1/* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23#include <linux/pci.h> 24#include <linux/irq.h> 25#include <linux/log2.h> 26#include <linux/module.h> 27#include <linux/moduleparam.h> 28#include <linux/slab.h> 29#include <linux/dmi.h> 30#include <linux/dma-mapping.h> 31 32#include "xhci.h" 33#include "xhci-trace.h" 34 35#define DRIVER_AUTHOR "Sarah Sharp" 36#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 37 38#define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 39 40/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 41static int link_quirk; 42module_param(link_quirk, int, S_IRUGO | S_IWUSR); 43MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 44 45static unsigned int quirks; 46module_param(quirks, uint, S_IRUGO); 47MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 48 49/* TODO: copied from ehci-hcd.c - can this be refactored? */ 50/* 51 * xhci_handshake - spin reading hc until handshake completes or fails 52 * @ptr: address of hc register to be read 53 * @mask: bits to look at in result of read 54 * @done: value of those bits when handshake succeeds 55 * @usec: timeout in microseconds 56 * 57 * Returns negative errno, or zero on success 58 * 59 * Success happens when the "mask" bits have the specified value (hardware 60 * handshake done). There are two failure modes: "usec" have passed (major 61 * hardware flakeout), or the register reads as all-ones (hardware removed). 62 */ 63int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 64{ 65 u32 result; 66 67 do { 68 result = readl(ptr); 69 if (result == ~(u32)0) /* card removed */ 70 return -ENODEV; 71 result &= mask; 72 if (result == done) 73 return 0; 74 udelay(1); 75 usec--; 76 } while (usec > 0); 77 return -ETIMEDOUT; 78} 79 80/* 81 * Disable interrupts and begin the xHCI halting process. 82 */ 83void xhci_quiesce(struct xhci_hcd *xhci) 84{ 85 u32 halted; 86 u32 cmd; 87 u32 mask; 88 89 mask = ~(XHCI_IRQS); 90 halted = readl(&xhci->op_regs->status) & STS_HALT; 91 if (!halted) 92 mask &= ~CMD_RUN; 93 94 cmd = readl(&xhci->op_regs->command); 95 cmd &= mask; 96 writel(cmd, &xhci->op_regs->command); 97} 98 99/* 100 * Force HC into halt state. 101 * 102 * Disable any IRQs and clear the run/stop bit. 103 * HC will complete any current and actively pipelined transactions, and 104 * should halt within 16 ms of the run/stop bit being cleared. 105 * Read HC Halted bit in the status register to see when the HC is finished. 106 */ 107int xhci_halt(struct xhci_hcd *xhci) 108{ 109 int ret; 110 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 111 xhci_quiesce(xhci); 112 113 ret = xhci_handshake(&xhci->op_regs->status, 114 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 115 if (!ret) { 116 xhci->xhc_state |= XHCI_STATE_HALTED; 117 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 118 } else 119 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 120 XHCI_MAX_HALT_USEC); 121 return ret; 122} 123 124/* 125 * Set the run bit and wait for the host to be running. 126 */ 127static int xhci_start(struct xhci_hcd *xhci) 128{ 129 u32 temp; 130 int ret; 131 132 temp = readl(&xhci->op_regs->command); 133 temp |= (CMD_RUN); 134 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 135 temp); 136 writel(temp, &xhci->op_regs->command); 137 138 /* 139 * Wait for the HCHalted Status bit to be 0 to indicate the host is 140 * running. 141 */ 142 ret = xhci_handshake(&xhci->op_regs->status, 143 STS_HALT, 0, XHCI_MAX_HALT_USEC); 144 if (ret == -ETIMEDOUT) 145 xhci_err(xhci, "Host took too long to start, " 146 "waited %u microseconds.\n", 147 XHCI_MAX_HALT_USEC); 148 if (!ret) 149 /* clear state flags. Including dying, halted or removing */ 150 xhci->xhc_state = 0; 151 152 return ret; 153} 154 155/* 156 * Reset a halted HC. 157 * 158 * This resets pipelines, timers, counters, state machines, etc. 159 * Transactions will be terminated immediately, and operational registers 160 * will be set to their defaults. 161 */ 162int xhci_reset(struct xhci_hcd *xhci) 163{ 164 u32 command; 165 u32 state; 166 int ret, i; 167 168 state = readl(&xhci->op_regs->status); 169 if ((state & STS_HALT) == 0) { 170 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 171 return 0; 172 } 173 174 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 175 command = readl(&xhci->op_regs->command); 176 command |= CMD_RESET; 177 writel(command, &xhci->op_regs->command); 178 179 /* Existing Intel xHCI controllers require a delay of 1 mS, 180 * after setting the CMD_RESET bit, and before accessing any 181 * HC registers. This allows the HC to complete the 182 * reset operation and be ready for HC register access. 183 * Without this delay, the subsequent HC register access, 184 * may result in a system hang very rarely. 185 */ 186 if (xhci->quirks & XHCI_INTEL_HOST) 187 udelay(1000); 188 189 ret = xhci_handshake(&xhci->op_regs->command, 190 CMD_RESET, 0, 10 * 1000 * 1000); 191 if (ret) 192 return ret; 193 194 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 195 "Wait for controller to be ready for doorbell rings"); 196 /* 197 * xHCI cannot write to any doorbells or operational registers other 198 * than status until the "Controller Not Ready" flag is cleared. 199 */ 200 ret = xhci_handshake(&xhci->op_regs->status, 201 STS_CNR, 0, 10 * 1000 * 1000); 202 203 for (i = 0; i < 2; ++i) { 204 xhci->bus_state[i].port_c_suspend = 0; 205 xhci->bus_state[i].suspended_ports = 0; 206 xhci->bus_state[i].resuming_ports = 0; 207 } 208 209 return ret; 210} 211 212#ifdef CONFIG_PCI 213static int xhci_free_msi(struct xhci_hcd *xhci) 214{ 215 int i; 216 217 if (!xhci->msix_entries) 218 return -EINVAL; 219 220 for (i = 0; i < xhci->msix_count; i++) 221 if (xhci->msix_entries[i].vector) 222 free_irq(xhci->msix_entries[i].vector, 223 xhci_to_hcd(xhci)); 224 return 0; 225} 226 227/* 228 * Set up MSI 229 */ 230static int xhci_setup_msi(struct xhci_hcd *xhci) 231{ 232 int ret; 233 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 234 235 ret = pci_enable_msi(pdev); 236 if (ret) { 237 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 238 "failed to allocate MSI entry"); 239 return ret; 240 } 241 242 ret = request_irq(pdev->irq, xhci_msi_irq, 243 0, "xhci_hcd", xhci_to_hcd(xhci)); 244 if (ret) { 245 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 246 "disable MSI interrupt"); 247 pci_disable_msi(pdev); 248 } 249 250 return ret; 251} 252 253/* 254 * Free IRQs 255 * free all IRQs request 256 */ 257static void xhci_free_irq(struct xhci_hcd *xhci) 258{ 259 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 260 int ret; 261 262 /* return if using legacy interrupt */ 263 if (xhci_to_hcd(xhci)->irq > 0) 264 return; 265 266 ret = xhci_free_msi(xhci); 267 if (!ret) 268 return; 269 if (pdev->irq > 0) 270 free_irq(pdev->irq, xhci_to_hcd(xhci)); 271 272 return; 273} 274 275/* 276 * Set up MSI-X 277 */ 278static int xhci_setup_msix(struct xhci_hcd *xhci) 279{ 280 int i, ret = 0; 281 struct usb_hcd *hcd = xhci_to_hcd(xhci); 282 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 283 284 /* 285 * calculate number of msi-x vectors supported. 286 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 287 * with max number of interrupters based on the xhci HCSPARAMS1. 288 * - num_online_cpus: maximum msi-x vectors per CPUs core. 289 * Add additional 1 vector to ensure always available interrupt. 290 */ 291 xhci->msix_count = min(num_online_cpus() + 1, 292 HCS_MAX_INTRS(xhci->hcs_params1)); 293 294 xhci->msix_entries = 295 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 296 GFP_KERNEL); 297 if (!xhci->msix_entries) { 298 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 299 return -ENOMEM; 300 } 301 302 for (i = 0; i < xhci->msix_count; i++) { 303 xhci->msix_entries[i].entry = i; 304 xhci->msix_entries[i].vector = 0; 305 } 306 307 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count); 308 if (ret) { 309 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 310 "Failed to enable MSI-X"); 311 goto free_entries; 312 } 313 314 for (i = 0; i < xhci->msix_count; i++) { 315 ret = request_irq(xhci->msix_entries[i].vector, 316 xhci_msi_irq, 317 0, "xhci_hcd", xhci_to_hcd(xhci)); 318 if (ret) 319 goto disable_msix; 320 } 321 322 hcd->msix_enabled = 1; 323 return ret; 324 325disable_msix: 326 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 327 xhci_free_irq(xhci); 328 pci_disable_msix(pdev); 329free_entries: 330 kfree(xhci->msix_entries); 331 xhci->msix_entries = NULL; 332 return ret; 333} 334 335/* Free any IRQs and disable MSI-X */ 336static void xhci_cleanup_msix(struct xhci_hcd *xhci) 337{ 338 struct usb_hcd *hcd = xhci_to_hcd(xhci); 339 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 340 341 if (xhci->quirks & XHCI_PLAT) 342 return; 343 344 xhci_free_irq(xhci); 345 346 if (xhci->msix_entries) { 347 pci_disable_msix(pdev); 348 kfree(xhci->msix_entries); 349 xhci->msix_entries = NULL; 350 } else { 351 pci_disable_msi(pdev); 352 } 353 354 hcd->msix_enabled = 0; 355 return; 356} 357 358static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 359{ 360 int i; 361 362 if (xhci->msix_entries) { 363 for (i = 0; i < xhci->msix_count; i++) 364 synchronize_irq(xhci->msix_entries[i].vector); 365 } 366} 367 368static int xhci_try_enable_msi(struct usb_hcd *hcd) 369{ 370 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 371 struct pci_dev *pdev; 372 int ret; 373 374 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 375 if (xhci->quirks & XHCI_PLAT) 376 return 0; 377 378 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 379 /* 380 * Some Fresco Logic host controllers advertise MSI, but fail to 381 * generate interrupts. Don't even try to enable MSI. 382 */ 383 if (xhci->quirks & XHCI_BROKEN_MSI) 384 goto legacy_irq; 385 386 /* unregister the legacy interrupt */ 387 if (hcd->irq) 388 free_irq(hcd->irq, hcd); 389 hcd->irq = 0; 390 391 ret = xhci_setup_msix(xhci); 392 if (ret) 393 /* fall back to msi*/ 394 ret = xhci_setup_msi(xhci); 395 396 if (!ret) 397 /* hcd->irq is 0, we have MSI */ 398 return 0; 399 400 if (!pdev->irq) { 401 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 402 return -EINVAL; 403 } 404 405 legacy_irq: 406 if (!strlen(hcd->irq_descr)) 407 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 408 hcd->driver->description, hcd->self.busnum); 409 410 /* fall back to legacy interrupt*/ 411 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 412 hcd->irq_descr, hcd); 413 if (ret) { 414 xhci_err(xhci, "request interrupt %d failed\n", 415 pdev->irq); 416 return ret; 417 } 418 hcd->irq = pdev->irq; 419 return 0; 420} 421 422#else 423 424static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 425{ 426 return 0; 427} 428 429static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 430{ 431} 432 433static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 434{ 435} 436 437#endif 438 439static void compliance_mode_recovery(unsigned long arg) 440{ 441 struct xhci_hcd *xhci; 442 struct usb_hcd *hcd; 443 u32 temp; 444 int i; 445 446 xhci = (struct xhci_hcd *)arg; 447 448 for (i = 0; i < xhci->num_usb3_ports; i++) { 449 temp = readl(xhci->usb3_ports[i]); 450 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 451 /* 452 * Compliance Mode Detected. Letting USB Core 453 * handle the Warm Reset 454 */ 455 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 456 "Compliance mode detected->port %d", 457 i + 1); 458 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 459 "Attempting compliance mode recovery"); 460 hcd = xhci->shared_hcd; 461 462 if (hcd->state == HC_STATE_SUSPENDED) 463 usb_hcd_resume_root_hub(hcd); 464 465 usb_hcd_poll_rh_status(hcd); 466 } 467 } 468 469 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 470 mod_timer(&xhci->comp_mode_recovery_timer, 471 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 472} 473 474/* 475 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 476 * that causes ports behind that hardware to enter compliance mode sometimes. 477 * The quirk creates a timer that polls every 2 seconds the link state of 478 * each host controller's port and recovers it by issuing a Warm reset 479 * if Compliance mode is detected, otherwise the port will become "dead" (no 480 * device connections or disconnections will be detected anymore). Becasue no 481 * status event is generated when entering compliance mode (per xhci spec), 482 * this quirk is needed on systems that have the failing hardware installed. 483 */ 484static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 485{ 486 xhci->port_status_u0 = 0; 487 setup_timer(&xhci->comp_mode_recovery_timer, 488 compliance_mode_recovery, (unsigned long)xhci); 489 xhci->comp_mode_recovery_timer.expires = jiffies + 490 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 491 492 set_timer_slack(&xhci->comp_mode_recovery_timer, 493 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 494 add_timer(&xhci->comp_mode_recovery_timer); 495 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 496 "Compliance mode recovery timer initialized"); 497} 498 499/* 500 * This function identifies the systems that have installed the SN65LVPE502CP 501 * USB3.0 re-driver and that need the Compliance Mode Quirk. 502 * Systems: 503 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 504 */ 505static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 506{ 507 const char *dmi_product_name, *dmi_sys_vendor; 508 509 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 510 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 511 if (!dmi_product_name || !dmi_sys_vendor) 512 return false; 513 514 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 515 return false; 516 517 if (strstr(dmi_product_name, "Z420") || 518 strstr(dmi_product_name, "Z620") || 519 strstr(dmi_product_name, "Z820") || 520 strstr(dmi_product_name, "Z1 Workstation")) 521 return true; 522 523 return false; 524} 525 526static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 527{ 528 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 529} 530 531 532/* 533 * Initialize memory for HCD and xHC (one-time init). 534 * 535 * Program the PAGESIZE register, initialize the device context array, create 536 * device contexts (?), set up a command ring segment (or two?), create event 537 * ring (one for now). 538 */ 539int xhci_init(struct usb_hcd *hcd) 540{ 541 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 542 int retval = 0; 543 544 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 545 spin_lock_init(&xhci->lock); 546 if (xhci->hci_version == 0x95 && link_quirk) { 547 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 548 "QUIRK: Not clearing Link TRB chain bits."); 549 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 550 } else { 551 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 552 "xHCI doesn't need link TRB QUIRK"); 553 } 554 retval = xhci_mem_init(xhci, GFP_KERNEL); 555 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 556 557 /* Initializing Compliance Mode Recovery Data If Needed */ 558 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 559 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 560 compliance_mode_recovery_timer_init(xhci); 561 } 562 563 return retval; 564} 565 566/*-------------------------------------------------------------------------*/ 567 568 569static int xhci_run_finished(struct xhci_hcd *xhci) 570{ 571 if (xhci_start(xhci)) { 572 xhci_halt(xhci); 573 return -ENODEV; 574 } 575 xhci->shared_hcd->state = HC_STATE_RUNNING; 576 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 577 578 if (xhci->quirks & XHCI_NEC_HOST) 579 xhci_ring_cmd_db(xhci); 580 581 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 582 "Finished xhci_run for USB3 roothub"); 583 return 0; 584} 585 586/* 587 * Start the HC after it was halted. 588 * 589 * This function is called by the USB core when the HC driver is added. 590 * Its opposite is xhci_stop(). 591 * 592 * xhci_init() must be called once before this function can be called. 593 * Reset the HC, enable device slot contexts, program DCBAAP, and 594 * set command ring pointer and event ring pointer. 595 * 596 * Setup MSI-X vectors and enable interrupts. 597 */ 598int xhci_run(struct usb_hcd *hcd) 599{ 600 u32 temp; 601 u64 temp_64; 602 int ret; 603 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 604 605 /* Start the xHCI host controller running only after the USB 2.0 roothub 606 * is setup. 607 */ 608 609 hcd->uses_new_polling = 1; 610 if (!usb_hcd_is_primary_hcd(hcd)) 611 return xhci_run_finished(xhci); 612 613 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 614 615 ret = xhci_try_enable_msi(hcd); 616 if (ret) 617 return ret; 618 619 xhci_dbg(xhci, "Command ring memory map follows:\n"); 620 xhci_debug_ring(xhci, xhci->cmd_ring); 621 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 622 xhci_dbg_cmd_ptrs(xhci); 623 624 xhci_dbg(xhci, "ERST memory map follows:\n"); 625 xhci_dbg_erst(xhci, &xhci->erst); 626 xhci_dbg(xhci, "Event ring:\n"); 627 xhci_debug_ring(xhci, xhci->event_ring); 628 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 629 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 630 temp_64 &= ~ERST_PTR_MASK; 631 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 632 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 633 634 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 635 "// Set the interrupt modulation register"); 636 temp = readl(&xhci->ir_set->irq_control); 637 temp &= ~ER_IRQ_INTERVAL_MASK; 638 temp |= (u32) 160; 639 writel(temp, &xhci->ir_set->irq_control); 640 641 /* Set the HCD state before we enable the irqs */ 642 temp = readl(&xhci->op_regs->command); 643 temp |= (CMD_EIE); 644 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 645 "// Enable interrupts, cmd = 0x%x.", temp); 646 writel(temp, &xhci->op_regs->command); 647 648 temp = readl(&xhci->ir_set->irq_pending); 649 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 650 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 651 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 652 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 653 xhci_print_ir_set(xhci, 0); 654 655 if (xhci->quirks & XHCI_NEC_HOST) { 656 struct xhci_command *command; 657 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 658 if (!command) 659 return -ENOMEM; 660 xhci_queue_vendor_command(xhci, command, 0, 0, 0, 661 TRB_TYPE(TRB_NEC_GET_FW)); 662 } 663 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 664 "Finished xhci_run for USB2 roothub"); 665 return 0; 666} 667EXPORT_SYMBOL_GPL(xhci_run); 668 669/* 670 * Stop xHCI driver. 671 * 672 * This function is called by the USB core when the HC driver is removed. 673 * Its opposite is xhci_run(). 674 * 675 * Disable device contexts, disable IRQs, and quiesce the HC. 676 * Reset the HC, finish any completed transactions, and cleanup memory. 677 */ 678void xhci_stop(struct usb_hcd *hcd) 679{ 680 u32 temp; 681 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 682 683 if (xhci->xhc_state & XHCI_STATE_HALTED) 684 return; 685 686 mutex_lock(&xhci->mutex); 687 spin_lock_irq(&xhci->lock); 688 xhci->xhc_state |= XHCI_STATE_HALTED; 689 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 690 691 /* Make sure the xHC is halted for a USB3 roothub 692 * (xhci_stop() could be called as part of failed init). 693 */ 694 xhci_halt(xhci); 695 xhci_reset(xhci); 696 spin_unlock_irq(&xhci->lock); 697 698 xhci_cleanup_msix(xhci); 699 700 /* Deleting Compliance Mode Recovery Timer */ 701 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 702 (!(xhci_all_ports_seen_u0(xhci)))) { 703 del_timer_sync(&xhci->comp_mode_recovery_timer); 704 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 705 "%s: compliance mode recovery timer deleted", 706 __func__); 707 } 708 709 if (xhci->quirks & XHCI_AMD_PLL_FIX) 710 usb_amd_dev_put(); 711 712 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 713 "// Disabling event ring interrupts"); 714 temp = readl(&xhci->op_regs->status); 715 writel(temp & ~STS_EINT, &xhci->op_regs->status); 716 temp = readl(&xhci->ir_set->irq_pending); 717 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 718 xhci_print_ir_set(xhci, 0); 719 720 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 721 xhci_mem_cleanup(xhci); 722 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 723 "xhci_stop completed - status = %x", 724 readl(&xhci->op_regs->status)); 725 mutex_unlock(&xhci->mutex); 726} 727 728/* 729 * Shutdown HC (not bus-specific) 730 * 731 * This is called when the machine is rebooting or halting. We assume that the 732 * machine will be powered off, and the HC's internal state will be reset. 733 * Don't bother to free memory. 734 * 735 * This will only ever be called with the main usb_hcd (the USB3 roothub). 