1/* 2 * 3 * Hardware accelerated Matrox Millennium I, II, Mystique, G100, G200 and G400 4 * 5 * (c) 1998-2002 Petr Vandrovec <vandrove@vc.cvut.cz> 6 * 7 * Portions Copyright (c) 2001 Matrox Graphics Inc. 8 * 9 * Version: 1.65 2002/08/14 10 * 11 * MTRR stuff: 1998 Tom Rini <trini@kernel.crashing.org> 12 * 13 * Contributors: "menion?" <menion@mindless.com> 14 * Betatesting, fixes, ideas 15 * 16 * "Kurt Garloff" <garloff@suse.de> 17 * Betatesting, fixes, ideas, videomodes, videomodes timmings 18 * 19 * "Tom Rini" <trini@kernel.crashing.org> 20 * MTRR stuff, PPC cleanups, betatesting, fixes, ideas 21 * 22 * "Bibek Sahu" <scorpio@dodds.net> 23 * Access device through readb|w|l and write b|w|l 24 * Extensive debugging stuff 25 * 26 * "Daniel Haun" <haund@usa.net> 27 * Testing, hardware cursor fixes 28 * 29 * "Scott Wood" <sawst46+@pitt.edu> 30 * Fixes 31 * 32 * "Gerd Knorr" <kraxel@goldbach.isdn.cs.tu-berlin.de> 33 * Betatesting 34 * 35 * "Kelly French" <targon@hazmat.com> 36 * "Fernando Herrera" <fherrera@eurielec.etsit.upm.es> 37 * Betatesting, bug reporting 38 * 39 * "Pablo Bianucci" <pbian@pccp.com.ar> 40 * Fixes, ideas, betatesting 41 * 42 * "Inaky Perez Gonzalez" <inaky@peloncho.fis.ucm.es> 43 * Fixes, enhandcements, ideas, betatesting 44 * 45 * "Ryuichi Oikawa" <roikawa@rr.iiij4u.or.jp> 46 * PPC betatesting, PPC support, backward compatibility 47 * 48 * "Paul Womar" <Paul@pwomar.demon.co.uk> 49 * "Owen Waller" <O.Waller@ee.qub.ac.uk> 50 * PPC betatesting 51 * 52 * "Thomas Pornin" <pornin@bolet.ens.fr> 53 * Alpha betatesting 54 * 55 * "Pieter van Leuven" <pvl@iae.nl> 56 * "Ulf Jaenicke-Roessler" <ujr@physik.phy.tu-dresden.de> 57 * G100 testing 58 * 59 * "H. Peter Arvin" <hpa@transmeta.com> 60 * Ideas 61 * 62 * "Cort Dougan" <cort@cs.nmt.edu> 63 * CHRP fixes and PReP cleanup 64 * 65 * "Mark Vojkovich" <mvojkovi@ucsd.edu> 66 * G400 support 67 * 68 * "David C. Hansen" <haveblue@us.ibm.com> 69 * Fixes 70 * 71 * "Ian Romanick" <idr@us.ibm.com> 72 * Find PInS data in BIOS on PowerPC systems. 73 * 74 * (following author is not in any relation with this code, but his code 75 * is included in this driver) 76 * 77 * Based on framebuffer driver for VBE 2.0 compliant graphic boards 78 * (c) 1998 Gerd Knorr <kraxel@cs.tu-berlin.de> 79 * 80 * (following author is not in any relation with this code, but his ideas 81 * were used when writing this driver) 82 * 83 * FreeVBE/AF (Matrox), "Shawn Hargreaves" <shawn@talula.demon.co.uk> 84 * 85 */ 86 87 88#include "matroxfb_misc.h" 89#include <linux/interrupt.h> 90#include <linux/matroxfb.h> 91 92void matroxfb_DAC_out(const struct matrox_fb_info *minfo, int reg, int val) 93{ 94 DBG_REG(__func__) 95 mga_outb(M_RAMDAC_BASE+M_X_INDEX, reg); 96 mga_outb(M_RAMDAC_BASE+M_X_DATAREG, val); 97} 98 99int matroxfb_DAC_in(const struct matrox_fb_info *minfo, int reg) 100{ 101 DBG_REG(__func__) 102 mga_outb(M_RAMDAC_BASE+M_X_INDEX, reg); 103 return mga_inb(M_RAMDAC_BASE+M_X_DATAREG); 104} 105 106void matroxfb_var2my(struct fb_var_screeninfo* var, struct my_timming* mt) { 107 unsigned int pixclock = var->pixclock; 108 109 DBG(__func__) 110 111 if (!pixclock) pixclock = 10000; /* 10ns = 100MHz */ 112 mt->pixclock = 1000000000 / pixclock; 113 if (mt->pixclock < 1) mt->pixclock = 1; 114 mt->mnp = -1; 115 mt->dblscan = var->vmode & FB_VMODE_DOUBLE; 116 mt->interlaced = var->vmode & FB_VMODE_INTERLACED; 117 mt->HDisplay = var->xres; 118 mt->HSyncStart = mt->HDisplay + var->right_margin; 119 mt->HSyncEnd = mt->HSyncStart + var->hsync_len; 120 mt->HTotal = mt->HSyncEnd + var->left_margin; 121 mt->VDisplay = var->yres; 122 mt->VSyncStart = mt->VDisplay + var->lower_margin; 123 mt->VSyncEnd = mt->VSyncStart + var->vsync_len; 124 mt->VTotal = mt->VSyncEnd + var->upper_margin; 125 mt->sync = var->sync; 126} 127 128int matroxfb_PLL_calcclock(const struct matrox_pll_features* pll, unsigned int freq, unsigned int fmax, 129 unsigned int* in, unsigned int* feed, unsigned int* post) { 130 unsigned int bestdiff = ~0; 131 unsigned int bestvco = 0; 132 unsigned int fxtal = pll->ref_freq; 133 unsigned int fwant; 134 unsigned int p; 135 136 DBG(__func__) 137 138 fwant = freq; 139 140#ifdef DEBUG 141 printk(KERN_ERR "post_shift_max: %d\n", pll->post_shift_max); 142 printk(KERN_ERR "ref_freq: %d\n", pll->ref_freq); 143 printk(KERN_ERR "freq: %d\n", freq); 144 printk(KERN_ERR "vco_freq_min: %d\n", pll->vco_freq_min); 145 printk(KERN_ERR "in_div_min: %d\n", pll->in_div_min); 146 printk(KERN_ERR "in_div_max: %d\n", pll->in_div_max); 147 printk(KERN_ERR "feed_div_min: %d\n", pll->feed_div_min); 148 printk(KERN_ERR "feed_div_max: %d\n", pll->feed_div_max); 149 printk(KERN_ERR "fmax: %d\n", fmax); 150#endif 151 for (p = 1; p <= pll->post_shift_max; p++) { 152 if (fwant * 2 > fmax) 153 break; 154 fwant *= 2; 155 } 156 if (fwant < pll->vco_freq_min) fwant = pll->vco_freq_min; 157 if (fwant > fmax) fwant = fmax; 158 for (; p-- > 0; fwant >>= 1, bestdiff >>= 1) { 159 unsigned int m; 160 161 if (fwant < pll->vco_freq_min) break; 162 for (m = pll->in_div_min; m <= pll->in_div_max; m++) { 163 unsigned int diff, fvco; 164 unsigned int n; 165 166 n = (fwant * (m + 1) + (fxtal >> 1)) / fxtal - 1; 167 if (n > pll->feed_div_max) 168 break; 169 if (n < pll->feed_div_min) 170 n = pll->feed_div_min; 171 fvco = (fxtal * (n + 1)) / (m + 1); 172 if (fvco < fwant) 173 diff = fwant - fvco; 174 else 175 diff = fvco - fwant; 176 if (diff < bestdiff) { 177 bestdiff = diff; 178 *post = p; 179 *in = m; 180 *feed = n; 181 bestvco = fvco; 182 } 183 } 184 } 185 dprintk(KERN_ERR "clk: %02X %02X %02X %d %d %d\n", *in, *feed, *post, fxtal, bestvco, fwant); 186 return bestvco; 187} 188 189int matroxfb_vgaHWinit(struct matrox_fb_info *minfo, struct my_timming *m) 190{ 191 unsigned int hd, hs, he, hbe, ht; 192 unsigned int vd, vs, ve, vt, lc; 193 unsigned int wd; 194 unsigned int divider; 195 int i; 196 struct matrox_hw_state * const hw = &minfo->hw; 197 198 DBG(__func__) 199 200 hw->SEQ[0] = 0x00; 201 hw->SEQ[1] = 0x01; /* or 0x09 */ 202 hw->SEQ[2] = 0x0F; /* bitplanes */ 203 hw->SEQ[3] = 0x00; 204 hw->SEQ[4] = 0x0E; 205 /* CRTC 0..7, 9, 16..19, 21, 22 are reprogrammed by Matrox Millennium code... Hope that by MGA1064 too */ 206 if (m->dblscan) { 207 m->VTotal <<= 1; 208 m->VDisplay <<= 1; 209 m->VSyncStart <<= 1; 210 m->VSyncEnd <<= 1; 211 } 212 if (m->interlaced) { 213 m->VTotal >>= 1; 214 m->VDisplay >>= 1; 215 m->VSyncStart >>= 1; 216 m->VSyncEnd >>= 1; 217 } 218 219 /* GCTL is ignored when not using 0xA0000 aperture */ 220 hw->GCTL[0] = 0x00; 221 