1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37 
38 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
39 
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk;
42 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
44 
45 static unsigned int quirks;
46 module_param(quirks, uint, S_IRUGO);
47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
48 
49 /* TODO: copied from ehci-hcd.c - can this be refactored? */
50 /*
51  * xhci_handshake - spin reading hc until handshake completes or fails
52  * @ptr: address of hc register to be read
53  * @mask: bits to look at in result of read
54  * @done: value of those bits when handshake succeeds
55  * @usec: timeout in microseconds
56  *
57  * Returns negative errno, or zero on success
58  *
59  * Success happens when the "mask" bits have the specified value (hardware
60  * handshake done).  There are two failure modes:  "usec" have passed (major
61  * hardware flakeout), or the register reads as all-ones (hardware removed).
62  */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,int usec)63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
64 {
65 	u32	result;
66 
67 	do {
68 		result = readl(ptr);
69 		if (result == ~(u32)0)		/* card removed */
70 			return -ENODEV;
71 		result &= mask;
72 		if (result == done)
73 			return 0;
74 		udelay(1);
75 		usec--;
76 	} while (usec > 0);
77 	return -ETIMEDOUT;
78 }
79 
80 /*
81  * Disable interrupts and begin the xHCI halting process.
82  */
xhci_quiesce(struct xhci_hcd * xhci)83 void xhci_quiesce(struct xhci_hcd *xhci)
84 {
85 	u32 halted;
86 	u32 cmd;
87 	u32 mask;
88 
89 	mask = ~(XHCI_IRQS);
90 	halted = readl(&xhci->op_regs->status) & STS_HALT;
91 	if (!halted)
92 		mask &= ~CMD_RUN;
93 
94 	cmd = readl(&xhci->op_regs->command);
95 	cmd &= mask;
96 	writel(cmd, &xhci->op_regs->command);
97 }
98 
99 /*
100  * Force HC into halt state.
101  *
102  * Disable any IRQs and clear the run/stop bit.
103  * HC will complete any current and actively pipelined transactions, and
104  * should halt within 16 ms of the run/stop bit being cleared.
105  * Read HC Halted bit in the status register to see when the HC is finished.
106  */
xhci_halt(struct xhci_hcd * xhci)107 int xhci_halt(struct xhci_hcd *xhci)
108 {
109 	int ret;
110 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
111 	xhci_quiesce(xhci);
112 
113 	ret = xhci_handshake(&xhci->op_regs->status,
114 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
115 	if (!ret) {
116 		xhci->xhc_state |= XHCI_STATE_HALTED;
117 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
118 	} else
119 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
120 				XHCI_MAX_HALT_USEC);
121 	return ret;
122 }
123 
124 /*
125  * Set the run bit and wait for the host to be running.
126  */
xhci_start(struct xhci_hcd * xhci)127 static int xhci_start(struct xhci_hcd *xhci)
128 {
129 	u32 temp;
130 	int ret;
131 
132 	temp = readl(&xhci->op_regs->command);
133 	temp |= (CMD_RUN);
134 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
135 			temp);
136 	writel(temp, &xhci->op_regs->command);
137 
138 	/*
139 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
140 	 * running.
141 	 */
142 	ret = xhci_handshake(&xhci->op_regs->status,
143 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
144 	if (ret == -ETIMEDOUT)
145 		xhci_err(xhci, "Host took too long to start, "
146 				"waited %u microseconds.\n",
147 				XHCI_MAX_HALT_USEC);
148 	if (!ret)
149 		/* clear state flags. Including dying, halted or removing */
150 		xhci->xhc_state = 0;
151 
152 	return ret;
153 }
154 
155 /*
156  * Reset a halted HC.
157  *
158  * This resets pipelines, timers, counters, state machines, etc.
159  * Transactions will be terminated immediately, and operational registers
160  * will be set to their defaults.
161  */
xhci_reset(struct xhci_hcd * xhci)162 int xhci_reset(struct xhci_hcd *xhci)
163 {
164 	u32 command;
165 	u32 state;
166 	int ret, i;
167 
168 	state = readl(&xhci->op_regs->status);
169 	if ((state & STS_HALT) == 0) {
170 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
171 		return 0;
172 	}
173 
174 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
175 	command = readl(&xhci->op_regs->command);
176 	command |= CMD_RESET;
177 	writel(command, &xhci->op_regs->command);
178 
179 	/* Existing Intel xHCI controllers require a delay of 1 mS,
180 	 * after setting the CMD_RESET bit, and before accessing any
181 	 * HC registers. This allows the HC to complete the
182 	 * reset operation and be ready for HC register access.
183 	 * Without this delay, the subsequent HC register access,
184 	 * may result in a system hang very rarely.
185 	 */
186 	if (xhci->quirks & XHCI_INTEL_HOST)
187 		udelay(1000);
188 
189 	ret = xhci_handshake(&xhci->op_regs->command,
190 			CMD_RESET, 0, 10 * 1000 * 1000);
191 	if (ret)
192 		return ret;
193 
194 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195 			 "Wait for controller to be ready for doorbell rings");
196 	/*
197 	 * xHCI cannot write to any doorbells or operational registers other
198 	 * than status until the "Controller Not Ready" flag is cleared.
199 	 */
200 	ret = xhci_handshake(&xhci->op_regs->status,
201 			STS_CNR, 0, 10 * 1000 * 1000);
202 
203 	for (i = 0; i < 2; ++i) {
204 		xhci->bus_state[i].port_c_suspend = 0;
205 		xhci->bus_state[i].suspended_ports = 0;
206 		xhci->bus_state[i].resuming_ports = 0;
207 	}
208 
209 	return ret;
210 }
211 
212 #ifdef CONFIG_PCI
xhci_free_msi(struct xhci_hcd * xhci)213 static int xhci_free_msi(struct xhci_hcd *xhci)
214 {
215 	int i;
216 
217 	if (!xhci->msix_entries)
218 		return -EINVAL;
219 
220 	for (i = 0; i < xhci->msix_count; i++)
221 		if (xhci->msix_entries[i].vector)
222 			free_irq(xhci->msix_entries[i].vector,
223 					xhci_to_hcd(xhci));
224 	return 0;
225 }
226 
227 /*
228  * Set up MSI
229  */
xhci_setup_msi(struct xhci_hcd * xhci)230 static int xhci_setup_msi(struct xhci_hcd *xhci)
231 {
232 	int ret;
233 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
234 
235 	ret = pci_enable_msi(pdev);
236 	if (ret) {
237 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238 				"failed to allocate MSI entry");
239 		return ret;
240 	}
241 
242 	ret = request_irq(pdev->irq, xhci_msi_irq,
243 				0, "xhci_hcd", xhci_to_hcd(xhci));
244 	if (ret) {
245 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
246 				"disable MSI interrupt");
247 		pci_disable_msi(pdev);
248 	}
249 
250 	return ret;
251 }
252 
253 /*
254  * Free IRQs
255  * free all IRQs request
256  */
xhci_free_irq(struct xhci_hcd * xhci)257 static void xhci_free_irq(struct xhci_hcd *xhci)
258 {
259 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
260 	int ret;
261 
262 	/* return if using legacy interrupt */
263 	if (xhci_to_hcd(xhci)->irq > 0)
264 		return;
265 
266 	ret = xhci_free_msi(xhci);
267 	if (!ret)
268 		return;
269 	if (pdev->irq > 0)
270 		free_irq(pdev->irq, xhci_to_hcd(xhci));
271 
272 	return;
273 }
274 
275 /*
276  * Set up MSI-X
277  */
xhci_setup_msix(struct xhci_hcd * xhci)278 static int xhci_setup_msix(struct xhci_hcd *xhci)
279 {
280 	int i, ret = 0;
281 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
282 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
283 
284 	/*
285 	 * calculate number of msi-x vectors supported.
286 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
287 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
288 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
289 	 *   Add additional 1 vector to ensure always available interrupt.
290 	 */
291 	xhci->msix_count = min(num_online_cpus() + 1,
292 				HCS_MAX_INTRS(xhci->hcs_params1));
293 
294 	xhci->msix_entries =
295 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
296 				GFP_KERNEL);
297 	if (!xhci->msix_entries) {
298 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
299 		return -ENOMEM;
300 	}
301 
302 	for (i = 0; i < xhci->msix_count; i++) {
303 		xhci->msix_entries[i].entry = i;
304 		xhci->msix_entries[i].vector = 0;
305 	}
306 
307 	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
308 	if (ret) {
309 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310 				"Failed to enable MSI-X");
311 		goto free_entries;
312 	}
313 
314 	for (i = 0; i < xhci->msix_count; i++) {
315 		ret = request_irq(xhci->msix_entries[i].vector,
316 				xhci_msi_irq,
317 				0, "xhci_hcd", xhci_to_hcd(xhci));
318 		if (ret)
319 			goto disable_msix;
320 	}
321 
322 	hcd->msix_enabled = 1;
323 	return ret;
324 
325 disable_msix:
326 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
327 	xhci_free_irq(xhci);
328 	pci_disable_msix(pdev);
329 free_entries:
330 	kfree(xhci->msix_entries);
331 	xhci->msix_entries = NULL;
332 	return ret;
333 }
334 
335 /* Free any IRQs and disable MSI-X */
xhci_cleanup_msix(struct xhci_hcd * xhci)336 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
337 {
338 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
339 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
340 
341 	if (xhci->quirks & XHCI_PLAT)
342 		return;
343 
344 	xhci_free_irq(xhci);
345 
346 	if (xhci->msix_entries) {
347 		pci_disable_msix(pdev);
348 		kfree(xhci->msix_entries);
349 		xhci->msix_entries = NULL;
350 	} else {
351 		pci_disable_msi(pdev);
352 	}
353 
354 	hcd->msix_enabled = 0;
355 	return;
356 }
357 
xhci_msix_sync_irqs(struct xhci_hcd * xhci)358 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
359 {
360 	int i;
361 
362 	if (xhci->msix_entries) {
363 		for (i = 0; i < xhci->msix_count; i++)
364 			synchronize_irq(xhci->msix_entries[i].vector);
365 	}
366 }
367 
xhci_try_enable_msi(struct usb_hcd * hcd)368 static int xhci_try_enable_msi(struct usb_hcd *hcd)
369 {
370 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
371 	struct pci_dev  *pdev;
372 	int ret;
373 
374 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
375 	if (xhci->quirks & XHCI_PLAT)
376 		return 0;
377 
378 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
379 	/*
380 	 * Some Fresco Logic host controllers advertise MSI, but fail to
381 	 * generate interrupts.  Don't even try to enable MSI.
382 	 */
383 	if (xhci->quirks & XHCI_BROKEN_MSI)
384 		goto legacy_irq;
385 
386 	/* unregister the legacy interrupt */
387 	if (hcd->irq)
388 		free_irq(hcd->irq, hcd);
389 	hcd->irq = 0;
390 
391 	ret = xhci_setup_msix(xhci);
392 	if (ret)
393 		/* fall back to msi*/
394 		ret = xhci_setup_msi(xhci);
395 
396 	if (!ret)
397 		/* hcd->irq is 0, we have MSI */
398 		return 0;
399 
400 	if (!pdev->irq) {
401 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
402 		return -EINVAL;
403 	}
404 
405  legacy_irq:
406 	if (!strlen(hcd->irq_descr))
407 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
408 			 hcd->driver->description, hcd->self.busnum);
409 
410 	/* fall back to legacy interrupt*/
411 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
412 			hcd->irq_descr, hcd);
413 	if (ret) {
414 		xhci_err(xhci, "request interrupt %d failed\n",
415 				pdev->irq);
416 		return ret;
417 	}
418 	hcd->irq = pdev->irq;
419 	return 0;
420 }
421 
422 #else
423 
xhci_try_enable_msi(struct usb_hcd * hcd)424 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
425 {
426 	return 0;
427 }
428 
xhci_cleanup_msix(struct xhci_hcd * xhci)429 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
430 {
431 }
432 
xhci_msix_sync_irqs(struct xhci_hcd * xhci)433 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
434 {
435 }
436 
437 #endif
438 
compliance_mode_recovery(unsigned long arg)439 static void compliance_mode_recovery(unsigned long arg)
440 {
441 	struct xhci_hcd *xhci;
442 	struct usb_hcd *hcd;
443 	u32 temp;
444 	int i;
445 
446 	xhci = (struct xhci_hcd *)arg;
447 
448 	for (i = 0; i < xhci->num_usb3_ports; i++) {
449 		temp = readl(xhci->usb3_ports[i]);
450 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
451 			/*
452 			 * Compliance Mode Detected. Letting USB Core
453 			 * handle the Warm Reset
454 			 */
455 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
456 					"Compliance mode detected->port %d",
457 					i + 1);
458 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
459 					"Attempting compliance mode recovery");
460 			hcd = xhci->shared_hcd;
461 
462 			if (hcd->state == HC_STATE_SUSPENDED)
463 				usb_hcd_resume_root_hub(hcd);
464 
465 			usb_hcd_poll_rh_status(hcd);
466 		}
467 	}
468 
469 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
470 		mod_timer(&xhci->comp_mode_recovery_timer,
471 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 }
473 
474 /*
475  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
476  * that causes ports behind that hardware to enter compliance mode sometimes.
477  * The quirk creates a timer that polls every 2 seconds the link state of
478  * each host controller's port and recovers it by issuing a Warm reset
479  * if Compliance mode is detected, otherwise the port will become "dead" (no
480  * device connections or disconnections will be detected anymore). Becasue no
481  * status event is generated when entering compliance mode (per xhci spec),
482  * this quirk is needed on systems that have the failing hardware installed.
483  */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)484 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
485 {
486 	xhci->port_status_u0 = 0;
487 	setup_timer(&xhci->comp_mode_recovery_timer,
488 		    compliance_mode_recovery, (unsigned long)xhci);
489 	xhci->comp_mode_recovery_timer.expires = jiffies +
490 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
491 
492 	set_timer_slack(&xhci->comp_mode_recovery_timer,
493 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
494 	add_timer(&xhci->comp_mode_recovery_timer);
495 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496 			"Compliance mode recovery timer initialized");
497 }
498 
499 /*
500  * This function identifies the systems that have installed the SN65LVPE502CP
501  * USB3.0 re-driver and that need the Compliance Mode Quirk.
502  * Systems:
503  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
504  */
xhci_compliance_mode_recovery_timer_quirk_check(void)505 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
506 {
507 	const char *dmi_product_name, *dmi_sys_vendor;
508 
509 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
510 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
511 	if (!dmi_product_name || !dmi_sys_vendor)
512 		return false;
513 
514 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
515 		return false;
516 
517 	if (strstr(dmi_product_name, "Z420") ||
518 			strstr(dmi_product_name, "Z620") ||
519 			strstr(dmi_product_name, "Z820") ||
520 			strstr(dmi_product_name, "Z1 Workstation"))
521 		return true;
522 
523 	return false;
524 }
525 
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)526 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
527 {
528 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
529 }
530 
531 
532 /*
533  * Initialize memory for HCD and xHC (one-time init).
534  *
535  * Program the PAGESIZE register, initialize the device context array, create
536  * device contexts (?), set up a command ring segment (or two?), create event
537  * ring (one for now).
538  */
xhci_init(struct usb_hcd * hcd)539 int xhci_init(struct usb_hcd *hcd)
540 {
541 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
542 	int retval = 0;
543 
544 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
545 	spin_lock_init(&xhci->lock);
546 	if (xhci->hci_version == 0x95 && link_quirk) {
547 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
548 				"QUIRK: Not clearing Link TRB chain bits.");
549 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
550 	} else {
551 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552 				"xHCI doesn't need link TRB QUIRK");
553 	}
554 	retval = xhci_mem_init(xhci, GFP_KERNEL);
555 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
556 
557 	/* Initializing Compliance Mode Recovery Data If Needed */
558 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
559 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
560 		compliance_mode_recovery_timer_init(xhci);
561 	}
562 
563 	return retval;
564 }
565 
566 /*-------------------------------------------------------------------------*/
567 
568 
xhci_run_finished(struct xhci_hcd * xhci)569 static int xhci_run_finished(struct xhci_hcd *xhci)
570 {
571 	if (xhci_start(xhci)) {
572 		xhci_halt(xhci);
573 		return -ENODEV;
574 	}
575 	xhci->shared_hcd->state = HC_STATE_RUNNING;
576 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
577 
578 	if (xhci->quirks & XHCI_NEC_HOST)
579 		xhci_ring_cmd_db(xhci);
580 
581 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
582 			"Finished xhci_run for USB3 roothub");
583 	return 0;
584 }
585 
586 /*
587  * Start the HC after it was halted.
588  *
589  * This function is called by the USB core when the HC driver is added.
590  * Its opposite is xhci_stop().
591  *
592  * xhci_init() must be called once before this function can be called.
593  * Reset the HC, enable device slot contexts, program DCBAAP, and
594  * set command ring pointer and event ring pointer.
595  *
596  * Setup MSI-X vectors and enable interrupts.
597  */
xhci_run(struct usb_hcd * hcd)598 int xhci_run(struct usb_hcd *hcd)
599 {
600 	u32 temp;
601 	u64 temp_64;
602 	int ret;
603 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
604 
605 	/* Start the xHCI host controller running only after the USB 2.0 roothub
606 	 * is setup.
607 	 */
608 
609 	hcd->uses_new_polling = 1;
610 	if (!usb_hcd_is_primary_hcd(hcd))
611 		return xhci_run_finished(xhci);
612 
613 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
614 
615 	ret = xhci_try_enable_msi(hcd);
616 	if (ret)
617 		return ret;
618 
619 	xhci_dbg(xhci, "Command ring memory map follows:\n");
620 	xhci_debug_ring(xhci, xhci->cmd_ring);
621 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
622 	xhci_dbg_cmd_ptrs(xhci);
623 
624 	xhci_dbg(xhci, "ERST memory map follows:\n");
625 	xhci_dbg_erst(xhci, &xhci->erst);
626 	xhci_dbg(xhci, "Event ring:\n");
627 	xhci_debug_ring(xhci, xhci->event_ring);
628 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
629 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
630 	temp_64 &= ~ERST_PTR_MASK;
631 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
633 
634 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635 			"// Set the interrupt modulation register");
636 	temp = readl(&xhci->ir_set->irq_control);
637 	temp &= ~ER_IRQ_INTERVAL_MASK;
638 	temp |= (u32) 160;
639 	writel(temp, &xhci->ir_set->irq_control);
640 
641 	/* Set the HCD state before we enable the irqs */
642 	temp = readl(&xhci->op_regs->command);
643 	temp |= (CMD_EIE);
644 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
645 			"// Enable interrupts, cmd = 0x%x.", temp);
646 	writel(temp, &xhci->op_regs->command);
647 
648 	temp = readl(&xhci->ir_set->irq_pending);
649 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
650 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
651 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
652 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
653 	xhci_print_ir_set(xhci, 0);
654 
655 	if (xhci->quirks & XHCI_NEC_HOST) {
656 		struct xhci_command *command;
657 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
658 		if (!command)
659 			return -ENOMEM;
660 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
661 				TRB_TYPE(TRB_NEC_GET_FW));
662 	}
663 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664 			"Finished xhci_run for USB2 roothub");
665 	return 0;
666 }
667 EXPORT_SYMBOL_GPL(xhci_run);
668 
669 /*
670  * Stop xHCI driver.
671  *
672  * This function is called by the USB core when the HC driver is removed.
673  * Its opposite is xhci_run().
674  *
675  * Disable device contexts, disable IRQs, and quiesce the HC.
676  * Reset the HC, finish any completed transactions, and cleanup memory.
677  */
xhci_stop(struct usb_hcd * hcd)678 void xhci_stop(struct usb_hcd *hcd)
679 {
680 	u32 temp;
681 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
682 
683 	if (xhci->xhc_state & XHCI_STATE_HALTED)
684 		return;
685 
686 	mutex_lock(&xhci->mutex);
687 	spin_lock_irq(&xhci->lock);
688 	xhci->xhc_state |= XHCI_STATE_HALTED;
689 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
690 
691 	/* Make sure the xHC is halted for a USB3 roothub
692 	 * (xhci_stop() could be called as part of failed init).