736 */ 737void xhci_shutdown(struct usb_hcd *hcd) 738{ 739 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 740 741 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 742 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 743 744 spin_lock_irq(&xhci->lock); 745 xhci_halt(xhci); 746 /* Workaround for spurious wakeups at shutdown with HSW */ 747 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 748 xhci_reset(xhci); 749 spin_unlock_irq(&xhci->lock); 750 751 xhci_cleanup_msix(xhci); 752 753 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 754 "xhci_shutdown completed - status = %x", 755 readl(&xhci->op_regs->status)); 756 757 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 758 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 759 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 760} 761 762#ifdef CONFIG_PM 763static void xhci_save_registers(struct xhci_hcd *xhci) 764{ 765 xhci->s3.command = readl(&xhci->op_regs->command); 766 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 767 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 768 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 769 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 770 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 771 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 772 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 773 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 774} 775 776static void xhci_restore_registers(struct xhci_hcd *xhci) 777{ 778 writel(xhci->s3.command, &xhci->op_regs->command); 779 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 780 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 781 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 782 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 783 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 784 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 785 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 786 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 787} 788 789static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 790{ 791 u64 val_64; 792 793 /* step 2: initialize command ring buffer */ 794 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 795 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 796 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 797 xhci->cmd_ring->dequeue) & 798 (u64) ~CMD_RING_RSVD_BITS) | 799 xhci->cmd_ring->cycle_state; 800 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 801 "// Setting command ring address to 0x%llx", 802 (long unsigned long) val_64); 803 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 804} 805 806/* 807 * The whole command ring must be cleared to zero when we suspend the host. 808 * 809 * The host doesn't save the command ring pointer in the suspend well, so we 810 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 811 * aligned, because of the reserved bits in the command ring dequeue pointer 812 * register. Therefore, we can't just set the dequeue pointer back in the 813 * middle of the ring (TRBs are 16-byte aligned). 814 */ 815static void xhci_clear_command_ring(struct xhci_hcd *xhci) 816{ 817 struct xhci_ring *ring; 818 struct xhci_segment *seg; 819 820 ring = xhci->cmd_ring; 821 seg = ring->deq_seg; 822 do { 823 memset(seg->trbs, 0, 824 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 825 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 826 cpu_to_le32(~TRB_CYCLE); 827 seg = seg->next; 828 } while (seg != ring->deq_seg); 829 830 /* Reset the software enqueue and dequeue pointers */ 831 ring->deq_seg = ring->first_seg; 832 ring->dequeue = ring->first_seg->trbs; 833 ring->enq_seg = ring->deq_seg; 834 ring->enqueue = ring->dequeue; 835 836 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 837 /* 838 * Ring is now zeroed, so the HW should look for change of ownership 839 * when the cycle bit is set to 1. 840 */ 841 ring->cycle_state = 1; 842 843 /* 844 * Reset the hardware dequeue pointer. 845 * Yes, this will need to be re-written after resume, but we're paranoid 846 * and want to make sure the hardware doesn't access bogus memory 847 * because, say, the BIOS or an SMI started the host without changing 848 * the command ring pointers. 849 */ 850 xhci_set_cmd_ring_deq(xhci); 851} 852 853static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 854{ 855 int port_index; 856 __le32 __iomem **port_array; 857 unsigned long flags; 858 u32 t1, t2; 859 860 spin_lock_irqsave(&xhci->lock, flags); 861 862 /* disble usb3 ports Wake bits*/ 863 port_index = xhci->num_usb3_ports; 864 port_array = xhci->usb3_ports; 865 while (port_index--) { 866 t1 = readl(port_array[port_index]); 867 t1 = xhci_port_state_to_neutral(t1); 868 t2 = t1 & ~PORT_WAKE_BITS; 869 if (t1 != t2) 870 writel(t2, port_array[port_index]); 871 } 872 873 /* disble usb2 ports Wake bits*/ 874 port_index = xhci->num_usb2_ports; 875 port_array = xhci->usb2_ports; 876 while (port_index--) { 877 t1 = readl(port_array[port_index]); 878 t1 = xhci_port_state_to_neutral(t1); 879 t2 = t1 & ~PORT_WAKE_BITS; 880 if (t1 != t2) 881 writel(t2, port_array[port_index]); 882 } 883 884 spin_unlock_irqrestore(&xhci->lock, flags); 885} 886 887/* 888 * Stop HC (not bus-specific) 889 * 890 * This is called when the machine transition into S3/S4 mode. 891 * 892 */ 893int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 894{ 895 int rc = 0; 896 unsigned int delay = XHCI_MAX_HALT_USEC; 897 struct usb_hcd *hcd = xhci_to_hcd(xhci); 898 u32 command; 899 900 if (!hcd->state) 901 return 0; 902 903 if (hcd->state != HC_STATE_SUSPENDED || 904 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 905 return -EINVAL; 906 907 /* Clear root port wake on bits if wakeup not allowed. */ 908 if (!do_wakeup) 909 xhci_disable_port_wake_on_bits(xhci); 910 911 /* Don't poll the roothubs on bus suspend. */ 912 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 913 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 914 del_timer_sync(&hcd->rh_timer); 915 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 916 del_timer_sync(&xhci->shared_hcd->rh_timer); 917 918 spin_lock_irq(&xhci->lock); 919 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 920 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 921 /* step 1: stop endpoint */ 922 /* skipped assuming that port suspend has done */ 923 924 /* step 2: clear Run/Stop bit */ 925 command = readl(&xhci->op_regs->command); 926 command &= ~CMD_RUN; 927 writel(command, &xhci->op_regs->command); 928 929 /* Some chips from Fresco Logic need an extraordinary delay */ 930 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 931 932 if (xhci_handshake(&xhci->op_regs->status, 933 STS_HALT, STS_HALT, delay)) { 934 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 935 spin_unlock_irq(&xhci->lock); 936 return -ETIMEDOUT; 937 } 938 xhci_clear_command_ring(xhci); 939 940 /* step 3: save registers */ 941 xhci_save_registers(xhci); 942 943 /* step 4: set CSS flag */ 944 command = readl(&xhci->op_regs->command); 945 command |= CMD_CSS; 946 writel(command, &xhci->op_regs->command); 947 if (xhci_handshake(&xhci->op_regs->status, 948 STS_SAVE, 0, 10 * 1000)) { 949 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 950 spin_unlock_irq(&xhci->lock); 951 return -ETIMEDOUT; 952 } 953 spin_unlock_irq(&xhci->lock); 954 955 /* 956 * Deleting Compliance Mode Recovery Timer because the xHCI Host 957 * is about to be suspended. 958 */ 959 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 960 (!(xhci_all_ports_seen_u0(xhci)))) { 961 del_timer_sync(&xhci->comp_mode_recovery_timer); 962 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 963 "%s: compliance mode recovery timer deleted", 964 __func__); 965 } 966 967 /* step 5: remove core well power */ 968 /* synchronize irq when using MSI-X */ 969 xhci_msix_sync_irqs(xhci); 970 971 return rc; 972} 973EXPORT_SYMBOL_GPL(xhci_suspend); 974 975/* 976 * start xHC (not bus-specific) 977 * 978 * This is called when the machine transition from S3/S4 mode. 979 * 980 */ 981int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 982{ 983 u32 command, temp = 0, status; 984 struct usb_hcd *hcd = xhci_to_hcd(xhci); 985 struct usb_hcd *secondary_hcd; 986 int retval = 0; 987 bool comp_timer_running = false; 988 989 if (!hcd->state) 990 return 0; 991 992 /* Wait a bit if either of the roothubs need to settle from the 993 * transition into bus suspend. 994 */ 995 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 996 time_before(jiffies, 997 xhci->bus_state[1].next_statechange)) 998 msleep(100); 999 1000 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1001 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1002 1003 spin_lock_irq(&xhci->lock); 1004 if (xhci->quirks & XHCI_RESET_ON_RESUME) 1005 hibernated = true; 1006 1007 if (!hibernated) { 1008 /* step 1: restore register */ 1009 xhci_restore_registers(xhci); 1010 /* step 2: initialize command ring buffer */ 1011 xhci_set_cmd_ring_deq(xhci); 1012 /* step 3: restore state and start state*/ 1013 /* step 3: set CRS flag */ 1014 command = readl(&xhci->op_regs->command); 1015 command |= CMD_CRS; 1016 writel(command, &xhci->op_regs->command); 1017 if (xhci_handshake(&xhci->op_regs->status, 1018 STS_RESTORE, 0, 10 * 1000)) { 1019 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1020 spin_unlock_irq(&xhci->lock); 1021 return -ETIMEDOUT; 1022 } 1023 temp = readl(&xhci->op_regs->status); 1024 } 1025 1026 /* If restore operation fails, re-initialize the HC during resume */ 1027 if ((temp & STS_SRE) || hibernated) { 1028 1029 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1030 !(xhci_all_ports_seen_u0(xhci))) { 1031 del_timer_sync(&xhci->comp_mode_recovery_timer); 1032 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1033 "Compliance Mode Recovery Timer deleted!"); 1034 } 1035 1036 /* Let the USB core know _both_ roothubs lost power. */ 1037 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1038 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1039 1040 xhci_dbg(xhci, "Stop HCD\n"); 1041 xhci_halt(xhci); 1042 xhci_reset(xhci); 1043 spin_unlock_irq(&xhci->lock); 1044 xhci_cleanup_msix(xhci); 1045 1046 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1047 temp = readl(&xhci->op_regs->status); 1048 writel(temp & ~STS_EINT, &xhci->op_regs->status); 1049 temp = readl(&xhci->ir_set->irq_pending); 1050 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1051 xhci_print_ir_set(xhci, 0); 1052 1053 xhci_dbg(xhci, "cleaning up memory\n"); 1054 xhci_mem_cleanup(xhci); 1055 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1056 readl(&xhci->op_regs->status)); 1057 1058 /* USB core calls the PCI reinit and start functions twice: 1059 * first with the primary HCD, and then with the secondary HCD. 1060 * If we don't do the same, the host will never be started. 1061 */ 1062 if (!usb_hcd_is_primary_hcd(hcd)) 1063 secondary_hcd = hcd; 1064 else 1065 secondary_hcd = xhci->shared_hcd; 1066 1067 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1068 retval = xhci_init(hcd->primary_hcd); 1069 if (retval) 1070 return retval; 1071 comp_timer_running = true; 1072 1073 xhci_dbg(xhci, "Start the primary HCD\n"); 1074 retval = xhci_run(hcd->primary_hcd); 1075 if (!retval) { 1076 xhci_dbg(xhci, "Start the secondary HCD\n"); 1077 retval = xhci_run(secondary_hcd); 1078 } 1079 hcd->state = HC_STATE_SUSPENDED; 1080 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1081 goto done; 1082 } 1083 1084 /* step 4: set Run/Stop bit */ 1085 command = readl(&xhci->op_regs->command); 1086 command |= CMD_RUN; 1087 writel(command, &xhci->op_regs->command); 1088 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1089 0, 250 * 1000); 1090 1091 /* step 5: walk topology and initialize portsc, 1092 * portpmsc and portli 1093 */ 1094 /* this is done in bus_resume */ 1095 1096 /* step 6: restart each of the previously 1097 * Running endpoints by ringing their doorbells 1098 */ 1099 1100 spin_unlock_irq(&xhci->lock); 1101 1102 done: 1103 if (retval == 0) { 1104 /* Resume root hubs only when have pending events. */ 1105 status = readl(&xhci->op_regs->status); 1106 if (status & STS_EINT) { 1107 usb_hcd_resume_root_hub(xhci->shared_hcd); 1108 usb_hcd_resume_root_hub(hcd); 1109 } 1110 } 1111 1112 /* 1113 * If system is subject to the Quirk, Compliance Mode Timer needs to 1114 * be re-initialized Always after a system resume. Ports are subject 1115 * to suffer the Compliance Mode issue again. It doesn't matter if 1116 * ports have entered previously to U0 before system's suspension. 1117 */ 1118 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1119 compliance_mode_recovery_timer_init(xhci); 1120 1121 /* Re-enable port polling. */ 1122 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1123 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1124 usb_hcd_poll_rh_status(xhci->shared_hcd); 1125 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1126 usb_hcd_poll_rh_status(hcd); 1127 1128 return retval; 1129} 1130EXPORT_SYMBOL_GPL(xhci_resume); 1131#endif /* CONFIG_PM */ 1132 1133/*-------------------------------------------------------------------------*/ 1134 1135/** 1136 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1137 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1138 * value to right shift 1 for the bitmask. 1139 * 1140 * Index = (epnum * 2) + direction - 1, 1141 * where direction = 0 for OUT, 1 for IN. 1142 * For control endpoints, the IN index is used (OUT index is unused), so 1143 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1144 */ 1145unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1146{ 1147 unsigned int index; 1148 if (usb_endpoint_xfer_control(desc)) 1149 index = (unsigned int) (usb_endpoint_num(desc)*2); 1150 else 1151 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1152 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1153 return index; 1154} 1155 1156/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1157 * address from the XHCI endpoint index. 1158 */ 1159unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1160{ 1161 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1162 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1163 return direction | number; 1164} 1165 1166/* Find the flag for this endpoint (for use in the control context). Use the 1167 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1168 * bit 1, etc. 1169 */ 1170unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1171{ 1172 return 1 << (xhci_get_endpoint_index(desc) + 1); 1173} 1174 1175/* Find the flag for this endpoint (for use in the control context). Use the 1176 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1177 * bit 1, etc. 1178 */ 1179unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1180{ 1181 return 1 << (ep_index + 1); 1182} 1183 1184/* Compute the last valid endpoint context index. Basically, this is the 1185 * endpoint index plus one. For slot contexts with more than valid endpoint, 1186 * we find the most significant bit set in the added contexts flags. 1187 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1188 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1189 */ 1190unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1191{ 1192 return fls(added_ctxs) - 1; 1193} 1194 1195/* Returns 1 if the arguments are OK; 1196 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1197 */ 1198static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1199 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1200 const char *func) { 1201 struct xhci_hcd *xhci; 1202 struct xhci_virt_device *virt_dev; 1203 1204 if (!hcd || (check_ep && !ep) || !udev) { 1205 pr_debug("xHCI %s called with invalid args\n", func); 1206 return -EINVAL; 1207 } 1208 if (!udev->parent) { 1209 pr_debug("xHCI %s called for root hub\n", func); 1210 return 0; 1211 } 1212 1213 xhci = hcd_to_xhci(hcd); 1214 if (check_virt_dev) { 1215 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1216 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1217 func); 1218 return -EINVAL; 1219 } 1220 1221 virt_dev = xhci->devs[udev->slot_id]; 1222 if (virt_dev->udev != udev) { 1223 xhci_dbg(xhci, "xHCI %s called with udev and " 1224 "virt_dev does not match\n", func); 1225 return -EINVAL; 1226 } 1227 } 1228 1229 if (xhci->xhc_state & XHCI_STATE_HALTED) 1230 return -ENODEV; 1231 1232 return 1; 1233} 1234 1235static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1236 struct usb_device *udev, struct xhci_command *command, 1237 bool ctx_change, bool must_succeed); 1238 1239/* 1240 * Full speed devices may have a max packet size greater than 8 bytes, but the 1241 * USB core doesn't know that until it reads the first 8 bytes of the 1242 * descriptor. If the usb_device's max packet size changes after that point, 1243 * we need to issue an evaluate context command and wait on it. 1244 */ 1245static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1246 unsigned int ep_index, struct urb *urb) 1247{ 1248 struct xhci_container_ctx *out_ctx; 1249 struct xhci_input_control_ctx *ctrl_ctx; 1250 struct xhci_ep_ctx *ep_ctx; 1251 struct xhci_command *command; 1252 int max_packet_size; 1253 int hw_max_packet_size; 1254 int ret = 0; 1255 1256 out_ctx = xhci->devs[slot_id]->out_ctx; 1257 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1258 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1259 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1260 if (hw_max_packet_size != max_packet_size) { 1261 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1262 "Max Packet Size for ep 0 changed."); 1263 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1264 "Max packet size in usb_device = %d", 1265 max_packet_size); 1266 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1267 "Max packet size in xHCI HW = %d", 1268 hw_max_packet_size); 1269 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1270 "Issuing evaluate context command."); 1271 1272 /* Set up the input context flags for the command */ 1273 /* FIXME: This won't work if a non-default control endpoint 1274 * changes max packet sizes. 1275 */ 1276 1277 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1278 if (!command) 1279 return -ENOMEM; 1280 1281 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1282 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1283 if (!ctrl_ctx) { 1284 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1285 __func__); 1286 ret = -ENOMEM; 1287 goto command_cleanup; 1288 } 1289 /* Set up the modified control endpoint 0 */ 1290 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1291 xhci->devs[slot_id]->out_ctx, ep_index); 1292 1293 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1294 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1295 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1296 1297 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1298 ctrl_ctx->drop_flags = 0; 1299 1300 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1301 xhci_dbg_ctx(xhci, command->in_ctx, ep_index); 1302 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1303 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1304 1305 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1306 true, false); 1307 1308 /* Clean up the input context for later use by bandwidth 1309 * functions. 1310 */ 1311 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1312command_cleanup: 1313 kfree(command->completion); 1314 kfree(command); 1315 } 1316 return ret; 1317} 1318 1319/* 1320 * non-error returns are a promise to giveback() the urb later 1321 * we drop ownership so next owner (or urb unlink) can get it 1322 */ 1323int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1324{ 1325 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1326 struct xhci_td *buffer; 1327 unsigned long flags; 1328 int ret = 0; 1329 unsigned int slot_id, ep_index; 1330 struct urb_priv *urb_priv; 1331 int size, i; 1332 1333 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1334 true, true, __func__) <= 0) 1335 return -EINVAL; 1336 1337 slot_id = urb->dev->slot_id; 1338 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1339 1340 if (!HCD_HW_ACCESSIBLE(hcd)) { 1341 if (!in_interrupt()) 1342 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1343 ret = -ESHUTDOWN; 1344 goto exit; 1345 } 1346 1347 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1348 size = urb->number_of_packets; 1349 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1350 urb->transfer_buffer_length > 0 && 1351 urb->transfer_flags & URB_ZERO_PACKET && 1352 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1353 size = 2; 1354 else 1355 size = 1; 1356 1357 urb_priv = kzalloc(sizeof(struct urb_priv) + 1358 size * sizeof(struct xhci_td *), mem_flags); 1359 if (!urb_priv) 1360 return -ENOMEM; 1361 1362 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1363 if (!buffer) { 1364 kfree(urb_priv); 1365 return -ENOMEM; 1366 } 1367 1368 for (i = 0; i < size; i++) { 1369 urb_priv->td[i] = buffer; 1370 buffer++; 1371 } 1372 1373 urb_priv->length = size; 1374 urb_priv->td_cnt = 0; 1375 urb->hcpriv = urb_priv; 1376 1377 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1378 /* Check to see if the max packet size for the default control 1379 * endpoint changed during FS device enumeration 1380 */ 1381 if (urb->dev->speed == USB_SPEED_FULL) { 1382 ret = xhci_check_maxpacket(xhci, slot_id, 1383 ep_index, urb); 1384 if (ret < 0) { 1385 xhci_urb_free_priv(urb_priv); 1386 urb->hcpriv = NULL; 1387 return ret; 1388 } 1389 } 1390 1391 /* We have a spinlock and interrupts disabled, so we must pass 1392 * atomic context to this function, which may allocate memory. 