hw->GCTL[1] = 0x00; 222 hw->GCTL[2] = 0x00; 223 hw->GCTL[3] = 0x00; 224 hw->GCTL[4] = 0x00; 225 hw->GCTL[5] = 0x40; 226 hw->GCTL[6] = 0x05; 227 hw->GCTL[7] = 0x0F; 228 hw->GCTL[8] = 0xFF; 229 230 /* Whole ATTR is ignored in PowerGraphics mode */ 231 for (i = 0; i < 16; i++) 232 hw->ATTR[i] = i; 233 hw->ATTR[16] = 0x41; 234 hw->ATTR[17] = 0xFF; 235 hw->ATTR[18] = 0x0F; 236 hw->ATTR[19] = 0x00; 237 hw->ATTR[20] = 0x00; 238 239 hd = m->HDisplay >> 3; 240 hs = m->HSyncStart >> 3; 241 he = m->HSyncEnd >> 3; 242 ht = m->HTotal >> 3; 243 /* standard timmings are in 8pixels, but for interleaved we cannot */ 244 /* do it for 4bpp (because of (4bpp >> 1(interleaved))/4 == 0) */ 245 /* using 16 or more pixels per unit can save us */ 246 divider = minfo->curr.final_bppShift; 247 while (divider & 3) { 248 hd >>= 1; 249 hs >>= 1; 250 he >>= 1; 251 ht >>= 1; 252 divider <<= 1; 253 } 254 divider = divider / 4; 255 /* divider can be from 1 to 8 */ 256 while (divider > 8) { 257 hd <<= 1; 258 hs <<= 1; 259 he <<= 1; 260 ht <<= 1; 261 divider >>= 1; 262 } 263 hd = hd - 1; 264 hs = hs - 1; 265 he = he - 1; 266 ht = ht - 1; 267 vd = m->VDisplay - 1; 268 vs = m->VSyncStart - 1; 269 ve = m->VSyncEnd - 1; 270 vt = m->VTotal - 2; 271 lc = vd; 272 /* G200 cannot work with (ht & 7) == 6 */ 273 if (((ht & 0x07) == 0x06) || ((ht & 0x0F) == 0x04)) 274 ht++; 275 hbe = ht; 276 wd = minfo->fbcon.var.xres_virtual * minfo->curr.final_bppShift / 64; 277 278 hw->CRTCEXT[0] = 0; 279 hw->CRTCEXT[5] = 0; 280 if (m->interlaced) { 281 hw->CRTCEXT[0] = 0x80; 282 hw->CRTCEXT[5] = (hs + he - ht) >> 1; 283 if (!m->dblscan) 284 wd <<= 1; 285 vt &= ~1; 286 } 287 hw->CRTCEXT[0] |= (wd & 0x300) >> 4; 288 hw->CRTCEXT[1] = (((ht - 4) & 0x100) >> 8) | 289 ((hd & 0x100) >> 7) | /* blanking */ 290 ((hs & 0x100) >> 6) | /* sync start */ 291 (hbe & 0x040); /* end hor. blanking */ 292 /* FIXME: Enable vidrst only on G400, and only if TV-out is used */ 293 if (minfo->outputs[1].src == MATROXFB_SRC_CRTC1) 294 hw->CRTCEXT[1] |= 0x88; /* enable horizontal and vertical vidrst */ 295 hw->CRTCEXT[2] = ((vt & 0xC00) >> 10) | 296 ((vd & 0x400) >> 8) | /* disp end */ 297 ((vd & 0xC00) >> 7) | /* vblanking start */ 298 ((vs & 0xC00) >> 5) | 299 ((lc & 0x400) >> 3); 300 hw->CRTCEXT[3] = (divider - 1) | 0x80; 301 hw->CRTCEXT[4] = 0; 302 303 hw->CRTC[0] = ht-4; 304 hw->CRTC[1] = hd; 305 hw->CRTC[2] = hd; 306 hw->CRTC[3] = (hbe & 0x1F) | 0x80; 307 hw->CRTC[4] = hs; 308 hw->CRTC[5] = ((hbe & 0x20) << 2) | (he & 0x1F); 309 hw->CRTC[6] = vt & 0xFF; 310 hw->CRTC[7] = ((vt & 0x100) >> 8) | 311 ((vd & 0x100) >> 7) | 312 ((vs & 0x100) >> 6) | 313 ((vd & 0x100) >> 5) | 314 ((lc & 0x100) >> 4) | 315 ((vt & 0x200) >> 4) | 316 ((vd & 0x200) >> 3) | 317 ((vs & 0x200) >> 2); 318 hw->CRTC[8] = 0x00; 319 hw->CRTC[9] = ((vd & 0x200) >> 4) | 320 ((lc & 0x200) >> 3); 321 if (m->dblscan && !m->interlaced) 322 hw->CRTC[9] |= 0x80; 323 for (i = 10; i < 16; i++) 324 hw->CRTC[i] = 0x00; 325 hw->CRTC[16] = vs /* & 0xFF */; 326 hw->CRTC[17] = (ve & 0x0F) | 0x20; 327 hw->CRTC[18] = vd /* & 0xFF */; 328 hw->CRTC[19] = wd /* & 0xFF */; 329 hw->CRTC[20] = 0x00; 330 hw->CRTC[21] = vd /* & 0xFF */; 331 hw->CRTC[22] = (vt + 1) /* & 0xFF */; 332 hw->CRTC[23] = 0xC3; 333 hw->CRTC[24] = lc; 334 return 0; 335}; 