1/*
2 * VFIO PCI config space virtualization
3 *
4 * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
5 *     Author: Alex Williamson <alex.williamson@redhat.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * Derived from original vfio:
12 * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
13 * Author: Tom Lyon, pugs@cisco.com
14 */
15
16/*
17 * This code handles reading and writing of PCI configuration registers.
18 * This is hairy because we want to allow a lot of flexibility to the
19 * user driver, but cannot trust it with all of the config fields.
20 * Tables determine which fields can be read and written, as well as
21 * which fields are 'virtualized' - special actions and translations to
22 * make it appear to the user that he has control, when in fact things
23 * must be negotiated with the underlying OS.
24 */
25
26#include <linux/fs.h>
27#include <linux/pci.h>
28#include <linux/uaccess.h>
29#include <linux/vfio.h>
30#include <linux/slab.h>
31
32#include "vfio_pci_private.h"
33
34#define PCI_CFG_SPACE_SIZE	256
35
36/* Useful "pseudo" capabilities */
37#define PCI_CAP_ID_BASIC	0
38#define PCI_CAP_ID_INVALID	0xFF
39
40#define is_bar(offset)	\
41	((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
42	 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
43
44/*
45 * Lengths of PCI Config Capabilities
46 *   0: Removed from the user visible capability list
47 *   FF: Variable length
48 */
49static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
50	[PCI_CAP_ID_BASIC]	= PCI_STD_HEADER_SIZEOF, /* pci config header */
51	[PCI_CAP_ID_PM]		= PCI_PM_SIZEOF,
52	[PCI_CAP_ID_AGP]	= PCI_AGP_SIZEOF,
53	[PCI_CAP_ID_VPD]	= PCI_CAP_VPD_SIZEOF,
54	[PCI_CAP_ID_SLOTID]	= 0,		/* bridge - don't care */
55	[PCI_CAP_ID_MSI]	= 0xFF,		/* 10, 14, 20, or 24 */
56	[PCI_CAP_ID_CHSWP]	= 0,		/* cpci - not yet */
57	[PCI_CAP_ID_PCIX]	= 0xFF,		/* 8 or 24 */
58	[PCI_CAP_ID_HT]		= 0xFF,		/* hypertransport */
59	[PCI_CAP_ID_VNDR]	= 0xFF,		/* variable */
60	[PCI_CAP_ID_DBG]	= 0,		/* debug - don't care */
61	[PCI_CAP_ID_CCRC]	= 0,		/* cpci - not yet */
62	[PCI_CAP_ID_SHPC]	= 0,		/* hotswap - not yet */
63	[PCI_CAP_ID_SSVID]	= 0,		/* bridge - don't care */
64	[PCI_CAP_ID_AGP3]	= 0,		/* AGP8x - not yet */
65	[PCI_CAP_ID_SECDEV]	= 0,		/* secure device not yet */
66	[PCI_CAP_ID_EXP]	= 0xFF,		/* 20 or 44 */
67	[PCI_CAP_ID_MSIX]	= PCI_CAP_MSIX_SIZEOF,
68	[PCI_CAP_ID_SATA]	= 0xFF,
69	[PCI_CAP_ID_AF]		= PCI_CAP_AF_SIZEOF,
70};
71
72/*
73 * Lengths of PCIe/PCI-X Extended Config Capabilities
74 *   0: Removed or masked from the user visible capabilty list
75 *   FF: Variable length
76 */
77static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
78	[PCI_EXT_CAP_ID_ERR]	=	PCI_ERR_ROOT_COMMAND,
79	[PCI_EXT_CAP_ID_VC]	=	0xFF,
80	[PCI_EXT_CAP_ID_DSN]	=	PCI_EXT_CAP_DSN_SIZEOF,
81	[PCI_EXT_CAP_ID_PWR]	=	PCI_EXT_CAP_PWR_SIZEOF,
82	[PCI_EXT_CAP_ID_RCLD]	=	0,	/* root only - don't care */
83	[PCI_EXT_CAP_ID_RCILC]	=	0,	/* root only - don't care */
84	[PCI_EXT_CAP_ID_RCEC]	=	0,	/* root only - don't care */
85	[PCI_EXT_CAP_ID_MFVC]	=	0xFF,
86	[PCI_EXT_CAP_ID_VC9]	=	0xFF,	/* same as CAP_ID_VC */
87	[PCI_EXT_CAP_ID_RCRB]	=	0,	/* root only - don't care */
88	[PCI_EXT_CAP_ID_VNDR]	=	0xFF,
89	[PCI_EXT_CAP_ID_CAC]	=	0,	/* obsolete */
90	[PCI_EXT_CAP_ID_ACS]	=	0xFF,
91	[PCI_EXT_CAP_ID_ARI]	=	PCI_EXT_CAP_ARI_SIZEOF,
92	[PCI_EXT_CAP_ID_ATS]	=	PCI_EXT_CAP_ATS_SIZEOF,
93	[PCI_EXT_CAP_ID_SRIOV]	=	PCI_EXT_CAP_SRIOV_SIZEOF,
94	[PCI_EXT_CAP_ID_MRIOV]	=	0,	/* not yet */
95	[PCI_EXT_CAP_ID_MCAST]	=	PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
96	[PCI_EXT_CAP_ID_PRI]	=	PCI_EXT_CAP_PRI_SIZEOF,
97	[PCI_EXT_CAP_ID_AMD_XXX] =	0,	/* not yet */
98	[PCI_EXT_CAP_ID_REBAR]	=	0xFF,
99	[PCI_EXT_CAP_ID_DPA]	=	0xFF,
100	[PCI_EXT_CAP_ID_TPH]	=	0xFF,
101	[PCI_EXT_CAP_ID_LTR]	=	PCI_EXT_CAP_LTR_SIZEOF,
102	[PCI_EXT_CAP_ID_SECPCI]	=	0,	/* not yet */
103	[PCI_EXT_CAP_ID_PMUX]	=	0,	/* not yet */
104	[PCI_EXT_CAP_ID_PASID]	=	0,	/* not yet */
105};
106
107/*
108 * Read/Write Permission Bits - one bit for each bit in capability
109 * Any field can be read if it exists, but what is read depends on
110 * whether the field is 'virtualized', or just pass thru to the
111 * hardware.  Any virtualized field is also virtualized for writes.