1393 */ 1394 spin_lock_irqsave(&xhci->lock, flags); 1395 if (xhci->xhc_state & XHCI_STATE_DYING) 1396 goto dying; 1397 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1398 slot_id, ep_index); 1399 if (ret) 1400 goto free_priv; 1401 spin_unlock_irqrestore(&xhci->lock, flags); 1402 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1403 spin_lock_irqsave(&xhci->lock, flags); 1404 if (xhci->xhc_state & XHCI_STATE_DYING) 1405 goto dying; 1406 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1407 EP_GETTING_STREAMS) { 1408 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1409 "is transitioning to using streams.\n"); 1410 ret = -EINVAL; 1411 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1412 EP_GETTING_NO_STREAMS) { 1413 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1414 "is transitioning to " 1415 "not having streams.\n"); 1416 ret = -EINVAL; 1417 } else { 1418 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1419 slot_id, ep_index); 1420 } 1421 if (ret) 1422 goto free_priv; 1423 spin_unlock_irqrestore(&xhci->lock, flags); 1424 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1425 spin_lock_irqsave(&xhci->lock, flags); 1426 if (xhci->xhc_state & XHCI_STATE_DYING) 1427 goto dying; 1428 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1429 slot_id, ep_index); 1430 if (ret) 1431 goto free_priv; 1432 spin_unlock_irqrestore(&xhci->lock, flags); 1433 } else { 1434 spin_lock_irqsave(&xhci->lock, flags); 1435 if (xhci->xhc_state & XHCI_STATE_DYING) 1436 goto dying; 1437 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1438 slot_id, ep_index); 1439 if (ret) 1440 goto free_priv; 1441 spin_unlock_irqrestore(&xhci->lock, flags); 1442 } 1443exit: 1444 return ret; 1445dying: 1446 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1447 "non-responsive xHCI host.\n", 1448 urb->ep->desc.bEndpointAddress, urb); 1449 ret = -ESHUTDOWN; 1450free_priv: 1451 xhci_urb_free_priv(urb_priv); 1452 urb->hcpriv = NULL; 1453 spin_unlock_irqrestore(&xhci->lock, flags); 1454 return ret; 1455} 1456 1457/* Get the right ring for the given URB. 1458 * If the endpoint supports streams, boundary check the URB's stream ID. 1459 * If the endpoint doesn't support streams, return the singular endpoint ring. 1460 */ 1461static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1462 struct urb *urb) 1463{ 1464 unsigned int slot_id; 1465 unsigned int ep_index; 1466 unsigned int stream_id; 1467 struct xhci_virt_ep *ep; 1468 1469 slot_id = urb->dev->slot_id; 1470 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1471 stream_id = urb->stream_id; 1472 ep = &xhci->devs[slot_id]->eps[ep_index]; 1473 /* Common case: no streams */ 1474 if (!(ep->ep_state & EP_HAS_STREAMS)) 1475 return ep->ring; 1476 1477 if (stream_id == 0) { 1478 xhci_warn(xhci, 1479 "WARN: Slot ID %u, ep index %u has streams, " 1480 "but URB has no stream ID.\n", 1481 slot_id, ep_index); 1482 return NULL; 1483 } 1484 1485 if (stream_id < ep->stream_info->num_streams) 1486 return ep->stream_info->stream_rings[stream_id]; 1487 1488 xhci_warn(xhci, 1489 "WARN: Slot ID %u, ep index %u has " 1490 "stream IDs 1 to %u allocated, " 1491 "but stream ID %u is requested.\n", 1492 slot_id, ep_index, 1493 ep->stream_info->num_streams - 1, 1494 stream_id); 1495 return NULL; 1496} 1497 1498/* 1499 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1500 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1501 * should pick up where it left off in the TD, unless a Set Transfer Ring 1502 * Dequeue Pointer is issued. 1503 * 1504 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1505 * the ring. Since the ring is a contiguous structure, they can't be physically 1506 * removed. Instead, there are two options: 1507 * 1508 * 1) If the HC is in the middle of processing the URB to be canceled, we 1509 * simply move the ring's dequeue pointer past those TRBs using the Set 1510 * Transfer Ring Dequeue Pointer command. This will be the common case, 1511 * when drivers timeout on the last submitted URB and attempt to cancel. 1512 * 1513 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1514 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1515 * HC will need to invalidate the any TRBs it has cached after the stop 1516 * endpoint command, as noted in the xHCI 0.95 errata. 1517 * 1518 * 3) The TD may have completed by the time the Stop Endpoint Command 1519 * completes, so software needs to handle that case too. 1520 * 1521 * This function should protect against the TD enqueueing code ringing the 1522 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1523 * It also needs to account for multiple cancellations on happening at the same 1524 * time for the same endpoint. 1525 * 1526 * Note that this function can be called in any context, or so says 1527 * usb_hcd_unlink_urb() 1528 */ 1529int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1530{ 1531 unsigned long flags; 1532 int ret, i; 1533 u32 temp; 1534 struct xhci_hcd *xhci; 1535 struct urb_priv *urb_priv; 1536 struct xhci_td *td; 1537 unsigned int ep_index; 1538 struct xhci_ring *ep_ring; 1539 struct xhci_virt_ep *ep; 1540 struct xhci_command *command; 1541 1542 xhci = hcd_to_xhci(hcd); 1543 spin_lock_irqsave(&xhci->lock, flags); 1544 /* Make sure the URB hasn't completed or been unlinked already */ 1545 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1546 if (ret || !urb->hcpriv) 1547 goto done; 1548 temp = readl(&xhci->op_regs->status); 1549 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1550 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1551 "HW died, freeing TD."); 1552 urb_priv = urb->hcpriv; 1553 for (i = urb_priv->td_cnt; 1554 i < urb_priv->length && xhci->devs[urb->dev->slot_id]; 1555 i++) { 1556 td = urb_priv->td[i]; 1557 if (!list_empty(&td->td_list)) 1558 list_del_init(&td->td_list); 1559 if (!list_empty(&td->cancelled_td_list)) 1560 list_del_init(&td->cancelled_td_list); 1561 } 1562 1563 usb_hcd_unlink_urb_from_ep(hcd, urb); 1564 spin_unlock_irqrestore(&xhci->lock, flags); 1565 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1566 xhci_urb_free_priv(urb_priv); 1567 return ret; 1568 } 1569 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1570 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1571 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1572 "Ep 0x%x: URB %p to be canceled on " 1573 "non-responsive xHCI host.", 1574 urb->ep->desc.bEndpointAddress, urb); 1575 /* Let the stop endpoint command watchdog timer (which set this 1576 * state) finish cleaning up the endpoint TD lists. We must 1577 * have caught it in the middle of dropping a lock and giving 1578 * back an URB. 1579 */ 1580 goto done; 1581 } 1582 1583 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1584 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1585 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1586 if (!ep_ring) { 1587 ret = -EINVAL; 1588 goto done; 1589 } 1590 1591 urb_priv = urb->hcpriv; 1592 i = urb_priv->td_cnt; 1593 if (i < urb_priv->length) 1594 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1595 "Cancel URB %p, dev %s, ep 0x%x, " 1596 "starting at offset 0x%llx", 1597 urb, urb->dev->devpath, 1598 urb->ep->desc.bEndpointAddress, 1599 (unsigned long long) xhci_trb_virt_to_dma( 1600 urb_priv->td[i]->start_seg, 1601 urb_priv->td[i]->first_trb)); 1602 1603 for (; i < urb_priv->length; i++) { 1604 td = urb_priv->td[i]; 1605 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1606 } 1607 1608 /* Queue a stop endpoint command, but only if this is 1609 * the first cancellation to be handled. 1610 */ 1611 if (!(ep->ep_state & EP_HALT_PENDING)) { 1612 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1613 if (!command) { 1614 ret = -ENOMEM; 1615 goto done; 1616 } 1617 ep->ep_state |= EP_HALT_PENDING; 1618 ep->stop_cmds_pending++; 1619 ep->stop_cmd_timer.expires = jiffies + 1620 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1621 add_timer(&ep->stop_cmd_timer); 1622 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1623 ep_index, 0); 1624 xhci_ring_cmd_db(xhci); 1625 } 1626done: 1627 spin_unlock_irqrestore(&xhci->lock, flags); 1628 return ret; 1629} 1630 1631/* Drop an endpoint from a new bandwidth configuration for this device. 1632 * Only one call to this function is allowed per endpoint before 1633 * check_bandwidth() or reset_bandwidth() must be called. 1634 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1635 * add the endpoint to the schedule with possibly new parameters denoted by a 1636 * different endpoint descriptor in usb_host_endpoint. 1637 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1638 * not allowed. 1639 * 1640 * The USB core will not allow URBs to be queued to an endpoint that is being 1641 * disabled, so there's no need for mutual exclusion to protect 1642 * the xhci->devs[slot_id] structure. 1643 */ 1644int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1645 struct usb_host_endpoint *ep) 1646{ 1647 struct xhci_hcd *xhci; 1648 struct xhci_container_ctx *in_ctx, *out_ctx; 1649 struct xhci_input_control_ctx *ctrl_ctx; 1650 unsigned int ep_index; 1651 struct xhci_ep_ctx *ep_ctx; 1652 u32 drop_flag; 1653 u32 new_add_flags, new_drop_flags; 1654 int ret; 1655 1656 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1657 if (ret <= 0) 1658 return ret; 1659 xhci = hcd_to_xhci(hcd); 1660 if (xhci->xhc_state & XHCI_STATE_DYING) 1661 return -ENODEV; 1662 1663 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1664 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1665 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1666 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1667 __func__, drop_flag); 1668 return 0; 1669 } 1670 1671 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1672 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1673 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1674 if (!ctrl_ctx) { 1675 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1676 __func__); 1677 return 0; 1678 } 1679 1680 ep_index = xhci_get_endpoint_index(&ep->desc); 1681 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1682 /* If the HC already knows the endpoint is disabled, 1683 * or the HCD has noted it is disabled, ignore this request 1684 */ 1685 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1686 cpu_to_le32(EP_STATE_DISABLED)) || 1687 le32_to_cpu(ctrl_ctx->drop_flags) & 1688 xhci_get_endpoint_flag(&ep->desc)) { 1689 /* Do not warn when called after a usb_device_reset */ 1690 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1691 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1692 __func__, ep); 1693 return 0; 1694 } 1695 1696 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1697 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1698 1699 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1700 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1701 1702 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1703 1704 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1705 (unsigned int) ep->desc.bEndpointAddress, 1706 udev->slot_id, 1707 (unsigned int) new_drop_flags, 1708 (unsigned int) new_add_flags); 1709 return 0; 1710} 1711 1712/* Add an endpoint to a new possible bandwidth configuration for this device. 1713 * Only one call to this function is allowed per endpoint before 1714 * check_bandwidth() or reset_bandwidth() must be called. 1715 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1716 * add the endpoint to the schedule with possibly new parameters denoted by a 1717 * different endpoint descriptor in usb_host_endpoint. 1718 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1719 * not allowed. 1720 * 1721 * The USB core will not allow URBs to be queued to an endpoint until the 1722 * configuration or alt setting is installed in the device, so there's no need 1723 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1724 */ 1725int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1726 struct usb_host_endpoint *ep) 1727{ 1728 struct xhci_hcd *xhci; 1729 struct xhci_container_ctx *in_ctx; 1730 unsigned int ep_index; 1731 struct xhci_input_control_ctx *ctrl_ctx; 1732 u32 added_ctxs; 1733 u32 new_add_flags, new_drop_flags; 1734 struct xhci_virt_device *virt_dev; 1735 int ret = 0; 1736 1737 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1738 if (ret <= 0) { 1739 /* So we won't queue a reset ep command for a root hub */ 1740 ep->hcpriv = NULL; 1741 return ret; 1742 } 1743 xhci = hcd_to_xhci(hcd); 1744 if (xhci->xhc_state & XHCI_STATE_DYING) 1745 return -ENODEV; 1746 1747 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1748 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1749 /* FIXME when we have to issue an evaluate endpoint command to 1750 * deal with ep0 max packet size changing once we get the 1751 * descriptors 1752 */ 1753 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1754 __func__, added_ctxs); 1755 return 0; 1756 } 1757 1758 virt_dev = xhci->devs[udev->slot_id]; 1759 in_ctx = virt_dev->in_ctx; 1760 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1761 if (!ctrl_ctx) { 1762 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1763 __func__); 1764 return 0; 1765 } 1766 1767 ep_index = xhci_get_endpoint_index(&ep->desc); 1768 /* If this endpoint is already in use, and the upper layers are trying 1769 * to add it again without dropping it, reject the addition. 1770 */ 1771 if (virt_dev->eps[ep_index].ring && 1772 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1773 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1774 "without dropping it.\n", 1775 (unsigned int) ep->desc.bEndpointAddress); 1776 return -EINVAL; 1777 } 1778 1779 /* If the HCD has already noted the endpoint is enabled, 1780 * ignore this request. 1781 */ 1782 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1783 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1784 __func__, ep); 1785 return 0; 1786 } 1787 1788 /* 1789 * Configuration and alternate setting changes must be done in 1790 * process context, not interrupt context (or so documenation 1791 * for usb_set_interface() and usb_set_configuration() claim). 1792 */ 1793 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1794 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1795 __func__, ep->desc.bEndpointAddress); 1796 return -ENOMEM; 1797 } 1798 1799 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1800 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1801 1802 /* If xhci_endpoint_disable() was called for this endpoint, but the 1803 * xHC hasn't been notified yet through the check_bandwidth() call, 1804 * this re-adds a new state for the endpoint from the new endpoint 1805 * descriptors. We must drop and re-add this endpoint, so we leave the 1806 * drop flags alone. 1807 */ 1808 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1809 1810 /* Store the usb_device pointer for later use */ 1811 ep->hcpriv = udev; 1812 1813 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1814 (unsigned int) ep->desc.bEndpointAddress, 1815 udev->slot_id, 1816 (unsigned int) new_drop_flags, 1817 (unsigned int) new_add_flags); 1818 return 0; 1819} 1820 1821static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1822{ 1823 struct xhci_input_control_ctx *ctrl_ctx; 1824 struct xhci_ep_ctx *ep_ctx; 1825 struct xhci_slot_ctx *slot_ctx; 1826 int i; 1827 1828 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1829 if (!ctrl_ctx) { 1830 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1831 __func__); 1832 return; 1833 } 1834 1835 /* When a device's add flag and drop flag are zero, any subsequent 1836 * configure endpoint command will leave that endpoint's state 1837 * untouched. Make sure we don't leave any old state in the input 1838 * endpoint contexts. 1839 */ 1840 ctrl_ctx->drop_flags = 0; 1841 ctrl_ctx->add_flags = 0; 1842 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1843 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1844 /* Endpoint 0 is always valid */ 1845 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1846 for (i = 1; i < 31; ++i) { 1847 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1848 ep_ctx->ep_info = 0; 1849 ep_ctx->ep_info2 = 0; 1850 ep_ctx->deq = 0; 1851 ep_ctx->tx_info = 0; 1852 } 1853} 1854 1855static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1856 struct usb_device *udev, u32 *cmd_status) 1857{ 1858 int ret; 1859 1860 switch (*cmd_status) { 1861 case COMP_CMD_ABORT: 1862 case COMP_CMD_STOP: 1863 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1864 ret = -ETIME; 1865 break; 1866 case COMP_ENOMEM: 1867 dev_warn(&udev->dev, 1868 "Not enough host controller resources for new device state.\n"); 1869 ret = -ENOMEM; 1870 /* FIXME: can we allocate more resources for the HC? */ 1871 break; 1872 case COMP_BW_ERR: 1873 case COMP_2ND_BW_ERR: 1874 dev_warn(&udev->dev, 1875 "Not enough bandwidth for new device state.\n"); 1876 ret = -ENOSPC; 1877 /* FIXME: can we go back to the old state? */ 1878 break; 1879 case COMP_TRB_ERR: 1880 /* the HCD set up something wrong */ 1881 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1882 "add flag = 1, " 1883 "and endpoint is not disabled.\n"); 1884 ret = -EINVAL; 1885 break; 1886 case COMP_DEV_ERR: 1887 dev_warn(&udev->dev, 1888 "ERROR: Incompatible device for endpoint configure command.\n"); 1889 ret = -ENODEV; 1890 break; 1891 case COMP_SUCCESS: 1892 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1893 "Successful Endpoint Configure command"); 1894 ret = 0; 1895 break; 1896 default: 1897 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1898 *cmd_status); 1899 ret = -EINVAL; 1900 break; 1901 } 1902 return ret; 1903} 1904 1905static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1906 struct usb_device *udev, u32 *cmd_status) 1907{ 1908 int ret; 1909 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1910 1911 switch (*cmd_status) { 1912 case COMP_CMD_ABORT: 1913 case COMP_CMD_STOP: 1914 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1915 ret = -ETIME; 1916 break; 1917 case COMP_EINVAL: 1918 dev_warn(&udev->dev, 1919 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1920 ret = -EINVAL; 1921 break; 1922 case COMP_EBADSLT: 1923 dev_warn(&udev->dev, 1924 "WARN: slot not enabled for evaluate context command.\n"); 1925 ret = -EINVAL; 1926 break; 1927 case COMP_CTX_STATE: 1928 dev_warn(&udev->dev, 1929 "WARN: invalid context state for evaluate context command.\n"); 1930 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1931 ret = -EINVAL; 1932 break; 1933 case COMP_DEV_ERR: 1934 dev_warn(&udev->dev, 1935 "ERROR: Incompatible device for evaluate context command.\n"); 1936 ret = -ENODEV; 1937 break; 1938 case COMP_MEL_ERR: 1939 /* Max Exit Latency too large error */ 1940 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1941 ret = -EINVAL; 1942 break; 1943 case COMP_SUCCESS: 1944 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1945 "Successful evaluate context command"); 1946 ret = 0; 1947 break; 1948 default: 1949 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1950 *cmd_status); 1951 ret = -EINVAL; 1952 break; 1953 } 1954 return ret; 1955} 1956 1957static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1958 struct xhci_input_control_ctx *ctrl_ctx) 1959{ 1960 u32 valid_add_flags; 1961 u32 valid_drop_flags; 1962 1963 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1964 * (bit 1). The default control endpoint is added during the Address 1965 * Device command and is never removed until the slot is disabled. 1966 */ 1967 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1968 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1969 1970 /* Use hweight32 to count the number of ones in the add flags, or 1971 * number of endpoints added. Don't count endpoints that are changed 1972 * (both added and dropped). 