1/*
2 * The USB Monitor, inspired by Dave Harding's USBMon.
3 *
4 * This is a binary format reader.
5 *
6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8 */
9
10#include <linux/kernel.h>
11#include <linux/types.h>
12#include <linux/fs.h>
13#include <linux/cdev.h>
14#include <linux/export.h>
15#include <linux/usb.h>
16#include <linux/poll.h>
17#include <linux/compat.h>
18#include <linux/mm.h>
19#include <linux/scatterlist.h>
20#include <linux/slab.h>
21
22#include <asm/uaccess.h>
23
24#include "usb_mon.h"
25
26/*
27 * Defined by USB 2.0 clause 9.3, table 9.2.
28 */
29#define SETUP_LEN  8
30
31/* ioctl macros */
32#define MON_IOC_MAGIC 0x92
33
34#define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
35/* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
36#define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
37#define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
38#define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
39#define MON_IOCX_GET   _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
40#define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
41#define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
42/* #9 was MON_IOCT_SETAPI */
43#define MON_IOCX_GETX   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
44
45#ifdef CONFIG_COMPAT
46#define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
47#define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
48#define MON_IOCX_GETX32   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
49#endif
50
51/*
52 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
53 * But it's all right. Just use a simple way to make sure the chunk is never
54 * smaller than a page.
55 *
56 * N.B. An application does not know our chunk size.
57 *
58 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
59 * page-sized chunks for the time being.
60 */
61#define CHUNK_SIZE   PAGE_SIZE
62#define CHUNK_ALIGN(x)   (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
63
64/*
65 * The magic limit was calculated so that it allows the monitoring
66 * application to pick data once in two ticks. This way, another application,
67 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
68 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
69 * enormous overhead built into the bus protocol, so we need about 1000 KB.
70 *
71 * This is still too much for most cases, where we just snoop a few
72 * descriptor fetches for enumeration. So, the default is a "reasonable"
73 * amount for systems with HZ=250 and incomplete bus saturation.
74 *
75 * XXX What about multi-megabyte URBs which take minutes to transfer?
76 */
77#define BUFF_MAX  CHUNK_ALIGN(1200*1024)
78#define BUFF_DFL   CHUNK_ALIGN(300*1024)
79#define BUFF_MIN     CHUNK_ALIGN(8*1024)
80
81/*
82 * The per-event API header (2 per URB).
83 *
84 * This structure is seen in userland as defined by the documentation.
85 */
86struct mon_bin_hdr {
87	u64 id;			/* URB ID - from submission to callback */
88	unsigned char type;	/* Same as in text API; extensible. */
89	unsigned char xfer_type;	/* ISO, Intr, Control, Bulk */
90	unsigned char epnum;	/* Endpoint number and transfer direction */
91	unsigned char devnum;	/* Device address */
92	unsigned short busnum;	/* Bus number */
93	char flag_setup;
94	char flag_data;
95	s64 ts_sec;		/* gettimeofday */
96	s32 ts_usec;		/* gettimeofday */
97	int status;
98	unsigned int len_urb;	/* Length of data (submitted or actual) */
99	unsigned int len_cap;	/* Delivered length */
100	union {
101		unsigned char setup[SETUP_LEN];	/* Only for Control S-type */
102		struct iso_rec {
103			int error_count;
104			int numdesc;
105		} iso;
106	} s;
107	int interval;
108	int start_frame;
109	unsigned int xfer_flags;
110	unsigned int ndesc;	/* Actual number of ISO descriptors */
111};
112
113/*
114 * ISO vector, packed into the head of data stream.
115 * This has to take 16 bytes to make sure that the end of buffer
116 * wrap is not happening in the middle of a descriptor.
117 */
118struct mon_bin_isodesc {
119	int          iso_status;
120	unsigned int iso_off;
121	unsigned int iso_len;
122	u32 _pad;
123};
124
125/* per file statistic */
126struct mon_bin_stats {
127	u32 queued;
128	u32 dropped;
129};
130
131struct mon_bin_get {
132	struct mon_bin_hdr __user *hdr;	/* Can be 48 bytes or 64. */
133	void __user *data;
134	size_t alloc;		/* Length of data (can be zero) */
135};
136
137struct mon_bin_mfetch {
138	u32 __user *offvec;	/* Vector of events fetched */
139	u32 nfetch;		/* Number of events to fetch (out: fetched) */
140	u32 nflush;		/* Number of events to flush */
141};
142
143#ifdef CONFIG_COMPAT
144struct mon_bin_get32 {
145	u32 hdr32;
146	u32 data32;
147	u32 alloc32;
148};
149
150struct mon_bin_mfetch32 {
151        u32 offvec32;
152        u32 nfetch32;
153        u32 nflush32;
154};
155#endif
156
157/* Having these two values same prevents wrapping of the mon_bin_hdr */
158#define PKT_ALIGN   64
159#define PKT_SIZE    64
160
161#define PKT_SZ_API0 48	/* API 0 (2.6.20) size */
162#define PKT_SZ_API1 64	/* API 1 size: extra fields */
163
164#define ISODESC_MAX   128	/* Same number as usbfs allows, 2048 bytes. */
165
166/* max number of USB bus supported */
167#define MON_BIN_MAX_MINOR 128
168
169/*
170 * The buffer: map of used pages.