112 * Writes are only permitted if they have a 1 bit here.
113 */
114struct perm_bits {
115	u8	*virt;		/* read/write virtual data, not hw */
116	u8	*write;		/* writeable bits */
117	int	(*readfn)(struct vfio_pci_device *vdev, int pos, int count,
118			  struct perm_bits *perm, int offset, __le32 *val);
119	int	(*writefn)(struct vfio_pci_device *vdev, int pos, int count,
120			   struct perm_bits *perm, int offset, __le32 val);
121};
122
123#define	NO_VIRT		0
124#define	ALL_VIRT	0xFFFFFFFFU
125#define	NO_WRITE	0
126#define	ALL_WRITE	0xFFFFFFFFU
127
128static int vfio_user_config_read(struct pci_dev *pdev, int offset,
129				 __le32 *val, int count)
130{
131	int ret = -EINVAL;
132	u32 tmp_val = 0;
133
134	switch (count) {
135	case 1:
136	{
137		u8 tmp;
138		ret = pci_user_read_config_byte(pdev, offset, &tmp);
139		tmp_val = tmp;
140		break;
141	}
142	case 2:
143	{
144		u16 tmp;
145		ret = pci_user_read_config_word(pdev, offset, &tmp);
146		tmp_val = tmp;
147		break;
148	}
149	case 4:
150		ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
151		break;
152	}
153
154	*val = cpu_to_le32(tmp_val);
155
156	return pcibios_err_to_errno(ret);
157}
158
159static int vfio_user_config_write(struct pci_dev *pdev, int offset,
160				  __le32 val, int count)
161{
162	int ret = -EINVAL;
163	u32 tmp_val = le32_to_cpu(val);
164
165	switch (count) {
166	case 1:
167		ret = pci_user_write_config_byte(pdev, offset, tmp_val);
168		break;
169	case 2:
170		ret = pci_user_write_config_word(pdev, offset, tmp_val);
171		break;
172	case 4:
173		ret = pci_user_write_config_dword(pdev, offset, tmp_val);
174		break;
175	}
176
177	return pcibios_err_to_errno(ret);
178}
179
180static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
181				    int count, struct perm_bits *perm,
182				    int offset, __le32 *val)
183{
184	__le32 virt = 0;
185
186	memcpy(val, vdev->vconfig + pos, count);
187
188	memcpy(&virt, perm->virt + offset, count);
189
190	/* Any non-virtualized bits? */
191	if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
192		struct pci_dev *pdev = vdev->pdev;
193		__le32 phys_val = 0;
194		int ret;
195
196		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
197		if (ret)
198			return ret;
199
200		*val = (phys_val & ~virt) | (*val & virt);
201	}
202
203	return count;
204}
205
206static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
207				     int count, struct perm_bits *perm,
208				     int offset, __le32 val)
209{
210	__le32 virt = 0, write = 0;
211
212	memcpy(&write, perm->write + offset, count);
213
214	if (!write)
215		return count; /* drop, no writable bits */
216
217	memcpy(&virt, perm->virt + offset, count);
218
219	/* Virtualized and writable bits go to vconfig */
220	if (write & virt) {
221		__le32 virt_val = 0;
222
223		memcpy(&virt_val, vdev->vconfig + pos, count);
224
225		virt_val &= ~(write & virt);
226		virt_val |= (val & (write & virt));
227
228		memcpy(vdev->vconfig + pos, &virt_val, count);
229	}
230
231	/* Non-virtualzed and writable bits go to hardware */
232	if (write & ~virt) {
233		struct pci_dev *pdev = vdev->pdev;
234		__le32 phys_val = 0;
235		int ret;
236
237		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
238		if (ret)
239			return ret;
240
241		phys_val &= ~(write & ~virt);
242		phys_val |= (val & (write & ~virt));
243
244		ret = vfio_user_config_write(pdev, pos, phys_val, count);
245		if (ret)
246			return ret;
247	}
248
249	return count;
250}
251
252/* Allow direct read from hardware, except for capability next pointer */
253static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
254				   int count, struct perm_bits *perm,
255				   int offset, __le32 *val)
256{
257	int ret;
258
259	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
260	if (ret)
261		return pcibios_err_to_errno(ret);
262
263	if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
264		if (offset < 4)
265			memcpy(val, vdev->vconfig + pos, count);
266	} else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
267		if (offset == PCI_CAP_LIST_ID && count > 1)
268			memcpy(val, vdev->vconfig + pos,
269			       min(PCI_CAP_FLAGS, count));
270		else if (offset == PCI_CAP_LIST_NEXT)
271			memcpy(val, vdev->vconfig + pos, 1);
272	}
273
274	return count;
275}
276
277/* Raw access skips any kind of virtualization */
278static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos,
279				 int count, struct perm_bits *perm,
280				 int offset, __le32 val)
281{
282	int ret;
283
284	ret = vfio_user_config_write(vdev->pdev, pos, val, count);
285	if (ret)
286		return ret;
287
288	return count;
289}
290
291static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos,
292				int count, struct perm_bits *perm,
293				int offset, __le32 *val)
294{
295	int ret;
296
297	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
298	if (ret)
299		return pcibios_err_to_errno(ret);
300
301	return count;
302}
303
304/* Default capability regions to read-only, no-virtualization */
305static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
306	[0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
307};
308static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
309	[0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
310};
311/*
312 * Default unassigned regions to raw read-write access.  Some devices
313 * require this to function as they hide registers between the gaps in
314 * config space (be2net).  Like MMIO and I/O port registers, we have
315 * to trust the hardware isolation.