1973 */ 1974 return hweight32(valid_add_flags) - 1975 hweight32(valid_add_flags & valid_drop_flags); 1976} 1977 1978static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1979 struct xhci_input_control_ctx *ctrl_ctx) 1980{ 1981 u32 valid_add_flags; 1982 u32 valid_drop_flags; 1983 1984 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1985 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1986 1987 return hweight32(valid_drop_flags) - 1988 hweight32(valid_add_flags & valid_drop_flags); 1989} 1990 1991/* 1992 * We need to reserve the new number of endpoints before the configure endpoint 1993 * command completes. We can't subtract the dropped endpoints from the number 1994 * of active endpoints until the command completes because we can oversubscribe 1995 * the host in this case: 1996 * 1997 * - the first configure endpoint command drops more endpoints than it adds 1998 * - a second configure endpoint command that adds more endpoints is queued 1999 * - the first configure endpoint command fails, so the config is unchanged 2000 * - the second command may succeed, even though there isn't enough resources 2001 * 2002 * Must be called with xhci->lock held. 2003 */ 2004static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2005 struct xhci_input_control_ctx *ctrl_ctx) 2006{ 2007 u32 added_eps; 2008 2009 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2010 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2011 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2012 "Not enough ep ctxs: " 2013 "%u active, need to add %u, limit is %u.", 2014 xhci->num_active_eps, added_eps, 2015 xhci->limit_active_eps); 2016 return -ENOMEM; 2017 } 2018 xhci->num_active_eps += added_eps; 2019 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2020 "Adding %u ep ctxs, %u now active.", added_eps, 2021 xhci->num_active_eps); 2022 return 0; 2023} 2024 2025/* 2026 * The configure endpoint was failed by the xHC for some other reason, so we 2027 * need to revert the resources that failed configuration would have used. 2028 * 2029 * Must be called with xhci->lock held. 2030 */ 2031static void xhci_free_host_resources(struct xhci_hcd *xhci, 2032 struct xhci_input_control_ctx *ctrl_ctx) 2033{ 2034 u32 num_failed_eps; 2035 2036 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2037 xhci->num_active_eps -= num_failed_eps; 2038 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2039 "Removing %u failed ep ctxs, %u now active.", 2040 num_failed_eps, 2041 xhci->num_active_eps); 2042} 2043 2044/* 2045 * Now that the command has completed, clean up the active endpoint count by 2046 * subtracting out the endpoints that were dropped (but not changed). 2047 * 2048 * Must be called with xhci->lock held. 2049 */ 2050static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2051 struct xhci_input_control_ctx *ctrl_ctx) 2052{ 2053 u32 num_dropped_eps; 2054 2055 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2056 xhci->num_active_eps -= num_dropped_eps; 2057 if (num_dropped_eps) 2058 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2059 "Removing %u dropped ep ctxs, %u now active.", 2060 num_dropped_eps, 2061 xhci->num_active_eps); 2062} 2063 2064static unsigned int xhci_get_block_size(struct usb_device *udev) 2065{ 2066 switch (udev->speed) { 2067 case USB_SPEED_LOW: 2068 case USB_SPEED_FULL: 2069 return FS_BLOCK; 2070 case USB_SPEED_HIGH: 2071 return HS_BLOCK; 2072 case USB_SPEED_SUPER: 2073 return SS_BLOCK; 2074 case USB_SPEED_UNKNOWN: 2075 case USB_SPEED_WIRELESS: 2076 default: 2077 /* Should never happen */ 2078 return 1; 2079 } 2080} 2081 2082static unsigned int 2083xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2084{ 2085 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2086 return LS_OVERHEAD; 2087 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2088 return FS_OVERHEAD; 2089 return HS_OVERHEAD; 2090} 2091 2092/* If we are changing a LS/FS device under a HS hub, 2093 * make sure (if we are activating a new TT) that the HS bus has enough 2094 * bandwidth for this new TT. 2095 */ 2096static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2097 struct xhci_virt_device *virt_dev, 2098 int old_active_eps) 2099{ 2100 struct xhci_interval_bw_table *bw_table; 2101 struct xhci_tt_bw_info *tt_info; 2102 2103 /* Find the bandwidth table for the root port this TT is attached to. */ 2104 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2105 tt_info = virt_dev->tt_info; 2106 /* If this TT already had active endpoints, the bandwidth for this TT 2107 * has already been added. Removing all periodic endpoints (and thus 2108 * making the TT enactive) will only decrease the bandwidth used. 2109 */ 2110 if (old_active_eps) 2111 return 0; 2112 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2113 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2114 return -ENOMEM; 2115 return 0; 2116 } 2117 /* Not sure why we would have no new active endpoints... 2118 * 2119 * Maybe because of an Evaluate Context change for a hub update or a 2120 * control endpoint 0 max packet size change? 2121 * FIXME: skip the bandwidth calculation in that case. 2122 */ 2123 return 0; 2124} 2125 2126static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2127 struct xhci_virt_device *virt_dev) 2128{ 2129 unsigned int bw_reserved; 2130 2131 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2132 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2133 return -ENOMEM; 2134 2135 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2136 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2137 return -ENOMEM; 2138 2139 return 0; 2140} 2141 2142/* 2143 * This algorithm is a very conservative estimate of the worst-case scheduling 2144 * scenario for any one interval. The hardware dynamically schedules the 2145 * packets, so we can't tell which microframe could be the limiting factor in 2146 * the bandwidth scheduling. This only takes into account periodic endpoints. 2147 * 2148 * Obviously, we can't solve an NP complete problem to find the minimum worst 2149 * case scenario. Instead, we come up with an estimate that is no less than 2150 * the worst case bandwidth used for any one microframe, but may be an 2151 * over-estimate. 2152 * 2153 * We walk the requirements for each endpoint by interval, starting with the 2154 * smallest interval, and place packets in the schedule where there is only one 2155 * possible way to schedule packets for that interval. In order to simplify 2156 * this algorithm, we record the largest max packet size for each interval, and 2157 * assume all packets will be that size. 2158 * 2159 * For interval 0, we obviously must schedule all packets for each interval. 2160 * The bandwidth for interval 0 is just the amount of data to be transmitted 2161 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2162 * the number of packets). 2163 * 2164 * For interval 1, we have two possible microframes to schedule those packets 2165 * in. For this algorithm, if we can schedule the same number of packets for 2166 * each possible scheduling opportunity (each microframe), we will do so. The 2167 * remaining number of packets will be saved to be transmitted in the gaps in 2168 * the next interval's scheduling sequence. 2169 * 2170 * As we move those remaining packets to be scheduled with interval 2 packets, 2171 * we have to double the number of remaining packets to transmit. This is 2172 * because the intervals are actually powers of 2, and we would be transmitting 2173 * the previous interval's packets twice in this interval. We also have to be 2174 * sure that when we look at the largest max packet size for this interval, we 2175 * also look at the largest max packet size for the remaining packets and take 2176 * the greater of the two. 2177 * 2178 * The algorithm continues to evenly distribute packets in each scheduling 2179 * opportunity, and push the remaining packets out, until we get to the last 2180 * interval. Then those packets and their associated overhead are just added 2181 * to the bandwidth used. 2182 */ 2183static int xhci_check_bw_table(struct xhci_hcd *xhci, 2184 struct xhci_virt_device *virt_dev, 2185 int old_active_eps) 2186{ 2187 unsigned int bw_reserved; 2188 unsigned int max_bandwidth; 2189 unsigned int bw_used; 2190 unsigned int block_size; 2191 struct xhci_interval_bw_table *bw_table; 2192 unsigned int packet_size = 0; 2193 unsigned int overhead = 0; 2194 unsigned int packets_transmitted = 0; 2195 unsigned int packets_remaining = 0; 2196 unsigned int i; 2197 2198 if (virt_dev->udev->speed == USB_SPEED_SUPER) 2199 return xhci_check_ss_bw(xhci, virt_dev); 2200 2201 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2202 max_bandwidth = HS_BW_LIMIT; 2203 /* Convert percent of bus BW reserved to blocks reserved */ 2204 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2205 } else { 2206 max_bandwidth = FS_BW_LIMIT; 2207 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2208 } 2209 2210 bw_table = virt_dev->bw_table; 2211 /* We need to translate the max packet size and max ESIT payloads into 2212 * the units the hardware uses. 2213 */ 2214 block_size = xhci_get_block_size(virt_dev->udev); 2215 2216 /* If we are manipulating a LS/FS device under a HS hub, double check 2217 * that the HS bus has enough bandwidth if we are activing a new TT. 2218 */ 2219 if (virt_dev->tt_info) { 2220 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2221 "Recalculating BW for rootport %u", 2222 virt_dev->real_port); 2223 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2224 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2225 "newly activated TT.\n"); 2226 return -ENOMEM; 2227 } 2228 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2229 "Recalculating BW for TT slot %u port %u", 2230 virt_dev->tt_info->slot_id, 2231 virt_dev->tt_info->ttport); 2232 } else { 2233 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2234 "Recalculating BW for rootport %u", 2235 virt_dev->real_port); 2236 } 2237 2238 /* Add in how much bandwidth will be used for interval zero, or the 2239 * rounded max ESIT payload + number of packets * largest overhead. 2240 */ 2241 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2242 bw_table->interval_bw[0].num_packets * 2243 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2244 2245 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2246 unsigned int bw_added; 2247 unsigned int largest_mps; 2248 unsigned int interval_overhead; 2249 2250 /* 2251 * How many packets could we transmit in this interval? 2252 * If packets didn't fit in the previous interval, we will need 2253 * to transmit that many packets twice within this interval. 2254 */ 2255 packets_remaining = 2 * packets_remaining + 2256 bw_table->interval_bw[i].num_packets; 2257 2258 /* Find the largest max packet size of this or the previous 2259 * interval. 2260 */ 2261 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2262 largest_mps = 0; 2263 else { 2264 struct xhci_virt_ep *virt_ep; 2265 struct list_head *ep_entry; 2266 2267 ep_entry = bw_table->interval_bw[i].endpoints.next; 2268 virt_ep = list_entry(ep_entry, 2269 struct xhci_virt_ep, bw_endpoint_list); 2270 /* Convert to blocks, rounding up */ 2271 largest_mps = DIV_ROUND_UP( 2272 virt_ep->bw_info.max_packet_size, 2273 block_size); 2274 } 2275 if (largest_mps > packet_size) 2276 packet_size = largest_mps; 2277 2278 /* Use the larger overhead of this or the previous interval. */ 2279 interval_overhead = xhci_get_largest_overhead( 2280 &bw_table->interval_bw[i]); 2281 if (interval_overhead > overhead) 2282 overhead = interval_overhead; 2283 2284 /* How many packets can we evenly distribute across 2285 * (1 << (i + 1)) possible scheduling opportunities? 2286 */ 2287 packets_transmitted = packets_remaining >> (i + 1); 2288 2289 /* Add in the bandwidth used for those scheduled packets */ 2290 bw_added = packets_transmitted * (overhead + packet_size); 2291 2292 /* How many packets do we have remaining to transmit? */ 2293 packets_remaining = packets_remaining % (1 << (i + 1)); 2294 2295 /* What largest max packet size should those packets have? */ 2296 /* If we've transmitted all packets, don't carry over the 2297 * largest packet size. 2298 */ 2299 if (packets_remaining == 0) { 2300 packet_size = 0; 2301 overhead = 0; 2302 } else if (packets_transmitted > 0) { 2303 /* Otherwise if we do have remaining packets, and we've 2304 * scheduled some packets in this interval, take the 2305 * largest max packet size from endpoints with this 2306 * interval. 2307 */ 2308 packet_size = largest_mps; 2309 overhead = interval_overhead; 2310 } 2311 /* Otherwise carry over packet_size and overhead from the last 2312 * time we had a remainder. 2313 */ 2314 bw_used += bw_added; 2315 if (bw_used > max_bandwidth) { 2316 xhci_warn(xhci, "Not enough bandwidth. " 2317 "Proposed: %u, Max: %u\n", 2318 bw_used, max_bandwidth); 2319 return -ENOMEM; 2320 } 2321 } 2322 /* 2323 * Ok, we know we have some packets left over after even-handedly 2324 * scheduling interval 15. We don't know which microframes they will 2325 * fit into, so we over-schedule and say they will be scheduled every 2326 * microframe. 2327 */ 2328 if (packets_remaining > 0) 2329 bw_used += overhead + packet_size; 2330 2331 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2332 unsigned int port_index = virt_dev->real_port - 1; 2333 2334 /* OK, we're manipulating a HS device attached to a 2335 * root port bandwidth domain. Include the number of active TTs 2336 * in the bandwidth used. 2337 */ 2338 bw_used += TT_HS_OVERHEAD * 2339 xhci->rh_bw[port_index].num_active_tts; 2340 } 2341 2342 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2343 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2344 "Available: %u " "percent", 2345 bw_used, max_bandwidth, bw_reserved, 2346 (max_bandwidth - bw_used - bw_reserved) * 100 / 2347 max_bandwidth); 2348 2349 bw_used += bw_reserved; 2350 if (bw_used > max_bandwidth) { 2351 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2352 bw_used, max_bandwidth); 2353 return -ENOMEM; 2354 } 2355 2356 bw_table->bw_used = bw_used; 2357 return 0; 2358} 2359 2360static bool xhci_is_async_ep(unsigned int ep_type) 2361{ 2362 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2363 ep_type != ISOC_IN_EP && 2364 ep_type != INT_IN_EP); 2365} 2366 2367static bool xhci_is_sync_in_ep(unsigned int ep_type) 2368{ 2369 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2370} 2371 2372static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2373{ 2374 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2375 2376 if (ep_bw->ep_interval == 0) 2377 return SS_OVERHEAD_BURST + 2378 (ep_bw->mult * ep_bw->num_packets * 2379 (SS_OVERHEAD + mps)); 2380 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2381 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2382 1 << ep_bw->ep_interval); 2383 2384} 2385 2386void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2387 struct xhci_bw_info *ep_bw, 2388 struct xhci_interval_bw_table *bw_table, 2389 struct usb_device *udev, 2390 struct xhci_virt_ep *virt_ep, 2391 struct xhci_tt_bw_info *tt_info) 2392{ 2393 struct xhci_interval_bw *interval_bw; 2394 int normalized_interval; 2395 2396 if (xhci_is_async_ep(ep_bw->type)) 2397 return; 2398 2399 if (udev->speed == USB_SPEED_SUPER) { 2400 if (xhci_is_sync_in_ep(ep_bw->type)) 2401 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2402 xhci_get_ss_bw_consumed(ep_bw); 2403 else 2404 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2405 xhci_get_ss_bw_consumed(ep_bw); 2406 return; 2407 } 2408 2409 /* SuperSpeed endpoints never get added to intervals in the table, so 2410 * this check is only valid for HS/FS/LS devices. 2411 */ 2412 if (list_empty(&virt_ep->bw_endpoint_list)) 2413 return; 2414 /* For LS/FS devices, we need to translate the interval expressed in 2415 * microframes to frames. 2416 */ 2417 if (udev->speed == USB_SPEED_HIGH) 2418 normalized_interval = ep_bw->ep_interval; 2419 else 2420 normalized_interval = ep_bw->ep_interval - 3; 2421 2422 if (normalized_interval == 0) 2423 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2424 interval_bw = &bw_table->interval_bw[normalized_interval]; 2425 interval_bw->num_packets -= ep_bw->num_packets; 2426 switch (udev->speed) { 2427 case USB_SPEED_LOW: 2428 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2429 break; 2430 case USB_SPEED_FULL: 2431 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2432 break; 2433 case USB_SPEED_HIGH: 2434 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2435 break; 2436 case USB_SPEED_SUPER: 2437 case USB_SPEED_UNKNOWN: 2438 case USB_SPEED_WIRELESS: 2439 /* Should never happen because only LS/FS/HS endpoints will get 2440 * added to the endpoint list. 2441 */ 2442 return; 2443 } 2444 if (tt_info) 2445 tt_info->active_eps -= 1; 2446 list_del_init(&virt_ep->bw_endpoint_list); 2447} 2448 2449static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2450 struct xhci_bw_info *ep_bw, 2451 struct xhci_interval_bw_table *bw_table, 2452 struct usb_device *udev, 2453 struct xhci_virt_ep *virt_ep, 2454 struct xhci_tt_bw_info *tt_info) 2455{ 2456 struct xhci_interval_bw *interval_bw; 2457 struct xhci_virt_ep *smaller_ep; 2458 int normalized_interval; 2459 2460 if (xhci_is_async_ep(ep_bw->type)) 2461 return; 2462 2463 if (udev->speed == USB_SPEED_SUPER) { 2464 if (xhci_is_sync_in_ep(ep_bw->type)) 2465 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2466 xhci_get_ss_bw_consumed(ep_bw); 2467 else 2468 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2469 xhci_get_ss_bw_consumed(ep_bw); 2470 return; 2471 } 2472 2473 /* For LS/FS devices, we need to translate the interval expressed in 2474 * microframes to frames. 2475 */ 2476 if (udev->speed == USB_SPEED_HIGH) 2477 normalized_interval = ep_bw->ep_interval; 2478 else 2479 normalized_interval = ep_bw->ep_interval - 3; 2480 2481 if (normalized_interval == 0) 2482 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2483 interval_bw = &bw_table->interval_bw[normalized_interval]; 2484 interval_bw->num_packets += ep_bw->num_packets; 2485 switch (udev->speed) { 2486 case USB_SPEED_LOW: 2487 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2488 break; 2489 case USB_SPEED_FULL: 2490 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2491 break; 2492 case USB_SPEED_HIGH: 2493 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2494 break; 2495 case USB_SPEED_SUPER: 2496 case USB_SPEED_UNKNOWN: 2497 case USB_SPEED_WIRELESS: 2498 /* Should never happen because only LS/FS/HS endpoints will get 2499 * added to the endpoint list. 2500 */ 2501 return; 2502 } 2503 2504 if (tt_info) 2505 tt_info->active_eps += 1; 2506 /* Insert the endpoint into the list, largest max packet size first. */ 2507 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2508 bw_endpoint_list) { 2509 if (ep_bw->max_packet_size >= 2510 smaller_ep->bw_info.max_packet_size) { 2511 /* Add the new ep before the smaller endpoint */ 2512 list_add_tail(&virt_ep->bw_endpoint_list, 2513 &smaller_ep->bw_endpoint_list); 2514 return; 2515 } 2516 } 2517 /* Add the new endpoint at the end of the list. */ 2518 list_add_tail(&virt_ep->bw_endpoint_list, 2519 &interval_bw->endpoints); 2520} 2521 2522void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2523 struct xhci_virt_device *virt_dev, 2524 int old_active_eps) 2525{ 2526 struct xhci_root_port_bw_info *rh_bw_info; 2527 if (!virt_dev->tt_info) 2528 return; 2529 2530 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2531 if (old_active_eps == 0 && 2532 virt_dev->tt_info->active_eps != 0) { 2533 rh_bw_info->num_active_tts += 1; 2534 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2535 } else if (old_active_eps != 0 && 2536 virt_dev->tt_info->active_eps == 0) { 2537 rh_bw_info->num_active_tts -= 1; 2538 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2539 } 2540} 2541 2542static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2543 struct xhci_virt_device *virt_dev, 2544 struct xhci_container_ctx *in_ctx) 2545{ 2546 struct xhci_bw_info ep_bw_info[31]; 2547 int i; 2548 struct xhci_input_control_ctx *ctrl_ctx; 2549 int old_active_eps = 0; 2550 2551 if (virt_dev->tt_info) 2552 old_active_eps = virt_dev->tt_info->active_eps; 2553 2554 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2555 if (!ctrl_ctx) { 2556 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2557 __func__); 2558 return -ENOMEM; 2559 } 2560 2561 for (i = 0; i < 31; i++) { 2562 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2563 continue; 2564 2565 /* Make a copy of the BW info in case we need to revert this */ 2566 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2567 sizeof(ep_bw_info[i])); 2568 /* Drop the endpoint from the interval table if the endpoint is 2569 * being dropped or changed. 