1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/pci.h>
24#include <linux/irq.h>
25#include <linux/log2.h>
26#include <linux/module.h>
27#include <linux/moduleparam.h>
28#include <linux/slab.h>
29#include <linux/dmi.h>
30#include <linux/dma-mapping.h>
31
32#include "xhci.h"
33#include "xhci-trace.h"
34
35#define DRIVER_AUTHOR "Sarah Sharp"
36#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
39
40/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41static int link_quirk;
42module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
44
45static unsigned int quirks;
46module_param(quirks, uint, S_IRUGO);
47MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
48
49/* TODO: copied from ehci-hcd.c - can this be refactored? */
50/*
51 * xhci_handshake - spin reading hc until handshake completes or fails
52 * @ptr: address of hc register to be read
53 * @mask: bits to look at in result of read
54 * @done: value of those bits when handshake succeeds
55 * @usec: timeout in microseconds
56 *
57 * Returns negative errno, or zero on success
58 *
59 * Success happens when the "mask" bits have the specified value (hardware
60 * handshake done).  There are two failure modes:  "usec" have passed (major
61 * hardware flakeout), or the register reads as all-ones (hardware removed).
62 */
63int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
64{
65	u32	result;
66
67	do {
68		result = readl(ptr);
69		if (result == ~(u32)0)		/* card removed */
70			return -ENODEV;
71		result &= mask;
72		if (result == done)
73			return 0;
74		udelay(1);
75		usec--;
76	} while (usec > 0);
77	return -ETIMEDOUT;
78}
79
80/*
81 * Disable interrupts and begin the xHCI halting process.
82 */
83void xhci_quiesce(struct xhci_hcd *xhci)
84{
85	u32 halted;
86	u32 cmd;
87	u32 mask;
88
89	mask = ~(XHCI_IRQS);
90	halted = readl(&xhci->op_regs->status) & STS_HALT;
91	if (!halted)
92		mask &= ~CMD_RUN;
93
94	cmd = readl(&xhci->op_regs->command);
95	cmd &= mask;
96	writel(cmd, &xhci->op_regs->command);
97}
98
99/*
100 * Force HC into halt state.
101 *
102 * Disable any IRQs and clear the run/stop bit.
103 * HC will complete any current and actively pipelined transactions, and
104 * should halt within 16 ms of the run/stop bit being cleared.
105 * Read HC Halted bit in the status register to see when the HC is finished.
106 */
107int xhci_halt(struct xhci_hcd *xhci)
108{
109	int ret;
110	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
111	xhci_quiesce(xhci);
112
113	ret = xhci_handshake(&xhci->op_regs->status,
114			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
115	if (!ret) {
116		xhci->xhc_state |= XHCI_STATE_HALTED;
117		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
118	} else
119		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
120				XHCI_MAX_HALT_USEC);
121	return ret;
122}
123
124/*
125 * Set the run bit and wait for the host to be running.
126 */
127static int xhci_start(struct xhci_hcd *xhci)
128{
129	u32 temp;
130	int ret;
131
132	temp = readl(&xhci->op_regs->command);
133	temp |= (CMD_RUN);
134	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
135			temp);
136	writel(temp, &xhci->op_regs->command);
137
138	/*
139	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
140	 * running.
141	 */
142	ret = xhci_handshake(&xhci->op_regs->status,
143			STS_HALT, 0, XHCI_MAX_HALT_USEC);
144	if (ret == -ETIMEDOUT)
145		xhci_err(xhci, "Host took too long to start, "
146				"waited %u microseconds.\n",
147				XHCI_MAX_HALT_USEC);
148	if (!ret)
149		/* clear state flags. Including dying, halted or removing */
150		xhci->xhc_state = 0;
151
152	return ret;
153}
154
155/*
156 * Reset a halted HC.
157 *
158 * This resets pipelines, timers, counters, state machines, etc.
159 * Transactions will be terminated immediately, and operational registers
160 * will be set to their defaults.
161 */
162int xhci_reset(struct xhci_hcd *xhci)
163{
164	u32 command;
165	u32 state;
166	int ret, i;
167
168	state = readl(&xhci->op_regs->status);
169	if ((state & STS_HALT) == 0) {
170		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
171		return 0;
172	}
173
174	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
175	command = readl(&xhci->op_regs->command);
176	command |= CMD_RESET;
177	writel(command, &xhci->op_regs->command);
178
179	/* Existing Intel xHCI controllers require a delay of 1 mS,
180	 * after setting the CMD_RESET bit, and before accessing any
181	 * HC registers. This allows the HC to complete the
182	 * reset operation and be ready for HC register access.
183	 * Without this delay, the subsequent HC register access,
184	 * may result in a system hang very rarely.
185	 */
186	if (xhci->quirks & XHCI_INTEL_HOST)
187		udelay(1000);
188
189	ret = xhci_handshake(&xhci->op_regs->command,
190			CMD_RESET, 0, 10 * 1000 * 1000);
191	if (ret)
192		return ret;
193
194	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195			 "Wait for controller to be ready for doorbell rings");
196	/*
197	 * xHCI cannot write to any doorbells or operational registers other
198	 * than status until the "Controller Not Ready" flag is cleared.
199	 */
200	ret = xhci_handshake(&xhci->op_regs->status,
201			STS_CNR, 0, 10 * 1000 * 1000);
202
203	for (i = 0; i < 2; ++i) {
204		xhci->bus_state[i].port_c_suspend = 0;
205		xhci->bus_state[i].suspended_ports = 0;
206		xhci->bus_state[i].resuming_ports = 0;
207	}
208
209	return ret;
210}
211
212#ifdef CONFIG_PCI
213static int xhci_free_msi(struct xhci_hcd *xhci)
214{
215	int i;
216
217	if (!xhci->msix_entries)
218		return -EINVAL;
219
220	for (i = 0; i < xhci->msix_count; i++)
221		if (xhci->msix_entries[i].vector)
222			free_irq(xhci->msix_entries[i].vector,
223					xhci_to_hcd(xhci));
224	return 0;
225}
226
227/*
228 * Set up MSI
229 */
230static int xhci_setup_msi(struct xhci_hcd *xhci)
231{
232	int ret;
233	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
234
235	ret = pci_enable_msi(pdev);
236	if (ret) {
237		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238				"failed to allocate MSI entry");
239		return ret;
240	}
241
242	ret = request_irq(pdev->irq, xhci_msi_irq,
243				0, "xhci_hcd", xhci_to_hcd(xhci));
244	if (ret) {
245		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
246				"disable MSI interrupt");
247		pci_disable_msi(pdev);
248	}
249
250	return ret;
251}
252
253/*
254 * Free IRQs
255 * free all IRQs request
256 */
257static void xhci_free_irq(struct xhci_hcd *xhci)
258{
259	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
260	int ret;
261
262	/* return if using legacy interrupt */
263	if (xhci_to_hcd(xhci)->irq > 0)
264		return;
265
266	ret = xhci_free_msi(xhci);
267	if (!ret)
268		return;
269	if (pdev->irq > 0)
270		free_irq(pdev->irq, xhci_to_hcd(xhci));
271
272	return;
273}
274
275/*
276 * Set up MSI-X
277 */
278static int xhci_setup_msix(struct xhci_hcd *xhci)
279{
280	int i, ret = 0;
281	struct usb_hcd *hcd = xhci_to_hcd(xhci);
282	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
283
284	/*
285	 * calculate number of msi-x vectors supported.
286	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
287	 *   with max number of interrupters based on the xhci HCSPARAMS1.
288	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
289	 *   Add additional 1 vector to ensure always available interrupt.
290	 */
291	xhci->msix_count = min(num_online_cpus() + 1,
292				HCS_MAX_INTRS(xhci->hcs_params1));
293
294	xhci->msix_entries =
295		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
296				GFP_KERNEL);
297	if (!xhci->msix_entries) {
298		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
299		return -ENOMEM;
300	}
301
302	for (i = 0; i < xhci->msix_count; i++) {
303		xhci->msix_entries[i].entry = i;
304		xhci->msix_entries[i].vector = 0;
305	}
306
307	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
308	if (ret) {
309		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310				"Failed to enable MSI-X");
311		goto free_entries;
312	}
313
314	for (i = 0; i < xhci->msix_count; i++) {
315		ret = request_irq(xhci->msix_entries[i].vector,
316				xhci_msi_irq,
317				0, "xhci_hcd", xhci_to_hcd(xhci));
318		if (ret)
319			goto disable_msix;
320	}
321
322	hcd->msix_enabled = 1;
323	return ret;
324
325disable_msix:
326	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
327	xhci_free_irq(xhci);
328	pci_disable_msix(pdev);
329free_entries:
330	kfree(xhci->msix_entries);
331	xhci->msix_entries = NULL;
332	return ret;
333}
334
335/* Free any IRQs and disable MSI-X */
336static void xhci_cleanup_msix(struct xhci_hcd *xhci)
337{
338	struct usb_hcd *hcd = xhci_to_hcd(xhci);
339	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
340
341	if (xhci->quirks & XHCI_PLAT)
342		return;
343
344	xhci_free_irq(xhci);
345
346	if (xhci->msix_entries) {
347		pci_disable_msix(pdev);
348		kfree(xhci->msix_entries);
349		xhci->msix_entries = NULL;
350	} else {
351		pci_disable_msi(pdev);
352	}
353
354	hcd->msix_enabled = 0;
355	return;
356}
357
358static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
359{
360	int i;
361
362	if (xhci->msix_entries) {
363		for (i = 0; i < xhci->msix_count; i++)
364			synchronize_irq(xhci->msix_entries[i].vector);
365	}
366}
367
368static int xhci_try_enable_msi(struct usb_hcd *hcd)
369{
370	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
371	struct pci_dev  *pdev;
372	int ret;
373
374	/* The xhci platform device has set up IRQs through usb_add_hcd. */
375	if (xhci->quirks & XHCI_PLAT)
376		return 0;
377
378	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
379	/*
380	 * Some Fresco Logic host controllers advertise MSI, but fail to
381	 * generate interrupts.  Don't even try to enable MSI.
382	 */
383	if (xhci->quirks & XHCI_BROKEN_MSI)
384		goto legacy_irq;
385
386	/* unregister the legacy interrupt */
387	if (hcd->irq)
388		free_irq(hcd->irq, hcd);
389	hcd->irq = 0;
390
391	ret = xhci_setup_msix(xhci);
392	if (ret)
393		/* fall back to msi*/
394		ret = xhci_setup_msi(xhci);
395
396	if (!ret)
397		/* hcd->irq is 0, we have MSI */
398		return 0;
399
400	if (!pdev->irq) {
401		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
402		return -EINVAL;
403	}
404
405 legacy_irq:
406	if (!strlen(hcd->irq_descr))
407		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
408			 hcd->driver->description, hcd->self.busnum);
409
410	/* fall back to legacy interrupt*/
411	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
412			hcd->irq_descr, hcd);
413	if (ret) {
414		xhci_err(xhci, "request interrupt %d failed\n",
415				pdev->irq);
416		return ret;
417	}
418	hcd->irq = pdev->irq;
419	return 0;
420}
421
422#else
423
424static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
425{
426	return 0;
427}
428
429static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
430{
431}
432
433static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
434{
435}
436
437#endif
438
439static void compliance_mode_recovery(unsigned long arg)
440{
441	struct xhci_hcd *xhci;
442	struct usb_hcd *hcd;
443	u32 temp;
444	int i;
445
446	xhci = (struct xhci_hcd *)arg;
447
448	for (i = 0; i < xhci->num_usb3_ports; i++) {
449		temp = readl(xhci->usb3_ports[i]);
450		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
451			/*
452			 * Compliance Mode Detected. Letting USB Core
453			 * handle the Warm Reset
454			 */
455			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
456					"Compliance mode detected->port %d",
457					i + 1);
458			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
459					"Attempting compliance mode recovery");
460			hcd = xhci->shared_hcd;
461
462			if (hcd->state == HC_STATE_SUSPENDED)
463				usb_hcd_resume_root_hub(hcd);
464
465			usb_hcd_poll_rh_status(hcd);
466		}
467	}
468
469	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
470		mod_timer(&xhci->comp_mode_recovery_timer,
471			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472}
473
474/*
475 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
476 * that causes ports behind that hardware to enter compliance mode sometimes.
477 * The quirk creates a timer that polls every 2 seconds the link state of
478 * each host controller's port and recovers it by issuing a Warm reset
479 * if Compliance mode is detected, otherwise the port will become "dead" (no
480 * device connections or disconnections will be detected anymore). Becasue no
481 * status event is generated when entering compliance mode (per xhci spec),
482 * this quirk is needed on systems that have the failing hardware installed.
483 */
484static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
485{
486	xhci->port_status_u0 = 0;
487	setup_timer(&xhci->comp_mode_recovery_timer,
488		    compliance_mode_recovery, (unsigned long)xhci);
489	xhci->comp_mode_recovery_timer.expires = jiffies +
490			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
491
492	set_timer_slack(&xhci->comp_mode_recovery_timer,
493			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
494	add_timer(&xhci->comp_mode_recovery_timer);
495	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496			"Compliance mode recovery timer initialized");
497}
498
499/*
500 * This function identifies the systems that have installed the SN65LVPE502CP
501 * USB3.0 re-driver and that need the Compliance Mode Quirk.
502 * Systems:
503 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
504 */
505static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
506{
507	const char *dmi_product_name, *dmi_sys_vendor;
508
509	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
510	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
511	if (!dmi_product_name || !dmi_sys_vendor)
512		return false;
513
514	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
515		return false;
516
517	if (strstr(dmi_product_name, "Z420") ||
518			strstr(dmi_product_name, "Z620") ||
519			strstr(dmi_product_name, "Z820") ||
520			strstr(dmi_product_name, "Z1 Workstation"))
521		return true;
522
523	return false;
524}
525
526static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
527{
528	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
529}
530
531
532/*
533 * Initialize memory for HCD and xHC (one-time init).
534 *
535 * Program the PAGESIZE register, initialize the device context array, create
536 * device contexts (?), set up a command ring segment (or two?), create event
537 * ring (one for now).
538 */
539int xhci_init(struct usb_hcd *hcd)
540{
541	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
542	int retval = 0;
543
544	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
545	spin_lock_init(&xhci->lock);
546	if (xhci->hci_version == 0x95 && link_quirk) {
547		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
548				"QUIRK: Not clearing Link TRB chain bits.");
549		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
550	} else {
551		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552				"xHCI doesn't need link TRB QUIRK");
553	}
554	retval = xhci_mem_init(xhci, GFP_KERNEL);
555	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
556
557	/* Initializing Compliance Mode Recovery Data If Needed */
558	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
559		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
560		compliance_mode_recovery_timer_init(xhci);
561	}
562
563	return retval;
564}
565
566/*-------------------------------------------------------------------------*/
567
568
569static int xhci_run_finished(struct xhci_hcd *xhci)
570{
571	if (xhci_start(xhci)) {
572		xhci_halt(xhci);
573		return -ENODEV;
574	}
575	xhci->shared_hcd->state = HC_STATE_RUNNING;
576	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
577
578	if (xhci->quirks & XHCI_NEC_HOST)
579		xhci_ring_cmd_db(xhci);
580
581	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
582			"Finished xhci_run for USB3 roothub");
583	return 0;
584}
585
586/*
587 * Start the HC after it was halted.
588 *
589 * This function is called by the USB core when the HC driver is added.
590 * Its opposite is xhci_stop().
591 *
592 * xhci_init() must be called once before this function can be called.
593 * Reset the HC, enable device slot contexts, program DCBAAP, and
594 * set command ring pointer and event ring pointer.
595 *
596 * Setup MSI-X vectors and enable interrupts.
597 */
598int xhci_run(struct usb_hcd *hcd)
599{
600	u32 temp;
601	u64 temp_64;
602	int ret;
603	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
604
605	/* Start the xHCI host controller running only after the USB 2.0 roothub
606	 * is setup.
607	 */
608
609	hcd->uses_new_polling = 1;
610	if (!usb_hcd_is_primary_hcd(hcd))
611		return xhci_run_finished(xhci);
612
613	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
614
615	ret = xhci_try_enable_msi(hcd);
616	if (ret)
617		return ret;
618
619	xhci_dbg(xhci, "Command ring memory map follows:\n");
620	xhci_debug_ring(xhci, xhci->cmd_ring);
621	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
622	xhci_dbg_cmd_ptrs(xhci);
623
624	xhci_dbg(xhci, "ERST memory map follows:\n");
625	xhci_dbg_erst(xhci, &xhci->erst);
626	xhci_dbg(xhci, "Event ring:\n");
627	xhci_debug_ring(xhci, xhci->event_ring);
628	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
629	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
630	temp_64 &= ~ERST_PTR_MASK;
631	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
633
634	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635			"// Set the interrupt modulation register");
636	temp = readl(&xhci->ir_set->irq_control);
637	temp &= ~ER_IRQ_INTERVAL_MASK;
638	temp |= (u32) 160;
639	writel(temp, &xhci->ir_set->irq_control);
640
641	/* Set the HCD state before we enable the irqs */
642	temp = readl(&xhci->op_regs->command);
643	temp |= (CMD_EIE);
644	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
645			"// Enable interrupts, cmd = 0x%x.", temp);
646	writel(temp, &xhci->op_regs->command);
647
648	temp = readl(&xhci->ir_set->irq_pending);
649	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
650			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
651			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
652	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
653	xhci_print_ir_set(xhci, 0);
654
655	if (xhci->quirks & XHCI_NEC_HOST) {
656		struct xhci_command *command;
657		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
658		if (!command)
659			return -ENOMEM;
660		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
661				TRB_TYPE(TRB_NEC_GET_FW));
662	}
663	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664			"Finished xhci_run for USB2 roothub");
665	return 0;
666}
667EXPORT_SYMBOL_GPL(xhci_run);
668
669/*
670 * Stop xHCI driver.
671 *
672 * This function is called by the USB core when the HC driver is removed.
673 * Its opposite is xhci_run().
674 *
675 * Disable device contexts, disable IRQs, and quiesce the HC.
676 * Reset the HC, finish any completed transactions, and cleanup memory.
677 */
678void xhci_stop(struct usb_hcd *hcd)
679{
680	u32 temp;
681	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
682
683	if (xhci->xhc_state & XHCI_STATE_HALTED)
684		return;
685
686	mutex_lock(&xhci->mutex);
687	spin_lock_irq(&xhci->lock);
688	xhci->xhc_state |= XHCI_STATE_HALTED;
689	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
690
691	/* Make sure the xHC is halted for a USB3 roothub
692	 * (xhci_stop() could be called as part of failed init).