316 */
317static struct perm_bits unassigned_perms = {
318	.readfn = vfio_raw_config_read,
319	.writefn = vfio_raw_config_write
320};
321
322static void free_perm_bits(struct perm_bits *perm)
323{
324	kfree(perm->virt);
325	kfree(perm->write);
326	perm->virt = NULL;
327	perm->write = NULL;
328}
329
330static int alloc_perm_bits(struct perm_bits *perm, int size)
331{
332	/*
333	 * Round up all permission bits to the next dword, this lets us
334	 * ignore whether a read/write exceeds the defined capability
335	 * structure.  We can do this because:
336	 *  - Standard config space is already dword aligned
337	 *  - Capabilities are all dword alinged (bits 0:1 of next reserved)
338	 *  - Express capabilities defined as dword aligned
339	 */
340	size = round_up(size, 4);
341
342	/*
343	 * Zero state is
344	 * - All Readable, None Writeable, None Virtualized
345	 */
346	perm->virt = kzalloc(size, GFP_KERNEL);
347	perm->write = kzalloc(size, GFP_KERNEL);
348	if (!perm->virt || !perm->write) {
349		free_perm_bits(perm);
350		return -ENOMEM;
351	}
352
353	perm->readfn = vfio_default_config_read;
354	perm->writefn = vfio_default_config_write;
355
356	return 0;
357}
358
359/*
360 * Helper functions for filling in permission tables
361 */
362static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
363{
364	p->virt[off] = virt;
365	p->write[off] = write;
366}
367
368/* Handle endian-ness - pci and tables are little-endian */
369static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
370{
371	*(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
372	*(__le16 *)(&p->write[off]) = cpu_to_le16(write);
373}
374
375/* Handle endian-ness - pci and tables are little-endian */
376static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
377{
378	*(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
379	*(__le32 *)(&p->write[off]) = cpu_to_le32(write);
380}
381
382/*
383 * Restore the *real* BARs after we detect a FLR or backdoor reset.
384 * (backdoor = some device specific technique that we didn't catch)
385 */
386static void vfio_bar_restore(struct vfio_pci_device *vdev)
387{
388	struct pci_dev *pdev = vdev->pdev;
389	u32 *rbar = vdev->rbar;
390	int i;
391
392	if (pdev->is_virtfn)
393		return;
394
395	pr_info("%s: %s reset recovery - restoring bars\n",
396		__func__, dev_name(&pdev->dev));
397
398	for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
399		pci_user_write_config_dword(pdev, i, *rbar);
400
401	pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
402}
403
404static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
405{
406	unsigned long flags = pci_resource_flags(pdev, bar);
407	u32 val;
408
409	if (flags & IORESOURCE_IO)
410		return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
411
412	val = PCI_BASE_ADDRESS_SPACE_MEMORY;
413
414	if (flags & IORESOURCE_PREFETCH)
415		val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
416
417	if (flags & IORESOURCE_MEM_64)
418		val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
419
420	return cpu_to_le32(val);
421}
422
423/*
424 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
425 * to reflect the hardware capabilities.  This implements BAR sizing.
426 */
427static void vfio_bar_fixup(struct vfio_pci_device *vdev)
428{
429	struct pci_dev *pdev = vdev->pdev;
430	int i;
431	__le32 *bar;
432	u64 mask;
433
434	bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
435
436	for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
437		if (!pci_resource_start(pdev, i)) {
438			*bar = 0; /* Unmapped by host = unimplemented to user */
439			continue;
440		}
441
442		mask = ~(pci_resource_len(pdev, i) - 1);
443
444		*bar &= cpu_to_le32((u32)mask);
445		*bar |= vfio_generate_bar_flags(pdev, i);
446
447		if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
448			bar++;
449			*bar &= cpu_to_le32((u32)(mask >> 32));
450			i++;
451		}
452	}
453
454	bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
455
456	/*
457	 * NB. we expose the actual BAR size here, regardless of whether
458	 * we can read it.  When we report the REGION_INFO for the ROM
459	 * we report what PCI tells us is the actual ROM size.
460	 */
461	if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
462		mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
463		mask |= PCI_ROM_ADDRESS_ENABLE;
464		*bar &= cpu_to_le32((u32)mask);
465	} else
466		*bar = 0;
467
468	vdev->bardirty = false;
469}
470
471static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
472				  int count, struct perm_bits *perm,
473				  int offset, __le32 *val)
474{
475	if (is_bar(offset)) /* pos == offset for basic config */
476		vfio_bar_fixup(vdev);
477
478	count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
479
480	/* Mask in virtual memory enable for SR-IOV devices */
481	if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
482		u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
483		u32 tmp_val = le32_to_cpu(*val);
484
485		tmp_val |= cmd & PCI_COMMAND_MEMORY;
486		*val = cpu_to_le32(tmp_val);
487	}
488
489	return count;
490}
491
492static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
493				   int count, struct perm_bits *perm,
494				   int offset, __le32 val)
495{
496	struct pci_dev *pdev = vdev->pdev;
497	__le16 *virt_cmd;
498	u16 new_cmd = 0;
499	int ret;
500
501	virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
502
503	if (offset == PCI_COMMAND) {
504		bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
505		u16 phys_cmd;
506
507		ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
508		if (ret)
509			return ret;
510
511		new_cmd = le32_to_cpu(val);
512
513		phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
514		virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
515		new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
516
517		phys_io = !!(phys_cmd & PCI_COMMAND_IO);
518		virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
519		new_io = !!(new_cmd & PCI_COMMAND_IO);
520
521		/*
522		 * If the user is writing mem/io enable (new_mem/io) and we
523		 * think it's already enabled (virt_mem/io), but the hardware
524		 * shows it disabled (phys_mem/io, then the device has
525		 * undergone some kind of backdoor reset and needs to be
526		 * restored before we allow it to enable the bars.
527		 * SR-IOV devices will trigger this, but we catch them later
528		 */
529		if ((new_mem && virt_mem && !phys_mem) ||
530		    (new_io && virt_io && !phys_io))
531			vfio_bar_restore(vdev);
532	}
533
534	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
535	if (count < 0)
536		return count;
537
538	/*
539	 * Save current memory/io enable bits in vconfig to allow for
540	 * the test above next time.