2570 */ 2571 if (EP_IS_DROPPED(ctrl_ctx, i)) 2572 xhci_drop_ep_from_interval_table(xhci, 2573 &virt_dev->eps[i].bw_info, 2574 virt_dev->bw_table, 2575 virt_dev->udev, 2576 &virt_dev->eps[i], 2577 virt_dev->tt_info); 2578 } 2579 /* Overwrite the information stored in the endpoints' bw_info */ 2580 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2581 for (i = 0; i < 31; i++) { 2582 /* Add any changed or added endpoints to the interval table */ 2583 if (EP_IS_ADDED(ctrl_ctx, i)) 2584 xhci_add_ep_to_interval_table(xhci, 2585 &virt_dev->eps[i].bw_info, 2586 virt_dev->bw_table, 2587 virt_dev->udev, 2588 &virt_dev->eps[i], 2589 virt_dev->tt_info); 2590 } 2591 2592 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2593 /* Ok, this fits in the bandwidth we have. 2594 * Update the number of active TTs. 2595 */ 2596 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2597 return 0; 2598 } 2599 2600 /* We don't have enough bandwidth for this, revert the stored info. */ 2601 for (i = 0; i < 31; i++) { 2602 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2603 continue; 2604 2605 /* Drop the new copies of any added or changed endpoints from 2606 * the interval table. 2607 */ 2608 if (EP_IS_ADDED(ctrl_ctx, i)) { 2609 xhci_drop_ep_from_interval_table(xhci, 2610 &virt_dev->eps[i].bw_info, 2611 virt_dev->bw_table, 2612 virt_dev->udev, 2613 &virt_dev->eps[i], 2614 virt_dev->tt_info); 2615 } 2616 /* Revert the endpoint back to its old information */ 2617 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2618 sizeof(ep_bw_info[i])); 2619 /* Add any changed or dropped endpoints back into the table */ 2620 if (EP_IS_DROPPED(ctrl_ctx, i)) 2621 xhci_add_ep_to_interval_table(xhci, 2622 &virt_dev->eps[i].bw_info, 2623 virt_dev->bw_table, 2624 virt_dev->udev, 2625 &virt_dev->eps[i], 2626 virt_dev->tt_info); 2627 } 2628 return -ENOMEM; 2629} 2630 2631 2632/* Issue a configure endpoint command or evaluate context command 2633 * and wait for it to finish. 2634 */ 2635static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2636 struct usb_device *udev, 2637 struct xhci_command *command, 2638 bool ctx_change, bool must_succeed) 2639{ 2640 int ret; 2641 unsigned long flags; 2642 struct xhci_input_control_ctx *ctrl_ctx; 2643 struct xhci_virt_device *virt_dev; 2644 2645 if (!command) 2646 return -EINVAL; 2647 2648 spin_lock_irqsave(&xhci->lock, flags); 2649 virt_dev = xhci->devs[udev->slot_id]; 2650 2651 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2652 if (!ctrl_ctx) { 2653 spin_unlock_irqrestore(&xhci->lock, flags); 2654 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2655 __func__); 2656 return -ENOMEM; 2657 } 2658 2659 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2660 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2661 spin_unlock_irqrestore(&xhci->lock, flags); 2662 xhci_warn(xhci, "Not enough host resources, " 2663 "active endpoint contexts = %u\n", 2664 xhci->num_active_eps); 2665 return -ENOMEM; 2666 } 2667 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2668 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2669 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2670 xhci_free_host_resources(xhci, ctrl_ctx); 2671 spin_unlock_irqrestore(&xhci->lock, flags); 2672 xhci_warn(xhci, "Not enough bandwidth\n"); 2673 return -ENOMEM; 2674 } 2675 2676 if (!ctx_change) 2677 ret = xhci_queue_configure_endpoint(xhci, command, 2678 command->in_ctx->dma, 2679 udev->slot_id, must_succeed); 2680 else 2681 ret = xhci_queue_evaluate_context(xhci, command, 2682 command->in_ctx->dma, 2683 udev->slot_id, must_succeed); 2684 if (ret < 0) { 2685 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2686 xhci_free_host_resources(xhci, ctrl_ctx); 2687 spin_unlock_irqrestore(&xhci->lock, flags); 2688 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2689 "FIXME allocate a new ring segment"); 2690 return -ENOMEM; 2691 } 2692 xhci_ring_cmd_db(xhci); 2693 spin_unlock_irqrestore(&xhci->lock, flags); 2694 2695 /* Wait for the configure endpoint command to complete */ 2696 wait_for_completion(command->completion); 2697 2698 if (!ctx_change) 2699 ret = xhci_configure_endpoint_result(xhci, udev, 2700 &command->status); 2701 else 2702 ret = xhci_evaluate_context_result(xhci, udev, 2703 &command->status); 2704 2705 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2706 spin_lock_irqsave(&xhci->lock, flags); 2707 /* If the command failed, remove the reserved resources. 2708 * Otherwise, clean up the estimate to include dropped eps. 2709 */ 2710 if (ret) 2711 xhci_free_host_resources(xhci, ctrl_ctx); 2712 else 2713 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2714 spin_unlock_irqrestore(&xhci->lock, flags); 2715 } 2716 return ret; 2717} 2718 2719static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2720 struct xhci_virt_device *vdev, int i) 2721{ 2722 struct xhci_virt_ep *ep = &vdev->eps[i]; 2723 2724 if (ep->ep_state & EP_HAS_STREAMS) { 2725 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2726 xhci_get_endpoint_address(i)); 2727 xhci_free_stream_info(xhci, ep->stream_info); 2728 ep->stream_info = NULL; 2729 ep->ep_state &= ~EP_HAS_STREAMS; 2730 } 2731} 2732 2733/* Called after one or more calls to xhci_add_endpoint() or 2734 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2735 * to call xhci_reset_bandwidth(). 2736 * 2737 * Since we are in the middle of changing either configuration or 2738 * installing a new alt setting, the USB core won't allow URBs to be 2739 * enqueued for any endpoint on the old config or interface. Nothing 2740 * else should be touching the xhci->devs[slot_id] structure, so we 2741 * don't need to take the xhci->lock for manipulating that. 2742 */ 2743int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2744{ 2745 int i; 2746 int ret = 0; 2747 struct xhci_hcd *xhci; 2748 struct xhci_virt_device *virt_dev; 2749 struct xhci_input_control_ctx *ctrl_ctx; 2750 struct xhci_slot_ctx *slot_ctx; 2751 struct xhci_command *command; 2752 2753 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2754 if (ret <= 0) 2755 return ret; 2756 xhci = hcd_to_xhci(hcd); 2757 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2758 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2759 return -ENODEV; 2760 2761 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2762 virt_dev = xhci->devs[udev->slot_id]; 2763 2764 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2765 if (!command) 2766 return -ENOMEM; 2767 2768 command->in_ctx = virt_dev->in_ctx; 2769 2770 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2771 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2772 if (!ctrl_ctx) { 2773 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2774 __func__); 2775 ret = -ENOMEM; 2776 goto command_cleanup; 2777 } 2778 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2779 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2780 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2781 2782 /* Don't issue the command if there's no endpoints to update. */ 2783 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2784 ctrl_ctx->drop_flags == 0) { 2785 ret = 0; 2786 goto command_cleanup; 2787 } 2788 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2789 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2790 for (i = 31; i >= 1; i--) { 2791 __le32 le32 = cpu_to_le32(BIT(i)); 2792 2793 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2794 || (ctrl_ctx->add_flags & le32) || i == 1) { 2795 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2796 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2797 break; 2798 } 2799 } 2800 xhci_dbg(xhci, "New Input Control Context:\n"); 2801 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2802 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2803 2804 ret = xhci_configure_endpoint(xhci, udev, command, 2805 false, false); 2806 if (ret) 2807 /* Callee should call reset_bandwidth() */ 2808 goto command_cleanup; 2809 2810 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2811 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2812 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2813 2814 /* Free any rings that were dropped, but not changed. */ 2815 for (i = 1; i < 31; ++i) { 2816 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2817 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2818 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2819 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2820 } 2821 } 2822 xhci_zero_in_ctx(xhci, virt_dev); 2823 /* 2824 * Install any rings for completely new endpoints or changed endpoints, 2825 * and free or cache any old rings from changed endpoints. 2826 */ 2827 for (i = 1; i < 31; ++i) { 2828 if (!virt_dev->eps[i].new_ring) 2829 continue; 2830 /* Only cache or free the old ring if it exists. 2831 * It may not if this is the first add of an endpoint. 2832 */ 2833 if (virt_dev->eps[i].ring) { 2834 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2835 } 2836 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2837 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2838 virt_dev->eps[i].new_ring = NULL; 2839 } 2840command_cleanup: 2841 kfree(command->completion); 2842 kfree(command); 2843 2844 return ret; 2845} 2846 2847void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2848{ 2849 struct xhci_hcd *xhci; 2850 struct xhci_virt_device *virt_dev; 2851 int i, ret; 2852 2853 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2854 if (ret <= 0) 2855 return; 2856 xhci = hcd_to_xhci(hcd); 2857 2858 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2859 virt_dev = xhci->devs[udev->slot_id]; 2860 /* Free any rings allocated for added endpoints */ 2861 for (i = 0; i < 31; ++i) { 2862 if (virt_dev->eps[i].new_ring) { 2863 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2864 virt_dev->eps[i].new_ring = NULL; 2865 } 2866 } 2867 xhci_zero_in_ctx(xhci, virt_dev); 2868} 2869 2870static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2871 struct xhci_container_ctx *in_ctx, 2872 struct xhci_container_ctx *out_ctx, 2873 struct xhci_input_control_ctx *ctrl_ctx, 2874 u32 add_flags, u32 drop_flags) 2875{ 2876 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2877 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2878 xhci_slot_copy(xhci, in_ctx, out_ctx); 2879 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2880 2881 xhci_dbg(xhci, "Input Context:\n"); 2882 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2883} 2884 2885static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2886 unsigned int slot_id, unsigned int ep_index, 2887 struct xhci_dequeue_state *deq_state) 2888{ 2889 struct xhci_input_control_ctx *ctrl_ctx; 2890 struct xhci_container_ctx *in_ctx; 2891 struct xhci_ep_ctx *ep_ctx; 2892 u32 added_ctxs; 2893 dma_addr_t addr; 2894 2895 in_ctx = xhci->devs[slot_id]->in_ctx; 2896 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2897 if (!ctrl_ctx) { 2898 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2899 __func__); 2900 return; 2901 } 2902 2903 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2904 xhci->devs[slot_id]->out_ctx, ep_index); 2905 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2906 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2907 deq_state->new_deq_ptr); 2908 if (addr == 0) { 2909 xhci_warn(xhci, "WARN Cannot submit config ep after " 2910 "reset ep command\n"); 2911 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2912 deq_state->new_deq_seg, 2913 deq_state->new_deq_ptr); 2914 return; 2915 } 2916 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2917 2918 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2919 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2920 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2921 added_ctxs, added_ctxs); 2922} 2923 2924void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2925 unsigned int ep_index, struct xhci_td *td) 2926{ 2927 struct xhci_dequeue_state deq_state; 2928 struct xhci_virt_ep *ep; 2929 struct usb_device *udev = td->urb->dev; 2930 2931 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2932 "Cleaning up stalled endpoint ring"); 2933 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2934 /* We need to move the HW's dequeue pointer past this TD, 2935 * or it will attempt to resend it on the next doorbell ring. 2936 */ 2937 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2938 ep_index, ep->stopped_stream, td, &deq_state); 2939 2940 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2941 return; 2942 2943 /* HW with the reset endpoint quirk will use the saved dequeue state to 2944 * issue a configure endpoint command later. 2945 */ 2946 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2947 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2948 "Queueing new dequeue state"); 2949 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2950 ep_index, ep->stopped_stream, &deq_state); 2951 } else { 2952 /* Better hope no one uses the input context between now and the 2953 * reset endpoint completion! 2954 * XXX: No idea how this hardware will react when stream rings 2955 * are enabled. 2956 */ 2957 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2958 "Setting up input context for " 2959 "configure endpoint command"); 2960 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2961 ep_index, &deq_state); 2962 } 2963} 2964 2965/* Called when clearing halted device. The core should have sent the control 2966 * message to clear the device halt condition. The host side of the halt should 2967 * already be cleared with a reset endpoint command issued when the STALL tx 2968 * event was received. 2969 * 2970 * Context: in_interrupt 2971 */ 2972 2973void xhci_endpoint_reset(struct usb_hcd *hcd, 2974 struct usb_host_endpoint *ep) 2975{ 2976 struct xhci_hcd *xhci; 2977 2978 xhci = hcd_to_xhci(hcd); 2979 2980 /* 2981 * We might need to implement the config ep cmd in xhci 4.8.1 note: 2982 * The Reset Endpoint Command may only be issued to endpoints in the 2983 * Halted state. If software wishes reset the Data Toggle or Sequence 2984 * Number of an endpoint that isn't in the Halted state, then software 2985 * may issue a Configure Endpoint Command with the Drop and Add bits set 2986 * for the target endpoint. that is in the Stopped state. 2987 */ 2988 2989 /* For now just print debug to follow the situation */ 2990 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 2991 ep->desc.bEndpointAddress); 2992} 2993 2994static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2995 struct usb_device *udev, struct usb_host_endpoint *ep, 2996 unsigned int slot_id) 2997{ 2998 int ret; 2999 unsigned int ep_index; 3000 unsigned int ep_state; 3001 3002 if (!ep) 3003 return -EINVAL; 3004 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3005 if (ret <= 0) 3006 return -EINVAL; 3007 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3008 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3009 " descriptor for ep 0x%x does not support streams\n", 3010 ep->desc.bEndpointAddress); 3011 return -EINVAL; 3012 } 3013 3014 ep_index = xhci_get_endpoint_index(&ep->desc); 3015 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3016 if (ep_state & EP_HAS_STREAMS || 3017 ep_state & EP_GETTING_STREAMS) { 3018 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3019 "already has streams set up.\n", 3020 ep->desc.bEndpointAddress); 3021 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3022 "dynamic stream context array reallocation.\n"); 3023 return -EINVAL; 3024 } 3025 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3026 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3027 "endpoint 0x%x; URBs are pending.\n", 3028 ep->desc.bEndpointAddress); 3029 return -EINVAL; 3030 } 3031 return 0; 3032} 3033 3034static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3035 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3036{ 3037 unsigned int max_streams; 3038 3039 /* The stream context array size must be a power of two */ 3040 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3041 /* 3042 * Find out how many primary stream array entries the host controller 3043 * supports. Later we may use secondary stream arrays (similar to 2nd 3044 * level page entries), but that's an optional feature for xHCI host 3045 * controllers. xHCs must support at least 4 stream IDs. 3046 */ 3047 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3048 if (*num_stream_ctxs > max_streams) { 3049 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3050 max_streams); 3051 *num_stream_ctxs = max_streams; 3052 *num_streams = max_streams; 3053 } 3054} 3055 3056/* Returns an error code if one of the endpoint already has streams. 3057 * This does not change any data structures, it only checks and gathers 3058 * information. 3059 */ 3060static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3061 struct usb_device *udev, 3062 struct usb_host_endpoint **eps, unsigned int num_eps, 3063 unsigned int *num_streams, u32 *changed_ep_bitmask) 3064{ 3065 unsigned int max_streams; 3066 unsigned int endpoint_flag; 3067 int i; 3068 int ret; 3069 3070 for (i = 0; i < num_eps; i++) { 3071 ret = xhci_check_streams_endpoint(xhci, udev, 3072 eps[i], udev->slot_id); 3073 if (ret < 0) 3074 return ret; 3075 3076 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3077 if (max_streams < (*num_streams - 1)) { 3078 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3079 eps[i]->desc.bEndpointAddress, 3080 max_streams); 3081 *num_streams = max_streams+1; 3082 } 3083 3084 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3085 if (*changed_ep_bitmask & endpoint_flag) 3086 return -EINVAL; 3087 *changed_ep_bitmask |= endpoint_flag; 3088 } 3089 return 0; 3090} 3091 3092static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3093 struct usb_device *udev, 3094 struct usb_host_endpoint **eps, unsigned int num_eps) 3095{ 3096 u32 changed_ep_bitmask = 0; 3097 unsigned int slot_id; 3098 unsigned int ep_index; 3099 unsigned int ep_state; 3100 int i; 3101 3102 slot_id = udev->slot_id; 3103 if (!xhci->devs[slot_id]) 3104 return 0; 3105 3106 for (i = 0; i < num_eps; i++) { 3107 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3108 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3109 /* Are streams already being freed for the endpoint? */ 3110 if (ep_state & EP_GETTING_NO_STREAMS) { 3111 xhci_warn(xhci, "WARN Can't disable streams for " 3112 "endpoint 0x%x, " 3113 "streams are being disabled already\n", 3114 eps[i]->desc.bEndpointAddress); 3115 return 0; 3116 } 3117 /* Are there actually any streams to free? */ 3118 if (!(ep_state & EP_HAS_STREAMS) && 3119 !(ep_state & EP_GETTING_STREAMS)) { 3120 xhci_warn(xhci, "WARN Can't disable streams for " 3121 "endpoint 0x%x, " 3122 "streams are already disabled!\n", 3123 eps[i]->desc.bEndpointAddress); 3124 xhci_warn(xhci, "WARN xhci_free_streams() called " 3125 "with non-streams endpoint\n"); 3126 return 0; 3127 } 3128 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3129 } 3130 return changed_ep_bitmask; 3131} 3132 3133/* 3134 * The USB device drivers use this function (through the HCD interface in USB 3135 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3136 * coordinate mass storage command queueing across multiple endpoints (basically 3137 * a stream ID == a task ID). 3138 * 3139 * Setting up streams involves allocating the same size stream context array 3140 * for each endpoint and issuing a configure endpoint command for all endpoints. 3141 * 3142 * Don't allow the call to succeed if one endpoint only supports one stream 3143 * (which means it doesn't support streams at all). 3144 * 3145 * Drivers may get less stream IDs than they asked for, if the host controller 3146 * hardware or endpoints claim they can't support the number of requested 3147 * stream IDs. 3148 */ 3149int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3150 struct usb_host_endpoint **eps, unsigned int num_eps, 3151 unsigned int num_streams, gfp_t mem_flags) 3152{ 3153 int i, ret; 3154 struct xhci_hcd *xhci; 3155 struct xhci_virt_device *vdev; 3156 struct xhci_command *config_cmd; 3157 struct xhci_input_control_ctx *ctrl_ctx; 3158 unsigned int ep_index; 3159 unsigned int num_stream_ctxs; 3160 unsigned long flags; 3161 u32 changed_ep_bitmask = 0; 3162 3163 if (!eps) 3164 return -EINVAL; 3165 3166 /* Add one to the number of streams requested to account for 3167 * stream 0 that is reserved for xHCI usage. 