336 337void matroxfb_vgaHWrestore(struct matrox_fb_info *minfo) 338{ 339 int i; 340 struct matrox_hw_state * const hw = &minfo->hw; 341 CRITFLAGS 342 343 DBG(__func__) 344 345 dprintk(KERN_INFO "MiscOutReg: %02X\n", hw->MiscOutReg); 346 dprintk(KERN_INFO "SEQ regs: "); 347 for (i = 0; i < 5; i++) 348 dprintk("%02X:", hw->SEQ[i]); 349 dprintk("\n"); 350 dprintk(KERN_INFO "GDC regs: "); 351 for (i = 0; i < 9; i++) 352 dprintk("%02X:", hw->GCTL[i]); 353 dprintk("\n"); 354 dprintk(KERN_INFO "CRTC regs: "); 355 for (i = 0; i < 25; i++) 356 dprintk("%02X:", hw->CRTC[i]); 357 dprintk("\n"); 358 dprintk(KERN_INFO "ATTR regs: "); 359 for (i = 0; i < 21; i++) 360 dprintk("%02X:", hw->ATTR[i]); 361 dprintk("\n"); 362 363 CRITBEGIN 364 365 mga_inb(M_ATTR_RESET); 366 mga_outb(M_ATTR_INDEX, 0); 367 mga_outb(M_MISC_REG, hw->MiscOutReg); 368 for (i = 1; i < 5; i++) 369 mga_setr(M_SEQ_INDEX, i, hw->SEQ[i]); 370 mga_setr(M_CRTC_INDEX, 17, hw->CRTC[17] & 0x7F); 371 for (i = 0; i < 25; i++) 372 mga_setr(M_CRTC_INDEX, i, hw->CRTC[i]); 373 for (i = 0; i < 9; i++) 374 mga_setr(M_GRAPHICS_INDEX, i, hw->GCTL[i]); 375 for (i = 0; i < 21; i++) { 376 mga_inb(M_ATTR_RESET); 377 mga_outb(M_ATTR_INDEX, i); 378 mga_outb(M_ATTR_INDEX, hw->ATTR[i]); 379 } 380 mga_outb(M_PALETTE_MASK, 0xFF); 381 mga_outb(M_DAC_REG, 0x00); 382 for (i = 0; i < 768; i++) 383 mga_outb(M_DAC_VAL, hw->DACpal[i]); 384 mga_inb(M_ATTR_RESET); 385 mga_outb(M_ATTR_INDEX, 0x20); 386 387 CRITEND 388} 389 390static void get_pins(unsigned char __iomem* pins, struct matrox_bios* bd) { 391 unsigned int b0 = readb(pins); 392 393 if (b0 == 0x2E && readb(pins+1) == 0x41) { 394 unsigned int pins_len = readb(pins+2); 395 unsigned int i; 396 unsigned char cksum; 397 unsigned char* dst = bd->pins; 398 399 if (pins_len < 3 || pins_len > 128) { 400 return; 401 } 402 *dst++ = 0x2E; 403 *dst++ = 0x41; 404 *dst++ = pins_len; 405 cksum = 0x2E + 0x41 + pins_len; 406 for (i = 3; i < pins_len; i++) { 407 cksum += *dst++ = readb(pins+i); 408 } 409 if (cksum) { 410 return; 411 } 412 bd->pins_len = pins_len; 413 } else if (b0 == 0x40 && readb(pins+1) == 0x00) { 414 unsigned int i; 415 unsigned char* dst = bd->pins; 416 417 *dst++ = 0x40; 418 *dst++ = 0; 419 for (i = 2; i < 0x40; i++) { 420 *dst++ = readb(pins+i); 421 } 422 bd->pins_len = 0x40; 423 } 424} 425 426static void get_bios_version(unsigned char __iomem * vbios, struct matrox_bios* bd) { 427 unsigned int pcir_offset; 428 429 pcir_offset = readb(vbios + 24) | (readb(vbios + 25) << 8); 430 if (pcir_offset >= 26 && pcir_offset < 0xFFE0 && 431 readb(vbios + pcir_offset ) == 'P' && 432 readb(vbios + pcir_offset + 1) == 'C' && 433 readb(vbios + pcir_offset + 2) == 'I' && 434 readb(vbios + pcir_offset + 3) == 'R') { 435 unsigned char h; 436 437 h = readb(vbios + pcir_offset + 0x12); 438 bd->version.vMaj = (h >> 4) & 0xF; 439 bd->version.vMin = h & 0xF; 440 bd->version.vRev = readb(vbios + pcir_offset + 0x13); 441 } else { 442 unsigned char h; 443 444 h = readb(vbios + 5); 445 bd->version.vMaj = (h >> 4) & 0xF; 446 bd->version.vMin = h & 0xF; 447 bd->version.vRev = 0; 448 } 449} 450 451static void get_bios_output(unsigned char __iomem* vbios, struct matrox_bios* bd) { 452 unsigned char b; 453 454 b = readb(vbios + 0x7FF1); 455 if (b == 0xFF) { 456 b = 0; 457 } 458 bd->output.state = b; 459} 460 461static void get_bios_tvout(unsigned char __iomem* vbios, struct matrox_bios* bd) { 462 unsigned int i; 463 464 /* Check for 'IBM .