541	 */
542	if (offset == PCI_COMMAND) {
543		u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
544
545		*virt_cmd &= cpu_to_le16(~mask);
546		*virt_cmd |= cpu_to_le16(new_cmd & mask);
547	}
548
549	/* Emulate INTx disable */
550	if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
551		bool virt_intx_disable;
552
553		virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
554				       PCI_COMMAND_INTX_DISABLE);
555
556		if (virt_intx_disable && !vdev->virq_disabled) {
557			vdev->virq_disabled = true;
558			vfio_pci_intx_mask(vdev);
559		} else if (!virt_intx_disable && vdev->virq_disabled) {
560			vdev->virq_disabled = false;
561			vfio_pci_intx_unmask(vdev);
562		}
563	}
564
565	if (is_bar(offset))
566		vdev->bardirty = true;
567
568	return count;
569}
570
571/* Permissions for the Basic PCI Header */
572static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
573{
574	if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
575		return -ENOMEM;
576
577	perm->readfn = vfio_basic_config_read;
578	perm->writefn = vfio_basic_config_write;
579
580	/* Virtualized for SR-IOV functions, which just have FFFF */
581	p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
582	p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
583
584	/*
585	 * Virtualize INTx disable, we use it internally for interrupt
586	 * control and can emulate it for non-PCI 2.3 devices.
587	 */
588	p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
589
590	/* Virtualize capability list, we might want to skip/disable */
591	p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
592
593	/* No harm to write */
594	p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
595	p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
596	p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
597
598	/* Virtualize all bars, can't touch the real ones */
599	p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
600	p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
601	p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
602	p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
603	p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
604	p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
605	p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
606
607	/* Allow us to adjust capability chain */
608	p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
609
610	/* Sometimes used by sw, just virtualize */
611	p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
612
613	/* Virtualize interrupt pin to allow hiding INTx */
614	p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
615
616	return 0;
617}
618
619static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
620				int count, struct perm_bits *perm,
621				int offset, __le32 val)
622{
623	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
624	if (count < 0)
625		return count;
626
627	if (offset == PCI_PM_CTRL) {
628		pci_power_t state;
629
630		switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
631		case 0:
632			state = PCI_D0;
633			break;
634		case 1:
635			state = PCI_D1;
636			break;
637		case 2:
638			state = PCI_D2;
639			break;
640		case 3:
641			state = PCI_D3hot;
642			break;
643		}
644
645		pci_set_power_state(vdev->pdev, state);
646	}
647
648	return count;
649}
650
651/* Permissions for the Power Management capability */
652static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
653{
654	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
655		return -ENOMEM;
656
657	perm->writefn = vfio_pm_config_write;
658
659	/*
660	 * We always virtualize the next field so we can remove
661	 * capabilities from the chain if we want to.
662	 */
663	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
664
665	/*
666	 * Power management is defined *per function*, so we can let
667	 * the user change power state, but we trap and initiate the
668	 * change ourselves, so the state bits are read-only.
669	 */
670	p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
671	return 0;
672}
673
674static int vfio_vpd_config_write(struct vfio_pci_device *vdev, int pos,
675				 int count, struct perm_bits *perm,
676				 int offset, __le32 val)
677{
678	struct pci_dev *pdev = vdev->pdev;
679	__le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
680	__le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
681	u16 addr;
682	u32 data;
683
684	/*
685	 * Write through to emulation.  If the write includes the upper byte
686	 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
687	 * have work to do.
688	 */
689	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
690	if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
691	    offset + count <= PCI_VPD_ADDR + 1)
692		return count;
693
694	addr = le16_to_cpu(*paddr);
695
696	if (addr & PCI_VPD_ADDR_F) {
697		data = le32_to_cpu(*pdata);
698		if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
699			return count;
700	} else {
701		if (pci_read_vpd(pdev, addr, 4, &data) != 4)
702			return count;
703		*pdata = cpu_to_le32(data);
704	}
705
706	/*
707	 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
708	 * signal completion.  If an error occurs above, we assume that not
709	 * toggling this bit will induce a driver timeout.
710	 */
711	addr ^= PCI_VPD_ADDR_F;
712	*paddr = cpu_to_le16(addr);
713
714	return count;
715}
716
717/* Permissions for Vital Product Data capability */
718static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
719{
720	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
721		return -ENOMEM;
722
723	perm->writefn = vfio_vpd_config_write;
724
725	/*
726	 * We always virtualize the next field so we can remove
727	 * capabilities from the chain if we want to.
728	 */
729	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
730
731	/*
732	 * Both the address and data registers are virtualized to
733	 * enable access through the pci_vpd_read/write functions
734	 */
735	p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
736	p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
737
738	return 0;
739}
740
741/* Permissions for PCI-X capability */
742static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
743{
744	/* Alloc 24, but only 8 are used in v0 */
745	if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
746		return -ENOMEM;
747
748	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
749
750	p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
751	p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
752	return 0;
753}
754
755/* Permissions for PCI Express capability */
756static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
757{
758	/* Alloc larger of two possible sizes */
759	if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
760		return -ENOMEM;
761
762	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
763
764	/*
765	 * Allow writes to device control fields (includes FLR!)
766	 * but not to devctl_phantom which could confuse IOMMU
767	 * or to the ARI bit in devctl2 which is set at probe time
768	 */
769	p_setw(perm, PCI_EXP_DEVCTL, NO_VIRT, ~PCI_EXP_DEVCTL_PHANTOM);
770	p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
771	return 0;
772}
773
774/* Permissions for Advanced Function capability */
775static int __init init_pci_cap_af_perm(struct perm_bits *perm)
776{
777	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
778		return -ENOMEM;
779
780	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
781	p_setb(perm, PCI_AF_CTRL, NO_VIRT, PCI_AF_CTRL_FLR);
782	return 0;
783}
784
785/* Permissions for Advanced Error Reporting extended capability */
786static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
787{
788	u32 mask;
789
790	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
791		return -ENOMEM;
792
793	/*
794	 * Virtualize the first dword of all express capabilities
795	 * because it includes the next pointer.  This lets us later
796	 * remove capabilities from the chain if we need to.