693	 */
694	xhci_halt(xhci);
695	xhci_reset(xhci);
696	spin_unlock_irq(&xhci->lock);
697
698	xhci_cleanup_msix(xhci);
699
700	/* Deleting Compliance Mode Recovery Timer */
701	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
702			(!(xhci_all_ports_seen_u0(xhci)))) {
703		del_timer_sync(&xhci->comp_mode_recovery_timer);
704		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
705				"%s: compliance mode recovery timer deleted",
706				__func__);
707	}
708
709	if (xhci->quirks & XHCI_AMD_PLL_FIX)
710		usb_amd_dev_put();
711
712	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
713			"// Disabling event ring interrupts");
714	temp = readl(&xhci->op_regs->status);
715	writel(temp & ~STS_EINT, &xhci->op_regs->status);
716	temp = readl(&xhci->ir_set->irq_pending);
717	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
718	xhci_print_ir_set(xhci, 0);
719
720	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
721	xhci_mem_cleanup(xhci);
722	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
723			"xhci_stop completed - status = %x",
724			readl(&xhci->op_regs->status));
725	mutex_unlock(&xhci->mutex);
726}
727
728/*
729 * Shutdown HC (not bus-specific)
730 *
731 * This is called when the machine is rebooting or halting.  We assume that the
732 * machine will be powered off, and the HC's internal state will be reset.
733 * Don't bother to free memory.
734 *
735 * This will only ever be called with the main usb_hcd (the USB3 roothub).
736 */
737void xhci_shutdown(struct usb_hcd *hcd)
738{
739	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
740
741	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
742		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
743
744	spin_lock_irq(&xhci->lock);
745	xhci_halt(xhci);
746	/* Workaround for spurious wakeups at shutdown with HSW */
747	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
748		xhci_reset(xhci);
749	spin_unlock_irq(&xhci->lock);
750
751	xhci_cleanup_msix(xhci);
752
753	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
754			"xhci_shutdown completed - status = %x",
755			readl(&xhci->op_regs->status));
756
757	/* Yet another workaround for spurious wakeups at shutdown with HSW */
758	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
759		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
760}
761
762#ifdef CONFIG_PM
763static void xhci_save_registers(struct xhci_hcd *xhci)
764{
765	xhci->s3.command = readl(&xhci->op_regs->command);
766	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
767	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
768	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
769	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
770	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
771	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
772	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
773	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
774}
775
776static void xhci_restore_registers(struct xhci_hcd *xhci)
777{
778	writel(xhci->s3.command, &xhci->op_regs->command);
779	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
780	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
781	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
782	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
783	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
784	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
785	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
786	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
787}
788
789static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
790{
791	u64	val_64;
792
793	/* step 2: initialize command ring buffer */
794	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
795	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
796		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
797				      xhci->cmd_ring->dequeue) &
798		 (u64) ~CMD_RING_RSVD_BITS) |
799		xhci->cmd_ring->cycle_state;
800	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
801			"// Setting command ring address to 0x%llx",
802			(long unsigned long) val_64);
803	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
804}
805
806/*
807 * The whole command ring must be cleared to zero when we suspend the host.
808 *
809 * The host doesn't save the command ring pointer in the suspend well, so we
810 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
811 * aligned, because of the reserved bits in the command ring dequeue pointer
812 * register.  Therefore, we can't just set the dequeue pointer back in the
813 * middle of the ring (TRBs are 16-byte aligned).
814 */
815static void xhci_clear_command_ring(struct xhci_hcd *xhci)
816{
817	struct xhci_ring *ring;
818	struct xhci_segment *seg;
819
820	ring = xhci->cmd_ring;
821	seg = ring->deq_seg;
822	do {
823		memset(seg->trbs, 0,
824			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
825		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
826			cpu_to_le32(~TRB_CYCLE);
827		seg = seg->next;
828	} while (seg != ring->deq_seg);
829
830	/* Reset the software enqueue and dequeue pointers */
831	ring->deq_seg = ring->first_seg;
832	ring->dequeue = ring->first_seg->trbs;
833	ring->enq_seg = ring->deq_seg;
834	ring->enqueue = ring->dequeue;
835
836	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
837	/*
838	 * Ring is now zeroed, so the HW should look for change of ownership
839	 * when the cycle bit is set to 1.
840	 */
841	ring->cycle_state = 1;
842
843	/*
844	 * Reset the hardware dequeue pointer.
845	 * Yes, this will need to be re-written after resume, but we're paranoid
846	 * and want to make sure the hardware doesn't access bogus memory
847	 * because, say, the BIOS or an SMI started the host without changing
848	 * the command ring pointers.
849	 */
850	xhci_set_cmd_ring_deq(xhci);
851}
852
853static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
854{
855	int port_index;
856	__le32 __iomem **port_array;
857	unsigned long flags;
858	u32 t1, t2;
859
860	spin_lock_irqsave(&xhci->lock, flags);
861
862	/* disble usb3 ports Wake bits*/
863	port_index = xhci->num_usb3_ports;
864	port_array = xhci->usb3_ports;
865	while (port_index--) {
866		t1 = readl(port_array[port_index]);
867		t1 = xhci_port_state_to_neutral(t1);
868		t2 = t1 & ~PORT_WAKE_BITS;
869		if (t1 != t2)
870			writel(t2, port_array[port_index]);
871	}
872
873	/* disble usb2 ports Wake bits*/
874	port_index = xhci->num_usb2_ports;
875	port_array = xhci->usb2_ports;
876	while (port_index--) {
877		t1 = readl(port_array[port_index]);
878		t1 = xhci_port_state_to_neutral(t1);
879		t2 = t1 & ~PORT_WAKE_BITS;
880		if (t1 != t2)
881			writel(t2, port_array[port_index]);
882	}
883
884	spin_unlock_irqrestore(&xhci->lock, flags);
885}
886
887/*
888 * Stop HC (not bus-specific)
889 *
890 * This is called when the machine transition into S3/S4 mode.
891 *
892 */
893int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
894{
895	int			rc = 0;
896	unsigned int		delay = XHCI_MAX_HALT_USEC;
897	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
898	u32			command;
899
900	if (!hcd->state)
901		return 0;
902
903	if (hcd->state != HC_STATE_SUSPENDED ||
904			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
905		return -EINVAL;
906
907	/* Clear root port wake on bits if wakeup not allowed. */
908	if (!do_wakeup)
909		xhci_disable_port_wake_on_bits(xhci);
910
911	/* Don't poll the roothubs on bus suspend. */
912	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
913	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
914	del_timer_sync(&hcd->rh_timer);
915	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
916	del_timer_sync(&xhci->shared_hcd->rh_timer);
917
918	spin_lock_irq(&xhci->lock);
919	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
920	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
921	/* step 1: stop endpoint */
922	/* skipped assuming that port suspend has done */
923
924	/* step 2: clear Run/Stop bit */
925	command = readl(&xhci->op_regs->command);
926	command &= ~CMD_RUN;
927	writel(command, &xhci->op_regs->command);
928
929	/* Some chips from Fresco Logic need an extraordinary delay */
930	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
931
932	if (xhci_handshake(&xhci->op_regs->status,
933		      STS_HALT, STS_HALT, delay)) {
934		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
935		spin_unlock_irq(&xhci->lock);
936		return -ETIMEDOUT;
937	}
938	xhci_clear_command_ring(xhci);
939
940	/* step 3: save registers */
941	xhci_save_registers(xhci);
942
943	/* step 4: set CSS flag */
944	command = readl(&xhci->op_regs->command);
945	command |= CMD_CSS;
946	writel(command, &xhci->op_regs->command);
947	if (xhci_handshake(&xhci->op_regs->status,
948				STS_SAVE, 0, 10 * 1000)) {
949		xhci_warn(xhci, "WARN: xHC save state timeout\n");
950		spin_unlock_irq(&xhci->lock);
951		return -ETIMEDOUT;
952	}
953	spin_unlock_irq(&xhci->lock);
954
955	/*
956	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
957	 * is about to be suspended.
958	 */
959	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
960			(!(xhci_all_ports_seen_u0(xhci)))) {
961		del_timer_sync(&xhci->comp_mode_recovery_timer);
962		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
963				"%s: compliance mode recovery timer deleted",
964				__func__);
965	}
966
967	/* step 5: remove core well power */
968	/* synchronize irq when using MSI-X */
969	xhci_msix_sync_irqs(xhci);
970
971	return rc;
972}
973EXPORT_SYMBOL_GPL(xhci_suspend);
974
975/*
976 * start xHC (not bus-specific)
977 *
978 * This is called when the machine transition from S3/S4 mode.
979 *
980 */
981int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
982{
983	u32			command, temp = 0, status;
984	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
985	struct usb_hcd		*secondary_hcd;
986	int			retval = 0;
987	bool			comp_timer_running = false;
988
989	if (!hcd->state)
990		return 0;
991
992	/* Wait a bit if either of the roothubs need to settle from the
993	 * transition into bus suspend.
994	 */
995	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
996			time_before(jiffies,
997				xhci->bus_state[1].next_statechange))
998		msleep(100);
999
1000	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1001	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1002
1003	spin_lock_irq(&xhci->lock);
1004	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1005		hibernated = true;
1006
1007	if (!hibernated) {
1008		/* step 1: restore register */
1009		xhci_restore_registers(xhci);
1010		/* step 2: initialize command ring buffer */
1011		xhci_set_cmd_ring_deq(xhci);
1012		/* step 3: restore state and start state*/
1013		/* step 3: set CRS flag */
1014		command = readl(&xhci->op_regs->command);
1015		command |= CMD_CRS;
1016		writel(command, &xhci->op_regs->command);
1017		if (xhci_handshake(&xhci->op_regs->status,
1018			      STS_RESTORE, 0, 10 * 1000)) {
1019			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1020			spin_unlock_irq(&xhci->lock);
1021			return -ETIMEDOUT;
1022		}
1023		temp = readl(&xhci->op_regs->status);
1024	}
1025
1026	/* If restore operation fails, re-initialize the HC during resume */
1027	if ((temp & STS_SRE) || hibernated) {
1028
1029		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1030				!(xhci_all_ports_seen_u0(xhci))) {
1031			del_timer_sync(&xhci->comp_mode_recovery_timer);
1032			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1033				"Compliance Mode Recovery Timer deleted!");
1034		}
1035
1036		/* Let the USB core know _both_ roothubs lost power. */
1037		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1038		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1039
1040		xhci_dbg(xhci, "Stop HCD\n");
1041		xhci_halt(xhci);
1042		xhci_reset(xhci);
1043		spin_unlock_irq(&xhci->lock);
1044		xhci_cleanup_msix(xhci);
1045
1046		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1047		temp = readl(&xhci->op_regs->status);
1048		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1049		temp = readl(&xhci->ir_set->irq_pending);
1050		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1051		xhci_print_ir_set(xhci, 0);
1052
1053		xhci_dbg(xhci, "cleaning up memory\n");
1054		xhci_mem_cleanup(xhci);
1055		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1056			    readl(&xhci->op_regs->status));
1057
1058		/* USB core calls the PCI reinit and start functions twice:
1059		 * first with the primary HCD, and then with the secondary HCD.
1060		 * If we don't do the same, the host will never be started.
1061		 */
1062		if (!usb_hcd_is_primary_hcd(hcd))
1063			secondary_hcd = hcd;
1064		else
1065			secondary_hcd = xhci->shared_hcd;
1066
1067		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1068		retval = xhci_init(hcd->primary_hcd);
1069		if (retval)
1070			return retval;
1071		comp_timer_running = true;
1072
1073		xhci_dbg(xhci, "Start the primary HCD\n");
1074		retval = xhci_run(hcd->primary_hcd);
1075		if (!retval) {
1076			xhci_dbg(xhci, "Start the secondary HCD\n");
1077			retval = xhci_run(secondary_hcd);
1078		}
1079		hcd->state = HC_STATE_SUSPENDED;
1080		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1081		goto done;
1082	}
1083
1084	/* step 4: set Run/Stop bit */
1085	command = readl(&xhci->op_regs->command);
1086	command |= CMD_RUN;
1087	writel(command, &xhci->op_regs->command);
1088	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1089		  0, 250 * 1000);
1090
1091	/* step 5: walk topology and initialize portsc,
1092	 * portpmsc and portli
1093	 */
1094	/* this is done in bus_resume */
1095
1096	/* step 6: restart each of the previously
1097	 * Running endpoints by ringing their doorbells
1098	 */
1099
1100	spin_unlock_irq(&xhci->lock);
1101
1102 done:
1103	if (retval == 0) {
1104		/* Resume root hubs only when have pending events. */
1105		status = readl(&xhci->op_regs->status);
1106		if (status & STS_EINT) {
1107			usb_hcd_resume_root_hub(xhci->shared_hcd);
1108			usb_hcd_resume_root_hub(hcd);
1109		}
1110	}
1111
1112	/*
1113	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1114	 * be re-initialized Always after a system resume. Ports are subject
1115	 * to suffer the Compliance Mode issue again. It doesn't matter if
1116	 * ports have entered previously to U0 before system's suspension.
1117	 */
1118	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1119		compliance_mode_recovery_timer_init(xhci);
1120
1121	/* Re-enable port polling. */
1122	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1123	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1124	usb_hcd_poll_rh_status(xhci->shared_hcd);
1125	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1126	usb_hcd_poll_rh_status(hcd);
1127
1128	return retval;
1129}
1130EXPORT_SYMBOL_GPL(xhci_resume);
1131#endif	/* CONFIG_PM */
1132
1133/*-------------------------------------------------------------------------*/
1134
1135/**
1136 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1137 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1138 * value to right shift 1 for the bitmask.
1139 *
1140 * Index  = (epnum * 2) + direction - 1,
1141 * where direction = 0 for OUT, 1 for IN.
1142 * For control endpoints, the IN index is used (OUT index is unused), so
1143 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1144 */
1145unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1146{
1147	unsigned int index;
1148	if (usb_endpoint_xfer_control(desc))
1149		index = (unsigned int) (usb_endpoint_num(desc)*2);
1150	else
1151		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1152			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1153	return index;
1154}
1155
1156/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1157 * address from the XHCI endpoint index.
1158 */
1159unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1160{
1161	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1162	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1163	return direction | number;
1164}
1165
1166/* Find the flag for this endpoint (for use in the control context).  Use the
1167 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1168 * bit 1, etc.
1169 */
1170unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1171{
1172	return 1 << (xhci_get_endpoint_index(desc) + 1);
1173}
1174
1175/* Find the flag for this endpoint (for use in the control context).  Use the
1176 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1177 * bit 1, etc.
1178 */
1179unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1180{
1181	return 1 << (ep_index + 1);
1182}
1183
1184/* Compute the last valid endpoint context index.  Basically, this is the
1185 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1186 * we find the most significant bit set in the added contexts flags.
1187 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1188 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1189 */
1190unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1191{
1192	return fls(added_ctxs) - 1;
1193}
1194
1195/* Returns 1 if the arguments are OK;
1196 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1197 */
1198static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1199		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1200		const char *func) {
1201	struct xhci_hcd	*xhci;
1202	struct xhci_virt_device	*virt_dev;
1203
1204	if (!hcd || (check_ep && !ep) || !udev) {
1205		pr_debug("xHCI %s called with invalid args\n", func);
1206		return -EINVAL;
1207	}
1208	if (!udev->parent) {
1209		pr_debug("xHCI %s called for root hub\n", func);
1210		return 0;
1211	}
1212
1213	xhci = hcd_to_xhci(hcd);
1214	if (check_virt_dev) {
1215		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1216			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1217					func);
1218			return -EINVAL;
1219		}
1220
1221		virt_dev = xhci->devs[udev->slot_id];
1222		if (virt_dev->udev != udev) {
1223			xhci_dbg(xhci, "xHCI %s called with udev and "
1224					  "virt_dev does not match\n", func);
1225			return -EINVAL;
1226		}
1227	}
1228
1229	if (xhci->xhc_state & XHCI_STATE_HALTED)
1230		return -ENODEV;
1231
1232	return 1;
1233}
1234
1235static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1236		struct usb_device *udev, struct xhci_command *command,
1237		bool ctx_change, bool must_succeed);
1238
1239/*
1240 * Full speed devices may have a max packet size greater than 8 bytes, but the
1241 * USB core doesn't know that until it reads the first 8 bytes of the
1242 * descriptor.  If the usb_device's max packet size changes after that point,
1243 * we need to issue an evaluate context command and wait on it.
1244 */
1245static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1246		unsigned int ep_index, struct urb *urb)
1247{
1248	struct xhci_container_ctx *out_ctx;
1249	struct xhci_input_control_ctx *ctrl_ctx;
1250	struct xhci_ep_ctx *ep_ctx;
1251	struct xhci_command *command;
1252	int max_packet_size;
1253	int hw_max_packet_size;
1254	int ret = 0;
1255
1256	out_ctx = xhci->devs[slot_id]->out_ctx;
1257	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1258	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1259	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1260	if (hw_max_packet_size != max_packet_size) {
1261		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1262				"Max Packet Size for ep 0 changed.");
1263		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1264				"Max packet size in usb_device = %d",
1265				max_packet_size);
1266		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1267				"Max packet size in xHCI HW = %d",
1268				hw_max_packet_size);
1269		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1270				"Issuing evaluate context command.");
1271
1272		/* Set up the input context flags for the command */
1273		/* FIXME: This won't work if a non-default control endpoint
1274		 * changes max packet sizes.
1275		 */
1276
1277		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1278		if (!command)
1279			return -ENOMEM;
1280
1281		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1282		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1283		if (!ctrl_ctx) {
1284			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1285					__func__);
1286			ret = -ENOMEM;
1287			goto command_cleanup;
1288		}
1289		/* Set up the modified control endpoint 0 */
1290		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1291				xhci->devs[slot_id]->out_ctx, ep_index);
1292
1293		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1294		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1295		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1296
1297		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1298		ctrl_ctx->drop_flags = 0;
1299
1300		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1301		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1302		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1303		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1304
1305		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1306				true, false);
1307
1308		/* Clean up the input context for later use by bandwidth
1309		 * functions.
1310		 */
1311		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1312command_cleanup:
1313		kfree(command->completion);
1314		kfree(command);
1315	}
1316	return ret;
1317}
1318
1319/*
1320 * non-error returns are a promise to giveback() the urb later
1321 * we drop ownership so next owner (or urb unlink) can get it
1322 */
1323int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1324{
1325	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1326	struct xhci_td *buffer;
1327	unsigned long flags;
1328	int ret = 0;
1329	unsigned int slot_id, ep_index;
1330	struct urb_priv	*urb_priv;
1331	int size, i;
1332
1333	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1334					true, true, __func__) <= 0)
1335		return -EINVAL;
1336
1337	slot_id = urb->dev->slot_id;
1338	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1339
1340	if (!HCD_HW_ACCESSIBLE(hcd)) {
1341		if (!in_interrupt())
1342			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1343		ret = -ESHUTDOWN;
1344		goto exit;
1345	}
1346
1347	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1348		size = urb->number_of_packets;
1349	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1350	    urb->transfer_buffer_length > 0 &&
1351	    urb->transfer_flags & URB_ZERO_PACKET &&
1352	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1353		size = 2;
1354	else
1355		size = 1;
1356
1357	urb_priv = kzalloc(sizeof(struct urb_priv) +
1358				  size * sizeof(struct xhci_td *), mem_flags);
1359	if (!urb_priv)
1360		return -ENOMEM;
1361
1362	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1363	if (!buffer) {
1364		kfree(urb_priv);
1365		return -ENOMEM;
1366	}
1367
1368	for (i = 0; i < size; i++) {
1369		urb_priv->td[i] = buffer;
1370		buffer++;
1371	}
1372
1373	urb_priv->length = size;
1374	urb_priv->td_cnt = 0;
1375	urb->hcpriv = urb_priv;
1376
1377	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1378		/* Check to see if the max packet size for the default control
1379		 * endpoint changed during FS device enumeration
1380		 */
1381		if (urb->dev->speed == USB_SPEED_FULL) {
1382			ret = xhci_check_maxpacket(xhci, slot_id,
1383					ep_index, urb);
1384			if (ret < 0) {
1385				xhci_urb_free_priv(urb_priv);
1386				urb->hcpriv = NULL;
1387				return ret;
1388			}
1389		}
1390
1391		/* We have a spinlock and interrupts disabled, so we must pass
1392		 * atomic context to this function, which may allocate memory.
