uio.h> 35#include "ctree.h" 36#include "disk-io.h" 37#include "transaction.h" 38#include "btrfs_inode.h" 39#include "print-tree.h" 40#include "tree-log.h" 41#include "locking.h" 42#include "volumes.h" 43#include "qgroup.h" 44 45static struct kmem_cache *btrfs_inode_defrag_cachep; 46/* 47 * when auto defrag is enabled we 48 * queue up these defrag structs to remember which 49 * inodes need defragging passes 50 */ 51struct inode_defrag { 52 struct rb_node rb_node; 53 /* objectid */ 54 u64 ino; 55 /* 56 * transid where the defrag was added, we search for 57 * extents newer than this 58 */ 59 u64 transid; 60 61 /* root objectid */ 62 u64 root; 63 64 /* last offset we were able to defrag */ 65 u64 last_offset; 66 67 /* if we've wrapped around back to zero once already */ 68 int cycled; 69}; 70 71static int __compare_inode_defrag(struct inode_defrag *defrag1, 72 struct inode_defrag *defrag2) 73{ 74 if (defrag1->root > defrag2->root) 75 return 1; 76 else if (defrag1->root < defrag2->root) 77 return -1; 78 else if (defrag1->ino > defrag2->ino) 79 return 1; 80 else if (defrag1->ino < defrag2->ino) 81 return -1; 82 else 83 return 0; 84} 85 86/* pop a record for an inode into the defrag tree. The lock 87 * must be held already 88 * 89 * If you're inserting a record for an older transid than an 90 * existing record, the transid already in the tree is lowered 91 * 92 * If an existing record is found the defrag item you 93 * pass in is freed 94 */ 95static int __btrfs_add_inode_defrag(struct inode *inode, 96 struct inode_defrag *defrag) 97{ 98 struct btrfs_root *root = BTRFS_I(inode)->root; 99 struct inode_defrag *entry; 100 struct rb_node **p; 101 struct rb_node *parent = NULL; 102 int ret; 103 104 p = &root->fs_info->defrag_inodes.rb_node; 105 while (*p) { 106 parent = *p; 107 entry = rb_entry(parent, struct inode_defrag, rb_node); 108 109 ret = __compare_inode_defrag(defrag, entry); 110 if (ret < 0) 111 p = &parent->rb_left; 112 else if (ret > 0) 113 p = &parent->rb_right; 114 else { 115 /* if we're reinserting an entry for 116 * an old defrag run, make sure to 117 * lower the transid of our existing record 118 */ 119 if (defrag->transid < entry->transid) 120 entry->transid = defrag->transid; 121 if (defrag->last_offset > entry->last_offset) 122 entry->last_offset = defrag->last_offset; 123 return -EEXIST; 124 } 125 } 126 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 127 rb_link_node(&defrag->rb_node, parent, p); 128 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes); 129 return 0; 130} 131 132static inline int __need_auto_defrag(struct btrfs_root *root) 133{ 134 if (!btrfs_test_opt(root, AUTO_DEFRAG)) 135 return 0; 136 137 if (btrfs_fs_closing(root->fs_info)) 138 return 0; 139 140 return 1; 141} 142 143/* 144 * insert a defrag record for this inode if auto defrag is 145 * enabled 146 */ 147int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 148 struct inode *inode) 149{ 150 struct btrfs_root *root = BTRFS_I(inode)->root; 151 struct inode_defrag *defrag; 152 u64 transid; 153 int ret; 154 155 if (!__need_auto_defrag(root)) 156 return 0; 157 158 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) 159 return 0; 160 161 if (trans) 162 transid = trans->transid; 163 else 164 transid = BTRFS_I(inode)->root->last_trans; 165 166 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 167 if (!defrag) 168 return -ENOMEM; 169 170 defrag->ino = btrfs_ino(inode); 171 defrag->transid = transid; 172 defrag->root = root->root_key.objectid; 173 174 spin_lock(&root->fs_info->defrag_inodes_lock); 175 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) { 176 /* 177 * If we set IN_DEFRAG flag and evict the inode from memory, 178 * and then re-read this inode, this new inode doesn't have 179 * IN_DEFRAG flag. At the case, we may find the existed defrag. 180 */ 181 ret = __btrfs_add_inode_defrag(inode, defrag); 182 if (ret) 183 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 184 } else { 185 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 186 } 187 spin_unlock(&root->fs_info->defrag_inodes_lock); 188 return 0; 189} 190 191/* 192 * Requeue the defrag object. If there is a defrag object that points to 193 * the same inode in the tree, we will merge them together (by 194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 195 */ 196static void btrfs_requeue_inode_defrag(struct inode *inode, 197 struct inode_defrag *defrag) 198{ 199 struct btrfs_root *root = BTRFS_I(inode)->root; 200 int ret; 201 202 if (!__need_auto_defrag(root)) 203 goto out; 204 205 /* 206 * Here we don't check the IN_DEFRAG flag, because we need merge 207 * them together. 208 */ 209 spin_lock(&root->fs_info->defrag_inodes_lock); 210 ret = __btrfs_add_inode_defrag(inode, defrag); 211 spin_unlock(&root->fs_info->defrag_inodes_lock); 212 if (ret) 213 goto out; 214 return; 215out: 216 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 217} 218 219/* 220 * pick the defragable inode that we want, if it doesn't exist, we will get 221 * the next one. 222 */ 223static struct inode_defrag * 224btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 225{ 226 struct inode_defrag *entry = NULL; 227 struct inode_defrag tmp; 228 struct rb_node *p; 229 struct rb_node *parent = NULL; 230 int ret; 231 232 tmp.ino = ino; 233 tmp.root = root; 234 235 spin_lock(&fs_info->defrag_inodes_lock); 236 p = fs_info->defrag_inodes.rb_node; 237 while (p) { 238 parent = p; 239 entry = rb_entry(parent, struct inode_defrag, rb_node); 240 241 ret = __compare_inode_defrag(&tmp, entry); 242 if (ret < 0) 243 p = parent->rb_left; 244 else if (ret > 0) 245 p = parent->rb_right; 246 else 247 goto out; 248 } 249 250 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 251 parent = rb_next(parent); 252 if (parent) 253 entry = rb_entry(parent, struct inode_defrag, rb_node); 254 else 255 entry = NULL; 256 } 257out: 258 if (entry) 259 rb_erase(parent, &fs_info->defrag_inodes); 260 spin_unlock(&fs_info->defrag_inodes_lock); 261 return entry; 262} 263 264void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 265{ 266 struct inode_defrag *defrag; 267 struct rb_node *node; 268 269 spin_lock(&fs_info->defrag_inodes_lock); 270 node = rb_first(&fs_info->defrag_inodes); 271 while (node) { 272 rb_erase(node, &fs_info->defrag_inodes); 273 defrag = rb_entry(node, struct inode_defrag, rb_node); 274 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 275 276 cond_resched_lock(&fs_info->defrag_inodes_lock); 277 278 node = rb_first(&fs_info->defrag_inodes); 279 } 280 spin_unlock(&fs_info->defrag_inodes_lock); 281} 282 283#define BTRFS_DEFRAG_BATCH 1024 284 285static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 286 struct inode_defrag *defrag) 287{ 288 struct btrfs_root *inode_root; 289 struct inode *inode; 290 struct btrfs_key key; 291 struct btrfs_ioctl_defrag_range_args range; 292 int num_defrag; 293 int index; 294 int ret; 295 296 /* get the inode */ 297 key.objectid = defrag->root; 298 key.type = BTRFS_ROOT_ITEM_KEY; 299 key.offset = (u64)-1; 300 301 index = srcu_read_lock(&fs_info->subvol_srcu); 302 303 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 304 if (IS_ERR(inode_root)) { 305 ret = PTR_ERR(inode_root); 306 goto cleanup; 307 } 308 309 key.objectid = defrag->ino; 310 key.type = BTRFS_INODE_ITEM_KEY; 311 key.offset = 0; 312 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 313 if (IS_ERR(inode)) { 314 ret = PTR_ERR(inode); 315 goto cleanup; 316 } 317 srcu_read_unlock(&fs_info->subvol_srcu, index); 318 319 /* do a chunk of defrag */ 320 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 321 memset(&range, 0, sizeof(range)); 322 range.len = (u64)-1; 323 range.start = defrag->last_offset; 324 325 sb_start_write(fs_info->sb); 326 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 327 BTRFS_DEFRAG_BATCH); 328 sb_end_write(fs_info->sb); 329 /* 330 * if we filled the whole defrag batch, there 331 * must be more work to do. Queue this defrag 332 * again 333 */ 334 if (num_defrag == BTRFS_DEFRAG_BATCH) { 335 defrag->last_offset = range.start; 336 btrfs_requeue_inode_defrag(inode, defrag); 337 } else if (defrag->last_offset && !defrag->cycled) { 338 /* 339 * we didn't fill our defrag batch, but 340 * we didn't start at zero. Make sure we loop 341 * around to the start of the file. 342 */ 343 defrag->last_offset = 0; 344 defrag->cycled = 1; 345 btrfs_requeue_inode_defrag(inode, defrag); 346 } else { 347 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 348 } 349 350 iput(inode); 351 return 0; 352cleanup: 353 srcu_read_unlock(&fs_info->subvol_srcu, index); 354 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 355 return ret; 356} 357 358/* 359 * run through the list of inodes in the FS that need 360 * defragging 361 */ 362int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 363{ 364 struct inode_defrag *defrag; 365 u64 first_ino = 0; 366 u64 root_objectid = 0; 367 368 atomic_inc(&fs_info->defrag_running); 369 while (1) { 370 /* Pause the auto defragger. */ 371 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 372 &fs_info->fs_state)) 373 break; 374 375 if (!__need_auto_defrag(fs_info->tree_root)) 376 break; 377 378 /* find an inode to defrag */ 379 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 380 first_ino); 381 if (!defrag) { 382 if (root_objectid || first_ino) { 383 root_objectid = 0; 384 first_ino = 0; 385 continue; 386 } else { 387 break; 388 } 389 } 390 391 first_ino = defrag->ino + 1; 392 root_objectid = defrag->root; 393 394 __btrfs_run_defrag_inode(fs_info, defrag); 395 } 396 atomic_dec(&fs_info->defrag_running); 397 398 /* 399 * during unmount, we use the transaction_wait queue to 400 * wait for the defragger to stop 401 */ 402 wake_up(&fs_info->transaction_wait); 403 return 0; 404} 405 406/* simple helper to fault in pages and copy. This should go away 407 * and be replaced with calls into generic code. 408 */ 409static noinline int btrfs_copy_from_user(loff_t pos, int num_pages, 410 size_t write_bytes, 411 struct page **prepared_pages, 412 struct iov_iter *i) 413{ 414 size_t copied = 0; 415 size_t total_copied = 0; 416 int pg = 0; 417 int offset = pos & (PAGE_CACHE_SIZE - 1); 418 419 while (write_bytes > 0) { 420 size_t count = min_t(size_t, 421 PAGE_CACHE_SIZE - offset, write_bytes); 422 struct page *page = prepared_pages[pg]; 423 /* 424 * Copy data from userspace to the current page 425 */ 426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 427 428 /* Flush processor's dcache for this page */ 429 flush_dcache_page(page); 430 431 /* 432 * if we get a partial write, we can end up with 433 * partially up to date pages. These add 434 * a lot of complexity, so make sure they don't 435 * happen by forcing this copy to be retried. 436 * 437 * The rest of the btrfs_file_write code will fall 438 * back to page at a time copies after we return 0. 