797	 */
798	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
799
800	/* Writable bits mask */
801	mask =	PCI_ERR_UNC_UND |		/* Undefined */
802		PCI_ERR_UNC_DLP |		/* Data Link Protocol */
803		PCI_ERR_UNC_SURPDN |		/* Surprise Down */
804		PCI_ERR_UNC_POISON_TLP |	/* Poisoned TLP */
805		PCI_ERR_UNC_FCP |		/* Flow Control Protocol */
806		PCI_ERR_UNC_COMP_TIME |		/* Completion Timeout */
807		PCI_ERR_UNC_COMP_ABORT |	/* Completer Abort */
808		PCI_ERR_UNC_UNX_COMP |		/* Unexpected Completion */
809		PCI_ERR_UNC_RX_OVER |		/* Receiver Overflow */
810		PCI_ERR_UNC_MALF_TLP |		/* Malformed TLP */
811		PCI_ERR_UNC_ECRC |		/* ECRC Error Status */
812		PCI_ERR_UNC_UNSUP |		/* Unsupported Request */
813		PCI_ERR_UNC_ACSV |		/* ACS Violation */
814		PCI_ERR_UNC_INTN |		/* internal error */
815		PCI_ERR_UNC_MCBTLP |		/* MC blocked TLP */
816		PCI_ERR_UNC_ATOMEG |		/* Atomic egress blocked */
817		PCI_ERR_UNC_TLPPRE;		/* TLP prefix blocked */
818	p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
819	p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
820	p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
821
822	mask =	PCI_ERR_COR_RCVR |		/* Receiver Error Status */
823		PCI_ERR_COR_BAD_TLP |		/* Bad TLP Status */
824		PCI_ERR_COR_BAD_DLLP |		/* Bad DLLP Status */
825		PCI_ERR_COR_REP_ROLL |		/* REPLAY_NUM Rollover */
826		PCI_ERR_COR_REP_TIMER |		/* Replay Timer Timeout */
827		PCI_ERR_COR_ADV_NFAT |		/* Advisory Non-Fatal */
828		PCI_ERR_COR_INTERNAL |		/* Corrected Internal */
829		PCI_ERR_COR_LOG_OVER;		/* Header Log Overflow */
830	p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
831	p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
832
833	mask =	PCI_ERR_CAP_ECRC_GENE |		/* ECRC Generation Enable */
834		PCI_ERR_CAP_ECRC_CHKE;		/* ECRC Check Enable */
835	p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
836	return 0;
837}
838
839/* Permissions for Power Budgeting extended capability */
840static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
841{
842	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
843		return -ENOMEM;
844
845	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
846
847	/* Writing the data selector is OK, the info is still read-only */
848	p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
849	return 0;
850}
851
852/*
853 * Initialize the shared permission tables
854 */
855void vfio_pci_uninit_perm_bits(void)
856{
857	free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
858
859	free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
860	free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
861	free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
862	free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
863	free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
864
865	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
866	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
867}
868
869int __init vfio_pci_init_perm_bits(void)
870{
871	int ret;
872
873	/* Basic config space */
874	ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
875
876	/* Capabilities */
877	ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
878	ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
879	ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
880	cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
881	ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
882	ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
883
884	/* Extended capabilities */
885	ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
886	ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
887	ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
888
889	if (ret)
890		vfio_pci_uninit_perm_bits();
891
892	return ret;
893}
894
895static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
896{
897	u8 cap;
898	int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
899						 PCI_STD_HEADER_SIZEOF;
900	cap = vdev->pci_config_map[pos];
901
902	if (cap == PCI_CAP_ID_BASIC)
903		return 0;
904
905	/* XXX Can we have to abutting capabilities of the same type? */
906	while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
907		pos--;
908
909	return pos;
910}
911
912static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
913				int count, struct perm_bits *perm,
914				int offset, __le32 *val)
915{
916	/* Update max available queue size from msi_qmax */
917	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
918		__le16 *flags;
919		int start;
920
921		start = vfio_find_cap_start(vdev, pos);
922
923		flags = (__le16 *)&vdev->vconfig[start];
924
925		*flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
926		*flags |= cpu_to_le16(vdev->msi_qmax << 1);
927	}
928
929	return vfio_default_config_read(vdev, pos, count, perm, offset, val);
930}
931
932static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
933				 int count, struct perm_bits *perm,
934				 int offset, __le32 val)
935{
936	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
937	if (count < 0)
938		return count;
939
940	/* Fixup and write configured queue size and enable to hardware */
941	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
942		__le16 *pflags;
943		u16 flags;
944		int start, ret;
945
946		start = vfio_find_cap_start(vdev, pos);
947
948		pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
949
950		flags = le16_to_cpu(*pflags);
951
952		/* MSI is enabled via ioctl */
953		if  (!is_msi(vdev))
954			flags &= ~PCI_MSI_FLAGS_ENABLE;
955
956		/* Check queue size */
957		if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
958			flags &= ~PCI_MSI_FLAGS_QSIZE;
959			flags |= vdev->msi_qmax << 4;
960		}
961
962		/* Write back to virt and to hardware */
963		*pflags = cpu_to_le16(flags);
964		ret = pci_user_write_config_word(vdev->pdev,
965						 start + PCI_MSI_FLAGS,
966						 flags);
967		if (ret)
968			return pcibios_err_to_errno(ret);
969	}
970
971	return count;
972}
973
974/*
975 * MSI determination is per-device, so this routine gets used beyond
976 * initialization time. Don't add __init
977 */
978static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
979{
980	if (alloc_perm_bits(perm, len))
981		return -ENOMEM;
982
983	perm->readfn = vfio_msi_config_read;
984	perm->writefn = vfio_msi_config_write;
985
986	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
987
988	/*
989	 * The upper byte of the control register is reserved,
990	 * just setup the lower byte.
991	 */
992	p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
993	p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
994	if (flags & PCI_MSI_FLAGS_64BIT) {
995		p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
996		p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
997		if (flags & PCI_MSI_FLAGS_MASKBIT) {
998			p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
999			p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1000		}
1001	} else {
1002		p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1003		if (flags & PCI_MSI_FLAGS_MASKBIT) {
1004			p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1005			p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1006		}
1007	}
1008	return 0;
1009}
1010
1011/* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
1012static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
1013{
1014	struct pci_dev *pdev = vdev->pdev;
1015	int len, ret;
1016	u16 flags;
1017
1018	ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1019	if (ret)
1020		return pcibios_err_to_errno(ret);
1021
1022	len = 10; /* Minimum size */
1023	if (flags & PCI_MSI_FLAGS_64BIT)
1024		len += 4;
1025	if (flags & PCI_MSI_FLAGS_MASKBIT)
1026		len += 10;
1027
1028	if (vdev->msi_perm)
1029		return len;
1030
1031	vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
1032	if (!vdev->msi_perm)
1033		return -ENOMEM;
1034
1035	ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1036	if (ret)
1037		return ret;
1038
1039	return len;
1040}
1041
1042/* Determine extended capability length for VC (2 & 9) and MFVC */
1043static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
1044{
1045	struct pci_dev *pdev = vdev->pdev;
1046	u32 tmp;
1047	int ret, evcc, phases, vc_arb;
1048	int len = PCI_CAP_VC_BASE_SIZEOF;
1049
1050	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1051	if (ret)
1052		return pcibios_err_to_errno(ret);
1053
1054	evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1055	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1056	if (ret)
1057		return pcibios_err_to_errno(ret);
1058
1059	if (tmp & PCI_VC_CAP2_128_PHASE)
1060		phases = 128;
1061	else if (tmp & PCI_VC_CAP2_64_PHASE)
1062		phases = 64;
1063	else if (tmp & PCI_VC_CAP2_32_PHASE)
1064		phases = 32;
1065	else
1066		phases = 0;
1067
1068	vc_arb = phases * 4;
1069
1070	/*
1071	 * Port arbitration tables are root & switch only;
1072	 * function arbitration tables are function 0 only.