1393		 */
1394		spin_lock_irqsave(&xhci->lock, flags);
1395		if (xhci->xhc_state & XHCI_STATE_DYING)
1396			goto dying;
1397		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1398				slot_id, ep_index);
1399		if (ret)
1400			goto free_priv;
1401		spin_unlock_irqrestore(&xhci->lock, flags);
1402	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1403		spin_lock_irqsave(&xhci->lock, flags);
1404		if (xhci->xhc_state & XHCI_STATE_DYING)
1405			goto dying;
1406		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1407				EP_GETTING_STREAMS) {
1408			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1409					"is transitioning to using streams.\n");
1410			ret = -EINVAL;
1411		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1412				EP_GETTING_NO_STREAMS) {
1413			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1414					"is transitioning to "
1415					"not having streams.\n");
1416			ret = -EINVAL;
1417		} else {
1418			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1419					slot_id, ep_index);
1420		}
1421		if (ret)
1422			goto free_priv;
1423		spin_unlock_irqrestore(&xhci->lock, flags);
1424	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1425		spin_lock_irqsave(&xhci->lock, flags);
1426		if (xhci->xhc_state & XHCI_STATE_DYING)
1427			goto dying;
1428		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1429				slot_id, ep_index);
1430		if (ret)
1431			goto free_priv;
1432		spin_unlock_irqrestore(&xhci->lock, flags);
1433	} else {
1434		spin_lock_irqsave(&xhci->lock, flags);
1435		if (xhci->xhc_state & XHCI_STATE_DYING)
1436			goto dying;
1437		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1438				slot_id, ep_index);
1439		if (ret)
1440			goto free_priv;
1441		spin_unlock_irqrestore(&xhci->lock, flags);
1442	}
1443exit:
1444	return ret;
1445dying:
1446	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1447			"non-responsive xHCI host.\n",
1448			urb->ep->desc.bEndpointAddress, urb);
1449	ret = -ESHUTDOWN;
1450free_priv:
1451	xhci_urb_free_priv(urb_priv);
1452	urb->hcpriv = NULL;
1453	spin_unlock_irqrestore(&xhci->lock, flags);
1454	return ret;
1455}
1456
1457/* Get the right ring for the given URB.
1458 * If the endpoint supports streams, boundary check the URB's stream ID.
1459 * If the endpoint doesn't support streams, return the singular endpoint ring.
1460 */
1461static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1462		struct urb *urb)
1463{
1464	unsigned int slot_id;
1465	unsigned int ep_index;
1466	unsigned int stream_id;
1467	struct xhci_virt_ep *ep;
1468
1469	slot_id = urb->dev->slot_id;
1470	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1471	stream_id = urb->stream_id;
1472	ep = &xhci->devs[slot_id]->eps[ep_index];
1473	/* Common case: no streams */
1474	if (!(ep->ep_state & EP_HAS_STREAMS))
1475		return ep->ring;
1476
1477	if (stream_id == 0) {
1478		xhci_warn(xhci,
1479				"WARN: Slot ID %u, ep index %u has streams, "
1480				"but URB has no stream ID.\n",
1481				slot_id, ep_index);
1482		return NULL;
1483	}
1484
1485	if (stream_id < ep->stream_info->num_streams)
1486		return ep->stream_info->stream_rings[stream_id];
1487
1488	xhci_warn(xhci,
1489			"WARN: Slot ID %u, ep index %u has "
1490			"stream IDs 1 to %u allocated, "
1491			"but stream ID %u is requested.\n",
1492			slot_id, ep_index,
1493			ep->stream_info->num_streams - 1,
1494			stream_id);
1495	return NULL;
1496}
1497
1498/*
1499 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1500 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1501 * should pick up where it left off in the TD, unless a Set Transfer Ring
1502 * Dequeue Pointer is issued.
1503 *
1504 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1505 * the ring.  Since the ring is a contiguous structure, they can't be physically
1506 * removed.  Instead, there are two options:
1507 *
1508 *  1) If the HC is in the middle of processing the URB to be canceled, we
1509 *     simply move the ring's dequeue pointer past those TRBs using the Set
1510 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1511 *     when drivers timeout on the last submitted URB and attempt to cancel.
1512 *
1513 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1514 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1515 *     HC will need to invalidate the any TRBs it has cached after the stop
1516 *     endpoint command, as noted in the xHCI 0.95 errata.
1517 *
1518 *  3) The TD may have completed by the time the Stop Endpoint Command
1519 *     completes, so software needs to handle that case too.
1520 *
1521 * This function should protect against the TD enqueueing code ringing the
1522 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1523 * It also needs to account for multiple cancellations on happening at the same
1524 * time for the same endpoint.
1525 *
1526 * Note that this function can be called in any context, or so says
1527 * usb_hcd_unlink_urb()
1528 */
1529int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1530{
1531	unsigned long flags;
1532	int ret, i;
1533	u32 temp;
1534	struct xhci_hcd *xhci;
1535	struct urb_priv	*urb_priv;
1536	struct xhci_td *td;
1537	unsigned int ep_index;
1538	struct xhci_ring *ep_ring;
1539	struct xhci_virt_ep *ep;
1540	struct xhci_command *command;
1541
1542	xhci = hcd_to_xhci(hcd);
1543	spin_lock_irqsave(&xhci->lock, flags);
1544	/* Make sure the URB hasn't completed or been unlinked already */
1545	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1546	if (ret || !urb->hcpriv)
1547		goto done;
1548	temp = readl(&xhci->op_regs->status);
1549	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1550		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1551				"HW died, freeing TD.");
1552		urb_priv = urb->hcpriv;
1553		for (i = urb_priv->td_cnt;
1554		     i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1555		     i++) {
1556			td = urb_priv->td[i];
1557			if (!list_empty(&td->td_list))
1558				list_del_init(&td->td_list);
1559			if (!list_empty(&td->cancelled_td_list))
1560				list_del_init(&td->cancelled_td_list);
1561		}
1562
1563		usb_hcd_unlink_urb_from_ep(hcd, urb);
1564		spin_unlock_irqrestore(&xhci->lock, flags);
1565		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1566		xhci_urb_free_priv(urb_priv);
1567		return ret;
1568	}
1569	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1570			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1571		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1572				"Ep 0x%x: URB %p to be canceled on "
1573				"non-responsive xHCI host.",
1574				urb->ep->desc.bEndpointAddress, urb);
1575		/* Let the stop endpoint command watchdog timer (which set this
1576		 * state) finish cleaning up the endpoint TD lists.  We must
1577		 * have caught it in the middle of dropping a lock and giving
1578		 * back an URB.
1579		 */
1580		goto done;
1581	}
1582
1583	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1584	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1585	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1586	if (!ep_ring) {
1587		ret = -EINVAL;
1588		goto done;
1589	}
1590
1591	urb_priv = urb->hcpriv;
1592	i = urb_priv->td_cnt;
1593	if (i < urb_priv->length)
1594		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1595				"Cancel URB %p, dev %s, ep 0x%x, "
1596				"starting at offset 0x%llx",
1597				urb, urb->dev->devpath,
1598				urb->ep->desc.bEndpointAddress,
1599				(unsigned long long) xhci_trb_virt_to_dma(
1600					urb_priv->td[i]->start_seg,
1601					urb_priv->td[i]->first_trb));
1602
1603	for (; i < urb_priv->length; i++) {
1604		td = urb_priv->td[i];
1605		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1606	}
1607
1608	/* Queue a stop endpoint command, but only if this is
1609	 * the first cancellation to be handled.
1610	 */
1611	if (!(ep->ep_state & EP_HALT_PENDING)) {
1612		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1613		if (!command) {
1614			ret = -ENOMEM;
1615			goto done;
1616		}
1617		ep->ep_state |= EP_HALT_PENDING;
1618		ep->stop_cmds_pending++;
1619		ep->stop_cmd_timer.expires = jiffies +
1620			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1621		add_timer(&ep->stop_cmd_timer);
1622		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1623					 ep_index, 0);
1624		xhci_ring_cmd_db(xhci);
1625	}
1626done:
1627	spin_unlock_irqrestore(&xhci->lock, flags);
1628	return ret;
1629}
1630
1631/* Drop an endpoint from a new bandwidth configuration for this device.
1632 * Only one call to this function is allowed per endpoint before
1633 * check_bandwidth() or reset_bandwidth() must be called.
1634 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1635 * add the endpoint to the schedule with possibly new parameters denoted by a
1636 * different endpoint descriptor in usb_host_endpoint.
1637 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1638 * not allowed.
1639 *
1640 * The USB core will not allow URBs to be queued to an endpoint that is being
1641 * disabled, so there's no need for mutual exclusion to protect
1642 * the xhci->devs[slot_id] structure.
1643 */
1644int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1645		struct usb_host_endpoint *ep)
1646{
1647	struct xhci_hcd *xhci;
1648	struct xhci_container_ctx *in_ctx, *out_ctx;
1649	struct xhci_input_control_ctx *ctrl_ctx;
1650	unsigned int ep_index;
1651	struct xhci_ep_ctx *ep_ctx;
1652	u32 drop_flag;
1653	u32 new_add_flags, new_drop_flags;
1654	int ret;
1655
1656	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1657	if (ret <= 0)
1658		return ret;
1659	xhci = hcd_to_xhci(hcd);
1660	if (xhci->xhc_state & XHCI_STATE_DYING)
1661		return -ENODEV;
1662
1663	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1664	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1665	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1666		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1667				__func__, drop_flag);
1668		return 0;
1669	}
1670
1671	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1672	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1673	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1674	if (!ctrl_ctx) {
1675		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1676				__func__);
1677		return 0;
1678	}
1679
1680	ep_index = xhci_get_endpoint_index(&ep->desc);
1681	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1682	/* If the HC already knows the endpoint is disabled,
1683	 * or the HCD has noted it is disabled, ignore this request
1684	 */
1685	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1686	     cpu_to_le32(EP_STATE_DISABLED)) ||
1687	    le32_to_cpu(ctrl_ctx->drop_flags) &
1688	    xhci_get_endpoint_flag(&ep->desc)) {
1689		/* Do not warn when called after a usb_device_reset */
1690		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1691			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1692				  __func__, ep);
1693		return 0;
1694	}
1695
1696	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1697	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1698
1699	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1700	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1701
1702	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1703
1704	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1705			(unsigned int) ep->desc.bEndpointAddress,
1706			udev->slot_id,
1707			(unsigned int) new_drop_flags,
1708			(unsigned int) new_add_flags);
1709	return 0;
1710}
1711
1712/* Add an endpoint to a new possible bandwidth configuration for this device.
1713 * Only one call to this function is allowed per endpoint before
1714 * check_bandwidth() or reset_bandwidth() must be called.
1715 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1716 * add the endpoint to the schedule with possibly new parameters denoted by a
1717 * different endpoint descriptor in usb_host_endpoint.
1718 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1719 * not allowed.
1720 *
1721 * The USB core will not allow URBs to be queued to an endpoint until the
1722 * configuration or alt setting is installed in the device, so there's no need
1723 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1724 */
1725int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1726		struct usb_host_endpoint *ep)
1727{
1728	struct xhci_hcd *xhci;
1729	struct xhci_container_ctx *in_ctx;
1730	unsigned int ep_index;
1731	struct xhci_input_control_ctx *ctrl_ctx;
1732	u32 added_ctxs;
1733	u32 new_add_flags, new_drop_flags;
1734	struct xhci_virt_device *virt_dev;
1735	int ret = 0;
1736
1737	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1738	if (ret <= 0) {
1739		/* So we won't queue a reset ep command for a root hub */
1740		ep->hcpriv = NULL;
1741		return ret;
1742	}
1743	xhci = hcd_to_xhci(hcd);
1744	if (xhci->xhc_state & XHCI_STATE_DYING)
1745		return -ENODEV;
1746
1747	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1748	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1749		/* FIXME when we have to issue an evaluate endpoint command to
1750		 * deal with ep0 max packet size changing once we get the
1751		 * descriptors
1752		 */
1753		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1754				__func__, added_ctxs);
1755		return 0;
1756	}
1757
1758	virt_dev = xhci->devs[udev->slot_id];
1759	in_ctx = virt_dev->in_ctx;
1760	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1761	if (!ctrl_ctx) {
1762		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1763				__func__);
1764		return 0;
1765	}
1766
1767	ep_index = xhci_get_endpoint_index(&ep->desc);
1768	/* If this endpoint is already in use, and the upper layers are trying
1769	 * to add it again without dropping it, reject the addition.
1770	 */
1771	if (virt_dev->eps[ep_index].ring &&
1772			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1773		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1774				"without dropping it.\n",
1775				(unsigned int) ep->desc.bEndpointAddress);
1776		return -EINVAL;
1777	}
1778
1779	/* If the HCD has already noted the endpoint is enabled,
1780	 * ignore this request.
1781	 */
1782	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1783		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1784				__func__, ep);
1785		return 0;
1786	}
1787
1788	/*
1789	 * Configuration and alternate setting changes must be done in
1790	 * process context, not interrupt context (or so documenation
1791	 * for usb_set_interface() and usb_set_configuration() claim).
1792	 */
1793	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1794		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1795				__func__, ep->desc.bEndpointAddress);
1796		return -ENOMEM;
1797	}
1798
1799	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1800	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1801
1802	/* If xhci_endpoint_disable() was called for this endpoint, but the
1803	 * xHC hasn't been notified yet through the check_bandwidth() call,
1804	 * this re-adds a new state for the endpoint from the new endpoint
1805	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1806	 * drop flags alone.
1807	 */
1808	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1809
1810	/* Store the usb_device pointer for later use */
1811	ep->hcpriv = udev;
1812
1813	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1814			(unsigned int) ep->desc.bEndpointAddress,
1815			udev->slot_id,
1816			(unsigned int) new_drop_flags,
1817			(unsigned int) new_add_flags);
1818	return 0;
1819}
1820
1821static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1822{
1823	struct xhci_input_control_ctx *ctrl_ctx;
1824	struct xhci_ep_ctx *ep_ctx;
1825	struct xhci_slot_ctx *slot_ctx;
1826	int i;
1827
1828	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1829	if (!ctrl_ctx) {
1830		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1831				__func__);
1832		return;
1833	}
1834
1835	/* When a device's add flag and drop flag are zero, any subsequent
1836	 * configure endpoint command will leave that endpoint's state
1837	 * untouched.  Make sure we don't leave any old state in the input
1838	 * endpoint contexts.
1839	 */
1840	ctrl_ctx->drop_flags = 0;
1841	ctrl_ctx->add_flags = 0;
1842	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1843	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1844	/* Endpoint 0 is always valid */
1845	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1846	for (i = 1; i < 31; ++i) {
1847		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1848		ep_ctx->ep_info = 0;
1849		ep_ctx->ep_info2 = 0;
1850		ep_ctx->deq = 0;
1851		ep_ctx->tx_info = 0;
1852	}
1853}
1854
1855static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1856		struct usb_device *udev, u32 *cmd_status)
1857{
1858	int ret;
1859
1860	switch (*cmd_status) {
1861	case COMP_CMD_ABORT:
1862	case COMP_CMD_STOP:
1863		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1864		ret = -ETIME;
1865		break;
1866	case COMP_ENOMEM:
1867		dev_warn(&udev->dev,
1868			 "Not enough host controller resources for new device state.\n");
1869		ret = -ENOMEM;
1870		/* FIXME: can we allocate more resources for the HC? */
1871		break;
1872	case COMP_BW_ERR:
1873	case COMP_2ND_BW_ERR:
1874		dev_warn(&udev->dev,
1875			 "Not enough bandwidth for new device state.\n");
1876		ret = -ENOSPC;
1877		/* FIXME: can we go back to the old state? */
1878		break;
1879	case COMP_TRB_ERR:
1880		/* the HCD set up something wrong */
1881		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1882				"add flag = 1, "
1883				"and endpoint is not disabled.\n");
1884		ret = -EINVAL;
1885		break;
1886	case COMP_DEV_ERR:
1887		dev_warn(&udev->dev,
1888			 "ERROR: Incompatible device for endpoint configure command.\n");
1889		ret = -ENODEV;
1890		break;
1891	case COMP_SUCCESS:
1892		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1893				"Successful Endpoint Configure command");
1894		ret = 0;
1895		break;
1896	default:
1897		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1898				*cmd_status);
1899		ret = -EINVAL;
1900		break;
1901	}
1902	return ret;
1903}
1904
1905static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1906		struct usb_device *udev, u32 *cmd_status)
1907{
1908	int ret;
1909	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1910
1911	switch (*cmd_status) {
1912	case COMP_CMD_ABORT:
1913	case COMP_CMD_STOP:
1914		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1915		ret = -ETIME;
1916		break;
1917	case COMP_EINVAL:
1918		dev_warn(&udev->dev,
1919			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1920		ret = -EINVAL;
1921		break;
1922	case COMP_EBADSLT:
1923		dev_warn(&udev->dev,
1924			"WARN: slot not enabled for evaluate context command.\n");
1925		ret = -EINVAL;
1926		break;
1927	case COMP_CTX_STATE:
1928		dev_warn(&udev->dev,
1929			"WARN: invalid context state for evaluate context command.\n");
1930		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1931		ret = -EINVAL;
1932		break;
1933	case COMP_DEV_ERR:
1934		dev_warn(&udev->dev,
1935			"ERROR: Incompatible device for evaluate context command.\n");
1936		ret = -ENODEV;
1937		break;
1938	case COMP_MEL_ERR:
1939		/* Max Exit Latency too large error */
1940		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1941		ret = -EINVAL;
1942		break;
1943	case COMP_SUCCESS:
1944		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1945				"Successful evaluate context command");
1946		ret = 0;
1947		break;
1948	default:
1949		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1950			*cmd_status);
1951		ret = -EINVAL;
1952		break;
1953	}
1954	return ret;
1955}
1956
1957static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1958		struct xhci_input_control_ctx *ctrl_ctx)
1959{
1960	u32 valid_add_flags;
1961	u32 valid_drop_flags;
1962
1963	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1964	 * (bit 1).  The default control endpoint is added during the Address
1965	 * Device command and is never removed until the slot is disabled.
1966	 */
1967	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1968	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1969
1970	/* Use hweight32 to count the number of ones in the add flags, or
1971	 * number of endpoints added.  Don't count endpoints that are changed
1972	 * (both added and dropped).