171 */
172struct mon_pgmap {
173	struct page *pg;
174	unsigned char *ptr;	/* XXX just use page_to_virt everywhere? */
175};
176
177/*
178 * This gets associated with an open file struct.
179 */
180struct mon_reader_bin {
181	/* The buffer: one per open. */
182	spinlock_t b_lock;		/* Protect b_cnt, b_in */
183	unsigned int b_size;		/* Current size of the buffer - bytes */
184	unsigned int b_cnt;		/* Bytes used */
185	unsigned int b_in, b_out;	/* Offsets into buffer - bytes */
186	unsigned int b_read;		/* Amount of read data in curr. pkt. */
187	struct mon_pgmap *b_vec;	/* The map array */
188	wait_queue_head_t b_wait;	/* Wait for data here */
189
190	struct mutex fetch_lock;	/* Protect b_read, b_out */
191	int mmap_active;
192
193	/* A list of these is needed for "bus 0". Some time later. */
194	struct mon_reader r;
195
196	/* Stats */
197	unsigned int cnt_lost;
198};
199
200static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
201    unsigned int offset)
202{
203	return (struct mon_bin_hdr *)
204	    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
205}
206
207#define MON_RING_EMPTY(rp)	((rp)->b_cnt == 0)
208
209static unsigned char xfer_to_pipe[4] = {
210	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
211};
212
213static struct class *mon_bin_class;
214static dev_t mon_bin_dev0;
215static struct cdev mon_bin_cdev;
216
217static void mon_buff_area_fill(const struct mon_reader_bin *rp,
218    unsigned int offset, unsigned int size);
219static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
220static int mon_alloc_buff(struct mon_pgmap *map, int npages);
221static void mon_free_buff(struct mon_pgmap *map, int npages);
222
223/*
224 * This is a "chunked memcpy". It does not manipulate any counters.
225 */
226static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
227    unsigned int off, const unsigned char *from, unsigned int length)
228{
229	unsigned int step_len;
230	unsigned char *buf;
231	unsigned int in_page;
232
233	while (length) {
234		/*
235		 * Determine step_len.
236		 */
237		step_len = length;
238		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
239		if (in_page < step_len)
240			step_len = in_page;
241
242		/*
243		 * Copy data and advance pointers.
244		 */
245		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
246		memcpy(buf, from, step_len);
247		if ((off += step_len) >= this->b_size) off = 0;
248		from += step_len;
249		length -= step_len;
250	}
251	return off;
252}
253
254/*
255 * This is a little worse than the above because it's "chunked copy_to_user".
256 * The return value is an error code, not an offset.
257 */
258static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
259    char __user *to, int length)
260{
261	unsigned int step_len;
262	unsigned char *buf;
263	unsigned int in_page;
264
265	while (length) {
266		/*
267		 * Determine step_len.
268		 */
269		step_len = length;
270		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
271		if (in_page < step_len)
272			step_len = in_page;
273
274		/*
275		 * Copy data and advance pointers.
276		 */
277		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
278		if (copy_to_user(to, buf, step_len))
279			return -EINVAL;
280		if ((off += step_len) >= this->b_size) off = 0;
281		to += step_len;
282		length -= step_len;
283	}
284	return 0;
285}
286
287/*
288 * Allocate an (aligned) area in the buffer.
289 * This is called under b_lock.
290 * Returns ~0 on failure.
291 */
292static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
293    unsigned int size)
294{
295	unsigned int offset;
296
297	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
298	if (rp->b_cnt + size > rp->b_size)
299		return ~0;
300	offset = rp->b_in;
301	rp->b_cnt += size;
302	if ((rp->b_in += size) >= rp->b_size)
303		rp->b_in -= rp->b_size;
304	return offset;
305}
306
307/*
308 * This is the same thing as mon_buff_area_alloc, only it does not allow
309 * buffers to wrap. This is needed by applications which pass references
310 * into mmap-ed buffers up their stacks (libpcap can do that).
311 *
312 * Currently, we always have the header stuck with the data, although
313 * it is not strictly speaking necessary.
314 *
315 * When a buffer would wrap, we place a filler packet to mark the space.
316 */
317static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
318    unsigned int size)
319{
320	unsigned int offset;
321	unsigned int fill_size;
322
323	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
324	if (rp->b_cnt + size > rp->b_size)
325		return ~0;
326	if (rp->b_in + size > rp->b_size) {
327		/*
328		 * This would wrap. Find if we still have space after
329		 * skipping to the end of the buffer. If we do, place
330		 * a filler packet and allocate a new packet.
331		 */
332		fill_size = rp->b_size - rp->b_in;
333		if (rp->b_cnt + size + fill_size > rp->b_size)
334			return ~0;
335		mon_buff_area_fill(rp, rp->b_in, fill_size);
336
337		offset = 0;
338		rp->b_in = size;
339		rp->b_cnt += size + fill_size;
340	} else if (rp->b_in + size == rp->b_size) {
341		offset = rp->b_in;
342		rp->b_in = 0;
343		rp->b_cnt += size;
344	} else {
345		offset = rp->b_in;
346		rp->b_in += size;
347		rp->b_cnt += size;
348	}
349	return offset;
350}
351
352/*
353 * Return a few (kilo-)bytes to the head of the buffer.