3168 */ 3169 num_streams += 1; 3170 xhci = hcd_to_xhci(hcd); 3171 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3172 num_streams); 3173 3174 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3175 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3176 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3177 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3178 return -ENOSYS; 3179 } 3180 3181 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3182 if (!config_cmd) { 3183 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3184 return -ENOMEM; 3185 } 3186 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3187 if (!ctrl_ctx) { 3188 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3189 __func__); 3190 xhci_free_command(xhci, config_cmd); 3191 return -ENOMEM; 3192 } 3193 3194 /* Check to make sure all endpoints are not already configured for 3195 * streams. While we're at it, find the maximum number of streams that 3196 * all the endpoints will support and check for duplicate endpoints. 3197 */ 3198 spin_lock_irqsave(&xhci->lock, flags); 3199 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3200 num_eps, &num_streams, &changed_ep_bitmask); 3201 if (ret < 0) { 3202 xhci_free_command(xhci, config_cmd); 3203 spin_unlock_irqrestore(&xhci->lock, flags); 3204 return ret; 3205 } 3206 if (num_streams <= 1) { 3207 xhci_warn(xhci, "WARN: endpoints can't handle " 3208 "more than one stream.\n"); 3209 xhci_free_command(xhci, config_cmd); 3210 spin_unlock_irqrestore(&xhci->lock, flags); 3211 return -EINVAL; 3212 } 3213 vdev = xhci->devs[udev->slot_id]; 3214 /* Mark each endpoint as being in transition, so 3215 * xhci_urb_enqueue() will reject all URBs. 3216 */ 3217 for (i = 0; i < num_eps; i++) { 3218 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3219 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3220 } 3221 spin_unlock_irqrestore(&xhci->lock, flags); 3222 3223 /* Setup internal data structures and allocate HW data structures for 3224 * streams (but don't install the HW structures in the input context 3225 * until we're sure all memory allocation succeeded). 3226 */ 3227 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3228 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3229 num_stream_ctxs, num_streams); 3230 3231 for (i = 0; i < num_eps; i++) { 3232 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3233 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3234 num_stream_ctxs, 3235 num_streams, mem_flags); 3236 if (!vdev->eps[ep_index].stream_info) 3237 goto cleanup; 3238 /* Set maxPstreams in endpoint context and update deq ptr to 3239 * point to stream context array. FIXME 3240 */ 3241 } 3242 3243 /* Set up the input context for a configure endpoint command. */ 3244 for (i = 0; i < num_eps; i++) { 3245 struct xhci_ep_ctx *ep_ctx; 3246 3247 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3248 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3249 3250 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3251 vdev->out_ctx, ep_index); 3252 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3253 vdev->eps[ep_index].stream_info); 3254 } 3255 /* Tell the HW to drop its old copy of the endpoint context info 3256 * and add the updated copy from the input context. 3257 */ 3258 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3259 vdev->out_ctx, ctrl_ctx, 3260 changed_ep_bitmask, changed_ep_bitmask); 3261 3262 /* Issue and wait for the configure endpoint command */ 3263 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3264 false, false); 3265 3266 /* xHC rejected the configure endpoint command for some reason, so we 3267 * leave the old ring intact and free our internal streams data 3268 * structure. 3269 */ 3270 if (ret < 0) 3271 goto cleanup; 3272 3273 spin_lock_irqsave(&xhci->lock, flags); 3274 for (i = 0; i < num_eps; i++) { 3275 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3276 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3277 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3278 udev->slot_id, ep_index); 3279 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3280 } 3281 xhci_free_command(xhci, config_cmd); 3282 spin_unlock_irqrestore(&xhci->lock, flags); 3283 3284 /* Subtract 1 for stream 0, which drivers can't use */ 3285 return num_streams - 1; 3286 3287cleanup: 3288 /* If it didn't work, free the streams! */ 3289 for (i = 0; i < num_eps; i++) { 3290 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3291 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3292 vdev->eps[ep_index].stream_info = NULL; 3293 /* FIXME Unset maxPstreams in endpoint context and 3294 * update deq ptr to point to normal string ring. 3295 */ 3296 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3297 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3298 xhci_endpoint_zero(xhci, vdev, eps[i]); 3299 } 3300 xhci_free_command(xhci, config_cmd); 3301 return -ENOMEM; 3302} 3303 3304/* Transition the endpoint from using streams to being a "normal" endpoint 3305 * without streams. 3306 * 3307 * Modify the endpoint context state, submit a configure endpoint command, 3308 * and free all endpoint rings for streams if that completes successfully. 3309 */ 3310int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3311 struct usb_host_endpoint **eps, unsigned int num_eps, 3312 gfp_t mem_flags) 3313{ 3314 int i, ret; 3315 struct xhci_hcd *xhci; 3316 struct xhci_virt_device *vdev; 3317 struct xhci_command *command; 3318 struct xhci_input_control_ctx *ctrl_ctx; 3319 unsigned int ep_index; 3320 unsigned long flags; 3321 u32 changed_ep_bitmask; 3322 3323 xhci = hcd_to_xhci(hcd); 3324 vdev = xhci->devs[udev->slot_id]; 3325 3326 /* Set up a configure endpoint command to remove the streams rings */ 3327 spin_lock_irqsave(&xhci->lock, flags); 3328 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3329 udev, eps, num_eps); 3330 if (changed_ep_bitmask == 0) { 3331 spin_unlock_irqrestore(&xhci->lock, flags); 3332 return -EINVAL; 3333 } 3334 3335 /* Use the xhci_command structure from the first endpoint. We may have 3336 * allocated too many, but the driver may call xhci_free_streams() for 3337 * each endpoint it grouped into one call to xhci_alloc_streams(). 3338 */ 3339 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3340 command = vdev->eps[ep_index].stream_info->free_streams_command; 3341 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3342 if (!ctrl_ctx) { 3343 spin_unlock_irqrestore(&xhci->lock, flags); 3344 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3345 __func__); 3346 return -EINVAL; 3347 } 3348 3349 for (i = 0; i < num_eps; i++) { 3350 struct xhci_ep_ctx *ep_ctx; 3351 3352 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3353 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3354 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3355 EP_GETTING_NO_STREAMS; 3356 3357 xhci_endpoint_copy(xhci, command->in_ctx, 3358 vdev->out_ctx, ep_index); 3359 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3360 &vdev->eps[ep_index]); 3361 } 3362 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3363 vdev->out_ctx, ctrl_ctx, 3364 changed_ep_bitmask, changed_ep_bitmask); 3365 spin_unlock_irqrestore(&xhci->lock, flags); 3366 3367 /* Issue and wait for the configure endpoint command, 3368 * which must succeed. 3369 */ 3370 ret = xhci_configure_endpoint(xhci, udev, command, 3371 false, true); 3372 3373 /* xHC rejected the configure endpoint command for some reason, so we 3374 * leave the streams rings intact. 3375 */ 3376 if (ret < 0) 3377 return ret; 3378 3379 spin_lock_irqsave(&xhci->lock, flags); 3380 for (i = 0; i < num_eps; i++) { 3381 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3382 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3383 vdev->eps[ep_index].stream_info = NULL; 3384 /* FIXME Unset maxPstreams in endpoint context and 3385 * update deq ptr to point to normal string ring. 3386 */ 3387 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3388 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3389 } 3390 spin_unlock_irqrestore(&xhci->lock, flags); 3391 3392 return 0; 3393} 3394 3395/* 3396 * Deletes endpoint resources for endpoints that were active before a Reset 3397 * Device command, or a Disable Slot command. The Reset Device command leaves 3398 * the control endpoint intact, whereas the Disable Slot command deletes it. 3399 * 3400 * Must be called with xhci->lock held. 3401 */ 3402void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3403 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3404{ 3405 int i; 3406 unsigned int num_dropped_eps = 0; 3407 unsigned int drop_flags = 0; 3408 3409 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3410 if (virt_dev->eps[i].ring) { 3411 drop_flags |= 1 << i; 3412 num_dropped_eps++; 3413 } 3414 } 3415 xhci->num_active_eps -= num_dropped_eps; 3416 if (num_dropped_eps) 3417 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3418 "Dropped %u ep ctxs, flags = 0x%x, " 3419 "%u now active.", 3420 num_dropped_eps, drop_flags, 3421 xhci->num_active_eps); 3422} 3423 3424/* 3425 * This submits a Reset Device Command, which will set the device state to 0, 3426 * set the device address to 0, and disable all the endpoints except the default 3427 * control endpoint. The USB core should come back and call 3428 * xhci_address_device(), and then re-set up the configuration. If this is 3429 * called because of a usb_reset_and_verify_device(), then the old alternate 3430 * settings will be re-installed through the normal bandwidth allocation 3431 * functions. 3432 * 3433 * Wait for the Reset Device command to finish. Remove all structures 3434 * associated with the endpoints that were disabled. Clear the input device 3435 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3436 * 3437 * If the virt_dev to be reset does not exist or does not match the udev, 3438 * it means the device is lost, possibly due to the xHC restore error and 3439 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3440 * re-allocate the device. 3441 */ 3442int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3443{ 3444 int ret, i; 3445 unsigned long flags; 3446 struct xhci_hcd *xhci; 3447 unsigned int slot_id; 3448 struct xhci_virt_device *virt_dev; 3449 struct xhci_command *reset_device_cmd; 3450 int last_freed_endpoint; 3451 struct xhci_slot_ctx *slot_ctx; 3452 int old_active_eps = 0; 3453 3454 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3455 if (ret <= 0) 3456 return ret; 3457 xhci = hcd_to_xhci(hcd); 3458 slot_id = udev->slot_id; 3459 virt_dev = xhci->devs[slot_id]; 3460 if (!virt_dev) { 3461 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3462 "not exist. Re-allocate the device\n", slot_id); 3463 ret = xhci_alloc_dev(hcd, udev); 3464 if (ret == 1) 3465 return 0; 3466 else 3467 return -EINVAL; 3468 } 3469 3470 if (virt_dev->tt_info) 3471 old_active_eps = virt_dev->tt_info->active_eps; 3472 3473 if (virt_dev->udev != udev) { 3474 /* If the virt_dev and the udev does not match, this virt_dev 3475 * may belong to another udev. 3476 * Re-allocate the device. 3477 */ 3478 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3479 "not match the udev. Re-allocate the device\n", 3480 slot_id); 3481 ret = xhci_alloc_dev(hcd, udev); 3482 if (ret == 1) 3483 return 0; 3484 else 3485 return -EINVAL; 3486 } 3487 3488 /* If device is not setup, there is no point in resetting it */ 3489 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3490 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3491 SLOT_STATE_DISABLED) 3492 return 0; 3493 3494 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3495 /* Allocate the command structure that holds the struct completion. 3496 * Assume we're in process context, since the normal device reset 3497 * process has to wait for the device anyway. Storage devices are 3498 * reset as part of error handling, so use GFP_NOIO instead of 3499 * GFP_KERNEL. 3500 */ 3501 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3502 if (!reset_device_cmd) { 3503 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3504 return -ENOMEM; 3505 } 3506 3507 /* Attempt to submit the Reset Device command to the command ring */ 3508 spin_lock_irqsave(&xhci->lock, flags); 3509 3510 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3511 if (ret) { 3512 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3513 spin_unlock_irqrestore(&xhci->lock, flags); 3514 goto command_cleanup; 3515 } 3516 xhci_ring_cmd_db(xhci); 3517 spin_unlock_irqrestore(&xhci->lock, flags); 3518 3519 /* Wait for the Reset Device command to finish */ 3520 wait_for_completion(reset_device_cmd->completion); 3521 3522 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3523 * unless we tried to reset a slot ID that wasn't enabled, 3524 * or the device wasn't in the addressed or configured state. 3525 */ 3526 ret = reset_device_cmd->status; 3527 switch (ret) { 3528 case COMP_CMD_ABORT: 3529 case COMP_CMD_STOP: 3530 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3531 ret = -ETIME; 3532 goto command_cleanup; 3533 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3534 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3535 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3536 slot_id, 3537 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3538 xhci_dbg(xhci, "Not freeing device rings.\n"); 3539 /* Don't treat this as an error. May change my mind later. */ 3540 ret = 0; 3541 goto command_cleanup; 3542 case COMP_SUCCESS: 3543 xhci_dbg(xhci, "Successful reset device command.\n"); 3544 break; 3545 default: 3546 if (xhci_is_vendor_info_code(xhci, ret)) 3547 break; 3548 xhci_warn(xhci, "Unknown completion code %u for " 3549 "reset device command.\n", ret); 3550 ret = -EINVAL; 3551 goto command_cleanup; 3552 } 3553 3554 /* Free up host controller endpoint resources */ 3555 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3556 spin_lock_irqsave(&xhci->lock, flags); 3557 /* Don't delete the default control endpoint resources */ 3558 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3559 spin_unlock_irqrestore(&xhci->lock, flags); 3560 } 3561 3562 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3563 last_freed_endpoint = 1; 3564 for (i = 1; i < 31; ++i) { 3565 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3566 3567 if (ep->ep_state & EP_HAS_STREAMS) { 3568 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3569 xhci_get_endpoint_address(i)); 3570 xhci_free_stream_info(xhci, ep->stream_info); 3571 ep->stream_info = NULL; 3572 ep->ep_state &= ~EP_HAS_STREAMS; 3573 } 3574 3575 if (ep->ring) { 3576 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3577 last_freed_endpoint = i; 3578 } 3579 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3580 xhci_drop_ep_from_interval_table(xhci, 3581 &virt_dev->eps[i].bw_info, 3582 virt_dev->bw_table, 3583 udev, 3584 &virt_dev->eps[i], 3585 virt_dev->tt_info); 3586 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3587 } 3588 /* If necessary, update the number of active TTs on this root port */ 3589 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3590 3591 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3592 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3593 ret = 0; 3594 3595command_cleanup: 3596 xhci_free_command(xhci, reset_device_cmd); 3597 return ret; 3598} 3599 3600/* 3601 * At this point, the struct usb_device is about to go away, the device has 3602 * disconnected, and all traffic has been stopped and the endpoints have been 3603 * disabled. Free any HC data structures associated with that device. 3604 */ 3605void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3606{ 3607 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3608 struct xhci_virt_device *virt_dev; 3609 unsigned long flags; 3610 u32 state; 3611 int i, ret; 3612 struct xhci_command *command; 3613 3614 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3615 if (!command) 3616 return; 3617 3618#ifndef CONFIG_USB_DEFAULT_PERSIST 3619 /* 3620 * We called pm_runtime_get_noresume when the device was attached. 3621 * Decrement the counter here to allow controller to runtime suspend 3622 * if no devices remain. 3623 */ 3624 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3625 pm_runtime_put_noidle(hcd->self.controller); 3626#endif 3627 3628 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3629 /* If the host is halted due to driver unload, we still need to free the 3630 * device. 3631 */ 3632 if (ret <= 0 && ret != -ENODEV) { 3633 kfree(command); 3634 return; 3635 } 3636 3637 virt_dev = xhci->devs[udev->slot_id]; 3638 3639 /* Stop any wayward timer functions (which may grab the lock) */ 3640 for (i = 0; i < 31; ++i) { 3641 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3642 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3643 } 3644 3645 spin_lock_irqsave(&xhci->lock, flags); 3646 /* Don't disable the slot if the host controller is dead. */ 3647 state = readl(&xhci->op_regs->status); 3648 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3649 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3650 xhci_free_virt_device(xhci, udev->slot_id); 3651 spin_unlock_irqrestore(&xhci->lock, flags); 3652 kfree(command); 3653 return; 3654 } 3655 3656 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3657 udev->slot_id)) { 3658 spin_unlock_irqrestore(&xhci->lock, flags); 3659 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3660 return; 3661 } 3662 xhci_ring_cmd_db(xhci); 3663 spin_unlock_irqrestore(&xhci->lock, flags); 3664 3665 /* 3666 * Event command completion handler will free any data structures 3667 * associated with the slot. XXX Can free sleep? 3668 */ 3669} 3670 3671/* 3672 * Checks if we have enough host controller resources for the default control 3673 * endpoint. 3674 * 3675 * Must be called with xhci->lock held. 3676 */ 3677static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3678{ 3679 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3680 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3681 "Not enough ep ctxs: " 3682 "%u active, need to add 1, limit is %u.", 3683 xhci->num_active_eps, xhci->limit_active_eps); 3684 return -ENOMEM; 3685 } 3686 xhci->num_active_eps += 1; 3687 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3688 "Adding 1 ep ctx, %u now active.", 3689 xhci->num_active_eps); 3690 return 0; 3691} 3692 3693 3694/* 3695 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3696 * timed out, or allocating memory failed. Returns 1 on success. 3697 */ 3698int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3699{ 3700 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3701 unsigned long flags; 3702 int ret, slot_id; 3703 struct xhci_command *command; 3704 3705 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3706 if (!command) 3707 return 0; 3708 3709 /* xhci->slot_id and xhci->addr_dev are not thread-safe */ 3710 mutex_lock(&xhci->mutex); 3711 spin_lock_irqsave(&xhci->lock, flags); 3712 command->completion = &xhci->addr_dev; 3713 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3714 if (ret) { 3715 spin_unlock_irqrestore(&xhci->lock, flags); 3716 mutex_unlock(&xhci->mutex); 3717 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3718 kfree(command); 3719 return 0; 3720 } 3721 xhci_ring_cmd_db(xhci); 3722 spin_unlock_irqrestore(&xhci->lock, flags); 3723 3724 wait_for_completion(command->completion); 3725 slot_id = xhci->slot_id; 3726 mutex_unlock(&xhci->mutex); 3727 3728 if (!slot_id || command->status != COMP_SUCCESS) { 3729 xhci_err(xhci, "Error while assigning device slot ID\n"); 3730 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3731 HCS_MAX_SLOTS( 3732 readl(&xhci->cap_regs->hcs_params1))); 3733 kfree(command); 3734 return 0; 3735 } 3736 3737 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3738 spin_lock_irqsave(&xhci->lock, flags); 3739 ret = xhci_reserve_host_control_ep_resources(xhci); 3740 if (ret) { 3741 spin_unlock_irqrestore(&xhci->lock, flags); 3742 xhci_warn(xhci, "Not enough host resources, " 3743 "active endpoint contexts = %u\n", 3744 xhci->num_active_eps); 3745 goto disable_slot; 3746 } 3747 spin_unlock_irqrestore(&xhci->lock, flags); 3748 } 3749 /* Use GFP_NOIO, since this function can be called from 3750 * xhci_discover_or_reset_device(), which may be called as part of 3751 * mass storage driver error handling. 3752 */ 3753 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3754 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3755 goto disable_slot; 3756 } 3757 udev->slot_id = slot_id; 3758 3759#ifndef CONFIG_USB_DEFAULT_PERSIST 3760 /* 3761 * If resetting upon resume, we can't put the controller into runtime 3762 * suspend if there is a device attached. 3763 */ 3764 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3765 pm_runtime_get_noresume(hcd->self.controller); 3766#endif 3767 3768 3769 kfree(command); 3770 /* Is this a LS or FS device under a HS hub? */ 3771 /* Hub or peripherial? */ 3772 return 1; 3773 3774disable_slot: 3775 /* Disable slot, if we can do it without mem alloc */ 3776 spin_lock_irqsave(&xhci->lock, flags); 3777 command->completion = NULL; 3778 command->status = 0; 3779 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3780 udev->slot_id)) 3781 xhci_ring_cmd_db(xhci); 3782 spin_unlock_irqrestore(&xhci->lock, flags); 3783 return 0; 3784} 3785 3786/* 3787 * Issue an Address Device command and optionally send a corresponding 3788 * SetAddress request to the device. 