693 	 */
694 	xhci_halt(xhci);
695 	xhci_reset(xhci);
696 	spin_unlock_irq(&xhci->lock);
697 
698 	xhci_cleanup_msix(xhci);
699 
700 	/* Deleting Compliance Mode Recovery Timer */
701 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
702 			(!(xhci_all_ports_seen_u0(xhci)))) {
703 		del_timer_sync(&xhci->comp_mode_recovery_timer);
704 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
705 				"%s: compliance mode recovery timer deleted",
706 				__func__);
707 	}
708 
709 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
710 		usb_amd_dev_put();
711 
712 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
713 			"// Disabling event ring interrupts");
714 	temp = readl(&xhci->op_regs->status);
715 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
716 	temp = readl(&xhci->ir_set->irq_pending);
717 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
718 	xhci_print_ir_set(xhci, 0);
719 
720 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
721 	xhci_mem_cleanup(xhci);
722 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
723 			"xhci_stop completed - status = %x",
724 			readl(&xhci->op_regs->status));
725 	mutex_unlock(&xhci->mutex);
726 }
727 
728 /*
729  * Shutdown HC (not bus-specific)
730  *
731  * This is called when the machine is rebooting or halting.  We assume that the
732  * machine will be powered off, and the HC's internal state will be reset.
733  * Don't bother to free memory.
734  *
735  * This will only ever be called with the main usb_hcd (the USB3 roothub).
736  */
xhci_shutdown(struct usb_hcd * hcd)737 void xhci_shutdown(struct usb_hcd *hcd)
738 {
739 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
740 
741 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
742 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
743 
744 	spin_lock_irq(&xhci->lock);
745 	xhci_halt(xhci);
746 	/* Workaround for spurious wakeups at shutdown with HSW */
747 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
748 		xhci_reset(xhci);
749 	spin_unlock_irq(&xhci->lock);
750 
751 	xhci_cleanup_msix(xhci);
752 
753 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
754 			"xhci_shutdown completed - status = %x",
755 			readl(&xhci->op_regs->status));
756 
757 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
758 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
759 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
760 }
761 
762 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)763 static void xhci_save_registers(struct xhci_hcd *xhci)
764 {
765 	xhci->s3.command = readl(&xhci->op_regs->command);
766 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
767 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
768 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
769 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
770 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
771 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
772 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
773 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
774 }
775 
xhci_restore_registers(struct xhci_hcd * xhci)776 static void xhci_restore_registers(struct xhci_hcd *xhci)
777 {
778 	writel(xhci->s3.command, &xhci->op_regs->command);
779 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
780 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
781 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
782 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
783 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
784 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
785 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
786 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
787 }
788 
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)789 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
790 {
791 	u64	val_64;
792 
793 	/* step 2: initialize command ring buffer */
794 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
795 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
796 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
797 				      xhci->cmd_ring->dequeue) &
798 		 (u64) ~CMD_RING_RSVD_BITS) |
799 		xhci->cmd_ring->cycle_state;
800 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
801 			"// Setting command ring address to 0x%llx",
802 			(long unsigned long) val_64);
803 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
804 }
805 
806 /*
807  * The whole command ring must be cleared to zero when we suspend the host.
808  *
809  * The host doesn't save the command ring pointer in the suspend well, so we
810  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
811  * aligned, because of the reserved bits in the command ring dequeue pointer
812  * register.  Therefore, we can't just set the dequeue pointer back in the
813  * middle of the ring (TRBs are 16-byte aligned).
814  */
xhci_clear_command_ring(struct xhci_hcd * xhci)815 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
816 {
817 	struct xhci_ring *ring;
818 	struct xhci_segment *seg;
819 
820 	ring = xhci->cmd_ring;
821 	seg = ring->deq_seg;
822 	do {
823 		memset(seg->trbs, 0,
824 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
825 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
826 			cpu_to_le32(~TRB_CYCLE);
827 		seg = seg->next;
828 	} while (seg != ring->deq_seg);
829 
830 	/* Reset the software enqueue and dequeue pointers */
831 	ring->deq_seg = ring->first_seg;
832 	ring->dequeue = ring->first_seg->trbs;
833 	ring->enq_seg = ring->deq_seg;
834 	ring->enqueue = ring->dequeue;
835 
836 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
837 	/*
838 	 * Ring is now zeroed, so the HW should look for change of ownership
839 	 * when the cycle bit is set to 1.
840 	 */
841 	ring->cycle_state = 1;
842 
843 	/*
844 	 * Reset the hardware dequeue pointer.
845 	 * Yes, this will need to be re-written after resume, but we're paranoid
846 	 * and want to make sure the hardware doesn't access bogus memory
847 	 * because, say, the BIOS or an SMI started the host without changing
848 	 * the command ring pointers.
849 	 */
850 	xhci_set_cmd_ring_deq(xhci);
851 }
852 
xhci_disable_port_wake_on_bits(struct xhci_hcd * xhci)853 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
854 {
855 	int port_index;
856 	__le32 __iomem **port_array;
857 	unsigned long flags;
858 	u32 t1, t2;
859 
860 	spin_lock_irqsave(&xhci->lock, flags);
861 
862 	/* disble usb3 ports Wake bits*/
863 	port_index = xhci->num_usb3_ports;
864 	port_array = xhci->usb3_ports;
865 	while (port_index--) {
866 		t1 = readl(port_array[port_index]);
867 		t1 = xhci_port_state_to_neutral(t1);
868 		t2 = t1 & ~PORT_WAKE_BITS;
869 		if (t1 != t2)
870 			writel(t2, port_array[port_index]);
871 	}
872 
873 	/* disble usb2 ports Wake bits*/
874 	port_index = xhci->num_usb2_ports;
875 	port_array = xhci->usb2_ports;
876 	while (port_index--) {
877 		t1 = readl(port_array[port_index]);
878 		t1 = xhci_port_state_to_neutral(t1);
879 		t2 = t1 & ~PORT_WAKE_BITS;
880 		if (t1 != t2)
881 			writel(t2, port_array[port_index]);
882 	}
883 
884 	spin_unlock_irqrestore(&xhci->lock, flags);
885 }
886 
887 /*
888  * Stop HC (not bus-specific)
889  *
890  * This is called when the machine transition into S3/S4 mode.
891  *
892  */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)893 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
894 {
895 	int			rc = 0;
896 	unsigned int		delay = XHCI_MAX_HALT_USEC;
897 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
898 	u32			command;
899 
900 	if (!hcd->state)
901 		return 0;
902 
903 	if (hcd->state != HC_STATE_SUSPENDED ||
904 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
905 		return -EINVAL;
906 
907 	/* Clear root port wake on bits if wakeup not allowed. */
908 	if (!do_wakeup)
909 		xhci_disable_port_wake_on_bits(xhci);
910 
911 	/* Don't poll the roothubs on bus suspend. */
912 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
913 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
914 	del_timer_sync(&hcd->rh_timer);
915 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
916 	del_timer_sync(&xhci->shared_hcd->rh_timer);
917 
918 	spin_lock_irq(&xhci->lock);
919 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
920 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
921 	/* step 1: stop endpoint */
922 	/* skipped assuming that port suspend has done */
923 
924 	/* step 2: clear Run/Stop bit */
925 	command = readl(&xhci->op_regs->command);
926 	command &= ~CMD_RUN;
927 	writel(command, &xhci->op_regs->command);
928 
929 	/* Some chips from Fresco Logic need an extraordinary delay */
930 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
931 
932 	if (xhci_handshake(&xhci->op_regs->status,
933 		      STS_HALT, STS_HALT, delay)) {
934 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
935 		spin_unlock_irq(&xhci->lock);
936 		return -ETIMEDOUT;
937 	}
938 	xhci_clear_command_ring(xhci);
939 
940 	/* step 3: save registers */
941 	xhci_save_registers(xhci);
942 
943 	/* step 4: set CSS flag */
944 	command = readl(&xhci->op_regs->command);
945 	command |= CMD_CSS;
946 	writel(command, &xhci->op_regs->command);
947 	if (xhci_handshake(&xhci->op_regs->status,
948 				STS_SAVE, 0, 10 * 1000)) {
949 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
950 		spin_unlock_irq(&xhci->lock);
951 		return -ETIMEDOUT;
952 	}
953 	spin_unlock_irq(&xhci->lock);
954 
955 	/*
956 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
957 	 * is about to be suspended.
958 	 */
959 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
960 			(!(xhci_all_ports_seen_u0(xhci)))) {
961 		del_timer_sync(&xhci->comp_mode_recovery_timer);
962 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
963 				"%s: compliance mode recovery timer deleted",
964 				__func__);
965 	}
966 
967 	/* step 5: remove core well power */
968 	/* synchronize irq when using MSI-X */
969 	xhci_msix_sync_irqs(xhci);
970 
971 	return rc;
972 }
973 EXPORT_SYMBOL_GPL(xhci_suspend);
974 
975 /*
976  * start xHC (not bus-specific)
977  *
978  * This is called when the machine transition from S3/S4 mode.
979  *
980  */
xhci_resume(struct xhci_hcd * xhci,bool hibernated)981 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
982 {
983 	u32			command, temp = 0, status;
984 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
985 	struct usb_hcd		*secondary_hcd;
986 	int			retval = 0;
987 	bool			comp_timer_running = false;
988 
989 	if (!hcd->state)
990 		return 0;
991 
992 	/* Wait a bit if either of the roothubs need to settle from the
993 	 * transition into bus suspend.
994 	 */
995 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
996 			time_before(jiffies,
997 				xhci->bus_state[1].next_statechange))
998 		msleep(100);
999 
1000 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1001 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1002 
1003 	spin_lock_irq(&xhci->lock);
1004 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1005 		hibernated = true;
1006 
1007 	if (!hibernated) {
1008 		/* step 1: restore register */
1009 		xhci_restore_registers(xhci);
1010 		/* step 2: initialize command ring buffer */
1011 		xhci_set_cmd_ring_deq(xhci);
1012 		/* step 3: restore state and start state*/
1013 		/* step 3: set CRS flag */
1014 		command = readl(&xhci->op_regs->command);
1015 		command |= CMD_CRS;
1016 		writel(command, &xhci->op_regs->command);
1017 		if (xhci_handshake(&xhci->op_regs->status,
1018 			      STS_RESTORE, 0, 10 * 1000)) {
1019 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1020 			spin_unlock_irq(&xhci->lock);
1021 			return -ETIMEDOUT;
1022 		}
1023 		temp = readl(&xhci->op_regs->status);
1024 	}
1025 
1026 	/* If restore operation fails, re-initialize the HC during resume */
1027 	if ((temp & STS_SRE) || hibernated) {
1028 
1029 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1030 				!(xhci_all_ports_seen_u0(xhci))) {
1031 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1032 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1033 				"Compliance Mode Recovery Timer deleted!");
1034 		}
1035 
1036 		/* Let the USB core know _both_ roothubs lost power. */
1037 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1038 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1039 
1040 		xhci_dbg(xhci, "Stop HCD\n");
1041 		xhci_halt(xhci);
1042 		xhci_reset(xhci);
1043 		spin_unlock_irq(&xhci->lock);
1044 		xhci_cleanup_msix(xhci);
1045 
1046 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1047 		temp = readl(&xhci->op_regs->status);
1048 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1049 		temp = readl(&xhci->ir_set->irq_pending);
1050 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1051 		xhci_print_ir_set(xhci, 0);
1052 
1053 		xhci_dbg(xhci, "cleaning up memory\n");
1054 		xhci_mem_cleanup(xhci);
1055 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1056 			    readl(&xhci->op_regs->status));
1057 
1058 		/* USB core calls the PCI reinit and start functions twice:
1059 		 * first with the primary HCD, and then with the secondary HCD.
1060 		 * If we don't do the same, the host will never be started.
1061 		 */
1062 		if (!usb_hcd_is_primary_hcd(hcd))
1063 			secondary_hcd = hcd;
1064 		else
1065 			secondary_hcd = xhci->shared_hcd;
1066 
1067 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1068 		retval = xhci_init(hcd->primary_hcd);
1069 		if (retval)
1070 			return retval;
1071 		comp_timer_running = true;
1072 
1073 		xhci_dbg(xhci, "Start the primary HCD\n");
1074 		retval = xhci_run(hcd->primary_hcd);
1075 		if (!retval) {
1076 			xhci_dbg(xhci, "Start the secondary HCD\n");
1077 			retval = xhci_run(secondary_hcd);
1078 		}
1079 		hcd->state = HC_STATE_SUSPENDED;
1080 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1081 		goto done;
1082 	}
1083 
1084 	/* step 4: set Run/Stop bit */
1085 	command = readl(&xhci->op_regs->command);
1086 	command |= CMD_RUN;
1087 	writel(command, &xhci->op_regs->command);
1088 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1089 		  0, 250 * 1000);
1090 
1091 	/* step 5: walk topology and initialize portsc,
1092 	 * portpmsc and portli
1093 	 */
1094 	/* this is done in bus_resume */
1095 
1096 	/* step 6: restart each of the previously
1097 	 * Running endpoints by ringing their doorbells
1098 	 */
1099 
1100 	spin_unlock_irq(&xhci->lock);
1101 
1102  done:
1103 	if (retval == 0) {
1104 		/* Resume root hubs only when have pending events. */
1105 		status = readl(&xhci->op_regs->status);
1106 		if (status & STS_EINT) {
1107 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1108 			usb_hcd_resume_root_hub(hcd);
1109 		}
1110 	}
1111 
1112 	/*
1113 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1114 	 * be re-initialized Always after a system resume. Ports are subject
1115 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1116 	 * ports have entered previously to U0 before system's suspension.
1117 	 */
1118 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1119 		compliance_mode_recovery_timer_init(xhci);
1120 
1121 	/* Re-enable port polling. */
1122 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1123 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1124 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1125 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1126 	usb_hcd_poll_rh_status(hcd);
1127 
1128 	return retval;
1129 }
1130 EXPORT_SYMBOL_GPL(xhci_resume);
1131 #endif	/* CONFIG_PM */
1132 
1133 /*-------------------------------------------------------------------------*/
1134 
1135 /**
1136  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1137  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1138  * value to right shift 1 for the bitmask.
1139  *
1140  * Index  = (epnum * 2) + direction - 1,
1141  * where direction = 0 for OUT, 1 for IN.
1142  * For control endpoints, the IN index is used (OUT index is unused), so
1143  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1144  */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1145 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1146 {
1147 	unsigned int index;
1148 	if (usb_endpoint_xfer_control(desc))
1149 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1150 	else
1151 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1152 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1153 	return index;
1154 }
1155 
1156 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1157  * address from the XHCI endpoint index.
1158  */
xhci_get_endpoint_address(unsigned int ep_index)1159 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1160 {
1161 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1162 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1163 	return direction | number;
1164 }
1165 
1166 /* Find the flag for this endpoint (for use in the control context).  Use the
1167  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1168  * bit 1, etc.
1169  */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1170 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1171 {
1172 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1173 }
1174 
1175 /* Find the flag for this endpoint (for use in the control context).  Use the
1176  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1177  * bit 1, etc.
1178  */
xhci_get_endpoint_flag_from_index(unsigned int ep_index)1179 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1180 {
1181 	return 1 << (ep_index + 1);
1182 }
1183 
1184 /* Compute the last valid endpoint context index.  Basically, this is the
1185  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1186  * we find the most significant bit set in the added contexts flags.
1187  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1188  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1189  */
xhci_last_valid_endpoint(u32 added_ctxs)1190 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1191 {
1192 	return fls(added_ctxs) - 1;
1193 }
1194 
1195 /* Returns 1 if the arguments are OK;
1196  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1197  */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1198 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1199 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1200 		const char *func) {
1201 	struct xhci_hcd	*xhci;
1202 	struct xhci_virt_device	*virt_dev;
1203 
1204 	if (!hcd || (check_ep && !ep) || !udev) {
1205 		pr_debug("xHCI %s called with invalid args\n", func);
1206 		return -EINVAL;
1207 	}
1208 	if (!udev->parent) {
1209 		pr_debug("xHCI %s called for root hub\n", func);
1210 		return 0;
1211 	}
1212 
1213 	xhci = hcd_to_xhci(hcd);
1214 	if (check_virt_dev) {
1215 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1216 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1217 					func);
1218 			return -EINVAL;
1219 		}
1220 
1221 		virt_dev = xhci->devs[udev->slot_id];
1222 		if (virt_dev->udev != udev) {
1223 			xhci_dbg(xhci, "xHCI %s called with udev and "
1224 					  "virt_dev does not match\n", func);
1225 			return -EINVAL;
1226 		}
1227 	}
1228 
1229 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1230 		return -ENODEV;
1231 
1232 	return 1;
1233 }
1234 
1235 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1236 		struct usb_device *udev, struct xhci_command *command,
1237 		bool ctx_change, bool must_succeed);
1238 
1239 /*
1240  * Full speed devices may have a max packet size greater than 8 bytes, but the
1241  * USB core doesn't know that until it reads the first 8 bytes of the
1242  * descriptor.  If the usb_device's max packet size changes after that point,
1243  * we need to issue an evaluate context command and wait on it.
1244  */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb)1245 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1246 		unsigned int ep_index, struct urb *urb)
1247 {
1248 	struct xhci_container_ctx *out_ctx;
1249 	struct xhci_input_control_ctx *ctrl_ctx;
1250 	struct xhci_ep_ctx *ep_ctx;
1251 	struct xhci_command *command;
1252 	int max_packet_size;
1253 	int hw_max_packet_size;
1254 	int ret = 0;
1255 
1256 	out_ctx = xhci->devs[slot_id]->out_ctx;
1257 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1258 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1259 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1260 	if (hw_max_packet_size != max_packet_size) {
1261 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1262 				"Max Packet Size for ep 0 changed.");
1263 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1264 				"Max packet size in usb_device = %d",
1265 				max_packet_size);
1266 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1267 				"Max packet size in xHCI HW = %d",
1268 				hw_max_packet_size);
1269 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1270 				"Issuing evaluate context command.");
1271 
1272 		/* Set up the input context flags for the command */
1273 		/* FIXME: This won't work if a non-default control endpoint
1274 		 * changes max packet sizes.
1275 		 */
1276 
1277 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1278 		if (!command)
1279 			return -ENOMEM;
1280 
1281 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1282 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1283 		if (!ctrl_ctx) {
1284 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1285 					__func__);
1286 			ret = -ENOMEM;
1287 			goto command_cleanup;
1288 		}
1289 		/* Set up the modified control endpoint 0 */
1290 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1291 				xhci->devs[slot_id]->out_ctx, ep_index);
1292 
1293 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1294 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1295 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1296 
1297 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1298 		ctrl_ctx->drop_flags = 0;
1299 
1300 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1301 		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1302 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1303 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1304 
1305 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1306 				true, false);
1307 
1308 		/* Clean up the input context for later use by bandwidth
1309 		 * functions.