354 * This is used if a data fetch fails.
355 */
356static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
357{
358
359	/* size &= ~(PKT_ALIGN-1);  -- we're called with aligned size */
360	rp->b_cnt -= size;
361	if (rp->b_in < size)
362		rp->b_in += rp->b_size;
363	rp->b_in -= size;
364}
365
366/*
367 * This has to be called under both b_lock and fetch_lock, because
368 * it accesses both b_cnt and b_out.
369 */
370static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
371{
372
373	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
374	rp->b_cnt -= size;
375	if ((rp->b_out += size) >= rp->b_size)
376		rp->b_out -= rp->b_size;
377}
378
379static void mon_buff_area_fill(const struct mon_reader_bin *rp,
380    unsigned int offset, unsigned int size)
381{
382	struct mon_bin_hdr *ep;
383
384	ep = MON_OFF2HDR(rp, offset);
385	memset(ep, 0, PKT_SIZE);
386	ep->type = '@';
387	ep->len_cap = size - PKT_SIZE;
388}
389
390static inline char mon_bin_get_setup(unsigned char *setupb,
391    const struct urb *urb, char ev_type)
392{
393
394	if (urb->setup_packet == NULL)
395		return 'Z';
396	memcpy(setupb, urb->setup_packet, SETUP_LEN);
397	return 0;
398}
399
400static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
401    unsigned int offset, struct urb *urb, unsigned int length,
402    char *flag)
403{
404	int i;
405	struct scatterlist *sg;
406	unsigned int this_len;
407
408	*flag = 0;
409	if (urb->num_sgs == 0) {
410		if (urb->transfer_buffer == NULL) {
411			*flag = 'Z';
412			return length;
413		}
414		mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
415		length = 0;
416
417	} else {
418		/* If IOMMU coalescing occurred, we cannot trust sg_page */
419		if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
420			*flag = 'D';
421			return length;
422		}
423
424		/* Copy up to the first non-addressable segment */
425		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
426			if (length == 0 || PageHighMem(sg_page(sg)))
427				break;
428			this_len = min_t(unsigned int, sg->length, length);
429			offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
430					this_len);
431			length -= this_len;
432		}
433		if (i == 0)
434			*flag = 'D';
435	}
436
437	return length;
438}
439
440/*
441 * This is the look-ahead pass in case of 'C Zi', when actual_length cannot
442 * be used to determine the length of the whole contiguous buffer.
443 */
444static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp,
445    struct urb *urb, unsigned int ndesc)
446{
447	struct usb_iso_packet_descriptor *fp;
448	unsigned int length;
449
450	length = 0;
451	fp = urb->iso_frame_desc;
452	while (ndesc-- != 0) {
453		if (fp->actual_length != 0) {
454			if (fp->offset + fp->actual_length > length)
455				length = fp->offset + fp->actual_length;
456		}
457		fp++;
458	}
459	return length;
460}
461
462static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
463    unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
464{
465	struct mon_bin_isodesc *dp;
466	struct usb_iso_packet_descriptor *fp;
467
468	fp = urb->iso_frame_desc;
469	while (ndesc-- != 0) {
470		dp = (struct mon_bin_isodesc *)
471		    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
472		dp->iso_status = fp->status;
473		dp->iso_off = fp->offset;
474		dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
475		dp->_pad = 0;
476		if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
477			offset = 0;
478		fp++;
479	}
480}
481
482static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
483    char ev_type, int status)
484{
485	const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
486	struct timeval ts;
487	unsigned long flags;
488	unsigned int urb_length;
489	unsigned int offset;
490	unsigned int length;
491	unsigned int delta;
492	unsigned int ndesc, lendesc;
493	unsigned char dir;
494	struct mon_bin_hdr *ep;
495	char data_tag = 0;
496
497	do_gettimeofday(&ts);
498
499	spin_lock_irqsave(&rp->b_lock, flags);
500
501	/*
502	 * Find the maximum allowable length, then allocate space.
503	 */
504	urb_length = (ev_type == 'S') ?
505	    urb->transfer_buffer_length : urb->actual_length;
506	length = urb_length;
507
508	if (usb_endpoint_xfer_isoc(epd)) {
509		if (urb->number_of_packets < 0) {
510			ndesc = 0;
511		} else if (urb->number_of_packets >= ISODESC_MAX) {
512			ndesc = ISODESC_MAX;
513		} else {
514			ndesc = urb->number_of_packets;
515		}
516		if (ev_type == 'C' && usb_urb_dir_in(urb))
517			length = mon_bin_collate_isodesc(rp, urb, ndesc);
518	} else {
519		ndesc = 0;
520	}
521	lendesc = ndesc*sizeof(struct mon_bin_isodesc);
522
523	/* not an issue unless there's a subtle bug in a HCD somewhere */
524	if (length >= urb->transfer_buffer_length)
525		length = urb->transfer_buffer_length;
526
527	if (length >= rp->b_size/5)
528		length = rp->b_size/5;
529
530	if (usb_urb_dir_in(urb)) {
531		if (ev_type == 'S') {
532			length = 0;
533			data_tag = '<';
534		}
535		/* Cannot rely on endpoint number in case of control ep.0 */
536		dir = USB_DIR_IN;
537	} else {
538		if (ev_type == 'C') {
539			length = 0;
540			data_tag = '>';
541		}
542		dir = 0;
543	}
544
545	if (rp->mmap_active) {
546		offset = mon_buff_area_alloc_contiguous(rp,
547						 length + PKT_SIZE + lendesc);
548	} else {
549		offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
550	}
551	if (offset == ~0) {
552		rp->cnt_lost++;
553		spin_unlock_irqrestore(&rp->b_lock, flags);
554		return;
555	}
556
557	ep = MON_OFF2HDR(rp, offset);
558	if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
559
560	/*
561	 * Fill the allocated area.