1973	 */
1974	return hweight32(valid_add_flags) -
1975		hweight32(valid_add_flags & valid_drop_flags);
1976}
1977
1978static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1979		struct xhci_input_control_ctx *ctrl_ctx)
1980{
1981	u32 valid_add_flags;
1982	u32 valid_drop_flags;
1983
1984	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1985	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1986
1987	return hweight32(valid_drop_flags) -
1988		hweight32(valid_add_flags & valid_drop_flags);
1989}
1990
1991/*
1992 * We need to reserve the new number of endpoints before the configure endpoint
1993 * command completes.  We can't subtract the dropped endpoints from the number
1994 * of active endpoints until the command completes because we can oversubscribe
1995 * the host in this case:
1996 *
1997 *  - the first configure endpoint command drops more endpoints than it adds
1998 *  - a second configure endpoint command that adds more endpoints is queued
1999 *  - the first configure endpoint command fails, so the config is unchanged
2000 *  - the second command may succeed, even though there isn't enough resources
2001 *
2002 * Must be called with xhci->lock held.
2003 */
2004static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2005		struct xhci_input_control_ctx *ctrl_ctx)
2006{
2007	u32 added_eps;
2008
2009	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2010	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2011		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2012				"Not enough ep ctxs: "
2013				"%u active, need to add %u, limit is %u.",
2014				xhci->num_active_eps, added_eps,
2015				xhci->limit_active_eps);
2016		return -ENOMEM;
2017	}
2018	xhci->num_active_eps += added_eps;
2019	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2020			"Adding %u ep ctxs, %u now active.", added_eps,
2021			xhci->num_active_eps);
2022	return 0;
2023}
2024
2025/*
2026 * The configure endpoint was failed by the xHC for some other reason, so we
2027 * need to revert the resources that failed configuration would have used.
2028 *
2029 * Must be called with xhci->lock held.
2030 */
2031static void xhci_free_host_resources(struct xhci_hcd *xhci,
2032		struct xhci_input_control_ctx *ctrl_ctx)
2033{
2034	u32 num_failed_eps;
2035
2036	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2037	xhci->num_active_eps -= num_failed_eps;
2038	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2039			"Removing %u failed ep ctxs, %u now active.",
2040			num_failed_eps,
2041			xhci->num_active_eps);
2042}
2043
2044/*
2045 * Now that the command has completed, clean up the active endpoint count by
2046 * subtracting out the endpoints that were dropped (but not changed).
2047 *
2048 * Must be called with xhci->lock held.
2049 */
2050static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2051		struct xhci_input_control_ctx *ctrl_ctx)
2052{
2053	u32 num_dropped_eps;
2054
2055	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2056	xhci->num_active_eps -= num_dropped_eps;
2057	if (num_dropped_eps)
2058		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2059				"Removing %u dropped ep ctxs, %u now active.",
2060				num_dropped_eps,
2061				xhci->num_active_eps);
2062}
2063
2064static unsigned int xhci_get_block_size(struct usb_device *udev)
2065{
2066	switch (udev->speed) {
2067	case USB_SPEED_LOW:
2068	case USB_SPEED_FULL:
2069		return FS_BLOCK;
2070	case USB_SPEED_HIGH:
2071		return HS_BLOCK;
2072	case USB_SPEED_SUPER:
2073		return SS_BLOCK;
2074	case USB_SPEED_UNKNOWN:
2075	case USB_SPEED_WIRELESS:
2076	default:
2077		/* Should never happen */
2078		return 1;
2079	}
2080}
2081
2082static unsigned int
2083xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2084{
2085	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2086		return LS_OVERHEAD;
2087	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2088		return FS_OVERHEAD;
2089	return HS_OVERHEAD;
2090}
2091
2092/* If we are changing a LS/FS device under a HS hub,
2093 * make sure (if we are activating a new TT) that the HS bus has enough
2094 * bandwidth for this new TT.
2095 */
2096static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2097		struct xhci_virt_device *virt_dev,
2098		int old_active_eps)
2099{
2100	struct xhci_interval_bw_table *bw_table;
2101	struct xhci_tt_bw_info *tt_info;
2102
2103	/* Find the bandwidth table for the root port this TT is attached to. */
2104	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2105	tt_info = virt_dev->tt_info;
2106	/* If this TT already had active endpoints, the bandwidth for this TT
2107	 * has already been added.  Removing all periodic endpoints (and thus
2108	 * making the TT enactive) will only decrease the bandwidth used.
2109	 */
2110	if (old_active_eps)
2111		return 0;
2112	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2113		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2114			return -ENOMEM;
2115		return 0;
2116	}
2117	/* Not sure why we would have no new active endpoints...
2118	 *
2119	 * Maybe because of an Evaluate Context change for a hub update or a
2120	 * control endpoint 0 max packet size change?
2121	 * FIXME: skip the bandwidth calculation in that case.
2122	 */
2123	return 0;
2124}
2125
2126static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2127		struct xhci_virt_device *virt_dev)
2128{
2129	unsigned int bw_reserved;
2130
2131	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2132	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2133		return -ENOMEM;
2134
2135	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2136	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2137		return -ENOMEM;
2138
2139	return 0;
2140}
2141
2142/*
2143 * This algorithm is a very conservative estimate of the worst-case scheduling
2144 * scenario for any one interval.  The hardware dynamically schedules the
2145 * packets, so we can't tell which microframe could be the limiting factor in
2146 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2147 *
2148 * Obviously, we can't solve an NP complete problem to find the minimum worst
2149 * case scenario.  Instead, we come up with an estimate that is no less than
2150 * the worst case bandwidth used for any one microframe, but may be an
2151 * over-estimate.
2152 *
2153 * We walk the requirements for each endpoint by interval, starting with the
2154 * smallest interval, and place packets in the schedule where there is only one
2155 * possible way to schedule packets for that interval.  In order to simplify
2156 * this algorithm, we record the largest max packet size for each interval, and
2157 * assume all packets will be that size.
2158 *
2159 * For interval 0, we obviously must schedule all packets for each interval.
2160 * The bandwidth for interval 0 is just the amount of data to be transmitted
2161 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2162 * the number of packets).
2163 *
2164 * For interval 1, we have two possible microframes to schedule those packets
2165 * in.  For this algorithm, if we can schedule the same number of packets for
2166 * each possible scheduling opportunity (each microframe), we will do so.  The
2167 * remaining number of packets will be saved to be transmitted in the gaps in
2168 * the next interval's scheduling sequence.
2169 *
2170 * As we move those remaining packets to be scheduled with interval 2 packets,
2171 * we have to double the number of remaining packets to transmit.  This is
2172 * because the intervals are actually powers of 2, and we would be transmitting
2173 * the previous interval's packets twice in this interval.  We also have to be
2174 * sure that when we look at the largest max packet size for this interval, we
2175 * also look at the largest max packet size for the remaining packets and take
2176 * the greater of the two.
2177 *
2178 * The algorithm continues to evenly distribute packets in each scheduling
2179 * opportunity, and push the remaining packets out, until we get to the last
2180 * interval.  Then those packets and their associated overhead are just added
2181 * to the bandwidth used.
2182 */
2183static int xhci_check_bw_table(struct xhci_hcd *xhci,
2184		struct xhci_virt_device *virt_dev,
2185		int old_active_eps)
2186{
2187	unsigned int bw_reserved;
2188	unsigned int max_bandwidth;
2189	unsigned int bw_used;
2190	unsigned int block_size;
2191	struct xhci_interval_bw_table *bw_table;
2192	unsigned int packet_size = 0;
2193	unsigned int overhead = 0;
2194	unsigned int packets_transmitted = 0;
2195	unsigned int packets_remaining = 0;
2196	unsigned int i;
2197
2198	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2199		return xhci_check_ss_bw(xhci, virt_dev);
2200
2201	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2202		max_bandwidth = HS_BW_LIMIT;
2203		/* Convert percent of bus BW reserved to blocks reserved */
2204		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2205	} else {
2206		max_bandwidth = FS_BW_LIMIT;
2207		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2208	}
2209
2210	bw_table = virt_dev->bw_table;
2211	/* We need to translate the max packet size and max ESIT payloads into
2212	 * the units the hardware uses.
2213	 */
2214	block_size = xhci_get_block_size(virt_dev->udev);
2215
2216	/* If we are manipulating a LS/FS device under a HS hub, double check
2217	 * that the HS bus has enough bandwidth if we are activing a new TT.
2218	 */
2219	if (virt_dev->tt_info) {
2220		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2221				"Recalculating BW for rootport %u",
2222				virt_dev->real_port);
2223		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2224			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2225					"newly activated TT.\n");
2226			return -ENOMEM;
2227		}
2228		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2229				"Recalculating BW for TT slot %u port %u",
2230				virt_dev->tt_info->slot_id,
2231				virt_dev->tt_info->ttport);
2232	} else {
2233		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2234				"Recalculating BW for rootport %u",
2235				virt_dev->real_port);
2236	}
2237
2238	/* Add in how much bandwidth will be used for interval zero, or the
2239	 * rounded max ESIT payload + number of packets * largest overhead.
2240	 */
2241	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2242		bw_table->interval_bw[0].num_packets *
2243		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2244
2245	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2246		unsigned int bw_added;
2247		unsigned int largest_mps;
2248		unsigned int interval_overhead;
2249
2250		/*
2251		 * How many packets could we transmit in this interval?
2252		 * If packets didn't fit in the previous interval, we will need
2253		 * to transmit that many packets twice within this interval.
2254		 */
2255		packets_remaining = 2 * packets_remaining +
2256			bw_table->interval_bw[i].num_packets;
2257
2258		/* Find the largest max packet size of this or the previous
2259		 * interval.
2260		 */
2261		if (list_empty(&bw_table->interval_bw[i].endpoints))
2262			largest_mps = 0;
2263		else {
2264			struct xhci_virt_ep *virt_ep;
2265			struct list_head *ep_entry;
2266
2267			ep_entry = bw_table->interval_bw[i].endpoints.next;
2268			virt_ep = list_entry(ep_entry,
2269					struct xhci_virt_ep, bw_endpoint_list);
2270			/* Convert to blocks, rounding up */
2271			largest_mps = DIV_ROUND_UP(
2272					virt_ep->bw_info.max_packet_size,
2273					block_size);
2274		}
2275		if (largest_mps > packet_size)
2276			packet_size = largest_mps;
2277
2278		/* Use the larger overhead of this or the previous interval. */
2279		interval_overhead = xhci_get_largest_overhead(
2280				&bw_table->interval_bw[i]);
2281		if (interval_overhead > overhead)
2282			overhead = interval_overhead;
2283
2284		/* How many packets can we evenly distribute across
2285		 * (1 << (i + 1)) possible scheduling opportunities?
2286		 */
2287		packets_transmitted = packets_remaining >> (i + 1);
2288
2289		/* Add in the bandwidth used for those scheduled packets */
2290		bw_added = packets_transmitted * (overhead + packet_size);
2291
2292		/* How many packets do we have remaining to transmit? */
2293		packets_remaining = packets_remaining % (1 << (i + 1));
2294
2295		/* What largest max packet size should those packets have? */
2296		/* If we've transmitted all packets, don't carry over the
2297		 * largest packet size.
2298		 */
2299		if (packets_remaining == 0) {
2300			packet_size = 0;
2301			overhead = 0;
2302		} else if (packets_transmitted > 0) {
2303			/* Otherwise if we do have remaining packets, and we've
2304			 * scheduled some packets in this interval, take the
2305			 * largest max packet size from endpoints with this
2306			 * interval.
2307			 */
2308			packet_size = largest_mps;
2309			overhead = interval_overhead;
2310		}
2311		/* Otherwise carry over packet_size and overhead from the last
2312		 * time we had a remainder.
2313		 */
2314		bw_used += bw_added;
2315		if (bw_used > max_bandwidth) {
2316			xhci_warn(xhci, "Not enough bandwidth. "
2317					"Proposed: %u, Max: %u\n",
2318				bw_used, max_bandwidth);
2319			return -ENOMEM;
2320		}
2321	}
2322	/*
2323	 * Ok, we know we have some packets left over after even-handedly
2324	 * scheduling interval 15.  We don't know which microframes they will
2325	 * fit into, so we over-schedule and say they will be scheduled every
2326	 * microframe.
2327	 */
2328	if (packets_remaining > 0)
2329		bw_used += overhead + packet_size;
2330
2331	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2332		unsigned int port_index = virt_dev->real_port - 1;
2333
2334		/* OK, we're manipulating a HS device attached to a
2335		 * root port bandwidth domain.  Include the number of active TTs
2336		 * in the bandwidth used.
2337		 */
2338		bw_used += TT_HS_OVERHEAD *
2339			xhci->rh_bw[port_index].num_active_tts;
2340	}
2341
2342	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2343		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2344		"Available: %u " "percent",
2345		bw_used, max_bandwidth, bw_reserved,
2346		(max_bandwidth - bw_used - bw_reserved) * 100 /
2347		max_bandwidth);
2348
2349	bw_used += bw_reserved;
2350	if (bw_used > max_bandwidth) {
2351		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2352				bw_used, max_bandwidth);
2353		return -ENOMEM;
2354	}
2355
2356	bw_table->bw_used = bw_used;
2357	return 0;
2358}
2359
2360static bool xhci_is_async_ep(unsigned int ep_type)
2361{
2362	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2363					ep_type != ISOC_IN_EP &&
2364					ep_type != INT_IN_EP);
2365}
2366
2367static bool xhci_is_sync_in_ep(unsigned int ep_type)
2368{
2369	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2370}
2371
2372static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2373{
2374	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2375
2376	if (ep_bw->ep_interval == 0)
2377		return SS_OVERHEAD_BURST +
2378			(ep_bw->mult * ep_bw->num_packets *
2379					(SS_OVERHEAD + mps));
2380	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2381				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2382				1 << ep_bw->ep_interval);
2383
2384}
2385
2386void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2387		struct xhci_bw_info *ep_bw,
2388		struct xhci_interval_bw_table *bw_table,
2389		struct usb_device *udev,
2390		struct xhci_virt_ep *virt_ep,
2391		struct xhci_tt_bw_info *tt_info)
2392{
2393	struct xhci_interval_bw	*interval_bw;
2394	int normalized_interval;
2395
2396	if (xhci_is_async_ep(ep_bw->type))
2397		return;
2398
2399	if (udev->speed == USB_SPEED_SUPER) {
2400		if (xhci_is_sync_in_ep(ep_bw->type))
2401			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2402				xhci_get_ss_bw_consumed(ep_bw);
2403		else
2404			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2405				xhci_get_ss_bw_consumed(ep_bw);
2406		return;
2407	}
2408
2409	/* SuperSpeed endpoints never get added to intervals in the table, so
2410	 * this check is only valid for HS/FS/LS devices.
2411	 */
2412	if (list_empty(&virt_ep->bw_endpoint_list))
2413		return;
2414	/* For LS/FS devices, we need to translate the interval expressed in
2415	 * microframes to frames.
2416	 */
2417	if (udev->speed == USB_SPEED_HIGH)
2418		normalized_interval = ep_bw->ep_interval;
2419	else
2420		normalized_interval = ep_bw->ep_interval - 3;
2421
2422	if (normalized_interval == 0)
2423		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2424	interval_bw = &bw_table->interval_bw[normalized_interval];
2425	interval_bw->num_packets -= ep_bw->num_packets;
2426	switch (udev->speed) {
2427	case USB_SPEED_LOW:
2428		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2429		break;
2430	case USB_SPEED_FULL:
2431		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2432		break;
2433	case USB_SPEED_HIGH:
2434		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2435		break;
2436	case USB_SPEED_SUPER:
2437	case USB_SPEED_UNKNOWN:
2438	case USB_SPEED_WIRELESS:
2439		/* Should never happen because only LS/FS/HS endpoints will get
2440		 * added to the endpoint list.
2441		 */
2442		return;
2443	}
2444	if (tt_info)
2445		tt_info->active_eps -= 1;
2446	list_del_init(&virt_ep->bw_endpoint_list);
2447}
2448
2449static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2450		struct xhci_bw_info *ep_bw,
2451		struct xhci_interval_bw_table *bw_table,
2452		struct usb_device *udev,
2453		struct xhci_virt_ep *virt_ep,
2454		struct xhci_tt_bw_info *tt_info)
2455{
2456	struct xhci_interval_bw	*interval_bw;
2457	struct xhci_virt_ep *smaller_ep;
2458	int normalized_interval;
2459
2460	if (xhci_is_async_ep(ep_bw->type))
2461		return;
2462
2463	if (udev->speed == USB_SPEED_SUPER) {
2464		if (xhci_is_sync_in_ep(ep_bw->type))
2465			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2466				xhci_get_ss_bw_consumed(ep_bw);
2467		else
2468			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2469				xhci_get_ss_bw_consumed(ep_bw);
2470		return;
2471	}
2472
2473	/* For LS/FS devices, we need to translate the interval expressed in
2474	 * microframes to frames.
2475	 */
2476	if (udev->speed == USB_SPEED_HIGH)
2477		normalized_interval = ep_bw->ep_interval;
2478	else
2479		normalized_interval = ep_bw->ep_interval - 3;
2480
2481	if (normalized_interval == 0)
2482		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2483	interval_bw = &bw_table->interval_bw[normalized_interval];
2484	interval_bw->num_packets += ep_bw->num_packets;
2485	switch (udev->speed) {
2486	case USB_SPEED_LOW:
2487		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2488		break;
2489	case USB_SPEED_FULL:
2490		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2491		break;
2492	case USB_SPEED_HIGH:
2493		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2494		break;
2495	case USB_SPEED_SUPER:
2496	case USB_SPEED_UNKNOWN:
2497	case USB_SPEED_WIRELESS:
2498		/* Should never happen because only LS/FS/HS endpoints will get
2499		 * added to the endpoint list.
2500		 */
2501		return;
2502	}
2503
2504	if (tt_info)
2505		tt_info->active_eps += 1;
2506	/* Insert the endpoint into the list, largest max packet size first. */
2507	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2508			bw_endpoint_list) {
2509		if (ep_bw->max_packet_size >=
2510				smaller_ep->bw_info.max_packet_size) {
2511			/* Add the new ep before the smaller endpoint */
2512			list_add_tail(&virt_ep->bw_endpoint_list,
2513					&smaller_ep->bw_endpoint_list);
2514			return;
2515		}
2516	}
2517	/* Add the new endpoint at the end of the list. */
2518	list_add_tail(&virt_ep->bw_endpoint_list,
2519			&interval_bw->endpoints);
2520}
2521
2522void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2523		struct xhci_virt_device *virt_dev,
2524		int old_active_eps)
2525{
2526	struct xhci_root_port_bw_info *rh_bw_info;
2527	if (!virt_dev->tt_info)
2528		return;
2529
2530	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2531	if (old_active_eps == 0 &&
2532				virt_dev->tt_info->active_eps != 0) {
2533		rh_bw_info->num_active_tts += 1;
2534		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2535	} else if (old_active_eps != 0 &&
2536				virt_dev->tt_info->active_eps == 0) {
2537		rh_bw_info->num_active_tts -= 1;
2538		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2539	}
2540}
2541
2542static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2543		struct xhci_virt_device *virt_dev,
2544		struct xhci_container_ctx *in_ctx)
2545{
2546	struct xhci_bw_info ep_bw_info[31];
2547	int i;
2548	struct xhci_input_control_ctx *ctrl_ctx;
2549	int old_active_eps = 0;
2550
2551	if (virt_dev->tt_info)
2552		old_active_eps = virt_dev->tt_info->active_eps;
2553
2554	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2555	if (!ctrl_ctx) {
2556		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2557				__func__);
2558		return -ENOMEM;
2559	}
2560
2561	for (i = 0; i < 31; i++) {
2562		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2563			continue;
2564
2565		/* Make a copy of the BW info in case we need to revert this */
2566		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2567				sizeof(ep_bw_info[i]));
2568		/* Drop the endpoint from the interval table if the endpoint is
2569		 * being dropped or changed.