1310 		 */
1311 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1312 command_cleanup:
1313 		kfree(command->completion);
1314 		kfree(command);
1315 	}
1316 	return ret;
1317 }
1318 
1319 /*
1320  * non-error returns are a promise to giveback() the urb later
1321  * we drop ownership so next owner (or urb unlink) can get it
1322  */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1323 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1324 {
1325 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1326 	struct xhci_td *buffer;
1327 	unsigned long flags;
1328 	int ret = 0;
1329 	unsigned int slot_id, ep_index;
1330 	struct urb_priv	*urb_priv;
1331 	int size, i;
1332 
1333 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1334 					true, true, __func__) <= 0)
1335 		return -EINVAL;
1336 
1337 	slot_id = urb->dev->slot_id;
1338 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1339 
1340 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1341 		if (!in_interrupt())
1342 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1343 		ret = -ESHUTDOWN;
1344 		goto exit;
1345 	}
1346 
1347 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1348 		size = urb->number_of_packets;
1349 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1350 	    urb->transfer_buffer_length > 0 &&
1351 	    urb->transfer_flags & URB_ZERO_PACKET &&
1352 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1353 		size = 2;
1354 	else
1355 		size = 1;
1356 
1357 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1358 				  size * sizeof(struct xhci_td *), mem_flags);
1359 	if (!urb_priv)
1360 		return -ENOMEM;
1361 
1362 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1363 	if (!buffer) {
1364 		kfree(urb_priv);
1365 		return -ENOMEM;
1366 	}
1367 
1368 	for (i = 0; i < size; i++) {
1369 		urb_priv->td[i] = buffer;
1370 		buffer++;
1371 	}
1372 
1373 	urb_priv->length = size;
1374 	urb_priv->td_cnt = 0;
1375 	urb->hcpriv = urb_priv;
1376 
1377 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1378 		/* Check to see if the max packet size for the default control
1379 		 * endpoint changed during FS device enumeration
1380 		 */
1381 		if (urb->dev->speed == USB_SPEED_FULL) {
1382 			ret = xhci_check_maxpacket(xhci, slot_id,
1383 					ep_index, urb);
1384 			if (ret < 0) {
1385 				xhci_urb_free_priv(urb_priv);
1386 				urb->hcpriv = NULL;
1387 				return ret;
1388 			}
1389 		}
1390 
1391 		/* We have a spinlock and interrupts disabled, so we must pass
1392 		 * atomic context to this function, which may allocate memory.
1393 		 */
1394 		spin_lock_irqsave(&xhci->lock, flags);
1395 		if (xhci->xhc_state & XHCI_STATE_DYING)
1396 			goto dying;
1397 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1398 				slot_id, ep_index);
1399 		if (ret)
1400 			goto free_priv;
1401 		spin_unlock_irqrestore(&xhci->lock, flags);
1402 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1403 		spin_lock_irqsave(&xhci->lock, flags);
1404 		if (xhci->xhc_state & XHCI_STATE_DYING)
1405 			goto dying;
1406 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1407 				EP_GETTING_STREAMS) {
1408 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1409 					"is transitioning to using streams.\n");
1410 			ret = -EINVAL;
1411 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1412 				EP_GETTING_NO_STREAMS) {
1413 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1414 					"is transitioning to "
1415 					"not having streams.\n");
1416 			ret = -EINVAL;
1417 		} else {
1418 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1419 					slot_id, ep_index);
1420 		}
1421 		if (ret)
1422 			goto free_priv;
1423 		spin_unlock_irqrestore(&xhci->lock, flags);
1424 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1425 		spin_lock_irqsave(&xhci->lock, flags);
1426 		if (xhci->xhc_state & XHCI_STATE_DYING)
1427 			goto dying;
1428 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1429 				slot_id, ep_index);
1430 		if (ret)
1431 			goto free_priv;
1432 		spin_unlock_irqrestore(&xhci->lock, flags);
1433 	} else {
1434 		spin_lock_irqsave(&xhci->lock, flags);
1435 		if (xhci->xhc_state & XHCI_STATE_DYING)
1436 			goto dying;
1437 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1438 				slot_id, ep_index);
1439 		if (ret)
1440 			goto free_priv;
1441 		spin_unlock_irqrestore(&xhci->lock, flags);
1442 	}
1443 exit:
1444 	return ret;
1445 dying:
1446 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1447 			"non-responsive xHCI host.\n",
1448 			urb->ep->desc.bEndpointAddress, urb);
1449 	ret = -ESHUTDOWN;
1450 free_priv:
1451 	xhci_urb_free_priv(urb_priv);
1452 	urb->hcpriv = NULL;
1453 	spin_unlock_irqrestore(&xhci->lock, flags);
1454 	return ret;
1455 }
1456 
1457 /* Get the right ring for the given URB.
1458  * If the endpoint supports streams, boundary check the URB's stream ID.
1459  * If the endpoint doesn't support streams, return the singular endpoint ring.
1460  */
xhci_urb_to_transfer_ring(struct xhci_hcd * xhci,struct urb * urb)1461 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1462 		struct urb *urb)
1463 {
1464 	unsigned int slot_id;
1465 	unsigned int ep_index;
1466 	unsigned int stream_id;
1467 	struct xhci_virt_ep *ep;
1468 
1469 	slot_id = urb->dev->slot_id;
1470 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1471 	stream_id = urb->stream_id;
1472 	ep = &xhci->devs[slot_id]->eps[ep_index];
1473 	/* Common case: no streams */
1474 	if (!(ep->ep_state & EP_HAS_STREAMS))
1475 		return ep->ring;
1476 
1477 	if (stream_id == 0) {
1478 		xhci_warn(xhci,
1479 				"WARN: Slot ID %u, ep index %u has streams, "
1480 				"but URB has no stream ID.\n",
1481 				slot_id, ep_index);
1482 		return NULL;
1483 	}
1484 
1485 	if (stream_id < ep->stream_info->num_streams)
1486 		return ep->stream_info->stream_rings[stream_id];
1487 
1488 	xhci_warn(xhci,
1489 			"WARN: Slot ID %u, ep index %u has "
1490 			"stream IDs 1 to %u allocated, "
1491 			"but stream ID %u is requested.\n",
1492 			slot_id, ep_index,
1493 			ep->stream_info->num_streams - 1,
1494 			stream_id);
1495 	return NULL;
1496 }
1497 
1498 /*
1499  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1500  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1501  * should pick up where it left off in the TD, unless a Set Transfer Ring
1502  * Dequeue Pointer is issued.
1503  *
1504  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1505  * the ring.  Since the ring is a contiguous structure, they can't be physically
1506  * removed.  Instead, there are two options:
1507  *
1508  *  1) If the HC is in the middle of processing the URB to be canceled, we
1509  *     simply move the ring's dequeue pointer past those TRBs using the Set
1510  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1511  *     when drivers timeout on the last submitted URB and attempt to cancel.
1512  *
1513  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1514  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1515  *     HC will need to invalidate the any TRBs it has cached after the stop
1516  *     endpoint command, as noted in the xHCI 0.95 errata.
1517  *
1518  *  3) The TD may have completed by the time the Stop Endpoint Command
1519  *     completes, so software needs to handle that case too.
1520  *
1521  * This function should protect against the TD enqueueing code ringing the
1522  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1523  * It also needs to account for multiple cancellations on happening at the same
1524  * time for the same endpoint.
1525  *
1526  * Note that this function can be called in any context, or so says
1527  * usb_hcd_unlink_urb()
1528  */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1529 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1530 {
1531 	unsigned long flags;
1532 	int ret, i;
1533 	u32 temp;
1534 	struct xhci_hcd *xhci;
1535 	struct urb_priv	*urb_priv;
1536 	struct xhci_td *td;
1537 	unsigned int ep_index;
1538 	struct xhci_ring *ep_ring;
1539 	struct xhci_virt_ep *ep;
1540 	struct xhci_command *command;
1541 
1542 	xhci = hcd_to_xhci(hcd);
1543 	spin_lock_irqsave(&xhci->lock, flags);
1544 	/* Make sure the URB hasn't completed or been unlinked already */
1545 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1546 	if (ret || !urb->hcpriv)
1547 		goto done;
1548 	temp = readl(&xhci->op_regs->status);
1549 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1550 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1551 				"HW died, freeing TD.");
1552 		urb_priv = urb->hcpriv;
1553 		for (i = urb_priv->td_cnt;
1554 		     i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1555 		     i++) {
1556 			td = urb_priv->td[i];
1557 			if (!list_empty(&td->td_list))
1558 				list_del_init(&td->td_list);
1559 			if (!list_empty(&td->cancelled_td_list))
1560 				list_del_init(&td->cancelled_td_list);
1561 		}
1562 
1563 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1564 		spin_unlock_irqrestore(&xhci->lock, flags);
1565 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1566 		xhci_urb_free_priv(urb_priv);
1567 		return ret;
1568 	}
1569 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1570 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1571 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1572 				"Ep 0x%x: URB %p to be canceled on "
1573 				"non-responsive xHCI host.",
1574 				urb->ep->desc.bEndpointAddress, urb);
1575 		/* Let the stop endpoint command watchdog timer (which set this
1576 		 * state) finish cleaning up the endpoint TD lists.  We must
1577 		 * have caught it in the middle of dropping a lock and giving
1578 		 * back an URB.
1579 		 */
1580 		goto done;
1581 	}
1582 
1583 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1584 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1585 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1586 	if (!ep_ring) {
1587 		ret = -EINVAL;
1588 		goto done;
1589 	}
1590 
1591 	urb_priv = urb->hcpriv;
1592 	i = urb_priv->td_cnt;
1593 	if (i < urb_priv->length)
1594 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1595 				"Cancel URB %p, dev %s, ep 0x%x, "
1596 				"starting at offset 0x%llx",
1597 				urb, urb->dev->devpath,
1598 				urb->ep->desc.bEndpointAddress,
1599 				(unsigned long long) xhci_trb_virt_to_dma(
1600 					urb_priv->td[i]->start_seg,
1601 					urb_priv->td[i]->first_trb));
1602 
1603 	for (; i < urb_priv->length; i++) {
1604 		td = urb_priv->td[i];
1605 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1606 	}
1607 
1608 	/* Queue a stop endpoint command, but only if this is
1609 	 * the first cancellation to be handled.
1610 	 */
1611 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1612 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1613 		if (!command) {
1614 			ret = -ENOMEM;
1615 			goto done;
1616 		}
1617 		ep->ep_state |= EP_HALT_PENDING;
1618 		ep->stop_cmds_pending++;
1619 		ep->stop_cmd_timer.expires = jiffies +
1620 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1621 		add_timer(&ep->stop_cmd_timer);
1622 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1623 					 ep_index, 0);
1624 		xhci_ring_cmd_db(xhci);
1625 	}
1626 done:
1627 	spin_unlock_irqrestore(&xhci->lock, flags);
1628 	return ret;
1629 }
1630 
1631 /* Drop an endpoint from a new bandwidth configuration for this device.
1632  * Only one call to this function is allowed per endpoint before
1633  * check_bandwidth() or reset_bandwidth() must be called.
1634  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1635  * add the endpoint to the schedule with possibly new parameters denoted by a
1636  * different endpoint descriptor in usb_host_endpoint.
1637  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1638  * not allowed.
1639  *
1640  * The USB core will not allow URBs to be queued to an endpoint that is being
1641  * disabled, so there's no need for mutual exclusion to protect
1642  * the xhci->devs[slot_id] structure.
1643  */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1644 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1645 		struct usb_host_endpoint *ep)
1646 {
1647 	struct xhci_hcd *xhci;
1648 	struct xhci_container_ctx *in_ctx, *out_ctx;
1649 	struct xhci_input_control_ctx *ctrl_ctx;
1650 	unsigned int ep_index;
1651 	struct xhci_ep_ctx *ep_ctx;
1652 	u32 drop_flag;
1653 	u32 new_add_flags, new_drop_flags;
1654 	int ret;
1655 
1656 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1657 	if (ret <= 0)
1658 		return ret;
1659 	xhci = hcd_to_xhci(hcd);
1660 	if (xhci->xhc_state & XHCI_STATE_DYING)
1661 		return -ENODEV;
1662 
1663 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1664 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1665 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1666 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1667 				__func__, drop_flag);
1668 		return 0;
1669 	}
1670 
1671 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1672 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1673 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1674 	if (!ctrl_ctx) {
1675 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1676 				__func__);
1677 		return 0;
1678 	}
1679 
1680 	ep_index = xhci_get_endpoint_index(&ep->desc);
1681 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1682 	/* If the HC already knows the endpoint is disabled,
1683 	 * or the HCD has noted it is disabled, ignore this request
1684 	 */
1685 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1686 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1687 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1688 	    xhci_get_endpoint_flag(&ep->desc)) {
1689 		/* Do not warn when called after a usb_device_reset */
1690 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1691 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1692 				  __func__, ep);
1693 		return 0;
1694 	}
1695 
1696 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1697 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1698 
1699 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1700 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1701 
1702 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1703 
1704 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1705 			(unsigned int) ep->desc.bEndpointAddress,
1706 			udev->slot_id,
1707 			(unsigned int) new_drop_flags,
1708 			(unsigned int) new_add_flags);
1709 	return 0;
1710 }
1711 
1712 /* Add an endpoint to a new possible bandwidth configuration for this device.
1713  * Only one call to this function is allowed per endpoint before
1714  * check_bandwidth() or reset_bandwidth() must be called.
1715  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1716  * add the endpoint to the schedule with possibly new parameters denoted by a
1717  * different endpoint descriptor in usb_host_endpoint.
1718  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1719  * not allowed.
1720  *
1721  * The USB core will not allow URBs to be queued to an endpoint until the
1722  * configuration or alt setting is installed in the device, so there's no need
1723  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1724  */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1725 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1726 		struct usb_host_endpoint *ep)
1727 {
1728 	struct xhci_hcd *xhci;
1729 	struct xhci_container_ctx *in_ctx;
1730 	unsigned int ep_index;
1731 	struct xhci_input_control_ctx *ctrl_ctx;
1732 	u32 added_ctxs;
1733 	u32 new_add_flags, new_drop_flags;
1734 	struct xhci_virt_device *virt_dev;
1735 	int ret = 0;
1736 
1737 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1738 	if (ret <= 0) {
1739 		/* So we won't queue a reset ep command for a root hub */
1740 		ep->hcpriv = NULL;
1741 		return ret;
1742 	}
1743 	xhci = hcd_to_xhci(hcd);
1744 	if (xhci->xhc_state & XHCI_STATE_DYING)
1745 		return -ENODEV;
1746 
1747 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1748 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1749 		/* FIXME when we have to issue an evaluate endpoint command to
1750 		 * deal with ep0 max packet size changing once we get the
1751 		 * descriptors
1752 		 */
1753 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1754 				__func__, added_ctxs);
1755 		return 0;
1756 	}
1757 
1758 	virt_dev = xhci->devs[udev->slot_id];
1759 	in_ctx = virt_dev->in_ctx;
1760 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1761 	if (!ctrl_ctx) {
1762 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1763 				__func__);
1764 		return 0;
1765 	}
1766 
1767 	ep_index = xhci_get_endpoint_index(&ep->desc);
1768 	/* If this endpoint is already in use, and the upper layers are trying
1769 	 * to add it again without dropping it, reject the addition.
1770 	 */
1771 	if (virt_dev->eps[ep_index].ring &&
1772 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1773 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1774 				"without dropping it.\n",
1775 				(unsigned int) ep->desc.bEndpointAddress);
1776 		return -EINVAL;
1777 	}
1778 
1779 	/* If the HCD has already noted the endpoint is enabled,
1780 	 * ignore this request.
1781 	 */
1782 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1783 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1784 				__func__, ep);
1785 		return 0;
1786 	}
1787 
1788 	/*
1789 	 * Configuration and alternate setting changes must be done in
1790 	 * process context, not interrupt context (or so documenation
1791 	 * for usb_set_interface() and usb_set_configuration() claim).
1792 	 */
1793 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1794 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1795 				__func__, ep->desc.bEndpointAddress);
1796 		return -ENOMEM;
1797 	}
1798 
1799 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1800 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1801 
1802 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1803 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1804 	 * this re-adds a new state for the endpoint from the new endpoint
1805 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1806 	 * drop flags alone.
1807 	 */
1808 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1809 
1810 	/* Store the usb_device pointer for later use */
1811 	ep->hcpriv = udev;
1812 
1813 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1814 			(unsigned int) ep->desc.bEndpointAddress,
1815 			udev->slot_id,
1816 			(unsigned int) new_drop_flags,
1817 			(unsigned int) new_add_flags);
1818 	return 0;
1819 }
1820 
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1821 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1822 {
1823 	struct xhci_input_control_ctx *ctrl_ctx;
1824 	struct xhci_ep_ctx *ep_ctx;
1825 	struct xhci_slot_ctx *slot_ctx;
1826 	int i;
1827 
1828 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1829 	if (!ctrl_ctx) {
1830 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1831 				__func__);
1832 		return;
1833 	}
1834 
1835 	/* When a device's add flag and drop flag are zero, any subsequent
1836 	 * configure endpoint command will leave that endpoint's state
1837 	 * untouched.  Make sure we don't leave any old state in the input
1838 	 * endpoint contexts.
1839 	 */
1840 	ctrl_ctx->drop_flags = 0;
1841 	ctrl_ctx->add_flags = 0;
1842 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1843 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1844 	/* Endpoint 0 is always valid */
1845 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1846 	for (i = 1; i < 31; ++i) {
1847 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1848 		ep_ctx->ep_info = 0;
1849 		ep_ctx->ep_info2 = 0;
1850 		ep_ctx->deq = 0;
1851 		ep_ctx->tx_info = 0;
1852 	}
1853 }
1854 
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1855 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1856 		struct usb_device *udev, u32 *cmd_status)
1857 {
1858 	int ret;
1859 
1860 	switch (*cmd_status) {
1861 	case COMP_CMD_ABORT:
1862 	case COMP_CMD_STOP:
1863 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1864 		ret = -ETIME;
1865 		break;
1866 	case COMP_ENOMEM:
1867 		dev_warn(&udev->dev,
1868 			 "Not enough host controller resources for new device state.\n");
1869 		ret = -ENOMEM;
1870 		/* FIXME: can we allocate more resources for the HC? */
1871 		break;
1872 	case COMP_BW_ERR:
1873 	case COMP_2ND_BW_ERR:
1874 		dev_warn(&udev->dev,
1875 			 "Not enough bandwidth for new device state.\n");
1876 		ret = -ENOSPC;
1877 		/* FIXME: can we go back to the old state? */
1878 		break;
1879 	case COMP_TRB_ERR:
1880 		/* the HCD set up something wrong */
1881 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1882 				"add flag = 1, "
1883 				"and endpoint is not disabled.\n");
1884 		ret = -EINVAL;
1885 		break;
1886 	case COMP_DEV_ERR:
1887 		dev_warn(&udev->dev,
1888 			 "ERROR: Incompatible device for endpoint configure command.\n");
1889 		ret = -ENODEV;
1890 		break;
1891 	case COMP_SUCCESS:
1892 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1893 				"Successful Endpoint Configure command");
1894 		ret = 0;
1895 		break;
1896 	default:
1897 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1898 				*cmd_status);
1899 		ret = -EINVAL;
1900 		break;
1901 	}
1902 	return ret;
1903 }
1904 
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1905 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1906 		struct usb_device *udev, u32 *cmd_status)
1907 {
1908 	int ret;
1909 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1910 
1911 	switch (*cmd_status) {
1912 	case COMP_CMD_ABORT:
1913 	case COMP_CMD_STOP:
1914 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1915 		ret = -ETIME;
1916 		break;
1917 	case COMP_EINVAL:
1918 		dev_warn(&udev->dev,
1919 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1920 		ret = -EINVAL;
1921 		break;
1922 	case COMP_EBADSLT:
1923 		dev_warn(&udev->dev,
1924 			"WARN: slot not enabled for evaluate context command.\n");
1925 		ret = -EINVAL;
1926 		break;
1927 	case COMP_CTX_STATE:
1928 		dev_warn(&udev->dev,
1929 			"WARN: invalid context state for evaluate context command.\n");
1930 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1931 		ret = -EINVAL;
1932 		break;
1933 	case COMP_DEV_ERR:
1934 		dev_warn(&udev->dev,
1935 			"ERROR: Incompatible device for evaluate context command.\n");
1936 		ret = -ENODEV;
1937 		break;
1938 	case COMP_MEL_ERR:
1939 		/* Max Exit Latency too large error */
1940 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1941 		ret = -EINVAL;
1942 		break;
1943 	case COMP_SUCCESS:
1944 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1945 				"Successful evaluate context command");
1946 		ret = 0;
1947 		break;
1948 	default:
1949 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1950 			*cmd_status);
1951 		ret = -EINVAL;
1952 		break;
1953 	}
1954 	return ret;
1955 }
1956 
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)1957 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1958 		struct xhci_input_control_ctx *ctrl_ctx)
1959 {
1960 	u32 valid_add_flags;
1961 	u32 valid_drop_flags;
1962 
1963 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1964 	 * (bit 1).  The default control endpoint is added during the Address
1965 	 * Device command and is never removed until the slot is disabled.