562	 */
563	memset(ep, 0, PKT_SIZE);
564	ep->type = ev_type;
565	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
566	ep->epnum = dir | usb_endpoint_num(epd);
567	ep->devnum = urb->dev->devnum;
568	ep->busnum = urb->dev->bus->busnum;
569	ep->id = (unsigned long) urb;
570	ep->ts_sec = ts.tv_sec;
571	ep->ts_usec = ts.tv_usec;
572	ep->status = status;
573	ep->len_urb = urb_length;
574	ep->len_cap = length + lendesc;
575	ep->xfer_flags = urb->transfer_flags;
576
577	if (usb_endpoint_xfer_int(epd)) {
578		ep->interval = urb->interval;
579	} else if (usb_endpoint_xfer_isoc(epd)) {
580		ep->interval = urb->interval;
581		ep->start_frame = urb->start_frame;
582		ep->s.iso.error_count = urb->error_count;
583		ep->s.iso.numdesc = urb->number_of_packets;
584	}
585
586	if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
587		ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
588	} else {
589		ep->flag_setup = '-';
590	}
591
592	if (ndesc != 0) {
593		ep->ndesc = ndesc;
594		mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
595		if ((offset += lendesc) >= rp->b_size)
596			offset -= rp->b_size;
597	}
598
599	if (length != 0) {
600		length = mon_bin_get_data(rp, offset, urb, length,
601				&ep->flag_data);
602		if (length > 0) {
603			delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
604			ep->len_cap -= length;
605			delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
606			mon_buff_area_shrink(rp, delta);
607		}
608	} else {
609		ep->flag_data = data_tag;
610	}
611
612	spin_unlock_irqrestore(&rp->b_lock, flags);
613
614	wake_up(&rp->b_wait);
615}
616
617static void mon_bin_submit(void *data, struct urb *urb)
618{
619	struct mon_reader_bin *rp = data;
620	mon_bin_event(rp, urb, 'S', -EINPROGRESS);
621}
622
623static void mon_bin_complete(void *data, struct urb *urb, int status)
624{
625	struct mon_reader_bin *rp = data;
626	mon_bin_event(rp, urb, 'C', status);
627}
628
629static void mon_bin_error(void *data, struct urb *urb, int error)
630{
631	struct mon_reader_bin *rp = data;
632	struct timeval ts;
633	unsigned long flags;
634	unsigned int offset;
635	struct mon_bin_hdr *ep;
636
637	do_gettimeofday(&ts);
638
639	spin_lock_irqsave(&rp->b_lock, flags);
640
641	offset = mon_buff_area_alloc(rp, PKT_SIZE);
642	if (offset == ~0) {
643		/* Not incrementing cnt_lost. Just because. */
644		spin_unlock_irqrestore(&rp->b_lock, flags);
645		return;
646	}
647
648	ep = MON_OFF2HDR(rp, offset);
649
650	memset(ep, 0, PKT_SIZE);
651	ep->type = 'E';
652	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
653	ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
654	ep->epnum |= usb_endpoint_num(&urb->ep->desc);
655	ep->devnum = urb->dev->devnum;
656	ep->busnum = urb->dev->bus->busnum;
657	ep->id = (unsigned long) urb;
658	ep->ts_sec = ts.tv_sec;
659	ep->ts_usec = ts.tv_usec;
660	ep->status = error;
661
662	ep->flag_setup = '-';
663	ep->flag_data = 'E';
664
665	spin_unlock_irqrestore(&rp->b_lock, flags);
666
667	wake_up(&rp->b_wait);
668}
669
670static int mon_bin_open(struct inode *inode, struct file *file)
671{
672	struct mon_bus *mbus;
673	struct mon_reader_bin *rp;
674	size_t size;
675	int rc;
676
677	mutex_lock(&mon_lock);
678	mbus = mon_bus_lookup(iminor(inode));
679	if (mbus == NULL) {
680		mutex_unlock(&mon_lock);
681		return -ENODEV;
682	}
683	if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
684		printk(KERN_ERR TAG ": consistency error on open\n");
685		mutex_unlock(&mon_lock);
686		return -ENODEV;
687	}
688
689	rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
690	if (rp == NULL) {
691		rc = -ENOMEM;
692		goto err_alloc;
693	}
694	spin_lock_init(&rp->b_lock);
695	init_waitqueue_head(&rp->b_wait);
696	mutex_init(&rp->fetch_lock);
697	rp->b_size = BUFF_DFL;
698
699	size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
700	if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
701		rc = -ENOMEM;
702		goto err_allocvec;
703	}
704
705	if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
706		goto err_allocbuff;
707
708	rp->r.m_bus = mbus;
709	rp->r.r_data = rp;
710	rp->r.rnf_submit = mon_bin_submit;
711	rp->r.rnf_error = mon_bin_error;
712	rp->r.rnf_complete = mon_bin_complete;
713
714	mon_reader_add(mbus, &rp->r);
715
716	file->private_data = rp;
717	mutex_unlock(&mon_lock);
718	return 0;
719
720err_allocbuff:
721	kfree(rp->b_vec);
722err_allocvec:
723	kfree(rp);
724err_alloc:
725	mutex_unlock(&mon_lock);
726	return rc;
727}
728
729/*
730 * Extract an event from buffer and copy it to user space.