439 */ 440 if (!PageUptodate(page) && copied < count) 441 copied = 0; 442 443 iov_iter_advance(i, copied); 444 write_bytes -= copied; 445 total_copied += copied; 446 447 /* Return to btrfs_file_write_iter to fault page */ 448 if (unlikely(copied == 0)) 449 break; 450 451 if (copied < PAGE_CACHE_SIZE - offset) { 452 offset += copied; 453 } else { 454 pg++; 455 offset = 0; 456 } 457 } 458 return total_copied; 459} 460 461/* 462 * unlocks pages after btrfs_file_write is done with them 463 */ 464static void btrfs_drop_pages(struct page **pages, size_t num_pages) 465{ 466 size_t i; 467 for (i = 0; i < num_pages; i++) { 468 /* page checked is some magic around finding pages that 469 * have been modified without going through btrfs_set_page_dirty 470 * clear it here. There should be no need to mark the pages 471 * accessed as prepare_pages should have marked them accessed 472 * in prepare_pages via find_or_create_page() 473 */ 474 ClearPageChecked(pages[i]); 475 unlock_page(pages[i]); 476 page_cache_release(pages[i]); 477 } 478} 479 480/* 481 * after copy_from_user, pages need to be dirtied and we need to make 482 * sure holes are created between the current EOF and the start of 483 * any next extents (if required). 484 * 485 * this also makes the decision about creating an inline extent vs 486 * doing real data extents, marking pages dirty and delalloc as required. 487 */ 488int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, 489 struct page **pages, size_t num_pages, 490 loff_t pos, size_t write_bytes, 491 struct extent_state **cached) 492{ 493 int err = 0; 494 int i; 495 u64 num_bytes; 496 u64 start_pos; 497 u64 end_of_last_block; 498 u64 end_pos = pos + write_bytes; 499 loff_t isize = i_size_read(inode); 500 501 start_pos = pos & ~((u64)root->sectorsize - 1); 502 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize); 503 504 end_of_last_block = start_pos + num_bytes - 1; 505 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 506 cached); 507 if (err) 508 return err; 509 510 for (i = 0; i < num_pages; i++) { 511 struct page *p = pages[i]; 512 SetPageUptodate(p); 513 ClearPageChecked(p); 514 set_page_dirty(p); 515 } 516 517 /* 518 * we've only changed i_size in ram, and we haven't updated 519 * the disk i_size. There is no need to log the inode 520 * at this time. 521 */ 522 if (end_pos > isize) 523 i_size_write(inode, end_pos); 524 return 0; 525} 526 527/* 528 * this drops all the extents in the cache that intersect the range 529 * [start, end]. Existing extents are split as required. 530 */ 531void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, 532 int skip_pinned) 533{ 534 struct extent_map *em; 535 struct extent_map *split = NULL; 536 struct extent_map *split2 = NULL; 537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 538 u64 len = end - start + 1; 539 u64 gen; 540 int ret; 541 int testend = 1; 542 unsigned long flags; 543 int compressed = 0; 544 bool modified; 545 546 WARN_ON(end < start); 547 if (end == (u64)-1) { 548 len = (u64)-1; 549 testend = 0; 550 } 551 while (1) { 552 int no_splits = 0; 553 554 modified = false; 555 if (!split) 556 split = alloc_extent_map(); 557 if (!split2) 558 split2 = alloc_extent_map(); 559 if (!split || !split2) 560 no_splits = 1; 561 562 write_lock(&em_tree->lock); 563 em = lookup_extent_mapping(em_tree, start, len); 564 if (!em) { 565 write_unlock(&em_tree->lock); 566 break; 567 } 568 flags = em->flags; 569 gen = em->generation; 570 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 571 if (testend && em->start + em->len >= start + len) { 572 free_extent_map(em); 573 write_unlock(&em_tree->lock); 574 break; 575 } 576 start = em->start + em->len; 577 if (testend) 578 len = start + len - (em->start + em->len); 579 free_extent_map(em); 580 write_unlock(&em_tree->lock); 581 continue; 582 } 583 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 584 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 585 clear_bit(EXTENT_FLAG_LOGGING, &flags); 586 modified = !list_empty(&em->list); 587 if (no_splits) 588 goto next; 589 590 if (em->start < start) { 591 split->start = em->start; 592 split->len = start - em->start; 593 594 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 595 split->orig_start = em->orig_start; 596 split->block_start = em->block_start; 597 598 if (compressed) 599 split->block_len = em->block_len; 600 else 601 split->block_len = split->len; 602 split->orig_block_len = max(split->block_len, 603 em->orig_block_len); 604 split->ram_bytes = em->ram_bytes; 605 } else { 606 split->orig_start = split->start; 607 split->block_len = 0; 608 split->block_start = em->block_start; 609 split->orig_block_len = 0; 610 split->ram_bytes = split->len; 611 } 612 613 split->generation = gen; 614 split->bdev = em->bdev; 615 split->flags = flags; 616 split->compress_type = em->compress_type; 617 replace_extent_mapping(em_tree, em, split, modified); 618 free_extent_map(split); 619 split = split2; 620 split2 = NULL; 621 } 622 if (testend && em->start + em->len > start + len) { 623 u64 diff = start + len - em->start; 624 625 split->start = start + len; 626 split->len = em->start + em->len - (start + len); 627 split->bdev = em->bdev; 628 split->flags = flags; 629 split->compress_type = em->compress_type; 630 split->generation = gen; 631 632 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 633 split->orig_block_len = max(em->block_len, 634 em->orig_block_len); 635 636 split->ram_bytes = em->ram_bytes; 637 if (compressed) { 638 split->block_len = em->block_len; 639 split->block_start = em->block_start; 640 split->orig_start = em->orig_start; 641 } else { 642 split->block_len = split->len; 643 split->block_start = em->block_start 644 + diff; 645 split->orig_start = em->orig_start; 646 } 647 } else { 648 split->ram_bytes = split->len; 649 split->orig_start = split->start; 650 split->block_len = 0; 651 split->block_start = em->block_start; 652 split->orig_block_len = 0; 653 } 654 655 if (extent_map_in_tree(em)) { 656 replace_extent_mapping(em_tree, em, split, 657 modified); 658 } else { 659 ret = add_extent_mapping(em_tree, split, 660 modified); 661 ASSERT(ret == 0); /* Logic error */ 662 } 663 free_extent_map(split); 664 split = NULL; 665 } 666next: 667 if (extent_map_in_tree(em)) 668 remove_extent_mapping(em_tree, em); 669 write_unlock(&em_tree->lock); 670 671 /* once for us */ 672 free_extent_map(em); 673 /* once for the tree*/ 674 free_extent_map(em); 675 } 676 if (split) 677 free_extent_map(split); 678 if (split2) 679 free_extent_map(split2); 680} 681 682/* 683 * this is very complex, but the basic idea is to drop all extents 684 * in the range start - end. hint_block is filled in with a block number 685 * that would be a good hint to the block allocator for this file. 686 * 687 * If an extent intersects the range but is not entirely inside the range 688 * it is either truncated or split. Anything entirely inside the range 689 * is deleted from the tree. 690 */ 691int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 692 struct btrfs_root *root, struct inode *inode, 693 struct btrfs_path *path, u64 start, u64 end, 694 u64 *drop_end, int drop_cache, 695 int replace_extent, 696 u32 extent_item_size, 697 int *key_inserted) 698{ 699 struct extent_buffer *leaf; 700 struct btrfs_file_extent_item *fi; 701 struct btrfs_key key; 702 struct btrfs_key new_key; 703 u64 ino = btrfs_ino(inode); 704 u64 search_start = start; 705 u64 disk_bytenr = 0; 706 u64 num_bytes = 0; 707 u64 extent_offset = 0; 708 u64 extent_end = 0; 709 int del_nr = 0; 710 int del_slot = 0; 711 int extent_type; 712 int recow; 713 int ret; 714 int modify_tree = -1; 715 int update_refs; 716 int found = 0; 717 int leafs_visited = 0; 718 719 if (drop_cache) 720 btrfs_drop_extent_cache(inode, start, end - 1, 0); 721 722 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 723 modify_tree = 0; 724 725 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 726 root == root->fs_info->tree_root); 727 while (1) { 728 recow = 0; 729 ret = btrfs_lookup_file_extent(trans, root, path, ino, 730 search_start, modify_tree); 731 if (ret < 0) 732 break; 733 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 734 leaf = path->nodes[0]; 735 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 736 if (key.objectid == ino && 737 key.type == BTRFS_EXTENT_DATA_KEY) 738 path->slots[0]--; 739 } 740 ret = 0; 741 leafs_visited++; 742next_slot: 743 leaf = path->nodes[0]; 744 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 745 BUG_ON(del_nr > 0); 746 ret = btrfs_next_leaf(root, path); 747 if (ret < 0) 748 break; 749 if (ret > 0) { 750 ret = 0; 751 break; 752 } 753 leafs_visited++; 754 leaf = path->nodes[0]; 755 recow = 1; 756 } 757 758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 759 760 if (key.objectid > ino) 761 break; 762 if (WARN_ON_ONCE(key.objectid < ino) || 763 key.type < BTRFS_EXTENT_DATA_KEY) { 764 ASSERT(del_nr == 0); 765 path->slots[0]++; 766 goto next_slot; 767 } 768 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 769 break; 770 771 fi = btrfs_item_ptr(leaf, path->slots[0], 772 struct btrfs_file_extent_item); 773 extent_type = btrfs_file_extent_type(leaf, fi); 774 775 if (extent_type == BTRFS_FILE_EXTENT_REG || 776 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 777 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 778 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 779 extent_offset = btrfs_file_extent_offset(leaf, fi); 780 extent_end = key.offset + 781 btrfs_file_extent_num_bytes(leaf, fi); 782 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 783 extent_end = key.offset + 784 btrfs_file_extent_inline_len(leaf, 785 path->slots[0], fi); 786 } else { 787 /* can't happen */ 788 BUG(); 789 } 790 791 /* 792 * Don't skip extent items representing 0 byte lengths. They 793 * used to be created (bug) if while punching holes we hit 794 * -ENOSPC condition. So if we find one here, just ensure we 795 * delete it, otherwise we would insert a new file extent item 796 * with the same key (offset) as that 0 bytes length file 797 * extent item in the call to setup_items_for_insert() later 798 * in this function. 