*(V....TVO' string - it means TVO BIOS */ 465 bd->output.tvout = 0; 466 if (readb(vbios + 0x1D) != 'I' || 467 readb(vbios + 0x1E) != 'B' || 468 readb(vbios + 0x1F) != 'M' || 469 readb(vbios + 0x20) != ' ') { 470 return; 471 } 472 for (i = 0x2D; i < 0x2D + 128; i++) { 473 unsigned char b = readb(vbios + i); 474 475 if (b == '(' && readb(vbios + i + 1) == 'V') { 476 if (readb(vbios + i + 6) == 'T' && 477 readb(vbios + i + 7) == 'V' && 478 readb(vbios + i + 8) == 'O') { 479 bd->output.tvout = 1; 480 } 481 return; 482 } 483 if (b == 0) 484 break; 485 } 486} 487 488static void parse_bios(unsigned char __iomem* vbios, struct matrox_bios* bd) { 489 unsigned int pins_offset; 490 491 if (readb(vbios) != 0x55 || readb(vbios + 1) != 0xAA) { 492 return; 493 } 494 bd->bios_valid = 1; 495 get_bios_version(vbios, bd); 496 get_bios_output(vbios, bd); 497 get_bios_tvout(vbios, bd); 498#if defined(__powerpc__) 499 /* On PowerPC cards, the PInS offset isn't stored at the end of the 500 * BIOS image. Instead, you must search the entire BIOS image for 501 * the magic PInS signature. 502 * 503 * This actually applies to all OpenFirmware base cards. Since these 504 * cards could be put in a MIPS or SPARC system, should the condition 505 * be something different? 506 */ 507 for ( pins_offset = 0 ; pins_offset <= 0xFF80 ; pins_offset++ ) { 508 unsigned char header[3]; 509 510 header[0] = readb(vbios + pins_offset); 511 header[1] = readb(vbios + pins_offset + 1); 512 header[2] = readb(vbios + pins_offset + 2); 513 if ( (header[0] == 0x2E) && (header[1] == 0x41) 514 && ((header[2] == 0x40) || (header[2] == 0x80)) ) { 515 printk(KERN_INFO "PInS data found at offset %u\n", 516 pins_offset); 517 get_pins(vbios + pins_offset, bd); 518 break; 519 } 520 } 521#else 522 pins_offset = readb(vbios + 0x7FFC) | (readb(vbios + 0x7FFD) << 8); 523 if (pins_offset <= 0xFF80) { 524 get_pins(vbios + pins_offset, bd); 525 } 526#endif 527} 528 529static int parse_pins1(struct matrox_fb_info *minfo, 530 const struct matrox_bios *bd) 531{ 532 unsigned int maxdac; 533 534 switch (bd->pins[22]) { 535 case 0: maxdac = 175000; break; 536 case 1: maxdac = 220000; break; 537 default: maxdac = 240000; break; 538 } 539 if (get_unaligned_le16(bd->pins + 24)) { 540 maxdac = get_unaligned_le16(bd->pins + 24) * 10; 541 } 542 minfo->limits.pixel.vcomax = maxdac; 543 minfo->values.pll.system = get_unaligned_le16(bd->pins + 28) ? 544 get_unaligned_le16(bd->pins + 28) * 10 : 50000; 545 /* ignore 4MB, 8MB, module clocks */ 546 minfo->features.pll.ref_freq = 14318; 547 minfo->values.reg.mctlwtst = 0x00030101; 548 return 0; 549} 550 551static void default_pins1(struct matrox_fb_info *minfo) 552{ 553 /* Millennium */ 554 minfo->limits.pixel.vcomax = 220000; 555 minfo->values.pll.system = 50000; 556 minfo->features.pll.ref_freq = 14318; 557 minfo->values.reg.mctlwtst = 0x00030101; 558} 559 560static int parse_pins2(struct matrox_fb_info *minfo, 561 const struct matrox_bios *bd) 562{ 563 minfo->limits.pixel.vcomax = 564 minfo->limits.system.vcomax = (bd->pins[41] == 0xFF) ? 