3789 */ 3790static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3791 enum xhci_setup_dev setup) 3792{ 3793 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3794 unsigned long flags; 3795 struct xhci_virt_device *virt_dev; 3796 int ret = 0; 3797 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3798 struct xhci_slot_ctx *slot_ctx; 3799 struct xhci_input_control_ctx *ctrl_ctx; 3800 u64 temp_64; 3801 struct xhci_command *command = NULL; 3802 3803 mutex_lock(&xhci->mutex); 3804 3805 if (xhci->xhc_state) /* dying, removing or halted */ 3806 goto out; 3807 3808 if (!udev->slot_id) { 3809 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3810 "Bad Slot ID %d", udev->slot_id); 3811 ret = -EINVAL; 3812 goto out; 3813 } 3814 3815 virt_dev = xhci->devs[udev->slot_id]; 3816 3817 if (WARN_ON(!virt_dev)) { 3818 /* 3819 * In plug/unplug torture test with an NEC controller, 3820 * a zero-dereference was observed once due to virt_dev = 0. 3821 * Print useful debug rather than crash if it is observed again! 3822 */ 3823 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3824 udev->slot_id); 3825 ret = -EINVAL; 3826 goto out; 3827 } 3828 3829 if (setup == SETUP_CONTEXT_ONLY) { 3830 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3831 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3832 SLOT_STATE_DEFAULT) { 3833 xhci_dbg(xhci, "Slot already in default state\n"); 3834 goto out; 3835 } 3836 } 3837 3838 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3839 if (!command) { 3840 ret = -ENOMEM; 3841 goto out; 3842 } 3843 3844 command->in_ctx = virt_dev->in_ctx; 3845 command->completion = &xhci->addr_dev; 3846 3847 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3848 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3849 if (!ctrl_ctx) { 3850 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3851 __func__); 3852 ret = -EINVAL; 3853 goto out; 3854 } 3855 /* 3856 * If this is the first Set Address since device plug-in or 3857 * virt_device realloaction after a resume with an xHCI power loss, 3858 * then set up the slot context. 3859 */ 3860 if (!slot_ctx->dev_info) 3861 xhci_setup_addressable_virt_dev(xhci, udev); 3862 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3863 else 3864 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3865 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3866 ctrl_ctx->drop_flags = 0; 3867 3868 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3869 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3870 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3871 le32_to_cpu(slot_ctx->dev_info) >> 27); 3872 3873 spin_lock_irqsave(&xhci->lock, flags); 3874 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3875 udev->slot_id, setup); 3876 if (ret) { 3877 spin_unlock_irqrestore(&xhci->lock, flags); 3878 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3879 "FIXME: allocate a command ring segment"); 3880 goto out; 3881 } 3882 xhci_ring_cmd_db(xhci); 3883 spin_unlock_irqrestore(&xhci->lock, flags); 3884 3885 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3886 wait_for_completion(command->completion); 3887 3888 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3889 * the SetAddress() "recovery interval" required by USB and aborting the 3890 * command on a timeout. 3891 */ 3892 switch (command->status) { 3893 case COMP_CMD_ABORT: 3894 case COMP_CMD_STOP: 3895 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3896 ret = -ETIME; 3897 break; 3898 case COMP_CTX_STATE: 3899 case COMP_EBADSLT: 3900 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3901 act, udev->slot_id); 3902 ret = -EINVAL; 3903 break; 3904 case COMP_TX_ERR: 3905 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3906 ret = -EPROTO; 3907 break; 3908 case COMP_DEV_ERR: 3909 dev_warn(&udev->dev, 3910 "ERROR: Incompatible device for setup %s command\n", act); 3911 ret = -ENODEV; 3912 break; 3913 case COMP_SUCCESS: 3914 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3915 "Successful setup %s command", act); 3916 break; 3917 default: 3918 xhci_err(xhci, 3919 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3920 act, command->status); 3921 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3922 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3923 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3924 ret = -EINVAL; 3925 break; 3926 } 3927 if (ret) 3928 goto out; 3929 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3930 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3931 "Op regs DCBAA ptr = %#016llx", temp_64); 3932 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3933 "Slot ID %d dcbaa entry @%p = %#016llx", 3934 udev->slot_id, 3935 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3936 (unsigned long long) 3937 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3938 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3939 "Output Context DMA address = %#08llx", 3940 (unsigned long long)virt_dev->out_ctx->dma); 3941 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3942 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3943 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3944 le32_to_cpu(slot_ctx->dev_info) >> 27); 3945 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3946 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3947 /* 3948 * USB core uses address 1 for the roothubs, so we add one to the 3949 * address given back to us by the HC. 3950 */ 3951 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3952 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3953 le32_to_cpu(slot_ctx->dev_info) >> 27); 3954 /* Zero the input context control for later use */ 3955 ctrl_ctx->add_flags = 0; 3956 ctrl_ctx->drop_flags = 0; 3957 3958 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3959 "Internal device address = %d", 3960 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3961out: 3962 mutex_unlock(&xhci->mutex); 3963 kfree(command); 3964 return ret; 3965} 3966 3967int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3968{ 3969 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3970} 3971 3972int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3973{ 3974 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3975} 3976 3977/* 3978 * Transfer the port index into real index in the HW port status 3979 * registers. Caculate offset between the port's PORTSC register 3980 * and port status base. Divide the number of per port register 3981 * to get the real index. The raw port number bases 1. 3982 */ 3983int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3984{ 3985 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3986 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3987 __le32 __iomem *addr; 3988 int raw_port; 3989 3990 if (hcd->speed < HCD_USB3) 3991 addr = xhci->usb2_ports[port1 - 1]; 3992 else 3993 addr = xhci->usb3_ports[port1 - 1]; 3994 3995 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3996 return raw_port; 3997} 3998 3999/* 4000 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4001 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4002 */ 4003static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4004 struct usb_device *udev, u16 max_exit_latency) 4005{ 4006 struct xhci_virt_device *virt_dev; 4007 struct xhci_command *command; 4008 struct xhci_input_control_ctx *ctrl_ctx; 4009 struct xhci_slot_ctx *slot_ctx; 4010 unsigned long flags; 4011 int ret; 4012 4013 spin_lock_irqsave(&xhci->lock, flags); 4014 4015 virt_dev = xhci->devs[udev->slot_id]; 4016 4017 /* 4018 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4019 * xHC was re-initialized. Exit latency will be set later after 4020 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4021 */ 4022 4023 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4024 spin_unlock_irqrestore(&xhci->lock, flags); 4025 return 0; 4026 } 4027 4028 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4029 command = xhci->lpm_command; 4030 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4031 if (!ctrl_ctx) { 4032 spin_unlock_irqrestore(&xhci->lock, flags); 4033 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4034 __func__); 4035 return -ENOMEM; 4036 } 4037 4038 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4039 spin_unlock_irqrestore(&xhci->lock, flags); 4040 4041 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4042 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4043 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4044 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4045 slot_ctx->dev_state = 0; 4046 4047 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4048 "Set up evaluate context for LPM MEL change."); 4049 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4050 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4051 4052 /* Issue and wait for the evaluate context command. */ 4053 ret = xhci_configure_endpoint(xhci, udev, command, 4054 true, true); 4055 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4056 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4057 4058 if (!ret) { 4059 spin_lock_irqsave(&xhci->lock, flags); 4060 virt_dev->current_mel = max_exit_latency; 4061 spin_unlock_irqrestore(&xhci->lock, flags); 4062 } 4063 return ret; 4064} 4065 4066#ifdef CONFIG_PM 4067 4068/* BESL to HIRD Encoding array for USB2 LPM */ 4069static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4070 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4071 4072/* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4073static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4074 struct usb_device *udev) 4075{ 4076 int u2del, besl, besl_host; 4077 int besl_device = 0; 4078 u32 field; 4079 4080 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4081 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4082 4083 if (field & USB_BESL_SUPPORT) { 4084 for (besl_host = 0; besl_host < 16; besl_host++) { 4085 if (xhci_besl_encoding[besl_host] >= u2del) 4086 break; 4087 } 4088 /* Use baseline BESL value as default */ 4089 if (field & USB_BESL_BASELINE_VALID) 4090 besl_device = USB_GET_BESL_BASELINE(field); 4091 else if (field & USB_BESL_DEEP_VALID) 4092 besl_device = USB_GET_BESL_DEEP(field); 4093 } else { 4094 if (u2del <= 50) 4095 besl_host = 0; 4096 else 4097 besl_host = (u2del - 51) / 75 + 1; 4098 } 4099 4100 besl = besl_host + besl_device; 4101 if (besl > 15) 4102 besl = 15; 4103 4104 return besl; 4105} 4106 4107/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4108static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4109{ 4110 u32 field; 4111 int l1; 4112 int besld = 0; 4113 int hirdm = 0; 4114 4115 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4116 4117 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4118 l1 = udev->l1_params.timeout / 256; 4119 4120 /* device has preferred BESLD */ 4121 if (field & USB_BESL_DEEP_VALID) { 4122 besld = USB_GET_BESL_DEEP(field); 4123 hirdm = 1; 4124 } 4125 4126 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4127} 4128 4129int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4130 struct usb_device *udev, int enable) 4131{ 4132 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4133 __le32 __iomem **port_array; 4134 __le32 __iomem *pm_addr, *hlpm_addr; 4135 u32 pm_val, hlpm_val, field; 4136 unsigned int port_num; 4137 unsigned long flags; 4138 int hird, exit_latency; 4139 int ret; 4140 4141 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4142 !udev->lpm_capable) 4143 return -EPERM; 4144 4145 if (!udev->parent || udev->parent->parent || 4146 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4147 return -EPERM; 4148 4149 if (udev->usb2_hw_lpm_capable != 1) 4150 return -EPERM; 4151 4152 spin_lock_irqsave(&xhci->lock, flags); 4153 4154 port_array = xhci->usb2_ports; 4155 port_num = udev->portnum - 1; 4156 pm_addr = port_array[port_num] + PORTPMSC; 4157 pm_val = readl(pm_addr); 4158 hlpm_addr = port_array[port_num] + PORTHLPMC; 4159 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4160 4161 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4162 enable ? "enable" : "disable", port_num + 1); 4163 4164 if (enable) { 4165 /* Host supports BESL timeout instead of HIRD */ 4166 if (udev->usb2_hw_lpm_besl_capable) { 4167 /* if device doesn't have a preferred BESL value use a 4168 * default one which works with mixed HIRD and BESL 4169 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4170 */ 4171 if ((field & USB_BESL_SUPPORT) && 4172 (field & USB_BESL_BASELINE_VALID)) 4173 hird = USB_GET_BESL_BASELINE(field); 4174 else 4175 hird = udev->l1_params.besl; 4176 4177 exit_latency = xhci_besl_encoding[hird]; 4178 spin_unlock_irqrestore(&xhci->lock, flags); 4179 4180 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4181 * input context for link powermanagement evaluate 4182 * context commands. It is protected by hcd->bandwidth 4183 * mutex and is shared by all devices. We need to set 4184 * the max ext latency in USB 2 BESL LPM as well, so 4185 * use the same mutex and xhci_change_max_exit_latency() 4186 */ 4187 mutex_lock(hcd->bandwidth_mutex); 4188 ret = xhci_change_max_exit_latency(xhci, udev, 4189 exit_latency); 4190 mutex_unlock(hcd->bandwidth_mutex); 4191 4192 if (ret < 0) 4193 return ret; 4194 spin_lock_irqsave(&xhci->lock, flags); 4195 4196 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4197 writel(hlpm_val, hlpm_addr); 4198 /* flush write */ 4199 readl(hlpm_addr); 4200 } else { 4201 hird = xhci_calculate_hird_besl(xhci, udev); 4202 } 4203 4204 pm_val &= ~PORT_HIRD_MASK; 4205 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4206 writel(pm_val, pm_addr); 4207 pm_val = readl(pm_addr); 4208 pm_val |= PORT_HLE; 4209 writel(pm_val, pm_addr); 4210 /* flush write */ 4211 readl(pm_addr); 4212 } else { 4213 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4214 writel(pm_val, pm_addr); 4215 /* flush write */ 4216 readl(pm_addr); 4217 if (udev->usb2_hw_lpm_besl_capable) { 4218 spin_unlock_irqrestore(&xhci->lock, flags); 4219 mutex_lock(hcd->bandwidth_mutex); 4220 xhci_change_max_exit_latency(xhci, udev, 0); 4221 mutex_unlock(hcd->bandwidth_mutex); 4222 return 0; 4223 } 4224 } 4225 4226 spin_unlock_irqrestore(&xhci->lock, flags); 4227 return 0; 4228} 4229 4230/* check if a usb2 port supports a given extened capability protocol 4231 * only USB2 ports extended protocol capability values are cached. 4232 * Return 1 if capability is supported 4233 */ 4234static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4235 unsigned capability) 4236{ 4237 u32 port_offset, port_count; 4238 int i; 4239 4240 for (i = 0; i < xhci->num_ext_caps; i++) { 4241 if (xhci->ext_caps[i] & capability) { 4242 /* port offsets starts at 1 */ 4243 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4244 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4245 if (port >= port_offset && 4246 port < port_offset + port_count) 4247 return 1; 4248 } 4249 } 4250 return 0; 4251} 4252 4253int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4254{ 4255 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4256 int portnum = udev->portnum - 1; 4257 4258 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4259 !udev->lpm_capable) 4260 return 0; 4261 4262 /* we only support lpm for non-hub device connected to root hub yet */ 4263 if (!udev->parent || udev->parent->parent || 4264 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4265 return 0; 4266 4267 if (xhci->hw_lpm_support == 1 && 4268 xhci_check_usb2_port_capability( 4269 xhci, portnum, XHCI_HLC)) { 4270 udev->usb2_hw_lpm_capable = 1; 4271 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4272 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4273 if (xhci_check_usb2_port_capability(xhci, portnum, 4274 XHCI_BLC)) 4275 udev->usb2_hw_lpm_besl_capable = 1; 4276 } 4277 4278 return 0; 4279} 4280 4281/*---------------------- USB 3.0 Link PM functions ------------------------*/ 4282 4283/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4284static unsigned long long xhci_service_interval_to_ns( 4285 struct usb_endpoint_descriptor *desc) 4286{ 4287 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4288} 4289 4290static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4291 enum usb3_link_state state) 4292{ 4293 unsigned long long sel; 4294 unsigned long long pel; 4295 unsigned int max_sel_pel; 4296 char *state_name; 4297 4298 switch (state) { 4299 case USB3_LPM_U1: 4300 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4301 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4302 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4303 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4304 state_name = "U1"; 4305 break; 4306 case USB3_LPM_U2: 4307 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4308 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4309 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4310 state_name = "U2"; 4311 break; 4312 default: 4313 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4314 __func__); 4315 return USB3_LPM_DISABLED; 4316 } 4317 4318 if (sel <= max_sel_pel && pel <= max_sel_pel) 4319 return USB3_LPM_DEVICE_INITIATED; 4320 4321 if (sel > max_sel_pel) 4322 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4323 "due to long SEL %llu ms\n", 4324 state_name, sel); 4325 else 4326 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4327 "due to long PEL %llu ms\n", 4328 state_name, pel); 4329 return USB3_LPM_DISABLED; 4330} 4331 4332/* The U1 timeout should be the maximum of the following values: 4333 * - For control endpoints, U1 system exit latency (SEL) * 3 4334 * - For bulk endpoints, U1 SEL * 5 4335 * - For interrupt endpoints: 4336 * - Notification EPs, U1 SEL * 3 4337 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4338 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4339 */ 4340static unsigned long long xhci_calculate_intel_u1_timeout( 4341 struct usb_device *udev, 4342 struct usb_endpoint_descriptor *desc) 4343{ 4344 unsigned long long timeout_ns; 4345 int ep_type; 4346 int intr_type; 4347 4348 ep_type = usb_endpoint_type(desc); 4349 switch (ep_type) { 4350 case USB_ENDPOINT_XFER_CONTROL: 4351 timeout_ns = udev->u1_params.sel * 3; 4352 break; 4353 case USB_ENDPOINT_XFER_BULK: 4354 timeout_ns = udev->u1_params.sel * 5; 4355 break; 4356 case USB_ENDPOINT_XFER_INT: 4357 intr_type = usb_endpoint_interrupt_type(desc); 4358 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4359 timeout_ns = udev->u1_params.sel * 3; 4360 break; 4361 } 4362 /* Otherwise the calculation is the same as isoc eps */ 4363 case USB_ENDPOINT_XFER_ISOC: 4364 timeout_ns = xhci_service_interval_to_ns(desc); 4365 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4366 if (timeout_ns < udev->u1_params.sel * 2) 4367 timeout_ns = udev->u1_params.sel * 2; 4368 break; 4369 default: 4370 return 0; 4371 } 4372 4373 return timeout_ns; 4374} 4375 4376/* Returns the hub-encoded U1 timeout value. */ 4377static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4378 struct usb_device *udev, 4379 struct usb_endpoint_descriptor *desc) 4380{ 4381 unsigned long long timeout_ns; 4382 4383 if (xhci->quirks & XHCI_INTEL_HOST) 4384 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4385 else 4386 timeout_ns = udev->u1_params.sel; 4387 4388 /* The U1 timeout is encoded in 1us intervals. 4389 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4390 */ 4391 if (timeout_ns == USB3_LPM_DISABLED) 4392 timeout_ns = 1; 4393 else 4394 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4395 4396 /* If the necessary timeout value is bigger than what we can set in the 4397 * USB 3.0 hub, we have to disable hub-initiated U1. 4398 */ 4399 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4400 return timeout_ns; 4401 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4402 "due to long timeout %llu ms\n", timeout_ns); 4403 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4404} 4405 4406/* The U2 timeout should be the maximum of: 4407 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4408 * - largest bInterval of any active periodic endpoint (to avoid going 4409 * into lower power link states between intervals). 