1966 	 */
1967 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1968 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1969 
1970 	/* Use hweight32 to count the number of ones in the add flags, or
1971 	 * number of endpoints added.  Don't count endpoints that are changed
1972 	 * (both added and dropped).
1973 	 */
1974 	return hweight32(valid_add_flags) -
1975 		hweight32(valid_add_flags & valid_drop_flags);
1976 }
1977 
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)1978 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1979 		struct xhci_input_control_ctx *ctrl_ctx)
1980 {
1981 	u32 valid_add_flags;
1982 	u32 valid_drop_flags;
1983 
1984 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1985 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1986 
1987 	return hweight32(valid_drop_flags) -
1988 		hweight32(valid_add_flags & valid_drop_flags);
1989 }
1990 
1991 /*
1992  * We need to reserve the new number of endpoints before the configure endpoint
1993  * command completes.  We can't subtract the dropped endpoints from the number
1994  * of active endpoints until the command completes because we can oversubscribe
1995  * the host in this case:
1996  *
1997  *  - the first configure endpoint command drops more endpoints than it adds
1998  *  - a second configure endpoint command that adds more endpoints is queued
1999  *  - the first configure endpoint command fails, so the config is unchanged
2000  *  - the second command may succeed, even though there isn't enough resources
2001  *
2002  * Must be called with xhci->lock held.
2003  */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2004 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2005 		struct xhci_input_control_ctx *ctrl_ctx)
2006 {
2007 	u32 added_eps;
2008 
2009 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2010 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2011 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2012 				"Not enough ep ctxs: "
2013 				"%u active, need to add %u, limit is %u.",
2014 				xhci->num_active_eps, added_eps,
2015 				xhci->limit_active_eps);
2016 		return -ENOMEM;
2017 	}
2018 	xhci->num_active_eps += added_eps;
2019 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2020 			"Adding %u ep ctxs, %u now active.", added_eps,
2021 			xhci->num_active_eps);
2022 	return 0;
2023 }
2024 
2025 /*
2026  * The configure endpoint was failed by the xHC for some other reason, so we
2027  * need to revert the resources that failed configuration would have used.
2028  *
2029  * Must be called with xhci->lock held.
2030  */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2031 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2032 		struct xhci_input_control_ctx *ctrl_ctx)
2033 {
2034 	u32 num_failed_eps;
2035 
2036 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2037 	xhci->num_active_eps -= num_failed_eps;
2038 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2039 			"Removing %u failed ep ctxs, %u now active.",
2040 			num_failed_eps,
2041 			xhci->num_active_eps);
2042 }
2043 
2044 /*
2045  * Now that the command has completed, clean up the active endpoint count by
2046  * subtracting out the endpoints that were dropped (but not changed).
2047  *
2048  * Must be called with xhci->lock held.
2049  */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2050 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2051 		struct xhci_input_control_ctx *ctrl_ctx)
2052 {
2053 	u32 num_dropped_eps;
2054 
2055 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2056 	xhci->num_active_eps -= num_dropped_eps;
2057 	if (num_dropped_eps)
2058 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2059 				"Removing %u dropped ep ctxs, %u now active.",
2060 				num_dropped_eps,
2061 				xhci->num_active_eps);
2062 }
2063 
xhci_get_block_size(struct usb_device * udev)2064 static unsigned int xhci_get_block_size(struct usb_device *udev)
2065 {
2066 	switch (udev->speed) {
2067 	case USB_SPEED_LOW:
2068 	case USB_SPEED_FULL:
2069 		return FS_BLOCK;
2070 	case USB_SPEED_HIGH:
2071 		return HS_BLOCK;
2072 	case USB_SPEED_SUPER:
2073 		return SS_BLOCK;
2074 	case USB_SPEED_UNKNOWN:
2075 	case USB_SPEED_WIRELESS:
2076 	default:
2077 		/* Should never happen */
2078 		return 1;
2079 	}
2080 }
2081 
2082 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2083 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2084 {
2085 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2086 		return LS_OVERHEAD;
2087 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2088 		return FS_OVERHEAD;
2089 	return HS_OVERHEAD;
2090 }
2091 
2092 /* If we are changing a LS/FS device under a HS hub,
2093  * make sure (if we are activating a new TT) that the HS bus has enough
2094  * bandwidth for this new TT.
2095  */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2096 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2097 		struct xhci_virt_device *virt_dev,
2098 		int old_active_eps)
2099 {
2100 	struct xhci_interval_bw_table *bw_table;
2101 	struct xhci_tt_bw_info *tt_info;
2102 
2103 	/* Find the bandwidth table for the root port this TT is attached to. */
2104 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2105 	tt_info = virt_dev->tt_info;
2106 	/* If this TT already had active endpoints, the bandwidth for this TT
2107 	 * has already been added.  Removing all periodic endpoints (and thus
2108 	 * making the TT enactive) will only decrease the bandwidth used.
2109 	 */
2110 	if (old_active_eps)
2111 		return 0;
2112 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2113 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2114 			return -ENOMEM;
2115 		return 0;
2116 	}
2117 	/* Not sure why we would have no new active endpoints...
2118 	 *
2119 	 * Maybe because of an Evaluate Context change for a hub update or a
2120 	 * control endpoint 0 max packet size change?
2121 	 * FIXME: skip the bandwidth calculation in that case.
2122 	 */
2123 	return 0;
2124 }
2125 
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2126 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2127 		struct xhci_virt_device *virt_dev)
2128 {
2129 	unsigned int bw_reserved;
2130 
2131 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2132 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2133 		return -ENOMEM;
2134 
2135 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2136 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2137 		return -ENOMEM;
2138 
2139 	return 0;
2140 }
2141 
2142 /*
2143  * This algorithm is a very conservative estimate of the worst-case scheduling
2144  * scenario for any one interval.  The hardware dynamically schedules the
2145  * packets, so we can't tell which microframe could be the limiting factor in
2146  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2147  *
2148  * Obviously, we can't solve an NP complete problem to find the minimum worst
2149  * case scenario.  Instead, we come up with an estimate that is no less than
2150  * the worst case bandwidth used for any one microframe, but may be an
2151  * over-estimate.
2152  *
2153  * We walk the requirements for each endpoint by interval, starting with the
2154  * smallest interval, and place packets in the schedule where there is only one
2155  * possible way to schedule packets for that interval.  In order to simplify
2156  * this algorithm, we record the largest max packet size for each interval, and
2157  * assume all packets will be that size.
2158  *
2159  * For interval 0, we obviously must schedule all packets for each interval.
2160  * The bandwidth for interval 0 is just the amount of data to be transmitted
2161  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2162  * the number of packets).
2163  *
2164  * For interval 1, we have two possible microframes to schedule those packets
2165  * in.  For this algorithm, if we can schedule the same number of packets for
2166  * each possible scheduling opportunity (each microframe), we will do so.  The
2167  * remaining number of packets will be saved to be transmitted in the gaps in
2168  * the next interval's scheduling sequence.
2169  *
2170  * As we move those remaining packets to be scheduled with interval 2 packets,
2171  * we have to double the number of remaining packets to transmit.  This is
2172  * because the intervals are actually powers of 2, and we would be transmitting
2173  * the previous interval's packets twice in this interval.  We also have to be
2174  * sure that when we look at the largest max packet size for this interval, we
2175  * also look at the largest max packet size for the remaining packets and take
2176  * the greater of the two.
2177  *
2178  * The algorithm continues to evenly distribute packets in each scheduling
2179  * opportunity, and push the remaining packets out, until we get to the last
2180  * interval.  Then those packets and their associated overhead are just added
2181  * to the bandwidth used.
2182  */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2183 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2184 		struct xhci_virt_device *virt_dev,
2185 		int old_active_eps)
2186 {
2187 	unsigned int bw_reserved;
2188 	unsigned int max_bandwidth;
2189 	unsigned int bw_used;
2190 	unsigned int block_size;
2191 	struct xhci_interval_bw_table *bw_table;
2192 	unsigned int packet_size = 0;
2193 	unsigned int overhead = 0;
2194 	unsigned int packets_transmitted = 0;
2195 	unsigned int packets_remaining = 0;
2196 	unsigned int i;
2197 
2198 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2199 		return xhci_check_ss_bw(xhci, virt_dev);
2200 
2201 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2202 		max_bandwidth = HS_BW_LIMIT;
2203 		/* Convert percent of bus BW reserved to blocks reserved */
2204 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2205 	} else {
2206 		max_bandwidth = FS_BW_LIMIT;
2207 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2208 	}
2209 
2210 	bw_table = virt_dev->bw_table;
2211 	/* We need to translate the max packet size and max ESIT payloads into
2212 	 * the units the hardware uses.
2213 	 */
2214 	block_size = xhci_get_block_size(virt_dev->udev);
2215 
2216 	/* If we are manipulating a LS/FS device under a HS hub, double check
2217 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2218 	 */
2219 	if (virt_dev->tt_info) {
2220 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2221 				"Recalculating BW for rootport %u",
2222 				virt_dev->real_port);
2223 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2224 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2225 					"newly activated TT.\n");
2226 			return -ENOMEM;
2227 		}
2228 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2229 				"Recalculating BW for TT slot %u port %u",
2230 				virt_dev->tt_info->slot_id,
2231 				virt_dev->tt_info->ttport);
2232 	} else {
2233 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2234 				"Recalculating BW for rootport %u",
2235 				virt_dev->real_port);
2236 	}
2237 
2238 	/* Add in how much bandwidth will be used for interval zero, or the
2239 	 * rounded max ESIT payload + number of packets * largest overhead.
2240 	 */
2241 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2242 		bw_table->interval_bw[0].num_packets *
2243 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2244 
2245 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2246 		unsigned int bw_added;
2247 		unsigned int largest_mps;
2248 		unsigned int interval_overhead;
2249 
2250 		/*
2251 		 * How many packets could we transmit in this interval?
2252 		 * If packets didn't fit in the previous interval, we will need
2253 		 * to transmit that many packets twice within this interval.
2254 		 */
2255 		packets_remaining = 2 * packets_remaining +
2256 			bw_table->interval_bw[i].num_packets;
2257 
2258 		/* Find the largest max packet size of this or the previous
2259 		 * interval.
2260 		 */
2261 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2262 			largest_mps = 0;
2263 		else {
2264 			struct xhci_virt_ep *virt_ep;
2265 			struct list_head *ep_entry;
2266 
2267 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2268 			virt_ep = list_entry(ep_entry,
2269 					struct xhci_virt_ep, bw_endpoint_list);
2270 			/* Convert to blocks, rounding up */
2271 			largest_mps = DIV_ROUND_UP(
2272 					virt_ep->bw_info.max_packet_size,
2273 					block_size);
2274 		}
2275 		if (largest_mps > packet_size)
2276 			packet_size = largest_mps;
2277 
2278 		/* Use the larger overhead of this or the previous interval. */
2279 		interval_overhead = xhci_get_largest_overhead(
2280 				&bw_table->interval_bw[i]);
2281 		if (interval_overhead > overhead)
2282 			overhead = interval_overhead;
2283 
2284 		/* How many packets can we evenly distribute across
2285 		 * (1 << (i + 1)) possible scheduling opportunities?
2286 		 */
2287 		packets_transmitted = packets_remaining >> (i + 1);
2288 
2289 		/* Add in the bandwidth used for those scheduled packets */
2290 		bw_added = packets_transmitted * (overhead + packet_size);
2291 
2292 		/* How many packets do we have remaining to transmit? */
2293 		packets_remaining = packets_remaining % (1 << (i + 1));
2294 
2295 		/* What largest max packet size should those packets have? */
2296 		/* If we've transmitted all packets, don't carry over the
2297 		 * largest packet size.
2298 		 */
2299 		if (packets_remaining == 0) {
2300 			packet_size = 0;
2301 			overhead = 0;
2302 		} else if (packets_transmitted > 0) {
2303 			/* Otherwise if we do have remaining packets, and we've
2304 			 * scheduled some packets in this interval, take the
2305 			 * largest max packet size from endpoints with this
2306 			 * interval.
2307 			 */
2308 			packet_size = largest_mps;
2309 			overhead = interval_overhead;
2310 		}
2311 		/* Otherwise carry over packet_size and overhead from the last
2312 		 * time we had a remainder.
2313 		 */
2314 		bw_used += bw_added;
2315 		if (bw_used > max_bandwidth) {
2316 			xhci_warn(xhci, "Not enough bandwidth. "
2317 					"Proposed: %u, Max: %u\n",
2318 				bw_used, max_bandwidth);
2319 			return -ENOMEM;
2320 		}
2321 	}
2322 	/*
2323 	 * Ok, we know we have some packets left over after even-handedly
2324 	 * scheduling interval 15.  We don't know which microframes they will
2325 	 * fit into, so we over-schedule and say they will be scheduled every
2326 	 * microframe.
2327 	 */
2328 	if (packets_remaining > 0)
2329 		bw_used += overhead + packet_size;
2330 
2331 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2332 		unsigned int port_index = virt_dev->real_port - 1;
2333 
2334 		/* OK, we're manipulating a HS device attached to a
2335 		 * root port bandwidth domain.  Include the number of active TTs
2336 		 * in the bandwidth used.
2337 		 */
2338 		bw_used += TT_HS_OVERHEAD *
2339 			xhci->rh_bw[port_index].num_active_tts;
2340 	}
2341 
2342 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2343 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2344 		"Available: %u " "percent",
2345 		bw_used, max_bandwidth, bw_reserved,
2346 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2347 		max_bandwidth);
2348 
2349 	bw_used += bw_reserved;
2350 	if (bw_used > max_bandwidth) {
2351 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2352 				bw_used, max_bandwidth);
2353 		return -ENOMEM;
2354 	}
2355 
2356 	bw_table->bw_used = bw_used;
2357 	return 0;
2358 }
2359 
xhci_is_async_ep(unsigned int ep_type)2360 static bool xhci_is_async_ep(unsigned int ep_type)
2361 {
2362 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2363 					ep_type != ISOC_IN_EP &&
2364 					ep_type != INT_IN_EP);
2365 }
2366 
xhci_is_sync_in_ep(unsigned int ep_type)2367 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2368 {
2369 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2370 }
2371 
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2372 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2373 {
2374 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2375 
2376 	if (ep_bw->ep_interval == 0)
2377 		return SS_OVERHEAD_BURST +
2378 			(ep_bw->mult * ep_bw->num_packets *
2379 					(SS_OVERHEAD + mps));
2380 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2381 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2382 				1 << ep_bw->ep_interval);
2383 
2384 }
2385 
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2386 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2387 		struct xhci_bw_info *ep_bw,
2388 		struct xhci_interval_bw_table *bw_table,
2389 		struct usb_device *udev,
2390 		struct xhci_virt_ep *virt_ep,
2391 		struct xhci_tt_bw_info *tt_info)
2392 {
2393 	struct xhci_interval_bw	*interval_bw;
2394 	int normalized_interval;
2395 
2396 	if (xhci_is_async_ep(ep_bw->type))
2397 		return;
2398 
2399 	if (udev->speed == USB_SPEED_SUPER) {
2400 		if (xhci_is_sync_in_ep(ep_bw->type))
2401 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2402 				xhci_get_ss_bw_consumed(ep_bw);
2403 		else
2404 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2405 				xhci_get_ss_bw_consumed(ep_bw);
2406 		return;
2407 	}
2408 
2409 	/* SuperSpeed endpoints never get added to intervals in the table, so
2410 	 * this check is only valid for HS/FS/LS devices.
2411 	 */
2412 	if (list_empty(&virt_ep->bw_endpoint_list))
2413 		return;
2414 	/* For LS/FS devices, we need to translate the interval expressed in
2415 	 * microframes to frames.
2416 	 */
2417 	if (udev->speed == USB_SPEED_HIGH)
2418 		normalized_interval = ep_bw->ep_interval;
2419 	else
2420 		normalized_interval = ep_bw->ep_interval - 3;
2421 
2422 	if (normalized_interval == 0)
2423 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2424 	interval_bw = &bw_table->interval_bw[normalized_interval];
2425 	interval_bw->num_packets -= ep_bw->num_packets;
2426 	switch (udev->speed) {
2427 	case USB_SPEED_LOW:
2428 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2429 		break;
2430 	case USB_SPEED_FULL:
2431 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2432 		break;
2433 	case USB_SPEED_HIGH:
2434 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2435 		break;
2436 	case USB_SPEED_SUPER:
2437 	case USB_SPEED_UNKNOWN:
2438 	case USB_SPEED_WIRELESS:
2439 		/* Should never happen because only LS/FS/HS endpoints will get
2440 		 * added to the endpoint list.
2441 		 */
2442 		return;
2443 	}
2444 	if (tt_info)
2445 		tt_info->active_eps -= 1;
2446 	list_del_init(&virt_ep->bw_endpoint_list);
2447 }
2448 
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2449 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2450 		struct xhci_bw_info *ep_bw,
2451 		struct xhci_interval_bw_table *bw_table,
2452 		struct usb_device *udev,
2453 		struct xhci_virt_ep *virt_ep,
2454 		struct xhci_tt_bw_info *tt_info)
2455 {
2456 	struct xhci_interval_bw	*interval_bw;
2457 	struct xhci_virt_ep *smaller_ep;
2458 	int normalized_interval;
2459 
2460 	if (xhci_is_async_ep(ep_bw->type))
2461 		return;
2462 
2463 	if (udev->speed == USB_SPEED_SUPER) {
2464 		if (xhci_is_sync_in_ep(ep_bw->type))
2465 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2466 				xhci_get_ss_bw_consumed(ep_bw);
2467 		else
2468 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2469 				xhci_get_ss_bw_consumed(ep_bw);
2470 		return;
2471 	}
2472 
2473 	/* For LS/FS devices, we need to translate the interval expressed in
2474 	 * microframes to frames.
2475 	 */
2476 	if (udev->speed == USB_SPEED_HIGH)
2477 		normalized_interval = ep_bw->ep_interval;
2478 	else
2479 		normalized_interval = ep_bw->ep_interval - 3;
2480 
2481 	if (normalized_interval == 0)
2482 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2483 	interval_bw = &bw_table->interval_bw[normalized_interval];
2484 	interval_bw->num_packets += ep_bw->num_packets;
2485 	switch (udev->speed) {
2486 	case USB_SPEED_LOW:
2487 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2488 		break;
2489 	case USB_SPEED_FULL:
2490 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2491 		break;
2492 	case USB_SPEED_HIGH:
2493 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2494 		break;
2495 	case USB_SPEED_SUPER:
2496 	case USB_SPEED_UNKNOWN:
2497 	case USB_SPEED_WIRELESS:
2498 		/* Should never happen because only LS/FS/HS endpoints will get
2499 		 * added to the endpoint list.