799 */ 800 if (extent_end == key.offset && extent_end >= search_start) 801 goto delete_extent_item; 802 803 if (extent_end <= search_start) { 804 path->slots[0]++; 805 goto next_slot; 806 } 807 808 found = 1; 809 search_start = max(key.offset, start); 810 if (recow || !modify_tree) { 811 modify_tree = -1; 812 btrfs_release_path(path); 813 continue; 814 } 815 816 /* 817 * | - range to drop - | 818 * | -------- extent -------- | 819 */ 820 if (start > key.offset && end < extent_end) { 821 BUG_ON(del_nr > 0); 822 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 823 ret = -EOPNOTSUPP; 824 break; 825 } 826 827 memcpy(&new_key, &key, sizeof(new_key)); 828 new_key.offset = start; 829 ret = btrfs_duplicate_item(trans, root, path, 830 &new_key); 831 if (ret == -EAGAIN) { 832 btrfs_release_path(path); 833 continue; 834 } 835 if (ret < 0) 836 break; 837 838 leaf = path->nodes[0]; 839 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 840 struct btrfs_file_extent_item); 841 btrfs_set_file_extent_num_bytes(leaf, fi, 842 start - key.offset); 843 844 fi = btrfs_item_ptr(leaf, path->slots[0], 845 struct btrfs_file_extent_item); 846 847 extent_offset += start - key.offset; 848 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 849 btrfs_set_file_extent_num_bytes(leaf, fi, 850 extent_end - start); 851 btrfs_mark_buffer_dirty(leaf); 852 853 if (update_refs && disk_bytenr > 0) { 854 ret = btrfs_inc_extent_ref(trans, root, 855 disk_bytenr, num_bytes, 0, 856 root->root_key.objectid, 857 new_key.objectid, 858 start - extent_offset); 859 BUG_ON(ret); /* -ENOMEM */ 860 } 861 key.offset = start; 862 } 863 /* 864 * | ---- range to drop ----- | 865 * | -------- extent -------- | 866 */ 867 if (start <= key.offset && end < extent_end) { 868 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 869 ret = -EOPNOTSUPP; 870 break; 871 } 872 873 memcpy(&new_key, &key, sizeof(new_key)); 874 new_key.offset = end; 875 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 876 877 extent_offset += end - key.offset; 878 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 879 btrfs_set_file_extent_num_bytes(leaf, fi, 880 extent_end - end); 881 btrfs_mark_buffer_dirty(leaf); 882 if (update_refs && disk_bytenr > 0) 883 inode_sub_bytes(inode, end - key.offset); 884 break; 885 } 886 887 search_start = extent_end; 888 /* 889 * | ---- range to drop ----- | 890 * | -------- extent -------- | 891 */ 892 if (start > key.offset && end >= extent_end) { 893 BUG_ON(del_nr > 0); 894 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 895 ret = -EOPNOTSUPP; 896 break; 897 } 898 899 btrfs_set_file_extent_num_bytes(leaf, fi, 900 start - key.offset); 901 btrfs_mark_buffer_dirty(leaf); 902 if (update_refs && disk_bytenr > 0) 903 inode_sub_bytes(inode, extent_end - start); 904 if (end == extent_end) 905 break; 906 907 path->slots[0]++; 908 goto next_slot; 909 } 910 911 /* 912 * | ---- range to drop ----- | 913 * | ------ extent ------ | 914 */ 915 if (start <= key.offset && end >= extent_end) { 916delete_extent_item: 917 if (del_nr == 0) { 918 del_slot = path->slots[0]; 919 del_nr = 1; 920 } else { 921 BUG_ON(del_slot + del_nr != path->slots[0]); 922 del_nr++; 923 } 924 925 if (update_refs && 926 extent_type == BTRFS_FILE_EXTENT_INLINE) { 927 inode_sub_bytes(inode, 928 extent_end - key.offset); 929 extent_end = ALIGN(extent_end, 930 root->sectorsize); 931 } else if (update_refs && disk_bytenr > 0) { 932 ret = btrfs_free_extent(trans, root, 933 disk_bytenr, num_bytes, 0, 934 root->root_key.objectid, 935 key.objectid, key.offset - 936 extent_offset); 937 BUG_ON(ret); /* -ENOMEM */ 938 inode_sub_bytes(inode, 939 extent_end - key.offset); 940 } 941 942 if (end == extent_end) 943 break; 944 945 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 946 path->slots[0]++; 947 goto next_slot; 948 } 949 950 ret = btrfs_del_items(trans, root, path, del_slot, 951 del_nr); 952 if (ret) { 953 btrfs_abort_transaction(trans, root, ret); 954 break; 955 } 956 957 del_nr = 0; 958 del_slot = 0; 959 960 btrfs_release_path(path); 961 continue; 962 } 963 964 BUG_ON(1); 965 } 966 967 if (!ret && del_nr > 0) { 968 /* 969 * Set path->slots[0] to first slot, so that after the delete 970 * if items are move off from our leaf to its immediate left or 971 * right neighbor leafs, we end up with a correct and adjusted 972 * path->slots[0] for our insertion (if replace_extent != 0). 973 */ 974 path->slots[0] = del_slot; 975 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 976 if (ret) 977 btrfs_abort_transaction(trans, root, ret); 978 } 979 980 leaf = path->nodes[0]; 981 /* 982 * If btrfs_del_items() was called, it might have deleted a leaf, in 983 * which case it unlocked our path, so check path->locks[0] matches a 984 * write lock. 985 */ 986 if (!ret && replace_extent && leafs_visited == 1 && 987 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 988 path->locks[0] == BTRFS_WRITE_LOCK) && 989 btrfs_leaf_free_space(root, leaf) >= 990 sizeof(struct btrfs_item) + extent_item_size) { 991 992 key.objectid = ino; 993 key.type = BTRFS_EXTENT_DATA_KEY; 994 key.offset = start; 995 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 996 struct btrfs_key slot_key; 997 998 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 999 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1000 path->slots[0]++; 1001 } 1002 setup_items_for_insert(root, path, &key, 1003 &extent_item_size, 1004 extent_item_size, 1005 sizeof(struct btrfs_item) + 1006 extent_item_size, 1); 1007 *key_inserted = 1; 1008 } 1009 1010 if (!replace_extent || !(*key_inserted)) 1011 btrfs_release_path(path); 1012 if (drop_end) 1013 *drop_end = found ? min(end, extent_end) : end; 1014 return ret; 1015} 1016 1017int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1018 struct btrfs_root *root, struct inode *inode, u64 start, 1019 u64 end, int drop_cache) 1020{ 1021 struct btrfs_path *path; 1022 int ret; 1023 1024 path = btrfs_alloc_path(); 1025 if (!path) 1026 return -ENOMEM; 1027 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1028 drop_cache, 0, 0, NULL); 1029 btrfs_free_path(path); 1030 return ret; 1031} 1032 1033static int extent_mergeable(struct extent_buffer *leaf, int slot, 1034 u64 objectid, u64 bytenr, u64 orig_offset, 1035 u64 *start, u64 *end) 1036{ 1037 struct btrfs_file_extent_item *fi; 1038 struct btrfs_key key; 1039 u64 extent_end; 1040 1041 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1042 return 0; 1043 1044 btrfs_item_key_to_cpu(leaf, &key, slot); 1045 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1046 return 0; 1047 1048 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1049 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1050 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1051 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1052 btrfs_file_extent_compression(leaf, fi) || 1053 btrfs_file_extent_encryption(leaf, fi) || 1054 btrfs_file_extent_other_encoding(leaf, fi)) 1055 return 0; 1056 1057 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1058 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1059 return 0; 1060 1061 *start = key.offset; 1062 *end = extent_end; 1063 return 1; 1064} 1065 1066/* 1067 * Mark extent in the range start - end as written. 1068 * 1069 * This changes extent type from 'pre-allocated' to 'regular'. If only 1070 * part of extent is marked as written, the extent will be split into 1071 * two or three. 1072 */ 1073int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1074 struct inode *inode, u64 start, u64 end) 1075{ 1076 struct btrfs_root *root = BTRFS_I(inode)->root; 1077 struct extent_buffer *leaf; 1078 struct btrfs_path *path; 1079 struct btrfs_file_extent_item *fi; 1080 struct btrfs_key key; 1081 struct btrfs_key new_key; 1082 u64 bytenr; 1083 u64 num_bytes; 1084 u64 extent_end; 1085 u64 orig_offset; 1086 u64 other_start; 1087 u64 other_end; 1088 u64 split; 1089 int del_nr = 0; 1090 int del_slot = 0; 1091 int recow; 1092 int ret; 1093 u64 ino = btrfs_ino(inode); 1094 1095 path = btrfs_alloc_path(); 1096 if (!path) 1097 return -ENOMEM; 1098again: 1099 recow = 0; 1100 split = start; 1101 key.objectid = ino; 1102 key.type = BTRFS_EXTENT_DATA_KEY; 1103 key.offset = split; 1104 1105 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1106 if (ret < 0) 1107 goto out; 1108 if (ret > 0 && path->slots[0] > 0) 1109 path->slots[0]--; 1110 1111 leaf = path->nodes[0]; 1112 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1113 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY); 1114 fi = btrfs_item_ptr(leaf, path->slots[0], 1115 struct btrfs_file_extent_item); 1116 BUG_ON(btrfs_file_extent_type(leaf, fi) != 1117 BTRFS_FILE_EXTENT_PREALLOC); 1118 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1119 BUG_ON(key.offset > start || extent_end < end); 1120 1121 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1122 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1123 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1124 memcpy(&new_key, &key, sizeof(new_key)); 1125 1126 if (start == key.offset && end < extent_end) { 1127 other_start = 0; 1128 other_end = start; 1129 if (extent_mergeable(leaf, path->slots[0] - 1, 1130 ino, bytenr, orig_offset, 1131 &other_start, &other_end)) { 1132 new_key.offset = end; 1133 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 1134 fi = btrfs_item_ptr(leaf, path->slots[0], 1135 struct btrfs_file_extent_item); 1136 btrfs_set_file_extent_generation(leaf, fi, 1137 trans->transid); 1138 btrfs_set_file_extent_num_bytes(leaf, fi, 1139 extent_end - end); 1140 btrfs_set_file_extent_offset(leaf, fi, 1141 end - orig_offset); 1142 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1143 struct btrfs_file_extent_item); 1144 btrfs_set_file_extent_generation(leaf, fi, 1145 trans->transid); 1146 btrfs_set_file_extent_num_bytes(leaf, fi, 1147 end - other_start); 1148 btrfs_mark_buffer_dirty(leaf); 1149 goto out; 1150 } 1151 } 1152 1153 if (start > key.offset && end == extent_end) { 1154 other_start = end; 1155 other_end = 0; 1156 if (extent_mergeable(leaf, path->slots[0] + 1, 1157 ino, bytenr, orig_offset, 1158 &other_start, &other_end)) { 1159 fi = btrfs_item_ptr(leaf, path->slots[0], 1160 struct btrfs_file_extent_item); 1161 btrfs_set_file_extent_num_bytes(leaf, fi, 1162 start - key.offset); 1163 btrfs_set_file_extent_generation(leaf, fi, 1164 trans->transid); 1165 path->slots[0]++; 1166 new_key.offset = start; 1167 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 1168 1169 fi = btrfs_item_ptr(leaf, path->slots[0], 1170 struct btrfs_file_extent_item); 1171 btrfs_set_file_extent_generation(leaf, fi, 1172 trans->transid); 1173 btrfs_set_file_extent_num_bytes(leaf, fi, 1174 other_end - start); 1175 btrfs_set_file_extent_offset(leaf, fi, 1176 start - orig_offset); 1177 btrfs_mark_buffer_dirty(leaf); 1178 goto out; 1179 } 1180 } 1181 1182 while (start > key.offset || end < extent_end) { 1183 if (key.offset == start) 1184 split = end; 1185 1186 new_key.offset = split; 1187 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1188 if (ret == -EAGAIN) { 1189 btrfs_release_path(path); 1190 goto again; 1191 } 1192 if (ret < 0) { 1193 btrfs_abort_transaction(trans, root, ret); 1194 goto out; 1195 } 1196 1197 leaf = path->nodes[0]; 1198 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1199 struct btrfs_file_extent_item); 1200 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1201 btrfs_set_file_extent_num_bytes(leaf, fi, 1202 split - key.offset); 1203 1204 fi = btrfs_item_ptr(leaf, path->slots[0], 1205 struct btrfs_file_extent_item); 1206 1207 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1208 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1209 btrfs_set_file_extent_num_bytes(leaf, fi, 1210 extent_end - split); 1211 btrfs_mark_buffer_dirty(leaf); 1212 1213 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, 1214 root->root_key.objectid, 1215 ino, orig_offset); 1216 BUG_ON(ret); /* -ENOMEM */ 1217 1218 if (split == start) { 1219 key.offset = start; 1220 } else { 1221 BUG_ON(start != key.offset); 1222 path->slots[0]--; 1223 extent_end = end; 1224 } 1225 recow = 1; 1226 } 1227 1228 other_start = end; 1229 other_end = 0; 1230 if (extent_mergeable(leaf, path->slots[0] + 1, 1231 ino, bytenr, orig_offset, 1232 &other_start, &other_end)) { 1233 if (recow) { 1234 btrfs_release_path(path); 1235 goto again; 1236 } 1237 extent_end = other_end; 1238 del_slot = path->slots[0] + 1; 1239 del_nr++; 1240 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1241 0, root->root_key.objectid, 1242 ino, orig_offset); 1243 BUG_ON(ret); /* -ENOMEM */ 1244 } 1245 other_start = 0; 1246 other_end = start; 1247 if (extent_mergeable(leaf, path->slots[0] - 1, 1248 ino, bytenr, orig_offset, 1249 &other_start, &other_end)) { 1250 if (recow) { 1251 btrfs_release_path(path); 1252 goto again; 1253 } 1254 key.offset = other_start; 1255 del_slot = path->slots[0]; 1256 del_nr++; 1257 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1258 0, root->root_key.objectid, 1259 ino, orig_offset); 1260 BUG_ON(ret); /* -ENOMEM */ 1261 } 1262 if (del_nr == 0) { 1263 fi = btrfs_item_ptr(leaf, path->slots[0], 1264 struct btrfs_file_extent_item); 1265 btrfs_set_file_extent_type(leaf, fi, 1266 BTRFS_FILE_EXTENT_REG); 1267 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1268 btrfs_mark_buffer_dirty(leaf); 1269 } else { 1270 fi = btrfs_item_ptr(leaf, del_slot - 1, 1271 struct btrfs_file_extent_item); 1272 btrfs_set_file_extent_type(leaf, fi, 1273 BTRFS_FILE_EXTENT_REG); 1274 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1275 btrfs_set_file_extent_num_bytes(leaf, fi, 1276 extent_end - key.offset); 1277 btrfs_mark_buffer_dirty(leaf); 1278 1279 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1280 if (ret < 0) { 1281 btrfs_abort_transaction(trans, root, ret); 1282 goto out; 1283 } 1284 } 1285out: 1286 btrfs_free_path(path); 1287 return 0; 1288} 1289 1290/* 1291 * on error we return an unlocked page and the error value 1292 * on success we return a locked page and 0 1293 */ 1294static int prepare_uptodate_page(struct inode *inode, 1295 struct page *page, u64 pos, 1296 bool force_uptodate) 1297{ 1298 int ret = 0; 1299 1300 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) && 1301 !PageUptodate(page)) { 1302 ret = btrfs_readpage(NULL, page); 1303 if (ret) 1304 return ret; 1305 lock_page(page); 1306 if (!PageUptodate(page)) { 1307 unlock_page(page); 1308 return -EIO; 1309 } 1310 if (page->mapping != inode->i_mapping) { 1311 unlock_page(page); 1312 return -EAGAIN; 1313 } 1314 } 1315 return 0; 1316} 1317 1318/* 1319 * this just gets pages into the page cache and locks them down. 1320 */ 1321static noinline int prepare_pages(struct inode *inode, struct page **pages, 1322 size_t num_pages, loff_t pos, 1323 size_t write_bytes, bool force_uptodate) 1324{ 1325 int i; 1326 unsigned long index = pos >> PAGE_CACHE_SHIFT; 1327 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1328 int err = 0; 1329 int faili; 1330 1331 for (i = 0; i < num_pages; i++) { 1332again: 1333 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1334 mask | __GFP_WRITE); 1335 if (!pages[i]) { 1336 faili = i - 1; 1337 err = -ENOMEM; 1338 goto fail; 1339 } 1340 1341 if (i == 0) 1342 err = prepare_uptodate_page(inode, pages[i], pos, 1343 force_uptodate); 1344 if (!err && i == num_pages - 1) 1345 err = prepare_uptodate_page(inode, pages[i], 1346 pos + write_bytes, false); 1347 if (err) { 1348 page_cache_release(pages[i]); 1349 if (err == -EAGAIN) { 1350 err = 0; 1351 goto again; 1352 } 1353 faili = i - 1; 1354 goto fail; 1355 } 1356 wait_on_page_writeback(pages[i]); 1357 } 1358 1359 return 0; 1360fail: 1361 while (faili >= 0) { 1362 unlock_page(pages[faili]); 1363 page_cache_release(pages[faili]); 1364 faili--; 1365 } 1366 return err; 1367 1368} 1369 1370/* 1371 * This function locks the extent and properly waits for data=ordered extents 1372 * to finish before allowing the pages to be modified if need. 1373 * 1374 * The return value: 1375 * 1 - the extent is locked 1376 * 0 - the extent is not locked, and everything is OK 1377 * -EAGAIN - need re-prepare the pages 1378 * the other < 0 number - Something wrong happens 1379 */ 1380static noinline int 1381lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages, 1382 size_t num_pages, loff_t pos, 1383 u64 *lockstart, u64 *lockend, 1384 struct extent_state **cached_state) 1385{ 1386 u64 start_pos; 1387 u64 last_pos; 1388 int i; 1389 int ret = 0; 1390 1391 start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1); 1392 last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1; 1393 1394 if (start_pos < inode->i_size) { 1395 struct btrfs_ordered_extent *ordered; 1396 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1397 start_pos, last_pos, 0, cached_state); 1398 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1399 last_pos - start_pos + 1); 1400 if (ordered && 1401 ordered->file_offset + ordered->len > start_pos && 1402 ordered->file_offset <= last_pos) { 1403 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1404 start_pos, last_pos, 1405 cached_state, GFP_NOFS); 1406 for (i = 0; i < num_pages; i++) { 1407 unlock_page(pages[i]); 1408 page_cache_release(pages[i]); 1409 } 1410 btrfs_start_ordered_extent(inode, ordered, 1); 1411 btrfs_put_ordered_extent(ordered); 1412 return -EAGAIN; 1413 } 1414 if (ordered) 1415 btrfs_put_ordered_extent(ordered); 1416 1417 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, 1418 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC | 1419 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1420 0, 0, cached_state, GFP_NOFS); 1421 *lockstart = start_pos; 1422 *lockend = last_pos; 1423 ret = 1; 1424 } 1425 1426 for (i = 0; i < num_pages; i++) { 1427 if (clear_page_dirty_for_io(pages[i])) 1428 account_page_redirty(pages[i]); 1429 set_page_extent_mapped(pages[i]); 1430 WARN_ON(!PageLocked(pages[i])); 1431 } 1432 1433 return ret; 1434} 1435 1436static noinline int check_can_nocow(struct inode *inode, loff_t pos, 1437 size_t *write_bytes) 1438{ 1439 struct btrfs_root *root = BTRFS_I(inode)->root; 1440 struct btrfs_ordered_extent *ordered; 1441 u64 lockstart, lockend; 1442 u64 num_bytes; 1443 int ret; 1444 1445 ret = btrfs_start_write_no_snapshoting(root); 1446 if (!ret) 1447 return -ENOSPC; 1448 1449 lockstart = round_down(pos, root->sectorsize); 1450 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1; 1451 1452 while (1) { 1453 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1454 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1455 lockend - lockstart + 1); 1456 if (!ordered) { 1457 break; 1458 } 1459 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1460 btrfs_start_ordered_extent(inode, ordered, 1); 1461 btrfs_put_ordered_extent(ordered); 1462 } 1463 1464 num_bytes = lockend - lockstart + 1; 1465 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL); 1466 if (ret <= 0) { 1467 ret = 0; 1468 btrfs_end_write_no_snapshoting(root); 1469 } else { 1470 *write_bytes = min_t(size_t, *write_bytes , 1471 num_bytes - pos + lockstart); 1472 } 1473 1474 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1475 1476 return ret; 1477} 1478 1479static noinline ssize_t __btrfs_buffered_write(struct file *file, 1480 struct iov_iter *i, 1481 loff_t pos) 1482{ 1483 struct inode *inode = file_inode(file); 1484 struct btrfs_root *root = BTRFS_I(inode)->root; 1485 struct page **pages = NULL; 1486 struct extent_state *cached_state = NULL; 1487 u64 release_bytes = 0; 1488 u64 lockstart; 1489 u64 lockend; 1490 size_t num_written = 0; 1491 int nrptrs; 1492 int ret = 0; 1493 bool only_release_metadata = false; 1494 bool force_page_uptodate = false; 1495 bool need_unlock; 1496 1497 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE), 1498 PAGE_CACHE_SIZE / (sizeof(struct page *))); 1499 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1500 nrptrs = max(nrptrs, 8); 1501 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1502 if (!pages) 1503 return -ENOMEM; 1504 1505 while (iov_iter_count(i) > 0) { 1506 size_t offset = pos & (PAGE_CACHE_SIZE - 1); 1507 size_t write_bytes = min(iov_iter_count(i), 1508 nrptrs * (size_t)PAGE_CACHE_SIZE - 1509 offset); 1510 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1511 PAGE_CACHE_SIZE); 1512 size_t reserve_bytes; 1513 size_t dirty_pages; 1514 size_t copied; 1515 1516 WARN_ON(num_pages > nrptrs); 1517 1518 /* 1519 * Fault pages before locking them in prepare_pages 1520 * to avoid recursive lock 1521 */ 1522 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1523 ret = -EFAULT; 1524 break; 1525 } 1526 1527 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1528 1529 if (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1530 BTRFS_INODE_PREALLOC)) { 1531 ret = check_can_nocow(inode, pos, &write_bytes); 1532 if (ret < 0) 1533 break; 1534 if (ret > 0) { 1535 /* 1536 * For nodata cow case, no need to reserve 1537 * data space. 