4410 * - the U2 Exit Latency of the device 4411 */ 4412static unsigned long long xhci_calculate_intel_u2_timeout( 4413 struct usb_device *udev, 4414 struct usb_endpoint_descriptor *desc) 4415{ 4416 unsigned long long timeout_ns; 4417 unsigned long long u2_del_ns; 4418 4419 timeout_ns = 10 * 1000 * 1000; 4420 4421 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4422 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4423 timeout_ns = xhci_service_interval_to_ns(desc); 4424 4425 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4426 if (u2_del_ns > timeout_ns) 4427 timeout_ns = u2_del_ns; 4428 4429 return timeout_ns; 4430} 4431 4432/* Returns the hub-encoded U2 timeout value. */ 4433static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4434 struct usb_device *udev, 4435 struct usb_endpoint_descriptor *desc) 4436{ 4437 unsigned long long timeout_ns; 4438 4439 if (xhci->quirks & XHCI_INTEL_HOST) 4440 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4441 else 4442 timeout_ns = udev->u2_params.sel; 4443 4444 /* The U2 timeout is encoded in 256us intervals */ 4445 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4446 /* If the necessary timeout value is bigger than what we can set in the 4447 * USB 3.0 hub, we have to disable hub-initiated U2. 4448 */ 4449 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4450 return timeout_ns; 4451 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4452 "due to long timeout %llu ms\n", timeout_ns); 4453 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4454} 4455 4456static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4457 struct usb_device *udev, 4458 struct usb_endpoint_descriptor *desc, 4459 enum usb3_link_state state, 4460 u16 *timeout) 4461{ 4462 if (state == USB3_LPM_U1) 4463 return xhci_calculate_u1_timeout(xhci, udev, desc); 4464 else if (state == USB3_LPM_U2) 4465 return xhci_calculate_u2_timeout(xhci, udev, desc); 4466 4467 return USB3_LPM_DISABLED; 4468} 4469 4470static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4471 struct usb_device *udev, 4472 struct usb_endpoint_descriptor *desc, 4473 enum usb3_link_state state, 4474 u16 *timeout) 4475{ 4476 u16 alt_timeout; 4477 4478 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4479 desc, state, timeout); 4480 4481 /* If we found we can't enable hub-initiated LPM, or 4482 * the U1 or U2 exit latency was too high to allow 4483 * device-initiated LPM as well, just stop searching. 4484 */ 4485 if (alt_timeout == USB3_LPM_DISABLED || 4486 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4487 *timeout = alt_timeout; 4488 return -E2BIG; 4489 } 4490 if (alt_timeout > *timeout) 4491 *timeout = alt_timeout; 4492 return 0; 4493} 4494 4495static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4496 struct usb_device *udev, 4497 struct usb_host_interface *alt, 4498 enum usb3_link_state state, 4499 u16 *timeout) 4500{ 4501 int j; 4502 4503 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4504 if (xhci_update_timeout_for_endpoint(xhci, udev, 4505 &alt->endpoint[j].desc, state, timeout)) 4506 return -E2BIG; 4507 continue; 4508 } 4509 return 0; 4510} 4511 4512static int xhci_check_intel_tier_policy(struct usb_device *udev, 4513 enum usb3_link_state state) 4514{ 4515 struct usb_device *parent; 4516 unsigned int num_hubs; 4517 4518 if (state == USB3_LPM_U2) 4519 return 0; 4520 4521 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4522 for (parent = udev->parent, num_hubs = 0; parent->parent; 4523 parent = parent->parent) 4524 num_hubs++; 4525 4526 if (num_hubs < 2) 4527 return 0; 4528 4529 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4530 " below second-tier hub.\n"); 4531 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4532 "to decrease power consumption.\n"); 4533 return -E2BIG; 4534} 4535 4536static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4537 struct usb_device *udev, 4538 enum usb3_link_state state) 4539{ 4540 if (xhci->quirks & XHCI_INTEL_HOST) 4541 return xhci_check_intel_tier_policy(udev, state); 4542 else 4543 return 0; 4544} 4545 4546/* Returns the U1 or U2 timeout that should be enabled. 4547 * If the tier check or timeout setting functions return with a non-zero exit 4548 * code, that means the timeout value has been finalized and we shouldn't look 4549 * at any more endpoints. 4550 */ 4551static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4552 struct usb_device *udev, enum usb3_link_state state) 4553{ 4554 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4555 struct usb_host_config *config; 4556 char *state_name; 4557 int i; 4558 u16 timeout = USB3_LPM_DISABLED; 4559 4560 if (state == USB3_LPM_U1) 4561 state_name = "U1"; 4562 else if (state == USB3_LPM_U2) 4563 state_name = "U2"; 4564 else { 4565 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4566 state); 4567 return timeout; 4568 } 4569 4570 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4571 return timeout; 4572 4573 /* Gather some information about the currently installed configuration 4574 * and alternate interface settings. 4575 */ 4576 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4577 state, &timeout)) 4578 return timeout; 4579 4580 config = udev->actconfig; 4581 if (!config) 4582 return timeout; 4583 4584 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4585 struct usb_driver *driver; 4586 struct usb_interface *intf = config->interface[i]; 4587 4588 if (!intf) 4589 continue; 4590 4591 /* Check if any currently bound drivers want hub-initiated LPM 4592 * disabled. 4593 */ 4594 if (intf->dev.driver) { 4595 driver = to_usb_driver(intf->dev.driver); 4596 if (driver && driver->disable_hub_initiated_lpm) { 4597 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4598 "at request of driver %s\n", 4599 state_name, driver->name); 4600 return xhci_get_timeout_no_hub_lpm(udev, state); 4601 } 4602 } 4603 4604 /* Not sure how this could happen... */ 4605 if (!intf->cur_altsetting) 4606 continue; 4607 4608 if (xhci_update_timeout_for_interface(xhci, udev, 4609 intf->cur_altsetting, 4610 state, &timeout)) 4611 return timeout; 4612 } 4613 return timeout; 4614} 4615 4616static int calculate_max_exit_latency(struct usb_device *udev, 4617 enum usb3_link_state state_changed, 4618 u16 hub_encoded_timeout) 4619{ 4620 unsigned long long u1_mel_us = 0; 4621 unsigned long long u2_mel_us = 0; 4622 unsigned long long mel_us = 0; 4623 bool disabling_u1; 4624 bool disabling_u2; 4625 bool enabling_u1; 4626 bool enabling_u2; 4627 4628 disabling_u1 = (state_changed == USB3_LPM_U1 && 4629 hub_encoded_timeout == USB3_LPM_DISABLED); 4630 disabling_u2 = (state_changed == USB3_LPM_U2 && 4631 hub_encoded_timeout == USB3_LPM_DISABLED); 4632 4633 enabling_u1 = (state_changed == USB3_LPM_U1 && 4634 hub_encoded_timeout != USB3_LPM_DISABLED); 4635 enabling_u2 = (state_changed == USB3_LPM_U2 && 4636 hub_encoded_timeout != USB3_LPM_DISABLED); 4637 4638 /* If U1 was already enabled and we're not disabling it, 4639 * or we're going to enable U1, account for the U1 max exit latency. 4640 */ 4641 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4642 enabling_u1) 4643 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4644 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4645 enabling_u2) 4646 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4647 4648 if (u1_mel_us > u2_mel_us) 4649 mel_us = u1_mel_us; 4650 else 4651 mel_us = u2_mel_us; 4652 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4653 if (mel_us > MAX_EXIT) { 4654 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4655 "is too big.\n", mel_us); 4656 return -E2BIG; 4657 } 4658 return mel_us; 4659} 4660 4661/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4662int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4663 struct usb_device *udev, enum usb3_link_state state) 4664{ 4665 struct xhci_hcd *xhci; 4666 u16 hub_encoded_timeout; 4667 int mel; 4668 int ret; 4669 4670 xhci = hcd_to_xhci(hcd); 4671 /* The LPM timeout values are pretty host-controller specific, so don't 4672 * enable hub-initiated timeouts unless the vendor has provided 4673 * information about their timeout algorithm. 4674 */ 4675 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4676 !xhci->devs[udev->slot_id]) 4677 return USB3_LPM_DISABLED; 4678 4679 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4680 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4681 if (mel < 0) { 4682 /* Max Exit Latency is too big, disable LPM. */ 4683 hub_encoded_timeout = USB3_LPM_DISABLED; 4684 mel = 0; 4685 } 4686 4687 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4688 if (ret) 4689 return ret; 4690 return hub_encoded_timeout; 4691} 4692 4693int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4694 struct usb_device *udev, enum usb3_link_state state) 4695{ 4696 struct xhci_hcd *xhci; 4697 u16 mel; 4698 4699 xhci = hcd_to_xhci(hcd); 4700 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4701 !xhci->devs[udev->slot_id]) 4702 return 0; 4703 4704 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4705 return xhci_change_max_exit_latency(xhci, udev, mel); 4706} 4707#else /* CONFIG_PM */ 4708 4709int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4710 struct usb_device *udev, int enable) 4711{ 4712 return 0; 4713} 4714 4715int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4716{ 4717 return 0; 4718} 4719 4720int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4721 struct usb_device *udev, enum usb3_link_state state) 4722{ 4723 return USB3_LPM_DISABLED; 4724} 4725 4726int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4727 struct usb_device *udev, enum usb3_link_state state) 4728{ 4729 return 0; 4730} 4731#endif /* CONFIG_PM */ 4732 4733/*-------------------------------------------------------------------------*/ 4734 4735/* Once a hub descriptor is fetched for a device, we need to update the xHC's 4736 * internal data structures for the device. 4737 */ 4738int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4739 struct usb_tt *tt, gfp_t mem_flags) 4740{ 4741 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4742 struct xhci_virt_device *vdev; 4743 struct xhci_command *config_cmd; 4744 struct xhci_input_control_ctx *ctrl_ctx; 4745 struct xhci_slot_ctx *slot_ctx; 4746 unsigned long flags; 4747 unsigned think_time; 4748 int ret; 4749 4750 /* Ignore root hubs */ 4751 if (!hdev->parent) 4752 return 0; 4753 4754 vdev = xhci->devs[hdev->slot_id]; 4755 if (!vdev) { 4756 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4757 return -EINVAL; 4758 } 4759 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4760 if (!config_cmd) { 4761 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4762 return -ENOMEM; 4763 } 4764 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4765 if (!ctrl_ctx) { 4766 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4767 __func__); 4768 xhci_free_command(xhci, config_cmd); 4769 return -ENOMEM; 4770 } 4771 4772 spin_lock_irqsave(&xhci->lock, flags); 4773 if (hdev->speed == USB_SPEED_HIGH && 4774 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4775 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4776 xhci_free_command(xhci, config_cmd); 4777 spin_unlock_irqrestore(&xhci->lock, flags); 4778 return -ENOMEM; 4779 } 4780 4781 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4782 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4783 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4784 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4785 /* 4786 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4787 * but it may be already set to 1 when setup an xHCI virtual 4788 * device, so clear it anyway. 4789 */ 4790 if (tt->multi) 4791 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4792 else if (hdev->speed == USB_SPEED_FULL) 4793 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4794 4795 if (xhci->hci_version > 0x95) { 4796 xhci_dbg(xhci, "xHCI version %x needs hub " 4797 "TT think time and number of ports\n", 4798 (unsigned int) xhci->hci_version); 4799 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4800 /* Set TT think time - convert from ns to FS bit times. 4801 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4802 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4803 * 4804 * xHCI 1.0: this field shall be 0 if the device is not a 4805 * High-spped hub. 4806 */ 4807 think_time = tt->think_time; 4808 if (think_time != 0) 4809 think_time = (think_time / 666) - 1; 4810 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4811 slot_ctx->tt_info |= 4812 cpu_to_le32(TT_THINK_TIME(think_time)); 4813 } else { 4814 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4815 "TT think time or number of ports\n", 4816 (unsigned int) xhci->hci_version); 4817 } 4818 slot_ctx->dev_state = 0; 4819 spin_unlock_irqrestore(&xhci->lock, flags); 4820 4821 xhci_dbg(xhci, "Set up %s for hub device.\n", 4822 (xhci->hci_version > 0x95) ? 4823 "configure endpoint" : "evaluate context"); 4824 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4825 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4826 4827 /* Issue and wait for the configure endpoint or 4828 * evaluate context command. 4829 */ 4830 if (xhci->hci_version > 0x95) 4831 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4832 false, false); 4833 else 4834 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4835 true, false); 4836 4837 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4838 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4839 4840 xhci_free_command(xhci, config_cmd); 4841 return ret; 4842} 4843 4844int xhci_get_frame(struct usb_hcd *hcd) 4845{ 4846 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4847 /* EHCI mods by the periodic size. Why? */ 4848 return readl(&xhci->run_regs->microframe_index) >> 3; 4849} 4850 4851int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4852{ 4853 struct xhci_hcd *xhci; 4854 struct device *dev = hcd->self.controller; 4855 int retval; 4856 4857 /* Accept arbitrarily long scatter-gather lists */ 4858 hcd->self.sg_tablesize = ~0; 4859 4860 /* support to build packet from discontinuous buffers */ 4861 hcd->self.no_sg_constraint = 1; 4862 4863 /* XHCI controllers don't stop the ep queue on short packets :| */ 4864 hcd->self.no_stop_on_short = 1; 4865 4866 xhci = hcd_to_xhci(hcd); 4867 4868 if (usb_hcd_is_primary_hcd(hcd)) { 4869 xhci->main_hcd = hcd; 4870 /* Mark the first roothub as being USB 2.0. 4871 * The xHCI driver will register the USB 3.0 roothub. 4872 */ 4873 hcd->speed = HCD_USB2; 4874 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4875 /* 4876 * USB 2.0 roothub under xHCI has an integrated TT, 4877 * (rate matching hub) as opposed to having an OHCI/UHCI 4878 * companion controller. 4879 */ 4880 hcd->has_tt = 1; 4881 } else { 4882 if (xhci->sbrn == 0x31) { 4883 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n"); 4884 hcd->speed = HCD_USB31; 4885 } 4886 /* xHCI private pointer was set in xhci_pci_probe for the second 4887 * registered roothub. 4888 */ 4889 return 0; 4890 } 4891 4892 mutex_init(&xhci->mutex); 4893 xhci->cap_regs = hcd->regs; 4894 xhci->op_regs = hcd->regs + 4895 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4896 xhci->run_regs = hcd->regs + 4897 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4898 /* Cache read-only capability registers */ 4899 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4900 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4901 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4902 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4903 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4904 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4905 if (xhci->hci_version > 0x100) 4906 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 4907 xhci_print_registers(xhci); 4908 4909 xhci->quirks = quirks; 4910 4911 get_quirks(dev, xhci); 4912 4913 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4914 * success event after a short transfer. This quirk will ignore such 4915 * spurious event. 4916 */ 4917 if (xhci->hci_version > 0x96) 4918 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4919 4920 /* Make sure the HC is halted. */ 4921 retval = xhci_halt(xhci); 4922 if (retval) 4923 return retval; 4924 4925 xhci_dbg(xhci, "Resetting HCD\n"); 4926 /* Reset the internal HC memory state and registers. */ 4927 retval = xhci_reset(xhci); 4928 if (retval) 4929 return retval; 4930 xhci_dbg(xhci, "Reset complete\n"); 4931 4932 /* Set dma_mask and coherent_dma_mask to 64-bits, 4933 * if xHC supports 64-bit addressing */ 4934 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4935 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4936 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4937 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4938 } else { 4939 /* 4940 * This is to avoid error in cases where a 32-bit USB 4941 * controller is used on a 64-bit capable system. 4942 */ 4943 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 4944 if (retval) 4945 return retval; 4946 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 4947 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 4948 } 4949 4950 xhci_dbg(xhci, "Calling HCD init\n"); 4951 /* Initialize HCD and host controller data structures. */ 4952 retval = xhci_init(hcd); 4953 if (retval) 4954 return retval; 4955 xhci_dbg(xhci, "Called HCD init\n"); 4956 4957 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4958 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4959 4960 return 0; 4961} 4962EXPORT_SYMBOL_GPL(xhci_gen_setup); 4963 4964static const struct hc_driver xhci_hc_driver = { 4965 .description = "xhci-hcd", 4966 .product_desc = "xHCI Host Controller", 4967 .hcd_priv_size = sizeof(struct xhci_hcd *), 4968 4969 /* 4970 * generic hardware linkage 4971 */ 4972 .irq = xhci_irq, 4973 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4974 4975 /* 4976 * basic lifecycle operations 4977 */ 4978 .reset = NULL, /* set in xhci_init_driver() */ 4979 .start = xhci_run, 4980 .stop = xhci_stop, 4981 .shutdown = xhci_shutdown, 4982 4983 /* 4984 * managing i/o requests and associated device resources 4985 */ 4986 .urb_enqueue = xhci_urb_enqueue, 4987 .urb_dequeue = xhci_urb_dequeue, 4988 .alloc_dev = xhci_alloc_dev, 4989 .free_dev = xhci_free_dev, 4990 .alloc_streams = xhci_alloc_streams, 4991 .free_streams = xhci_free_streams, 4992 .add_endpoint = xhci_add_endpoint, 4993 .drop_endpoint = xhci_drop_endpoint, 4994 .endpoint_reset = xhci_endpoint_reset, 4995 .check_bandwidth = xhci_check_bandwidth, 4996 .reset_bandwidth = xhci_reset_bandwidth, 4997 .address_device = xhci_address_device, 4998 .enable_device = xhci_enable_device, 4999 .update_hub_device = xhci_update_hub_device, 5000 .reset_device = xhci_discover_or_reset_device, 5001 5002 /* 5003 * scheduling support 5004 */ 5005 .get_frame_number = xhci_get_frame, 5006 5007 /* 5008 * root hub support 5009 */ 5010 .hub_control = xhci_hub_control, 5011 .hub_status_data = xhci_hub_status_data, 5012 .bus_suspend = xhci_bus_suspend, 5013 .bus_resume = xhci_bus_resume, 5014 5015 /* 5016 * call back when device connected and addressed 5017 */ 5018 .update_device = xhci_update_device, 5019 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5020 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5021 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5022 .find_raw_port_number = xhci_find_raw_port_number, 5023}; 5024 5025void xhci_init_driver(struct hc_driver *drv, 5026 const struct xhci_driver_overrides *over) 5027{ 5028 BUG_ON(!over); 5029 5030 /* Copy the generic table to drv then apply the overrides */ 5031 *drv = xhci_hc_driver; 5032 5033 if (over) { 5034 drv->hcd_priv_size += over->extra_priv_size; 5035 if (over->reset) 5036 drv->reset = over->reset; 5037 if (over->start) 5038 drv->start = over->start; 5039 } 5040} 5041EXPORT_SYMBOL_GPL(xhci_init_driver); 5042 5043MODULE_DESCRIPTION(DRIVER_DESC); 5044MODULE_AUTHOR(DRIVER_AUTHOR); 5045MODULE_LICENSE("GPL"); 5046 5047static int __init xhci_hcd_init(void) 5048{ 5049 /* 5050 * Check the compiler generated sizes of structures that must be laid 5051 * out in specific ways for hardware access. 5052 */ 5053 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5054 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5055 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5056 /* xhci_device_control has eight fields, and also 5057 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5058 */ 5059 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5060 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5061 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5062 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5063 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5064 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5065 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5066 5067 if (usb_disabled()) 5068 return -ENODEV; 5069 5070 return 0; 5071} 5072 5073/* 5074 * If an init function is provided, an exit function must also be provided 5075 * to allow module unload. 5076 */ 5077static void __exit xhci_hcd_fini(void) { } 5078 5079module_init(xhci_hcd_init); 5080module_exit(xhci_hcd_fini); 5081