731 * Wait if there is no event ready.
732 * Returns zero or error.
733 */
734static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
735    struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
736    void __user *data, unsigned int nbytes)
737{
738	unsigned long flags;
739	struct mon_bin_hdr *ep;
740	size_t step_len;
741	unsigned int offset;
742	int rc;
743
744	mutex_lock(&rp->fetch_lock);
745
746	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
747		mutex_unlock(&rp->fetch_lock);
748		return rc;
749	}
750
751	ep = MON_OFF2HDR(rp, rp->b_out);
752
753	if (copy_to_user(hdr, ep, hdrbytes)) {
754		mutex_unlock(&rp->fetch_lock);
755		return -EFAULT;
756	}
757
758	step_len = min(ep->len_cap, nbytes);
759	if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
760
761	if (copy_from_buf(rp, offset, data, step_len)) {
762		mutex_unlock(&rp->fetch_lock);
763		return -EFAULT;
764	}
765
766	spin_lock_irqsave(&rp->b_lock, flags);
767	mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
768	spin_unlock_irqrestore(&rp->b_lock, flags);
769	rp->b_read = 0;
770
771	mutex_unlock(&rp->fetch_lock);
772	return 0;
773}
774
775static int mon_bin_release(struct inode *inode, struct file *file)
776{
777	struct mon_reader_bin *rp = file->private_data;
778	struct mon_bus* mbus = rp->r.m_bus;
779
780	mutex_lock(&mon_lock);
781
782	if (mbus->nreaders <= 0) {
783		printk(KERN_ERR TAG ": consistency error on close\n");
784		mutex_unlock(&mon_lock);
785		return 0;
786	}
787	mon_reader_del(mbus, &rp->r);
788
789	mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
790	kfree(rp->b_vec);
791	kfree(rp);
792
793	mutex_unlock(&mon_lock);
794	return 0;
795}
796
797static ssize_t mon_bin_read(struct file *file, char __user *buf,
798    size_t nbytes, loff_t *ppos)
799{
800	struct mon_reader_bin *rp = file->private_data;
801	unsigned int hdrbytes = PKT_SZ_API0;
802	unsigned long flags;
803	struct mon_bin_hdr *ep;
804	unsigned int offset;
805	size_t step_len;
806	char *ptr;
807	ssize_t done = 0;
808	int rc;
809
810	mutex_lock(&rp->fetch_lock);
811
812	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
813		mutex_unlock(&rp->fetch_lock);
814		return rc;
815	}
816
817	ep = MON_OFF2HDR(rp, rp->b_out);
818
819	if (rp->b_read < hdrbytes) {
820		step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
821		ptr = ((char *)ep) + rp->b_read;
822		if (step_len && copy_to_user(buf, ptr, step_len)) {
823			mutex_unlock(&rp->fetch_lock);
824			return -EFAULT;
825		}
826		nbytes -= step_len;
827		buf += step_len;
828		rp->b_read += step_len;
829		done += step_len;
830	}
831
832	if (rp->b_read >= hdrbytes) {
833		step_len = ep->len_cap;
834		step_len -= rp->b_read - hdrbytes;
835		if (step_len > nbytes)
836			step_len = nbytes;
837		offset = rp->b_out + PKT_SIZE;
838		offset += rp->b_read - hdrbytes;
839		if (offset >= rp->b_size)
840			offset -= rp->b_size;
841		if (copy_from_buf(rp, offset, buf, step_len)) {
842			mutex_unlock(&rp->fetch_lock);
843			return -EFAULT;
844		}
845		nbytes -= step_len;
846		buf += step_len;
847		rp->b_read += step_len;
848		done += step_len;
849	}
850
851	/*
852	 * Check if whole packet was read, and if so, jump to the next one.
853	 */
854	if (rp->b_read >= hdrbytes + ep->len_cap) {
855		spin_lock_irqsave(&rp->b_lock, flags);
856		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
857		spin_unlock_irqrestore(&rp->b_lock, flags);
858		rp->b_read = 0;
859	}
860
861	mutex_unlock(&rp->fetch_lock);
862	return done;
863}
864
865/*
866 * Remove at most nevents from chunked buffer.
867 * Returns the number of removed events.
868 */
869static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
870{
871	unsigned long flags;
872	struct mon_bin_hdr *ep;
873	int i;
874
875	mutex_lock(&rp->fetch_lock);
876	spin_lock_irqsave(&rp->b_lock, flags);
877	for (i = 0; i < nevents; ++i) {
878		if (MON_RING_EMPTY(rp))
879			break;
880
881		ep = MON_OFF2HDR(rp, rp->b_out);
882		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
883	}
884	spin_unlock_irqrestore(&rp->b_lock, flags);
885	rp->b_read = 0;
886	mutex_unlock(&rp->fetch_lock);
887	return i;
888}
889
890/*
891 * Fetch at most max event offsets into the buffer and put them into vec.