1538 */ 1539 only_release_metadata = true; 1540 /* 1541 * our prealloc extent may be smaller than 1542 * write_bytes, so scale down. 1543 */ 1544 num_pages = DIV_ROUND_UP(write_bytes + offset, 1545 PAGE_CACHE_SIZE); 1546 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1547 goto reserve_metadata; 1548 } 1549 } 1550 ret = btrfs_check_data_free_space(inode, pos, write_bytes); 1551 if (ret < 0) 1552 break; 1553 1554reserve_metadata: 1555 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes); 1556 if (ret) { 1557 if (!only_release_metadata) 1558 btrfs_free_reserved_data_space(inode, pos, 1559 write_bytes); 1560 else 1561 btrfs_end_write_no_snapshoting(root); 1562 break; 1563 } 1564 1565 release_bytes = reserve_bytes; 1566 need_unlock = false; 1567again: 1568 /* 1569 * This is going to setup the pages array with the number of 1570 * pages we want, so we don't really need to worry about the 1571 * contents of pages from loop to loop 1572 */ 1573 ret = prepare_pages(inode, pages, num_pages, 1574 pos, write_bytes, 1575 force_page_uptodate); 1576 if (ret) 1577 break; 1578 1579 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages, 1580 pos, &lockstart, &lockend, 1581 &cached_state); 1582 if (ret < 0) { 1583 if (ret == -EAGAIN) 1584 goto again; 1585 break; 1586 } else if (ret > 0) { 1587 need_unlock = true; 1588 ret = 0; 1589 } 1590 1591 copied = btrfs_copy_from_user(pos, num_pages, 1592 write_bytes, pages, i); 1593 1594 /* 1595 * if we have trouble faulting in the pages, fall 1596 * back to one page at a time 1597 */ 1598 if (copied < write_bytes) 1599 nrptrs = 1; 1600 1601 if (copied == 0) { 1602 force_page_uptodate = true; 1603 dirty_pages = 0; 1604 } else { 1605 force_page_uptodate = false; 1606 dirty_pages = DIV_ROUND_UP(copied + offset, 1607 PAGE_CACHE_SIZE); 1608 } 1609 1610 /* 1611 * If we had a short copy we need to release the excess delaloc 1612 * bytes we reserved. We need to increment outstanding_extents 1613 * because btrfs_delalloc_release_space will decrement it, but 1614 * we still have an outstanding extent for the chunk we actually 1615 * managed to copy. 1616 */ 1617 if (num_pages > dirty_pages) { 1618 release_bytes = (num_pages - dirty_pages) << 1619 PAGE_CACHE_SHIFT; 1620 if (copied > 0) { 1621 spin_lock(&BTRFS_I(inode)->lock); 1622 BTRFS_I(inode)->outstanding_extents++; 1623 spin_unlock(&BTRFS_I(inode)->lock); 1624 } 1625 if (only_release_metadata) { 1626 btrfs_delalloc_release_metadata(inode, 1627 release_bytes); 1628 } else { 1629 u64 __pos; 1630 1631 __pos = round_down(pos, root->sectorsize) + 1632 (dirty_pages << PAGE_CACHE_SHIFT); 1633 btrfs_delalloc_release_space(inode, __pos, 1634 release_bytes); 1635 } 1636 } 1637 1638 release_bytes = dirty_pages << PAGE_CACHE_SHIFT; 1639 1640 if (copied > 0) 1641 ret = btrfs_dirty_pages(root, inode, pages, 1642 dirty_pages, pos, copied, 1643 NULL); 1644 if (need_unlock) 1645 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1646 lockstart, lockend, &cached_state, 1647 GFP_NOFS); 1648 if (ret) { 1649 btrfs_drop_pages(pages, num_pages); 1650 break; 1651 } 1652 1653 release_bytes = 0; 1654 if (only_release_metadata) 1655 btrfs_end_write_no_snapshoting(root); 1656 1657 if (only_release_metadata && copied > 0) { 1658 lockstart = round_down(pos, root->sectorsize); 1659 lockend = lockstart + 1660 (dirty_pages << PAGE_CACHE_SHIFT) - 1; 1661 1662 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1663 lockend, EXTENT_NORESERVE, NULL, 1664 NULL, GFP_NOFS); 1665 only_release_metadata = false; 1666 } 1667 1668 btrfs_drop_pages(pages, num_pages); 1669 1670 cond_resched(); 1671 1672 balance_dirty_pages_ratelimited(inode->i_mapping); 1673 if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1) 1674 btrfs_btree_balance_dirty(root); 1675 1676 pos += copied; 1677 num_written += copied; 1678 } 1679 1680 kfree(pages); 1681 1682 if (release_bytes) { 1683 if (only_release_metadata) { 1684 btrfs_end_write_no_snapshoting(root); 1685 btrfs_delalloc_release_metadata(inode, release_bytes); 1686 } else { 1687 btrfs_delalloc_release_space(inode, pos, release_bytes); 1688 } 1689 } 1690 1691 return num_written ? num_written : ret; 1692} 1693 1694static ssize_t __btrfs_direct_write(struct kiocb *iocb, 1695 struct iov_iter *from, 1696 loff_t pos) 1697{ 1698 struct file *file = iocb->ki_filp; 1699 struct inode *inode = file_inode(file); 1700 ssize_t written; 1701 ssize_t written_buffered; 1702 loff_t endbyte; 1703 int err; 1704 1705 written = generic_file_direct_write(iocb, from, pos); 1706 1707 if (written < 0 || !iov_iter_count(from)) 1708 return written; 1709 1710 pos += written; 1711 written_buffered = __btrfs_buffered_write(file, from, pos); 1712 if (written_buffered < 0) { 1713 err = written_buffered; 1714 goto out; 1715 } 1716 /* 1717 * Ensure all data is persisted. We want the next direct IO read to be 1718 * able to read what was just written. 1719 */ 1720 endbyte = pos + written_buffered - 1; 1721 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1722 if (err) 1723 goto out; 1724 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1725 if (err) 1726 goto out; 1727 written += written_buffered; 1728 iocb->ki_pos = pos + written_buffered; 1729 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT, 1730 endbyte >> PAGE_CACHE_SHIFT); 1731out: 1732 return written ? written : err; 1733} 1734 1735static void update_time_for_write(struct inode *inode) 1736{ 1737 struct timespec now; 1738 1739 if (IS_NOCMTIME(inode)) 1740 return; 1741 1742 now = current_fs_time(inode->i_sb); 1743 if (!timespec_equal(&inode->i_mtime, &now)) 1744 inode->i_mtime = now; 1745 1746 if (!timespec_equal(&inode->i_ctime, &now)) 1747 inode->i_ctime = now; 1748 1749 if (IS_I_VERSION(inode)) 1750 inode_inc_iversion(inode); 1751} 1752 1753static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1754 struct iov_iter *from) 1755{ 1756 struct file *file = iocb->ki_filp; 1757 struct inode *inode = file_inode(file); 1758 struct btrfs_root *root = BTRFS_I(inode)->root; 1759 u64 start_pos; 1760 u64 end_pos; 1761 ssize_t num_written = 0; 1762 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1763 ssize_t err; 1764 loff_t pos; 1765 size_t count; 1766 1767 mutex_lock(&inode->i_mutex); 1768 err = generic_write_checks(iocb, from); 1769 if (err <= 0) { 1770 mutex_unlock(&inode->i_mutex); 1771 return err; 1772 } 1773 1774 current->backing_dev_info = inode_to_bdi(inode); 1775 err = file_remove_privs(file); 1776 if (err) { 1777 mutex_unlock(&inode->i_mutex); 1778 goto out; 1779 } 1780 1781 /* 1782 * If BTRFS flips readonly due to some impossible error 1783 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1784 * although we have opened a file as writable, we have 1785 * to stop this write operation to ensure FS consistency. 1786 */ 1787 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1788 mutex_unlock(&inode->i_mutex); 1789 err = -EROFS; 1790 goto out; 1791 } 1792 1793 /* 1794 * We reserve space for updating the inode when we reserve space for the 1795 * extent we are going to write, so we will enospc out there. We don't 1796 * need to start yet another transaction to update the inode as we will 1797 * update the inode when we finish writing whatever data we write. 1798 */ 1799 update_time_for_write(inode); 1800 1801 pos = iocb->ki_pos; 1802 count = iov_iter_count(from); 1803 start_pos = round_down(pos, root->sectorsize); 1804 if (start_pos > i_size_read(inode)) { 1805 /* Expand hole size to cover write data, preventing empty gap */ 1806 end_pos = round_up(pos + count, root->sectorsize); 1807 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos); 1808 if (err) { 1809 mutex_unlock(&inode->i_mutex); 1810 goto out; 1811 } 1812 } 1813 1814 if (sync) 1815 atomic_inc(&BTRFS_I(inode)->sync_writers); 1816 1817 if (iocb->ki_flags & IOCB_DIRECT) { 1818 num_written = __btrfs_direct_write(iocb, from, pos); 1819 } else { 1820 num_written = __btrfs_buffered_write(file, from, pos); 1821 if (num_written > 0) 1822 iocb->ki_pos = pos + num_written; 1823 } 1824 1825 mutex_unlock(&inode->i_mutex); 1826 1827 /* 1828 * We also have to set last_sub_trans to the current log transid, 1829 * otherwise subsequent syncs to a file that's been synced in this 1830 * transaction will appear to have already occured. 1831 */ 1832 spin_lock(&BTRFS_I(inode)->lock); 1833 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1834 spin_unlock(&BTRFS_I(inode)->lock); 1835 if (num_written > 0) { 1836 err = generic_write_sync(file, pos, num_written); 1837 if (err < 0) 1838 num_written = err; 1839 } 1840 1841 if (sync) 1842 atomic_dec(&BTRFS_I(inode)->sync_writers); 1843out: 1844 current->backing_dev_info = NULL; 1845 return num_written ? num_written : err; 1846} 1847 1848int btrfs_release_file(struct inode *inode, struct file *filp) 1849{ 1850 if (filp->private_data) 1851 btrfs_ioctl_trans_end(filp); 1852 /* 1853 * ordered_data_close is set by settattr when we are about to truncate 1854 * a file from a non-zero size to a zero size. This tries to 1855 * flush down new bytes that may have been written if the 1856 * application were using truncate to replace a file in place. 1857 */ 1858 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 1859 &BTRFS_I(inode)->runtime_flags)) 1860 filemap_flush(inode->i_mapping); 1861 return 0; 1862} 1863 1864static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 1865{ 1866 int ret; 1867 1868 atomic_inc(&BTRFS_I(inode)->sync_writers); 1869 ret = btrfs_fdatawrite_range(inode, start, end); 1870 atomic_dec(&BTRFS_I(inode)->sync_writers); 1871 1872 return ret; 1873} 1874 1875/* 1876 * fsync call for both files and directories. This logs the inode into 1877 * the tree log instead of forcing full commits whenever possible. 1878 * 1879 * It needs to call filemap_fdatawait so that all ordered extent updates are 1880 * in the metadata btree are up to date for copying to the log. 1881 * 1882 * It drops the inode mutex before doing the tree log commit. This is an 1883 * important optimization for directories because holding the mutex prevents 1884 * new operations on the dir while we write to disk. 1885 */ 1886int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1887{ 1888 struct dentry *dentry = file_dentry(file); 1889 struct inode *inode = d_inode(dentry); 1890 struct btrfs_root *root = BTRFS_I(inode)->root; 1891 struct btrfs_trans_handle *trans; 1892 struct btrfs_log_ctx ctx; 1893 int ret = 0; 1894 bool full_sync = 0; 1895 u64 len; 1896 1897 /* 1898 * The range length can be represented by u64, we have to do the typecasts 1899 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync() 1900 */ 1901 len = (u64)end - (u64)start + 1; 1902 trace_btrfs_sync_file(file, datasync); 1903 1904 /* 1905 * We write the dirty pages in the range and wait until they complete 1906 * out of the ->i_mutex. If so, we can flush the dirty pages by 1907 * multi-task, and make the performance up. See 1908 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1909 */ 1910 ret = start_ordered_ops(inode, start, end); 1911 if (ret) 1912 return ret; 1913 1914 mutex_lock(&inode->i_mutex); 1915 atomic_inc(&root->log_batch); 1916 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1917 &BTRFS_I(inode)->runtime_flags); 1918 /* 1919 * We might have have had more pages made dirty after calling 1920 * start_ordered_ops and before acquiring the inode's i_mutex. 1921 */ 1922 if (full_sync) { 1923 /* 1924 * For a full sync, we need to make sure any ordered operations 1925 * start and finish before we start logging the inode, so that 1926 * all extents are persisted and the respective file extent 1927 * items are in the fs/subvol btree. 1928 */ 1929 ret = btrfs_wait_ordered_range(inode, start, len); 1930 } else { 1931 /* 1932 * Start any new ordered operations before starting to log the 1933 * inode. We will wait for them to finish in btrfs_sync_log(). 