2500 		 */
2501 		return;
2502 	}
2503 
2504 	if (tt_info)
2505 		tt_info->active_eps += 1;
2506 	/* Insert the endpoint into the list, largest max packet size first. */
2507 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2508 			bw_endpoint_list) {
2509 		if (ep_bw->max_packet_size >=
2510 				smaller_ep->bw_info.max_packet_size) {
2511 			/* Add the new ep before the smaller endpoint */
2512 			list_add_tail(&virt_ep->bw_endpoint_list,
2513 					&smaller_ep->bw_endpoint_list);
2514 			return;
2515 		}
2516 	}
2517 	/* Add the new endpoint at the end of the list. */
2518 	list_add_tail(&virt_ep->bw_endpoint_list,
2519 			&interval_bw->endpoints);
2520 }
2521 
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2522 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2523 		struct xhci_virt_device *virt_dev,
2524 		int old_active_eps)
2525 {
2526 	struct xhci_root_port_bw_info *rh_bw_info;
2527 	if (!virt_dev->tt_info)
2528 		return;
2529 
2530 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2531 	if (old_active_eps == 0 &&
2532 				virt_dev->tt_info->active_eps != 0) {
2533 		rh_bw_info->num_active_tts += 1;
2534 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2535 	} else if (old_active_eps != 0 &&
2536 				virt_dev->tt_info->active_eps == 0) {
2537 		rh_bw_info->num_active_tts -= 1;
2538 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2539 	}
2540 }
2541 
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2542 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2543 		struct xhci_virt_device *virt_dev,
2544 		struct xhci_container_ctx *in_ctx)
2545 {
2546 	struct xhci_bw_info ep_bw_info[31];
2547 	int i;
2548 	struct xhci_input_control_ctx *ctrl_ctx;
2549 	int old_active_eps = 0;
2550 
2551 	if (virt_dev->tt_info)
2552 		old_active_eps = virt_dev->tt_info->active_eps;
2553 
2554 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2555 	if (!ctrl_ctx) {
2556 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2557 				__func__);
2558 		return -ENOMEM;
2559 	}
2560 
2561 	for (i = 0; i < 31; i++) {
2562 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2563 			continue;
2564 
2565 		/* Make a copy of the BW info in case we need to revert this */
2566 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2567 				sizeof(ep_bw_info[i]));
2568 		/* Drop the endpoint from the interval table if the endpoint is
2569 		 * being dropped or changed.
2570 		 */
2571 		if (EP_IS_DROPPED(ctrl_ctx, i))
2572 			xhci_drop_ep_from_interval_table(xhci,
2573 					&virt_dev->eps[i].bw_info,
2574 					virt_dev->bw_table,
2575 					virt_dev->udev,
2576 					&virt_dev->eps[i],
2577 					virt_dev->tt_info);
2578 	}
2579 	/* Overwrite the information stored in the endpoints' bw_info */
2580 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2581 	for (i = 0; i < 31; i++) {
2582 		/* Add any changed or added endpoints to the interval table */
2583 		if (EP_IS_ADDED(ctrl_ctx, i))
2584 			xhci_add_ep_to_interval_table(xhci,
2585 					&virt_dev->eps[i].bw_info,
2586 					virt_dev->bw_table,
2587 					virt_dev->udev,
2588 					&virt_dev->eps[i],
2589 					virt_dev->tt_info);
2590 	}
2591 
2592 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2593 		/* Ok, this fits in the bandwidth we have.
2594 		 * Update the number of active TTs.
2595 		 */
2596 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2597 		return 0;
2598 	}
2599 
2600 	/* We don't have enough bandwidth for this, revert the stored info. */
2601 	for (i = 0; i < 31; i++) {
2602 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2603 			continue;
2604 
2605 		/* Drop the new copies of any added or changed endpoints from
2606 		 * the interval table.
2607 		 */
2608 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2609 			xhci_drop_ep_from_interval_table(xhci,
2610 					&virt_dev->eps[i].bw_info,
2611 					virt_dev->bw_table,
2612 					virt_dev->udev,
2613 					&virt_dev->eps[i],
2614 					virt_dev->tt_info);
2615 		}
2616 		/* Revert the endpoint back to its old information */
2617 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2618 				sizeof(ep_bw_info[i]));
2619 		/* Add any changed or dropped endpoints back into the table */
2620 		if (EP_IS_DROPPED(ctrl_ctx, i))
2621 			xhci_add_ep_to_interval_table(xhci,
2622 					&virt_dev->eps[i].bw_info,
2623 					virt_dev->bw_table,
2624 					virt_dev->udev,
2625 					&virt_dev->eps[i],
2626 					virt_dev->tt_info);
2627 	}
2628 	return -ENOMEM;
2629 }
2630 
2631 
2632 /* Issue a configure endpoint command or evaluate context command
2633  * and wait for it to finish.
2634  */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2635 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2636 		struct usb_device *udev,
2637 		struct xhci_command *command,
2638 		bool ctx_change, bool must_succeed)
2639 {
2640 	int ret;
2641 	unsigned long flags;
2642 	struct xhci_input_control_ctx *ctrl_ctx;
2643 	struct xhci_virt_device *virt_dev;
2644 
2645 	if (!command)
2646 		return -EINVAL;
2647 
2648 	spin_lock_irqsave(&xhci->lock, flags);
2649 	virt_dev = xhci->devs[udev->slot_id];
2650 
2651 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2652 	if (!ctrl_ctx) {
2653 		spin_unlock_irqrestore(&xhci->lock, flags);
2654 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2655 				__func__);
2656 		return -ENOMEM;
2657 	}
2658 
2659 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2660 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2661 		spin_unlock_irqrestore(&xhci->lock, flags);
2662 		xhci_warn(xhci, "Not enough host resources, "
2663 				"active endpoint contexts = %u\n",
2664 				xhci->num_active_eps);
2665 		return -ENOMEM;
2666 	}
2667 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2668 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2669 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2670 			xhci_free_host_resources(xhci, ctrl_ctx);
2671 		spin_unlock_irqrestore(&xhci->lock, flags);
2672 		xhci_warn(xhci, "Not enough bandwidth\n");
2673 		return -ENOMEM;
2674 	}
2675 
2676 	if (!ctx_change)
2677 		ret = xhci_queue_configure_endpoint(xhci, command,
2678 				command->in_ctx->dma,
2679 				udev->slot_id, must_succeed);
2680 	else
2681 		ret = xhci_queue_evaluate_context(xhci, command,
2682 				command->in_ctx->dma,
2683 				udev->slot_id, must_succeed);
2684 	if (ret < 0) {
2685 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2686 			xhci_free_host_resources(xhci, ctrl_ctx);
2687 		spin_unlock_irqrestore(&xhci->lock, flags);
2688 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2689 				"FIXME allocate a new ring segment");
2690 		return -ENOMEM;
2691 	}
2692 	xhci_ring_cmd_db(xhci);
2693 	spin_unlock_irqrestore(&xhci->lock, flags);
2694 
2695 	/* Wait for the configure endpoint command to complete */
2696 	wait_for_completion(command->completion);
2697 
2698 	if (!ctx_change)
2699 		ret = xhci_configure_endpoint_result(xhci, udev,
2700 						     &command->status);
2701 	else
2702 		ret = xhci_evaluate_context_result(xhci, udev,
2703 						   &command->status);
2704 
2705 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2706 		spin_lock_irqsave(&xhci->lock, flags);
2707 		/* If the command failed, remove the reserved resources.
2708 		 * Otherwise, clean up the estimate to include dropped eps.
2709 		 */
2710 		if (ret)
2711 			xhci_free_host_resources(xhci, ctrl_ctx);
2712 		else
2713 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2714 		spin_unlock_irqrestore(&xhci->lock, flags);
2715 	}
2716 	return ret;
2717 }
2718 
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2719 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2720 	struct xhci_virt_device *vdev, int i)
2721 {
2722 	struct xhci_virt_ep *ep = &vdev->eps[i];
2723 
2724 	if (ep->ep_state & EP_HAS_STREAMS) {
2725 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2726 				xhci_get_endpoint_address(i));
2727 		xhci_free_stream_info(xhci, ep->stream_info);
2728 		ep->stream_info = NULL;
2729 		ep->ep_state &= ~EP_HAS_STREAMS;
2730 	}
2731 }
2732 
2733 /* Called after one or more calls to xhci_add_endpoint() or
2734  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2735  * to call xhci_reset_bandwidth().
2736  *
2737  * Since we are in the middle of changing either configuration or
2738  * installing a new alt setting, the USB core won't allow URBs to be
2739  * enqueued for any endpoint on the old config or interface.  Nothing
2740  * else should be touching the xhci->devs[slot_id] structure, so we
2741  * don't need to take the xhci->lock for manipulating that.
2742  */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2743 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2744 {
2745 	int i;
2746 	int ret = 0;
2747 	struct xhci_hcd *xhci;
2748 	struct xhci_virt_device	*virt_dev;
2749 	struct xhci_input_control_ctx *ctrl_ctx;
2750 	struct xhci_slot_ctx *slot_ctx;
2751 	struct xhci_command *command;
2752 
2753 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2754 	if (ret <= 0)
2755 		return ret;
2756 	xhci = hcd_to_xhci(hcd);
2757 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2758 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2759 		return -ENODEV;
2760 
2761 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2762 	virt_dev = xhci->devs[udev->slot_id];
2763 
2764 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2765 	if (!command)
2766 		return -ENOMEM;
2767 
2768 	command->in_ctx = virt_dev->in_ctx;
2769 
2770 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2771 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2772 	if (!ctrl_ctx) {
2773 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2774 				__func__);
2775 		ret = -ENOMEM;
2776 		goto command_cleanup;
2777 	}
2778 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2779 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2780 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2781 
2782 	/* Don't issue the command if there's no endpoints to update. */
2783 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2784 	    ctrl_ctx->drop_flags == 0) {
2785 		ret = 0;
2786 		goto command_cleanup;
2787 	}
2788 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2789 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2790 	for (i = 31; i >= 1; i--) {
2791 		__le32 le32 = cpu_to_le32(BIT(i));
2792 
2793 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2794 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2795 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2796 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2797 			break;
2798 		}
2799 	}
2800 	xhci_dbg(xhci, "New Input Control Context:\n");
2801 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2802 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2803 
2804 	ret = xhci_configure_endpoint(xhci, udev, command,
2805 			false, false);
2806 	if (ret)
2807 		/* Callee should call reset_bandwidth() */
2808 		goto command_cleanup;
2809 
2810 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2811 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2812 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2813 
2814 	/* Free any rings that were dropped, but not changed. */
2815 	for (i = 1; i < 31; ++i) {
2816 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2817 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2818 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2819 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2820 		}
2821 	}
2822 	xhci_zero_in_ctx(xhci, virt_dev);
2823 	/*
2824 	 * Install any rings for completely new endpoints or changed endpoints,
2825 	 * and free or cache any old rings from changed endpoints.
2826 	 */
2827 	for (i = 1; i < 31; ++i) {
2828 		if (!virt_dev->eps[i].new_ring)
2829 			continue;
2830 		/* Only cache or free the old ring if it exists.
2831 		 * It may not if this is the first add of an endpoint.
2832 		 */
2833 		if (virt_dev->eps[i].ring) {
2834 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2835 		}
2836 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2837 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2838 		virt_dev->eps[i].new_ring = NULL;
2839 	}
2840 command_cleanup:
2841 	kfree(command->completion);
2842 	kfree(command);
2843 
2844 	return ret;
2845 }
2846 
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2847 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2848 {
2849 	struct xhci_hcd *xhci;
2850 	struct xhci_virt_device	*virt_dev;
2851 	int i, ret;
2852 
2853 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2854 	if (ret <= 0)
2855 		return;
2856 	xhci = hcd_to_xhci(hcd);
2857 
2858 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2859 	virt_dev = xhci->devs[udev->slot_id];
2860 	/* Free any rings allocated for added endpoints */
2861 	for (i = 0; i < 31; ++i) {
2862 		if (virt_dev->eps[i].new_ring) {
2863 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2864 			virt_dev->eps[i].new_ring = NULL;
2865 		}
2866 	}
2867 	xhci_zero_in_ctx(xhci, virt_dev);
2868 }
2869 
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)2870 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2871 		struct xhci_container_ctx *in_ctx,
2872 		struct xhci_container_ctx *out_ctx,
2873 		struct xhci_input_control_ctx *ctrl_ctx,
2874 		u32 add_flags, u32 drop_flags)
2875 {
2876 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2877 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2878 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2879 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2880 
2881 	xhci_dbg(xhci, "Input Context:\n");
2882 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2883 }
2884 
xhci_setup_input_ctx_for_quirk(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct xhci_dequeue_state * deq_state)2885 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2886 		unsigned int slot_id, unsigned int ep_index,
2887 		struct xhci_dequeue_state *deq_state)
2888 {
2889 	struct xhci_input_control_ctx *ctrl_ctx;
2890 	struct xhci_container_ctx *in_ctx;
2891 	struct xhci_ep_ctx *ep_ctx;
2892 	u32 added_ctxs;
2893 	dma_addr_t addr;
2894 
2895 	in_ctx = xhci->devs[slot_id]->in_ctx;
2896 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2897 	if (!ctrl_ctx) {
2898 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2899 				__func__);
2900 		return;
2901 	}
2902 
2903 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2904 			xhci->devs[slot_id]->out_ctx, ep_index);
2905 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2906 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2907 			deq_state->new_deq_ptr);
2908 	if (addr == 0) {
2909 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2910 				"reset ep command\n");
2911 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2912 				deq_state->new_deq_seg,
2913 				deq_state->new_deq_ptr);
2914 		return;
2915 	}
2916 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2917 
2918 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2919 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2920 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2921 			added_ctxs, added_ctxs);
2922 }
2923 
xhci_cleanup_stalled_ring(struct xhci_hcd * xhci,unsigned int ep_index,struct xhci_td * td)2924 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2925 			unsigned int ep_index, struct xhci_td *td)
2926 {
2927 	struct xhci_dequeue_state deq_state;
2928 	struct xhci_virt_ep *ep;
2929 	struct usb_device *udev = td->urb->dev;
2930 
2931 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2932 			"Cleaning up stalled endpoint ring");
2933 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2934 	/* We need to move the HW's dequeue pointer past this TD,
2935 	 * or it will attempt to resend it on the next doorbell ring.
2936 	 */
2937 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2938 			ep_index, ep->stopped_stream, td, &deq_state);
2939 
2940 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2941 		return;
2942 
2943 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2944 	 * issue a configure endpoint command later.
2945 	 */
2946 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2947 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2948 				"Queueing new dequeue state");
2949 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2950 				ep_index, ep->stopped_stream, &deq_state);
2951 	} else {
2952 		/* Better hope no one uses the input context between now and the
2953 		 * reset endpoint completion!
2954 		 * XXX: No idea how this hardware will react when stream rings
2955 		 * are enabled.
2956 		 */
2957 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2958 				"Setting up input context for "
2959 				"configure endpoint command");
2960 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2961 				ep_index, &deq_state);
2962 	}
2963 }
2964 
2965 /* Called when clearing halted device. The core should have sent the control
2966  * message to clear the device halt condition. The host side of the halt should
2967  * already be cleared with a reset endpoint command issued when the STALL tx
2968  * event was received.
2969  *
2970  * Context: in_interrupt
2971  */
2972 
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)2973 void xhci_endpoint_reset(struct usb_hcd *hcd,
2974 		struct usb_host_endpoint *ep)
2975 {
2976 	struct xhci_hcd *xhci;
2977 
2978 	xhci = hcd_to_xhci(hcd);
2979 
2980 	/*
2981 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2982 	 * The Reset Endpoint Command may only be issued to endpoints in the
2983 	 * Halted state. If software wishes reset the Data Toggle or Sequence
2984 	 * Number of an endpoint that isn't in the Halted state, then software
2985 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2986 	 * for the target endpoint. that is in the Stopped state.
2987 	 */
2988 
2989 	/* For now just print debug to follow the situation */
2990 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2991 		 ep->desc.bEndpointAddress);
2992 }
2993 
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)2994 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2995 		struct usb_device *udev, struct usb_host_endpoint *ep,
2996 		unsigned int slot_id)
2997 {
2998 	int ret;
2999 	unsigned int ep_index;
3000 	unsigned int ep_state;
3001 
3002 	if (!ep)
3003 		return -EINVAL;
3004 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3005 	if (ret <= 0)
3006 		return -EINVAL;
3007 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3008 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3009 				" descriptor for ep 0x%x does not support streams\n",
3010 				ep->desc.bEndpointAddress);
3011 		return -EINVAL;
3012 	}
3013 
3014 	ep_index = xhci_get_endpoint_index(&ep->desc);
3015 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3016 	if (ep_state & EP_HAS_STREAMS ||
3017 			ep_state & EP_GETTING_STREAMS) {
3018 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3019 				"already has streams set up.\n",
3020 				ep->desc.bEndpointAddress);
3021 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3022 				"dynamic stream context array reallocation.\n");
3023 		return -EINVAL;
3024 	}
3025 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3026 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3027 				"endpoint 0x%x; URBs are pending.\n",
3028 				ep->desc.bEndpointAddress);
3029 		return -EINVAL;
3030 	}
3031 	return 0;
3032 }
3033 
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3034 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3035 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3036 {
3037 	unsigned int max_streams;
3038 
3039 	/* The stream context array size must be a power of two */
3040 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3041 	/*
3042 	 * Find out how many primary stream array entries the host controller
3043 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3044 	 * level page entries), but that's an optional feature for xHCI host
3045 	 * controllers. xHCs must support at least 4 stream IDs.
3046 	 */
3047 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3048 	if (*num_stream_ctxs > max_streams) {
3049 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3050 				max_streams);
3051 		*num_stream_ctxs = max_streams;
3052 		*num_streams = max_streams;
3053 	}
3054 }
3055 
3056 /* Returns an error code if one of the endpoint already has streams.
3057  * This does not change any data structures, it only checks and gathers
3058  * information.
3059  */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3060 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3061 		struct usb_device *udev,
3062 		struct usb_host_endpoint **eps, unsigned int num_eps,
3063 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3064 {
3065 	unsigned int max_streams;
3066 	unsigned int endpoint_flag;
3067 	int i;
3068 	int ret;
3069 
3070 	for (i = 0; i < num_eps; i++) {
3071 		ret = xhci_check_streams_endpoint(xhci, udev,
3072 				eps[i], udev->slot_id);
3073 		if (ret < 0)
3074 			return ret;
3075 
3076 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3077 		if (max_streams < (*num_streams - 1)) {
3078 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3079 					eps[i]->desc.bEndpointAddress,
3080 					max_streams);
3081 			*num_streams = max_streams+1;
3082 		}
3083 
3084 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3085 		if (*changed_ep_bitmask & endpoint_flag)
3086 			return -EINVAL;
3087 		*changed_ep_bitmask |= endpoint_flag;
3088 	}
3089 	return 0;
3090 }
3091 
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3092 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3093 		struct usb_device *udev,
3094 		struct usb_host_endpoint **eps, unsigned int num_eps)
3095 {
3096 	u32 changed_ep_bitmask = 0;
3097 	unsigned int slot_id;
3098 	unsigned int ep_index;
3099 	unsigned int ep_state;
3100 	int i;
3101 
3102 	slot_id = udev->slot_id;
3103 	if (!xhci->devs[slot_id])
3104 		return 0;
3105 
3106 	for (i = 0; i < num_eps; i++) {
3107 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3108 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3109 		/* Are streams already being freed for the endpoint? */
3110 		if (ep_state & EP_GETTING_NO_STREAMS) {
3111 			xhci_warn(xhci, "WARN Can't disable streams for "
3112 					"endpoint 0x%x, "
3113 					"streams are being disabled already\n",
3114 					eps[i]->desc.bEndpointAddress);
3115 			return 0;
3116 		}
3117 		/* Are there actually any streams to free? */
3118 		if (!(ep_state & EP_HAS_STREAMS) &&
3119 				!(ep_state & EP_GETTING_STREAMS)) {
3120 			xhci_warn(xhci, "WARN Can't disable streams for "
3121 					"endpoint 0x%x, "
3122 					"streams are already disabled!\n",
3123 					eps[i]->desc.bEndpointAddress);
3124 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3125 					"with non-streams endpoint\n");
3126 			return 0;
3127 		}
3128 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3129 	}
3130 	return changed_ep_bitmask;
3131 }
3132 
3133 /*
3134  * The USB device drivers use this function (through the HCD interface in USB
3135  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3136  * coordinate mass storage command queueing across multiple endpoints (basically
3137  * a stream ID == a task ID).
3138  *
3139  * Setting up streams involves allocating the same size stream context array
3140  * for each endpoint and issuing a configure endpoint command for all endpoints.
3141  *
3142  * Don't allow the call to succeed if one endpoint only supports one stream
3143  * (which means it doesn't support streams at all).
3144  *
3145  * Drivers may get less stream IDs than they asked for, if the host controller
3146  * hardware or endpoints claim they can't support the number of requested
3147  * stream IDs.