1073	 * In either case, we'll never let user write them so
1074	 * we don't care how big they are
1075	 */
1076	len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1077	if (vc_arb) {
1078		len = round_up(len, 16);
1079		len += vc_arb / 8;
1080	}
1081	return len;
1082}
1083
1084static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
1085{
1086	struct pci_dev *pdev = vdev->pdev;
1087	u32 dword;
1088	u16 word;
1089	u8 byte;
1090	int ret;
1091
1092	switch (cap) {
1093	case PCI_CAP_ID_MSI:
1094		return vfio_msi_cap_len(vdev, pos);
1095	case PCI_CAP_ID_PCIX:
1096		ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1097		if (ret)
1098			return pcibios_err_to_errno(ret);
1099
1100		if (PCI_X_CMD_VERSION(word)) {
1101			/* Test for extended capabilities */
1102			pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1103			vdev->extended_caps = (dword != 0);
1104			return PCI_CAP_PCIX_SIZEOF_V2;
1105		} else
1106			return PCI_CAP_PCIX_SIZEOF_V0;
1107	case PCI_CAP_ID_VNDR:
1108		/* length follows next field */
1109		ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1110		if (ret)
1111			return pcibios_err_to_errno(ret);
1112
1113		return byte;
1114	case PCI_CAP_ID_EXP:
1115		/* Test for extended capabilities */
1116		pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1117		vdev->extended_caps = (dword != 0);
1118
1119		/* length based on version */
1120		if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1)
1121			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1122		else
1123			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1124	case PCI_CAP_ID_HT:
1125		ret = pci_read_config_byte(pdev, pos + 3, &byte);
1126		if (ret)
1127			return pcibios_err_to_errno(ret);
1128
1129		return (byte & HT_3BIT_CAP_MASK) ?
1130			HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1131	case PCI_CAP_ID_SATA:
1132		ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1133		if (ret)
1134			return pcibios_err_to_errno(ret);
1135
1136		byte &= PCI_SATA_REGS_MASK;
1137		if (byte == PCI_SATA_REGS_INLINE)
1138			return PCI_SATA_SIZEOF_LONG;
1139		else
1140			return PCI_SATA_SIZEOF_SHORT;
1141	default:
1142		pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
1143			dev_name(&pdev->dev), __func__, cap, pos);
1144	}
1145
1146	return 0;
1147}
1148
1149static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
1150{
1151	struct pci_dev *pdev = vdev->pdev;
1152	u8 byte;
1153	u32 dword;
1154	int ret;
1155
1156	switch (ecap) {
1157	case PCI_EXT_CAP_ID_VNDR:
1158		ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1159		if (ret)
1160			return pcibios_err_to_errno(ret);
1161
1162		return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1163	case PCI_EXT_CAP_ID_VC:
1164	case PCI_EXT_CAP_ID_VC9:
1165	case PCI_EXT_CAP_ID_MFVC:
1166		return vfio_vc_cap_len(vdev, epos);
1167	case PCI_EXT_CAP_ID_ACS:
1168		ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1169		if (ret)
1170			return pcibios_err_to_errno(ret);
1171
1172		if (byte & PCI_ACS_EC) {
1173			int bits;
1174
1175			ret = pci_read_config_byte(pdev,
1176						   epos + PCI_ACS_EGRESS_BITS,
1177						   &byte);
1178			if (ret)
1179				return pcibios_err_to_errno(ret);
1180
1181			bits = byte ? round_up(byte, 32) : 256;
1182			return 8 + (bits / 8);
1183		}
1184		return 8;
1185
1186	case PCI_EXT_CAP_ID_REBAR:
1187		ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1188		if (ret)
1189			return pcibios_err_to_errno(ret);
1190
1191		byte &= PCI_REBAR_CTRL_NBAR_MASK;
1192		byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1193
1194		return 4 + (byte * 8);
1195	case PCI_EXT_CAP_ID_DPA:
1196		ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1197		if (ret)
1198			return pcibios_err_to_errno(ret);
1199
1200		byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1201		return PCI_DPA_BASE_SIZEOF + byte + 1;
1202	case PCI_EXT_CAP_ID_TPH:
1203		ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1204		if (ret)
1205			return pcibios_err_to_errno(ret);
1206
1207		if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1208			int sts;
1209
1210			sts = dword & PCI_TPH_CAP_ST_MASK;
1211			sts >>= PCI_TPH_CAP_ST_SHIFT;
1212			return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1213		}
1214		return PCI_TPH_BASE_SIZEOF;
1215	default:
1216		pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
1217			dev_name(&pdev->dev), __func__, ecap, epos);
1218	}
1219
1220	return 0;
1221}
1222
1223static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
1224				   int offset, int size)
1225{
1226	struct pci_dev *pdev = vdev->pdev;
1227	int ret = 0;
1228
1229	/*
1230	 * We try to read physical config space in the largest chunks
1231	 * we can, assuming that all of the fields support dword access.
1232	 * pci_save_state() makes this same assumption and seems to do ok.