1934 * 1935 * Right before acquiring the inode's mutex, we might have new 1936 * writes dirtying pages, which won't immediately start the 1937 * respective ordered operations - that is done through the 1938 * fill_delalloc callbacks invoked from the writepage and 1939 * writepages address space operations. So make sure we start 1940 * all ordered operations before starting to log our inode. Not 1941 * doing this means that while logging the inode, writeback 1942 * could start and invoke writepage/writepages, which would call 1943 * the fill_delalloc callbacks (cow_file_range, 1944 * submit_compressed_extents). These callbacks add first an 1945 * extent map to the modified list of extents and then create 1946 * the respective ordered operation, which means in 1947 * tree-log.c:btrfs_log_inode() we might capture all existing 1948 * ordered operations (with btrfs_get_logged_extents()) before 1949 * the fill_delalloc callback adds its ordered operation, and by 1950 * the time we visit the modified list of extent maps (with 1951 * btrfs_log_changed_extents()), we see and process the extent 1952 * map they created. We then use the extent map to construct a 1953 * file extent item for logging without waiting for the 1954 * respective ordered operation to finish - this file extent 1955 * item points to a disk location that might not have yet been 1956 * written to, containing random data - so after a crash a log 1957 * replay will make our inode have file extent items that point 1958 * to disk locations containing invalid data, as we returned 1959 * success to userspace without waiting for the respective 1960 * ordered operation to finish, because it wasn't captured by 1961 * btrfs_get_logged_extents(). 1962 */ 1963 ret = start_ordered_ops(inode, start, end); 1964 } 1965 if (ret) { 1966 mutex_unlock(&inode->i_mutex); 1967 goto out; 1968 } 1969 atomic_inc(&root->log_batch); 1970 1971 /* 1972 * If the last transaction that changed this file was before the current 1973 * transaction and we have the full sync flag set in our inode, we can 1974 * bail out now without any syncing. 1975 * 1976 * Note that we can't bail out if the full sync flag isn't set. This is 1977 * because when the full sync flag is set we start all ordered extents 1978 * and wait for them to fully complete - when they complete they update 1979 * the inode's last_trans field through: 1980 * 1981 * btrfs_finish_ordered_io() -> 1982 * btrfs_update_inode_fallback() -> 1983 * btrfs_update_inode() -> 1984 * btrfs_set_inode_last_trans() 1985 * 1986 * So we are sure that last_trans is up to date and can do this check to 1987 * bail out safely. For the fast path, when the full sync flag is not 1988 * set in our inode, we can not do it because we start only our ordered 1989 * extents and don't wait for them to complete (that is when 1990 * btrfs_finish_ordered_io runs), so here at this point their last_trans 1991 * value might be less than or equals to fs_info->last_trans_committed, 1992 * and setting a speculative last_trans for an inode when a buffered 1993 * write is made (such as fs_info->generation + 1 for example) would not 1994 * be reliable since after setting the value and before fsync is called 1995 * any number of transactions can start and commit (transaction kthread 1996 * commits the current transaction periodically), and a transaction 1997 * commit does not start nor waits for ordered extents to complete. 1998 */ 1999 smp_mb(); 2000 if (btrfs_inode_in_log(inode, root->fs_info->generation) || 2001 (BTRFS_I(inode)->last_trans <= 2002 root->fs_info->last_trans_committed && 2003 (full_sync || 2004 !btrfs_have_ordered_extents_in_range(inode, start, len)))) { 2005 /* 2006 * We'v had everything committed since the last time we were 2007 * modified so clear this flag in case it was set for whatever 2008 * reason, it's no longer relevant. 2009 */ 2010 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2011 &BTRFS_I(inode)->runtime_flags); 2012 mutex_unlock(&inode->i_mutex); 2013 goto out; 2014 } 2015 2016 /* 2017 * ok we haven't committed the transaction yet, lets do a commit 2018 */ 2019 if (file->private_data) 2020 btrfs_ioctl_trans_end(file); 2021 2022 /* 2023 * We use start here because we will need to wait on the IO to complete 2024 * in btrfs_sync_log, which could require joining a transaction (for 2025 * example checking cross references in the nocow path). If we use join 2026 * here we could get into a situation where we're waiting on IO to 2027 * happen that is blocked on a transaction trying to commit. With start 2028 * we inc the extwriter counter, so we wait for all extwriters to exit 2029 * before we start blocking join'ers. This comment is to keep somebody 2030 * from thinking they are super smart and changing this to 2031 * btrfs_join_transaction *cough*Josef*cough*. 2032 */ 2033 trans = btrfs_start_transaction(root, 0); 2034 if (IS_ERR(trans)) { 2035 ret = PTR_ERR(trans); 2036 mutex_unlock(&inode->i_mutex); 2037 goto out; 2038 } 2039 trans->sync = true; 2040 2041 btrfs_init_log_ctx(&ctx); 2042 2043 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx); 2044 if (ret < 0) { 2045 /* Fallthrough and commit/free transaction. */ 2046 ret = 1; 2047 } 2048 2049 /* we've logged all the items and now have a consistent 2050 * version of the file in the log. It is possible that 2051 * someone will come in and modify the file, but that's 2052 * fine because the log is consistent on disk, and we 2053 * have references to all of the file's extents 2054 * 2055 * It is possible that someone will come in and log the 2056 * file again, but that will end up using the synchronization 2057 * inside btrfs_sync_log to keep things safe. 2058 */ 2059 mutex_unlock(&inode->i_mutex); 2060 2061 /* 2062 * If any of the ordered extents had an error, just return it to user 2063 * space, so that the application knows some writes didn't succeed and 2064 * can take proper action (retry for e.g.). Blindly committing the 2065 * transaction in this case, would fool userspace that everything was 2066 * successful. And we also want to make sure our log doesn't contain 2067 * file extent items pointing to extents that weren't fully written to - 2068 * just like in the non fast fsync path, where we check for the ordered 2069 * operation's error flag before writing to the log tree and return -EIO 2070 * if any of them had this flag set (btrfs_wait_ordered_range) - 2071 * therefore we need to check for errors in the ordered operations, 2072 * which are indicated by ctx.io_err. 2073 */ 2074 if (ctx.io_err) { 2075 btrfs_end_transaction(trans, root); 2076 ret = ctx.io_err; 2077 goto out; 2078 } 2079 2080 if (ret != BTRFS_NO_LOG_SYNC) { 2081 if (!ret) { 2082 ret = btrfs_sync_log(trans, root, &ctx); 2083 if (!ret) { 2084 ret = btrfs_end_transaction(trans, root); 2085 goto out; 2086 } 2087 } 2088 if (!full_sync) { 2089 ret = btrfs_wait_ordered_range(inode, start, len); 2090 if (ret) { 2091 btrfs_end_transaction(trans, root); 2092 goto out; 2093 } 2094 } 2095 ret = btrfs_commit_transaction(trans, root); 2096 } else { 2097 ret = btrfs_end_transaction(trans, root); 2098 } 2099out: 2100 return ret > 0 ? -EIO : ret; 2101} 2102 2103static const struct vm_operations_struct btrfs_file_vm_ops = { 2104 .fault = filemap_fault, 2105 .map_pages = filemap_map_pages, 2106 .page_mkwrite = btrfs_page_mkwrite, 2107}; 2108 2109static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2110{ 2111 struct address_space *mapping = filp->f_mapping; 2112 2113 if (!mapping->a_ops->readpage) 2114 return -ENOEXEC; 2115 2116 file_accessed(filp); 2117 vma->vm_ops = &btrfs_file_vm_ops; 2118 2119 return 0; 2120} 2121 2122static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf, 2123 int slot, u64 start, u64 end) 2124{ 2125 struct btrfs_file_extent_item *fi; 2126 struct btrfs_key key; 2127 2128 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2129 return 0; 2130 2131 btrfs_item_key_to_cpu(leaf, &key, slot); 2132 if (key.objectid != btrfs_ino(inode) || 2133 key.type != BTRFS_EXTENT_DATA_KEY) 2134 return 0; 2135 2136 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2137 2138 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2139 return 0; 2140 2141 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2142 return 0; 2143 2144 if (key.offset == end) 2145 return 1; 2146 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2147 return 1; 2148 return 0; 2149} 2150 2151static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode, 2152 struct btrfs_path *path, u64 offset, u64 end) 2153{ 2154 struct btrfs_root *root = BTRFS_I(inode)->root; 2155 struct extent_buffer *leaf; 2156 struct btrfs_file_extent_item *fi; 2157 struct extent_map *hole_em; 2158 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2159 struct btrfs_key key; 2160 int ret; 2161 2162 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) 2163 goto out; 2164 2165 key.objectid = btrfs_ino(inode); 2166 key.type = BTRFS_EXTENT_DATA_KEY; 2167 key.offset = offset; 2168 2169 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2170 if (ret < 0) 2171 return ret; 2172 BUG_ON(!ret); 2173 2174 leaf = path->nodes[0]; 2175 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) { 2176 u64 num_bytes; 2177 2178 path->slots[0]--; 2179 fi = btrfs_item_ptr(leaf, path->slots[0], 2180 struct btrfs_file_extent_item); 2181 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2182 end - offset; 2183 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2184 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2185 btrfs_set_file_extent_offset(leaf, fi, 0); 2186 btrfs_mark_buffer_dirty(leaf); 2187 goto out; 2188 } 2189 2190 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2191 u64 num_bytes; 2192 2193 key.offset = offset; 2194 btrfs_set_item_key_safe(root->fs_info, path, &key); 2195 fi = btrfs_item_ptr(leaf, path->slots[0], 2196 struct btrfs_file_extent_item); 2197 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2198 offset; 2199 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2200 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2201 btrfs_set_file_extent_offset(leaf, fi, 0); 2202 btrfs_mark_buffer_dirty(leaf); 2203 goto out; 2204 } 2205 btrfs_release_path(path); 2206 2207 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 2208 0, 0, end - offset, 0, end - offset, 2209 0, 0, 0); 2210 if (ret) 2211 return ret; 2212 2213out: 2214 btrfs_release_path(path); 2215 2216 hole_em = alloc_extent_map(); 2217 if (!hole_em) { 2218 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2219 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2220 &BTRFS_I(inode)->runtime_flags); 2221 } else { 2222 hole_em->start = offset; 2223 hole_em->len = end - offset; 2224 hole_em->ram_bytes = hole_em->len; 2225 hole_em->orig_start = offset; 2226 2227 hole_em->block_start = EXTENT_MAP_HOLE; 2228 hole_em->block_len = 0; 2229 hole_em->orig_block_len = 0; 2230 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 2231 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2232 hole_em->generation = trans->transid; 2233 2234 do { 2235 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2236 write_lock(&em_tree->lock); 2237 ret = add_extent_mapping(em_tree, hole_em, 1); 2238 write_unlock(&em_tree->lock); 2239 } while (ret == -EEXIST); 2240 free_extent_map(hole_em); 2241 if (ret) 2242 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2243 &BTRFS_I(inode)->runtime_flags); 2244 } 2245 2246 return 0; 2247} 2248 2249/* 2250 * Find a hole extent on given inode and change start/len to the end of hole 2251 * extent.