892 * The events are usually freed later with mon_bin_flush.
893 * Return the effective number of events fetched.
894 */
895static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
896    u32 __user *vec, unsigned int max)
897{
898	unsigned int cur_out;
899	unsigned int bytes, avail;
900	unsigned int size;
901	unsigned int nevents;
902	struct mon_bin_hdr *ep;
903	unsigned long flags;
904	int rc;
905
906	mutex_lock(&rp->fetch_lock);
907
908	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
909		mutex_unlock(&rp->fetch_lock);
910		return rc;
911	}
912
913	spin_lock_irqsave(&rp->b_lock, flags);
914	avail = rp->b_cnt;
915	spin_unlock_irqrestore(&rp->b_lock, flags);
916
917	cur_out = rp->b_out;
918	nevents = 0;
919	bytes = 0;
920	while (bytes < avail) {
921		if (nevents >= max)
922			break;
923
924		ep = MON_OFF2HDR(rp, cur_out);
925		if (put_user(cur_out, &vec[nevents])) {
926			mutex_unlock(&rp->fetch_lock);
927			return -EFAULT;
928		}
929
930		nevents++;
931		size = ep->len_cap + PKT_SIZE;
932		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
933		if ((cur_out += size) >= rp->b_size)
934			cur_out -= rp->b_size;
935		bytes += size;
936	}
937
938	mutex_unlock(&rp->fetch_lock);
939	return nevents;
940}
941
942/*
943 * Count events. This is almost the same as the above mon_bin_fetch,
944 * only we do not store offsets into user vector, and we have no limit.
945 */
946static int mon_bin_queued(struct mon_reader_bin *rp)
947{
948	unsigned int cur_out;
949	unsigned int bytes, avail;
950	unsigned int size;
951	unsigned int nevents;
952	struct mon_bin_hdr *ep;
953	unsigned long flags;
954
955	mutex_lock(&rp->fetch_lock);
956
957	spin_lock_irqsave(&rp->b_lock, flags);
958	avail = rp->b_cnt;
959	spin_unlock_irqrestore(&rp->b_lock, flags);
960
961	cur_out = rp->b_out;
962	nevents = 0;
963	bytes = 0;
964	while (bytes < avail) {
965		ep = MON_OFF2HDR(rp, cur_out);
966
967		nevents++;
968		size = ep->len_cap + PKT_SIZE;
969		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
970		if ((cur_out += size) >= rp->b_size)
971			cur_out -= rp->b_size;
972		bytes += size;
973	}
974
975	mutex_unlock(&rp->fetch_lock);
976	return nevents;
977}
978
979/*
980 */
981static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
982{
983	struct mon_reader_bin *rp = file->private_data;
984	// struct mon_bus* mbus = rp->r.m_bus;
985	int ret = 0;
986	struct mon_bin_hdr *ep;
987	unsigned long flags;
988
989	switch (cmd) {
990
991	case MON_IOCQ_URB_LEN:
992		/*
993		 * N.B. This only returns the size of data, without the header.
994		 */
995		spin_lock_irqsave(&rp->b_lock, flags);
996		if (!MON_RING_EMPTY(rp)) {
997			ep = MON_OFF2HDR(rp, rp->b_out);
998			ret = ep->len_cap;
999		}
1000		spin_unlock_irqrestore(&rp->b_lock, flags);
1001		break;
1002
1003	case MON_IOCQ_RING_SIZE:
1004		ret = rp->b_size;
1005		break;
1006
1007	case MON_IOCT_RING_SIZE:
1008		/*
1009		 * Changing the buffer size will flush it's contents; the new
1010		 * buffer is allocated before releasing the old one to be sure
1011		 * the device will stay functional also in case of memory
1012		 * pressure.