1233	 */
1234	while (size) {
1235		int filled;
1236
1237		if (size >= 4 && !(offset % 4)) {
1238			__le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1239			u32 dword;
1240
1241			ret = pci_read_config_dword(pdev, offset, &dword);
1242			if (ret)
1243				return ret;
1244			*dwordp = cpu_to_le32(dword);
1245			filled = 4;
1246		} else if (size >= 2 && !(offset % 2)) {
1247			__le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1248			u16 word;
1249
1250			ret = pci_read_config_word(pdev, offset, &word);
1251			if (ret)
1252				return ret;
1253			*wordp = cpu_to_le16(word);
1254			filled = 2;
1255		} else {
1256			u8 *byte = &vdev->vconfig[offset];
1257			ret = pci_read_config_byte(pdev, offset, byte);
1258			if (ret)
1259				return ret;
1260			filled = 1;
1261		}
1262
1263		offset += filled;
1264		size -= filled;
1265	}
1266
1267	return ret;
1268}
1269
1270static int vfio_cap_init(struct vfio_pci_device *vdev)
1271{
1272	struct pci_dev *pdev = vdev->pdev;
1273	u8 *map = vdev->pci_config_map;
1274	u16 status;
1275	u8 pos, *prev, cap;
1276	int loops, ret, caps = 0;
1277
1278	/* Any capabilities? */
1279	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1280	if (ret)
1281		return ret;
1282
1283	if (!(status & PCI_STATUS_CAP_LIST))
1284		return 0; /* Done */
1285
1286	ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1287	if (ret)
1288		return ret;
1289
1290	/* Mark the previous position in case we want to skip a capability */
1291	prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1292
1293	/* We can bound our loop, capabilities are dword aligned */
1294	loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1295	while (pos && loops--) {
1296		u8 next;
1297		int i, len = 0;
1298
1299		ret = pci_read_config_byte(pdev, pos, &cap);
1300		if (ret)
1301			return ret;
1302
1303		ret = pci_read_config_byte(pdev,
1304					   pos + PCI_CAP_LIST_NEXT, &next);
1305		if (ret)
1306			return ret;
1307
1308		if (cap <= PCI_CAP_ID_MAX) {
1309			len = pci_cap_length[cap];
1310			if (len == 0xFF) { /* Variable length */
1311				len = vfio_cap_len(vdev, cap, pos);
1312				if (len < 0)
1313					return len;
1314			}
1315		}
1316
1317		if (!len) {
1318			pr_info("%s: %s hiding cap 0x%x\n",
1319				__func__, dev_name(&pdev->dev), cap);
1320			*prev = next;
1321			pos = next;
1322			continue;
1323		}
1324
1325		/* Sanity check, do we overlap other capabilities? */
1326		for (i = 0; i < len; i++) {
1327			if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1328				continue;
1329
1330			pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
1331				__func__, dev_name(&pdev->dev),
1332				pos + i, map[pos + i], cap);
1333		}
1334
1335		memset(map + pos, cap, len);
1336		ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1337		if (ret)
1338			return ret;
1339
1340		prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1341		pos = next;
1342		caps++;
1343	}
1344
1345	/* If we didn't fill any capabilities, clear the status flag */
1346	if (!caps) {
1347		__le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1348		*vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1349	}
1350
1351	return 0;
1352}
1353
1354static int vfio_ecap_init(struct vfio_pci_device *vdev)
1355{
1356	struct pci_dev *pdev = vdev->pdev;
1357	u8 *map = vdev->pci_config_map;
1358	u16 epos;
1359	__le32 *prev = NULL;
1360	int loops, ret, ecaps = 0;
1361
1362	if (!vdev->extended_caps)
1363		return 0;
1364
1365	epos = PCI_CFG_SPACE_SIZE;
1366
1367	loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1368
1369	while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1370		u32 header;
1371		u16 ecap;
1372		int i, len = 0;
1373		bool hidden = false;
1374
1375		ret = pci_read_config_dword(pdev, epos, &header);
1376		if (ret)
1377			return ret;
1378
1379		ecap = PCI_EXT_CAP_ID(header);
1380
1381		if (ecap <= PCI_EXT_CAP_ID_MAX) {
1382			len = pci_ext_cap_length[ecap];
1383			if (len == 0xFF) {
1384				len = vfio_ext_cap_len(vdev, ecap, epos);
1385				if (len < 0)
1386					return ret;
1387			}
1388		}
1389
1390		if (!len) {
1391			pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
1392				__func__, dev_name(&pdev->dev), ecap, epos);
1393
1394			/* If not the first in the chain, we can skip over it */
1395			if (prev) {
1396				u32 val = epos = PCI_EXT_CAP_NEXT(header);
1397				*prev &= cpu_to_le32(~(0xffcU << 20));
1398				*prev |= cpu_to_le32(val << 20);
1399				continue;
1400			}
1401
1402			/*
1403			 * Otherwise, fill in a placeholder, the direct
1404			 * readfn will virtualize this automatically
1405			 */
1406			len = PCI_CAP_SIZEOF;
1407			hidden = true;
1408		}
1409
1410		for (i = 0; i < len; i++) {
1411			if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1412				continue;
1413
1414			pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
1415				__func__, dev_name(&pdev->dev),
1416				epos + i, map[epos + i], ecap);
1417		}
1418
1419		/*
1420		 * Even though ecap is 2 bytes, we're currently a long way
1421		 * from exceeding 1 byte capabilities.  If we ever make it
1422		 * up to 0xFF we'll need to up this to a two-byte, byte map.
1423		 */
1424		BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID);
1425
1426		memset(map + epos, ecap, len);
1427		ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1428		if (ret)
1429			return ret;
1430
1431		/*
1432		 * If we're just using this capability to anchor the list,
1433		 * hide the real ID.  Only count real ecaps.  XXX PCI spec
1434		 * indicates to use cap id = 0, version = 0, next = 0 if
1435		 * ecaps are absent, hope users check all the way to next.
1436		 */
1437		if (hidden)
1438			*(__le32 *)&vdev->vconfig[epos] &=
1439				cpu_to_le32((0xffcU << 20));
1440		else
1441			ecaps++;
1442
1443		prev = (__le32 *)&vdev->vconfig[epos];
1444		epos = PCI_EXT_CAP_NEXT(header);
1445	}
1446
1447	if (!ecaps)
1448		*(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1449
1450	return 0;
1451}
1452
1453/*
1454 * For each device we allocate a pci_config_map that indicates the
1455 * capability occupying each dword and thus the struct perm_bits we
1456 * use for read and write.  We also allocate a virtualized config
1457 * space which tracks reads and writes to bits that we emulate for
1458 * the user.  Initial values filled from device.