230000 : ((bd->pins[41] + 100) * 1000); 565 minfo->values.reg.mctlwtst = ((bd->pins[51] & 0x01) ? 0x00000001 : 0) | 566 ((bd->pins[51] & 0x02) ? 0x00000100 : 0) | 567 ((bd->pins[51] & 0x04) ? 0x00010000 : 0) | 568 ((bd->pins[51] & 0x08) ? 0x00020000 : 0); 569 minfo->values.pll.system = (bd->pins[43] == 0xFF) ? 50000 : ((bd->pins[43] + 100) * 1000); 570 minfo->features.pll.ref_freq = 14318; 571 return 0; 572} 573 574static void default_pins2(struct matrox_fb_info *minfo) 575{ 576 /* Millennium II, Mystique */ 577 minfo->limits.pixel.vcomax = 578 minfo->limits.system.vcomax = 230000; 579 minfo->values.reg.mctlwtst = 0x00030101; 580 minfo->values.pll.system = 50000; 581 minfo->features.pll.ref_freq = 14318; 582} 583 584static int parse_pins3(struct matrox_fb_info *minfo, 585 const struct matrox_bios *bd) 586{ 587 minfo->limits.pixel.vcomax = 588 minfo->limits.system.vcomax = (bd->pins[36] == 0xFF) ? 230000 : ((bd->pins[36] + 100) * 1000); 589 minfo->values.reg.mctlwtst = get_unaligned_le32(bd->pins + 48) == 0xFFFFFFFF ? 590 0x01250A21 : get_unaligned_le32(bd->pins + 48); 591 /* memory config */ 592 minfo->values.reg.memrdbk = ((bd->pins[57] << 21) & 0x1E000000) | 593 ((bd->pins[57] << 22) & 0x00C00000) | 594 ((bd->pins[56] << 1) & 0x000001E0) | 595 ( bd->pins[56] & 0x0000000F); 596 minfo->values.reg.opt = (bd->pins[54] & 7) << 10; 597 minfo->values.reg.opt2 = bd->pins[58] << 12; 598 minfo->features.pll.ref_freq = (bd->pins[52] & 0x20) ? 14318 : 27000; 599 return 0; 600} 601 602static void default_pins3(struct matrox_fb_info *minfo) 603{ 604 /* G100, G200 */ 605 minfo->limits.pixel.vcomax = 606 minfo->limits.system.vcomax = 230000; 607 minfo->values.reg.mctlwtst = 0x01250A21; 608 minfo->values.reg.memrdbk = 0x00000000; 609 minfo->values.reg.opt = 0x00000C00; 610 minfo->values.reg.opt2 = 0x00000000; 611 minfo->features.pll.ref_freq = 27000; 612} 613 614static int parse_pins4(struct matrox_fb_info *minfo, 615 const struct matrox_bios *bd) 616{ 617 minfo->limits.pixel.vcomax = (bd->pins[ 39] == 0xFF) ? 230000 : bd->pins[ 39] * 4000; 618 minfo->limits.system.vcomax = (bd->pins[ 38] == 0xFF) ? minfo->limits.pixel.vcomax : bd->pins[ 38] * 4000; 619 minfo->values.reg.mctlwtst = get_unaligned_le32(bd->pins + 71); 620 minfo->values.reg.memrdbk = ((bd->pins[87] << 21) & 0x1E000000) | 621 ((bd->pins[87] << 22) & 0x00C00000) | 622 ((bd->pins[86] << 1) & 0x000001E0) | 623 ( bd->pins[86] & 0x0000000F); 624 minfo->values.reg.opt = ((bd->pins[53] << 15) & 0x00400000) | 625 ((bd->pins[53] << 22) & 0x10000000) | 626 ((bd->pins[53] << 7) & 0x00001C00); 627 minfo->values.reg.opt3 = get_unaligned_le32(bd->pins + 67); 628 minfo->values.pll.system = (bd->pins[ 65] == 0xFF) ? 200000 : bd->pins[ 65] * 4000; 629 minfo->features.pll.ref_freq = (bd->pins[ 92] & 0x01) ? 14318 : 27000; 630 return 0; 631} 632 633static void default_pins4(struct matrox_fb_info *minfo) 634{ 635 /* G400 */ 636 minfo->limits.pixel.vcomax = 637 minfo->limits.system.vcomax = 252000; 638 minfo->values.reg.mctlwtst = 0x04A450A1; 639 minfo->values.reg.memrdbk = 0x000000E7; 640 minfo->values.reg.opt = 0x10000400; 641 minfo->values.reg.opt3 = 0x0190A419; 642 minfo->values.pll.system = 200000; 643 minfo->features.pll.ref_freq = 27000; 644} 645 646static int parse_pins5(struct matrox_fb_info *minfo, 647 const struct matrox_bios *bd) 648{ 649 unsigned int mult; 650 651 mult = bd->pins[4]?8000:6000; 652 653 minfo->limits.pixel.vcomax = (bd->pins[ 38] == 0xFF) ? 