2570		 */
2571		if (EP_IS_DROPPED(ctrl_ctx, i))
2572			xhci_drop_ep_from_interval_table(xhci,
2573					&virt_dev->eps[i].bw_info,
2574					virt_dev->bw_table,
2575					virt_dev->udev,
2576					&virt_dev->eps[i],
2577					virt_dev->tt_info);
2578	}
2579	/* Overwrite the information stored in the endpoints' bw_info */
2580	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2581	for (i = 0; i < 31; i++) {
2582		/* Add any changed or added endpoints to the interval table */
2583		if (EP_IS_ADDED(ctrl_ctx, i))
2584			xhci_add_ep_to_interval_table(xhci,
2585					&virt_dev->eps[i].bw_info,
2586					virt_dev->bw_table,
2587					virt_dev->udev,
2588					&virt_dev->eps[i],
2589					virt_dev->tt_info);
2590	}
2591
2592	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2593		/* Ok, this fits in the bandwidth we have.
2594		 * Update the number of active TTs.
2595		 */
2596		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2597		return 0;
2598	}
2599
2600	/* We don't have enough bandwidth for this, revert the stored info. */
2601	for (i = 0; i < 31; i++) {
2602		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2603			continue;
2604
2605		/* Drop the new copies of any added or changed endpoints from
2606		 * the interval table.
2607		 */
2608		if (EP_IS_ADDED(ctrl_ctx, i)) {
2609			xhci_drop_ep_from_interval_table(xhci,
2610					&virt_dev->eps[i].bw_info,
2611					virt_dev->bw_table,
2612					virt_dev->udev,
2613					&virt_dev->eps[i],
2614					virt_dev->tt_info);
2615		}
2616		/* Revert the endpoint back to its old information */
2617		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2618				sizeof(ep_bw_info[i]));
2619		/* Add any changed or dropped endpoints back into the table */
2620		if (EP_IS_DROPPED(ctrl_ctx, i))
2621			xhci_add_ep_to_interval_table(xhci,
2622					&virt_dev->eps[i].bw_info,
2623					virt_dev->bw_table,
2624					virt_dev->udev,
2625					&virt_dev->eps[i],
2626					virt_dev->tt_info);
2627	}
2628	return -ENOMEM;
2629}
2630
2631
2632/* Issue a configure endpoint command or evaluate context command
2633 * and wait for it to finish.
2634 */
2635static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2636		struct usb_device *udev,
2637		struct xhci_command *command,
2638		bool ctx_change, bool must_succeed)
2639{
2640	int ret;
2641	unsigned long flags;
2642	struct xhci_input_control_ctx *ctrl_ctx;
2643	struct xhci_virt_device *virt_dev;
2644
2645	if (!command)
2646		return -EINVAL;
2647
2648	spin_lock_irqsave(&xhci->lock, flags);
2649	virt_dev = xhci->devs[udev->slot_id];
2650
2651	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2652	if (!ctrl_ctx) {
2653		spin_unlock_irqrestore(&xhci->lock, flags);
2654		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2655				__func__);
2656		return -ENOMEM;
2657	}
2658
2659	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2660			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2661		spin_unlock_irqrestore(&xhci->lock, flags);
2662		xhci_warn(xhci, "Not enough host resources, "
2663				"active endpoint contexts = %u\n",
2664				xhci->num_active_eps);
2665		return -ENOMEM;
2666	}
2667	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2668	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2669		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2670			xhci_free_host_resources(xhci, ctrl_ctx);
2671		spin_unlock_irqrestore(&xhci->lock, flags);
2672		xhci_warn(xhci, "Not enough bandwidth\n");
2673		return -ENOMEM;
2674	}
2675
2676	if (!ctx_change)
2677		ret = xhci_queue_configure_endpoint(xhci, command,
2678				command->in_ctx->dma,
2679				udev->slot_id, must_succeed);
2680	else
2681		ret = xhci_queue_evaluate_context(xhci, command,
2682				command->in_ctx->dma,
2683				udev->slot_id, must_succeed);
2684	if (ret < 0) {
2685		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2686			xhci_free_host_resources(xhci, ctrl_ctx);
2687		spin_unlock_irqrestore(&xhci->lock, flags);
2688		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2689				"FIXME allocate a new ring segment");
2690		return -ENOMEM;
2691	}
2692	xhci_ring_cmd_db(xhci);
2693	spin_unlock_irqrestore(&xhci->lock, flags);
2694
2695	/* Wait for the configure endpoint command to complete */
2696	wait_for_completion(command->completion);
2697
2698	if (!ctx_change)
2699		ret = xhci_configure_endpoint_result(xhci, udev,
2700						     &command->status);
2701	else
2702		ret = xhci_evaluate_context_result(xhci, udev,
2703						   &command->status);
2704
2705	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2706		spin_lock_irqsave(&xhci->lock, flags);
2707		/* If the command failed, remove the reserved resources.
2708		 * Otherwise, clean up the estimate to include dropped eps.
2709		 */
2710		if (ret)
2711			xhci_free_host_resources(xhci, ctrl_ctx);
2712		else
2713			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2714		spin_unlock_irqrestore(&xhci->lock, flags);
2715	}
2716	return ret;
2717}
2718
2719static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2720	struct xhci_virt_device *vdev, int i)
2721{
2722	struct xhci_virt_ep *ep = &vdev->eps[i];
2723
2724	if (ep->ep_state & EP_HAS_STREAMS) {
2725		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2726				xhci_get_endpoint_address(i));
2727		xhci_free_stream_info(xhci, ep->stream_info);
2728		ep->stream_info = NULL;
2729		ep->ep_state &= ~EP_HAS_STREAMS;
2730	}
2731}
2732
2733/* Called after one or more calls to xhci_add_endpoint() or
2734 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2735 * to call xhci_reset_bandwidth().
2736 *
2737 * Since we are in the middle of changing either configuration or
2738 * installing a new alt setting, the USB core won't allow URBs to be
2739 * enqueued for any endpoint on the old config or interface.  Nothing
2740 * else should be touching the xhci->devs[slot_id] structure, so we
2741 * don't need to take the xhci->lock for manipulating that.
2742 */
2743int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2744{
2745	int i;
2746	int ret = 0;
2747	struct xhci_hcd *xhci;
2748	struct xhci_virt_device	*virt_dev;
2749	struct xhci_input_control_ctx *ctrl_ctx;
2750	struct xhci_slot_ctx *slot_ctx;
2751	struct xhci_command *command;
2752
2753	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2754	if (ret <= 0)
2755		return ret;
2756	xhci = hcd_to_xhci(hcd);
2757	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2758		(xhci->xhc_state & XHCI_STATE_REMOVING))
2759		return -ENODEV;
2760
2761	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2762	virt_dev = xhci->devs[udev->slot_id];
2763
2764	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2765	if (!command)
2766		return -ENOMEM;
2767
2768	command->in_ctx = virt_dev->in_ctx;
2769
2770	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2771	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2772	if (!ctrl_ctx) {
2773		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2774				__func__);
2775		ret = -ENOMEM;
2776		goto command_cleanup;
2777	}
2778	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2779	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2780	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2781
2782	/* Don't issue the command if there's no endpoints to update. */
2783	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2784	    ctrl_ctx->drop_flags == 0) {
2785		ret = 0;
2786		goto command_cleanup;
2787	}
2788	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2789	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2790	for (i = 31; i >= 1; i--) {
2791		__le32 le32 = cpu_to_le32(BIT(i));
2792
2793		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2794		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2795			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2796			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2797			break;
2798		}
2799	}
2800	xhci_dbg(xhci, "New Input Control Context:\n");
2801	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2802		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2803
2804	ret = xhci_configure_endpoint(xhci, udev, command,
2805			false, false);
2806	if (ret)
2807		/* Callee should call reset_bandwidth() */
2808		goto command_cleanup;
2809
2810	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2811	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2812		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2813
2814	/* Free any rings that were dropped, but not changed. */
2815	for (i = 1; i < 31; ++i) {
2816		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2817		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2818			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2819			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2820		}
2821	}
2822	xhci_zero_in_ctx(xhci, virt_dev);
2823	/*
2824	 * Install any rings for completely new endpoints or changed endpoints,
2825	 * and free or cache any old rings from changed endpoints.
2826	 */
2827	for (i = 1; i < 31; ++i) {
2828		if (!virt_dev->eps[i].new_ring)
2829			continue;
2830		/* Only cache or free the old ring if it exists.
2831		 * It may not if this is the first add of an endpoint.
2832		 */
2833		if (virt_dev->eps[i].ring) {
2834			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2835		}
2836		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2837		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2838		virt_dev->eps[i].new_ring = NULL;
2839	}
2840command_cleanup:
2841	kfree(command->completion);
2842	kfree(command);
2843
2844	return ret;
2845}
2846
2847void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2848{
2849	struct xhci_hcd *xhci;
2850	struct xhci_virt_device	*virt_dev;
2851	int i, ret;
2852
2853	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2854	if (ret <= 0)
2855		return;
2856	xhci = hcd_to_xhci(hcd);
2857
2858	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2859	virt_dev = xhci->devs[udev->slot_id];
2860	/* Free any rings allocated for added endpoints */
2861	for (i = 0; i < 31; ++i) {
2862		if (virt_dev->eps[i].new_ring) {
2863			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2864			virt_dev->eps[i].new_ring = NULL;
2865		}
2866	}
2867	xhci_zero_in_ctx(xhci, virt_dev);
2868}
2869
2870static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2871		struct xhci_container_ctx *in_ctx,
2872		struct xhci_container_ctx *out_ctx,
2873		struct xhci_input_control_ctx *ctrl_ctx,
2874		u32 add_flags, u32 drop_flags)
2875{
2876	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2877	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2878	xhci_slot_copy(xhci, in_ctx, out_ctx);
2879	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2880
2881	xhci_dbg(xhci, "Input Context:\n");
2882	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2883}
2884
2885static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2886		unsigned int slot_id, unsigned int ep_index,
2887		struct xhci_dequeue_state *deq_state)
2888{
2889	struct xhci_input_control_ctx *ctrl_ctx;
2890	struct xhci_container_ctx *in_ctx;
2891	struct xhci_ep_ctx *ep_ctx;
2892	u32 added_ctxs;
2893	dma_addr_t addr;
2894
2895	in_ctx = xhci->devs[slot_id]->in_ctx;
2896	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2897	if (!ctrl_ctx) {
2898		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2899				__func__);
2900		return;
2901	}
2902
2903	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2904			xhci->devs[slot_id]->out_ctx, ep_index);
2905	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2906	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2907			deq_state->new_deq_ptr);
2908	if (addr == 0) {
2909		xhci_warn(xhci, "WARN Cannot submit config ep after "
2910				"reset ep command\n");
2911		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2912				deq_state->new_deq_seg,
2913				deq_state->new_deq_ptr);
2914		return;
2915	}
2916	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2917
2918	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2919	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2920			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2921			added_ctxs, added_ctxs);
2922}
2923
2924void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2925			unsigned int ep_index, struct xhci_td *td)
2926{
2927	struct xhci_dequeue_state deq_state;
2928	struct xhci_virt_ep *ep;
2929	struct usb_device *udev = td->urb->dev;
2930
2931	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2932			"Cleaning up stalled endpoint ring");
2933	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2934	/* We need to move the HW's dequeue pointer past this TD,
2935	 * or it will attempt to resend it on the next doorbell ring.
2936	 */
2937	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2938			ep_index, ep->stopped_stream, td, &deq_state);
2939
2940	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2941		return;
2942
2943	/* HW with the reset endpoint quirk will use the saved dequeue state to
2944	 * issue a configure endpoint command later.
2945	 */
2946	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2947		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2948				"Queueing new dequeue state");
2949		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2950				ep_index, ep->stopped_stream, &deq_state);
2951	} else {
2952		/* Better hope no one uses the input context between now and the
2953		 * reset endpoint completion!
2954		 * XXX: No idea how this hardware will react when stream rings
2955		 * are enabled.
2956		 */
2957		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2958				"Setting up input context for "
2959				"configure endpoint command");
2960		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2961				ep_index, &deq_state);
2962	}
2963}
2964
2965/* Called when clearing halted device. The core should have sent the control
2966 * message to clear the device halt condition. The host side of the halt should
2967 * already be cleared with a reset endpoint command issued when the STALL tx
2968 * event was received.
2969 *
2970 * Context: in_interrupt
2971 */
2972
2973void xhci_endpoint_reset(struct usb_hcd *hcd,
2974		struct usb_host_endpoint *ep)
2975{
2976	struct xhci_hcd *xhci;
2977
2978	xhci = hcd_to_xhci(hcd);
2979
2980	/*
2981	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2982	 * The Reset Endpoint Command may only be issued to endpoints in the
2983	 * Halted state. If software wishes reset the Data Toggle or Sequence
2984	 * Number of an endpoint that isn't in the Halted state, then software
2985	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2986	 * for the target endpoint. that is in the Stopped state.
2987	 */
2988
2989	/* For now just print debug to follow the situation */
2990	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2991		 ep->desc.bEndpointAddress);
2992}
2993
2994static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2995		struct usb_device *udev, struct usb_host_endpoint *ep,
2996		unsigned int slot_id)
2997{
2998	int ret;
2999	unsigned int ep_index;
3000	unsigned int ep_state;
3001
3002	if (!ep)
3003		return -EINVAL;
3004	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3005	if (ret <= 0)
3006		return -EINVAL;
3007	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3008		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3009				" descriptor for ep 0x%x does not support streams\n",
3010				ep->desc.bEndpointAddress);
3011		return -EINVAL;
3012	}
3013
3014	ep_index = xhci_get_endpoint_index(&ep->desc);
3015	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3016	if (ep_state & EP_HAS_STREAMS ||
3017			ep_state & EP_GETTING_STREAMS) {
3018		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3019				"already has streams set up.\n",
3020				ep->desc.bEndpointAddress);
3021		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3022				"dynamic stream context array reallocation.\n");
3023		return -EINVAL;
3024	}
3025	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3026		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3027				"endpoint 0x%x; URBs are pending.\n",
3028				ep->desc.bEndpointAddress);
3029		return -EINVAL;
3030	}
3031	return 0;
3032}
3033
3034static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3035		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3036{
3037	unsigned int max_streams;
3038
3039	/* The stream context array size must be a power of two */
3040	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3041	/*
3042	 * Find out how many primary stream array entries the host controller
3043	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3044	 * level page entries), but that's an optional feature for xHCI host
3045	 * controllers. xHCs must support at least 4 stream IDs.
3046	 */
3047	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3048	if (*num_stream_ctxs > max_streams) {
3049		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3050				max_streams);
3051		*num_stream_ctxs = max_streams;
3052		*num_streams = max_streams;
3053	}
3054}
3055
3056/* Returns an error code if one of the endpoint already has streams.
3057 * This does not change any data structures, it only checks and gathers
3058 * information.
3059 */
3060static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3061		struct usb_device *udev,
3062		struct usb_host_endpoint **eps, unsigned int num_eps,
3063		unsigned int *num_streams, u32 *changed_ep_bitmask)
3064{
3065	unsigned int max_streams;
3066	unsigned int endpoint_flag;
3067	int i;
3068	int ret;
3069
3070	for (i = 0; i < num_eps; i++) {
3071		ret = xhci_check_streams_endpoint(xhci, udev,
3072				eps[i], udev->slot_id);
3073		if (ret < 0)
3074			return ret;
3075
3076		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3077		if (max_streams < (*num_streams - 1)) {
3078			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3079					eps[i]->desc.bEndpointAddress,
3080					max_streams);
3081			*num_streams = max_streams+1;
3082		}
3083
3084		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3085		if (*changed_ep_bitmask & endpoint_flag)
3086			return -EINVAL;
3087		*changed_ep_bitmask |= endpoint_flag;
3088	}
3089	return 0;
3090}
3091
3092static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3093		struct usb_device *udev,
3094		struct usb_host_endpoint **eps, unsigned int num_eps)
3095{
3096	u32 changed_ep_bitmask = 0;
3097	unsigned int slot_id;
3098	unsigned int ep_index;
3099	unsigned int ep_state;
3100	int i;
3101
3102	slot_id = udev->slot_id;
3103	if (!xhci->devs[slot_id])
3104		return 0;
3105
3106	for (i = 0; i < num_eps; i++) {
3107		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3108		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3109		/* Are streams already being freed for the endpoint? */
3110		if (ep_state & EP_GETTING_NO_STREAMS) {
3111			xhci_warn(xhci, "WARN Can't disable streams for "
3112					"endpoint 0x%x, "
3113					"streams are being disabled already\n",
3114					eps[i]->desc.bEndpointAddress);
3115			return 0;
3116		}
3117		/* Are there actually any streams to free? */
3118		if (!(ep_state & EP_HAS_STREAMS) &&
3119				!(ep_state & EP_GETTING_STREAMS)) {
3120			xhci_warn(xhci, "WARN Can't disable streams for "
3121					"endpoint 0x%x, "
3122					"streams are already disabled!\n",
3123					eps[i]->desc.bEndpointAddress);
3124			xhci_warn(xhci, "WARN xhci_free_streams() called "
3125					"with non-streams endpoint\n");
3126			return 0;
3127		}
3128		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3129	}
3130	return changed_ep_bitmask;
3131}
3132
3133/*
3134 * The USB device drivers use this function (through the HCD interface in USB
3135 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3136 * coordinate mass storage command queueing across multiple endpoints (basically
3137 * a stream ID == a task ID).
3138 *
3139 * Setting up streams involves allocating the same size stream context array
3140 * for each endpoint and issuing a configure endpoint command for all endpoints.
3141 *
3142 * Don't allow the call to succeed if one endpoint only supports one stream
3143 * (which means it doesn't support streams at all).
3144 *
3145 * Drivers may get less stream IDs than they asked for, if the host controller
3146 * hardware or endpoints claim they can't support the number of requested
3147 * stream IDs.
3148 */
3149int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3150		struct usb_host_endpoint **eps, unsigned int num_eps,
3151		unsigned int num_streams, gfp_t mem_flags)
3152{
3153	int i, ret;
3154	struct xhci_hcd *xhci;
3155	struct xhci_virt_device *vdev;
3156	struct xhci_command *config_cmd;
3157	struct xhci_input_control_ctx *ctrl_ctx;
3158	unsigned int ep_index;
3159	unsigned int num_stream_ctxs;
3160	unsigned long flags;
3161	u32 changed_ep_bitmask = 0;
3162
3163	if (!eps)
3164		return -EINVAL;
3165
3166	/* Add one to the number of streams requested to account for
3167	 * stream 0 that is reserved for xHCI usage.