3148  */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3149 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3150 		struct usb_host_endpoint **eps, unsigned int num_eps,
3151 		unsigned int num_streams, gfp_t mem_flags)
3152 {
3153 	int i, ret;
3154 	struct xhci_hcd *xhci;
3155 	struct xhci_virt_device *vdev;
3156 	struct xhci_command *config_cmd;
3157 	struct xhci_input_control_ctx *ctrl_ctx;
3158 	unsigned int ep_index;
3159 	unsigned int num_stream_ctxs;
3160 	unsigned long flags;
3161 	u32 changed_ep_bitmask = 0;
3162 
3163 	if (!eps)
3164 		return -EINVAL;
3165 
3166 	/* Add one to the number of streams requested to account for
3167 	 * stream 0 that is reserved for xHCI usage.
3168 	 */
3169 	num_streams += 1;
3170 	xhci = hcd_to_xhci(hcd);
3171 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3172 			num_streams);
3173 
3174 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3175 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3176 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3177 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3178 		return -ENOSYS;
3179 	}
3180 
3181 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3182 	if (!config_cmd) {
3183 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3184 		return -ENOMEM;
3185 	}
3186 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3187 	if (!ctrl_ctx) {
3188 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3189 				__func__);
3190 		xhci_free_command(xhci, config_cmd);
3191 		return -ENOMEM;
3192 	}
3193 
3194 	/* Check to make sure all endpoints are not already configured for
3195 	 * streams.  While we're at it, find the maximum number of streams that
3196 	 * all the endpoints will support and check for duplicate endpoints.
3197 	 */
3198 	spin_lock_irqsave(&xhci->lock, flags);
3199 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3200 			num_eps, &num_streams, &changed_ep_bitmask);
3201 	if (ret < 0) {
3202 		xhci_free_command(xhci, config_cmd);
3203 		spin_unlock_irqrestore(&xhci->lock, flags);
3204 		return ret;
3205 	}
3206 	if (num_streams <= 1) {
3207 		xhci_warn(xhci, "WARN: endpoints can't handle "
3208 				"more than one stream.\n");
3209 		xhci_free_command(xhci, config_cmd);
3210 		spin_unlock_irqrestore(&xhci->lock, flags);
3211 		return -EINVAL;
3212 	}
3213 	vdev = xhci->devs[udev->slot_id];
3214 	/* Mark each endpoint as being in transition, so
3215 	 * xhci_urb_enqueue() will reject all URBs.
3216 	 */
3217 	for (i = 0; i < num_eps; i++) {
3218 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3219 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3220 	}
3221 	spin_unlock_irqrestore(&xhci->lock, flags);
3222 
3223 	/* Setup internal data structures and allocate HW data structures for
3224 	 * streams (but don't install the HW structures in the input context
3225 	 * until we're sure all memory allocation succeeded).
3226 	 */
3227 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3228 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3229 			num_stream_ctxs, num_streams);
3230 
3231 	for (i = 0; i < num_eps; i++) {
3232 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3233 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3234 				num_stream_ctxs,
3235 				num_streams, mem_flags);
3236 		if (!vdev->eps[ep_index].stream_info)
3237 			goto cleanup;
3238 		/* Set maxPstreams in endpoint context and update deq ptr to
3239 		 * point to stream context array. FIXME
3240 		 */
3241 	}
3242 
3243 	/* Set up the input context for a configure endpoint command. */
3244 	for (i = 0; i < num_eps; i++) {
3245 		struct xhci_ep_ctx *ep_ctx;
3246 
3247 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3248 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3249 
3250 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3251 				vdev->out_ctx, ep_index);
3252 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3253 				vdev->eps[ep_index].stream_info);
3254 	}
3255 	/* Tell the HW to drop its old copy of the endpoint context info
3256 	 * and add the updated copy from the input context.
3257 	 */
3258 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3259 			vdev->out_ctx, ctrl_ctx,
3260 			changed_ep_bitmask, changed_ep_bitmask);
3261 
3262 	/* Issue and wait for the configure endpoint command */
3263 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3264 			false, false);
3265 
3266 	/* xHC rejected the configure endpoint command for some reason, so we
3267 	 * leave the old ring intact and free our internal streams data
3268 	 * structure.
3269 	 */
3270 	if (ret < 0)
3271 		goto cleanup;
3272 
3273 	spin_lock_irqsave(&xhci->lock, flags);
3274 	for (i = 0; i < num_eps; i++) {
3275 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3276 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3277 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3278 			 udev->slot_id, ep_index);
3279 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3280 	}
3281 	xhci_free_command(xhci, config_cmd);
3282 	spin_unlock_irqrestore(&xhci->lock, flags);
3283 
3284 	/* Subtract 1 for stream 0, which drivers can't use */
3285 	return num_streams - 1;
3286 
3287 cleanup:
3288 	/* If it didn't work, free the streams! */
3289 	for (i = 0; i < num_eps; i++) {
3290 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3291 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3292 		vdev->eps[ep_index].stream_info = NULL;
3293 		/* FIXME Unset maxPstreams in endpoint context and
3294 		 * update deq ptr to point to normal string ring.
3295 		 */
3296 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3297 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3298 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3299 	}
3300 	xhci_free_command(xhci, config_cmd);
3301 	return -ENOMEM;
3302 }
3303 
3304 /* Transition the endpoint from using streams to being a "normal" endpoint
3305  * without streams.
3306  *
3307  * Modify the endpoint context state, submit a configure endpoint command,
3308  * and free all endpoint rings for streams if that completes successfully.
3309  */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3310 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3311 		struct usb_host_endpoint **eps, unsigned int num_eps,
3312 		gfp_t mem_flags)
3313 {
3314 	int i, ret;
3315 	struct xhci_hcd *xhci;
3316 	struct xhci_virt_device *vdev;
3317 	struct xhci_command *command;
3318 	struct xhci_input_control_ctx *ctrl_ctx;
3319 	unsigned int ep_index;
3320 	unsigned long flags;
3321 	u32 changed_ep_bitmask;
3322 
3323 	xhci = hcd_to_xhci(hcd);
3324 	vdev = xhci->devs[udev->slot_id];
3325 
3326 	/* Set up a configure endpoint command to remove the streams rings */
3327 	spin_lock_irqsave(&xhci->lock, flags);
3328 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3329 			udev, eps, num_eps);
3330 	if (changed_ep_bitmask == 0) {
3331 		spin_unlock_irqrestore(&xhci->lock, flags);
3332 		return -EINVAL;
3333 	}
3334 
3335 	/* Use the xhci_command structure from the first endpoint.  We may have
3336 	 * allocated too many, but the driver may call xhci_free_streams() for
3337 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3338 	 */
3339 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3340 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3341 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3342 	if (!ctrl_ctx) {
3343 		spin_unlock_irqrestore(&xhci->lock, flags);
3344 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3345 				__func__);
3346 		return -EINVAL;
3347 	}
3348 
3349 	for (i = 0; i < num_eps; i++) {
3350 		struct xhci_ep_ctx *ep_ctx;
3351 
3352 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3353 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3354 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3355 			EP_GETTING_NO_STREAMS;
3356 
3357 		xhci_endpoint_copy(xhci, command->in_ctx,
3358 				vdev->out_ctx, ep_index);
3359 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3360 				&vdev->eps[ep_index]);
3361 	}
3362 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3363 			vdev->out_ctx, ctrl_ctx,
3364 			changed_ep_bitmask, changed_ep_bitmask);
3365 	spin_unlock_irqrestore(&xhci->lock, flags);
3366 
3367 	/* Issue and wait for the configure endpoint command,
3368 	 * which must succeed.
3369 	 */
3370 	ret = xhci_configure_endpoint(xhci, udev, command,
3371 			false, true);
3372 
3373 	/* xHC rejected the configure endpoint command for some reason, so we
3374 	 * leave the streams rings intact.
3375 	 */
3376 	if (ret < 0)
3377 		return ret;
3378 
3379 	spin_lock_irqsave(&xhci->lock, flags);
3380 	for (i = 0; i < num_eps; i++) {
3381 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3382 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3383 		vdev->eps[ep_index].stream_info = NULL;
3384 		/* FIXME Unset maxPstreams in endpoint context and
3385 		 * update deq ptr to point to normal string ring.
3386 		 */
3387 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3388 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3389 	}
3390 	spin_unlock_irqrestore(&xhci->lock, flags);
3391 
3392 	return 0;
3393 }
3394 
3395 /*
3396  * Deletes endpoint resources for endpoints that were active before a Reset
3397  * Device command, or a Disable Slot command.  The Reset Device command leaves
3398  * the control endpoint intact, whereas the Disable Slot command deletes it.
3399  *
3400  * Must be called with xhci->lock held.
3401  */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3402 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3403 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3404 {
3405 	int i;
3406 	unsigned int num_dropped_eps = 0;
3407 	unsigned int drop_flags = 0;
3408 
3409 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3410 		if (virt_dev->eps[i].ring) {
3411 			drop_flags |= 1 << i;
3412 			num_dropped_eps++;
3413 		}
3414 	}
3415 	xhci->num_active_eps -= num_dropped_eps;
3416 	if (num_dropped_eps)
3417 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3418 				"Dropped %u ep ctxs, flags = 0x%x, "
3419 				"%u now active.",
3420 				num_dropped_eps, drop_flags,
3421 				xhci->num_active_eps);
3422 }
3423 
3424 /*
3425  * This submits a Reset Device Command, which will set the device state to 0,
3426  * set the device address to 0, and disable all the endpoints except the default
3427  * control endpoint.  The USB core should come back and call
3428  * xhci_address_device(), and then re-set up the configuration.  If this is
3429  * called because of a usb_reset_and_verify_device(), then the old alternate
3430  * settings will be re-installed through the normal bandwidth allocation
3431  * functions.
3432  *
3433  * Wait for the Reset Device command to finish.  Remove all structures
3434  * associated with the endpoints that were disabled.  Clear the input device
3435  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3436  *
3437  * If the virt_dev to be reset does not exist or does not match the udev,
3438  * it means the device is lost, possibly due to the xHC restore error and
3439  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3440  * re-allocate the device.
3441  */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3442 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3443 {
3444 	int ret, i;
3445 	unsigned long flags;
3446 	struct xhci_hcd *xhci;
3447 	unsigned int slot_id;
3448 	struct xhci_virt_device *virt_dev;
3449 	struct xhci_command *reset_device_cmd;
3450 	int last_freed_endpoint;
3451 	struct xhci_slot_ctx *slot_ctx;
3452 	int old_active_eps = 0;
3453 
3454 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3455 	if (ret <= 0)
3456 		return ret;
3457 	xhci = hcd_to_xhci(hcd);
3458 	slot_id = udev->slot_id;
3459 	virt_dev = xhci->devs[slot_id];
3460 	if (!virt_dev) {
3461 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3462 				"not exist. Re-allocate the device\n", slot_id);
3463 		ret = xhci_alloc_dev(hcd, udev);
3464 		if (ret == 1)
3465 			return 0;
3466 		else
3467 			return -EINVAL;
3468 	}
3469 
3470 	if (virt_dev->tt_info)
3471 		old_active_eps = virt_dev->tt_info->active_eps;
3472 
3473 	if (virt_dev->udev != udev) {
3474 		/* If the virt_dev and the udev does not match, this virt_dev
3475 		 * may belong to another udev.
3476 		 * Re-allocate the device.
3477 		 */
3478 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3479 				"not match the udev. Re-allocate the device\n",
3480 				slot_id);
3481 		ret = xhci_alloc_dev(hcd, udev);
3482 		if (ret == 1)
3483 			return 0;
3484 		else
3485 			return -EINVAL;
3486 	}
3487 
3488 	/* If device is not setup, there is no point in resetting it */
3489 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3490 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3491 						SLOT_STATE_DISABLED)
3492 		return 0;
3493 
3494 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3495 	/* Allocate the command structure that holds the struct completion.
3496 	 * Assume we're in process context, since the normal device reset
3497 	 * process has to wait for the device anyway.  Storage devices are
3498 	 * reset as part of error handling, so use GFP_NOIO instead of
3499 	 * GFP_KERNEL.
3500 	 */
3501 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3502 	if (!reset_device_cmd) {
3503 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3504 		return -ENOMEM;
3505 	}
3506 
3507 	/* Attempt to submit the Reset Device command to the command ring */
3508 	spin_lock_irqsave(&xhci->lock, flags);
3509 
3510 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3511 	if (ret) {
3512 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3513 		spin_unlock_irqrestore(&xhci->lock, flags);
3514 		goto command_cleanup;
3515 	}
3516 	xhci_ring_cmd_db(xhci);
3517 	spin_unlock_irqrestore(&xhci->lock, flags);
3518 
3519 	/* Wait for the Reset Device command to finish */
3520 	wait_for_completion(reset_device_cmd->completion);
3521 
3522 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3523 	 * unless we tried to reset a slot ID that wasn't enabled,
3524 	 * or the device wasn't in the addressed or configured state.
3525 	 */
3526 	ret = reset_device_cmd->status;
3527 	switch (ret) {
3528 	case COMP_CMD_ABORT:
3529 	case COMP_CMD_STOP:
3530 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3531 		ret = -ETIME;
3532 		goto command_cleanup;
3533 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3534 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3535 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3536 				slot_id,
3537 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3538 		xhci_dbg(xhci, "Not freeing device rings.\n");
3539 		/* Don't treat this as an error.  May change my mind later. */
3540 		ret = 0;
3541 		goto command_cleanup;
3542 	case COMP_SUCCESS:
3543 		xhci_dbg(xhci, "Successful reset device command.\n");
3544 		break;
3545 	default:
3546 		if (xhci_is_vendor_info_code(xhci, ret))
3547 			break;
3548 		xhci_warn(xhci, "Unknown completion code %u for "
3549 				"reset device command.\n", ret);
3550 		ret = -EINVAL;
3551 		goto command_cleanup;
3552 	}
3553 
3554 	/* Free up host controller endpoint resources */
3555 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3556 		spin_lock_irqsave(&xhci->lock, flags);
3557 		/* Don't delete the default control endpoint resources */
3558 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3559 		spin_unlock_irqrestore(&xhci->lock, flags);
3560 	}
3561 
3562 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3563 	last_freed_endpoint = 1;
3564 	for (i = 1; i < 31; ++i) {
3565 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3566 
3567 		if (ep->ep_state & EP_HAS_STREAMS) {
3568 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3569 					xhci_get_endpoint_address(i));
3570 			xhci_free_stream_info(xhci, ep->stream_info);
3571 			ep->stream_info = NULL;
3572 			ep->ep_state &= ~EP_HAS_STREAMS;
3573 		}
3574 
3575 		if (ep->ring) {
3576 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3577 			last_freed_endpoint = i;
3578 		}
3579 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3580 			xhci_drop_ep_from_interval_table(xhci,
3581 					&virt_dev->eps[i].bw_info,
3582 					virt_dev->bw_table,
3583 					udev,
3584 					&virt_dev->eps[i],
3585 					virt_dev->tt_info);
3586 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3587 	}
3588 	/* If necessary, update the number of active TTs on this root port */
3589 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3590 
3591 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3592 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3593 	ret = 0;
3594 
3595 command_cleanup:
3596 	xhci_free_command(xhci, reset_device_cmd);
3597 	return ret;
3598 }
3599 
3600 /*
3601  * At this point, the struct usb_device is about to go away, the device has
3602  * disconnected, and all traffic has been stopped and the endpoints have been
3603  * disabled.  Free any HC data structures associated with that device.
3604  */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3605 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3606 {
3607 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3608 	struct xhci_virt_device *virt_dev;
3609 	unsigned long flags;
3610 	u32 state;
3611 	int i, ret;
3612 	struct xhci_command *command;
3613 
3614 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3615 	if (!command)
3616 		return;
3617 
3618 #ifndef CONFIG_USB_DEFAULT_PERSIST
3619 	/*
3620 	 * We called pm_runtime_get_noresume when the device was attached.
3621 	 * Decrement the counter here to allow controller to runtime suspend
3622 	 * if no devices remain.
3623 	 */
3624 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3625 		pm_runtime_put_noidle(hcd->self.controller);
3626 #endif
3627 
3628 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3629 	/* If the host is halted due to driver unload, we still need to free the
3630 	 * device.
3631 	 */
3632 	if (ret <= 0 && ret != -ENODEV) {
3633 		kfree(command);
3634 		return;
3635 	}
3636 
3637 	virt_dev = xhci->devs[udev->slot_id];
3638 
3639 	/* Stop any wayward timer functions (which may grab the lock) */
3640 	for (i = 0; i < 31; ++i) {
3641 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3642 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3643 	}
3644 
3645 	spin_lock_irqsave(&xhci->lock, flags);
3646 	/* Don't disable the slot if the host controller is dead. */
3647 	state = readl(&xhci->op_regs->status);
3648 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3649 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3650 		xhci_free_virt_device(xhci, udev->slot_id);
3651 		spin_unlock_irqrestore(&xhci->lock, flags);
3652 		kfree(command);
3653 		return;
3654 	}
3655 
3656 	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3657 				    udev->slot_id)) {
3658 		spin_unlock_irqrestore(&xhci->lock, flags);
3659 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3660 		return;
3661 	}
3662 	xhci_ring_cmd_db(xhci);
3663 	spin_unlock_irqrestore(&xhci->lock, flags);
3664 
3665 	/*
3666 	 * Event command completion handler will free any data structures
3667 	 * associated with the slot.  XXX Can free sleep?
3668 	 */
3669 }
3670 
3671 /*
3672  * Checks if we have enough host controller resources for the default control
3673  * endpoint.
3674  *
3675  * Must be called with xhci->lock held.
3676  */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3677 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3678 {
3679 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3680 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3681 				"Not enough ep ctxs: "
3682 				"%u active, need to add 1, limit is %u.",
3683 				xhci->num_active_eps, xhci->limit_active_eps);
3684 		return -ENOMEM;
3685 	}
3686 	xhci->num_active_eps += 1;
3687 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3688 			"Adding 1 ep ctx, %u now active.",
3689 			xhci->num_active_eps);
3690 	return 0;
3691 }
3692 
3693 
3694 /*
3695  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3696  * timed out, or allocating memory failed.  Returns 1 on success.
3697  */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)3698 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3699 {
3700 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3701 	unsigned long flags;
3702 	int ret, slot_id;
3703 	struct xhci_command *command;
3704 
3705 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3706 	if (!command)
3707 		return 0;
3708 
3709 	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3710 	mutex_lock(&xhci->mutex);
3711 	spin_lock_irqsave(&xhci->lock, flags);
3712 	command->completion = &xhci->addr_dev;
3713 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3714 	if (ret) {
3715 		spin_unlock_irqrestore(&xhci->lock, flags);
3716 		mutex_unlock(&xhci->mutex);
3717 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3718 		kfree(command);
3719 		return 0;
3720 	}
3721 	xhci_ring_cmd_db(xhci);
3722 	spin_unlock_irqrestore(&xhci->lock, flags);
3723 
3724 	wait_for_completion(command->completion);
3725 	slot_id = xhci->slot_id;
3726 	mutex_unlock(&xhci->mutex);
3727 
3728 	if (!slot_id || command->status != COMP_SUCCESS) {
3729 		xhci_err(xhci, "Error while assigning device slot ID\n");
3730 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3731 				HCS_MAX_SLOTS(
3732 					readl(&xhci->cap_regs->hcs_params1)));
3733 		kfree(command);
3734 		return 0;
3735 	}
3736 
3737 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3738 		spin_lock_irqsave(&xhci->lock, flags);
3739 		ret = xhci_reserve_host_control_ep_resources(xhci);
3740 		if (ret) {
3741 			spin_unlock_irqrestore(&xhci->lock, flags);
3742 			xhci_warn(xhci, "Not enough host resources, "
3743 					"active endpoint contexts = %u\n",
3744 					xhci->num_active_eps);
3745 			goto disable_slot;
3746 		}
3747 		spin_unlock_irqrestore(&xhci->lock, flags);
3748 	}
3749 	/* Use GFP_NOIO, since this function can be called from
3750 	 * xhci_discover_or_reset_device(), which may be called as part of
3751 	 * mass storage driver error handling.