(hole/vacuum extent whose em->start <= start && 2252 * em->start + em->len > start) 2253 * When a hole extent is found, return 1 and modify start/len. 2254 */ 2255static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2256{ 2257 struct extent_map *em; 2258 int ret = 0; 2259 2260 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0); 2261 if (IS_ERR_OR_NULL(em)) { 2262 if (!em) 2263 ret = -ENOMEM; 2264 else 2265 ret = PTR_ERR(em); 2266 return ret; 2267 } 2268 2269 /* Hole or vacuum extent(only exists in no-hole mode) */ 2270 if (em->block_start == EXTENT_MAP_HOLE) { 2271 ret = 1; 2272 *len = em->start + em->len > *start + *len ? 2273 0 : *start + *len - em->start - em->len; 2274 *start = em->start + em->len; 2275 } 2276 free_extent_map(em); 2277 return ret; 2278} 2279 2280static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2281{ 2282 struct btrfs_root *root = BTRFS_I(inode)->root; 2283 struct extent_state *cached_state = NULL; 2284 struct btrfs_path *path; 2285 struct btrfs_block_rsv *rsv; 2286 struct btrfs_trans_handle *trans; 2287 u64 lockstart; 2288 u64 lockend; 2289 u64 tail_start; 2290 u64 tail_len; 2291 u64 orig_start = offset; 2292 u64 cur_offset; 2293 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 2294 u64 drop_end; 2295 int ret = 0; 2296 int err = 0; 2297 unsigned int rsv_count; 2298 bool same_page; 2299 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES); 2300 u64 ino_size; 2301 bool truncated_page = false; 2302 bool updated_inode = false; 2303 2304 ret = btrfs_wait_ordered_range(inode, offset, len); 2305 if (ret) 2306 return ret; 2307 2308 mutex_lock(&inode->i_mutex); 2309 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE); 2310 ret = find_first_non_hole(inode, &offset, &len); 2311 if (ret < 0) 2312 goto out_only_mutex; 2313 if (ret && !len) { 2314 /* Already in a large hole */ 2315 ret = 0; 2316 goto out_only_mutex; 2317 } 2318 2319 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize); 2320 lockend = round_down(offset + len, 2321 BTRFS_I(inode)->root->sectorsize) - 1; 2322 same_page = ((offset >> PAGE_CACHE_SHIFT) == 2323 ((offset + len - 1) >> PAGE_CACHE_SHIFT)); 2324 2325 /* 2326 * We needn't truncate any page which is beyond the end of the file 2327 * because we are sure there is no data there. 2328 */ 2329 /* 2330 * Only do this if we are in the same page and we aren't doing the 2331 * entire page. 2332 */ 2333 if (same_page && len < PAGE_CACHE_SIZE) { 2334 if (offset < ino_size) { 2335 truncated_page = true; 2336 ret = btrfs_truncate_page(inode, offset, len, 0); 2337 } else { 2338 ret = 0; 2339 } 2340 goto out_only_mutex; 2341 } 2342 2343 /* zero back part of the first page */ 2344 if (offset < ino_size) { 2345 truncated_page = true; 2346 ret = btrfs_truncate_page(inode, offset, 0, 0); 2347 if (ret) { 2348 mutex_unlock(&inode->i_mutex); 2349 return ret; 2350 } 2351 } 2352 2353 /* Check the aligned pages after the first unaligned page, 2354 * if offset != orig_start, which means the first unaligned page 2355 * including serveral following pages are already in holes, 2356 * the extra check can be skipped */ 2357 if (offset == orig_start) { 2358 /* after truncate page, check hole again */ 2359 len = offset + len - lockstart; 2360 offset = lockstart; 2361 ret = find_first_non_hole(inode, &offset, &len); 2362 if (ret < 0) 2363 goto out_only_mutex; 2364 if (ret && !len) { 2365 ret = 0; 2366 goto out_only_mutex; 2367 } 2368 lockstart = offset; 2369 } 2370 2371 /* Check the tail unaligned part is in a hole */ 2372 tail_start = lockend + 1; 2373 tail_len = offset + len - tail_start; 2374 if (tail_len) { 2375 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2376 if (unlikely(ret < 0)) 2377 goto out_only_mutex; 2378 if (!ret) { 2379 /* zero the front end of the last page */ 2380 if (tail_start + tail_len < ino_size) { 2381 truncated_page = true; 2382 ret = btrfs_truncate_page(inode, 2383 tail_start + tail_len, 0, 1); 2384 if (ret) 2385 goto out_only_mutex; 2386 } 2387 } 2388 } 2389 2390 if (lockend < lockstart) { 2391 ret = 0; 2392 goto out_only_mutex; 2393 } 2394 2395 while (1) { 2396 struct btrfs_ordered_extent *ordered; 2397 2398 truncate_pagecache_range(inode, lockstart, lockend); 2399 2400 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2401 0, &cached_state); 2402 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2403 2404 /* 2405 * We need to make sure we have no ordered extents in this range 2406 * and nobody raced in and read a page in this range, if we did 2407 * we need to try again. 2408 */ 2409 if ((!ordered || 2410 (ordered->file_offset + ordered->len <= lockstart || 2411 ordered->file_offset > lockend)) && 2412 !btrfs_page_exists_in_range(inode, lockstart, lockend)) { 2413 if (ordered) 2414 btrfs_put_ordered_extent(ordered); 2415 break; 2416 } 2417 if (ordered) 2418 btrfs_put_ordered_extent(ordered); 2419 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2420 lockend, &cached_state, GFP_NOFS); 2421 ret = btrfs_wait_ordered_range(inode, lockstart, 2422 lockend - lockstart + 1); 2423 if (ret) { 2424 mutex_unlock(&inode->i_mutex); 2425 return ret; 2426 } 2427 } 2428 2429 path = btrfs_alloc_path(); 2430 if (!path) { 2431 ret = -ENOMEM; 2432 goto out; 2433 } 2434 2435 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2436 if (!rsv) { 2437 ret = -ENOMEM; 2438 goto out_free; 2439 } 2440 rsv->size = btrfs_calc_trunc_metadata_size(root, 1); 2441 rsv->failfast = 1; 2442 2443 /* 2444 * 1 - update the inode 2445 * 1 - removing the extents in the range 2446 * 1 - adding the hole extent if no_holes isn't set 2447 */ 2448 rsv_count = no_holes ? 2 : 3; 2449 trans = btrfs_start_transaction(root, rsv_count); 2450 if (IS_ERR(trans)) { 2451 err = PTR_ERR(trans); 2452 goto out_free; 2453 } 2454 2455 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 2456 min_size); 2457 BUG_ON(ret); 2458 trans->block_rsv = rsv; 2459 2460 cur_offset = lockstart; 2461 len = lockend - cur_offset; 2462 while (cur_offset < lockend) { 2463 ret = __btrfs_drop_extents(trans, root, inode, path, 2464 cur_offset, lockend + 1, 2465 &drop_end, 1, 0, 0, NULL); 2466 if (ret != -ENOSPC) 2467 break; 2468 2469 trans->block_rsv = &root->fs_info->trans_block_rsv; 2470 2471 if (cur_offset < ino_size) { 2472 ret = fill_holes(trans, inode, path, cur_offset, 2473 drop_end); 2474 if (ret) { 2475 err = ret; 2476 break; 2477 } 2478 } 2479 2480 cur_offset = drop_end; 2481 2482 ret = btrfs_update_inode(trans, root, inode); 2483 if (ret) { 2484 err = ret; 2485 break; 2486 } 2487 2488 btrfs_end_transaction(trans, root); 2489 btrfs_btree_balance_dirty(root); 2490 2491 trans = btrfs_start_transaction(root, rsv_count); 2492 if (IS_ERR(trans)) { 2493 ret = PTR_ERR(trans); 2494 trans = NULL; 2495 break; 2496 } 2497 2498 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 2499 rsv, min_size); 2500 BUG_ON(ret); /* shouldn't happen */ 2501 trans->block_rsv = rsv; 2502 2503 ret = find_first_non_hole(inode, &cur_offset, &len); 2504 if (unlikely(ret < 0)) 2505 break; 2506 if (ret && !len) { 2507 ret = 0; 2508 break; 2509 } 2510 } 2511 2512 if (ret) { 2513 err = ret; 2514 goto out_trans; 2515 } 2516 2517 trans->block_rsv = &root->fs_info->trans_block_rsv; 2518 /* 2519 * If we are using the NO_HOLES feature we might have had already an 2520 * hole that overlaps a part of the region [lockstart, lockend] and 2521 * ends at (or beyond) lockend. Since we have no file extent items to 2522 * represent holes, drop_end can be less than lockend and so we must 2523 * make sure we have an extent map representing the existing hole (the 2524 * call to __btrfs_drop_extents() might have dropped the existing extent 2525 * map representing the existing hole), otherwise the fast fsync path 2526 * will not record the existence of the hole region 2527 * [existing_hole_start, lockend]. 2528 */ 2529 if (drop_end <= lockend) 2530 drop_end = lockend + 1; 2531 /* 2532 * Don't insert file hole extent item if it's for a range beyond eof 2533 * (because it's useless) or if it represents a 0 bytes range (when 2534 * cur_offset == drop_end). 2535 */ 2536 if (cur_offset < ino_size && cur_offset < drop_end) { 2537 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2538 if (ret) { 2539 err = ret; 2540 goto out_trans; 2541 } 2542 } 2543 2544out_trans: 2545 if (!trans) 2546 goto out_free; 2547 2548 inode_inc_iversion(inode); 2549 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2550 2551 trans->block_rsv = &root->fs_info->trans_block_rsv; 2552 ret = btrfs_update_inode(trans, root, inode); 2553 updated_inode = true; 2554 btrfs_end_transaction(trans, root); 2555 btrfs_btree_balance_dirty(root); 2556out_free: 2557 btrfs_free_path(path); 2558 btrfs_free_block_rsv(root, rsv); 2559out: 2560 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2561 &cached_state, GFP_NOFS); 2562out_only_mutex: 2563 if (!updated_inode && truncated_page && !ret && !err) { 2564 /* 2565 * If we only end up zeroing part of a page, we still need to 2566 * update the inode item, so that all the time fields are 2567 * updated as well as the necessary btrfs inode in memory fields 2568 * for detecting, at fsync time, if the inode isn't yet in the 2569 * log tree or it's there but not up to date. 2570 */ 2571 trans = btrfs_start_transaction(root, 1); 2572 if (IS_ERR(trans)) { 2573 err = PTR_ERR(trans); 2574 } else { 2575 err = btrfs_update_inode(trans, root, inode); 2576 ret = btrfs_end_transaction(trans, root); 2577 } 2578 } 2579 mutex_unlock(&inode->i_mutex); 2580 if (ret && !err) 2581 err = ret; 2582 return err; 2583} 2584 2585/* Helper structure to record which range is already reserved */ 2586struct falloc_range { 2587 struct list_head list; 2588 u64 start; 2589 u64 len; 2590}; 2591 2592/* 2593 * Helper function to add falloc range 2594 * 2595 * Caller should have locked the larger range of extent containing 2596 * [start, len) 2597 */ 2598static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2599{ 2600 struct falloc_range *prev = NULL; 2601 struct falloc_range *range = NULL; 2602 2603 if (list_empty(head)) 2604 goto insert; 2605 2606 /* 2607 * As fallocate iterate by bytenr order, we only need to check 2608 * the last range. 