1013		 */
1014		{
1015		int size;
1016		struct mon_pgmap *vec;
1017
1018		if (arg < BUFF_MIN || arg > BUFF_MAX)
1019			return -EINVAL;
1020
1021		size = CHUNK_ALIGN(arg);
1022		vec = kzalloc(sizeof(struct mon_pgmap) * (size / CHUNK_SIZE), GFP_KERNEL);
1023		if (vec == NULL) {
1024			ret = -ENOMEM;
1025			break;
1026		}
1027
1028		ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1029		if (ret < 0) {
1030			kfree(vec);
1031			break;
1032		}
1033
1034		mutex_lock(&rp->fetch_lock);
1035		spin_lock_irqsave(&rp->b_lock, flags);
1036		mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1037		kfree(rp->b_vec);
1038		rp->b_vec  = vec;
1039		rp->b_size = size;
1040		rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1041		rp->cnt_lost = 0;
1042		spin_unlock_irqrestore(&rp->b_lock, flags);
1043		mutex_unlock(&rp->fetch_lock);
1044		}
1045		break;
1046
1047	case MON_IOCH_MFLUSH:
1048		ret = mon_bin_flush(rp, arg);
1049		break;
1050
1051	case MON_IOCX_GET:
1052	case MON_IOCX_GETX:
1053		{
1054		struct mon_bin_get getb;
1055
1056		if (copy_from_user(&getb, (void __user *)arg,
1057					    sizeof(struct mon_bin_get)))
1058			return -EFAULT;
1059
1060		if (getb.alloc > 0x10000000)	/* Want to cast to u32 */
1061			return -EINVAL;
1062		ret = mon_bin_get_event(file, rp, getb.hdr,
1063		    (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1064		    getb.data, (unsigned int)getb.alloc);
1065		}
1066		break;
1067
1068	case MON_IOCX_MFETCH:
1069		{
1070		struct mon_bin_mfetch mfetch;
1071		struct mon_bin_mfetch __user *uptr;
1072
1073		uptr = (struct mon_bin_mfetch __user *)arg;
1074
1075		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1076			return -EFAULT;
1077
1078		if (mfetch.nflush) {
1079			ret = mon_bin_flush(rp, mfetch.nflush);
1080			if (ret < 0)
1081				return ret;
1082			if (put_user(ret, &uptr->nflush))
1083				return -EFAULT;
1084		}
1085		ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1086		if (ret < 0)
1087			return ret;
1088		if (put_user(ret, &uptr->nfetch))
1089			return -EFAULT;
1090		ret = 0;
1091		}
1092		break;
1093
1094	case MON_IOCG_STATS: {
1095		struct mon_bin_stats __user *sp;
1096		unsigned int nevents;
1097		unsigned int ndropped;
1098
1099		spin_lock_irqsave(&rp->b_lock, flags);
1100		ndropped = rp->cnt_lost;
1101		rp->cnt_lost = 0;
1102		spin_unlock_irqrestore(&rp->b_lock, flags);
1103		nevents = mon_bin_queued(rp);
1104
1105		sp = (struct mon_bin_stats __user *)arg;
1106		if (put_user(ndropped, &sp->dropped))
1107			return -EFAULT;
1108		if (put_user(nevents, &sp->queued))
1109			return -EFAULT;
1110
1111		}
1112		break;
1113
1114	default:
1115		return -ENOTTY;
1116	}
1117
1118	return ret;
1119}
1120
1121#ifdef CONFIG_COMPAT
1122static long mon_bin_compat_ioctl(struct file *file,
1123    unsigned int cmd, unsigned long arg)
1124{
1125	struct mon_reader_bin *rp = file->private_data;
1126	int ret;
1127
1128	switch (cmd) {
1129
1130	case MON_IOCX_GET32:
1131	case MON_IOCX_GETX32:
1132		{
1133		struct mon_bin_get32 getb;
1134
1135		if (copy_from_user(&getb, (void __user *)arg,
1136					    sizeof(struct mon_bin_get32)))
1137			return -EFAULT;
1138
1139		ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1140		    (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1141		    compat_ptr(getb.data32), getb.alloc32);
1142		if (ret < 0)
1143			return ret;
1144		}
1145		return 0;
1146
1147	case MON_IOCX_MFETCH32:
1148		{
1149		struct mon_bin_mfetch32 mfetch;
1150		struct mon_bin_mfetch32 __user *uptr;
1151
1152		uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1153
1154		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1155			return -EFAULT;
1156
1157		if (mfetch.nflush32) {
1158			ret = mon_bin_flush(rp, mfetch.nflush32);
1159			if (ret < 0)
1160				return ret;
1161			if (put_user(ret, &uptr->nflush32))
1162				return -EFAULT;
1163		}
1164		ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1165		    mfetch.nfetch32);
1166		if (ret < 0)
1167			return ret;
1168		if (put_user(ret, &uptr->nfetch32))
1169			return -EFAULT;
1170		}
1171		return 0;
1172
1173	case MON_IOCG_STATS:
1174		return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1175
1176	case MON_IOCQ_URB_LEN:
1177	case MON_IOCQ_RING_SIZE:
1178	case MON_IOCT_RING_SIZE:
1179	case MON_IOCH_MFLUSH:
1180		return mon_bin_ioctl(file, cmd, arg);
1181
1182	default:
1183		;
1184	}
1185	return -ENOTTY;
1186}
1187#endif /* CONFIG_COMPAT */
1188
1189static unsigned int
1190mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1191{
1192	struct mon_reader_bin *rp = file->private_data;
1193	unsigned int mask = 0;
1194	unsigned long flags;
1195
1196	if (file->f_mode & FMODE_READ)
1197		poll_wait(file, &rp->b_wait, wait);
1198
1199	spin_lock_irqsave(&rp->b_lock, flags);
1200	if (!MON_RING_EMPTY(rp))
1201		mask |= POLLIN | POLLRDNORM;    /* readable */
1202	spin_unlock_irqrestore(&rp->b_lock, flags);
1203	return mask;
1204}
1205
1206/*
1207 * open and close: just keep track of how many times the device is
1208 * mapped, to use the proper memory allocation function.
1209 */
1210static void mon_bin_vma_open(struct vm_area_struct *vma)
1211{
1212	struct mon_reader_bin *rp = vma->vm_private_data;
1213	rp->mmap_active++;
1214}
1215
1216static void mon_bin_vma_close(struct vm_area_struct *vma)
1217{
1218	struct mon_reader_bin *rp = vma->vm_private_data;
1219	rp->mmap_active--;
1220}
1221
1222/*
1223 * Map ring pages to user space.