3168	 */
3169	num_streams += 1;
3170	xhci = hcd_to_xhci(hcd);
3171	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3172			num_streams);
3173
3174	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3175	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3176			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3177		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3178		return -ENOSYS;
3179	}
3180
3181	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3182	if (!config_cmd) {
3183		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3184		return -ENOMEM;
3185	}
3186	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3187	if (!ctrl_ctx) {
3188		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3189				__func__);
3190		xhci_free_command(xhci, config_cmd);
3191		return -ENOMEM;
3192	}
3193
3194	/* Check to make sure all endpoints are not already configured for
3195	 * streams.  While we're at it, find the maximum number of streams that
3196	 * all the endpoints will support and check for duplicate endpoints.
3197	 */
3198	spin_lock_irqsave(&xhci->lock, flags);
3199	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3200			num_eps, &num_streams, &changed_ep_bitmask);
3201	if (ret < 0) {
3202		xhci_free_command(xhci, config_cmd);
3203		spin_unlock_irqrestore(&xhci->lock, flags);
3204		return ret;
3205	}
3206	if (num_streams <= 1) {
3207		xhci_warn(xhci, "WARN: endpoints can't handle "
3208				"more than one stream.\n");
3209		xhci_free_command(xhci, config_cmd);
3210		spin_unlock_irqrestore(&xhci->lock, flags);
3211		return -EINVAL;
3212	}
3213	vdev = xhci->devs[udev->slot_id];
3214	/* Mark each endpoint as being in transition, so
3215	 * xhci_urb_enqueue() will reject all URBs.
3216	 */
3217	for (i = 0; i < num_eps; i++) {
3218		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3219		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3220	}
3221	spin_unlock_irqrestore(&xhci->lock, flags);
3222
3223	/* Setup internal data structures and allocate HW data structures for
3224	 * streams (but don't install the HW structures in the input context
3225	 * until we're sure all memory allocation succeeded).
3226	 */
3227	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3228	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3229			num_stream_ctxs, num_streams);
3230
3231	for (i = 0; i < num_eps; i++) {
3232		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3233		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3234				num_stream_ctxs,
3235				num_streams, mem_flags);
3236		if (!vdev->eps[ep_index].stream_info)
3237			goto cleanup;
3238		/* Set maxPstreams in endpoint context and update deq ptr to
3239		 * point to stream context array. FIXME
3240		 */
3241	}
3242
3243	/* Set up the input context for a configure endpoint command. */
3244	for (i = 0; i < num_eps; i++) {
3245		struct xhci_ep_ctx *ep_ctx;
3246
3247		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3248		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3249
3250		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3251				vdev->out_ctx, ep_index);
3252		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3253				vdev->eps[ep_index].stream_info);
3254	}
3255	/* Tell the HW to drop its old copy of the endpoint context info
3256	 * and add the updated copy from the input context.
3257	 */
3258	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3259			vdev->out_ctx, ctrl_ctx,
3260			changed_ep_bitmask, changed_ep_bitmask);
3261
3262	/* Issue and wait for the configure endpoint command */
3263	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3264			false, false);
3265
3266	/* xHC rejected the configure endpoint command for some reason, so we
3267	 * leave the old ring intact and free our internal streams data
3268	 * structure.
3269	 */
3270	if (ret < 0)
3271		goto cleanup;
3272
3273	spin_lock_irqsave(&xhci->lock, flags);
3274	for (i = 0; i < num_eps; i++) {
3275		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3276		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3277		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3278			 udev->slot_id, ep_index);
3279		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3280	}
3281	xhci_free_command(xhci, config_cmd);
3282	spin_unlock_irqrestore(&xhci->lock, flags);
3283
3284	/* Subtract 1 for stream 0, which drivers can't use */
3285	return num_streams - 1;
3286
3287cleanup:
3288	/* If it didn't work, free the streams! */
3289	for (i = 0; i < num_eps; i++) {
3290		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3291		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3292		vdev->eps[ep_index].stream_info = NULL;
3293		/* FIXME Unset maxPstreams in endpoint context and
3294		 * update deq ptr to point to normal string ring.
3295		 */
3296		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3297		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3298		xhci_endpoint_zero(xhci, vdev, eps[i]);
3299	}
3300	xhci_free_command(xhci, config_cmd);
3301	return -ENOMEM;
3302}
3303
3304/* Transition the endpoint from using streams to being a "normal" endpoint
3305 * without streams.
3306 *
3307 * Modify the endpoint context state, submit a configure endpoint command,
3308 * and free all endpoint rings for streams if that completes successfully.
3309 */
3310int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3311		struct usb_host_endpoint **eps, unsigned int num_eps,
3312		gfp_t mem_flags)
3313{
3314	int i, ret;
3315	struct xhci_hcd *xhci;
3316	struct xhci_virt_device *vdev;
3317	struct xhci_command *command;
3318	struct xhci_input_control_ctx *ctrl_ctx;
3319	unsigned int ep_index;
3320	unsigned long flags;
3321	u32 changed_ep_bitmask;
3322
3323	xhci = hcd_to_xhci(hcd);
3324	vdev = xhci->devs[udev->slot_id];
3325
3326	/* Set up a configure endpoint command to remove the streams rings */
3327	spin_lock_irqsave(&xhci->lock, flags);
3328	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3329			udev, eps, num_eps);
3330	if (changed_ep_bitmask == 0) {
3331		spin_unlock_irqrestore(&xhci->lock, flags);
3332		return -EINVAL;
3333	}
3334
3335	/* Use the xhci_command structure from the first endpoint.  We may have
3336	 * allocated too many, but the driver may call xhci_free_streams() for
3337	 * each endpoint it grouped into one call to xhci_alloc_streams().
3338	 */
3339	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3340	command = vdev->eps[ep_index].stream_info->free_streams_command;
3341	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3342	if (!ctrl_ctx) {
3343		spin_unlock_irqrestore(&xhci->lock, flags);
3344		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3345				__func__);
3346		return -EINVAL;
3347	}
3348
3349	for (i = 0; i < num_eps; i++) {
3350		struct xhci_ep_ctx *ep_ctx;
3351
3352		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3353		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3354		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3355			EP_GETTING_NO_STREAMS;
3356
3357		xhci_endpoint_copy(xhci, command->in_ctx,
3358				vdev->out_ctx, ep_index);
3359		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3360				&vdev->eps[ep_index]);
3361	}
3362	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3363			vdev->out_ctx, ctrl_ctx,
3364			changed_ep_bitmask, changed_ep_bitmask);
3365	spin_unlock_irqrestore(&xhci->lock, flags);
3366
3367	/* Issue and wait for the configure endpoint command,
3368	 * which must succeed.
3369	 */
3370	ret = xhci_configure_endpoint(xhci, udev, command,
3371			false, true);
3372
3373	/* xHC rejected the configure endpoint command for some reason, so we
3374	 * leave the streams rings intact.
3375	 */
3376	if (ret < 0)
3377		return ret;
3378
3379	spin_lock_irqsave(&xhci->lock, flags);
3380	for (i = 0; i < num_eps; i++) {
3381		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3382		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3383		vdev->eps[ep_index].stream_info = NULL;
3384		/* FIXME Unset maxPstreams in endpoint context and
3385		 * update deq ptr to point to normal string ring.
3386		 */
3387		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3388		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3389	}
3390	spin_unlock_irqrestore(&xhci->lock, flags);
3391
3392	return 0;
3393}
3394
3395/*
3396 * Deletes endpoint resources for endpoints that were active before a Reset
3397 * Device command, or a Disable Slot command.  The Reset Device command leaves
3398 * the control endpoint intact, whereas the Disable Slot command deletes it.
3399 *
3400 * Must be called with xhci->lock held.
3401 */
3402void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3403	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3404{
3405	int i;
3406	unsigned int num_dropped_eps = 0;
3407	unsigned int drop_flags = 0;
3408
3409	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3410		if (virt_dev->eps[i].ring) {
3411			drop_flags |= 1 << i;
3412			num_dropped_eps++;
3413		}
3414	}
3415	xhci->num_active_eps -= num_dropped_eps;
3416	if (num_dropped_eps)
3417		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3418				"Dropped %u ep ctxs, flags = 0x%x, "
3419				"%u now active.",
3420				num_dropped_eps, drop_flags,
3421				xhci->num_active_eps);
3422}
3423
3424/*
3425 * This submits a Reset Device Command, which will set the device state to 0,
3426 * set the device address to 0, and disable all the endpoints except the default
3427 * control endpoint.  The USB core should come back and call
3428 * xhci_address_device(), and then re-set up the configuration.  If this is
3429 * called because of a usb_reset_and_verify_device(), then the old alternate
3430 * settings will be re-installed through the normal bandwidth allocation
3431 * functions.
3432 *
3433 * Wait for the Reset Device command to finish.  Remove all structures
3434 * associated with the endpoints that were disabled.  Clear the input device
3435 * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3436 *
3437 * If the virt_dev to be reset does not exist or does not match the udev,
3438 * it means the device is lost, possibly due to the xHC restore error and
3439 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3440 * re-allocate the device.
3441 */
3442int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3443{
3444	int ret, i;
3445	unsigned long flags;
3446	struct xhci_hcd *xhci;
3447	unsigned int slot_id;
3448	struct xhci_virt_device *virt_dev;
3449	struct xhci_command *reset_device_cmd;
3450	int last_freed_endpoint;
3451	struct xhci_slot_ctx *slot_ctx;
3452	int old_active_eps = 0;
3453
3454	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3455	if (ret <= 0)
3456		return ret;
3457	xhci = hcd_to_xhci(hcd);
3458	slot_id = udev->slot_id;
3459	virt_dev = xhci->devs[slot_id];
3460	if (!virt_dev) {
3461		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3462				"not exist. Re-allocate the device\n", slot_id);
3463		ret = xhci_alloc_dev(hcd, udev);
3464		if (ret == 1)
3465			return 0;
3466		else
3467			return -EINVAL;
3468	}
3469
3470	if (virt_dev->tt_info)
3471		old_active_eps = virt_dev->tt_info->active_eps;
3472
3473	if (virt_dev->udev != udev) {
3474		/* If the virt_dev and the udev does not match, this virt_dev
3475		 * may belong to another udev.
3476		 * Re-allocate the device.
3477		 */
3478		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3479				"not match the udev. Re-allocate the device\n",
3480				slot_id);
3481		ret = xhci_alloc_dev(hcd, udev);
3482		if (ret == 1)
3483			return 0;
3484		else
3485			return -EINVAL;
3486	}
3487
3488	/* If device is not setup, there is no point in resetting it */
3489	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3490	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3491						SLOT_STATE_DISABLED)
3492		return 0;
3493
3494	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3495	/* Allocate the command structure that holds the struct completion.
3496	 * Assume we're in process context, since the normal device reset
3497	 * process has to wait for the device anyway.  Storage devices are
3498	 * reset as part of error handling, so use GFP_NOIO instead of
3499	 * GFP_KERNEL.
3500	 */
3501	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3502	if (!reset_device_cmd) {
3503		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3504		return -ENOMEM;
3505	}
3506
3507	/* Attempt to submit the Reset Device command to the command ring */
3508	spin_lock_irqsave(&xhci->lock, flags);
3509
3510	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3511	if (ret) {
3512		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3513		spin_unlock_irqrestore(&xhci->lock, flags);
3514		goto command_cleanup;
3515	}
3516	xhci_ring_cmd_db(xhci);
3517	spin_unlock_irqrestore(&xhci->lock, flags);
3518
3519	/* Wait for the Reset Device command to finish */
3520	wait_for_completion(reset_device_cmd->completion);
3521
3522	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3523	 * unless we tried to reset a slot ID that wasn't enabled,
3524	 * or the device wasn't in the addressed or configured state.
3525	 */
3526	ret = reset_device_cmd->status;
3527	switch (ret) {
3528	case COMP_CMD_ABORT:
3529	case COMP_CMD_STOP:
3530		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3531		ret = -ETIME;
3532		goto command_cleanup;
3533	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3534	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3535		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3536				slot_id,
3537				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3538		xhci_dbg(xhci, "Not freeing device rings.\n");
3539		/* Don't treat this as an error.  May change my mind later. */
3540		ret = 0;
3541		goto command_cleanup;
3542	case COMP_SUCCESS:
3543		xhci_dbg(xhci, "Successful reset device command.\n");
3544		break;
3545	default:
3546		if (xhci_is_vendor_info_code(xhci, ret))
3547			break;
3548		xhci_warn(xhci, "Unknown completion code %u for "
3549				"reset device command.\n", ret);
3550		ret = -EINVAL;
3551		goto command_cleanup;
3552	}
3553
3554	/* Free up host controller endpoint resources */
3555	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3556		spin_lock_irqsave(&xhci->lock, flags);
3557		/* Don't delete the default control endpoint resources */
3558		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3559		spin_unlock_irqrestore(&xhci->lock, flags);
3560	}
3561
3562	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3563	last_freed_endpoint = 1;
3564	for (i = 1; i < 31; ++i) {
3565		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3566
3567		if (ep->ep_state & EP_HAS_STREAMS) {
3568			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3569					xhci_get_endpoint_address(i));
3570			xhci_free_stream_info(xhci, ep->stream_info);
3571			ep->stream_info = NULL;
3572			ep->ep_state &= ~EP_HAS_STREAMS;
3573		}
3574
3575		if (ep->ring) {
3576			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3577			last_freed_endpoint = i;
3578		}
3579		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3580			xhci_drop_ep_from_interval_table(xhci,
3581					&virt_dev->eps[i].bw_info,
3582					virt_dev->bw_table,
3583					udev,
3584					&virt_dev->eps[i],
3585					virt_dev->tt_info);
3586		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3587	}
3588	/* If necessary, update the number of active TTs on this root port */
3589	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3590
3591	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3592	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3593	ret = 0;
3594
3595command_cleanup:
3596	xhci_free_command(xhci, reset_device_cmd);
3597	return ret;
3598}
3599
3600/*
3601 * At this point, the struct usb_device is about to go away, the device has
3602 * disconnected, and all traffic has been stopped and the endpoints have been
3603 * disabled.  Free any HC data structures associated with that device.
3604 */
3605void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3606{
3607	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3608	struct xhci_virt_device *virt_dev;
3609	unsigned long flags;
3610	u32 state;
3611	int i, ret;
3612	struct xhci_command *command;
3613
3614	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3615	if (!command)
3616		return;
3617
3618#ifndef CONFIG_USB_DEFAULT_PERSIST
3619	/*
3620	 * We called pm_runtime_get_noresume when the device was attached.
3621	 * Decrement the counter here to allow controller to runtime suspend
3622	 * if no devices remain.
3623	 */
3624	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3625		pm_runtime_put_noidle(hcd->self.controller);
3626#endif
3627
3628	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3629	/* If the host is halted due to driver unload, we still need to free the
3630	 * device.
3631	 */
3632	if (ret <= 0 && ret != -ENODEV) {
3633		kfree(command);
3634		return;
3635	}
3636
3637	virt_dev = xhci->devs[udev->slot_id];
3638
3639	/* Stop any wayward timer functions (which may grab the lock) */
3640	for (i = 0; i < 31; ++i) {
3641		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3642		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3643	}
3644
3645	spin_lock_irqsave(&xhci->lock, flags);
3646	/* Don't disable the slot if the host controller is dead. */
3647	state = readl(&xhci->op_regs->status);
3648	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3649			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3650		xhci_free_virt_device(xhci, udev->slot_id);
3651		spin_unlock_irqrestore(&xhci->lock, flags);
3652		kfree(command);
3653		return;
3654	}
3655
3656	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3657				    udev->slot_id)) {
3658		spin_unlock_irqrestore(&xhci->lock, flags);
3659		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3660		return;
3661	}
3662	xhci_ring_cmd_db(xhci);
3663	spin_unlock_irqrestore(&xhci->lock, flags);
3664
3665	/*
3666	 * Event command completion handler will free any data structures
3667	 * associated with the slot.  XXX Can free sleep?
3668	 */
3669}
3670
3671/*
3672 * Checks if we have enough host controller resources for the default control
3673 * endpoint.
3674 *
3675 * Must be called with xhci->lock held.
3676 */
3677static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3678{
3679	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3680		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3681				"Not enough ep ctxs: "
3682				"%u active, need to add 1, limit is %u.",
3683				xhci->num_active_eps, xhci->limit_active_eps);
3684		return -ENOMEM;
3685	}
3686	xhci->num_active_eps += 1;
3687	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3688			"Adding 1 ep ctx, %u now active.",
3689			xhci->num_active_eps);
3690	return 0;
3691}
3692
3693
3694/*
3695 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3696 * timed out, or allocating memory failed.  Returns 1 on success.
3697 */
3698int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3699{
3700	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3701	unsigned long flags;
3702	int ret, slot_id;
3703	struct xhci_command *command;
3704
3705	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3706	if (!command)
3707		return 0;
3708
3709	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3710	mutex_lock(&xhci->mutex);
3711	spin_lock_irqsave(&xhci->lock, flags);
3712	command->completion = &xhci->addr_dev;
3713	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3714	if (ret) {
3715		spin_unlock_irqrestore(&xhci->lock, flags);
3716		mutex_unlock(&xhci->mutex);
3717		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3718		kfree(command);
3719		return 0;
3720	}
3721	xhci_ring_cmd_db(xhci);
3722	spin_unlock_irqrestore(&xhci->lock, flags);
3723
3724	wait_for_completion(command->completion);
3725	slot_id = xhci->slot_id;
3726	mutex_unlock(&xhci->mutex);
3727
3728	if (!slot_id || command->status != COMP_SUCCESS) {
3729		xhci_err(xhci, "Error while assigning device slot ID\n");
3730		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3731				HCS_MAX_SLOTS(
3732					readl(&xhci->cap_regs->hcs_params1)));
3733		kfree(command);
3734		return 0;
3735	}
3736
3737	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3738		spin_lock_irqsave(&xhci->lock, flags);
3739		ret = xhci_reserve_host_control_ep_resources(xhci);
3740		if (ret) {
3741			spin_unlock_irqrestore(&xhci->lock, flags);
3742			xhci_warn(xhci, "Not enough host resources, "
3743					"active endpoint contexts = %u\n",
3744					xhci->num_active_eps);
3745			goto disable_slot;
3746		}
3747		spin_unlock_irqrestore(&xhci->lock, flags);
3748	}
3749	/* Use GFP_NOIO, since this function can be called from
3750	 * xhci_discover_or_reset_device(), which may be called as part of
3751	 * mass storage driver error handling.
3752	 */
3753	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3754		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3755		goto disable_slot;
3756	}
3757	udev->slot_id = slot_id;
3758
3759#ifndef CONFIG_USB_DEFAULT_PERSIST
3760	/*
3761	 * If resetting upon resume, we can't put the controller into runtime
3762	 * suspend if there is a device attached.