3752 	 */
3753 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3754 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3755 		goto disable_slot;
3756 	}
3757 	udev->slot_id = slot_id;
3758 
3759 #ifndef CONFIG_USB_DEFAULT_PERSIST
3760 	/*
3761 	 * If resetting upon resume, we can't put the controller into runtime
3762 	 * suspend if there is a device attached.
3763 	 */
3764 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3765 		pm_runtime_get_noresume(hcd->self.controller);
3766 #endif
3767 
3768 
3769 	kfree(command);
3770 	/* Is this a LS or FS device under a HS hub? */
3771 	/* Hub or peripherial? */
3772 	return 1;
3773 
3774 disable_slot:
3775 	/* Disable slot, if we can do it without mem alloc */
3776 	spin_lock_irqsave(&xhci->lock, flags);
3777 	command->completion = NULL;
3778 	command->status = 0;
3779 	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3780 				     udev->slot_id))
3781 		xhci_ring_cmd_db(xhci);
3782 	spin_unlock_irqrestore(&xhci->lock, flags);
3783 	return 0;
3784 }
3785 
3786 /*
3787  * Issue an Address Device command and optionally send a corresponding
3788  * SetAddress request to the device.
3789  */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup)3790 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3791 			     enum xhci_setup_dev setup)
3792 {
3793 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3794 	unsigned long flags;
3795 	struct xhci_virt_device *virt_dev;
3796 	int ret = 0;
3797 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3798 	struct xhci_slot_ctx *slot_ctx;
3799 	struct xhci_input_control_ctx *ctrl_ctx;
3800 	u64 temp_64;
3801 	struct xhci_command *command = NULL;
3802 
3803 	mutex_lock(&xhci->mutex);
3804 
3805 	if (xhci->xhc_state)	/* dying, removing or halted */
3806 		goto out;
3807 
3808 	if (!udev->slot_id) {
3809 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3810 				"Bad Slot ID %d", udev->slot_id);
3811 		ret = -EINVAL;
3812 		goto out;
3813 	}
3814 
3815 	virt_dev = xhci->devs[udev->slot_id];
3816 
3817 	if (WARN_ON(!virt_dev)) {
3818 		/*
3819 		 * In plug/unplug torture test with an NEC controller,
3820 		 * a zero-dereference was observed once due to virt_dev = 0.
3821 		 * Print useful debug rather than crash if it is observed again!
3822 		 */
3823 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3824 			udev->slot_id);
3825 		ret = -EINVAL;
3826 		goto out;
3827 	}
3828 
3829 	if (setup == SETUP_CONTEXT_ONLY) {
3830 		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3831 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3832 		    SLOT_STATE_DEFAULT) {
3833 			xhci_dbg(xhci, "Slot already in default state\n");
3834 			goto out;
3835 		}
3836 	}
3837 
3838 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3839 	if (!command) {
3840 		ret = -ENOMEM;
3841 		goto out;
3842 	}
3843 
3844 	command->in_ctx = virt_dev->in_ctx;
3845 	command->completion = &xhci->addr_dev;
3846 
3847 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3848 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3849 	if (!ctrl_ctx) {
3850 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3851 				__func__);
3852 		ret = -EINVAL;
3853 		goto out;
3854 	}
3855 	/*
3856 	 * If this is the first Set Address since device plug-in or
3857 	 * virt_device realloaction after a resume with an xHCI power loss,
3858 	 * then set up the slot context.
3859 	 */
3860 	if (!slot_ctx->dev_info)
3861 		xhci_setup_addressable_virt_dev(xhci, udev);
3862 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3863 	else
3864 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3865 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3866 	ctrl_ctx->drop_flags = 0;
3867 
3868 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3869 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3870 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3871 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3872 
3873 	spin_lock_irqsave(&xhci->lock, flags);
3874 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3875 					udev->slot_id, setup);
3876 	if (ret) {
3877 		spin_unlock_irqrestore(&xhci->lock, flags);
3878 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3879 				"FIXME: allocate a command ring segment");
3880 		goto out;
3881 	}
3882 	xhci_ring_cmd_db(xhci);
3883 	spin_unlock_irqrestore(&xhci->lock, flags);
3884 
3885 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3886 	wait_for_completion(command->completion);
3887 
3888 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3889 	 * the SetAddress() "recovery interval" required by USB and aborting the
3890 	 * command on a timeout.
3891 	 */
3892 	switch (command->status) {
3893 	case COMP_CMD_ABORT:
3894 	case COMP_CMD_STOP:
3895 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3896 		ret = -ETIME;
3897 		break;
3898 	case COMP_CTX_STATE:
3899 	case COMP_EBADSLT:
3900 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3901 			 act, udev->slot_id);
3902 		ret = -EINVAL;
3903 		break;
3904 	case COMP_TX_ERR:
3905 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3906 		ret = -EPROTO;
3907 		break;
3908 	case COMP_DEV_ERR:
3909 		dev_warn(&udev->dev,
3910 			 "ERROR: Incompatible device for setup %s command\n", act);
3911 		ret = -ENODEV;
3912 		break;
3913 	case COMP_SUCCESS:
3914 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3915 			       "Successful setup %s command", act);
3916 		break;
3917 	default:
3918 		xhci_err(xhci,
3919 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3920 			 act, command->status);
3921 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3922 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3923 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3924 		ret = -EINVAL;
3925 		break;
3926 	}
3927 	if (ret)
3928 		goto out;
3929 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3930 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3931 			"Op regs DCBAA ptr = %#016llx", temp_64);
3932 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3933 		"Slot ID %d dcbaa entry @%p = %#016llx",
3934 		udev->slot_id,
3935 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3936 		(unsigned long long)
3937 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3938 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3939 			"Output Context DMA address = %#08llx",
3940 			(unsigned long long)virt_dev->out_ctx->dma);
3941 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3942 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3943 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3944 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3945 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3946 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3947 	/*
3948 	 * USB core uses address 1 for the roothubs, so we add one to the
3949 	 * address given back to us by the HC.
3950 	 */
3951 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3952 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3953 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3954 	/* Zero the input context control for later use */
3955 	ctrl_ctx->add_flags = 0;
3956 	ctrl_ctx->drop_flags = 0;
3957 
3958 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3959 		       "Internal device address = %d",
3960 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3961 out:
3962 	mutex_unlock(&xhci->mutex);
3963 	kfree(command);
3964 	return ret;
3965 }
3966 
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev)3967 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3968 {
3969 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3970 }
3971 
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)3972 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3973 {
3974 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3975 }
3976 
3977 /*
3978  * Transfer the port index into real index in the HW port status
3979  * registers. Caculate offset between the port's PORTSC register
3980  * and port status base. Divide the number of per port register
3981  * to get the real index. The raw port number bases 1.
3982  */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)3983 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3984 {
3985 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3986 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3987 	__le32 __iomem *addr;
3988 	int raw_port;
3989 
3990 	if (hcd->speed < HCD_USB3)
3991 		addr = xhci->usb2_ports[port1 - 1];
3992 	else
3993 		addr = xhci->usb3_ports[port1 - 1];
3994 
3995 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3996 	return raw_port;
3997 }
3998 
3999 /*
4000  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4001  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4002  */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4003 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4004 			struct usb_device *udev, u16 max_exit_latency)
4005 {
4006 	struct xhci_virt_device *virt_dev;
4007 	struct xhci_command *command;
4008 	struct xhci_input_control_ctx *ctrl_ctx;
4009 	struct xhci_slot_ctx *slot_ctx;
4010 	unsigned long flags;
4011 	int ret;
4012 
4013 	spin_lock_irqsave(&xhci->lock, flags);
4014 
4015 	virt_dev = xhci->devs[udev->slot_id];
4016 
4017 	/*
4018 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4019 	 * xHC was re-initialized. Exit latency will be set later after
4020 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4021 	 */
4022 
4023 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4024 		spin_unlock_irqrestore(&xhci->lock, flags);
4025 		return 0;
4026 	}
4027 
4028 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4029 	command = xhci->lpm_command;
4030 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4031 	if (!ctrl_ctx) {
4032 		spin_unlock_irqrestore(&xhci->lock, flags);
4033 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4034 				__func__);
4035 		return -ENOMEM;
4036 	}
4037 
4038 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4039 	spin_unlock_irqrestore(&xhci->lock, flags);
4040 
4041 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4042 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4043 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4044 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4045 	slot_ctx->dev_state = 0;
4046 
4047 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4048 			"Set up evaluate context for LPM MEL change.");
4049 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4050 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4051 
4052 	/* Issue and wait for the evaluate context command. */
4053 	ret = xhci_configure_endpoint(xhci, udev, command,
4054 			true, true);
4055 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4056 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4057 
4058 	if (!ret) {
4059 		spin_lock_irqsave(&xhci->lock, flags);
4060 		virt_dev->current_mel = max_exit_latency;
4061 		spin_unlock_irqrestore(&xhci->lock, flags);
4062 	}
4063 	return ret;
4064 }
4065 
4066 #ifdef CONFIG_PM
4067 
4068 /* BESL to HIRD Encoding array for USB2 LPM */
4069 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4070 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4071 
4072 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4073 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4074 					struct usb_device *udev)
4075 {
4076 	int u2del, besl, besl_host;
4077 	int besl_device = 0;
4078 	u32 field;
4079 
4080 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4081 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4082 
4083 	if (field & USB_BESL_SUPPORT) {
4084 		for (besl_host = 0; besl_host < 16; besl_host++) {
4085 			if (xhci_besl_encoding[besl_host] >= u2del)
4086 				break;
4087 		}
4088 		/* Use baseline BESL value as default */
4089 		if (field & USB_BESL_BASELINE_VALID)
4090 			besl_device = USB_GET_BESL_BASELINE(field);
4091 		else if (field & USB_BESL_DEEP_VALID)
4092 			besl_device = USB_GET_BESL_DEEP(field);
4093 	} else {
4094 		if (u2del <= 50)
4095 			besl_host = 0;
4096 		else
4097 			besl_host = (u2del - 51) / 75 + 1;
4098 	}
4099 
4100 	besl = besl_host + besl_device;
4101 	if (besl > 15)
4102 		besl = 15;
4103 
4104 	return besl;
4105 }
4106 
4107 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4108 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4109 {
4110 	u32 field;
4111 	int l1;
4112 	int besld = 0;
4113 	int hirdm = 0;
4114 
4115 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4116 
4117 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4118 	l1 = udev->l1_params.timeout / 256;
4119 
4120 	/* device has preferred BESLD */
4121 	if (field & USB_BESL_DEEP_VALID) {
4122 		besld = USB_GET_BESL_DEEP(field);
4123 		hirdm = 1;
4124 	}
4125 
4126 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4127 }
4128 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4129 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4130 			struct usb_device *udev, int enable)
4131 {
4132 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4133 	__le32 __iomem	**port_array;
4134 	__le32 __iomem	*pm_addr, *hlpm_addr;
4135 	u32		pm_val, hlpm_val, field;
4136 	unsigned int	port_num;
4137 	unsigned long	flags;
4138 	int		hird, exit_latency;
4139 	int		ret;
4140 
4141 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4142 			!udev->lpm_capable)
4143 		return -EPERM;
4144 
4145 	if (!udev->parent || udev->parent->parent ||
4146 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4147 		return -EPERM;
4148 
4149 	if (udev->usb2_hw_lpm_capable != 1)
4150 		return -EPERM;
4151 
4152 	spin_lock_irqsave(&xhci->lock, flags);
4153 
4154 	port_array = xhci->usb2_ports;
4155 	port_num = udev->portnum - 1;
4156 	pm_addr = port_array[port_num] + PORTPMSC;
4157 	pm_val = readl(pm_addr);
4158 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4159 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4160 
4161 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4162 			enable ? "enable" : "disable", port_num + 1);
4163 
4164 	if (enable) {
4165 		/* Host supports BESL timeout instead of HIRD */
4166 		if (udev->usb2_hw_lpm_besl_capable) {
4167 			/* if device doesn't have a preferred BESL value use a
4168 			 * default one which works with mixed HIRD and BESL
4169 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4170 			 */
4171 			if ((field & USB_BESL_SUPPORT) &&
4172 			    (field & USB_BESL_BASELINE_VALID))
4173 				hird = USB_GET_BESL_BASELINE(field);
4174 			else
4175 				hird = udev->l1_params.besl;
4176 
4177 			exit_latency = xhci_besl_encoding[hird];
4178 			spin_unlock_irqrestore(&xhci->lock, flags);
4179 
4180 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4181 			 * input context for link powermanagement evaluate
4182 			 * context commands. It is protected by hcd->bandwidth
4183 			 * mutex and is shared by all devices. We need to set
4184 			 * the max ext latency in USB 2 BESL LPM as well, so
4185 			 * use the same mutex and xhci_change_max_exit_latency()
4186 			 */
4187 			mutex_lock(hcd->bandwidth_mutex);
4188 			ret = xhci_change_max_exit_latency(xhci, udev,
4189 							   exit_latency);
4190 			mutex_unlock(hcd->bandwidth_mutex);
4191 
4192 			if (ret < 0)
4193 				return ret;
4194 			spin_lock_irqsave(&xhci->lock, flags);
4195 
4196 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4197 			writel(hlpm_val, hlpm_addr);
4198 			/* flush write */
4199 			readl(hlpm_addr);
4200 		} else {
4201 			hird = xhci_calculate_hird_besl(xhci, udev);
4202 		}
4203 
4204 		pm_val &= ~PORT_HIRD_MASK;
4205 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4206 		writel(pm_val, pm_addr);
4207 		pm_val = readl(pm_addr);
4208 		pm_val |= PORT_HLE;
4209 		writel(pm_val, pm_addr);
4210 		/* flush write */
4211 		readl(pm_addr);
4212 	} else {
4213 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4214 		writel(pm_val, pm_addr);
4215 		/* flush write */
4216 		readl(pm_addr);
4217 		if (udev->usb2_hw_lpm_besl_capable) {
4218 			spin_unlock_irqrestore(&xhci->lock, flags);
4219 			mutex_lock(hcd->bandwidth_mutex);
4220 			xhci_change_max_exit_latency(xhci, udev, 0);
4221 			mutex_unlock(hcd->bandwidth_mutex);
4222 			return 0;
4223 		}
4224 	}
4225 
4226 	spin_unlock_irqrestore(&xhci->lock, flags);
4227 	return 0;
4228 }
4229 
4230 /* check if a usb2 port supports a given extened capability protocol
4231  * only USB2 ports extended protocol capability values are cached.
4232  * Return 1 if capability is supported
4233  */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4234 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4235 					   unsigned capability)
4236 {
4237 	u32 port_offset, port_count;
4238 	int i;
4239 
4240 	for (i = 0; i < xhci->num_ext_caps; i++) {
4241 		if (xhci->ext_caps[i] & capability) {
4242 			/* port offsets starts at 1 */
4243 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4244 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4245 			if (port >= port_offset &&
4246 			    port < port_offset + port_count)
4247 				return 1;
4248 		}
4249 	}
4250 	return 0;
4251 }
4252 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4253 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4254 {
4255 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4256 	int		portnum = udev->portnum - 1;
4257 
4258 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4259 			!udev->lpm_capable)
4260 		return 0;
4261 
4262 	/* we only support lpm for non-hub device connected to root hub yet */
4263 	if (!udev->parent || udev->parent->parent ||
4264 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4265 		return 0;
4266 
4267 	if (xhci->hw_lpm_support == 1 &&
4268 			xhci_check_usb2_port_capability(
4269 				xhci, portnum, XHCI_HLC)) {
4270 		udev->usb2_hw_lpm_capable = 1;
4271 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4272 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4273 		if (xhci_check_usb2_port_capability(xhci, portnum,
4274 					XHCI_BLC))
4275 			udev->usb2_hw_lpm_besl_capable = 1;
4276 	}
4277 
4278 	return 0;
4279 }
4280 
4281 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4282 
4283 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4284 static unsigned long long xhci_service_interval_to_ns(
4285 		struct usb_endpoint_descriptor *desc)
4286 {
4287 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4288 }
4289 
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4290 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4291 		enum usb3_link_state state)
4292 {
4293 	unsigned long long sel;
4294 	unsigned long long pel;
4295 	unsigned int max_sel_pel;
4296 	char *state_name;
4297 
4298 	switch (state) {
4299 	case USB3_LPM_U1:
4300 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4301 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4302 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4303 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4304 		state_name = "U1";
4305 		break;
4306 	case USB3_LPM_U2:
4307 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4308 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4309 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4310 		state_name = "U2";
4311 		break;
4312 	default:
4313 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4314 				__func__);
4315 		return USB3_LPM_DISABLED;
4316 	}
4317 
4318 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4319 		return USB3_LPM_DEVICE_INITIATED;
4320 
4321 	if (sel > max_sel_pel)
4322 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4323 				"due to long SEL %llu ms\n",
4324 				state_name, sel);
4325 	else
4326 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4327 				"due to long PEL %llu ms\n",
4328 				state_name, pel);
4329 	return USB3_LPM_DISABLED;
4330 }
4331 
4332 /* The U1 timeout should be the maximum of the following values:
4333  *  - For control endpoints, U1 system exit latency (SEL) * 3
4334  *  - For bulk endpoints, U1 SEL * 5
4335  *  - For interrupt endpoints:
4336  *    - Notification EPs, U1 SEL * 3
4337  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4338  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4339  */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4340 static unsigned long long xhci_calculate_intel_u1_timeout(
4341 		struct usb_device *udev,
4342 		struct usb_endpoint_descriptor *desc)
4343 {
4344 	unsigned long long timeout_ns;
4345 	int ep_type;
4346 	int intr_type;
4347 
4348 	ep_type = usb_endpoint_type(desc);
4349 	switch (ep_type) {
4350 	case USB_ENDPOINT_XFER_CONTROL:
4351 		timeout_ns = udev->u1_params.sel * 3;
4352 		break;
4353 	case USB_ENDPOINT_XFER_BULK:
4354 		timeout_ns = udev->u1_params.sel * 5;
4355 		break;
4356 	case USB_ENDPOINT_XFER_INT:
4357 		intr_type = usb_endpoint_interrupt_type(desc);
4358 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4359 			timeout_ns = udev->u1_params.sel * 3;
4360 			break;
4361 		}
4362 		/* Otherwise the calculation is the same as isoc eps */
4363 	case USB_ENDPOINT_XFER_ISOC:
4364 		timeout_ns = xhci_service_interval_to_ns(desc);
4365 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4366 		if (timeout_ns < udev->u1_params.sel * 2)
4367 			timeout_ns = udev->u1_params.sel * 2;
4368 		break;
4369 	default:
4370 		return 0;
4371 	}
4372 
4373 	return timeout_ns;
4374 }
4375 
4376 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4377 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4378 		struct usb_device *udev,
4379 		struct usb_endpoint_descriptor *desc)
4380 {
4381 	unsigned long long timeout_ns;
4382 
4383 	if (xhci->quirks & XHCI_INTEL_HOST)
4384 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4385 	else
4386 		timeout_ns = udev->u1_params.sel;
4387 
4388 	/* The U1 timeout is encoded in 1us intervals.
4389 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4390 	 */
4391 	if (timeout_ns == USB3_LPM_DISABLED)
4392 		timeout_ns = 1;
4393 	else
4394 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4395 
4396 	/* If the necessary timeout value is bigger than what we can set in the
4397 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4398 	 */
4399 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4400 		return timeout_ns;
4401 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4402 			"due to long timeout %llu ms\n", timeout_ns);
4403 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4404 }
4405 
4406 /* The U2 timeout should be the maximum of:
4407  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4408  *  - largest bInterval of any active periodic endpoint (to avoid going
4409  *    into lower power link states between intervals).