2609 */ 2610 prev = list_entry(head->prev, struct falloc_range, list); 2611 if (prev->start + prev->len == start) { 2612 prev->len += len; 2613 return 0; 2614 } 2615insert: 2616 range = kmalloc(sizeof(*range), GFP_NOFS); 2617 if (!range) 2618 return -ENOMEM; 2619 range->start = start; 2620 range->len = len; 2621 list_add_tail(&range->list, head); 2622 return 0; 2623} 2624 2625static long btrfs_fallocate(struct file *file, int mode, 2626 loff_t offset, loff_t len) 2627{ 2628 struct inode *inode = file_inode(file); 2629 struct extent_state *cached_state = NULL; 2630 struct falloc_range *range; 2631 struct falloc_range *tmp; 2632 struct list_head reserve_list; 2633 u64 cur_offset; 2634 u64 last_byte; 2635 u64 alloc_start; 2636 u64 alloc_end; 2637 u64 alloc_hint = 0; 2638 u64 locked_end; 2639 u64 actual_end = 0; 2640 struct extent_map *em; 2641 int blocksize = BTRFS_I(inode)->root->sectorsize; 2642 int ret; 2643 2644 alloc_start = round_down(offset, blocksize); 2645 alloc_end = round_up(offset + len, blocksize); 2646 2647 /* Make sure we aren't being give some crap mode */ 2648 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2649 return -EOPNOTSUPP; 2650 2651 if (mode & FALLOC_FL_PUNCH_HOLE) 2652 return btrfs_punch_hole(inode, offset, len); 2653 2654 /* 2655 * Only trigger disk allocation, don't trigger qgroup reserve 2656 * 2657 * For qgroup space, it will be checked later. 2658 */ 2659 ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start); 2660 if (ret < 0) 2661 return ret; 2662 2663 mutex_lock(&inode->i_mutex); 2664 ret = inode_newsize_ok(inode, alloc_end); 2665 if (ret) 2666 goto out; 2667 2668 /* 2669 * TODO: Move these two operations after we have checked 2670 * accurate reserved space, or fallocate can still fail but 2671 * with page truncated or size expanded. 2672 * 2673 * But that's a minor problem and won't do much harm BTW. 2674 */ 2675 if (alloc_start > inode->i_size) { 2676 ret = btrfs_cont_expand(inode, i_size_read(inode), 2677 alloc_start); 2678 if (ret) 2679 goto out; 2680 } else if (offset + len > inode->i_size) { 2681 /* 2682 * If we are fallocating from the end of the file onward we 2683 * need to zero out the end of the page if i_size lands in the 2684 * middle of a page. 2685 */ 2686 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0); 2687 if (ret) 2688 goto out; 2689 } 2690 2691 /* 2692 * wait for ordered IO before we have any locks. We'll loop again 2693 * below with the locks held. 2694 */ 2695 ret = btrfs_wait_ordered_range(inode, alloc_start, 2696 alloc_end - alloc_start); 2697 if (ret) 2698 goto out; 2699 2700 locked_end = alloc_end - 1; 2701 while (1) { 2702 struct btrfs_ordered_extent *ordered; 2703 2704 /* the extent lock is ordered inside the running 2705 * transaction 2706 */ 2707 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 2708 locked_end, 0, &cached_state); 2709 ordered = btrfs_lookup_first_ordered_extent(inode, 2710 alloc_end - 1); 2711 if (ordered && 2712 ordered->file_offset + ordered->len > alloc_start && 2713 ordered->file_offset < alloc_end) { 2714 btrfs_put_ordered_extent(ordered); 2715 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 2716 alloc_start, locked_end, 2717 &cached_state, GFP_NOFS); 2718 /* 2719 * we can't wait on the range with the transaction 2720 * running or with the extent lock held 2721 */ 2722 ret = btrfs_wait_ordered_range(inode, alloc_start, 2723 alloc_end - alloc_start); 2724 if (ret) 2725 goto out; 2726 } else { 2727 if (ordered) 2728 btrfs_put_ordered_extent(ordered); 2729 break; 2730 } 2731 } 2732 2733 /* First, check if we exceed the qgroup limit */ 2734 INIT_LIST_HEAD(&reserve_list); 2735 cur_offset = alloc_start; 2736 while (1) { 2737 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2738 alloc_end - cur_offset, 0); 2739 if (IS_ERR_OR_NULL(em)) { 2740 if (!em) 2741 ret = -ENOMEM; 2742 else 2743 ret = PTR_ERR(em); 2744 break; 2745 } 2746 last_byte = min(extent_map_end(em), alloc_end); 2747 actual_end = min_t(u64, extent_map_end(em), offset + len); 2748 last_byte = ALIGN(last_byte, blocksize); 2749 if (em->block_start == EXTENT_MAP_HOLE || 2750 (cur_offset >= inode->i_size && 2751 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 2752 ret = add_falloc_range(&reserve_list, cur_offset, 2753 last_byte - cur_offset); 2754 if (ret < 0) { 2755 free_extent_map(em); 2756 break; 2757 } 2758 ret = btrfs_qgroup_reserve_data(inode, cur_offset, 2759 last_byte - cur_offset); 2760 if (ret < 0) 2761 break; 2762 } 2763 free_extent_map(em); 2764 cur_offset = last_byte; 2765 if (cur_offset >= alloc_end) 2766 break; 2767 } 2768 2769 /* 2770 * If ret is still 0, means we're OK to fallocate. 2771 * Or just cleanup the list and exit. 2772 */ 2773 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 2774 if (!ret) 2775 ret = btrfs_prealloc_file_range(inode, mode, 2776 range->start, 2777 range->len, 1 << inode->i_blkbits, 2778 offset + len, &alloc_hint); 2779 list_del(&range->list); 2780 kfree(range); 2781 } 2782 if (ret < 0) 2783 goto out_unlock; 2784 2785 if (actual_end > inode->i_size && 2786 !(mode & FALLOC_FL_KEEP_SIZE)) { 2787 struct btrfs_trans_handle *trans; 2788 struct btrfs_root *root = BTRFS_I(inode)->root; 2789 2790 /* 2791 * We didn't need to allocate any more space, but we 2792 * still extended the size of the file so we need to 2793 * update i_size and the inode item. 2794 */ 2795 trans = btrfs_start_transaction(root, 1); 2796 if (IS_ERR(trans)) { 2797 ret = PTR_ERR(trans); 2798 } else { 2799 inode->i_ctime = CURRENT_TIME; 2800 i_size_write(inode, actual_end); 2801 btrfs_ordered_update_i_size(inode, actual_end, NULL); 2802 ret = btrfs_update_inode(trans, root, inode); 2803 if (ret) 2804 btrfs_end_transaction(trans, root); 2805 else 2806 ret = btrfs_end_transaction(trans, root); 2807 } 2808 } 2809out_unlock: 2810 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 2811 &cached_state, GFP_NOFS); 2812out: 2813 /* 2814 * As we waited the extent range, the data_rsv_map must be empty 2815 * in the range, as written data range will be released from it. 2816 * And for prealloacted extent, it will also be released when 2817 * its metadata is written. 2818 * So this is completely used as cleanup. 2819 */ 2820 btrfs_qgroup_free_data(inode, alloc_start, alloc_end - alloc_start); 2821 mutex_unlock(&inode->i_mutex); 2822 /* Let go of our reservation. */ 2823 btrfs_free_reserved_data_space(inode, alloc_start, 2824 alloc_end - alloc_start); 2825 return ret; 2826} 2827 2828static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 2829{ 2830 struct btrfs_root *root = BTRFS_I(inode)->root; 2831 struct extent_map *em = NULL; 2832 struct extent_state *cached_state = NULL; 2833 u64 lockstart; 2834 u64 lockend; 2835 u64 start; 2836 u64 len; 2837 int ret = 0; 2838 2839 if (inode->i_size == 0) 2840 return -ENXIO; 2841 2842 /* 2843 * *offset can be negative, in this case we start finding DATA/HOLE from 2844 * the very start of the file. 2845 */ 2846 start = max_t(loff_t, 0, *offset); 2847 2848 lockstart = round_down(start, root->sectorsize); 2849 lockend = round_up(i_size_read(inode), root->sectorsize); 2850 if (lockend <= lockstart) 2851 lockend = lockstart + root->sectorsize; 2852 lockend--; 2853 len = lockend - lockstart + 1; 2854 2855 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0, 2856 &cached_state); 2857 2858 while (start < inode->i_size) { 2859 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0); 2860 if (IS_ERR(em)) { 2861 ret = PTR_ERR(em); 2862 em = NULL; 2863 break; 2864 } 2865 2866 if (whence == SEEK_HOLE && 2867 (em->block_start == EXTENT_MAP_HOLE || 2868 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2869 break; 2870 else if (whence == SEEK_DATA && 2871 (em->block_start != EXTENT_MAP_HOLE && 2872 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2873 break; 2874 2875 start = em->start + em->len; 2876 free_extent_map(em); 2877 em = NULL; 2878 cond_resched(); 2879 } 2880 free_extent_map(em); 2881 if (!ret) { 2882 if (whence == SEEK_DATA && start >= inode->i_size) 2883 ret = -ENXIO; 2884 else 2885 *offset = min_t(loff_t, start, inode->i_size); 2886 } 2887 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2888 &cached_state, GFP_NOFS); 2889 return ret; 2890} 2891 2892static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 2893{ 2894 struct inode *inode = file->f_mapping->host; 2895 int ret; 2896 2897 mutex_lock(&inode->i_mutex); 2898 switch (whence) { 2899 case SEEK_END: 2900 case SEEK_CUR: 2901 offset = generic_file_llseek(file, offset, whence); 2902 goto out; 2903 case SEEK_DATA: 2904 case SEEK_HOLE: 2905 if (offset >= i_size_read(inode)) { 2906 mutex_unlock(&inode->i_mutex); 2907 return -ENXIO; 2908 } 2909 2910 ret = find_desired_extent(inode, &offset, whence); 2911 if (ret) { 2912 mutex_unlock(&inode->i_mutex); 2913 return ret; 2914 } 2915 } 2916 2917 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2918out: 2919 mutex_unlock(&inode->i_mutex); 2920 return offset; 2921} 2922 2923const struct file_operations btrfs_file_operations = { 2924 .llseek = btrfs_file_llseek, 2925 .read_iter = generic_file_read_iter, 2926 .splice_read = generic_file_splice_read, 2927 .write_iter = btrfs_file_write_iter, 2928 .mmap = btrfs_file_mmap, 2929 .open = generic_file_open, 2930 .release = btrfs_release_file, 2931 .fsync = btrfs_sync_file, 2932 .fallocate = btrfs_fallocate, 2933 .unlocked_ioctl = btrfs_ioctl, 2934#ifdef CONFIG_COMPAT 2935 .compat_ioctl = btrfs_ioctl, 2936#endif 2937}; 2938 2939void btrfs_auto_defrag_exit(void) 2940{ 2941 if (btrfs_inode_defrag_cachep) 2942 kmem_cache_destroy(btrfs_inode_defrag_cachep); 2943} 2944 2945int btrfs_auto_defrag_init(void) 2946{ 2947 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 2948 sizeof(struct inode_defrag), 0, 2949 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 2950 NULL); 2951 if (!btrfs_inode_defrag_cachep) 2952 return -ENOMEM; 2953 2954 return 0; 2955} 2956 2957int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 2958{ 2959 int ret; 2960 2961 /* 2962 * So with compression we will find and lock a dirty page and clear the 2963 * first one as dirty, setup an async extent, and immediately return 2964 * with the entire range locked but with nobody actually marked with 2965 * writeback. So we can't just filemap_write_and_wait_range() and 2966 * expect it to work since it will just kick off a thread to do the 2967 * actual work. So we need to call filemap_fdatawrite_range _again_ 2968 * since it will wait on the page lock, which won't be unlocked until 2969 * after the pages have been marked as writeback and so we're good to go 2970 * from there. We have to do this otherwise we'll miss the ordered 2971 * extents and that results in badness. Please Josef, do not think you 2972 * know better and pull this out at some point in the future, it is 2973 * right and you are wrong. 2974 */ 2975 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 2976 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 2977 &BTRFS_I(inode)->runtime_flags)) 2978 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 2979 2980 return ret; 2981} 2982