1459 *
1460 * Using shared stuct perm_bits between all vfio-pci devices saves
1461 * us from allocating cfg_size buffers for virt and write for every
1462 * device.  We could remove vconfig and allocate individual buffers
1463 * for each area requring emulated bits, but the array of pointers
1464 * would be comparable in size (at least for standard config space).
1465 */
1466int vfio_config_init(struct vfio_pci_device *vdev)
1467{
1468	struct pci_dev *pdev = vdev->pdev;
1469	u8 *map, *vconfig;
1470	int ret;
1471
1472	/*
1473	 * Config space, caps and ecaps are all dword aligned, so we could
1474	 * use one byte per dword to record the type.  However, there are
1475	 * no requiremenst on the length of a capability, so the gap between
1476	 * capabilities needs byte granularity.
1477	 */
1478	map = kmalloc(pdev->cfg_size, GFP_KERNEL);
1479	if (!map)
1480		return -ENOMEM;
1481
1482	vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
1483	if (!vconfig) {
1484		kfree(map);
1485		return -ENOMEM;
1486	}
1487
1488	vdev->pci_config_map = map;
1489	vdev->vconfig = vconfig;
1490
1491	memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1492	memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1493	       pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1494
1495	ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1496	if (ret)
1497		goto out;
1498
1499	vdev->bardirty = true;
1500
1501	/*
1502	 * XXX can we just pci_load_saved_state/pci_restore_state?
1503	 * may need to rebuild vconfig after that
1504	 */
1505
1506	/* For restore after reset */
1507	vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1508	vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1509	vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1510	vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1511	vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1512	vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1513	vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1514
1515	if (pdev->is_virtfn) {
1516		*(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1517		*(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1518	}
1519
1520	if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX))
1521		vconfig[PCI_INTERRUPT_PIN] = 0;
1522
1523	ret = vfio_cap_init(vdev);
1524	if (ret)
1525		goto out;
1526
1527	ret = vfio_ecap_init(vdev);
1528	if (ret)
1529		goto out;
1530
1531	return 0;
1532
1533out:
1534	kfree(map);
1535	vdev->pci_config_map = NULL;
1536	kfree(vconfig);
1537	vdev->vconfig = NULL;
1538	return pcibios_err_to_errno(ret);
1539}
1540
1541void vfio_config_free(struct vfio_pci_device *vdev)
1542{
1543	kfree(vdev->vconfig);
1544	vdev->vconfig = NULL;
1545	kfree(vdev->pci_config_map);
1546	vdev->pci_config_map = NULL;
1547	kfree(vdev->msi_perm);
1548	vdev->msi_perm = NULL;
1549}
1550
1551/*
1552 * Find the remaining number of bytes in a dword that match the given
1553 * position.  Stop at either the end of the capability or the dword boundary.
1554 */
1555static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev,
1556					   loff_t pos)
1557{
1558	u8 cap = vdev->pci_config_map[pos];
1559	size_t i;
1560
1561	for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1562		/* nop */;
1563
1564	return i;
1565}
1566
1567static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
1568				 size_t count, loff_t *ppos, bool iswrite)
1569{
1570	struct pci_dev *pdev = vdev->pdev;
1571	struct perm_bits *perm;
1572	__le32 val = 0;
1573	int cap_start = 0, offset;
1574	u8 cap_id;
1575	ssize_t ret;
1576
1577	if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1578	    *ppos + count > pdev->cfg_size)
1579		return -EFAULT;
1580
1581	/*
1582	 * Chop accesses into aligned chunks containing no more than a
1583	 * single capability.  Caller increments to the next chunk.
1584	 */
1585	count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1586	if (count >= 4 && !(*ppos % 4))
1587		count = 4;
1588	else if (count >= 2 && !(*ppos % 2))
1589		count = 2;
1590	else
1591		count = 1;
1592
1593	ret = count;
1594
1595	cap_id = vdev->pci_config_map[*ppos];
1596
1597	if (cap_id == PCI_CAP_ID_INVALID) {
1598		perm = &unassigned_perms;
1599		cap_start = *ppos;
1600	} else {
1601		if (*ppos >= PCI_CFG_SPACE_SIZE) {
1602			WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1603
1604			perm = &ecap_perms[cap_id];
1605			cap_start = vfio_find_cap_start(vdev, *ppos);
1606		} else {
1607			WARN_ON(cap_id > PCI_CAP_ID_MAX);
1608
1609			perm = &cap_perms[cap_id];
1610
1611			if (cap_id == PCI_CAP_ID_MSI)
1612				perm = vdev->msi_perm;
1613
1614			if (cap_id > PCI_CAP_ID_BASIC)
1615				cap_start = vfio_find_cap_start(vdev, *ppos);
1616		}
1617	}
1618
1619	WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1620	WARN_ON(cap_start > *ppos);
1621
1622	offset = *ppos - cap_start;
1623
1624	if (iswrite) {
1625		if (!perm->writefn)
1626			return ret;
1627
1628		if (copy_from_user(&val, buf, count))
1629			return -EFAULT;
1630
1631		ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1632	} else {
1633		if (perm->readfn) {
1634			ret = perm->readfn(vdev, *ppos, count,
1635					   perm, offset, &val);
1636			if (ret < 0)
1637				return ret;
1638		}
1639
1640		if (copy_to_user(buf, &val, count))
1641			return -EFAULT;
1642	}
1643
1644	return ret;
1645}
1646
1647ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
1648			   size_t count, loff_t *ppos, bool iswrite)
1649{
1650	size_t done = 0;
1651	int ret = 0;
1652	loff_t pos = *ppos;
1653
1654	pos &= VFIO_PCI_OFFSET_MASK;
1655
1656	while (count) {
1657		ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1658		if (ret < 0)
1659			return ret;
1660
1661		count -= ret;
1662		done += ret;
1663		buf += ret;
1664		pos += ret;
1665	}
1666
1667	*ppos += done;
1668
1669	return done;
1670}
1671