1224 */
1225static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1226{
1227	struct mon_reader_bin *rp = vma->vm_private_data;
1228	unsigned long offset, chunk_idx;
1229	struct page *pageptr;
1230
1231	offset = vmf->pgoff << PAGE_SHIFT;
1232	if (offset >= rp->b_size)
1233		return VM_FAULT_SIGBUS;
1234	chunk_idx = offset / CHUNK_SIZE;
1235	pageptr = rp->b_vec[chunk_idx].pg;
1236	get_page(pageptr);
1237	vmf->page = pageptr;
1238	return 0;
1239}
1240
1241static const struct vm_operations_struct mon_bin_vm_ops = {
1242	.open =     mon_bin_vma_open,
1243	.close =    mon_bin_vma_close,
1244	.fault =    mon_bin_vma_fault,
1245};
1246
1247static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1248{
1249	/* don't do anything here: "fault" will set up page table entries */
1250	vma->vm_ops = &mon_bin_vm_ops;
1251	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1252	vma->vm_private_data = filp->private_data;
1253	mon_bin_vma_open(vma);
1254	return 0;
1255}
1256
1257static const struct file_operations mon_fops_binary = {
1258	.owner =	THIS_MODULE,
1259	.open =		mon_bin_open,
1260	.llseek =	no_llseek,
1261	.read =		mon_bin_read,
1262	/* .write =	mon_text_write, */
1263	.poll =		mon_bin_poll,
1264	.unlocked_ioctl = mon_bin_ioctl,
1265#ifdef CONFIG_COMPAT
1266	.compat_ioctl =	mon_bin_compat_ioctl,
1267#endif
1268	.release =	mon_bin_release,
1269	.mmap =		mon_bin_mmap,
1270};
1271
1272static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1273{
1274	DECLARE_WAITQUEUE(waita, current);
1275	unsigned long flags;
1276
1277	add_wait_queue(&rp->b_wait, &waita);
1278	set_current_state(TASK_INTERRUPTIBLE);
1279
1280	spin_lock_irqsave(&rp->b_lock, flags);
1281	while (MON_RING_EMPTY(rp)) {
1282		spin_unlock_irqrestore(&rp->b_lock, flags);
1283
1284		if (file->f_flags & O_NONBLOCK) {
1285			set_current_state(TASK_RUNNING);
1286			remove_wait_queue(&rp->b_wait, &waita);
1287			return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1288		}
1289		schedule();
1290		if (signal_pending(current)) {
1291			remove_wait_queue(&rp->b_wait, &waita);
1292			return -EINTR;
1293		}
1294		set_current_state(TASK_INTERRUPTIBLE);
1295
1296		spin_lock_irqsave(&rp->b_lock, flags);
1297	}
1298	spin_unlock_irqrestore(&rp->b_lock, flags);
1299
1300	set_current_state(TASK_RUNNING);
1301	remove_wait_queue(&rp->b_wait, &waita);
1302	return 0;
1303}
1304
1305static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1306{
1307	int n;
1308	unsigned long vaddr;
1309
1310	for (n = 0; n < npages; n++) {
1311		vaddr = get_zeroed_page(GFP_KERNEL);
1312		if (vaddr == 0) {
1313			while (n-- != 0)
1314				free_page((unsigned long) map[n].ptr);
1315			return -ENOMEM;
1316		}
1317		map[n].ptr = (unsigned char *) vaddr;
1318		map[n].pg = virt_to_page((void *) vaddr);
1319	}
1320	return 0;
1321}
1322
1323static void mon_free_buff(struct mon_pgmap *map, int npages)
1324{
1325	int n;
1326
1327	for (n = 0; n < npages; n++)
1328		free_page((unsigned long) map[n].ptr);
1329}
1330
1331int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1332{
1333	struct device *dev;
1334	unsigned minor = ubus? ubus->busnum: 0;
1335
1336	if (minor >= MON_BIN_MAX_MINOR)
1337		return 0;
1338
1339	dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1340			    MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1341			    "usbmon%d", minor);
1342	if (IS_ERR(dev))
1343		return 0;
1344
1345	mbus->classdev = dev;
1346	return 1;
1347}
1348
1349void mon_bin_del(struct mon_bus *mbus)
1350{
1351	device_destroy(mon_bin_class, mbus->classdev->devt);
1352}
1353
1354int __init mon_bin_init(void)
1355{
1356	int rc;
1357
1358	mon_bin_class = class_create(THIS_MODULE, "usbmon");
1359	if (IS_ERR(mon_bin_class)) {
1360		rc = PTR_ERR(mon_bin_class);
1361		goto err_class;
1362	}
1363
1364	rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1365	if (rc < 0)
1366		goto err_dev;
1367
1368	cdev_init(&mon_bin_cdev, &mon_fops_binary);
1369	mon_bin_cdev.owner = THIS_MODULE;
1370
1371	rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1372	if (rc < 0)
1373		goto err_add;
1374
1375	return 0;
1376
1377err_add:
1378	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1379err_dev:
1380	class_destroy(mon_bin_class);
1381err_class:
1382	return rc;
1383}
1384
1385void mon_bin_exit(void)
1386{
1387	cdev_del(&mon_bin_cdev);
1388	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1389	class_destroy(mon_bin_class);
1390}
1391