600000 : bd->pins[ 38] * mult; 654 minfo->limits.system.vcomax = (bd->pins[ 36] == 0xFF) ? minfo->limits.pixel.vcomax : bd->pins[ 36] * mult; 655 minfo->limits.video.vcomax = (bd->pins[ 37] == 0xFF) ? minfo->limits.system.vcomax : bd->pins[ 37] * mult; 656 minfo->limits.pixel.vcomin = (bd->pins[123] == 0xFF) ? 256000 : bd->pins[123] * mult; 657 minfo->limits.system.vcomin = (bd->pins[121] == 0xFF) ? minfo->limits.pixel.vcomin : bd->pins[121] * mult; 658 minfo->limits.video.vcomin = (bd->pins[122] == 0xFF) ? minfo->limits.system.vcomin : bd->pins[122] * mult; 659 minfo->values.pll.system = 660 minfo->values.pll.video = (bd->pins[ 92] == 0xFF) ? 284000 : bd->pins[ 92] * 4000; 661 minfo->values.reg.opt = get_unaligned_le32(bd->pins + 48); 662 minfo->values.reg.opt2 = get_unaligned_le32(bd->pins + 52); 663 minfo->values.reg.opt3 = get_unaligned_le32(bd->pins + 94); 664 minfo->values.reg.mctlwtst = get_unaligned_le32(bd->pins + 98); 665 minfo->values.reg.memmisc = get_unaligned_le32(bd->pins + 102); 666 minfo->values.reg.memrdbk = get_unaligned_le32(bd->pins + 106); 667 minfo->features.pll.ref_freq = (bd->pins[110] & 0x01) ? 14318 : 27000; 668 minfo->values.memory.ddr = (bd->pins[114] & 0x60) == 0x20; 669 minfo->values.memory.dll = (bd->pins[115] & 0x02) != 0; 670 minfo->values.memory.emrswen = (bd->pins[115] & 0x01) != 0; 671 minfo->values.reg.maccess = minfo->values.memory.emrswen ? 0x00004000 : 0x00000000; 672 if (bd->pins[115] & 4) { 673 minfo->values.reg.mctlwtst_core = minfo->values.reg.mctlwtst; 674 } else { 675 u_int32_t wtst_xlat[] = { 0, 1, 5, 6, 7, 5, 2, 3 }; 676 minfo->values.reg.mctlwtst_core = (minfo->values.reg.mctlwtst & ~7) | 677 wtst_xlat[minfo->values.reg.mctlwtst & 7]; 678 } 679 minfo->max_pixel_clock_panellink = bd->pins[47] * 4000; 680 return 0; 681} 682 683static void default_pins5(struct matrox_fb_info *minfo) 684{ 685 /* Mine 16MB G450 with SDRAM DDR */ 686 minfo->limits.pixel.vcomax = 687 minfo->limits.system.vcomax = 688 minfo->limits.video.vcomax = 600000; 689 minfo->limits.pixel.vcomin = 690 minfo->limits.system.vcomin = 691 minfo->limits.video.vcomin = 256000; 692 minfo->values.pll.system = 693 minfo->values.pll.video = 284000; 694 minfo->values.reg.opt = 0x404A1160; 695 minfo->values.reg.opt2 = 0x0000AC00; 696 minfo->values.reg.opt3 = 0x0090A409; 697 minfo->values.reg.mctlwtst_core = 698 minfo->values.reg.mctlwtst = 0x0C81462B; 699 minfo->values.reg.memmisc = 0x80000004; 700 minfo->values.reg.memrdbk = 0x01001103; 701 minfo->features.pll.ref_freq = 27000; 702 minfo->values.memory.ddr = 1; 703 minfo->values.memory.dll = 1; 704 minfo->values.memory.emrswen = 1; 705 minfo->values.reg.maccess = 0x00004000; 706} 707 708static int matroxfb_set_limits(struct matrox_fb_info *minfo, 709 const struct matrox_bios *bd) 710{ 711 unsigned int pins_version; 712 static const unsigned int pinslen[] = { 64, 64, 64, 128, 128 }; 713 714 switch (minfo->chip) { 715 case MGA_2064: default_pins1(minfo); break; 716 case MGA_2164: 717 case MGA_1064: 718 case MGA_1164: default_pins2(minfo); break; 719 case MGA_G100: 720 case