4410  *  - the U2 Exit Latency of the device
4411  */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4412 static unsigned long long xhci_calculate_intel_u2_timeout(
4413 		struct usb_device *udev,
4414 		struct usb_endpoint_descriptor *desc)
4415 {
4416 	unsigned long long timeout_ns;
4417 	unsigned long long u2_del_ns;
4418 
4419 	timeout_ns = 10 * 1000 * 1000;
4420 
4421 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4422 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4423 		timeout_ns = xhci_service_interval_to_ns(desc);
4424 
4425 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4426 	if (u2_del_ns > timeout_ns)
4427 		timeout_ns = u2_del_ns;
4428 
4429 	return timeout_ns;
4430 }
4431 
4432 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4433 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4434 		struct usb_device *udev,
4435 		struct usb_endpoint_descriptor *desc)
4436 {
4437 	unsigned long long timeout_ns;
4438 
4439 	if (xhci->quirks & XHCI_INTEL_HOST)
4440 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4441 	else
4442 		timeout_ns = udev->u2_params.sel;
4443 
4444 	/* The U2 timeout is encoded in 256us intervals */
4445 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4446 	/* If the necessary timeout value is bigger than what we can set in the
4447 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4448 	 */
4449 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4450 		return timeout_ns;
4451 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4452 			"due to long timeout %llu ms\n", timeout_ns);
4453 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4454 }
4455 
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4456 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4457 		struct usb_device *udev,
4458 		struct usb_endpoint_descriptor *desc,
4459 		enum usb3_link_state state,
4460 		u16 *timeout)
4461 {
4462 	if (state == USB3_LPM_U1)
4463 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4464 	else if (state == USB3_LPM_U2)
4465 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4466 
4467 	return USB3_LPM_DISABLED;
4468 }
4469 
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4470 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4471 		struct usb_device *udev,
4472 		struct usb_endpoint_descriptor *desc,
4473 		enum usb3_link_state state,
4474 		u16 *timeout)
4475 {
4476 	u16 alt_timeout;
4477 
4478 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4479 		desc, state, timeout);
4480 
4481 	/* If we found we can't enable hub-initiated LPM, or
4482 	 * the U1 or U2 exit latency was too high to allow
4483 	 * device-initiated LPM as well, just stop searching.
4484 	 */
4485 	if (alt_timeout == USB3_LPM_DISABLED ||
4486 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4487 		*timeout = alt_timeout;
4488 		return -E2BIG;
4489 	}
4490 	if (alt_timeout > *timeout)
4491 		*timeout = alt_timeout;
4492 	return 0;
4493 }
4494 
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4495 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4496 		struct usb_device *udev,
4497 		struct usb_host_interface *alt,
4498 		enum usb3_link_state state,
4499 		u16 *timeout)
4500 {
4501 	int j;
4502 
4503 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4504 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4505 					&alt->endpoint[j].desc, state, timeout))
4506 			return -E2BIG;
4507 		continue;
4508 	}
4509 	return 0;
4510 }
4511 
xhci_check_intel_tier_policy(struct usb_device * udev,enum usb3_link_state state)4512 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4513 		enum usb3_link_state state)
4514 {
4515 	struct usb_device *parent;
4516 	unsigned int num_hubs;
4517 
4518 	if (state == USB3_LPM_U2)
4519 		return 0;
4520 
4521 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4522 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4523 			parent = parent->parent)
4524 		num_hubs++;
4525 
4526 	if (num_hubs < 2)
4527 		return 0;
4528 
4529 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4530 			" below second-tier hub.\n");
4531 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4532 			"to decrease power consumption.\n");
4533 	return -E2BIG;
4534 }
4535 
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4536 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4537 		struct usb_device *udev,
4538 		enum usb3_link_state state)
4539 {
4540 	if (xhci->quirks & XHCI_INTEL_HOST)
4541 		return xhci_check_intel_tier_policy(udev, state);
4542 	else
4543 		return 0;
4544 }
4545 
4546 /* Returns the U1 or U2 timeout that should be enabled.
4547  * If the tier check or timeout setting functions return with a non-zero exit
4548  * code, that means the timeout value has been finalized and we shouldn't look
4549  * at any more endpoints.
4550  */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4551 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4552 			struct usb_device *udev, enum usb3_link_state state)
4553 {
4554 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4555 	struct usb_host_config *config;
4556 	char *state_name;
4557 	int i;
4558 	u16 timeout = USB3_LPM_DISABLED;
4559 
4560 	if (state == USB3_LPM_U1)
4561 		state_name = "U1";
4562 	else if (state == USB3_LPM_U2)
4563 		state_name = "U2";
4564 	else {
4565 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4566 				state);
4567 		return timeout;
4568 	}
4569 
4570 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4571 		return timeout;
4572 
4573 	/* Gather some information about the currently installed configuration
4574 	 * and alternate interface settings.
4575 	 */
4576 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4577 			state, &timeout))
4578 		return timeout;
4579 
4580 	config = udev->actconfig;
4581 	if (!config)
4582 		return timeout;
4583 
4584 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4585 		struct usb_driver *driver;
4586 		struct usb_interface *intf = config->interface[i];
4587 
4588 		if (!intf)
4589 			continue;
4590 
4591 		/* Check if any currently bound drivers want hub-initiated LPM
4592 		 * disabled.
4593 		 */
4594 		if (intf->dev.driver) {
4595 			driver = to_usb_driver(intf->dev.driver);
4596 			if (driver && driver->disable_hub_initiated_lpm) {
4597 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4598 						"at request of driver %s\n",
4599 						state_name, driver->name);
4600 				return xhci_get_timeout_no_hub_lpm(udev, state);
4601 			}
4602 		}
4603 
4604 		/* Not sure how this could happen... */
4605 		if (!intf->cur_altsetting)
4606 			continue;
4607 
4608 		if (xhci_update_timeout_for_interface(xhci, udev,
4609 					intf->cur_altsetting,
4610 					state, &timeout))
4611 			return timeout;
4612 	}
4613 	return timeout;
4614 }
4615 
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4616 static int calculate_max_exit_latency(struct usb_device *udev,
4617 		enum usb3_link_state state_changed,
4618 		u16 hub_encoded_timeout)
4619 {
4620 	unsigned long long u1_mel_us = 0;
4621 	unsigned long long u2_mel_us = 0;
4622 	unsigned long long mel_us = 0;
4623 	bool disabling_u1;
4624 	bool disabling_u2;
4625 	bool enabling_u1;
4626 	bool enabling_u2;
4627 
4628 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4629 			hub_encoded_timeout == USB3_LPM_DISABLED);
4630 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4631 			hub_encoded_timeout == USB3_LPM_DISABLED);
4632 
4633 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4634 			hub_encoded_timeout != USB3_LPM_DISABLED);
4635 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4636 			hub_encoded_timeout != USB3_LPM_DISABLED);
4637 
4638 	/* If U1 was already enabled and we're not disabling it,
4639 	 * or we're going to enable U1, account for the U1 max exit latency.
4640 	 */
4641 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4642 			enabling_u1)
4643 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4644 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4645 			enabling_u2)
4646 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4647 
4648 	if (u1_mel_us > u2_mel_us)
4649 		mel_us = u1_mel_us;
4650 	else
4651 		mel_us = u2_mel_us;
4652 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4653 	if (mel_us > MAX_EXIT) {
4654 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4655 				"is too big.\n", mel_us);
4656 		return -E2BIG;
4657 	}
4658 	return mel_us;
4659 }
4660 
4661 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4662 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4663 			struct usb_device *udev, enum usb3_link_state state)
4664 {
4665 	struct xhci_hcd	*xhci;
4666 	u16 hub_encoded_timeout;
4667 	int mel;
4668 	int ret;
4669 
4670 	xhci = hcd_to_xhci(hcd);
4671 	/* The LPM timeout values are pretty host-controller specific, so don't
4672 	 * enable hub-initiated timeouts unless the vendor has provided
4673 	 * information about their timeout algorithm.
4674 	 */
4675 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4676 			!xhci->devs[udev->slot_id])
4677 		return USB3_LPM_DISABLED;
4678 
4679 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4680 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4681 	if (mel < 0) {
4682 		/* Max Exit Latency is too big, disable LPM. */
4683 		hub_encoded_timeout = USB3_LPM_DISABLED;
4684 		mel = 0;
4685 	}
4686 
4687 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4688 	if (ret)
4689 		return ret;
4690 	return hub_encoded_timeout;
4691 }
4692 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4693 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4694 			struct usb_device *udev, enum usb3_link_state state)
4695 {
4696 	struct xhci_hcd	*xhci;
4697 	u16 mel;
4698 
4699 	xhci = hcd_to_xhci(hcd);
4700 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4701 			!xhci->devs[udev->slot_id])
4702 		return 0;
4703 
4704 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4705 	return xhci_change_max_exit_latency(xhci, udev, mel);
4706 }
4707 #else /* CONFIG_PM */
4708 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4709 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4710 				struct usb_device *udev, int enable)
4711 {
4712 	return 0;
4713 }
4714 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4715 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4716 {
4717 	return 0;
4718 }
4719 
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4720 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4721 			struct usb_device *udev, enum usb3_link_state state)
4722 {
4723 	return USB3_LPM_DISABLED;
4724 }
4725 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4726 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4727 			struct usb_device *udev, enum usb3_link_state state)
4728 {
4729 	return 0;
4730 }
4731 #endif	/* CONFIG_PM */
4732 
4733 /*-------------------------------------------------------------------------*/
4734 
4735 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4736  * internal data structures for the device.
4737  */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)4738 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4739 			struct usb_tt *tt, gfp_t mem_flags)
4740 {
4741 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4742 	struct xhci_virt_device *vdev;
4743 	struct xhci_command *config_cmd;
4744 	struct xhci_input_control_ctx *ctrl_ctx;
4745 	struct xhci_slot_ctx *slot_ctx;
4746 	unsigned long flags;
4747 	unsigned think_time;
4748 	int ret;
4749 
4750 	/* Ignore root hubs */
4751 	if (!hdev->parent)
4752 		return 0;
4753 
4754 	vdev = xhci->devs[hdev->slot_id];
4755 	if (!vdev) {
4756 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4757 		return -EINVAL;
4758 	}
4759 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4760 	if (!config_cmd) {
4761 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4762 		return -ENOMEM;
4763 	}
4764 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4765 	if (!ctrl_ctx) {
4766 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4767 				__func__);
4768 		xhci_free_command(xhci, config_cmd);
4769 		return -ENOMEM;
4770 	}
4771 
4772 	spin_lock_irqsave(&xhci->lock, flags);
4773 	if (hdev->speed == USB_SPEED_HIGH &&
4774 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4775 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4776 		xhci_free_command(xhci, config_cmd);
4777 		spin_unlock_irqrestore(&xhci->lock, flags);
4778 		return -ENOMEM;
4779 	}
4780 
4781 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4782 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4783 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4784 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4785 	/*
4786 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4787 	 * but it may be already set to 1 when setup an xHCI virtual
4788 	 * device, so clear it anyway.
4789 	 */
4790 	if (tt->multi)
4791 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4792 	else if (hdev->speed == USB_SPEED_FULL)
4793 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4794 
4795 	if (xhci->hci_version > 0x95) {
4796 		xhci_dbg(xhci, "xHCI version %x needs hub "
4797 				"TT think time and number of ports\n",
4798 				(unsigned int) xhci->hci_version);
4799 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4800 		/* Set TT think time - convert from ns to FS bit times.
4801 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4802 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4803 		 *
4804 		 * xHCI 1.0: this field shall be 0 if the device is not a
4805 		 * High-spped hub.
4806 		 */
4807 		think_time = tt->think_time;
4808 		if (think_time != 0)
4809 			think_time = (think_time / 666) - 1;
4810 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4811 			slot_ctx->tt_info |=
4812 				cpu_to_le32(TT_THINK_TIME(think_time));
4813 	} else {
4814 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4815 				"TT think time or number of ports\n",
4816 				(unsigned int) xhci->hci_version);
4817 	}
4818 	slot_ctx->dev_state = 0;
4819 	spin_unlock_irqrestore(&xhci->lock, flags);
4820 
4821 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4822 			(xhci->hci_version > 0x95) ?
4823 			"configure endpoint" : "evaluate context");
4824 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4825 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4826 
4827 	/* Issue and wait for the configure endpoint or
4828 	 * evaluate context command.
4829 	 */
4830 	if (xhci->hci_version > 0x95)
4831 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4832 				false, false);
4833 	else
4834 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4835 				true, false);
4836 
4837 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4838 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4839 
4840 	xhci_free_command(xhci, config_cmd);
4841 	return ret;
4842 }
4843 
xhci_get_frame(struct usb_hcd * hcd)4844 int xhci_get_frame(struct usb_hcd *hcd)
4845 {
4846 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4847 	/* EHCI mods by the periodic size.  Why? */
4848 	return readl(&xhci->run_regs->microframe_index) >> 3;
4849 }
4850 
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)4851 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4852 {
4853 	struct xhci_hcd		*xhci;
4854 	struct device		*dev = hcd->self.controller;
4855 	int			retval;
4856 
4857 	/* Accept arbitrarily long scatter-gather lists */
4858 	hcd->self.sg_tablesize = ~0;
4859 
4860 	/* support to build packet from discontinuous buffers */
4861 	hcd->self.no_sg_constraint = 1;
4862 
4863 	/* XHCI controllers don't stop the ep queue on short packets :| */
4864 	hcd->self.no_stop_on_short = 1;
4865 
4866 	xhci = hcd_to_xhci(hcd);
4867 
4868 	if (usb_hcd_is_primary_hcd(hcd)) {
4869 		xhci->main_hcd = hcd;
4870 		/* Mark the first roothub as being USB 2.0.
4871 		 * The xHCI driver will register the USB 3.0 roothub.
4872 		 */
4873 		hcd->speed = HCD_USB2;
4874 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4875 		/*
4876 		 * USB 2.0 roothub under xHCI has an integrated TT,
4877 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4878 		 * companion controller.
4879 		 */
4880 		hcd->has_tt = 1;
4881 	} else {
4882 		if (xhci->sbrn == 0x31) {
4883 			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4884 			hcd->speed = HCD_USB31;
4885 		}
4886 		/* xHCI private pointer was set in xhci_pci_probe for the second
4887 		 * registered roothub.
4888 		 */
4889 		return 0;
4890 	}
4891 
4892 	mutex_init(&xhci->mutex);
4893 	xhci->cap_regs = hcd->regs;
4894 	xhci->op_regs = hcd->regs +
4895 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4896 	xhci->run_regs = hcd->regs +
4897 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4898 	/* Cache read-only capability registers */
4899 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4900 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4901 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4902 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4903 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4904 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4905 	if (xhci->hci_version > 0x100)
4906 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4907 	xhci_print_registers(xhci);
4908 
4909 	xhci->quirks = quirks;
4910 
4911 	get_quirks(dev, xhci);
4912 
4913 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4914 	 * success event after a short transfer. This quirk will ignore such
4915 	 * spurious event.
4916 	 */
4917 	if (xhci->hci_version > 0x96)
4918 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4919 
4920 	/* Make sure the HC is halted. */
4921 	retval = xhci_halt(xhci);
4922 	if (retval)
4923 		return retval;
4924 
4925 	xhci_dbg(xhci, "Resetting HCD\n");
4926 	/* Reset the internal HC memory state and registers. */
4927 	retval = xhci_reset(xhci);
4928 	if (retval)
4929 		return retval;
4930 	xhci_dbg(xhci, "Reset complete\n");
4931 
4932 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4933 	 * if xHC supports 64-bit addressing */
4934 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4935 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4936 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4937 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4938 	} else {
4939 		/*
4940 		 * This is to avoid error in cases where a 32-bit USB
4941 		 * controller is used on a 64-bit capable system.
4942 		 */
4943 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4944 		if (retval)
4945 			return retval;
4946 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4947 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4948 	}
4949 
4950 	xhci_dbg(xhci, "Calling HCD init\n");
4951 	/* Initialize HCD and host controller data structures. */
4952 	retval = xhci_init(hcd);
4953 	if (retval)
4954 		return retval;
4955 	xhci_dbg(xhci, "Called HCD init\n");
4956 
4957 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4958 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4959 
4960 	return 0;
4961 }
4962 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4963 
4964 static const struct hc_driver xhci_hc_driver = {
4965 	.description =		"xhci-hcd",
4966 	.product_desc =		"xHCI Host Controller",
4967 	.hcd_priv_size =	sizeof(struct xhci_hcd *),
4968 
4969 	/*
4970 	 * generic hardware linkage
4971 	 */
4972 	.irq =			xhci_irq,
4973 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4974 
4975 	/*
4976 	 * basic lifecycle operations
4977 	 */
4978 	.reset =		NULL, /* set in xhci_init_driver() */
4979 	.start =		xhci_run,
4980 	.stop =			xhci_stop,
4981 	.shutdown =		xhci_shutdown,
4982 
4983 	/*
4984 	 * managing i/o requests and associated device resources
4985 	 */
4986 	.urb_enqueue =		xhci_urb_enqueue,
4987 	.urb_dequeue =		xhci_urb_dequeue,
4988 	.alloc_dev =		xhci_alloc_dev,
4989 	.free_dev =		xhci_free_dev,
4990 	.alloc_streams =	xhci_alloc_streams,
4991 	.free_streams =		xhci_free_streams,
4992 	.add_endpoint =		xhci_add_endpoint,
4993 	.drop_endpoint =	xhci_drop_endpoint,
4994 	.endpoint_reset =	xhci_endpoint_reset,
4995 	.check_bandwidth =	xhci_check_bandwidth,
4996 	.reset_bandwidth =	xhci_reset_bandwidth,
4997 	.address_device =	xhci_address_device,
4998 	.enable_device =	xhci_enable_device,
4999 	.update_hub_device =	xhci_update_hub_device,
5000 	.reset_device =		xhci_discover_or_reset_device,
5001 
5002 	/*
5003 	 * scheduling support
5004 	 */
5005 	.get_frame_number =	xhci_get_frame,
5006 
5007 	/*
5008 	 * root hub support
5009 	 */
5010 	.hub_control =		xhci_hub_control,
5011 	.hub_status_data =	xhci_hub_status_data,
5012 	.bus_suspend =		xhci_bus_suspend,
5013 	.bus_resume =		xhci_bus_resume,
5014 
5015 	/*
5016 	 * call back when device connected and addressed
5017 	 */
5018 	.update_device =        xhci_update_device,
5019 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5020 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5021 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5022 	.find_raw_port_number =	xhci_find_raw_port_number,
5023 };
5024 
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5025 void xhci_init_driver(struct hc_driver *drv,
5026 		      const struct xhci_driver_overrides *over)
5027 {
5028 	BUG_ON(!over);
5029 
5030 	/* Copy the generic table to drv then apply the overrides */
5031 	*drv = xhci_hc_driver;
5032 
5033 	if (over) {
5034 		drv->hcd_priv_size += over->extra_priv_size;
5035 		if (over->reset)
5036 			drv->reset = over->reset;
5037 		if (over->start)
5038 			drv->start = over->start;
5039 	}
5040 }
5041 EXPORT_SYMBOL_GPL(xhci_init_driver);
5042 
5043 MODULE_DESCRIPTION(DRIVER_DESC);
5044 MODULE_AUTHOR(DRIVER_AUTHOR);
5045 MODULE_LICENSE("GPL");
5046 
xhci_hcd_init(void)5047 static int __init xhci_hcd_init(void)
5048 {
5049 	/*
5050 	 * Check the compiler generated sizes of structures that must be laid
5051 	 * out in specific ways for hardware access.
5052 	 */
5053 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5054 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5055 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5056 	/* xhci_device_control has eight fields, and also
5057 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5058 	 */
5059 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5060 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5061 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5062 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5063 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5064 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5065 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5066 
5067 	if (usb_disabled())
5068 		return -ENODEV;
5069 
5070 	return 0;
5071 }
5072 
5073 /*
5074  * If an init function is provided, an exit function must also be provided
5075  * to allow module unload.
5076  */
xhci_hcd_fini(void)5077 static void __exit xhci_hcd_fini(void) { }
5078 
5079 module_init(xhci_hcd_init);
5080 module_exit(xhci_hcd_fini);
5081