3763	 */
3764	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3765		pm_runtime_get_noresume(hcd->self.controller);
3766#endif
3767
3768
3769	kfree(command);
3770	/* Is this a LS or FS device under a HS hub? */
3771	/* Hub or peripherial? */
3772	return 1;
3773
3774disable_slot:
3775	/* Disable slot, if we can do it without mem alloc */
3776	spin_lock_irqsave(&xhci->lock, flags);
3777	command->completion = NULL;
3778	command->status = 0;
3779	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3780				     udev->slot_id))
3781		xhci_ring_cmd_db(xhci);
3782	spin_unlock_irqrestore(&xhci->lock, flags);
3783	return 0;
3784}
3785
3786/*
3787 * Issue an Address Device command and optionally send a corresponding
3788 * SetAddress request to the device.
3789 */
3790static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3791			     enum xhci_setup_dev setup)
3792{
3793	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3794	unsigned long flags;
3795	struct xhci_virt_device *virt_dev;
3796	int ret = 0;
3797	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3798	struct xhci_slot_ctx *slot_ctx;
3799	struct xhci_input_control_ctx *ctrl_ctx;
3800	u64 temp_64;
3801	struct xhci_command *command = NULL;
3802
3803	mutex_lock(&xhci->mutex);
3804
3805	if (xhci->xhc_state)	/* dying, removing or halted */
3806		goto out;
3807
3808	if (!udev->slot_id) {
3809		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3810				"Bad Slot ID %d", udev->slot_id);
3811		ret = -EINVAL;
3812		goto out;
3813	}
3814
3815	virt_dev = xhci->devs[udev->slot_id];
3816
3817	if (WARN_ON(!virt_dev)) {
3818		/*
3819		 * In plug/unplug torture test with an NEC controller,
3820		 * a zero-dereference was observed once due to virt_dev = 0.
3821		 * Print useful debug rather than crash if it is observed again!
3822		 */
3823		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3824			udev->slot_id);
3825		ret = -EINVAL;
3826		goto out;
3827	}
3828
3829	if (setup == SETUP_CONTEXT_ONLY) {
3830		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3831		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3832		    SLOT_STATE_DEFAULT) {
3833			xhci_dbg(xhci, "Slot already in default state\n");
3834			goto out;
3835		}
3836	}
3837
3838	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3839	if (!command) {
3840		ret = -ENOMEM;
3841		goto out;
3842	}
3843
3844	command->in_ctx = virt_dev->in_ctx;
3845	command->completion = &xhci->addr_dev;
3846
3847	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3848	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3849	if (!ctrl_ctx) {
3850		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3851				__func__);
3852		ret = -EINVAL;
3853		goto out;
3854	}
3855	/*
3856	 * If this is the first Set Address since device plug-in or
3857	 * virt_device realloaction after a resume with an xHCI power loss,
3858	 * then set up the slot context.
3859	 */
3860	if (!slot_ctx->dev_info)
3861		xhci_setup_addressable_virt_dev(xhci, udev);
3862	/* Otherwise, update the control endpoint ring enqueue pointer. */
3863	else
3864		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3865	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3866	ctrl_ctx->drop_flags = 0;
3867
3868	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3869	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3870	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3871				le32_to_cpu(slot_ctx->dev_info) >> 27);
3872
3873	spin_lock_irqsave(&xhci->lock, flags);
3874	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3875					udev->slot_id, setup);
3876	if (ret) {
3877		spin_unlock_irqrestore(&xhci->lock, flags);
3878		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3879				"FIXME: allocate a command ring segment");
3880		goto out;
3881	}
3882	xhci_ring_cmd_db(xhci);
3883	spin_unlock_irqrestore(&xhci->lock, flags);
3884
3885	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3886	wait_for_completion(command->completion);
3887
3888	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3889	 * the SetAddress() "recovery interval" required by USB and aborting the
3890	 * command on a timeout.
3891	 */
3892	switch (command->status) {
3893	case COMP_CMD_ABORT:
3894	case COMP_CMD_STOP:
3895		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3896		ret = -ETIME;
3897		break;
3898	case COMP_CTX_STATE:
3899	case COMP_EBADSLT:
3900		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3901			 act, udev->slot_id);
3902		ret = -EINVAL;
3903		break;
3904	case COMP_TX_ERR:
3905		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3906		ret = -EPROTO;
3907		break;
3908	case COMP_DEV_ERR:
3909		dev_warn(&udev->dev,
3910			 "ERROR: Incompatible device for setup %s command\n", act);
3911		ret = -ENODEV;
3912		break;
3913	case COMP_SUCCESS:
3914		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3915			       "Successful setup %s command", act);
3916		break;
3917	default:
3918		xhci_err(xhci,
3919			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3920			 act, command->status);
3921		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3922		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3923		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3924		ret = -EINVAL;
3925		break;
3926	}
3927	if (ret)
3928		goto out;
3929	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3930	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3931			"Op regs DCBAA ptr = %#016llx", temp_64);
3932	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3933		"Slot ID %d dcbaa entry @%p = %#016llx",
3934		udev->slot_id,
3935		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3936		(unsigned long long)
3937		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3938	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3939			"Output Context DMA address = %#08llx",
3940			(unsigned long long)virt_dev->out_ctx->dma);
3941	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3942	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3943	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3944				le32_to_cpu(slot_ctx->dev_info) >> 27);
3945	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3946	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3947	/*
3948	 * USB core uses address 1 for the roothubs, so we add one to the
3949	 * address given back to us by the HC.
3950	 */
3951	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3952	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3953				le32_to_cpu(slot_ctx->dev_info) >> 27);
3954	/* Zero the input context control for later use */
3955	ctrl_ctx->add_flags = 0;
3956	ctrl_ctx->drop_flags = 0;
3957
3958	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3959		       "Internal device address = %d",
3960		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3961out:
3962	mutex_unlock(&xhci->mutex);
3963	kfree(command);
3964	return ret;
3965}
3966
3967int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3968{
3969	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3970}
3971
3972int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3973{
3974	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3975}
3976
3977/*
3978 * Transfer the port index into real index in the HW port status
3979 * registers. Caculate offset between the port's PORTSC register
3980 * and port status base. Divide the number of per port register
3981 * to get the real index. The raw port number bases 1.
3982 */
3983int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3984{
3985	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3986	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3987	__le32 __iomem *addr;
3988	int raw_port;
3989
3990	if (hcd->speed < HCD_USB3)
3991		addr = xhci->usb2_ports[port1 - 1];
3992	else
3993		addr = xhci->usb3_ports[port1 - 1];
3994
3995	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3996	return raw_port;
3997}
3998
3999/*
4000 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4001 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4002 */
4003static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4004			struct usb_device *udev, u16 max_exit_latency)
4005{
4006	struct xhci_virt_device *virt_dev;
4007	struct xhci_command *command;
4008	struct xhci_input_control_ctx *ctrl_ctx;
4009	struct xhci_slot_ctx *slot_ctx;
4010	unsigned long flags;
4011	int ret;
4012
4013	spin_lock_irqsave(&xhci->lock, flags);
4014
4015	virt_dev = xhci->devs[udev->slot_id];
4016
4017	/*
4018	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4019	 * xHC was re-initialized. Exit latency will be set later after
4020	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4021	 */
4022
4023	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4024		spin_unlock_irqrestore(&xhci->lock, flags);
4025		return 0;
4026	}
4027
4028	/* Attempt to issue an Evaluate Context command to change the MEL. */
4029	command = xhci->lpm_command;
4030	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4031	if (!ctrl_ctx) {
4032		spin_unlock_irqrestore(&xhci->lock, flags);
4033		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4034				__func__);
4035		return -ENOMEM;
4036	}
4037
4038	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4039	spin_unlock_irqrestore(&xhci->lock, flags);
4040
4041	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4042	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4043	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4044	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4045	slot_ctx->dev_state = 0;
4046
4047	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4048			"Set up evaluate context for LPM MEL change.");
4049	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4050	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4051
4052	/* Issue and wait for the evaluate context command. */
4053	ret = xhci_configure_endpoint(xhci, udev, command,
4054			true, true);
4055	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4056	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4057
4058	if (!ret) {
4059		spin_lock_irqsave(&xhci->lock, flags);
4060		virt_dev->current_mel = max_exit_latency;
4061		spin_unlock_irqrestore(&xhci->lock, flags);
4062	}
4063	return ret;
4064}
4065
4066#ifdef CONFIG_PM
4067
4068/* BESL to HIRD Encoding array for USB2 LPM */
4069static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4070	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4071
4072/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4073static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4074					struct usb_device *udev)
4075{
4076	int u2del, besl, besl_host;
4077	int besl_device = 0;
4078	u32 field;
4079
4080	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4081	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4082
4083	if (field & USB_BESL_SUPPORT) {
4084		for (besl_host = 0; besl_host < 16; besl_host++) {
4085			if (xhci_besl_encoding[besl_host] >= u2del)
4086				break;
4087		}
4088		/* Use baseline BESL value as default */
4089		if (field & USB_BESL_BASELINE_VALID)
4090			besl_device = USB_GET_BESL_BASELINE(field);
4091		else if (field & USB_BESL_DEEP_VALID)
4092			besl_device = USB_GET_BESL_DEEP(field);
4093	} else {
4094		if (u2del <= 50)
4095			besl_host = 0;
4096		else
4097			besl_host = (u2del - 51) / 75 + 1;
4098	}
4099
4100	besl = besl_host + besl_device;
4101	if (besl > 15)
4102		besl = 15;
4103
4104	return besl;
4105}
4106
4107/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4108static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4109{
4110	u32 field;
4111	int l1;
4112	int besld = 0;
4113	int hirdm = 0;
4114
4115	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4116
4117	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4118	l1 = udev->l1_params.timeout / 256;
4119
4120	/* device has preferred BESLD */
4121	if (field & USB_BESL_DEEP_VALID) {
4122		besld = USB_GET_BESL_DEEP(field);
4123		hirdm = 1;
4124	}
4125
4126	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4127}
4128
4129int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4130			struct usb_device *udev, int enable)
4131{
4132	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4133	__le32 __iomem	**port_array;
4134	__le32 __iomem	*pm_addr, *hlpm_addr;
4135	u32		pm_val, hlpm_val, field;
4136	unsigned int	port_num;
4137	unsigned long	flags;
4138	int		hird, exit_latency;
4139	int		ret;
4140
4141	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4142			!udev->lpm_capable)
4143		return -EPERM;
4144
4145	if (!udev->parent || udev->parent->parent ||
4146			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4147		return -EPERM;
4148
4149	if (udev->usb2_hw_lpm_capable != 1)
4150		return -EPERM;
4151
4152	spin_lock_irqsave(&xhci->lock, flags);
4153
4154	port_array = xhci->usb2_ports;
4155	port_num = udev->portnum - 1;
4156	pm_addr = port_array[port_num] + PORTPMSC;
4157	pm_val = readl(pm_addr);
4158	hlpm_addr = port_array[port_num] + PORTHLPMC;
4159	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4160
4161	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4162			enable ? "enable" : "disable", port_num + 1);
4163
4164	if (enable) {
4165		/* Host supports BESL timeout instead of HIRD */
4166		if (udev->usb2_hw_lpm_besl_capable) {
4167			/* if device doesn't have a preferred BESL value use a
4168			 * default one which works with mixed HIRD and BESL
4169			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4170			 */
4171			if ((field & USB_BESL_SUPPORT) &&
4172			    (field & USB_BESL_BASELINE_VALID))
4173				hird = USB_GET_BESL_BASELINE(field);
4174			else
4175				hird = udev->l1_params.besl;
4176
4177			exit_latency = xhci_besl_encoding[hird];
4178			spin_unlock_irqrestore(&xhci->lock, flags);
4179
4180			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4181			 * input context for link powermanagement evaluate
4182			 * context commands. It is protected by hcd->bandwidth
4183			 * mutex and is shared by all devices. We need to set
4184			 * the max ext latency in USB 2 BESL LPM as well, so
4185			 * use the same mutex and xhci_change_max_exit_latency()
4186			 */
4187			mutex_lock(hcd->bandwidth_mutex);
4188			ret = xhci_change_max_exit_latency(xhci, udev,
4189							   exit_latency);
4190			mutex_unlock(hcd->bandwidth_mutex);
4191
4192			if (ret < 0)
4193				return ret;
4194			spin_lock_irqsave(&xhci->lock, flags);
4195
4196			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4197			writel(hlpm_val, hlpm_addr);
4198			/* flush write */
4199			readl(hlpm_addr);
4200		} else {
4201			hird = xhci_calculate_hird_besl(xhci, udev);
4202		}
4203
4204		pm_val &= ~PORT_HIRD_MASK;
4205		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4206		writel(pm_val, pm_addr);
4207		pm_val = readl(pm_addr);
4208		pm_val |= PORT_HLE;
4209		writel(pm_val, pm_addr);
4210		/* flush write */
4211		readl(pm_addr);
4212	} else {
4213		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4214		writel(pm_val, pm_addr);
4215		/* flush write */
4216		readl(pm_addr);
4217		if (udev->usb2_hw_lpm_besl_capable) {
4218			spin_unlock_irqrestore(&xhci->lock, flags);
4219			mutex_lock(hcd->bandwidth_mutex);
4220			xhci_change_max_exit_latency(xhci, udev, 0);
4221			mutex_unlock(hcd->bandwidth_mutex);
4222			return 0;
4223		}
4224	}
4225
4226	spin_unlock_irqrestore(&xhci->lock, flags);
4227	return 0;
4228}
4229
4230/* check if a usb2 port supports a given extened capability protocol
4231 * only USB2 ports extended protocol capability values are cached.
4232 * Return 1 if capability is supported
4233 */
4234static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4235					   unsigned capability)
4236{
4237	u32 port_offset, port_count;
4238	int i;
4239
4240	for (i = 0; i < xhci->num_ext_caps; i++) {
4241		if (xhci->ext_caps[i] & capability) {
4242			/* port offsets starts at 1 */
4243			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4244			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4245			if (port >= port_offset &&
4246			    port < port_offset + port_count)
4247				return 1;
4248		}
4249	}
4250	return 0;
4251}
4252
4253int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4254{
4255	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4256	int		portnum = udev->portnum - 1;
4257
4258	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4259			!udev->lpm_capable)
4260		return 0;
4261
4262	/* we only support lpm for non-hub device connected to root hub yet */
4263	if (!udev->parent || udev->parent->parent ||
4264			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4265		return 0;
4266
4267	if (xhci->hw_lpm_support == 1 &&
4268			xhci_check_usb2_port_capability(
4269				xhci, portnum, XHCI_HLC)) {
4270		udev->usb2_hw_lpm_capable = 1;
4271		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4272		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4273		if (xhci_check_usb2_port_capability(xhci, portnum,
4274					XHCI_BLC))
4275			udev->usb2_hw_lpm_besl_capable = 1;
4276	}
4277
4278	return 0;
4279}
4280
4281/*---------------------- USB 3.0 Link PM functions ------------------------*/
4282
4283/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4284static unsigned long long xhci_service_interval_to_ns(
4285		struct usb_endpoint_descriptor *desc)
4286{
4287	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4288}
4289
4290static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4291		enum usb3_link_state state)
4292{
4293	unsigned long long sel;
4294	unsigned long long pel;
4295	unsigned int max_sel_pel;
4296	char *state_name;
4297
4298	switch (state) {
4299	case USB3_LPM_U1:
4300		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4301		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4302		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4303		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4304		state_name = "U1";
4305		break;
4306	case USB3_LPM_U2:
4307		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4308		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4309		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4310		state_name = "U2";
4311		break;
4312	default:
4313		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4314				__func__);
4315		return USB3_LPM_DISABLED;
4316	}
4317
4318	if (sel <= max_sel_pel && pel <= max_sel_pel)
4319		return USB3_LPM_DEVICE_INITIATED;
4320
4321	if (sel > max_sel_pel)
4322		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4323				"due to long SEL %llu ms\n",
4324				state_name, sel);
4325	else
4326		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4327				"due to long PEL %llu ms\n",
4328				state_name, pel);
4329	return USB3_LPM_DISABLED;
4330}
4331
4332/* The U1 timeout should be the maximum of the following values:
4333 *  - For control endpoints, U1 system exit latency (SEL) * 3
4334 *  - For bulk endpoints, U1 SEL * 5
4335 *  - For interrupt endpoints:
4336 *    - Notification EPs, U1 SEL * 3
4337 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4338 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4339 */
4340static unsigned long long xhci_calculate_intel_u1_timeout(
4341		struct usb_device *udev,
4342		struct usb_endpoint_descriptor *desc)
4343{
4344	unsigned long long timeout_ns;
4345	int ep_type;
4346	int intr_type;
4347
4348	ep_type = usb_endpoint_type(desc);
4349	switch (ep_type) {
4350	case USB_ENDPOINT_XFER_CONTROL:
4351		timeout_ns = udev->u1_params.sel * 3;
4352		break;
4353	case USB_ENDPOINT_XFER_BULK:
4354		timeout_ns = udev->u1_params.sel * 5;
4355		break;
4356	case USB_ENDPOINT_XFER_INT:
4357		intr_type = usb_endpoint_interrupt_type(desc);
4358		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4359			timeout_ns = udev->u1_params.sel * 3;
4360			break;
4361		}
4362		/* Otherwise the calculation is the same as isoc eps */
4363	case USB_ENDPOINT_XFER_ISOC:
4364		timeout_ns = xhci_service_interval_to_ns(desc);
4365		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4366		if (timeout_ns < udev->u1_params.sel * 2)
4367			timeout_ns = udev->u1_params.sel * 2;
4368		break;
4369	default:
4370		return 0;
4371	}
4372
4373	return timeout_ns;
4374}
4375
4376/* Returns the hub-encoded U1 timeout value. */
4377static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4378		struct usb_device *udev,
4379		struct usb_endpoint_descriptor *desc)
4380{
4381	unsigned long long timeout_ns;
4382
4383	if (xhci->quirks & XHCI_INTEL_HOST)
4384		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4385	else
4386		timeout_ns = udev->u1_params.sel;
4387
4388	/* The U1 timeout is encoded in 1us intervals.
4389	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4390	 */
4391	if (timeout_ns == USB3_LPM_DISABLED)
4392		timeout_ns = 1;
4393	else
4394		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4395
4396	/* If the necessary timeout value is bigger than what we can set in the
4397	 * USB 3.0 hub, we have to disable hub-initiated U1.
4398	 */
4399	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4400		return timeout_ns;
4401	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4402			"due to long timeout %llu ms\n", timeout_ns);
4403	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4404}
4405
4406/* The U2 timeout should be the maximum of:
4407 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4408 *  - largest bInterval of any active periodic endpoint (to avoid going
4409 *    into lower power link states between intervals).