MGA_G200: default_pins3(minfo); break; 721 case MGA_G400: default_pins4(minfo); break; 722 case MGA_G450: 723 case MGA_G550: default_pins5(minfo); break; 724 } 725 if (!bd->bios_valid) { 726 printk(KERN_INFO "matroxfb: Your Matrox device does not have BIOS\n"); 727 return -1; 728 } 729 if (bd->pins_len < 64) { 730 printk(KERN_INFO "matroxfb: BIOS on your Matrox device does not contain powerup info\n"); 731 return -1; 732 } 733 if (bd->pins[0] == 0x2E && bd->pins[1] == 0x41) { 734 pins_version = bd->pins[5]; 735 if (pins_version < 2 || pins_version > 5) { 736 printk(KERN_INFO "matroxfb: Unknown version (%u) of powerup info\n", pins_version); 737 return -1; 738 } 739 } else { 740 pins_version = 1; 741 } 742 if (bd->pins_len != pinslen[pins_version - 1]) { 743 printk(KERN_INFO "matroxfb: Invalid powerup info\n"); 744 return -1; 745 } 746 switch (pins_version) { 747 case 1: 748 return parse_pins1(minfo, bd); 749 case 2: 750 return parse_pins2(minfo, bd); 751 case 3: 752 return parse_pins3(minfo, bd); 753 case 4: 754 return parse_pins4(minfo, bd); 755 case 5: 756 return parse_pins5(minfo, bd); 757 default: 758 printk(KERN_DEBUG "matroxfb: Powerup info version %u is not yet supported\n", pins_version); 759 return -1; 760 } 761} 762 763void matroxfb_read_pins(struct matrox_fb_info *minfo) 764{ 765 u32 opt; 766 u32 biosbase; 767 u32 fbbase; 768 struct pci_dev *pdev = minfo->pcidev; 769 770 memset(&minfo->bios, 0, sizeof(minfo->bios)); 771 pci_read_config_dword(pdev, PCI_OPTION_REG, &opt); 772 pci_write_config_dword(pdev, PCI_OPTION_REG, opt | PCI_OPTION_ENABLE_ROM); 773 pci_read_config_dword(pdev, PCI_ROM_ADDRESS, &biosbase); 774 pci_read_config_dword(pdev, minfo->devflags.fbResource, &fbbase); 775 pci_write_config_dword(pdev, PCI_ROM_ADDRESS, (fbbase & PCI_ROM_ADDRESS_MASK) | PCI_ROM_ADDRESS_ENABLE); 776 parse_bios(vaddr_va(minfo->video.vbase), &minfo->bios); 777 pci_write_config_dword(pdev, PCI_ROM_ADDRESS, biosbase); 778 pci_write_config_dword(pdev, PCI_OPTION_REG, opt); 779#ifdef CONFIG_X86 780 if (!minfo->bios.bios_valid) { 781 unsigned char __iomem* b; 782 783 b = ioremap(0x000C0000, 65536); 784 if (!b) { 785 printk(KERN_INFO "matroxfb: Unable to map legacy BIOS\n"); 786 } else { 787 unsigned int ven = readb(b+0x64+0) | (readb(b+0x64+1) << 8); 788 unsigned int dev = readb(b+0x64+2) | (readb(b+0x64+3) << 8); 789 790 if (ven != pdev->vendor || dev != pdev->device) { 791 printk(KERN_INFO "matroxfb: Legacy BIOS is for %04X:%04X, while this device is %04X:%04X\n", 792 ven, dev, pdev->vendor, pdev->device); 793 } else { 794 parse_bios(b, &minfo->bios); 795 } 796 iounmap(b); 797 } 798 } 799#endif 800 matroxfb_set_limits(minfo, &minfo->bios); 801 printk(KERN_INFO "PInS memtype = %u\n", 802 (minfo->values.reg.opt & 0x1C00) >> 10); 803} 804 805EXPORT_SYMBOL(matroxfb_DAC_in); 806EXPORT_SYMBOL(matroxfb_DAC_out); 807EXPORT_SYMBOL(matroxfb_var2my); 808EXPORT_SYMBOL(matroxfb_PLL_calcclock); 809EXPORT_SYMBOL(matroxfb_vgaHWinit); /* DAC1064, Ti3026 */ 810EXPORT_SYMBOL(matroxfb_vgaHWrestore); /* DAC1064, Ti3026 */ 811EXPORT_SYMBOL(matroxfb_read_pins); 812 813MODULE_AUTHOR("(c) 1999-2002 Petr Vandrovec <vandrove@vc.cvut.cz>"); 814MODULE_DESCRIPTION("Miscellaneous support for Matrox video cards"); 815MODULE_LICENSE("GPL"); 816