4410 *  - the U2 Exit Latency of the device
4411 */
4412static unsigned long long xhci_calculate_intel_u2_timeout(
4413		struct usb_device *udev,
4414		struct usb_endpoint_descriptor *desc)
4415{
4416	unsigned long long timeout_ns;
4417	unsigned long long u2_del_ns;
4418
4419	timeout_ns = 10 * 1000 * 1000;
4420
4421	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4422			(xhci_service_interval_to_ns(desc) > timeout_ns))
4423		timeout_ns = xhci_service_interval_to_ns(desc);
4424
4425	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4426	if (u2_del_ns > timeout_ns)
4427		timeout_ns = u2_del_ns;
4428
4429	return timeout_ns;
4430}
4431
4432/* Returns the hub-encoded U2 timeout value. */
4433static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4434		struct usb_device *udev,
4435		struct usb_endpoint_descriptor *desc)
4436{
4437	unsigned long long timeout_ns;
4438
4439	if (xhci->quirks & XHCI_INTEL_HOST)
4440		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4441	else
4442		timeout_ns = udev->u2_params.sel;
4443
4444	/* The U2 timeout is encoded in 256us intervals */
4445	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4446	/* If the necessary timeout value is bigger than what we can set in the
4447	 * USB 3.0 hub, we have to disable hub-initiated U2.
4448	 */
4449	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4450		return timeout_ns;
4451	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4452			"due to long timeout %llu ms\n", timeout_ns);
4453	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4454}
4455
4456static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4457		struct usb_device *udev,
4458		struct usb_endpoint_descriptor *desc,
4459		enum usb3_link_state state,
4460		u16 *timeout)
4461{
4462	if (state == USB3_LPM_U1)
4463		return xhci_calculate_u1_timeout(xhci, udev, desc);
4464	else if (state == USB3_LPM_U2)
4465		return xhci_calculate_u2_timeout(xhci, udev, desc);
4466
4467	return USB3_LPM_DISABLED;
4468}
4469
4470static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4471		struct usb_device *udev,
4472		struct usb_endpoint_descriptor *desc,
4473		enum usb3_link_state state,
4474		u16 *timeout)
4475{
4476	u16 alt_timeout;
4477
4478	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4479		desc, state, timeout);
4480
4481	/* If we found we can't enable hub-initiated LPM, or
4482	 * the U1 or U2 exit latency was too high to allow
4483	 * device-initiated LPM as well, just stop searching.
4484	 */
4485	if (alt_timeout == USB3_LPM_DISABLED ||
4486			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4487		*timeout = alt_timeout;
4488		return -E2BIG;
4489	}
4490	if (alt_timeout > *timeout)
4491		*timeout = alt_timeout;
4492	return 0;
4493}
4494
4495static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4496		struct usb_device *udev,
4497		struct usb_host_interface *alt,
4498		enum usb3_link_state state,
4499		u16 *timeout)
4500{
4501	int j;
4502
4503	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4504		if (xhci_update_timeout_for_endpoint(xhci, udev,
4505					&alt->endpoint[j].desc, state, timeout))
4506			return -E2BIG;
4507		continue;
4508	}
4509	return 0;
4510}
4511
4512static int xhci_check_intel_tier_policy(struct usb_device *udev,
4513		enum usb3_link_state state)
4514{
4515	struct usb_device *parent;
4516	unsigned int num_hubs;
4517
4518	if (state == USB3_LPM_U2)
4519		return 0;
4520
4521	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4522	for (parent = udev->parent, num_hubs = 0; parent->parent;
4523			parent = parent->parent)
4524		num_hubs++;
4525
4526	if (num_hubs < 2)
4527		return 0;
4528
4529	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4530			" below second-tier hub.\n");
4531	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4532			"to decrease power consumption.\n");
4533	return -E2BIG;
4534}
4535
4536static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4537		struct usb_device *udev,
4538		enum usb3_link_state state)
4539{
4540	if (xhci->quirks & XHCI_INTEL_HOST)
4541		return xhci_check_intel_tier_policy(udev, state);
4542	else
4543		return 0;
4544}
4545
4546/* Returns the U1 or U2 timeout that should be enabled.
4547 * If the tier check or timeout setting functions return with a non-zero exit
4548 * code, that means the timeout value has been finalized and we shouldn't look
4549 * at any more endpoints.
4550 */
4551static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4552			struct usb_device *udev, enum usb3_link_state state)
4553{
4554	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4555	struct usb_host_config *config;
4556	char *state_name;
4557	int i;
4558	u16 timeout = USB3_LPM_DISABLED;
4559
4560	if (state == USB3_LPM_U1)
4561		state_name = "U1";
4562	else if (state == USB3_LPM_U2)
4563		state_name = "U2";
4564	else {
4565		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4566				state);
4567		return timeout;
4568	}
4569
4570	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4571		return timeout;
4572
4573	/* Gather some information about the currently installed configuration
4574	 * and alternate interface settings.
4575	 */
4576	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4577			state, &timeout))
4578		return timeout;
4579
4580	config = udev->actconfig;
4581	if (!config)
4582		return timeout;
4583
4584	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4585		struct usb_driver *driver;
4586		struct usb_interface *intf = config->interface[i];
4587
4588		if (!intf)
4589			continue;
4590
4591		/* Check if any currently bound drivers want hub-initiated LPM
4592		 * disabled.
4593		 */
4594		if (intf->dev.driver) {
4595			driver = to_usb_driver(intf->dev.driver);
4596			if (driver && driver->disable_hub_initiated_lpm) {
4597				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4598						"at request of driver %s\n",
4599						state_name, driver->name);
4600				return xhci_get_timeout_no_hub_lpm(udev, state);
4601			}
4602		}
4603
4604		/* Not sure how this could happen... */
4605		if (!intf->cur_altsetting)
4606			continue;
4607
4608		if (xhci_update_timeout_for_interface(xhci, udev,
4609					intf->cur_altsetting,
4610					state, &timeout))
4611			return timeout;
4612	}
4613	return timeout;
4614}
4615
4616static int calculate_max_exit_latency(struct usb_device *udev,
4617		enum usb3_link_state state_changed,
4618		u16 hub_encoded_timeout)
4619{
4620	unsigned long long u1_mel_us = 0;
4621	unsigned long long u2_mel_us = 0;
4622	unsigned long long mel_us = 0;
4623	bool disabling_u1;
4624	bool disabling_u2;
4625	bool enabling_u1;
4626	bool enabling_u2;
4627
4628	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4629			hub_encoded_timeout == USB3_LPM_DISABLED);
4630	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4631			hub_encoded_timeout == USB3_LPM_DISABLED);
4632
4633	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4634			hub_encoded_timeout != USB3_LPM_DISABLED);
4635	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4636			hub_encoded_timeout != USB3_LPM_DISABLED);
4637
4638	/* If U1 was already enabled and we're not disabling it,
4639	 * or we're going to enable U1, account for the U1 max exit latency.
4640	 */
4641	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4642			enabling_u1)
4643		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4644	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4645			enabling_u2)
4646		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4647
4648	if (u1_mel_us > u2_mel_us)
4649		mel_us = u1_mel_us;
4650	else
4651		mel_us = u2_mel_us;
4652	/* xHCI host controller max exit latency field is only 16 bits wide. */
4653	if (mel_us > MAX_EXIT) {
4654		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4655				"is too big.\n", mel_us);
4656		return -E2BIG;
4657	}
4658	return mel_us;
4659}
4660
4661/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4662int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4663			struct usb_device *udev, enum usb3_link_state state)
4664{
4665	struct xhci_hcd	*xhci;
4666	u16 hub_encoded_timeout;
4667	int mel;
4668	int ret;
4669
4670	xhci = hcd_to_xhci(hcd);
4671	/* The LPM timeout values are pretty host-controller specific, so don't
4672	 * enable hub-initiated timeouts unless the vendor has provided
4673	 * information about their timeout algorithm.
4674	 */
4675	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4676			!xhci->devs[udev->slot_id])
4677		return USB3_LPM_DISABLED;
4678
4679	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4680	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4681	if (mel < 0) {
4682		/* Max Exit Latency is too big, disable LPM. */
4683		hub_encoded_timeout = USB3_LPM_DISABLED;
4684		mel = 0;
4685	}
4686
4687	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4688	if (ret)
4689		return ret;
4690	return hub_encoded_timeout;
4691}
4692
4693int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4694			struct usb_device *udev, enum usb3_link_state state)
4695{
4696	struct xhci_hcd	*xhci;
4697	u16 mel;
4698
4699	xhci = hcd_to_xhci(hcd);
4700	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4701			!xhci->devs[udev->slot_id])
4702		return 0;
4703
4704	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4705	return xhci_change_max_exit_latency(xhci, udev, mel);
4706}
4707#else /* CONFIG_PM */
4708
4709int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4710				struct usb_device *udev, int enable)
4711{
4712	return 0;
4713}
4714
4715int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4716{
4717	return 0;
4718}
4719
4720int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4721			struct usb_device *udev, enum usb3_link_state state)
4722{
4723	return USB3_LPM_DISABLED;
4724}
4725
4726int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4727			struct usb_device *udev, enum usb3_link_state state)
4728{
4729	return 0;
4730}
4731#endif	/* CONFIG_PM */
4732
4733/*-------------------------------------------------------------------------*/
4734
4735/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4736 * internal data structures for the device.
4737 */
4738int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4739			struct usb_tt *tt, gfp_t mem_flags)
4740{
4741	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4742	struct xhci_virt_device *vdev;
4743	struct xhci_command *config_cmd;
4744	struct xhci_input_control_ctx *ctrl_ctx;
4745	struct xhci_slot_ctx *slot_ctx;
4746	unsigned long flags;
4747	unsigned think_time;
4748	int ret;
4749
4750	/* Ignore root hubs */
4751	if (!hdev->parent)
4752		return 0;
4753
4754	vdev = xhci->devs[hdev->slot_id];
4755	if (!vdev) {
4756		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4757		return -EINVAL;
4758	}
4759	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4760	if (!config_cmd) {
4761		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4762		return -ENOMEM;
4763	}
4764	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4765	if (!ctrl_ctx) {
4766		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4767				__func__);
4768		xhci_free_command(xhci, config_cmd);
4769		return -ENOMEM;
4770	}
4771
4772	spin_lock_irqsave(&xhci->lock, flags);
4773	if (hdev->speed == USB_SPEED_HIGH &&
4774			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4775		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4776		xhci_free_command(xhci, config_cmd);
4777		spin_unlock_irqrestore(&xhci->lock, flags);
4778		return -ENOMEM;
4779	}
4780
4781	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4782	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4783	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4784	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4785	/*
4786	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4787	 * but it may be already set to 1 when setup an xHCI virtual
4788	 * device, so clear it anyway.
4789	 */
4790	if (tt->multi)
4791		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4792	else if (hdev->speed == USB_SPEED_FULL)
4793		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4794
4795	if (xhci->hci_version > 0x95) {
4796		xhci_dbg(xhci, "xHCI version %x needs hub "
4797				"TT think time and number of ports\n",
4798				(unsigned int) xhci->hci_version);
4799		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4800		/* Set TT think time - convert from ns to FS bit times.
4801		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4802		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4803		 *
4804		 * xHCI 1.0: this field shall be 0 if the device is not a
4805		 * High-spped hub.
4806		 */
4807		think_time = tt->think_time;
4808		if (think_time != 0)
4809			think_time = (think_time / 666) - 1;
4810		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4811			slot_ctx->tt_info |=
4812				cpu_to_le32(TT_THINK_TIME(think_time));
4813	} else {
4814		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4815				"TT think time or number of ports\n",
4816				(unsigned int) xhci->hci_version);
4817	}
4818	slot_ctx->dev_state = 0;
4819	spin_unlock_irqrestore(&xhci->lock, flags);
4820
4821	xhci_dbg(xhci, "Set up %s for hub device.\n",
4822			(xhci->hci_version > 0x95) ?
4823			"configure endpoint" : "evaluate context");
4824	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4825	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4826
4827	/* Issue and wait for the configure endpoint or
4828	 * evaluate context command.
4829	 */
4830	if (xhci->hci_version > 0x95)
4831		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4832				false, false);
4833	else
4834		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4835				true, false);
4836
4837	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4838	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4839
4840	xhci_free_command(xhci, config_cmd);
4841	return ret;
4842}
4843
4844int xhci_get_frame(struct usb_hcd *hcd)
4845{
4846	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4847	/* EHCI mods by the periodic size.  Why? */
4848	return readl(&xhci->run_regs->microframe_index) >> 3;
4849}
4850
4851int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4852{
4853	struct xhci_hcd		*xhci;
4854	struct device		*dev = hcd->self.controller;
4855	int			retval;
4856
4857	/* Accept arbitrarily long scatter-gather lists */
4858	hcd->self.sg_tablesize = ~0;
4859
4860	/* support to build packet from discontinuous buffers */
4861	hcd->self.no_sg_constraint = 1;
4862
4863	/* XHCI controllers don't stop the ep queue on short packets :| */
4864	hcd->self.no_stop_on_short = 1;
4865
4866	xhci = hcd_to_xhci(hcd);
4867
4868	if (usb_hcd_is_primary_hcd(hcd)) {
4869		xhci->main_hcd = hcd;
4870		/* Mark the first roothub as being USB 2.0.
4871		 * The xHCI driver will register the USB 3.0 roothub.
4872		 */
4873		hcd->speed = HCD_USB2;
4874		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4875		/*
4876		 * USB 2.0 roothub under xHCI has an integrated TT,
4877		 * (rate matching hub) as opposed to having an OHCI/UHCI
4878		 * companion controller.
4879		 */
4880		hcd->has_tt = 1;
4881	} else {
4882		if (xhci->sbrn == 0x31) {
4883			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4884			hcd->speed = HCD_USB31;
4885		}
4886		/* xHCI private pointer was set in xhci_pci_probe for the second
4887		 * registered roothub.
4888		 */
4889		return 0;
4890	}
4891
4892	mutex_init(&xhci->mutex);
4893	xhci->cap_regs = hcd->regs;
4894	xhci->op_regs = hcd->regs +
4895		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4896	xhci->run_regs = hcd->regs +
4897		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4898	/* Cache read-only capability registers */
4899	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4900	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4901	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4902	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4903	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4904	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4905	if (xhci->hci_version > 0x100)
4906		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4907	xhci_print_registers(xhci);
4908
4909	xhci->quirks = quirks;
4910
4911	get_quirks(dev, xhci);
4912
4913	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4914	 * success event after a short transfer. This quirk will ignore such
4915	 * spurious event.
4916	 */
4917	if (xhci->hci_version > 0x96)
4918		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4919
4920	/* Make sure the HC is halted. */
4921	retval = xhci_halt(xhci);
4922	if (retval)
4923		return retval;
4924
4925	xhci_dbg(xhci, "Resetting HCD\n");
4926	/* Reset the internal HC memory state and registers. */
4927	retval = xhci_reset(xhci);
4928	if (retval)
4929		return retval;
4930	xhci_dbg(xhci, "Reset complete\n");
4931
4932	/* Set dma_mask and coherent_dma_mask to 64-bits,
4933	 * if xHC supports 64-bit addressing */
4934	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4935			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4936		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4937		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4938	} else {
4939		/*
4940		 * This is to avoid error in cases where a 32-bit USB
4941		 * controller is used on a 64-bit capable system.
4942		 */
4943		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4944		if (retval)
4945			return retval;
4946		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4947		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4948	}
4949
4950	xhci_dbg(xhci, "Calling HCD init\n");
4951	/* Initialize HCD and host controller data structures. */
4952	retval = xhci_init(hcd);
4953	if (retval)
4954		return retval;
4955	xhci_dbg(xhci, "Called HCD init\n");
4956
4957	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4958		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4959
4960	return 0;
4961}
4962EXPORT_SYMBOL_GPL(xhci_gen_setup);
4963
4964static const struct hc_driver xhci_hc_driver = {
4965	.description =		"xhci-hcd",
4966	.product_desc =		"xHCI Host Controller",
4967	.hcd_priv_size =	sizeof(struct xhci_hcd *),
4968
4969	/*
4970	 * generic hardware linkage
4971	 */
4972	.irq =			xhci_irq,
4973	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4974
4975	/*
4976	 * basic lifecycle operations
4977	 */
4978	.reset =		NULL, /* set in xhci_init_driver() */
4979	.start =		xhci_run,
4980	.stop =			xhci_stop,
4981	.shutdown =		xhci_shutdown,
4982
4983	/*
4984	 * managing i/o requests and associated device resources
4985	 */
4986	.urb_enqueue =		xhci_urb_enqueue,
4987	.urb_dequeue =		xhci_urb_dequeue,
4988	.alloc_dev =		xhci_alloc_dev,
4989	.free_dev =		xhci_free_dev,
4990	.alloc_streams =	xhci_alloc_streams,
4991	.free_streams =		xhci_free_streams,
4992	.add_endpoint =		xhci_add_endpoint,
4993	.drop_endpoint =	xhci_drop_endpoint,
4994	.endpoint_reset =	xhci_endpoint_reset,
4995	.check_bandwidth =	xhci_check_bandwidth,
4996	.reset_bandwidth =	xhci_reset_bandwidth,
4997	.address_device =	xhci_address_device,
4998	.enable_device =	xhci_enable_device,
4999	.update_hub_device =	xhci_update_hub_device,
5000	.reset_device =		xhci_discover_or_reset_device,
5001
5002	/*
5003	 * scheduling support
5004	 */
5005	.get_frame_number =	xhci_get_frame,
5006
5007	/*
5008	 * root hub support
5009	 */
5010	.hub_control =		xhci_hub_control,
5011	.hub_status_data =	xhci_hub_status_data,
5012	.bus_suspend =		xhci_bus_suspend,
5013	.bus_resume =		xhci_bus_resume,
5014
5015	/*
5016	 * call back when device connected and addressed
5017	 */
5018	.update_device =        xhci_update_device,
5019	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5020	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5021	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5022	.find_raw_port_number =	xhci_find_raw_port_number,
5023};
5024
5025void xhci_init_driver(struct hc_driver *drv,
5026		      const struct xhci_driver_overrides *over)
5027{
5028	BUG_ON(!over);
5029
5030	/* Copy the generic table to drv then apply the overrides */
5031	*drv = xhci_hc_driver;
5032
5033	if (over) {
5034		drv->hcd_priv_size += over->extra_priv_size;
5035		if (over->reset)
5036			drv->reset = over->reset;
5037		if (over->start)
5038			drv->start = over->start;
5039	}
5040}
5041EXPORT_SYMBOL_GPL(xhci_init_driver);
5042
5043MODULE_DESCRIPTION(DRIVER_DESC);
5044MODULE_AUTHOR(DRIVER_AUTHOR);
5045MODULE_LICENSE("GPL");
5046
5047static int __init xhci_hcd_init(void)
5048{
5049	/*
5050	 * Check the compiler generated sizes of structures that must be laid
5051	 * out in specific ways for hardware access.
5052	 */
5053	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5054	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5055	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5056	/* xhci_device_control has eight fields, and also
5057	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5058	 */
5059	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5060	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5061	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5062	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5063	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5064	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5065	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5066
5067	if (usb_disabled())
5068		return -ENODEV;
5069
5070	return 0;
5071}
5072
5073/*
5074 * If an init function is provided, an exit function must also be provided
5075 * to allow module unload.
5076 */
5077static void __exit xhci_hcd_fini(void) { }
5078
5079module_init(xhci_hcd_init);
5080module_exit(xhci_hcd_fini);
5081